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ABSTRACT
Modern processor architectures face a throughput scaling
problem as the performance bottleneck shifts from the core
pipeline to the data transfer operations between the dynamic
random access memory (DRAM) and the processor chip. To
address such issue researchers have proposed the near-data
processing (NDP) paradigm in which the instruction exe-
cution is moved to the DRAM die thus, lowering the data
movement between the processor and the DRAM. Previous
NDP works focus on specific application types and thus the
general purpose application execution paradigm is neglected.
In this work we propose an NDP methodology for low power
general purpose loop acceleration. For this reason we de-
sign and implement a hardware loop accelerator from the
ground up to improve the throughput and lower the power
consumption of general purpose loops. We adopt a novel loop
scheduling approach which enables the loop accelerator to
take advantage of the dataflow parallelism of the executing
loop and we implement our design on the logic layer of a
hybrid memory cube (HMC) DRAM. Post-layout simulations
demonstrate an average speedup factor of 20.5x when exe-
cuting kernels from various scientific fields while the energy
consumption is reduced by a factor of 9.3x over the host cpu
execution.
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1 INTRODUCTION
Contemporary computer systems are bound by heavy en-
ergy constrains that impose penalties on their throughput
scaling capabilities [1]. In order to alleviate such limitations
researchers have proposed to execute the computations closer
to the data, i.e. to the DRAM. Such an approach is mainly
supported by the the appearance of through silicon vias
(TSV) interconnections and 3D stacked memories which are
key enablers for the NDP paradigm as mentioned in [2]. The
NDP promises to alleviate the performance bottleneck im-
posed by the DRAM bus as a previous survey in [3] elaborates
and also to increase the performance-to-power ratio of mod-
ern processing systems [4]. In previous work in [3] authors
argue the existence of a performance wall due to the slow
RAM - CPU communication and mention that such a wall
leads to performance scaling problems. Under this premise,
researchers mainly focus on specific application types to per-
form NDP optimizations such as graph processing [5], bitwise
operations [6], big data applications[7] and neural network
inference [8][9].

In this work we diverge from application specific appli-
cation execution and we propose an NDP methodology for
general purpose loop acceleration. Our design is optimized
for general purpose instruction execution, in order to cover a
wide range of application types. Our accelerator architecture
consists of a number of processing elements (PEs) capable
of executing simple arithmetic or logical operations, and of
a mesh interconnection network that handles the communi-
cation between the deployed PEs. We also propose a novel
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instruction issue technique which issues each loop instruction
on a single PE in order to leverage the dataflow parallelism
of the executing loop. We evaluate our methodology in a
post-layout netlist of RISC-V out of order (OoO) BOOM
core and in a post-layout implementation of a hybrid memory
cube (HMC) DRAM.

The main contributions of this work to the current state
of the art are the following:

∙ Design and implementation of an NDP methodology for
general purpose loop execution. We employ a general
purpose approach instead of focusing on an application
specific methodology as the most of previous works do.

∙ An NDP methodology which schedules each loop in-
struction on a single PE. In this way each PE executes
one instruction iteratively until the loop execution com-
pletes and thus, the system throughput is maximized.

∙ An evaluation process on post-layout netlists instead
of relying on software simulations.

The rest of this paper is organized as follows. In sec.2, we
provide the background of HMC DRAM used for this work. In
sec.3, we present the system architecture for general purpose
loop acceleration. In sec.4 we elaborate on the evaluation
process and sec.5 concludes our work.

2 BACKGROUND
HMC architectures are 3D-stacked DRAMs which are widely
adopted by NDP paradigms as previous work in [10] shows.
An HMC DRAM consists of multiple DRAM layers and
achieves much greater internal bandwidth than conventional
DRAMs, due to the through-silicon vias (TSVs) it employs.
TSVs are vertical silicon links that connect the multiple layers
of a 3D-stack DRAM together. This enables the HMC to
transfer data in parallel between the internal DRAM layers
in high transfer rates. According to the HMC consortium
specifications in [11], an HMC is organized in vertically struc-
tured memory vaults which are consisted of smaller partitions.
Each partition contains a number of banks which are DRAM
cells, storing the DRAM data. The lower DRAM layer is
reserved for implementing custom logic and facilitates vault
controllers that manage the data transfer process between
the corresponding vaults. In this sense the vault controllers
act as memory controllers for internal DRAM data trans-
fer between the vertically deployed HMC layers. They also
handle the refresh operations of each vault removing this
responsibility from the host memory controller. In this work
we employ the NDP paradigm and thus, we also adopt the
aforementioned HMC hierarchy according to the industrial
specifications issued by the HMC consortium in [11].

3 SYSTEM ARCHITECTURE
3.1 Hardware loop accelerator
The proposed loop acceleration architecture focuses on accel-
erating of general purpose loops while leveraging the dataflow
parallelism of the executing instructions. Fig. 1 depicts the
architecture of a 4𝑥3 PE network implemented on the logic
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Figure 1: The architecture of the general purpose loop accel-
erator.

layer of the HMC DRAM. The network consists of multiple
processing elements (PE) organized in a mesh-like structure
and of on-chip interconnects capable of handling the commu-
nication between the PEs. Each PE is capable of executing
arithmetic or logical operations and utilizes inputs either
from the HMC DRAM or from the outputs of other PEs.
The flow of data between the HMC and the PE network is
controlled by the memory controllers (or vault controller as
mentioned in sc.2) which execute memory requests heading
to the HMC DRAM. In order to manage the data transfer
within the mesh network we utilize switches that are de-
signed to redirect data paths to the designated PEs. Also
the communication between the host processor and the HMC
DRAM is conducted via the host processor bus. Below we
discuss the microarchitecture of the units deployed on the
loop accelerator design.

Forwarding unit: The forwarding unit manages the forward-
ing and stalling processes by generating the necessary signals
that propagate to the corresponding switches and PEs. To
this end, such signals are used to eliminate the data depen-
dencies of the executing instructions. As data dependencies
do not change over consequent loop iterations, this process
needs to be conducted at the beginning of the loop execution
in order to open the corresponding data forwarding paths.
Such data paths may change during the run time only when
control statement evaluation results in changing the instruc-
tion execution sequence flow. In this case the forwarding unit
redirects the corresponding control signals to forward the
required data to the depended instructions issued on the PEs.
As a result any unnecessary switching signals are omitted
and dynamic power consumption is reduced. The forwarding
unit also generates stalling signals freezing the instruction
execution on specific PEs when necessary.

Processing element: The microarchitecture of a PE is de-
picted in fig. 2. Each PE is composed of a pipelined ALU
or FPU unit capable of executing arithmetic, logical or com-
parison operations and of two multiplexers(switches) that
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Figure 2: PE microarchitecture

control the unit’s input operands. Such inputs may originate
from the DRAM, from other PE outputs or from the output
of the same PE, depending on the data dependencies of the
executing loop. To resolve such dependencies we utilize the
forwarding unit which selects the appropriate inputs for each
PE as described above. Each PE is assigned one instruction
and proceeds in executing it iteratively until the loop execu-
tion completes. We modify the PEs so that the outputs of
such operations are temporarily stored to a fifo queue before
propagated to the PE network. In case of a stalling action the
forwarding unit evokes the write privileges of the ALU/FPU
output to the queue and thus, no new entries are stored.

3.2 Loop execution in PE network
In this work we focus on improving the throughput and the
area efficiency of the loop accelerator design and thus, we opt
for an loop execution methodology that takes advantage of the
dataflow execution paradigm. To this end each PE is assigned
with the execution of one instruction only, as discussed in the
previous subsection. As a result, each PE iteratively executes
the same instruction for each loop iteration until the loop
execution completes. According to this paradigm, when the
accelerator pipeline is full we obtain a theoretical throughput
of one loop iteration per clock cycle. More specific, algorithm
1 depicts the scheduling operation which is conducted by
the host system and enables the loop to be executed on the
PE network. The host processor fetches and decodes all the
loop instructions as the PE network does not support any
of the aforementioned operations. In the sequel the data
dependencies of the loop instructions are analyzed and the
host system checks if their amount is smaller or equal to the
amount of the available PEs. If not, the loop fission operation
takes place as in [12] which splits the large loop into groups
of smaller loops which can be scheduled according to our
technique. Then, the decoded instructions along with the data
dependency information are dispatched to the PE network
and the NDP execution commences. When the loop execution

Algorithm 1 The loop scheduling operation.
Fetch and decode the instructions of the loop.
Analyze loop instruction dependencies.
if Instr. No. >= PE amount then

Perform loop fission.
Save the resulting loops.

end if
while Remaining loops do

Dispatch the next loop to the PE network.
Dispatch the instruction dependencies to the forwarding
unit.
Initialize NDP processing.
Wait for the execution to finish and collect the results.
Remaining loops −−.

end while
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Figure 3: Loop execution instance on the PE network.

completes the results are collected by the host processor via
the processor bush and the next NDP loop execution begins.
This process is repeated until all the instruction loops are
executed on the PE network. Our technique ensures that
each loop is executed after a simultaneous dispatch of their
instructions to the functional units. Consecutive iterations
are completed at the rate of one iteration per clock cycle, by
forwarding instruction results directly between the functional
units. In this way, performance is limited primarily by the
number of functional units, which are much higher than the
width of the host processor pipeline.

Fig. 3 depicts a run time instance of a loop after being
scheduled on the PE network. We note the read-after-write
(RaW) data dependencies of the instructions as well as their
latency in order to provide a thorough example of our method-
ology. The data dependency constrains would otherwise dic-
tate that the instruction i4 should wait for both i2 and i3
to finish their execution so that the inputs for i4 to become
available. As a result the i2 would not execute during the
clock cycles 4 and 5 due to the fact that the produced output
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of the clock cycle 3 would be overwritten. Stalling the i2
for 2cc creates a 2 cycle latency bubble that is propagated
throughout the instruction sequence resulting in throughput
decrease and PE under-utilization. We solve this problem by
employing fifo queues capable of storing the outputs of each
PE hence, enabling the PEs to continue executing instruc-
tions while previously generated outputs are not discarded.
As a result the i2 instruction is never stalled, instead it con-
tinues its iterative execution while its outputs are stored in
the PE’s fifo. In the sequel the i4 instruction is forwarded the
corresponding results from the i2 and i3 fifo queue and thus,
eliminating the need for pipeline stalling. We mark the for-
warding process with blue arrows that depict the flow of data
from the fifo queues to the inputs of the corresponding PEs.
The aforementioned technique requires the mesh pipeline to
be full and the intermediate results to be stored in the fifo
queues of the PEs. Considering that the whole loop body is
scheduled on the PE network with each PE executing one
instruction per clock cycle, we are able to execute one loop
iteration per clock cycle, after the loop accelerator pipeline
is full.

3.3 Implementation
The physical implementation of the design is carried out
by following the CAD toolchain for application specific in-
tegrated circuits (ASICs) according to industry standards.
To this end, we use verilog HDL to develop the HMC and
host system descriptions while synopsys design compiler is
employed for the synthesis operation, gate-level and retim-
ing optimizations. In the sequel we employ the synopsys IC
Compiler for place and route,clock tree synthesis and place-
ment operation. For synthesis and physical realization we
use the 15nm FreePDK library [13] while the post-layout
netlist is generated by the synopsys IC compiler. In order to
verify that our design meets the timing requirements and no
timing errors occur we perform static timing analysis with
the synopsys Primetime tool on the post-layout netlist. Fi-
nally functionality evaluation of the NDP design is conducted
by performing gate level simulations on the back-annotated
post-layout netlists using the Modelsim tool.

Table 1 depicts the host system and HMC design parame-
ters. For the host system we implement a multi-core processor
that consists of two identical Berkeley Out-of-Order Machine
(BOOM) [14] cores which utilize the RISC-V instruction set
architecture (ISA). BOOM is an open source out of order
(OoO) core that facilitates an 10 stage execution pipeline
and offers parameterized synthesis options. We tune such
parameters to 32KB L1 and 512 KB L2 cache sizes, gshare
branch prediction mechanism and 512 TLB entry size in
order to resemble modern process designs. For the HMC
DRAM implementation we use the openHMC netlist which is
a configurable open source HMC architecture [15] developed
by the Heidelberg University. We tune the HMC parameters
to align its specifications according to the industry standards
set by Hybrid Memory Cube Consortium (HMCC) in [11].
Specifically we opt for 8 GB memory size with 32 memory

Table 1: Key parameters of the host processor die and of the
HMC DRAM.

Host processor
Core RiscV Boom OoO, 1 GHz, 64 bit

Amount of Cores 2
Pipeline 10 stages, 2 issue width
L1 cache 32 KB, 8-way, 4 cycle latency
L2 cache 512 KB, 8-way, 12 cycle latency

Branch prediction gshare, 9-bit history, 512 entries
TLB size 512 entries

HMC 8 GB
Memory vaults 32
Memory banks 512

Bus Width 128 bits
tCK = 1.2 ns, tRAS = 24 ns,

Timing tRCD = 11 ns, tCAS = 5.5 ns,
tWR = 9 ns, tRP = 11 ns

Serial links 480 GBps, 8-cycle latency
BW per vault 16 GB/s

Table 2: Parameters of 32-bit and 64-bit NDP implementa-
tions.

NDP implementation parameters NDP-32 bit NDP-64 bit
ALU PEs 84 42
Mull PEs 40 20
Div PEs 6 3

FP ALU PEs 84 42
FP Mull PEs 40 20
FP Div PEs 6 3

Total number of PEs 180(12x15) 130(13x10)
Total power 4.7 W 4.5 W
Total area 1.7 𝑚𝑚2 1.55 𝑚𝑚2

vaults each containing 16 memory banks, resulting in a total
of 512 memory banks. We also use a 128-bit memory bus
width and the GPI/O serial links that transfer data to the
host system are capable of transmitting 480 GBps within an
8-cycle latency. The maximum bandwidth per vault is 16 GB
per second for the HMC implementation.

We conduct a design space exploration of the proposed
NDP methodology by implementing two different loop ac-
celerator designs on the logic layer of the HMC that are
depicted in table 2. Each NDP implementation consists of a
number of PEs, switching elements and of an interconnection
network as described above. Specifically we opt for 32-bit and
64-bit implementations, with both implementations having
6 fifo slots per PE and 800 MHz clock frequency in order
to balance power requirements and performance goals. We
select the amount of PEs of each implementation properly so
that to satisfy a power budget of 5𝑊 and an area budget of
7𝑚𝑚2, as designated by the Hybrid Memory Cube Consor-
tium (HMCC) in [11]. The 64 bit implementations require
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significantly more power due to the increase of the functional
unit size and thus, a lower amount of PEs is selected for such
designs.

4 EVALUATION
In this section we discuss the experimentation process by
which we evaluate our NDP methodology. For this purpose we
have opted to use 7 kernels from the spec cpu 2017 benchmark
suite [16] which are derived from various scientific fields in
order to cover a wide range of applications. Due to the large
benchmark size, the proposed scheduling methodology is not
always able to schedule the kernel binary by mapping one
instruction in one PE as discussed in section 3.2. To this end,
we apply loop fission transformations during the reprocessing
stage that split the kernels into groups of smaller loops. The
loop fission is performed in the host processor and we include
its execution time overhead to the total amount of time a
kernel needs to execute. Table 3 depicts the benchmarks used
for evaluation, their application areas and the amount of loop
fission transformation required for each benchmark before it
can be scheduled to the PE network. We quantitatively note
with S (small), M (medium) and L (large) the loop fission
count required for each benchmark.

Fig. 4 depicts the speedup of each NDP implementation
normalized to the baseline execution time of the host system,
i.e. the RISCV-V BOOM OoO dual core. To this end, we
firstly run each kernel on the host processor with no NDP
processing taking place. For this purpose we utilize all the
available 2 RISC-V BOOM cores by constructing kernel
threads which run in parallel in each BOOM core. In the
sequel, we deploy the proposed NDP implementations along
with the host system and we run the kernels again as our
methodology dictates. Finally we compare the speedup we
obtain for each NDP design over the host-only execution
process. Below we discuss the results we obtain after the
evaluation process is completed.

Due the the nature of NDP we observe high speedup values
as the instruction execution takes place on the DRAM die
and thus, the large data movement overhead between the
host system and the DRAM is significantly reduced. Also,
we have designed the loop accelerator to optimize general
purpose loop execution thus, the benchmark execution is
significantly accelerated. The speedup values we obtain range
from 8.6x to 30.2x with an average of 19.3x and 21.7x for the
corresponding 64-bit and 32-bit implementations. We observe
that the 32-bit designs perform better due to the higher

Table 3: Benchmark characteristics.

Benchmark name Application area Loop fission count
bwaves Explosion modeling M

cactuBSSN Relativity physics L
leela AI monte carlo tree search L
x264 Video encoding L
wrf Weather forecasting S
nab Molecular dynamics M

fotonik3d Computational Electromagnetics M
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Figure 4: Normalized Speedup for different benchmarks per
NDP implementation.
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Figure 5: Normalized energy reduction for different bench-
marks per NDP implementation.

amount of PEs compared to the 64-bit designs and thus, they
achieve better speedup rates. Also benchmarks with lower
fission counts such as bwaves, wrf, nab and fotonik3d tend
to achieve higher speedups when compared with benchmarks
with higher fission counts due to the fact that the former can
be efficiently scheduled on the PE network.

Fig. 5 depicts the reduction of energy consumption lev-
els for each benchmark execution, normalized to the host
processor. We collect such results by averaging every imple-
mentation’s normalized energy reduction for each executing
benchmark. We observe an average reduction in energy con-
sumption of 10.2x and 8.9x for the 32-bit and 64-bit imple-
mentation correspondingly. NDP achieves significantly faster
execution times when compared to the host processor and
also reduces the traffic between the DRAM and processor
die. As a result the energy requirements of each benchmark
are significantly reduced when employing the proposed NDP
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Figure 6: Normalized area efficiency of the NDP implementa-
tions.

methodology. Results vary among the executing kernels due
to the wide range of requirements of the bench,arks used for
evaluation. For example cactusBSSN achieves 7.5x while wrf
achieves 12.2x reduction in energy consumption due to the
fact that the cactusBSSN takes longer to execute while also
having higher DRAM access energy overheads. The average
energy reduction levels are very high for each NDP implemen-
tation which demonstrates the efficiency of our methodology.

Figure 6 depicts the area efficiency of both the 32-bit
and the 64-bit NDP implementations normalized to the area
efficiency of the host processor. We measure the area efficiency
as the throughput achieved per 𝑚𝑚2 of the die area of the
integrated circuit. Results indicate that the NDP designs are
38.4x to 39.2x more area efficient when compared to the host
system. Such an improvement is expected due to the small die
area of the NDP implementations and the high speedup rates
they achieve. We also observe that the NDP-64 bit is more
area efficient when compared to the NDP-re implementation
despite the fact that the speedup improvement of the NDP-
32 higher when compared to NDP-64. Such a difference is
attributed to the die area difference of such designs as the
NDP-64 is smaller than the NDP-32 implementation and
thus, its area efficiency is higher.

5 CONCLUSION
In this work we have proposed a novel NDP methodology
for loop scheduling and execution in the logic layer of an
HMC DRAM. Our design utilizes a loop accelerator which is
composed of several PEs connected with a mesh interconnec-
tion network and of a forwarding unit capable of managing
the communication between the PEs. In order to exploit the
capabilities of our design we employ an instruction schedul-
ing technique that leverages the dataflow parallelism of the
loop by scheduling one loop instruction per PE. In this sense
the loop iterations are executed in a dataflow manner on

the NDP hardware. We make a physical implementation of
our design and conduct post-layout simulations on several
benchmarks from various scientific field. Results indicate an
average speedup factor of 20.5x while the energy consump-
tion levels are reduced by a factor of 9.3x over the host cpu
execution.
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