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Abstract

The ‘isolation with migration’ (IM) model has been extensively used in the litera-

ture to detect gene flow during the process of speciation. In this model, an ancestral

population split into two or more descendant populations which subsequently ex-

changed migrants at a constant rate until the present. Of course, the assumption of

constant gene flow until the present is often over-simplistic in the context of specia-

tion. In this paper, we consider a ‘generalised IM’ (GIM) model: a two-population

IM model in which migration rates and population sizes are allowed to change at

some point in the past. By developing a maximum-likelihood implementation of this

model, we enable inference on both historical and contemporary rates of gene flow

between two closely related populations or species. The GIM model encompasses

both the standard two-population IM model and the ‘isolation with initial migra-

tion’ (IIM) model as special cases, as well as a model of secondary contact. We

examine for simulated data how our method can be used, by means of likelihood

ratio tests or AIC scores, to distinguish between the following scenarios of popula-

tion divergence: (a) divergence in complete isolation; (b) divergence with a period

of gene flow followed by isolation; (c) divergence with a period of isolation followed

by secondary contact; (d) divergence with ongoing gene flow. Our method is based

on the coalescent and is suitable for data sets consisting of the number of nucleotide

differences between one pair of DNA sequences at each of a large number of inde-

pendent loci. As our method relies on an explicit expression for the likelihood, it is

computationally very fast.
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1 Introduction

Molecular genetic data have been used extensively to learn about the evolutionary pro-

cesses that gave rise to the observed genetic variation. One important example is the use

of genetic data to try to infer whether or not gene flow occurred between closely related

species during or after speciation. Such studies have often used computer programs such

as MDIV (Nielsen and Wakeley, 2001), IM (Hey and Nielsen, 2004; Hey, 2005), IMa (Hey

and Nielsen, 2007), MIMAR (Becquet and Przeworski, 2007) or IMa2 (Hey, 2010), based

on the ‘isolation with migration’ (IM) model, which assumes that a panmictic ancestral

population instantaneously splits into two or more descendant populations, which sub-

sequently exchange migrants at a constant rate until the present. A meta-analysis of

research papers that have used the IM model in the context of speciation can be found

in Pinho and Hey (2010).

While the above methods were aimed at data from a large number of individuals

at a relatively small number of loci and are computationally intensive, advances in

DNA sequencing technology and the advent of whole-genome sequencing have led to

an increased interest in methods which are able to detect gene flow using data at large

numbers of loci but from pairs or small numbers of sequences. We will focus here on

maximum-likelihood (ML) methods for such data, which typically assume that there is

no recombination within loci and free recombination between loci. This type of data

set has two advantages. Firstly, data from even a very large number of individuals from

the same population at the same locus tend to contain only little information about

very old events, since the individuals’ ancestral lineages will typically have coalesced to

a very small number of ancestral lineages by the time the event of interest is reached;

in such contexts, a data set consisting of a small number of DNA sequences at each

of a large number of independent loci is likely to be more informative (Maddison and

Knowles, 2006; Wang and Hey, 2010; Lohse et al., 2010, 2011). Secondly, considering

a small number of sequences at each of many independent loci is mathematically much

easier and computationally much faster than working with large numbers of sequences

at the same locus. In particular, explicit analytical expressions for the likelihood have

been obtained for pairs or small numbers of sequences for a number of demographic

models (for example, Takahata et al., 1995; Wilkinson-Herbots, 2008; Hobolth et al.,

2011; Lohse et al., 2011; Wilkinson-Herbots, 2012; Zhu and Yang, 2012; Andersen et al.,
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2014; Lohse and Frantz, 2014; Lohse et al., 2016; Costa and Wilkinson-Herbots, 2017;

Dalquen et al., 2017), which can hugely speed up the computation and maximization of

the likelihood. Methods of maximum-likelihood estimation of the parameters of the IM

model, suitable for small numbers of sequences at each of a large number of independent

loci, were developed by Wilkinson-Herbots (2008), Wang and Hey (2010), Hobolth et al.

(2011), Lohse et al. (2011), Zhu and Yang (2012), Andersen et al. (2014), and Dalquen

et al. (2017). Because the IM model – and in particular its assumption of migration

continuing at a constant rate until the present – is clearly unrealistic in the context

of speciation, these methods have also been modified or extended to incorporate some

forms of temporal changes in migration rates. Innan and Watanabe (2006) implemented

a model in which gene flow between two diverging species decreases linearly with time and

eventually ceases. While their model is more sophisticated than some of the later models

discussed here, their calculation of the likelihood of the number of nucleotide differences

between pairs of sequences relies on the numerical computation of the coalescence time

density using recursion equations on a series of time points, and hence is not as fast as

methods that use explicit analytical expressions for the likelihood. Lohse and Frantz

(2014) implemented a computationally efficient ML method for a model of introgression

between two species where an instantaneous admixture event occurred at a single point in

time; see also Hearn et al. (2014). Lohse et al. (2011, 2016) also developed a more general

Laplace transform method to calculate blockwise likelihoods for a range of demographic

scenarios. In our previous work (Wilkinson-Herbots, 2012; Wilkinson-Herbots, 2015;

Costa and Wilkinson-Herbots, 2017) we developed a fast ML method for an ‘isolation

with initial migration’ (IIM) model in which two diverging populations experience gene

flow at a constant rate for a period of time and subsequently become completely isolated.

In recent years there has been intense interest in inferring not only whether or not

gene flow occurred during the process of speciation, but also in distinguishing divergence

in the face of gene flow from secondary contact and, more generally, distinguishing

decreasing from increasing gene flow (see, for example, Roux et al., 2016, and the review

by Sousa and Hey, 2013). The present paper contributes to this aim. We extend our

earlier work on the IM and IIM models to the ‘generalised isolation with migration’

(GIM) model depicted in Figure 1d: this is a two-population IM model but which

allows for an instantaneous change of the migration rates and population sizes at some
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Figure 1: The models of population divergence considered in this paper. Figure (d) depicts the
generalised isolation-with-migration (GIM) model which is the main focus of this paper. Figures
(a) to (c) represent simpler models nested in the GIM model: (a) an isolation model with
a potential change of the descendant population sizes; (b) the isolation-with-initial migration
(IIM) model; and (c) a model of secondary contact. All four models assume that an ancestral
population of size 2aN homologous DNA sequences split into two descendant populations of sizes
2N and 2bN sequences, time τ0 ago, which may have undergone a subsequent size change at
time τ1 ago, resulting in populations of sizes 2c1N and 2c2N sequences, respectively. Depending
on the model, gene flow may have occurred between times τ0 and τ1 ago and/or between time τ1
ago and the present; Mi and M ′i (i = 1, 2) denote the ‘scaled’ migration rates backward in time
during the time periods indicated in the diagrams.

point in the past. A useful feature of this model is that it encompasses both the IIM

model (Figure 1b) and a model of secondary contact (Figure 1c) as special cases, as

well as a model of isolation with a possible change of the descendant population sizes

(Figure 1a), so that our ML method provides an easy way to quickly compare how well

the four evolutionary scenarios in Figure 1 fit a particular data set; in addition, the fit

of any other models nested in the GIM model, such as versions with unidirectional or

symmetric gene flow, and the original IM and isolation models, can also be compared.

Thus it is possible to distinguish between historical and contemporary gene flow, while

also distinguishing between the effects of gene flow and those of population size changes.
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While the IIM model may be a reasonable (albeit much simplified) description of two

gradually diverging species, the model of secondary contact in Figure 1c represents the

case of two populations which underwent a period of isolation (for example, due to

climatic changes or habitat fragmentation) and subsequently became reconnected by

gene flow, whereas two gradually diverging populations which have not yet reached

complete reproductive isolation might be described by a GIM model with decreasing

gene flow. The models considered in this paper were motivated by our joint work in

Janko et al. (2018), where our method (slightly simplified, with symmetric migration

rates) was applied to data from pairs of species of Cobitis (spined loaches), as part of a

broader study examining the interconnection between hybrid asexuality and speciation;

however, because the focus of that paper was on various types of biological evidence for

the evolutionary processes being studied, it did not include the mathematical results on

which our ML method is based, nor did it contain a simulation study examining the

performance of our method - these mathematical and computational aspects of our work

are presented here.

Our method is applicable to data sets from closely related species or populations,

consisting of the numbers of nucleotide differences between one pair of DNA sequences

sampled at each of a large number of different loci; for mathematical simplicity and as

is common in this context, we will assume that there is no recombination within loci

and free recombination between loci. At each locus, the two sampled DNA sequences

may be both from descendant population 1, or both from descendant population 2, or

one sequence from each of the two descendant populations; a sufficient number of inde-

pendent loci should be included for each of these three types of pairwise comparisons.

Our method was implemented in R (R Core Team, 2019), and our code is available

at https://github.com/Costa-and-Wilkinson-Herbots/GIM. Because our ML method is

based on an explicit expression for the likelihood, it is computationally very fast. For

example, for simulated data from 40,000 loci, computing ML estimates of the 11 pa-

rameters of the GIM model typically took about 1 minute of computing time on an

ordinary computer, while fitting all four models shown in Figure 1 typically took around

3 minutes of computing time in total.

Models of speciation such as the one implemented in the present paper are defined by

a number of assumptions which are at best good approximations of the truth. This holds
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for assumptions such as the absence of intra-locus recombination and the lack of linkage

between loci, assumptions about the mutation process, and demographic assumptions

such as the piecewise constant population sizes and the piecewise constant migration

rates. On the issue of how model misspecification can be accounted for when making

inferences under a GIM model, we refer the reader to the Discussion and the references

therein.

In the previous paragraphs we focused on fast ML methods based on samples of small

numbers of DNA sequences from a large number of loci. It should be noted that a number

of other, more computationally intensive, methods have been implemented that are able

to fit a variety of demographic models, some of which account for recombination as well

as gene flow. Notably, Mailund et al. (2012) developed a more complex ML method for

an IIM model which accounts for recombination, using a hidden Markov model and the

so-called ‘Sequential Markov Coalescent’ approach. Flouri et al. (2020) developed a full-

likelihood Bayesian MCMC implementation of the multi-species coalescent which allows

for instantaneous introgression or hybridization events, and which can handle DNA

sequence data from a relatively large number of individuals from multiple species at a

large number of loci. A different class of methods uses a summary statistic known as the

‘site frequency spectrum’ of SNP data to fit a range of demographic models, including

scenarios with gene flow, by means of a composite-likelihood approach (for example,

Gutenkunst et al., 2009; Naduvilezhath et al., 2011; Chen, 2012; Lukić and Hey, 2012;

Excoffier et al., 2013; Kern and Hey, 2017). To overcome some of the limitations of

such methods (discussed in Terhorst and Song, 2015), Beeravolu et al. (2018) took this

approach a step further by developing a simulation-based composite-likelihood method

based on the ‘blockwise site frequency spectrum’ of data consisting of blocks of sequence

along the genome, from multiple individuals.

The structure of this paper is as follows. In Section 2 we formulate the GIM model

in the context of coalescent theory. We derive an explicit expression for the probability

distribution of the number of nucleotide differences between two DNA sequences sampled

at random, either both from the same descendant population, or one sequence from

each of the two descendant populations; thus we obtain an explicit expression for the

likelihood of a data set consisting of the numbers of nucleotide differences between one

pair of DNA sequences sampled at each of a large number of independent loci. We also
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set out the procedures we will use for model comparison, using either AIC scores or a

sequence of likelihood ratio tests. Section 3 contains a simulation study, examining the

accuracy of the ML estimates of the parameters of the GIM model obtained with our

method, and investigating the results of our model selection procedures, for data sets

simulated from a range of different scenarios encompassed by the GIM model. Section 4

contains a discussion of our findings.

2 The generalised isolation-with-migration model

The generalised isolation-with-migration (GIM) model considered in this paper can be

described as an isolation-with-migration (IM) model which allows for a change of migra-

tion rates and descendant population sizes at some point in the past. It encompasses,

as special cases, the standard IM model, the isolation model (with or without a change

of descendant population sizes), the isolation-with-initial-migration (IIM) model, and a

model of secondary contact.

We assume that, time τ0 ago (τ0 > 0), a panmictic ancestral population instanta-

neously split into two descendant populations which subsequently may have experienced

gene flow in one or both directions until the present time. Time τ1 ago (0 < τ1 < τ0), the

population sizes and migration rates may have undergone an instantaneous change. Be-

tween times τ0 and τ1 ago, and between time τ1 ago and the present, the migration rates

and population sizes are assumed to have been constant. This model is illustrated in

Figure 1d. For now, we restrict our attention to DNA sequences at a single locus that is

not subject to intralocus recombination. For mathematical convenience and for the sake

of consistency with our earlier work (Wilkinson-Herbots, 2008, 2012; Wilkinson-Herbots,

2015; Costa and Wilkinson-Herbots, 2017), the size of descendant population 1 between

times τ0 and τ1 ago is assumed to be 2N sequences, where N is large, and all other

population sizes are expressed as fractions or multiples of 2N . The ancestral population

is assumed to have been of constant size [2aN ] sequences (a > 0) until the split occurred

time τ0 ago, where [·] denotes the integer part function. Between times τ0 and τ1 ago,

descendant population 2 was of size [2bN ] sequences (b > 0). From time τ1 ago until the

present, the descendant population sizes were [2c1N ] and [2c2N ] sequences, respectively

(c1, c2 > 0). We further assume that the populations evolve in discrete non-overlapping

generations, and that reproduction within each population follows the neutral Wright-

7



Fisher model (Fisher, 1930; Wright, 1931). Between times τ0 and τ1 ago, there may be

gene flow between the two descendant populations, at a constant rate in each direction:

we assume that in each generation, a fraction mi ≥ 0 of descendant population i are

immigrants from descendant population j (i, j ∈ {1, 2} with j 6= i), i.e. mi denotes the

migration rate per generation from population i to population j backward in time. For

the period from time τ1 ago until the present, the backward migration rates m′i ≥ 0

(i = 1, 2) are defined analogously. It is assumed that each generation, Wright–Fisher

type reproduction within the descendant populations restores them to their stated sizes,

i.e., reproduction undoes any decrease or increase in population sizes caused by gene

flow. As is standard in coalescent theory, we will measure time in units of 2N genera-

tions (this also applies to the times τ0 and τ1), and we define the ‘scaled’ migration rates

backward in time by Mi = 4Nmi and M ′i = 4Nm′i, for i = 1, 2.

2.1 The coalescent under the GIM model

Tracing back the ancestry of a sample of sequences taken from the present generation

(from one or both descendant populations), any two ancestral lineages will coalesce

when their most recent common ancestor is reached; lineages can only coalesce when

they are in the same population. Working backward in time, the genealogical process

of a sample of sequences can be described by a succession of three Markov Chains.

Between the present and time τ1 ago, the genealogy of a sample of sequences is well

approximated by the ‘structured coalescent’ (Takahata, 1988; Notohara, 1990; Herbots,

1997; Kozakai et al., 2016), which is a continuous-time Markov Chain keeping track of

the number of distinct ancestral lineages the sample has in each subpopulation, at each

time in the past. As time is measured in units of 2N generations and N is large, the

coalescence rate of any two lineages residing in descendant population i is 1/ci, and each

lineage moves from descendant population i to descendant population j at rate M ′i/2

(for i, j ∈ {1, 2} with j 6= i). Between times τ1 and τ0 ago, the genealogy of a sample

of sequences is again described by the structured coalescent, but now with coalescence

rate 1 for any two lineages in descendant population 1, coalescence rate 1/b for any

two lineages in descendant population 2, and migration rate Mi/2 for any lineage in

descendant population i. From time τ0 ago further back into the past, the genealogy

of a sample of sequences follows Kingman’s coalescent (Kingman, 1982a,b,c), with any
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pair of lineages coalescing at rate 1/a. In what follows, we will refer to the stochastic

process described above as the ‘coalescent under the GIM model’.

In this paper we will focus on the genealogy of one pair of sequences sampled from the

present populations. From the present until time τ0 ago, this coalescent process has four

possible states: state 1, if there are two ancestral lineages in descendant population 1;

state 2, if there are two lineages in descendant population 2; state 3, if there is one

lineage in each descendant population; and state 4, if coalescence has occurred. Beyond

time τ0 into the past, there are only two possible situations: either there are two distinct

ancestral lineages or coalescence has occurred. However, to facilitate the derivation of

the coalescence time (the time since the most recent common ancestor of the two sampled

sequences), we let the process have four states even beyond time τ0 into the past: if the

coalescent process reaches time τ0 in state i (i ∈ {1, 2, 3}), then the process remains in

that state until the two lineages coalesce, at which time the process moves to state 4.

The coalescent process thus forms a non-homogeneous continuous-time Markov Chain

with state space {1, 2, 3, 4}, and with piecewise constant transition rates which change

at times τ1 and τ0. The process starts in state 1, 2 or 3, depending on whether two

DNA sequences are sampled both from descendant population 1, both from descendant

population 2, or one sequence from each descendant population. The process is absorbed

when the two ancestral lineages coalesce at their most recent common ancestor, i.e. when

the process reaches state 4. We will derive the distribution of the coalescence time, Ti, of

the two sampled sequences, i.e. the distribution of the time until the coalescent process

is absorbed into state 4, starting from state i, for i = 1, 2, 3.

Formally, for a sample of two sequences, the coalescent under the GIM model is

defined by the following three infinitesimal generator matrices. When 0 ≤ t ≤ τ1,

Q1 =



−
(

1
c1

+M ′1

)
0 M ′1

1
c1

0 −
(

1
c2

+M ′2

)
M ′2

1
c2

M ′2
2

M ′1
2 −

(
M ′1+M

′
2

2

)
0

0 0 0 0


(1)

(Takahata, 1988; Notohara, 1990; Herbots, 1997; Kozakai et al., 2016). Similarly, if
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τ1 < t ≤ τ0,

Q2 =



− (1 +M1) 0 M1 1

0 −
(
1
b +M2

)
M2

1
b

M2
2

M1
2 −

(
M1+M2

2

)
0

0 0 0 0


. (2)

Finally, for t > τ0,

Q3 =



− 1
a 0 0 1

a

0 − 1
a 0 1

a

0 0 − 1
a

1
a

0 0 0 0


(3)

(Kingman, 1982a,b,c).

We denote by P(t) := P(0, t) the transition matrix whose (i, j) entry gives the

probability that the coalescent under the GIM model moves from state i at time 0 to

state j at time t (i, j ∈ {1, 2, 3, 4}). This transition matrix has the following form:

P(t) =



eQ1t for 0 ≤ t ≤ τ1,

eQ1τ1 eQ2(t−τ1) for τ1 < t ≤ τ0,

eQ1τ1 eQ2(τ0−τ1) eQ3(t−τ0) for τ0 < t <∞,

0 otherwise.

(4)

In previous work (Costa and Wilkinson-Herbots, 2017, Appendix A, parts (ii) and (iii))

we proved1 that if both M1 > 0 and M2 > 0, the matrix Q2 is diagonalisable and has

non-positive, real eigenvalues; it was shown that three of the eigenvalues are strictly

negative and one is zero. A similar argument shows that if both M ′1 > 0 and M ′2 > 0,

the matrix Q1 is diagonalisable, with three strictly negative eigenvalues and one zero

eigenvalue. Hence, for M1,M2,M
′
1,M

′
2 > 0, the transition matrix P(t) can be written

1On a technical note: whereas for the proof in Costa and Wilkinson-Herbots (2017), both the second
and third row and the second and third column of Q2 were swapped round for mathematical convenience,
such re-ordering of states does not affect the diagonalisability nor the eigenvalues of Q2.
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as:

P(t) =



G−1e−AtG for 0 ≤ t ≤ τ1,

G−1e−Aτ1G C−1e−B(t−τ1)C for τ1 < t ≤ τ0,

G−1e−Aτ1G C−1e−B(τ0−τ1)C eQ3(t−τ0) for τ0 < t <∞,

0 otherwise,

(5)

where G and C are the matrices whose rows contain the left eigenvectors of Q1 and

Q2 respectively, and where −A and −B are the corresponding diagonal matrices of

non-positive, real eigenvalues. The entries in the main diagonals of A and B contain

the absolute values of the eigenvalues, and are represented by the letters αi = (A)ii and

βi = (B)ii.

If M ′1 = M ′2 = 0, then the matrix Q1 has eigenvalues (−1/c1,−1/c2, 0, 0), with four

linearly independent left eigenvectors given by the rows of

D =



1 0 0 −1

0 1 0 −1

0 0 1 −1

0 0 0 1


,

so Q1 is still diagonalisable. The same holds for the matrix Q2 when M1 = M2 = 0,

with eigenvalues (−1,−1/b, 0, 0). So if there is no gene flow between times τ0 and τ1

ago, or no gene flow between time τ1 ago and the present, the transition matrix P(t)

can still be decomposed as in equation (5), where in that case the matrices G or C (or

both) are equal to D.

Furthermore, for all values of M ′1 and M ′2, the characteristic polynomial of Q1,

denoted PQ1(x), is of the form
(
x · P

Q
(r)
1

(x)
)

, where Q
(r)
1 is the 3×3 upper-left submatrix

of Q1. So Q1 has a zero eigenvalue and its three remaining eigenvalues are the eigenvalues

of Q
(r)
1 . If M ′i = 0 and M ′j > 0 (i, j ∈ {1, 2} with i 6= j) then, because of the resulting

zero entries in Q
(r)
1 , it is easily seen that in this case its eigenvalues are the entries in its

main diagonal. Hence the eigenvalues of Q1 will be
(
−1/ci,−(1/cj +M ′j),−M ′j/2, 0

)
.

If these four eigenvalues are all distinct, then Q1 is diagonalisable. Thus, even if there is

unidirectional gene flow between time τ1 ago and the present, the transition matrix P(t)

can still be decomposed as in equation (5), provided Q1 has no repeated eigenvalues.
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Two comments are in order here: first, repeated eigenvalues will occur if and only if

1/ci = M ′j/2 or 1/ci = 1/cj + M ′j ; second, the set of parameter values that make these

equalities true is negligible when compared to the whole parameter space, so it is very

unlikely that the likelihood maximisation procedure would choose values from this set

(although one should be careful to avoid using them as initial values). Similarly, if there

is unidirectional gene flow between times τ0 and τ1 ago (i.e. Mi = 0 and Mj > 0 for

i, j ∈ {1, 2} with i 6= j), equation (5) still holds, provided Q2 has no repeated eigenvalues,

i.e. provided the entries on the main diagonal of Q2 are all distinct, which is again the

case for all but a negligible subset of the parameter space.

The probability that, starting in state i (i ∈ {1, 2, 3}), the process has reached

state 4 by time t is given by the entry corresponding to the ith row and 4th column

of the transition matrix P(t). This is also the cumulative distribution function of the

coalescence time Ti, which we denote FTi(t). If the initial state is i, and p
(1)
ij (t), p

(2)
jl (t)

and p
(3)
l4 (t) denote transition probabilities of the homogeneous continuous-time Markov

chains with generator matrices Q1, Q2 and Q3 respectively, then:

FTi(t) =



p
(1)
i4 (t) for 0 ≤ t ≤ τ1,

4∑
j=1

p
(1)
ij (τ1) p

(2)
j4 (t− τ1) for τ1 < t ≤ τ0,

4∑
j=1

p
(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1) p(3)l4 (t− τ0) for τ0 < t <∞,

0 otherwise.

(6)

Denoting by Hmn the (m,n) entry of a matrix H, and by H−1mn the (m,n) entry of

the matrix H−1, we have for t ≥ 0 that p
(1)
ij (t) =

∑4
k=1G

−1
ik Gkj e

−αkt and p
(2)
jl (t) =∑4

k=1C
−1
jk Ckl e

−βkt. Furthermore, p
(3)
l4 (t) = 1−e−

1
a
t for l = 1, 2, 3, as the absorption time

from state l into state 4 of the homogeneous continuous-time Markov Chain generated by

Q3 is exponentially distributed with mean a. Using that p
(1)
44 (t) = p

(2)
44 (t) = p

(3)
44 (t) = 1

for all t ≥ 0, differentiating equation (6) gives the following expression for the probability
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density function of Ti :

fTi(t) =



f
(1)
i (t) for 0 ≤ t ≤ τ1,

3∑
j=1

p
(1)
ij (τ1) f

(2)
j (t− τ1) for τ1 < t ≤ τ0,

3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1) f (3)l (t− τ0) for τ0 < t <∞,

0 otherwise,

(7)

where for t > 0, f
(1)
i (t) = −

∑4
k=1 αkG

−1
ik Gk4 e

−αkt, f
(2)
j (t) = −

∑4
k=1 βk C

−1
jk Ck4 e

−βkt

and f
(3)
l (t) = 1

ae
− 1

a
t are the probability density functions of the absorption times into

state 4 of the three homogeneous continuous-time Markov Chains generated by Q1, Q2

and Q3, starting in states i, j and l, respectively (i, j, l ∈ {1, 2, 3}).

2.2 The distribution of the number of pairwise nucleotide differences

We assume that selectively neutral mutations occur according to the infinite sites model

of Watterson (1975), in which the locus under consideration consists of an infinite se-

quence of nucleotide sites and no two mutations ever occur at the same site; in each

generation, the number of mutations occurring in a DNA sequence at this locus is Pois-

son distributed with mean µ, and it is assumed that mutations occur independently in

different DNA sequences and in different generations. In the coalescent approximation,

measuring time in units of 2N generations, mutations then accumulate on each ancestral

lineage according to a Poisson process of rate θ/2, where θ = 4Nµ is the ‘scaled’ muta-

tion rate. Given the coalescence time Ti of two DNA sequences, the number of nucleotide

differences between them, denoted by Si, is simply the total number of mutations that

have accumulated on their ancestral lineages since their most recent common ancestor,

and hence is Poisson distributed with mean θTi; as before, the subscript i refers to the

initial state of the coalescent process, corresponding to the sampling locations of the pair

of DNA sequences (i ∈ {1, 2, 3}). Denoting gs(t) := (θt)s

s! e
−θt and using equation (7),

the probability of s nucleotide differences between the two sequences can be written as

13



follows, for s = 0, 1, 2, . . .:

P(Si = s) = E[gs(Ti)]

=

∫ τ1

0
gs(t) f

(1)
i (t) dt+

3∑
j=1

p
(1)
ij (τ1)

∫ τ0

τ1

gs(t) f
(2)
j (t− τ1) dt

+
3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1)

∫ ∞
τ0

gs(t) f
(3)
l (t− τ0) dt .

Changing the limits of integration, and using the expressions for f
(1)
i (t), f

(2)
j (t) and

f
(3)
l (t) given in the previous section, the above equation becomes:

P (Si = s) =

∫ τ1

0
gs(t) f

(1)
i (t) dt+

3∑
j=1

p
(1)
ij (τ1)

∫ τ0−τ1

0
gs(τ1 + t) f

(2)
j (t) dt

+
3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1)

∫ ∞
0
gs(τ0 + t) f

(3)
l (t) dt

= −
4∑

k=1

αkG
−1
ik Gk4

∫ τ1

0
gs(t) e

−αkt dt

−
3∑
j=1

p
(1)
ij (τ1)

4∑
k=1

βk C
−1
jk Ck4

∫ τ0−τ1

0
gs(τ1 + t) e−βkt dt

+
1

a

3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1)

∫ ∞
0
gs(τ0 + t) e−

1
a
t dt .

Recall that some eigenvalues of Q1 and Q2 are equal to zero, i.e. some of the αk and

βk in the above expression are zero. For those αk and βk that are strictly positive, we

let Wk and Yk denote exponentially distributed random variables with rates αk and βk

respectively, and we denote by X an exponentially distributed random variable with

14



rate 1/a. The equation above can then be written as:

P (Si = s)

= −
∑

k:αk>0

G−1ik Gk4 E[gs(Wk)|Wk ≤ τ1] P(Wk ≤ τ1)

−
3∑
j=1

p
(1)
ij (τ1)

∑
k:βk>0

C−1jk Ck4 E[gs(τ1 + Yk)|τ1 + Yk ≤ τ0] P(τ1 + Yk ≤ τ0)

+

3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1) E[gs(τ0 +X)]

= −
∑

k:αk>0

G−1ik Gk4 {E[gs(Wk)]− E[gs(Wk)|Wk > τ1]P(Wk > τ1)}

−
3∑
j=1

p
(1)
ij (τ1)

∑
k:βk>0

C−1jk Ck4 {E[gs(τ1 + Yk)]− E[gs(τ1 + Yk)|τ1 + Yk > τ0] P(τ1 + Yk > τ0)}

+

3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1) E[gs(τ0 +X)] .

Finally, making use of the lack of memory property of the exponential distribution, we

obtain:

P(Si = s) = −
∑

k:αk>0

G−1ik Gk4
{

E[gs(Wk)]− E[gs(τ1 +Wk)] e−αkτ1
}

−
3∑
j=1

p
(1)
ij (τ1)

∑
k:βk>0

C−1jk Ck4

{
E[gs(τ1 + Yk)]− E[gs(τ0 + Yk)] e−βk(τ0−τ1)

}

+

3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1) E[gs(τ0 +X)] .

(8)

Thus the probability that two DNA sequences sampled from locations given by initial

state i ∈ {1, 2, 3} differ at s nucleotide sites (and similarly, the expectation of any other

function of the coalescence time Ti) can be obtained from results for Exponential and

shifted Exponential random variables. In particular, for an exponentially distributed

random variable U with rate parameter λ, E[gs(U)] = E
[
(θU)s

s! e−θU
]

is the probability

that s events occur in a Poisson Process of rate θ during a time span of length U ; this

can be written as a probability from a geometric distribution:

E[gs(U)] =

(
θ

λ+ θ

)s λ

λ+ θ
for s = 0, 1, 2, . . . (9)
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(Watterson, 1975). Similarly, for any τ > 0, E[gs(τ +U)] is the probability that s events

occur in a Poisson Process of rate θ during a time span of length τ + U , which is given

by

E[gs(τ + U)] = e−θτ
λ θs

(λ+ θ)s+1

s∑
l=0

(λ+ θ)l τ l

l!
for s = 0, 1, 2, . . . (10)

(Takahata et al., 1995; see also Wilkinson-Herbots, 2008). Substituting (9) and (10)

into equation (8) then gives the following result for the probability distribution of Si,

the number of nucleotide differences between two DNA sequences sampled from locations

given by initial state i ∈ {1, 2, 3}:

P(Si = s) = −
∑

k:αk>0

G−1ik Gk4
αk θ

s

(αk + θ)s+1

(
1− e−(αk+θ)τ1

s∑
l=0

(αk + θ)
l
τ1
l

l!

)

−
3∑
j=1

p
(1)
ij (τ1)

∑
k:βk>0

C−1jk Ck4
βk θ

s

(βk + θ)s+1

(
e−θτ1

s∑
l=0

(βk + θ)
l
τ1
l

l!

−e−(βk+θ)τ0+βkτ1

s∑
l=0

(βk + θ)
l
τ l0

l!

)

+

 3∑
j=1

p
(1)
ij (τ1)

3∑
l=1

p
(2)
jl (τ0 − τ1)

 e−θτ0
(aθ)s

(1 + aθ)s+1

s∑
l=0

(
1
a + θ

)l
τ l0

l!

(11)

for s = 0, 1, 2, . . . Recalling also that p
(1)
ij (τ1) =

∑4
k=1G

−1
ik Gkj e

−αkτ1 and

p
(2)
jl (τ0−τ1) =

∑4
k=1C

−1
jk Ckl e

−βk(τ0−τ1), the above probability can easily be computed for

any parameter values, using standard numerical procedures to compute the eigenvalues

and eigenvectors of the matrices Q1 and Q2, except for a negligible subset of parameter

values for which the matrices Q1 and/or Q2 are not diagonalisable (see Subsection 2.1).

If M ′1 = M ′2 = 0, then equation (11) reduces to the corresponding results for the ‘iso-

lation with initial migration’ (IIM) model, given by equations (11) and (12) in Costa and

Wilkinson-Herbots (2017). If, in addition, M1 = M2 and b = 1 (an IIM model with sym-

metric migration and equal population sizes during the migration period), then explicit

expressions are available for the eigenvalues of the matrix Q2, and equation (11) simpli-

fies to the fully explicit expressions given in Wilkinson-Herbots (2012), equations (18)

and (29).
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2.3 The likelihood of a multilocus data set

Recall that, for the purposes of this paper, an observation consists of the number of

nucleotide differences between two DNA sequences at a given locus. To jointly estimate

all the parameters of the GIM model, our method requires a large set of observations,

all at different loci, from each of the three possible initial states: both sequences sam-

pled from descendant population 1 (state 1), both sequences sampled from descendant

population 2 (state 2), or one sequence sampled from each of the two descendant popu-

lations (state 3). To compute the likelihood of such a data set, we will assume that all

observations are independent, so our data should include no more than one observation

(i.e. pair of sequences) per locus and there should be free recombination between loci,

i.e. all loci should be sufficiently far apart.

Let ρ be the vector of parameters of the coalescent under the GIM model, i.e.

ρ = (a, b, c1, c2, τ1, τ0,M1,M2,M
′
1,M

′
2) .

Denote by Ji the number of loci at which the two sampled DNA sequences are from

locations corresponding to initial state i (i = 1, 2, 3). We redefine θ to denote the

average scaled mutation rate over all loci in the combined data set made up of the

observations from all three initial states. For i = 1, 2, 3 and j = 1, . . . , Ji, denote by

θij = 4Nµij the scaled mutation rate of the jth locus associated with initial state i,

where µij is the mutation rate per sequence per generation at that locus, and denote

by rij =
θij
θ the relative mutation rate of that locus, so that θij = rijθ. Assuming

that the relative mutation rates are known, and denoting by sij the observation at

the jth locus associated with initial state i (i.e. the number of nucleotide differences

between the two DNA sequences sampled at that locus), the likelihood of the data set

s = (sij)i=1,2,3;j=1,...,Ji can be written as

L (ρ, θ; s) =
3∏
i=1

Ji∏
j=1

L(ρ, θ; sij)

where L(ρ, θ; sij), the likelihood of the observation sij , is the probability that the two

DNA sequences sampled at the jth locus associated with initial state i differ at sij

nucleotide sites and is given by equation (11) with θ replaced by θij = rijθ, and s

replaced by sij .
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In our maximum-likelihood method, the relative mutation rates rij are treated as

known constants. In practice, however, the relative mutation rates at the different loci

are usually estimated using outgroup sequences (for example, Yang, 2002; Wang and

Hey, 2010; Lohse et al., 2011; Costa and Wilkinson-Herbots, 2017). It should be noted

that standard errors and confidence intervals obtained with our method do not account

for uncertainty about the relative mutation rates.

To increase the robustness and performance of the likelihood maximisation proce-

dure, our computer implementation uses the following reparameterisations:

θ0 = aθ, θ1 = θ, θ2 = bθ, θ′1 = c1θ, θ
′
2 = c2θ,

T1 = θτ1, V = θ(τ0 − τ1),

M1
∗ = M1, M2

∗ = bM2, M
′
1
∗ = c1M

′
1, M

′
2
∗ = c2M

′
2

(12)

(similar to the choice of parameters in, for example, Hey and Nielsen, 2004; Zhu and

Yang, 2012; Costa and Wilkinson-Herbots, 2017); see also Figure 2. With this reparam-

eterisation, θ0 , θ1 , θ2 , θ′1 and θ′2 are the ‘population size parameters’ of, respectively,

the ancestral population, descendant populations 1 and 2 between times τ0 and τ1 ago,

and descendant populations 1 and 2 between time τ1 ago and the present. Note that

for each population, θi = 4Niµ, where 2Ni is the size (the number of DNA sequences

at any locus) of the population concerned and µ is the mutation rate per sequence per

generation averaged over all the loci in the data set; similarly for θ′i. The ‘time’ pa-

rameters T1 and V represent, respectively, the durations of the most recent stage of

the model (i.e. from time τ1 ago until the present) and the intermediate stage of the
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 ∗

 

M1
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θ1
′  θ2

′  
M1

′∗
 

 

M2
′∗

 

 

time 
θ0  

θ1 θ2  
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T1 

T0 

0 

 V 

population 1 population 2 

Figure 2: The reparameterised GIM model. The direction of migration shown is from a forward-
in-time perspective.
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model (between times τ0 and τ1 ago), but these durations are now measured by twice

the expected number of mutations per DNA sequence during the period concerned. For

i = 1, 2, the migration parameter Mi
∗ is, from a forward in time perspective, twice the

number of immigrant DNA sequences into descendant population i per generation be-

tween times τ0 and τ1 ago (equivalently, if we work backward in time, it is twice the

number of DNA sequences that migrate from population i per generation between times

τ1 and τ0 ago). Similarly, M ′i
∗ is twice the number of immigrant DNA sequences into

descendant population i per generation between time τ1 ago and the present (or, from

a backward in time perspective, twice the number of emigrant DNA sequences from

descendant population i per generation during this period). Our computer code for

fitting the full GIM model to the data obtains ML estimates jointly for the 11 parame-

ters θ0 , θ1 , θ2 , θ
′
1 , θ

′
2 , T1 , V, M1

∗, M2
∗, M ′1

∗, M ′2
∗. These estimates can readily be

converted to ML estimates of the original model parameters if required.

Our computer implementation also allows the three simpler models illustrated in

Figure 1 to be fitted to the data, using the same reparameterisation as above: (a)

a model of complete isolation that allows for a change of the descendant population

sizes (M1
∗ = M2

∗ = M ′1
∗ = M ′2

∗ = 0, leaving 7 parameters to be estimated); (b) the

‘isolation with initial migration’ model (M ′1
∗ = M ′2

∗ = 0, leaving 9 parameters to be

estimated; see also Costa and Wilkinson-Herbots, 2017); and (c) a model of secondary

contact (M1
∗ = M2

∗ = 0, again leaving 9 parameters to be estimated). For each of these

models, the computation of the likelihood uses an appropriately simplified version of

equation (11). Versions of the GIM model involving unidirectional gene flow during the

most recent and/or the intermediate stage of the model can also readily be implemented,

but are not further considered in this paper.

2.4 Model comparison

For any particular data set, a straightforward way to compare the fit of the GIM model

and that of simpler models nested within it is by using Akaike’s Information Crite-

rion, AIC, which was designed to compare competing models with different numbers of

parameters. For each model,

AIC = −2 ln L̂+ 2k
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(Akaike, 1972, 1974), where L̂ is the maximised likelihood of the model, given the data,

and k is the number of free parameters in the model. Thus a larger maximised likelihood

leads to a lower AIC value, subject to a penalty for each additional model parameter.

The ‘best’ model amongst the competing models considered is that with the smallest

AIC value – this model (with the maximum-likelihood estimates of its parameters) is

called the ‘Minimum AIC Estimate’ (MAICE).

An alternative approach is to perform a series of likelihood ratio tests for pairs of

nested models. For example, if we wish to compare the four models depicted in Figure 1,

we can start by assuming the simplest of these four models (i.e. that with the smallest

number of parameters) as the null hypothesis: the isolation model (Figure 1a). We can

then proceed by performing two likelihood ratio tests: one where we test the isolation

model (H0) against the alternative hypothesis of the IIM model (which we will denote

by H1,1); and one where we test the isolation model (H0) against the model of secondary

contact (denoted by H1,2). Since we are performing two tests, a procedure for controlling

either the family-wise error rate (for example, a Bonferroni correction), or the false

discovery rate, should be applied. Depending on the results of these two significance

tests, we then proceed as follows. If neither test gives a significant result, then we retain

the isolation model as our ‘best’ model and conclude that there is no significant evidence

of gene flow at any time between time τ0 ago and the present. If the test of H0 against

H1,1 is significant, but the test of H0 against H1,2 is not, then we reject the isolation

model in favour of the IIM model; in this case we then proceed by assuming the IIM

model to be our new null hypothesis and testing this against the full GIM model as our

new alternative hypothesis (no further correction for multiple testing is required, as this

third LR test is only performed if the first LR test gave a significant result). Similarly, if

the test of H0 against H1,2 is significant, but the test of H0 against H1,1 is not, then we

reject the isolation model in favour of the model of secondary contact; we then proceed

by taking the latter model to be our new null hypothesis and testing it against the full

GIM model. If the first two LR tests (H0 against H1,1 and H0 against H1,2) are both

significant, then we will reject the isolation model in favour of the alternative model that

has the highest likelihood: H1,1 or H1,2 i.e. the IIM model or the model of secondary

contact; we then use that model as our new null hypothesis and test it against the full

GIM model.
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In each of the Likelihood Ratio tests described above, the alternative model has two

more free parameters than the null model, namely the migration rates in both directions

in either the most recent or the intermediate stage of the model. For each test, the null

model corresponds to the two migration rates concerned being zero, i.e. a parameter

value on the boundary of the parameter space. The null distribution of the LRT statistic

Λ = 2×
(

ln L̂(alternative model)− ln L̂(null model)
)

is therefore not χ2
2, but a mixture of χ2

ν distributions for ν = 0, 1, 2 (Self and Liang,

1987; Silvapulle and Sen, 2005); using χ2
2 instead of the correct null distribution is

conservative. In the mixture of χ2
ν distributions, computation of the weights of χ2

0 and

χ2
2 is not straightforward, but the weight of χ2

1 is known to be 1
2 (Self and Liang, 1987;

Silvapulle and Sen, 2005). The use of the mixture 1
2χ

2
1 + 1

2χ
2
2 instead of the correct null

distribution is therefore also conservative, and results in a smaller loss of power compared

to the use of χ2
2. In the literature, the mixture 1

4χ
2
0 + 1

2χ
2
1 + 1

4χ
2
2 has also been used as

the null distribution when testing for gene flow in the simpler isolation-with-migration

model (Wang and Hey, 2010). The use of this latter mixture results in a smaller loss of

power compared to the use of the mixture 1
2χ

2
1 + 1

2χ
2
2 suggested above; however, to the

best of our knowledge it is yet to be established whether the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2

instead of the precise asymptotic null distribution in the context of testing for gene flow

in the IM or GIM models is always conservative (i.e. whether the weight of χ2
2 in the

mixture that makes up the correct asymptotic null distribution is ≤ 1
4).

Both methods of model selection described above, using AIC scores or likelihood ratio

tests, will be examined for simulated data in the next Section. In the case of likelihood

ratio tests, we will also consider the performance of all three ‘null distributions’ suggested

in the previous paragraph.

3 Simulation results

To examine the accuracy of ML estimates of the parameters of the GIM model obtained

with our code, and to examine whether our method makes it possible to distinguish

between the different models considered in Figure 1, we simulated 200 data sets from

each of the following five scenarios:
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(i) a GIM model with decreasing gene flow (i.e. where the migration rates in the most

recent stage of the model are lower than in the intermediate stage);

(ii) a GIM model with increasing gene flow (i.e. where the migration rates in the most

recent stage of the model are higher than in the intermediate stage);

(iii) a GIM model with gene flow decreasing to zero, i.e. an isolation-with-initial-

migration model;

(iv) a GIM model with zero migration rates in the intermediate stage of the model, i.e.

a model of secondary contact;

(v) a GIM model with all migration rates equal to zero, i.e. a model of complete

isolation.

Each simulated data set consists of the numbers of nucleotide differences between one

pair of DNA sequences sampled at each of 40,000 independent loci: for 10,000 loci, two

DNA sequences were sampled both from descendant population 1; for 10,000 loci, two

DNA sequences were sampled from descendant population 2; and for 20,000 loci, one

DNA sequence was sampled from each of the two descendant populations. The relative

mutation rates of the 40,000 loci were simulated from a Gamma(10, 10) distribution.

The R function used to generate the data is available at https://github.com/Costa-and-

Wilkinson-Herbots/GIM .

The ‘true’ values of the population size parameters and time parameters assumed for

the simulations were as follows: θ0 = 3, θ1 = 2, θ2 = 4, θ′1 = 3, θ′2 = 6, T1 = 4, V = 4.

These parameter values were based on a hypothetical scenario where the sampled loci

have an average length of 500 nucleotide sites, with an average mutation rate of 10−9

per site per generation, and with population sizes of the order of a million individuals

(for example, θ1 = 2 corresponds in this case to a population size of 2 million DNA

sequences, or 1 million diploid individuals); this order of magnitude of the mutation rate

and effective population sizes may, for example, be broadly realistic for some species

of Drosophila (Wang and Hey, 2010; Keightley et al., 2014). The durations of the

intermediate and the most recent stage of the model correspond to 2 expected mutations

per DNA sequence during each of these time periods, which in this hypothetical scenario

would equate to 4 million generations each.
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For scenarios (i) to (v) listed above, the migration parameters were assumed to have

the following ‘true’ values:

(i) M1
∗ = 0.2 and M2

∗ = 0.4, decreasing by a factor of five to M ′1
∗ = 0.04 and

M ′2
∗ = 0.08;

(ii) M1
∗ = 0.04 and M2

∗ = 0.08, increasing five-fold to M ′1
∗ = 0.2 and M ′2

∗ = 0.4;

(iii) M1
∗ = 0.2 and M2

∗ = 0.4, decreasing to M ′1
∗ = M ′2

∗ = 0;

(iv) M1
∗ = M2

∗ = 0, increasing to M ′1
∗ = 0.2 and M ′2

∗ = 0.4;

(v) M1
∗ = M2

∗ = M ′1
∗ = M ′2

∗ = 0;

recall that Mi
∗ and M ′i

∗ are twice the numbers of immigrant DNA sequences into de-

scendant population i per generation during, respectively, the intermediate and the most

recent stage of the model.

To investigate the accuracy of the ML estimates obtained with our GIM code, we

first fitted a GIM model to each simulated data set. Thus, for each simulated data set,

ML estimates of the 11 parameters of the GIM model were obtained, while the relative

mutation rates of the 40,000 loci were treated as known constants. Boxplots of the 200

sets of parameter estimates obtained for each of the five scenarios are shown in Figure 3.

In each scenario, it is seen that for all 11 parameters, the median estimate obtained (the

bold line in each boxplot) is close to the true parameter value (indicated by a red cross

in each boxplot); however, in scenario (ii) (GIM model with increasing gene flow), the

median of the estimates obtained for M1
∗ was 0, whereas the true value of this parameter

assumed in the simulations was very small but non-zero (M1
∗ = 0.04). The plots also

suggest that, while the population size parameters of the descendant populations during

the most recent stage of the model and of the ancestral population can be estimated with

high precision, the estimates of the population size parameters during the intermediate

stage of the model display considerably more variability. The estimates of the migration

parameters are also quite variable, again particularly so for the intermediate stage of the

model. Table 1 lists, for each of the five scenarios and for each of the 11 parameters, the

mean and standard deviation of the estimates obtained, as well as the relative bias (i.e.

the bias divided by the true parameter value). It is seen that for most parameters and

scenarios, the relative bias is very small: less than 1% in most cases, and less than 10%
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in all but three cases. These three exceptions all concern the intermediate stage of the

model in scenarios of increasing gene flow: the estimates of the migration parameters

M1
∗ and M2

∗ in scenario (ii), and the estimates of one of the population size parameters,

θ1, in scenario (iv); in these cases the relative bias is larger, but not excessive.
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Figure 3: Box plots of the ML estimates of the parameters of the GIM model obtained for
200 simulated data sets under each of scenarios (i) to (v). The ‘true’ value of each parameter is
indicated by a red cross.
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To examine whether our method makes it possible to distinguish between the four

models considered in Figure 1, we fitted all four models (GIM, IIM, secondary contact,

isolation) to each of our 1,000 simulated data sets (the 200 data sets simulated from

each of the five scenarios listed at the start of this Section). For each simulated data set

we applied the model selection procedures described in Subsection 2.4 to select the best-

fitting model: we did this using either the AIC criterion, or a sequence of Likelihood Ratio

tests at a significance level of 5% (using a Bonferroni correction where appropriate); for

the approach using Likelihood Ratio tests, as the precise asymptotic null distribution is

not easy to compute, results were obtained using each of the three distributions suggested

in Subsection 2.4: χ2
2 , 1

2χ
2
1 + 1

2χ
2
2 or 1

4χ
2
0 + 1

2χ
2
1 + 1

4χ
2
2 . Table 2 shows, for each of our five

scenarios, for what proportion of the 200 simulated data sets each model was selected as

the best-fitting model; the proportion of simulated data sets for which the correct model

was selected is highlighted in bold in each case. It is seen that for scenarios (i), (iii), (iv)

and (v), the correct model was selected for nearly all of the simulated data sets (96% or

better), for both methods (AIC or LRT) and for all three ‘null distributions’ considered.

However for most of the data sets simulated from scenario (ii), i.e. a GIM model with

gene flow increasing from (M1
∗,M2

∗) = (0.04, 0.08) to (M ′1
∗,M ′2

∗) = (0.2, 0.4), the model

of secondary contact was selected as the best-fitting model instead of the ‘true’ GIM

model; so whilst our method correctly inferred an increase of gene flow for all these data

sets, its power to detect the small amount of gene flow that occurred in the intermediate

stage of the model was low. This starkly contrasts with our results for scenario (i), i.e.

a GIM model with gene flow decreasing from (M1
∗,M2

∗) = (0.2, 0.4) to (M ′1
∗,M ′2

∗) =

(0.04, 0.08): for this scenario, our method correctly identified the GIM model as the

best-fitting model for 99.5% of the simulated data sets, demonstrating very high power

to detect the small level of gene flow in the most recent stage of the model. It should

perhaps also be noted that for none of the 800 data sets simulated from scenarios with

gene flow (scenarios (i) to (iv)), the isolation model was selected as the best-fitting model,

i.e. the overall power of our method to detect that gene flow had occurred at some point

in the past (i.e. a departure from the isolation model) was very high. However, our

method’s ability to apportion the inferred gene flow accurately to the two different time

periods appears to be limited in the case of increasing gene flow.

Whilst the use of χ2
2 or 1

2χ
2
1 + 1

2χ
2
2 instead of the precise asymptotic null distribution
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in our sequence of LR tests is known to be conservative, the results in Table 2 suggest

that the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 also appears to be conservative: using the latter

distribution instead of the correct null distribution, and an overall significance level of

5%, the isolation model was falsely rejected (resulting in a type 1 error) for only 1.5% of

Table 2:
Model selection for simulated data: Results

best-fitting model

simulation true method GIM IIM secondary isolation
scenario model contact

(i) GIM AIC 99.5 % 0 % 0.5 % 0 %

LRT (χ2
2) 99.5 % 0 % 0.5 % 0 %

LRT ( 1
2χ

2
1 + 1

2χ
2
2) 99.5 % 0 % 0.5 % 0 %

LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 99.5 % 0 % 0.5 % 0 %

(ii) GIM AIC 16.0 % 0 % 84.0 % 0 %

LRT (χ2
2) 6.5 % 0 % 93.5 % 0 %

LRT ( 1
2χ

2
1 + 1

2χ
2
2) 11.5 % 0 % 88.5 % 0 %

LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 15.5 % 0 % 84.5 % 0 %

(iii) IIM AIC 2.0 % 98.0 % 0 % 0 %

LRT (χ2
2) 2.0 % 98.0 % 0 % 0 %

LRT ( 1
2χ

2
1 + 1

2χ
2
2) 2.0 % 98.0 % 0 % 0 %

LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 2.0 % 98.0 % 0 % 0 %

(iv) secondary AIC 4.0 % 0 % 96.0 % 0 %

contact LRT (χ2
2) 2.0 % 0 % 98.0 % 0 %

LRT ( 1
2χ

2
1 + 1

2χ
2
2) 2.0 % 0 % 98.0 % 0 %

LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 3.5 % 0 % 96.5 % 0 %

(v) isolation AIC 0 % 2.0 % 2.0 % 96.0 %

LRT (χ2
2) 0 % 0 % 0.5 % 99.5 %

LRT ( 1
2χ

2
1 + 1

2χ
2
2) 0 % 0 % 0.5 % 99.5 %

LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 0 % 1.0 % 0.5 % 98.5 %

Results of the different model selection procedures for 200 data sets simulated under each of
scenarios (i) to (v). The four models shown in Figure 1 were fitted to each simulated data set.
For each scenario, the percentages shown are the proportions of data sets for which each of the
four models was selected as the best-fitting model; the proportion of data sets for which the
correct model was selected is shown in bold. For each simulated data set, model selection was
performed using the methods described in Subsection 2.4. The method ‘AIC’ consists of selecting
the model with the best AIC score. The method ‘LRT’ consists of a sequence of Likelihood Ratio
Tests at an overall significance level of 5%, using the distribution shown in parentheses as the
null distribution.
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data sets simulated from the isolation model (scenario (v)); similarly, for data simulated

from the IIM model (scenario (iii)) or the model of secondary contact (scenario (iv)), a

type 1 error was made (falsely rejecting the true model in favour of the GIM model) in

only 2% or 3.5% of cases, respectively – less than the 5% type 1 error rate that would

be expected if we were able to use the precise null distribution of the test statistic.

Compared to the other two distributions considered, the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 gives

somewhat higher power to detect the small level of gene flow in the intermediate stage

of the model in scenario (ii).

4 Discussion

In this paper we have presented a Maximum-Likelihood method to estimate the pa-

rameters of a ‘generalised isolation-with-migration model’ from data consisting of the

numbers of nucleotide differences between one pair of DNA sequences at each of a large

number of independent loci. Our method is computationally very fast and can also be

used to easily compare the fit of the four models depicted in Figure 1, thus making it

possible to distinguish between these different evolutionary scenarios. In Janko et al.

(2018) we applied our method (slightly simplified, with symmetric migration rates) to

data from different species of Cobitis (spined loaches) to try to reconstruct the evolu-

tionary history of these species. The results suggested that extensive historical gene flow

occurred between C. elongatoides and the common ancestor of C. taenia, C. tanaitica

and C. pontica, and that this was followed by reproductive isolation of all these species.

In the previous sections we have presented the mathematical derivations underlying our

method, together with a simulation study to evaluate the performance of our method

under a number of different evolutionary scenarios with decreasing or increasing gene

flow, or in the absence of gene flow.

For the vast majority of data sets simulated from scenarios (i), (iii), (iv) and (v) in

Section 3, our method correctly identified the ‘true’ model. However, for data simulated

from a scenario of increasing gene flow (scenario (ii)), there was little power to detect

the very small amount of gene flow that had occurred in the intermediate stage of the

model. To further investigate whether the lack of power in this particular scenario is due

to the subsequent increase in the level of gene flow, or whether there is more generally

a lack of power to detect a small amount of gene flow that occurred a long time ago,

29



we simulated 200 data sets from a model with the same parameters as in scenario (ii)

except for the contemporary migration rates, which were set to 0:

• scenario (vi): θ0 = 3, θ1 = 2, θ2 = 4, θ′1 = 3, θ′2 = 6, T1 = 4, V = 4, with

migration parameters M1
∗ = 0.04 and M2

∗ = 0.08 decreasing to M ′1
∗ = M ′2

∗ = 0;

the number of loci in each simulated data set, and the relative mutation rates of the

different loci, were also as in Section 3. We fitted the four models shown in Figure 1

to each of the simulated data sets and applied the model selection procedures described

in Subsection 2.4. The results in Table 3 show that, in contrast with scenario (ii), the

power to detect the small amount of historical gene flow in this new scenario (vi) was

high: our method returned the correct IIM model for 92% of the simulated data sets

Table 3:
Model selection for simulated data: Results

best-fitting model

simulation true method GIM IIM secondary isolation
scenario model contact

(vi) IIM AIC 0 % 92.0 % 2.5 % 5.5 %

as in scenario (ii) LRT (χ2
2) 0 % 79.0 % 2.0 % 19.0 %

but with LRT ( 1
2χ

2
1 + 1

2χ
2
2) 0 % 83.5 % 2.0 % 14.5 %

M ′1
∗

= M ′2
∗

= 0 LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 0 % 88.0 % 2.5 % 9.5 %

(vii) GIM AIC 29.0 % 0 % 71.0 % 0 %

as in scenario (ii) LRT (χ2
2) 15.5 % 0 % 84.5 % 0 %

but with LRT ( 1
2χ

2
1 + 1

2χ
2
2) 21.0 % 0 % 79.0 % 0 %

M1
∗ = 0.08 and M2

∗ = 0.16 LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 28.0 % 0 % 72.0 % 0 %

(viii) GIM AIC 68.0 % 0 % 32.0 % 0 %

as in scenario (ii) LRT (χ2
2) 55.0 % 0 % 45.0 % 0 %

but with LRT ( 1
2χ

2
1 + 1

2χ
2
2) 60.5 % 0 % 39.5 % 0 %

V = 8 LRT ( 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2) 65.5 % 0 % 34.5 % 0 %

Results of the different model selection procedures for 200 data sets simulated under each of
scenarios (vi) to (viii). The four models shown in Figure 1 were fitted to each simulated data
set. For each scenario, the percentages shown are the proportions of data sets for which each of
the four models was selected as the best-fitting model; the proportion of data sets for which the
correct model was selected is shown in bold. For each simulated data set, model selection was
performed using the methods described in Subsection 2.4. The method ‘AIC’ consists of selecting
the model with the best AIC score. The method ‘LRT’ consists of a sequence of Likelihood Ratio
Tests at an overall significance level of 5%, using the distribution shown in parentheses as the
null distribution.
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when the best-fitting model was selected by means of AIC scores, and for 83.5% or 88%

of the simulated data sets when a sequence of Likelihood Ratio tests was used with,

respectively, the mixtures 1
2χ

2
1 + 1

2χ
2
2 or 1

4χ
2
0 + 1

2χ
2
1 + 1

4χ
2
2 instead of the precise null

distribution. Thus it appears that the lack of power to detect the small amount of

historical gene flow in scenario (ii) was specifically due to the subsequent increase in the

level of gene flow: the larger level of contemporary gene flow appears to mask the signal

from the small amount of earlier gene flow. In order to assess to what extent the power

of our method in this type of scenario might improve if the level of historical gene flow

was larger, or if this low level of historical gene flow lasted for a longer period of time, we

also simulated 200 data sets from each of the following two modifications of scenario (ii):

• doubling the amount of historical gene flow:

scenario (vii): θ0 = 3, θ1 = 2, θ2 = 4, θ′1 = 3, θ′2 = 6, T1 = 4, V = 4, with

M1
∗ = 0.08 and M2

∗ = 0.16 increasing to M ′1
∗ = 0.2 and M ′2

∗ = 0.4;

• doubling the duration of the intermediate time period:

scenario (viii): θ0 = 3, θ1 = 2, θ2 = 4, θ′1 = 3, θ′2 = 6, T1 = 4, V = 8, with

M1
∗ = 0.04 and M2

∗ = 0.08 increasing to M ′1
∗ = 0.2 and M ′2

∗ = 0.4.

We found that while doubling the rate of historical gene flow only led to a modest

improvement in power, doubling the duration of the intermediate time period resulted

in considerably higher power to detect this historical gene flow (see Table 3).

For each of the Likelihood Ratio tests in the model selection procedure set out in

Subsection 2.4, the asymptotic null distribution of the LRT statistic is a mixture of χ2
ν

distributions (ν = 0, 1, 2), but the precise coefficients of χ2
0 and χ2

2 in the mixture are

not easy to compute; the coefficient of χ2
1 in the mixture is 1

2 . Whilst the use of χ2
2 or

1
2χ

2
1 + 1

2χ
2
2 instead of the precise asymptotic null distribution is obviously conservative,

the simulation results in Section 3 suggest that the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 also appears

to be conservative, and results in somewhat higher power compared to the other two

distributions. QQ-plots comparing the quantiles of the null distribution of the LRT

statistic Λ obtained for simulated data with the theoretical quantiles of 1
4χ

2
0+ 1

2χ
2
1+ 1

4χ
2
2 ,

for each of the four Likelihood Ratio tests in our model selection procedure, confirm

that the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 instead of the correct null distribution in these tests

is indeed conservative - these plots are shown in the Appendix. Nevertheless, further

work is needed to establish whether the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 is always conservative
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when testing whether two migration rates are both 0 in a GIM model or in one of its

variants, whatever the true parameter values. Further work to more easily compute the

precise asymptotic null distribution of the LRT statistic would also be useful, as it would

enhance the power of the model selection procedure, but this is beyond the scope of the

present study.

The work presented in this paper assumes the infinite sites model of mutation. While

it would be straightforward to adapt our method to the Jukes-Cantor model of mutation

(Jukes and Cantor, 1969) by combining our result (11) for the GIM model with equa-

tion (3) of Lohse et al. (2011), such implementation is left for future work. Extensions

to more complex mutation models should also be possible but would require more effort.

Our ML method assumes that there is no recombination within loci and free recombi-

nation between loci. These assumptions, although commonly made in the literature, may

often be violated for real data sets. In the ‘Discussion’ Section of Costa and Wilkinson-

Herbots (2017) we examined in detail the effects of such potential violations of our

assumptions on the accuracy of ML estimates obtained for the IIM model; parameter

estimates obtained for the GIM model can be expected to be affected in a similar way. In

particular, while non-negligible recombination within loci may lead to biased estimates,

linkage between loci should not cause bias but – unless properly accounted for – would

lead to underestimation of the uncertainty surrounding the estimates obtained (see also

Baird, 2015; Lohse et al., 2016). We refer to Costa and Wilkinson-Herbots (2017) for an

illustration of how linkage disequilibrium, and model misspecification more generally, can

be accounted for in practice. In particular, we illustrated there how for a data set made

up of clusters of loci, where loci within clusters are subject to linkage disequilibrium but

linkage between clusters is negligible, robust standard errors and confidence intervals can

readily be obtained by using an estimate of the inverse of the Godambe information ma-

trix (the robust sandwich estimator of the parameter covariance matrix) rather than the

inverse of the Fisher information matrix (Chandler and Bate, 2007; Varin, 2008; Jesus

and Chandler, 2011), while robust likelihood ratio tests can be performed by using the

scaled and shifted χ2 distribution given in equation (3.6) of Jesus and Chandler (2011)

as the null distribution. Alternatively, recombination and linkage disequilibrium can be

accounted for by means of a parametric bootstrap (for example, Lohse et al., 2016), but

this approach is computationally intensive and the results will inevitably depend on the
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recombination rate assumed, and on any other assumptions made such as homogeneity

of the recombination rate along the genome.

While our ML method accommodates mutation rate heterogeneity between loci

(whether due to variation in sequence length or variation in the mutation rate per site, or

both), it assumes that accurate estimates of the relative mutation rates of the different

loci are available and treats these rates as known scalars. In practice, these scalars are

usually estimated using outgroup sequences, and our method does not currently account

for uncertainty about the relative mutation rates. Wang and Hey (2010) conducted a

simulation study investigating the accuracy of ML estimates of the parameters of the

IM model (where, as is the case in our method, the parameter estimates were obtained

treating the relative mutation rates as known scalars), when the relative mutation rates

of the different loci were in fact estimated using the distance between one DNA sequence

from each of two outgroups (their ‘fixed-rate’ method). They also proposed an ‘all-rate’

method whereby the divergence between these two outgroup sequences at each locus

is considered part of the data, and the relative mutation rates at the different loci are

assigned a probability distribution (either gamma or uniform in their simulations) which

is integrated over. Whereas our current implementation of the GIM model corresponds

to the ‘fixed-rate’ method, it should be feasible to extend our method to incorporate

the ‘all-rate’ method and to account for uncertainty about the relative mutation rates

in that way.

Our method is suitable for DNA sequences of intermediate length, typically of the

order of hundreds of base pairs. For very short sequences (<< 100 bp), the infinite sites

model may provide a poor approximation, whereas for very long sequences (>> 1000

bp), intra-locus recombination cannot be neglected.

For mathematical simplicity and computational speed, our method uses data consist-

ing of the number of nucleotide differences between one pair of DNA sequences at each

of a large number of independent loci. It would be of interest to extend our method to

accommodate somewhat larger samples of sequences at each locus, as this would be more

natural and less wasteful of data in practice. The easiest way to include larger samples

of sequences at each locus might be to use all pairwise subsamples and maximise the re-

sulting composite marginal loglikelihood. However, because different pairs of sequences

from the same locus are not independent, standard errors obtained with our code (based
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on the Fisher information matrix) would in that case underestimate the true amount

of uncertainty about the parameter estimates, and standard asymptotic results regard-

ing the null distribution of the Likelihood Ratio test statistic would no longer apply.

Instead, standard errors should be based on an estimate of the Godambe information

matrix, and model selection criteria should be adjusted to apply to composite marginal

likelihoods (see, for example, Varin et al., 2011, for a review); alternatively, simulation-

based methods can be used to quantify uncertainty and perform model selection. It

should also be possible to extend our derivation of the likelihood to somewhat larger

numbers of sequences per locus, either by using an approach similar to that of Andersen

et al. (2014) for sequences from two diploid individuals (one from each population), or

by using an approach similar to that of Kumagai and Uyenoyama (2015) to derive the

likelihood of a data set where the observation at each locus consists of the number of

segregating sites in a sample of more than two sequences.

Having derived an explicit expression for the likelihood of a data set consisting of

the numbers of nucleotide differences between one pair of DNA sequences at each of

a large number of independent loci, it was natural to use ML methods for parameter

estimation and model selection rather than a Bayesian approach, as maximising this

likelihood is straightforward and requires very little computing time. If desired, it should

nevertheless be possible to use our results for the likelihood as a building block to develop

an analogous Bayesian method. Yang and Zhu (2018) pointed out some fundamental

problems arising in Bayesian model selection when all models considered are misspecified,

which is typically the case in evolutionary genetics. An additional advantage of using a

ML framework may therefore be that the effects of model misspecification in this context

are somewhat better understood and less difficult to account for.
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Appendix

For each of the Likelihood Ratio tests in the model selection procedure set out in Sub-

section 2.4, the asymptotic null distribution of the LRT statistic is a mixture of χ2
ν

distributions (ν = 0, 1, 2), but the precise coefficients of χ2
0 and χ2

2 in the mixture are

not easy to compute; the coefficient of χ2
1 in the mixture is 1

2 . The simulation results in

Section 3 suggest that the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 instead of the correct null distribu-

tion appears to be conservative. In this Appendix we further examine whether that is

indeed the case. To this end, QQ-plots were constructed (see Figure 4) comparing the

quantiles of the null distribution of the LRT statistic Λ obtained for simulated data with

the theoretical quantiles of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 , for each of the four Likelihood Ratio tests

in our model selection procedure:

(a) the isolation model versus the IIM model;

(b) the isolation model versus the model of secondary contact;

(c) the IIM model versus the GIM model;

(d) the model of secondary contact versus the GIM model.

The QQ-plots are based on the 200 data sets that were simulated in Section 3 under the

null hypothesis in each case: the isolation model (scenario (v)) for plots (a) and (b), the

IIM model (scenario (iii)) for plot (c), and the model of secondary contact (scenario (iv))

for plot (d); full details of the simulations, and the parameter values used, are given in

Section 3.

For the tests in (a), (b) and (c), the QQ-plots in Figure 4 confirm that the use of

1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2 instead of the correct null distribution is conservative, as in each of

these plots all points lie below the diagonal red line, i.e. the quantiles of the (simulated)

null distribution of the LRT statistic Λ are smaller than the corresponding quantiles of

1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2. In the QQ-plot in (d), the two most extreme points in the top right

corner lie somewhat above the diagonal red line, and therefore additional simulations

were carried out to assess whether this indicates non-conservativeness or whether this

is merely due to chance: a further 300 data sets were simulated from scenario (iv) (the

model of secondary contact), in addition to the 200 data sets already simulated from this

scenario in Section 3. We fitted both the model of secondary contact and the full GIM
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model to each simulated data set and computed the value of the LRT statistic Λ for the

test of the model of secondary contact (H0) against the GIM model (H1). Figure 5 shows

the QQ-plot of the distribution of Λ against the mixture 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2, where the

quantiles of Λ were computed using all 500 simulated observations of the LRT statistic.

This plot indicates that, for the Likelihood Ratio test in (d), the use of 1
4χ

2
0 + 1

2χ
2
1 + 1

4χ
2
2

instead of the precise null distribution of Λ is also conservative.
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Figure 4: QQ-plots of the null distribution of the LRT statistic Λ (obtained for simulated
data) against the mixture 1

4χ
2
0 + 1

2χ
2
1 + 1

4χ
2
2. Plots (a) and (b) are, respectively, for the LRT

of the isolation model (H0) against the IIM model (H1), and the LRT of the isolation model
(H0) against the model of secondary contact (H1), for 200 data sets simulated from an isolation
model (scenario (v) in Section 3). Plot (c) is for the LRT of the IIM model (H0) against the
GIM model (H1), for 200 data sets simulated from an IIM model (scenario (iii) in Section 3).
Plot (d) is for the LRT of the model of secondary contact (H0) against the GIM model (H1), for
200 data sets simulated from a model of secondary contact (scenario (iv) in Section 3). The line
y = x is also shown (in red) for ease of comparison.
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Figure 5: QQ-plot of the null distribution of the LRT statistic Λ (obtained for simulated data)
against the mixture 1

4χ
2
0 + 1

2χ
2
1 + 1

4χ
2
2 , for the LRT of the model of secondary contact (H0)

against the GIM model (H1). The quantiles of Λ were based on 500 data sets simulated from a
model of secondary contact (scenario (iv) in Section 3). The line y = x is also shown (in red) for
ease of comparison.
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