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a b s t r a c t

This paper examines the identifying power of instrument exogeneity in the treatment
effect model. We derive the identification region of the potential outcome distributions,
which are the collection of distributions that are compatible with data and with the
restrictions of the model. We consider identification when (i) the instrument is inde-
pendent of each of the potential outcomes (marginal independence), (ii) the instrument
is independent of the potential outcomes and selection heterogeneity jointly (joint
independence), and (iii.) the instrument satisfies joint independence and monotonicity
(the LATE restriction). By comparing the size of the identification region under each
restriction, we show that joint independence provides more identifying information
for the potential outcome distributions than marginal independence, but that the LATE
restriction provides no identification gain beyond joint independence. We also, under
each restriction, derive sharp bounds for the Average Treatment Effect and sharp
testable implication to falsify the restriction. Our analysis covers discrete or continuous
outcomes, and extends the Average Treatment Effect bounds of Balke and Pearl (1997)
developed for the dichotomous outcome case to a more general setting.
© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper studies identification of the potential outcome distributions using an instrumental variable in settings where
ata exhibits imperfect compliance and selection is an issue. A motivating example is a randomized control trial with
wo treatment arms and where trial-subjects are observed following a different treatment arm to the one that they are
llocated by the experimental design (Imbens and Angrist, 1994; Angrist et al., 1996). Of interest throughout this paper is
dentification of the effect of treatment on the potential outcomes, and the models that we study feature an instrumental
ariable that facilitates identification. The potential outcomes can be dichotomous, discrete or continuous, and the effect
f treatment can be heterogeneous in the population. The models that we study differ in the statistical independence
onditions and monotonicity restrictions that they embed, and so in the relationships between the potential outcomes
nd instrumental variable that they are compatible with.
We make three contributions to the existing literature on partial identification of treatment effects by models featuring

election on unobservables. Firstly, for each model that we study, we derive the identification region of the potential
utcome distributions, which we emphasize are counterfactual distributions that describe the outcomes that would be
ealized if each treatment arm were applied uniformly to the population. Since the statistical independence conditions
nd monotonicity restrictions that we consider are made successively stronger, we show that these identification regions
re nested and provide closed-form expressions for them. Secondly, we similarly derive sharp bounds for the Average
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reatment Effect and provide closed-form expressions for these bounds. The expressions that we provide include a novel
nd non-trivial extension of existing results, with our extension of Balke and Pearl (1997) and its Average Treatment Effect
ounds a leading example of this. Thirdly, we show that each model is falsifiable by deriving a sharp testable implication
f each set of assumptions that we consider, and that equate to a set of conditions such that the identification region of
he potential outcome distributions is empty.

The statistical independence conditions and monotonicity restrictions that we consider in this paper are as follows.
irstly, that the instrumental variable is statistically independent of each potential outcome (marginal statistical inde-
endence). Secondly, that the instrumental variable is statistically independent of the potential outcomes and selection
eterogeneity jointly (joint statistical independence). Thirdly, that the instrumental variable is statistically independent
f the potential outcomes and selection heterogeneity jointly, and that each unit in the population exhibits a weakly
onotonic selection response to the instrumental variable (instrument monotonicity). We note that the third assumption

s the so-called LATE restriction (Imbens and Angrist, 1994).
The remainder of the paper is organized as follows. In the remainder of this section, we present a brief review of the

xisting literature. In Section 2, we introduce the notation that we use and provide a formal definition of the identification
egion. In Section 3, we derive the identification region of the potential outcome distributions for each model. In Section 4,
e compare the size of the obtained identification regions, and present sharp bounds for the Average Treatment Effect.

n Section 5, we conclude. Proofs and further discussion are included as appendices.

.1. Related literature

We identify several papers in the econometrics literature that are related to this paper, which we collect into three
road categories according to their content and their relation to this paper.
Firstly, we recognize the contribution of papers that consider identification of treatment effects under a similar set

f assumptions to those that we consider here, and that propose bounds on these treatment effects. Chief amongst
hese is Manski (1990), which reports sharp bounds on mean outcomes and the Average Treatment Effect when mean
ndependence is assumed to hold. Balke and Pearl (1997) similarly considers identification of treatment effects in settings
here data exhibits imperfect compliance and selection is an issue, but restricts attention to the case where the potential
utcomes are dichotomous. When outcomes are dichotomous, the mean independence condition that is present in the
nalysis of Manski (1990) coincides with marginal statistical independence. Balke and Pearl (1997) strengthen marginal
tatistical independence to full statistical independence, and show that the Manski bounds are not sharp in this case. Balke
nd Pearl (1997) provide closed-form expressions for the sharp bounds on mean outcomes and the Average Treatment
ffect by solving a linear program, which is of finite dimension when there are a finite number of treatment arms and both
he instrumental variable and outcomes are discrete with finite supports. We extend Balke and Pearl (1997) by allowing for
on-scalar and continuous outcomes, providing closed-form expressions for the identified sets of the potential outcome
istributions and the Average Treatment Effect. These closed-form expressions complement the general characterizations
hat are reported in Beresteanu et al. (2012). Gunsilius (2020a) also extends Balke and Pearl (1997) but goes further than
his paper in allowing for an infinite number of treatment arms and a continuous instrumental variable (in addition to
ontinuous outcomes). To facilitate this extension, Gunsilius (2020a) notes that it is necessary to regularize heterogeneity
oncerning individual responses to an infinite number of treatment arms. No such regularization is required if the number
f treatment arms is finite and, like Balke and Pearl (1997), we allow for unrestricted heterogeneity and rich behavior.
dditionally imposing instrument monotonicity, Heckman and Vytlacil (2001) (and Heckman and Vytlacil, 1999, 2005)
onsider identification of the Average Treatment Effect when outcomes are continuous, and show that the obtained bounds
oincide with the Manski bounds (Manski, 1990, 1994, 2003) under mean independence. If data is not compatible with
nstrument monotonicity though, then the bounds that are derived in Heckman and Vytlacil (2001) can be wider than the
harp bounds that are derived under marginal or joint statistical independence, which we provide in this paper. Heckman
nd Vytlacil (2005, 2007) and Mogstad et al. (2018) extend the analysis of Heckman and Vytlacil (2001) to consider
dentification of the Marginal Treatment Effect and other policy relevant parameters, while Huber et al. (2017) and Huber
nd Mellace (2015a) focus on partial identification of treatment effects for sub-populations including that of the compliers
Imbens and Angrist, 1994). Chen and Flores (2015) and Cheng and Small (2006) also consider identification of the Average
reatment Effect under instrument monotonicity, but allow for sample selection and three (rather than two) treatment
rms, respectively. Bhattacharya et al. (2008), Mourifié (2015), Shaikh and Vytlacil (2011) and Vytlacil and Yildiz (2007)
ach study a special case where instrumental variables are statistically independent of the potential outcomes, which
re dichotomous and monotonic in treatment. Chiburis (2010) also studies the special case of dichotomous outcomes,
onsidering identification of treatment effects under a variety of semiparametric restrictions. Lafférs (2019) adopts a
inear programming approach to identification of treatment effects that is similar to the approach taken in Balke and
earl (1997), adding constraints and restrictions that are not present in that analysis. A comprehensive review of (partial)
dentification of the Average Treatment Effect is found in Swanson et al. (2018).

Secondly, we recognize the contribution of papers that consider the failure and testing of identifying assumptions.
earl (1995a) derives a testable implication for instrument independence, which is the so-called (Pearl) Instrument
nequality. Pearl (1995a) shows that this implication is a necessary condition for emptiness of the identification region or,
quivalently, for falsification of instrument independence. We show in this paper that this testable implication is, in fact,
2
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oth necessary and sufficient for emptiness of the identification region when the instrumental variable is dichotomous
the case that Pearl, 1995a and Balke and Pearl, 1997 consider). As such, there does not exist a stronger testable implication
han the Instrument Inequality unless further restrictions are maintained. For instance, Kédagni and Mourifie (2020) show
hat the Pearl Inequality can be strengthened if the instrumental variable takes more than two values. Gunsilius (2020b)
hows that the testability of instrument independence is reliant on there being a finite number of treatment arms, and this
ssumption is untestable when there are instead an infinite number. Provided that there are a finite number of treatment
rms, Heckman and Vytlacil (2005) and Balke and Pearl (1997) provide testable implications for instrument independence
nd instrument monotonicity jointly. Kitagawa (2015) and Mourifié and Wan (2017) build upon these implications to
ropose formal tests of these restrictions, which leads to identification of the complier outcome distribution (Imbens
nd Rubin, 1997) and of the Local Average Treatment Effect (Imbens and Angrist, 1994). Huber and Mellace (2015b)
roposes a complementary testing procedure for the weaker statistical independence condition of mean independence.
omplementary to this work on falsifiability of a model is de Chaisemartin (2017), Flores and Flores-Lagunes (2013) and
édagni (2021) that consider identification in instances where various common restrictions of a model are inappropriate.
or instance, de Chaisemartin (2017) considers identification in the presence of instrument non-monotonicity, Flores and
lores-Lagunes (2013) consider identification in the absence of exclusion, and Kédagni (2021) considers identification
n the absence of instrument independence. Machado et al. (2019) propose testable implications when outcomes are
ichotomous and maintained assumptions can reveal the sign of the Average Treatment Effect.
Thirdly, we recognize the contribution of papers that study the identification of treatment effects by incomplete

tructural models that do not feature a selection equation. Particular examples include Beresteanu et al. (2012), Cher-
ozhukov and Hansen (2005) and Chesher and Rosen (2017). Chesher and Rosen (2017) is notable since it provides
sharp characterization of the identification region of treatment effects for a broad class of models using tools from

andom set theory. Chesher and Rosen (2013) illustrate what such incomplete models can deliver in practice by means of
simple application (we refer to Clarke andWindmeijer, 2012 for further evidence of what partially identifying models can
eliver in practice in comparison to conventional models). We also recognize the contribution of papers studying complete
tructural models that impose additional restrictions on their constituent structural equations, including Chesher (2003,
005, 2010), Chesher et al. (2013), Imbens and Newey (2009) and Vuong and Xu (2017) to list but a few. These additional
estrictions constrain the association of the potential outcomes and are a source of additional identifying power in the
odel.

. Analytical framework

.1. Data generating process and the population

Consider identification of the causal effect of a binary treatment on some outcome of interest. We use D ∈ {1, 0} as an
indicator for treatment, where D = 1 indicates a treated individual and where D = 0 indicates an untreated individual.
Following the Neyman–Rubin potential outcome framework, let Y1 denote the outcome that would be observed if the
individual receives treatment and let Y0 denote the outcome that would be observed if the individual does not receive
treatment. The observed outcome in data is then Y ≡ DY1 + (1 − D)Y0, which need not be scalar. To this end, we let the
support of Y1 and Y0 be a subset of Y , which we can take to be an arbitrary space equipped with the Borel σ -algebra B(Y)
nd a probability measure µ. We focus on a situation where treatment status is not randomized and selection is an issue
f concern (i.e., treatment status can depend upon the underlying potential outcomes). We suppose that a non-degenerate
inary variable Z ∈ {1, 0} is available in data, and that Z qualifies as an instrumental variable (Imbens and Angrist, 1994;
ngrist et al., 1996). In particular, we suppose that Z satisfies an exclusion restriction prohibiting it as a (direct) cause of
, and our notation reflects this. For example, initial assignment to treatment is often used as an instrumental variable
n experimental settings with non-compliance.

We denote a conditional distribution of (Y ,D) given Z by

PY1 (B) ≡ Pr(Y ∈ B,D = 1|Z = 1) = Pr(Y1 ∈ B,D = 1|Z = 1),
PY0 (B) ≡ Pr(Y ∈ B,D = 0|Z = 1) = Pr(Y0 ∈ B,D = 0|Z = 1),
QY1 (B) ≡ Pr(Y ∈ B,D = 1|Z = 0) = Pr(Y1 ∈ B,D = 1|Z = 0),
QY0 (B) ≡ Pr(Y ∈ B,D = 0|Z = 0) = Pr(Y0 ∈ B,D = 0|Z = 0).

(1)

where B is an arbitrary subset of Y . Except for the marginal distribution of Z , P = (PY1 (·), PY0 (·)) and Q = (QY1 (·),QY0 (·))
uniquely characterize the distribution of data. We represent the data generating process by (P,Q ) ∈ P , where P is the
class of data generating processes. Throughout our analysis, we do not restrict the class of data generating processes
P other than to assume the existence of probability density functions with respect to the dominating measure µ, which
the researcher has knowledge of. We denote the probability sub-density functions of PYj (·) and QYj (·) with respect to
µ by pYj (·) and qYj (·), j = 1, 0. That is, for every subset B, we have

PY1 (B) =

∫
B
pY1dµ, PY0 (B) =

∫
B
pY0dµ,

QY1 (B) =

∫
qY1dµ, QY0 (B) =

∫
qY0dµ.
B B

3



T. Kitagawa Journal of Econometrics xxx (xxxx) xxx

I
p
a
t

v

t is important to keep in mind that the integration of the sub-density functions pYj (·) and qYj (·) over Y yield the conditional
robabilities Pr(D = j|Z = 1) and Pr(D = j|Z = 0), which can be less than one. Sub-distribution functions (the integral of
sub-density function over subsets) are common in competing risks analysis, where they are often alternatively referred
o as cumulative incidence functions.

Our identification framework features a selection equation with unobserved selection heterogeneity V ,

D = I{u(Z, V ) ≥ 0}.

Here, u(Z, V ) is latent utility and rationalizes the individual’s choice of treatment status, and V is unobserved heterogeneity
that affects the individual’s choice and is possibly dependent on the potential outcomes. We interpret this equation as
structural in the sense that, with V fixed, u(z, V ) yields a counterfactual treatment status for each z = 1, 0. Provided that
D and Z are binary, there are at most four distinct selection behaviors, which we refer to as types. The role of unobserved
heterogeneity V is to randomly categorize individuals into one of these four types. A random category variable T is used
to indicate type (Angrist et al., 1996), with

T =

⎧⎪⎨⎪⎩
c : complier if u(1, V ) = 1, u(0, V ) = 0,
n : never-taker if u(1, V ) = u(0, V ) = 0,
a : always-taker if u(1, V ) = u(0, V ) = 1,
d : defier if u(1, V ) = 0, u(0, V ) = 1.

If we do not impose any restriction on the distribution of T , then we are also free of any assumption on the functional
form of latent utility and on the dimensionality of unobserved heterogeneity V (Pearl, 1995b).

Every individual in the population of interest possesses a non-random value of (Y1, Y0, T , Z) and the parameter of
interest is defined on the distribution of (Y1, Y0, T , Z). We define the population as a joint probability distribution of
(Y1, Y0, T , Z) ∈ Y×Y×{c, n, a, d}×{1, 0}. Hereafter, f denotes the probability density or sub-density function of population
variables, distinguished by subscripts such as fY1 , fY1,T |Z , etc. We use F to denote the class of populations. In the following
analysis, equalities or inequalities for density or sub-density functions are interpreted as almost everywhere with respect
to the measure µ.

2.2. Defining the identification region

Model restrictions take the form of statistical relationships for the population random variables (Y1, Y0, T , Z). Let M be
the model restriction(s) and let FM ⊂ F be the sub-class of populations satisfying the imposed restriction M .

For each data generating process (P,Q ) ∈ P , the class of observationally equivalent populations Fo(P,Q ) ⊂ F is defined
as the collection of distributions of (Y1, Y0, T , Z) that generate (P,Q ). Given a particular data generating process (P,Q ),
the identification region under restriction M , which we denote by IR(P,Q |M), is defined as the set of populations that are
compatible with (P,Q ) and restriction M . That is, IR(P,Q |M) is formulated as the intersection of FM and Fo(P,Q ),

IR(P,Q |M) ≡ FM ∩ Fo(P,Q ), (P,Q ) ∈ P.

When IR(P,Q |M) is empty, restriction M is not compatible with observed data and is refutable (Manski, 2003).1
If interest instead lies in θ : F → Θ , a feature or parameter of the population, then the identification region of

θ under restriction M , which we denote by IRθ (P,Q |M), is defined as the range of θ (·) for the domain IR(P,Q |M). When
IR(P,Q |M) is empty, we also define IRθ (P,Q |M) as empty so as to reflect the refutability property of the identification
region. As such, the identification region of θ under restriction M is defined as

IRθ (P,Q |M) ≡

{
{θ (F ) : F ∈ IR(P,Q |M)} ∩ Θ if IR(P,Q |M) ̸= ∅,

∅ if IR(P,Q |M) = ∅.
(2)

In words, IRθ (P,Q |M) is defined as the set of θ such that we can construct a population F that is compatible with (P,Q ) and
the imposed restriction M .

Here, our construction of the identification region does not assume that the true population satisfies the imposed
restriction M , which matters when M is observationally restrictive (Koopmans and Reiersøl, 1950). If we assume that the
true population satisfies restriction M and M is observationally restrictive, we a priori exclude the possibility of IR(P,Q |M)
being empty, even if data provides evidence to refute M . If we then derive sharp bounds on θ under the assumption
that the true population satisfies restriction M , the bound formula and its sharpness break-down if IR(P,Q |M) is empty.
Moreover, the bound formula does not correspond to an empty set, despite the fact that IR(P,Q |M) is empty. This break-
down gives rise to a misspecification of the sharp bounds for θ . As we discuss further in Section 4, the bounds on the
Average Treatment Effect under instrument independence provide an example of this type of misspecification problem.
In order to avoid such a misspecification problem, we do not vary the class of data generating processes P and construct
the bounds for each restriction that we impose by explicitly applying definition (2).

1 Since this rule for refuting restriction M is based on emptiness of IR(P,Q |M), no other testable implication is more powerful in detecting
iolations of M .
4
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.3. Instrumental variable restrictions

We consider the following three model restrictions in turn.
Restriction MSI:
Marginal Statistical Independence Restriction: Z is marginally independent of each of Y1 and Y0.
Restriction RA:
Random Assignment Restriction: Z is jointly independent of (Y1, Y0, T ).
Restriction LATE:
LATE Restriction: Z is jointly independent of (Y1, Y0, T ), and fT (T = d) = 0 or fT (T = c) = 0.
The notion of instrument exogeneity is represented in all three model restrictions by statistical independence of the

potential outcomes and the instrument. The restrictions are nested and are listed in terms of their strength, from weak
to strong. The first restriction, MSI , imposes marginal independence between the instrument and each of the potential
outcomes. Since selection heterogeneity T is unaffected by the model restriction, the analysis corresponding to this case
is robust to dependence between the instrument and selection heterogeneity.2 The second restriction, RA, embodies a
stronger version of instrument exogeneity such that the instrument is jointly independent of both outcome heterogeneity
and selection heterogeneity. RA is justified if the researcher believes that the instrument is generated through some
randomization mechanism as in the (quasi-) experimental setting. The final restriction, LATE, is due to Imbens and Angrist
(1994) and Angrist et al. (1996), and is crucial to identifying the potential outcome distributions for the sub-population
of compliers.

We assert that, although MSI is theoretically interesting, it is of limited practical use.3 It is difficult to think of instances
where MSI can be justified but RA cannot. Nonetheless, we study MSI here for its simplicity, as a stepping-stone to analysis
under RA and LATE.

Our primary interest lies in identifying fY1 and fY0 , which describe the marginal distributions of Y1 and Y0. The marginal
distributions are of interest if the goal of analysis is to assess the effect of intervention by comparing various features of
the marginal distributions of the potential outcomes. For example, the Average Treatment Effect is defined as the difference
between the mean of fY1 and of fY0 . As a further example, we may be interested in the τ -th quantile differences, defined
as the difference between the τ -th quantiles of the two potential outcome distributions. As a final example, we may be
interested in the effect of intervention on the inequality of outcomes, and so in the variances of fY1 and fY0 or in some other
measure of inequality of outcome such as the Gini index. In all three examples, the parameters of interest are defined
in terms of the marginal distributions of Y1 and Y0. We focus on constructing the sharp identification region of fY1 and
fY0 , which we denote by IR(fY1 ,fY0 )

(P,Q |·), instead of the identification region for the (full) population distribution. We
note that if interest lies instead in a parameter that is defined on the distribution of the individual causal effects Y1 − Y0,
IR(fY1 ,fY0 )

(P,Q |·) is less useful, as the distribution of Y1 − Y0 is sensitive not only to the marginals of Y1 and Y0 but also to
dependence between Y1 and Y0. Identification of the distribution of Y1 − Y0 is beyond the scope of this paper.4

3. Construction of the identification region

For the construction of IR(fY1 ,fY0 )
(P,Q |·), our first step is to formulate the conditions for F ∈ Fo(P,Q ) (i.e., for

compatibility of a distribution F of (Y1, Y0, T , Z) with observed data (P,Q )). These conditions are obtained by rewriting
the right-hand side of the identities (1) in terms of the distribution of (Y1, Y0, T , Z).

pY1 (y1) = fY1,T |Z (y1, T = c|Z = 1) + fY1,T |Z (y1, T = a|Z = 1),
qY1 (y1) = fY1,T |Z (y1, T = d|Z = 0) + fY1,T |Z (y1, T = a|Z = 0),
pY0 (y0) = fY0,T |Z (y0, T = d|Z = 1) + fY0,T |Z (y0, T = n|Z = 1),
qY0 (y0) = fY0,T |Z (y0, T = c|Z = 0) + fY0,T |Z (y0, T = n|Z = 0).

(3)

The law of total probability implies that fY1|Z (y1|Z = z) =
∑

t∈{c,n,a,d} fY1,T |Z (y1, T = t|Z = z) and fY0|Z (y0|Z = z) =∑
t∈{c,n,a,d} fY0,T |Z (y0, T = t|Z = z), and therefore fYj|Z less the observed sub-densities pYj or qYj has the mixture form

fY1|Z (y1|Z = 1) − pY1 (y1) = fY1,T |Z (y1, T = d|Z = 1) + fY1,T |Z (y1, T = n|Z = 1),
fY1|Z (y1|Z = 0) − qY1 (y1) = fY1,T |Z (y1, T = c|Z = 0) + fY1,T |Z (y1, T = n|Z = 0),
fY0|Z (y0|Z = 1) − pY0 (y0) = fY0,T |Z (y0, T = c|Z = 1) + fY0,T |Z (y0, T = a|Z = 1),
fY0|Z (y0|Z = 0) − qY0 (y0) = fY0,T |Z (y0, T = d|Z = 0) + fY0,T |Z (y0, T = a|Z = 0).

(4)

e use these identities to relate the distribution fYj|Z to the distribution fYj,T |Z .

2 Other identification analyses, such as Chernozhukov and Hansen (2005) and Chesher (2010), are also unbound by a selection equation. This
analysis differs in that it makes no assumption about the association between Y1 and Y0 .
3 We thank an anonymous referee for making this point to us.
4 In the situation where the marginal distributions of Y1 and Y0 are point-identified, Fan and Park (2010, see also Fan et al., 2017), Firpo and

Ridder (2019) and Heckman et al. (1997) analyze identification of the distribution of individual causal effects Y − Y .
1 0

5
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.1. Identification region under marginal independence (MSI)

If we impose MSI, fY1|Z = fY1 and fY0|Z = fY0 must hold. Therefore, we substitute fY1 and fY0 (the unconditional
ub-densities) for fY1|Z and fY0|Z (the conditional sub-densities) in the left-hand side of (4). We have

fY1 (y1) − pY1 (y1) = fY1,T |Z (y1, T = d|Z = 1) + fY1,T |Z (y1, T = n|Z = 1),
fY1 (y1) − qY1 (y1) = fY1,T |Z (y1, T = c|Z = 0) + fY1,T |Z (y1, T = n|Z = 0),
fY0 (y0) − pY0 (y0) = fY0,T |Z (y0, T = c|Z = 1) + fY0,T |Z (y0, T = a|Z = 1),
fY0 (y0) − qY0 (y0) = fY0,T |Z (y0, T = d|Z = 0) + fY0,T |Z (y0, T = a|Z = 0).

(5)

Given (P,Q ) ∈ P , any population contained in IR(P,Q |MSI) satisfy (3) and (5). That is, by noting that the right-hand side
f every equation of (5) is non-negative, we find necessary conditions for (fY1 , fY0 ) to be contained in IR(fY1 ,fY0 )

(P,Q |MSI),

fY1 (y1) ≥ max{pY1 (y1), qY1 (y1)} and fY0 (y0) ≥ max{pY0 (y0), qY0 (y0)}.

We hereafter refer to max{pYj , qYj} as the density envelope for Yj and to δYj ≡
∫
Y max{pYj , qYj}dµ as the integrated envelope

for Yj, for each j = 1, 0. The next proposition shows that these conditions are sufficient to construct IR(fY1 ,fY0 )
(P,Q |MSI)

(i.e., that any fY1 and fY0 that are above the density envelopes constitute the identification region of (fY1 , fY0 ) under MSI).
This result can be viewed as a straightforward extension to the treatment effect model of Corollary 2.2.1 of Manski (2003)
for the missing data model.

Proposition 3.1 (Identification Region Under Marginal Independence). Denote the density envelopes by fY1 ≡ max{pY1 , qY1}
nd fY0 ≡ max{pY0 , qY0}, and the integrated envelopes by δY1 ≡

∫
Y fY1dµ and δY0 ≡

∫
Y fY0dµ. Define the sets of probability

density functions that cover fY1 and fY0 respectively, by

Fenv
fY1

(P,Q ) =

{
fY1 :

∫
Y
fY1dµ = 1, fY1 ≥ fY1

}
,

Fenv
fY0

(P,Q ) =

{
fY0 :

∫
Y
fY0dµ = 1, fY0 ≥ fY0

}
.

he identification region under MSI is non-empty if and only if δY1 ≤ 1 and δY0 ≤ 1, and is given by

IR(fY1 ,fY0 )
(P,Q |MSI) = Fenv

fY1
(P,Q ) × Fenv

fY0
(P,Q ).

roof. See Appendix A. ■

The density envelope fY1 provides the maximal identifying information for the Y1-distribution. Under MSI, each of
he observed sub-densities pY1 and qY1 must be a part of the common underlying density of the treated outcome fY1 . An
nterpretation is that the density envelope then fills fY1 as much as is possible with the identified sub-densities pY1 and qY1
and similarly for the untreated outcome). That IR(fY1 ,fY0 )

(P,Q |MSI) is the Cartesian product of Fenv
fY1

(P,Q ) and Fenv
fY0

(P,Q )
implies that marginal independence does not provide a channel through which pY1 and qY1 contribute to identifying fY0 or
through which pY0 and qY0 contribute to identifying fY1 . As such, we can, without loss of identifying information, separate
identification analysis of fY1 from identification analysis of fY0 .

The refutability condition for marginal independence when both the outcome and treatment are binary coincides with
the testability result for the instrument exclusion restriction analyzed in Bonet (2001) and Pearl (1995a). Manski (2003)
obtained an analogous refutability condition in the context of missing data.5

3.2. Identification region under random assignment (RA)

If we strengthen MSI to RA, we replace the conditional distributions that appear on the right-hand side of (3) and
(5) with their unconditional equivalents. With this in mind, we claim that6 that a pair of marginal distributions (fY1 , fY0 )
belongs to IR(fY1 ,fY0 )

(P,Q |RA) if and only if it satisfies the area constraints∫
Y
fY1,T (y1, T = t)dµ =

∫
Y
fY0,T (y0, T = t)dµ, t = c, n, a, d, (6)

5 Kitagawa (2010) considers estimation and inference for the integrated envelope parameter, so as to develop a specification test for instrument
independence.
6 See Lemma A.1 in Appendix for a formal justification of this claim.
6
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nd the compatibility constraints

pY1 (y1) = fY1,T (y1, c) + fY1,T (y1, a),
qY1 (y1) = fY1,T (y1, d) + fY1,T (y1, a),
pY0 (y0) = fY0,T (y0, d) + fY0,T (y0, n),
qY0 (y0) = fY0,T (y0, c) + fY0,T (y0, n),

fY1 (y1) − pY1 (y1) = fY1,T (y1, d) + fY1,T (y1, n),
fY1 (y1) − qY1 (y1) = fY1,T (y1, c) + fY1,T (y1, n),
fY0 (y0) − pY0 (y0) = fY0,T (y0, c) + fY0,T (y0, a),
fY0 (y0) − qY0 (y0) = fY0,T (y0, d) + fY0,T (y0, a).

(7)

Subject to (6) and (7), we propose a compatible population as,7 for t = c, n, a, d,

fY1,Y0,T (y1, y0, T = t) = fY1,Y0,T |Z (y1, y0, T = t|Z = 1) = fY1,Y0,T |Z (y1, y0, T = t|Z = 0)

=

{ [∫
Y fY1,T (y1, t)dµ

]−1 fY1,T (y1, t)fY0,T (y0, t) if
∫
Y fY1,T (y1, t)dµ > 0,

0 if
∫
Y fY1,T (y1, t)dµ = 0.

By construction, the proposed population satisfies RA, and is compatible with the data generating process as it satisfies
(3). Accordingly, IR(fY1 ,fY0 )

(P,Q |RA) is obtained by characterizing the conditions for (fY1 , fY0 ) such that we can find feasible
(fY1,T (y1, t), fY0,T (y0, t)), t = c, n, a, d.

The next proposition provides a closed-form expression of IR(fY1 ,fY0 )
(P,Q |RA).

Proposition 3.2 (Identification Region Under Random Assignment). Let λY1 be the inner integrated envelope of pY1 and qY1 ,
defined as λY1 =

∫
Y min{pY1 , qY1}dµ.

(i) The identification region of (fY1 , fY0 ) under RA is

IR(fY1 ,fY0 )
(P,Q |RA) =

⎧⎪⎪⎨⎪⎪⎩
F∗

fY1
(P,Q ) × Fenv

fY0
(P,Q ) if 1 − δY0 < λY1

Fenv
fY1

(P,Q ) × Fenv
fY0

(P,Q ) if 1 − δY0 = λY1

Fenv
fY1

(P,Q ) × F∗

fY0
(P,Q ) if 1 − δY0 > λY1

where F∗

fY1
(P,Q ) and F∗

fY0
(P,Q ) are proper subsets of Fenv

fY1
(P,Q ) and Fenv

fY0
(P,Q ) respectively, defined as

F∗

fY1
(P,Q ) =

{
fY1 : fY1 ∈ Fenv

fY1
(P,Q ),

∫
Y
min

{
fY1 − fY1 ,min{pY1 , qY1}

}
dµ ≥ λY1 + δY0 − 1

}
,

F∗

fY0
(P,Q ) =

{
fY0 : fY0 ∈ Fenv

fY0
(P,Q ),

∫
Y
min

{
fY0 − fY0 ,min{pY0 , qY0}

}
dµ ≥ 1 − δY0 − λY1

}
.

ii) IR(fY1 ,fY0 )
(P,Q |RA) is non-empty if and only if δY1 ≤ 1 and δY0 ≤ 1.

roof. See Appendix A. ■

The proof of this proposition, which is provided in Appendix A, proceeds by the method of ‘‘guess and verify,’’ and so
he reader might think that the origins of the inequalities that appear in the definitions of F∗

fY1
(P,Q ) and F∗

fY0
(P,Q ) are

ather obscure. In Appendix B, with the intent of providing intuition for this result, we present a geometric illustration of
he additional identification gain of RA relative to MSI.

The above proposition makes clear that the identification region under RA can be strictly smaller than the identification
egion under MSI. In particular, such an identification gain arises only if the data reveals that 1− δY0 ̸= λY1 , as F∗

fY1
(P,Q )

nd F∗

fY0
(P,Q ) can be strictly smaller than Fenv

fY1
(P,Q ) and Fenv

fY0
(P,Q ) respectively, due to the inequality constraints

ppearing in their definitions.8 For the case of 1 − δY0 < λY1 , the fact that the inequality in the definition of F∗

fY1
(P,Q )

nvolves δY0 implies that pY0 and qY0 can contribute to identifying fY1 despite RA not explicitly constraining the association
etween Y1 and Y0.9 Symmetrically, for the case of 1 − δY0 > λY1 , pY1 and qY1 can contribute to identifying fY0 through

the parameter λY1 .

7 There are many ways to combine the density of (Y1, T ) and (Y0, T ) to obtain the joint density of (Y1, Y0, T ). The one employed here is called
the conditional independence coupling: the association of Y1 and Y0 satisfies Y1 ⊥ Y0|T .
8 This condition is a necessary but not sufficient condition: if λY1 ̸= 1 − δY0 then the identification region under RA can be strictly smaller than

the identification region under MSI but such an identification gain is not guaranteed. We further discuss this in Section 4 and in a supplementary
appendix.
9 To be clear, RA constrains the association between Y1 and Y0 via the statistical independence condition. The use of explicitly here is intended to

eflect the absence of any overt mechanism, such as a structural equation or a specified family of distributions, by which knowledge of one marginal
istribution implies knowledge of the other.
7
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Fig. 1. An example data generating process delivering an identification gain. The drawn data generating process satisfies 1 − δY0 < λY1 (the area of
(0) is strictly smaller than the area of a(1)).

Fig. 1 illustrates the intuition behind this identification gain. We draw a data generating process corresponding to the
ase of 1−δY0 < λY1 , which is equivalent to 1−δY1 > λY0 ≡

∫
Y min{pY0 , qY0}dµ.10 We also draw marginal distributions of

he potential outcomes (fY1 , fY0 ) that belong to Fenv
fY1

(P,Q )×Fenv
fY0

(P,Q ). There, the subgraphs of fY1 and fY0 are partitioned
nto (c(1), n(1), a(1), d(1)) and (c(0), n(0), a(0), d(0)) respectively. If the identification region of fY1 were Fenv

fY1
(P,Q ), then

he area of n(1), which equals 1 − δY1 , would coincide with the fraction of never-takers. If not, then Fenv
fY1

(P,Q ) could not
e spanned by the Y1-distribution of never-takers fY1,T (·, n), the shape of which is not constrained by data. However, this
ould violate the third and fourth equations of (7) since the fraction of never-takers cannot be greater than the area of
(0), which is smaller than 1 − δY1 for the drawn data generating process. Hence, we claim that the identification region
or fY1 must be strictly smaller than Fenv

fY1
(P,Q ). To summarize, the source of the identification gain of RA relative to MSI is

hat RA allows us to learn the feasible type distributions from the observed sub-densities of Y0 and that further constrain
he feasible marginal distribution of Y1.11

.3. Identification region under the LATE restriction

Proposition 3.2 makes clear that if the observed data satisfies 1 − δY0 = λY1 , then the difference between MSI and RA
oes not matter for identification of fY1 and fY0 . This condition is satisfied when the data generating process reveals nested
ub-densities

pY1 (y1) ≥ qY1 (y1) and qY0 (y0) ≥ pY0 (y0), or
pY1 (y1) ≤ qY1 (y1) and qY0 (y0) ≤ pY0 (y0).

(8)

Nested sub-densities come into play once we consider imposing the LATE restriction.
The LATE restriction further constrains the population by eliminating one of the selection types from the population.

Specifically, in the case of Pr(D = 1|Z = 1) ≥ Pr(D = 1|Z = 0), the LATE restriction implies the no-defiers condition
fT (T = d) = 0. Since analysis of the no-compliers case and the no-defiers case is symmetric, we consider the case of
Pr(D = 1|Z = 1) ≥ Pr(D = 1|Z = 0) without loss of generality.

Under the LATE restriction (equivalent to RA plus the no-defiers condition), (7) simplify to

pY1 (y1) = fY1,T (y1, T = c) + fY1,T (y1, T = a),
qY1 (y1) = fY1,T (y1, T = a),
pY0 (y0) = fY0,T (y0, T = n),
qY0 (y0) = fY0,T (y0, T = c) + fY0,T (y0, T = n),

fY1 (y1) − pY1 (y1) = fY1,T (y1, T = n),
fY1 (y1) − qY1 (y1) = fY1,T (y1, T = c) + fY1,T (y1, T = n),
fY0 (y0) − pY0 (y0) = fY0,T (y0, T = c) + fY0,T (y0, T = a),
fY0 (y0) − qY0 (y0) = fY0,T (y0, T = a).

10 See Lemma A.2 in Appendix A.
11 Kédagni and Mourifie (2020) show for the dichotomous outcome case that strengthening MSI to the intermediate restriction of joint statistical
independence delivers the same identification gain as RA. Whether the same is true for a non-dichotomous outcome remains an open research
question and is not studied in this paper.
8



T. Kitagawa Journal of Econometrics xxx (xxxx) xxx

f
i
(
d
i

P
r

Fig. 2. The classification of the data generating processes in Theorem 1.

The first four of the above constraints imply that when the population satisfies the LATE restriction, the data generating
process must reveal nested sub-densities since pY1 (y1) − qY1 (y1) = fY1,T (y1, T = c) ≥ 0 and qY0 (y0) − pY0 (y0) =

Y0,T (y0, T = c) ≥ 0. This is equivalent to saying that observing non-nested sub-densities must yield an empty
dentification region under the LATE restriction. On the other hand, when data reveals nested sub-densities then, for every
fY1 , fY0 ) ∈ Fenv

fY1
(P,Q ) × Fenv

fY0
(P,Q ), we can uniquely solve the above constraints to obtain the (non-negative) probability

ensity functions of (Y1, T ) and (Y0, T ), and these can be combined to obtain the probability density function of (Y1, Y0, T )
ndependent of Z . Accordingly, it can be seen that any (fY1 , fY0 ) ∈ Fenv

fY1
(P,Q ) × Fenv

fY0
(P,Q ) belongs to IR(fY1 ,fY0 )

(P,Q |LATE).

roposition 3.3 (Identification Region Under the LATE Restriction). The identification region of (fY1 , fY0 ) under the LATE
estriction is

IR(fY1 ,fY0 )
(P,Q |LATE) =

{
Fenv

fY1
(P,Q ) × Fenv

fY0
(P,Q ) for nested sub − densities (8),

∅ otherwise.

Proof. A proof is given in the preceding paragraphs of this section. ■

If the data generating process reveals nested sub-densities then the identification region under the LATE restriction
coincides with the identification region under MSI. Moreover, the fact that nested sub-densities satisfy 1 − δY0 = λY1
implies that the identification region under the LATE restriction also coincides with the identification region under RA. If
nested sub-densities are not observed, then the LATE restriction is refuted but the identification region under RA or MSI
can be non-empty. In other words, as far as the distributions of the potential outcomes are concerned, adding instrument
monotonicity12 to the instrument independence restriction only constrains the data generating process without helping us
to learn more about (fY1 , fY0 )than under MSI or RA. In this sense, we can safely drop instrument monotonicity from the
LATE restriction and still acquire the maximal identifying information for the potential outcome distributions. Note that
the refutability result of the LATE restriction is not new in the literature. Heckman and Vytlacil (2005) demonstrate a
testable implication for the LATE restriction, which is equivalent to the nested sub-density condition given here.

4. Bounding causal parameters

Since the analysis of the previous section does not rely on the choice of dominating measure µ, the constructed
identification regions are applicable for discrete, continuous, unbounded or multi-dimensional outcomes. Moreover, for a
parameter (vector) θ that maps (fY1 , fY0 ) to Θ , we can make a comparison of the size of the sharp bounds of θ under the
different model restrictions without explicitly computing them.

Theorem 1. Let θ be a parameter (vector) that maps (fY1 , fY0 ) to Θ . Then, for each layer of the data generating process (see
Fig. 2), the sharp bounds of θ under MSI, RA, and the LATE restriction have the following properties.
(A) If δY1 > 1 or δY0 > 1, then

IRθ (P,Q |·) = ∅ for all of MSI, RA, and the LATE restriction.

12 Equivalently, imposing weak-separability of unobserved selection heterogeneity V in the selection equation (Vytlacil, 2002).
9
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B)-(i) If δY1 ≤ 1 and δY0 ≤ 1, and 1 − δY0 ̸= λY1 , then

IRθ (P,Q |MSI) ⊇ IRθ (P,Q |RA) ̸= ∅, IRθ (P,Q |LATE) = ∅.

B)-(ii) If δY1 ≤ 1 and δY0 ≤ 1, 1 − δY0 = λY1 , and the data generating process does not reveal nested sub-densities, then

IRθ (P,Q |MSI) = IRθ (P,Q |RA) ̸= ∅, IRθ (P,Q |LATE) = ∅.

B)-(iii) If the data generating process reveals nested sub-densities, then

IRθ (P,Q |MSI) = IRθ (P,Q |RA) = IRθ (P,Q |LATE) ̸= ∅.

roof. By the definition of IRθ (P,Q |·) given in (2), Propositions 3.1, 3.2, and 3.3 directly imply the results. ■

Provided that the outcome is scalar with compact support Y = [yl, yu], this theorem clearly applies to the sharp bounds
f the Average Treatment Effect (ATE) θ = E(Y1) − E(Y0).
In order to present a closed-form expression of the sharp ATE bounds, we define the α-th left- or right-trimming of a

non-negative integrable function g : Y → R. For α <
∫
Y gdµ, we let qleftα ≡ inf

{
t :

∫
(−∞,t] gdµ ≥ α

}
and we define the

-th left-trimming of g as

[g]ltrimα (y) ≡ g(y)1
{
y > qleftα

}
+

(∫
(−∞,qleftα ]

g(y)dµ − α

)
1
{
y = qleftα

}
.

imilarly, we let qrightα ≡ sup
{
t :

∫
[t,∞) gdµ ≥ α

}
and we define the α-th right-trimming of g as

[g]rtrimα (y) ≡ g(y)1
{
y < qrightα

}
+

(∫
[qrightα ,∞)

g(y)dµ − α

)
1
{
y = qrightα

}
.

he α-th (right-) left-trimming is obtained by trimming the (right-) left-tail part of the function g so that the trimmed
ass is exactly equal to α. Note that if the underlying measure is atomic then the second terms on the right-hand sides
f the above definitions can be non-zero, and these adjustment terms are needed to make the trimmed area exactly equal
o α.

roposition 4.1 (The Sharp ATE Bounds). Assume that Y1 and Y0 have compact support Y = [yl, yu] and that their marginal
istributions are absolutely continuous with respect to the measure µ that allows point mass at yl and yu. Further assume that

the data generating process satisfies δY1 ≤ 1 and δY0 ≤ 1 so as to exclude Case (A) of Theorem 1.
(i) The sharp ATE bounds under MSI are

IRATE(P,Q |MSI) =

[
(1 − δY1 )yl +

∫
Y
y1fY1dµ −

∫
Y
y0fY0dµ − (1 − δY0 )yu,∫

Y
y1fY1dµ + (1 − δY1 )yu − (1 − δY0 )yl −

∫
Y
y0fY0dµ

]
. (9)

(ii) The sharp ATE bounds under RA are, for 1 − δY0 = λY1 ,

IRATE(P,Q |RA) = IRATE(P,Q |MSI),

for 1 − δY0 < λY1 ,

IRATE(P,Q |RA)

=

[∫
Y
y1

(
fY1 +

[
min

{
pY1 , qY1

}]rtrim
1−δY0

)
dµ + λY0yl −

∫
Y
y0fY0dµ − (1 − δY0 )yu,∫

Y
y1

(
fY1 +

[
min

{
pY1 , qY1

}]ltrim
1−δY0

)
dµ + λY0yu −

∫
Y
y0fY0 (y0)dµ − (1 − δY0 )yl

]
, (10)

nd, for 1 − δY0 > λY1 ,

IRATE(P,Q |RA)

=

[∫
Y
y1fY1dµ + (1 − δY1 )yl −

∫
Y
y0

(
fY0 +

[
min

{
pY0 , qY0

}]ltrim
1−δY1

)
dµ − λY1yu,∫

y1fY1dµ + (1 − δY1 )yu −

∫
y0

(
fY0 +

[
min

{
pY0 , qY0

}]rtrim
1−δY

)
dµ − λY1yl

]
. (11)
Y Y 1

10
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(
iii) The sharp ATE bounds under the LATE restriction are

IRATE(P,Q |LATE)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
maxz{E(Y |D = 1, Z = z) Pr(D = 1|Z = z) + yl Pr(D = 0|Z = z)}
−minz{E(Y |D = 0, Z = z) Pr(D = 0|Z = z) + yu Pr(D = 1|Z = z)},

minz{E(Y |D = 1, Z = z) Pr(D = 1|Z = z) + yu Pr(D = 0|Z = z)}
−maxz{E(Y |D = 0, Z = z) Pr(D = 0|Z = z) + yl Pr(D = 1|Z = z)}

]
for nested sub-densities,

∅ otherwise.

Proof. See Appendix A. ■

The identification region for (fY1 , fY0 ) under MSI or RA collapses to a singleton if and only if δY1 = 1 and δY0 = 1,
and determines whether ATE is non-parametrically (point-) identified or not. We emphasize that this condition is weaker
than the well-known argument of identification at infinity (Chamberlain, 1986; Heckman, 1990). Whereas identification at
infinity requires that the propensity score is zero or one at some instrument values, the above condition on the integrated
envelopes can be satisfied even when the propensity score is away from zero and one for all instrument values. However,
when (P,Q ) reveals nested sub-densities, the integrated envelopes equal the maximum propensity score (or one minus
it) and so identification is attained only at infinity.

When the data generating process reveals 1 − δY0 ̸= λY1 , the ATE bounds under RA can be strictly narrower than the
bounds under MSI. Absolute continuity of the sub-density functions pYj (·) and qYj (·) with respect to the Lebesgue measure
over Y is a sufficient condition for the identification region under RA to be strictly smaller than the identification region
under MSI, and for the ATE bounds under RA to be strictly narrower. If, instead, these functions have point mass then such
an identification gain is not guaranteed. The conditions under which strengthening MSI to RA delivers strictly narrower
bounds and the source of this identification gain is discussed in a supplementary appendix.

When (P,Q ) reveals nested sub-densities, the sharp ATE bounds are given by (9), irrespective of the imposed
restrictions, as claimed in Theorem 1. Moreover, with nested sub-densities, (9) reduces to the expression in (iii) of
Proposition 4.1. This expression is identical to the ATE bounds of Manski (1994) under the mean independence restriction,
E(Y1|Z) = E(Y1) and E(Y0|Z) = E(Y0). This observation supports the result of Heckman and Vytlacil (1999, 2001,
2007), which says that the sharp ATE bounds under the LATE restriction coincide with Manski’s mean independence
bounds. However, this statement is no longer valid if the data reveals non-nested sub-densities. Furthermore, a naïve
implementation of the expression of the ATE bounds under the LATE restriction does not necessarily yield the emptyset
even if IR(fY1 ,fY0 )

(P,Q |LATE) is empty. As such, there is arguably some advantage to explicit statement of the model and its
associated identification region, rather than working solely with the expression for the ATE due to this misspecification
problem.

In the special case where the outcome variables are binary, the sharp ATE bounds under RA that are presented above
coincide with the treatment effect bounds of Balke and Pearl (1997) (a proof of this claim is provided in a supplementary
appendix). Since the analysis of Balke and Pearl (1997) relies on a linear optimization procedure with a finite number of
choice variables, such an approach cannot be directly applied to the case in which the outcome variable has continuous
variation. Thus, the bound formula obtained here can be seen as a non-trivial generalization of the Balke and Pearl bounds
to a more general case (see Gunsilius, 2020a for more recent advances).

As is discussed elsewhere, the potential outcomes have a structural equation analog (see Athey and Imbens, 2006;
Chernozhukov and Hansen, 2005; Pearl, 2009), and requiring that this equation is monotonic can lead to substantial
identification gains. Like Balke and Pearl (1997), we do not rely on any type of assumption on the functional form of
the structural equation analog, nor on the dimension or distribution of the unobserved heterogeneity that it features.
In contrast, the analyses of Chesher (2003, 2005) and Chernozhukov and Hansen (2005) impose what is referred
to asoutcome monotonicity in unobservables orrank invariance, which necessarily restrict the structural equation and
unobserved heterogeneity.13 In the special case where the outcome variables are binary, Chesher (2010) obtains bounds on
the Average Treatment Effect that are substantially narrower than the ones that are presented in this paper (Hahn, 2010).
Moreover, in the continuous outcome case, Chernozhukov and Hansen (2005) show that rank invariance and random
assignment leads to (point-) identification of the potential outcome distributions. In each case, the imposed assumption
limits individual behavior through association of the potential outcomes and requires justification that it is appropriate
for the studied economic environment.

5. Concluding remarks

With partial-identification in mind, this paper clarifies the identifying power of instrument independence assumptions
in the heterogeneous treatment effect model. We derive the identification regions of the marginal distributions of the

13 Chernozhukov and Hansen (2005) also consider a weaker condition, rank similarity, and establish similar results for this.
11
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otential outcomes under each restriction that we consider, and compare their size. For some data generating processes,
trengthening instrument independence from marginal independence to joint independence results in a tightening of the
dentification region. We clarify which data generating processes exhibit this property and which processes do not. We
ind that instrument monotonicity is redundant for identification of the potential outcome distributions when assumed
n conjunction with instrument independence since monotonicity constrains the data generating process without further
dentifying the potential outcome distributions (see also Heckman and Vytlacil, 1999, 2001, 2007). We also present sharp
ounds for the Average Treatment Effect under each restriction that we consider. Our analysis covers binary, discrete, and
ontinuous support of an outcome of interest, and our bounds under joint independence amount to a generalization of
he bounds of Balke and Pearl (1997) from the binary outcome case to the continuous outcome case.
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ppendix A. Proofs

Proofs for constructing IR(fY1 ,fY0 )
(P,Q |·) proceed in the manner of ‘‘guess and verify’’. We first propose IRguess

(fY1 ,fY0 )
(P,Q |·) as

a guess for IR(fY1 ,fY0 )
(P,Q |·). In order to verify that the guess IRguess

(fY1 ,fY0 )
(P,Q |·) is correct, we need to show two things. Firstly,

for an arbitrary (fY1 , fY0 ) ∈ IRguess
(fY1 ,fY0 )

(P,Q |·), we shall show that there exists a distribution of (Y1, Y0, T , Z) that is compatible
with (P,Q ) and the imposed model restrictions. This first step proves IRguess

(fY1 ,fY0 )
(P,Q |·) ⊆ IR(fY1 ,fY0 )

(P,Q |·). Next, in order
to prove IRguess

(fY1 ,fY0 )
(P,Q |·) ⊇ IR(fY1 ,fY0 )

(P,Q |·), it suffices to show that a necessary condition for (fY1 , fY0 ) ∈ IR(fY1 ,fY0 )
(P,Q |·)

is satisfied for every (fY1 , fY0 ) ∈ IRguess
(fY1 ,fY0 )

(P,Q |·) (e.g., the proof of Proposition 3.1). Alternatively, we may demonstrate
that any (fY1 , fY0 ) /∈ IRguess

(fY1 ,fY0 )
(P,Q |·) delivers a contradiction of some of the imposed restrictions (e.g., the proof of

Proposition 3.2.). In either fashion, we can conclude that IRguess
(fY1 ,fY0 )

(P,Q |·) ⊇ IR(fY1 ,fY0 )
(P,Q |·). By combining them, we

conclude that the guess is correct, IRguess
(fY1 ,fY0 )

(P,Q |·) = IR(fY1 ,fY0 )
(P,Q |·).

Throughout the proof, we do not explicitly state µ-a.e but any equalities or inequalities between the density functions
should be interpreted in the sense of almost everywhere with respect to the measure µ.

Proof of Proposition 3.1. Fix (P,Q ) ∈ P , and guess the identification region under MSI to be IRguess
(fY1 ,fY0 )

(P,Q |MSI) =

Fenv
fY1

(P,Q ) × Fenv
fY0

(P,Q ). Clearly, IRguess
(fY1 ,fY0 )

(P,Q |MSI) is non-empty if and only if δY1 ≤ 1 and δY0 ≤ 1, as otherwise no
probability density functions can cover the entire density envelopes. Let us pick an arbitrary (fY1 , fY0 ) ∈ Fenv

fY1
(P,Q ) ×

Fenv
fY0

(P,Q ). Consider the distribution of (Y1, Y0, T ) given Z as follows.

fY1,Y0,T |Z (y1, y0, T = a|Z = 1) =
1

Pr(D = 1|Z = 1)
pY1 (y1)[fY0 (y0) − pY0 (y0)],

fY1,Y0,T |Z (y1, y0, T = a|Z = 0) =
1

Pr(D = 1|Z = 0)
qY1 (y1)[fY0 (y0) − qY0 (y0)],

fY1,Y0,T |Z (y1, y0, T = n|Z = 1) =
1

Pr(D = 0|Z = 1)
[fY1 (y1) − pY1 (y1)]pY0 (y0),

fY1,Y0,T |Z (y1, y0, T = n|Z = 0) =
1

Pr(D = 0|Z = 0)
[fY1 (y1) − qY1 (y1)]qY0 (y0),

fY1,Y0,T |Z (y1, y0, T = c|Z = z) = 0 for z = 1, 0,

fY1,Y0,T |Z (y1, y0, T = d|Z = z) = 0 for z = 1, 0.

y integrating out y1 or y0 from these densities, we can see that the constructed population meets the constraints (3).
urthermore, by plugging the constructed population densities into the identities, fY1|Z =

∑
t∈{c,n,a,d}

∫
y0

fY1,Y0,T |Zdµ and
fY0|Z =

∑
t∈{c,n,a,d}

∫
y1

fY1,Y0,T |Zdµ, we can confirm that fY1|Z and fY0|Z do not depend on Z , so the constructed population
meets MSI. Therefore, IRguess

(fY1 ,fY0 )
(P,Q |MSI) ⊆ IR(fY1 ,fY0 )

(P,Q |MSI). On the other hand, if (fY1 , fY0 ) ∈ IR(fY1 ,fY0 )
(P,Q |MSI),

fY1 ≥ fY1 and fY0 ≥ fY0 must hold because the right-hand side of (5) is always non-negative. Hence, IR(fY1 ,fY0 )
(P,Q |MSI) ⊆

IRguess (P,Q |MSI), and this completes the proof. ■
(fY1 ,fY0 )

12
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The following lemmata are used for the proof of Propositions 3.2 and 4.1.

Lemma A.1. Let the data generating process (P,Q ) ∈ P be given. Consider a pair of marginal probability density functions
f ∗

Y1
, f ∗

Y0
). (f ∗

Y1
, f ∗

Y0
) ∈ IR(fY1 ,fY0 )

(P,Q |RA) if and only if there exist non-negative functions {(hY1,t , hY0,t ), t = c, n, a, d} that satisfy
the following constraints,

pY1 (y1) = hY1,c(y1) + hY1,a(y1), (A.1)

qY1 (y1) = hY1,d(y1) + hY1,a(y1), (A.2)

pY0 (y0) = hY0,d(y0) + hY0,n(y0), (A.3)

qY0 (y0) = hY0,c(y0) + hY0,n(y0), (A.4)

f ∗

Y1 (y1) − pY1 (y1) = hY1,d(y1) + hY1,n(y1), (A.5)

f ∗

Y1 (y1) − qY1 (y1) = hY1,c(y1) + hY1,n(y1), (A.6)

f ∗

Y0 (y0) − pY0 (y0) = hY0,c(y0) + hY0,a(y0), (A.7)

f ∗

Y0 (y0) − qY0 (y0) = hY0,d(y0) + hY0,a(y0), (A.8)∫
Y
hY1,c(y1)dµ =

∫
Y
hY0,c(y0)dµ, (A.9)∫

Y
hY1,n(y1)dµ =

∫
Y
hY0,n(y0)dµ, (A.10)∫

Y
hY1,a(y1)dµ =

∫
Y
hY0,a(y0)dµ, (A.11)∫

Y
hY1,d(y1)dµ =

∫
Y
hY0,d(y0)dµ. (A.12)

Proof of Lemma A.1. The ‘‘only if’’ part is implied by (7) in the main text, by substituting h for f . So, we focus on
proving the ‘‘if’’ part of the lemma. Given the non-negative functions {(hY1,t , hY0,t ), t = c, n, a, d} satisfying the above
constraints, let πt =

∫
Y hY1,tdµ =

∫
Y hY0,tdµ ≥ 0 for t ∈ {c, n, a, d}. Consider the conditional densities of (Y1, Y0, T ) given

Z constructed as

fY1,Y0,T |Z (y1, y0, T = t|Z = 1) = fY1,Y0,T |Z (y1, y0, T = t|Z = 0)

=

{
π−1
t hY1,t (y1)hY0,t (y0) if πt > 0,

0 if πt = 0.

By construction the proposed population satisfies RA. Also, the constraint (A.1) and the construction of the population
implies that

pY1 (y1) = hY1,c(y1) + hY1,a(y1)
= fY1,T |Z (y1, T = c|Z = 1) + fY1,T |Z (y1, T = a|Z = 1).

A similar result holds for pY0 , qY1 , and qY0 . Hence, the proposed population is compatible with the data generating process.
Lastly, this way of constructing the population distribution yields the provided f ∗

Y1
as the population marginal distribution

of Y1 since
∑

t=c,n,a,d

∫
y0∈Y fY1,Y0,T (y1, y0, t)dµ =

∑
t=c,n,a,d hY1,t (y1) = f ∗

Y1
, as implied by the constraints (A.1) and (A.5).

This is also the case for f ∗

Y0
and the population marginal distribution of Y0, as implied by the constraints (A.3) and (A.7).

Thus, the given (f ∗

Y1
, f ∗

Y0
) belongs to IR(fY1 ,fY0 )

(P,Q |RA). This completes the proof. ■

Lemma A.2. Let δY1 , δY0 , λY1 , be the parameters defined in the statement of Propositions 3.1 and 3.2. In addition, define
λY0 ≡

∫
Y min{pY0 , qY0}dµ.

δY1 + δY0 + λY1 + λY0 = 2.

Proof of Lemma A.2.

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0) =

∫
Y
[pY1 + qY1 ]dµ

=

∫
Y
[max{pY1 , qY1} + min{pY1 , qY1}]dµ

= δY1 + λY1 .
13
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n the other hand,

Pr(D = 1|Z = 1) + Pr(D = 1|Z = 0) = 2 − Pr(D = 0|Z = 1) + Pr(D = 0|Z = 0)

= 2 −

∫
Y
[pY0 + qY0 ]dµ

= 2 −

∫
Y
[max{pY0 , qY0} + min{pY0 , qY0}]dµ

= 2 − δY0 − λY0 .

Hence, δY1 + λY1 = 2 − δY0 − λY0 holds. ■

Proof of Proposition 3.2. As shown in Proposition 3.1, if the data generating process reveals δY1 > 1 or δY0 > 1, no
population is compatible with MSI, and this clearly implies that IR(fY1 ,fY0 )

(P,Q |RA) is empty. So, we preclude this trivial
case from the proof and focus on a data generating process with δY1 ≤ 1 and δY0 ≤ 1.

Firstly, consider a data generating process with 1−δY0 < λY1 , and guess the identification region to be IRguess
(fY1 ,fY0 )

(P,Q |RA)

F∗

fY1
(P,Q ) × Fenv

fY0
(P,Q ). Note that F∗

fY1
(P,Q ) is non-empty since it always contains fY1 = fY1 +

1−δY1
λY1

min{pY1 , qY1}.
Pick an arbitrary fY1 from F∗

fY1
(P,Q ) and an arbitrary fY0 from F env

fY0
(P,Q ). Define a non-negative function

gY1 =
λY1 + δY0 − 1∫

Y min
{
fY1 − fY1 ,min{pY1 , qY1}

}
dµ

min
{
fY1 − fY1 ,min{pY1 , qY1}

}
, (A.13)

nd consider the following choice of {(hY1,t , hY0,t ), t = c, n, a, d},

hY1,c = pY1 − min{pY1 , qY1} + gY1,

hY1,n = fY1 − fY1 − gY1 ,

hY1,a = min{pY1 , qY1} − gY1,

hY1,d = qY1 − min{pY1 , qY1} + gY1 ,
hY0,c = qY0 − min{pY0 , qY0},
hY0,n = min{pY0 , qY0},
hY0,a = fY0 − fY0 ,

hY0,d = pY0 − min{pY0 , qY0}.

(A.14)

ince the first multiplicative term on the right-hand side of (A.13) is less than or equal to one, gY1 ≤ min
{
fY1 − fY1 ,

min{pY1 , qY1}
}

≤ min{pY1 , qY1} and gY1 ≤ fY1 − fY1 . Hence,
{
hY1,t (y1), t = c, n, a, d

}
constructed above are all non-negative

unctions. It can be seen that the constraints (A.1) through (A.8) are all satisfied. Also, by utilizing Lemma A.2, we can
onfirm that the area constraints (A.9) through (A.12) are satisfied. By Lemma A.1, we conclude that the proposed (fY1 , fY0 )
elongs to IR(fY1 ,fY0 )

(P,Q |RA), and hence IRguess
(fY1 ,fY0 )

(P,Q |RA) ⊆ IR(fY1 ,fY0 )
(P,Q |RA).

Next, consider fY1 that does not satisfy
∫
Y min

{
fY1 − fY1 ,min{pY1 , qY1}

}
dµ ≥ λY1 + δY0 − 1 and fY0 ∈ Fenv

fY0
(P,Q ). In

order to find a contradiction of RA, suppose that the non-negative functions {(hY1,t , hY0,t ), t = c, n, a, d} satisfying the
constraints (A.1) through (A.8) exist. Then, the constraints (A.7) and (A.8) imply that

∫
Y hY0,adµ ≤ 1 − δY0 . Moreover,

fY1 =

∑
t=c,n,a,d

hY1,t

≥ pY1 + qY1 − hY1,a

= fY1 + min{pY1 , qY1} − hY1,a,

implies that

fY1 − fY1 ≥ min{pY1 , qY1} − hY1,a. (A.15)

ow, since fY1 /∈ F∗

fY1
(P,Q ), it follows that

λY1 + δY0 − 1 >

∫
Y
min

{
fY1 − fY1 ,min{pY1 , qY1}

}
dµ

≥

∫
min

{
min{pY1 , qY1} − hY1,a,min{pY1 , qY1}

}
dµ
Y

14
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=

∫
Y
[min{pY1 , qY1} − hY1,a]dµ

= λY1 −

∫
hY1,adµ,

where the second line follows by inequality (A.15). Hence,
∫
hY1,adµ > 1 − δY0 . This and

∫
Y hY0,adµ ≤ 1 − δY0 contradict

the area constraint for t = a. So, we conclude that there are no feasible {(hY1,t , hY0,t ), t = c, n, a, d} that meet all
the constraints of Lemma A.1, implying that such a fY1 is not contained in the identification region under RA. Note
fY0 /∈ Fenv

fY0
(P,Q ) immediately implies violation of Y0 ⊥ Z . Therefore, any (fY1 , fY0 ) /∈ IRguess

(fY1 ,fY0 )
(P,Q |RA) do not belong

to IR(fY1 ,fY0 )
(P,Q |RA), implying IRguess

(fY1 ,fY0 )
(P,Q |RA) ⊇ IR(fY1 ,fY0 )

(P,Q |RA).
By combining these results, we conclude that, if the data generating process satisfies 1 − δY0 < λY1 , F

∗

fY1
(P,Q ) ×

Fenv
fY0

(P,Q ) is the identification region of (fY1 , fY0 ) under RA.
For the case of 1 − δY0 > λY1 , we can construct the identification region by a similar argument to that for the case of

1 − δY0 < λY1 . Guess the identification region to be IRguess
(fY1 ,fY0 )

(P,Q |RA) = Fenv
fY1

(P,Q ) × F∗

fY0
(P,Q ). Note that F∗

fY0
(P,Q ) is

on-empty since it always contains fY0 = fY0 +
1−δY0
λY0

min{pY0 , qY0}. Pick an arbitrary fY0 from F∗

fY0
(P,Q ) and an arbitrary

Y1 from F env
fY1

(P,Q ). Similar to (A.13), define the non-negative function

gY0 =
1 − δY0 − λY1∫

Y min
{
fY0 − fY0 ,min{pY0 , qY0}

}
dµ

min
{
fY0 − fY0 ,min{pY0 , qY0}

}
,

nd consider the following choice of {(hY1,t , hY0,t ), t = c, n, a, d},

hY1,c = pY1 − min{pY1 , qY1},
hY1,n = fY1 − fY1 ,

hY1,a = min{pY1 , qY1},
hY1,d = qY1 − min{pY1 , qY1},
hY0,c = qY0 − min{pY0 , qY0} + gY0 ,
hY0,n = min{pY0 , qY0} − gY0 ,
hY0,a = fY0 − fY0 − gY0 ,

hY0,d = pY0 − min{pY0 , qY0} + gY0 .

Note that these {(hY1,t , hY0,t ), t = c, n, a, d} are non-negative functions and that they meet the constraints (A.1) through
A.12). Again, by Lemma A.1, we conclude that the proposed (fY1 , fY0 ) belongs to IR(fY1 ,fY0 )

(P,Q |RA), so IRguess
(fY1 ,fY0 )

(P,Q |RA) ⊆

R(fY1 ,fY0 )
(P,Q |RA).

Next, consider fY0 /∈ F∗

fY0
(P,Q ) and fY1 ∈ Fenv

fY1
(P,Q ). Similar to the previous case, we suppose that non-negative

functions {(hY1,t , hY0,t ), t = c, n, a, d} satisfying the constraints (A.1) through (A.8) exist. Then, the constraints (A.5) and
(A.6) imply that

∫
Y hY1,ndµ ≤ 1 − δY1 . Moreover,

fY0 =

∑
t=c,n,a,d

hY0,t

≥ pY0 + qY0 − hY0,n

= fY0 + min{pY0 , qY0} − hY0,n,

implies that

fY0 − fY0 ≥ min{pY0 , qY0} − hY0,n. (A.16)

ow, since fY0 /∈ F∗

fY0
(P,Q ), it follows that

1 − δY0 − λY1 >

∫
Y
min

{
fY0 − fY0 ,min{pY0 , qY0}

}
dµ

≥

∫
Y
min

{
min{pY0 , qY0} − hY0,n,min{pY0 , qY0}

}
dµ

=

∫
Y
[min{pY0 , qY0} − hY0,n]dµ

= λY0 −

∫
hY0,ndµ,
15
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here λY0 ≡
∫
Y min{pY0 , qY0}dµ. By Lemma A.2, 1 − δY0 − λY1 − λY0 = δY1 − 1, so we have

∫
hY0,ndµ > 1 − δY1 .

his and
∫
Y hY1,ndµ ≤ 1 − δY1 violate the area constraint for t = n. So, we conclude that there are no feasible

(hY1,t , hY0,t ), t = c, n, a, d} that meet all of the constraints of Lemma A.1, implying that such a fY0 is not contained in
he identification region under RA. Since fY1 /∈ Fenv

fY0
(P,Q ) implies violation of Y1 ⊥ Z , any (fY1 , fY0 ) /∈ IRguess

(fY1 ,fY0 )
(P,Q |RA)

o not belong to IR(fY1 ,fY0 )
(P,Q |RA), implying IRguess

(fY1 ,fY0 )
(P,Q |RA) ⊇ IR(fY1 ,fY0 )

(P,Q |RA). Thus, if the data generating process
atisfies 1 − δY0 > λY1 , F

env
fY1

(P,Q ) × F∗

fY0
(P,Q ) is the identification region of (fY1 , fY0 ) under RA.

Lastly, consider the case of 1 − δY0 = λY1 . In this case, for every fy1 ∈ F env
fY1

(P,Q ) and fY0 ∈ F env
fY0

(P,Q ), we consider the
ollowing choice of {(hY1,t , hY0,t ), t = c, n, a, d},

hY1,c = pY1 − min{pY1 , qY1},
hY1,n = fY1 − fY1 ,

hY1,a = min{pY1 , qY1},
hY1,d = qY1 − min{pY1 , qY1},
hY0,c = qY0 − min{pY0 , qY0},
hY0,n = min{pY0 , qY0},
hY0,a = fY0 − fY0 ,

hY0,d = pY0 − min{pY0 , qY0}.

his choice satisfies all the constraints of Lemma A.1, including the area constraints. Since fy1 /∈ F env
fY1

(P,Q ) or fY0 /∈

F env
fY0

(P,Q ) leads to violation of MSI, Fenv
fY1

(P,Q ) × Fenv
fY0

(P,Q ) is the identification region of (fY1 , fY0 ) under RA.
As we have discussed, F∗

fY1
(P,Q ) and F∗

fY1
(P,Q ) are not empty whenever δY1 ≤ 1 and δY0 ≤ 1 so (ii) of the proposition

is proved. ■

The next lemma is used for the proof of Proposition 4.1.

Lemma A.3. F env
fYj

(P,Q ) and F∗

fYj
(P,Q ), j = 1.0, are convex sets.

Proof of Lemma A.3. Convexity of F env
fYj

(P,Q ) is trivial. Consider k, l ∈ F∗

fY1
(P,Q ). Note that min{x − c1, c2} is a convex

function for arbitrary constants c1 and c2. Hence, for µ -almost every y1 ∈ Y , and any ξ ∈ [0, 1],

min{ξk(y1) + (1 − ξ )l(y1) − fY1 (y1),min{pY1 (y1), qY1 (y1)}}.

≥ ξ min
{
k(y1) − fY1 (y1),min{pY1 (y1), qY1 (y1)}

}
+ (1 − ξ )min

{
l(y1) − fY1 (y1),min{pY1 (y1), qY1 (y1)}

}
.

y integrating this inequality, we obtain∫
Y
min{ξk + (1 − ξ )l − fY1 ,min{pY1 , qY1}}dµ ≥ λY1 + δY0 − 1.

ence, ξk + (1 − ξ )l ∈ F∗

fY1
(P,Q ). A similar result holds for F∗

fY0
(P,Q ). ■

roof of Proposition 4.1. The mean parameter respects stochastic dominance (Manski, 2003). So, the sharp lower bound
f E(Y1) is obtained by finding f lower

Y1
within the identification region such that f lower

Y1
is first-order stochastically dominated

y all other probability density functions contained in the identification region. Similarly, the sharp upper bound of E(Y1)
s obtained by finding f upperY1

within the identification region such that f upperY1
first-order stochastically dominates all other

probability density functions in the identification region. By Lemma A.3, the identification regions to be considered are
always convex, so we can span any intermediate values between the lower and upper bound of E(Y1) by a mixture of
f lower
Y1

and f upperY1
. Hence, for the construction of the sharp ATE bounds, it suffices to find such f upperY1

and f lower
Y1

.
We first consider bounding the mean of Y1 when the density fY1 belongs to the class of densities Fenv

fY1
(P,Q ) and

F∗

fY1
(P,Q ) respectively. For the former, it is known that the bound of E(Y1) is given by

(1 − δY1 )yl +
∫
Y
y1fY1dµ ≤ E(Y1) ≤ (1 − δY1 )yu +

∫
Y
y1fY1dµ.

See Corollary 2.2.2 in Manski (2003) for the discrete outcome case and Kitagawa (2009) for the continuous outcome case.
To derive the bounds of E(Y1) for the latter case, consider the probability density function

f lower (y1) = λY 1{y1 = yl} + fY (y1) +
[
min

{
pY , qY

}]rtrim (y1).
Y1 0 1 1 1 1−δY0

16
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ote that f lower
Y1

≥ fY1 and∫
Y
min

{
f lower
Y1 − fY1 ,min{pY1 , qY1}

}
dµ = λY1 − (1 − δY0 ),

o f lower
Y1

∈ F∗

fY1
(P,Q ). By applying the decomposition (A.14) proposed in the proof of Proposition 3.2, we can decompose

f lower
Y1

into non-negative functions {hlower
Y1,t , t = c, n, a, d}. Specifically, for t = a and t = n, we obtain

hlower
Y1,a = min{pY1 , qY1} −

[
min

{
pY1 , qY1

}]rtrim
1−δY0

,

hlower
Y1,n = λY01{y1 = yl}.

ote that by using hlower
Y1,t , t = c, n, a, d, we can express f lower

Y1
as

f lower
Y1 =

∑
t

hlower
Y1,t

= pY1 + qY1 − hlower
Y1,a + hlower

Y1,n , (A.17)

here in the second line we use the constraints (A.1) and (A.2). Let f̃Y1 be an arbitrary element of F∗

fY1
(P,Q ). By Lemma A.1

nd Proposition 3.2, there exist non-negative functions {h̃Y1,t , t = c, n, a, d} such that f̃Y1 can be represented as

f̃Y1 =

∑
t

h̃Y1,t

= pY1 + qY1 − h̃Y1,a + h̃Y1,n, (A.18)

nd, again, by applying decomposition (A.14) of the proof of Proposition 3.2, h̃Y1,a and h̃Y1,n can be expressed as

h̃Y1,a = min{pY1 , qY1} − g̃Y1 ,

h̃Y1,n = f̃Y1 − fY1 − g̃Y1 ,

here g̃Y1 is obtained by plugging f̃Y1 into (A.13). From (A.17) and (A.18), for t ∈ [yl, yu], the difference between

[yl,t]
f lower
Y1

dµ and
∫

[yl,t]
f̃Y1dµ is written as∫

[yl,t]
f lower
Y1 dµ −

∫
[yl,t]

f̃Y1dµ

=

∫
[yl,t]

[hlower
Y1,n − h̃Y1,n]dµ +

∫
[yl,t]

[h̃Y1,a − hlower
Y1,a ]dµ

= λY0 −

∫
[yl,t]

(
f̃Y1 − fY1 − g̃Y1

)
dµ +

∫
[yl,t]

([
min

{
pY1 , qY1

}]rtrim
1−δY0

− g̃Y1
)
dµ. (A.19)

egarding the second term of (A.19), as f̃Y1 − fY1 − g̃Y1 ≥ 0, it can be bounded from above by∫
[yl,t]

(
f̃Y1 − fY1 − g̃Y1

)
dµ ≤

∫
Y

(
f̃Y1 − fY1 − g̃Y1

)
dµ

= 1 − δY1 − λY1 − 1 + δY0 .

egarding the third term of (A.19), if t is strictly less than the (1−δY0 )-th right-trimming point qright1−δY0
= sup

{
s :

∫
[s,yu]

min{
pY1 , qY1

}
dµ ≥ 1 − δY0

}
, then

[
min

{
pY1 , qY1

}]rtrim
1−δY0

= min
{
pY1 , qY1

}
≥ g̃Y1 holds on y1 ∈ [yl, t]. So the integral is

non-negative. On the other hand, if t ≥ qright1−δY0
,∫

[yl,t]

([
min

{
pY1 , qY1

}]rtrim
1−δY0

− g̃Y1
)
dµ

= λY1 − (1 − δY0 ) −

∫
[yl,t]

g̃Y1dµ

≥ λY1 − (1 − δY0 ) −

∫
Y
g̃Y1dµ

= λY1 − (1 − δY0 ) − [λY1 − (1 − δY0 )] = 0.
17
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Fig. B.1. An example data generating process delivering no identification gain. This figure depicts a data generating process with 1 − δY0 = λY1 (the
rea of a(0) is equal to the area of a(1)). For each t = c, n, a, d, t(1) and t(0) have the same area.

y combining them, for each t ∈ [yl, yu], (A.19) is bounded from below by λY0 + λY1 + δY1 + δY0 − 2, and this is zero by
emma A.2. Therefore, we conclude that f lower

Y1
first order stochastically dominates f̃Y1 , and the mean of Y1 with respect to

lower
Y1

minimizes E(Y1) over fY1 ∈ F∗

fY1
(P,Q ).

Next, we shall find the upper bound of E(Y1) by essentially repeating the same procedure as above. Define

f upperY1
(y1) = fY1 (y1) +

[
min

{
pY1 , qY1

}]ltrim
1−δY0

(y1) + λY01{y1 = yu},

which is shown to belong to F∗

fY1
(P,Q ). Similar to the lower bound case (A.18), represent f upperY1

by

f upperY1
=

∑
t

hupper
Y1,t

= pY1 + qY1 − hupper
Y1,a + hupper

Y1,n ,

hupper
Y1,a = min{pY1 , qY1} −

[
min

{
pY1 , qY1

}]ltrim
1−δY0

,

hupper
Y1,n = λY01{y1 = yu}.

For an arbitrary f̃Y1 ∈ F∗

fY1
(P,Q ), consider the difference between

∫
(t,yu]

f upperY1
dµ and

∫
(t,yu]

f̃Y1dµ. Analogous to (A.19), we
obtain∫

(t,yu]

f upperY1
dµ −

∫
(t,yu]

f̃Y1dµ

= λY0 −

∫
(t,yu]

(
f̃Y1 − fY1 − g̃Y1

)
dµ +

∫
(t,yu]

([
min

{
pY1 , qY1

}]ltrim
1−δY0

− g̃Y1
)
dµ.

Now, by repeating the same procedure as above, the right-hand side is bounded from below by λY0 +λY1 +δY1 +δY0 −2 = 0.
Hence, we conclude that f upperY1

is first order stochastically dominated by f̃Y1 , and the mean of Y1 with respect to f upperY1
maximizes E(Y1) over fY1 ∈ F∗

fY1
(P,Q ).

The bounds for E(Y0) when the density fY0 belongs to the class of densities Fenv
fY0

(P,Q ) and F∗

fY0
(P,Q ) are derived by a

symmetric argument to that for the case of E(Y1), so we do not duplicate the proof here.
In order to combine the bounds of E(Y1) and E(Y0), we note that the identification region of (fY1 , fY0 ) takes the form

of the Cartesian product of Fenv
fY1

(P,Q ) or F∗

fY1
(P,Q ) and Fenv

fY0
(P,Q ) or F∗

fY0
(P,Q ). Hence, by applying the argument of the

outer bounds of Manski (2003), it is valid to bound E(Y1) − E(Y0) by subtracting the upper (lower) bound of E(Y0) from
the lower (upper) bound of E(Y1) for each corresponding underlying identification region of fY1 and fY0 . This completes
the proof of the sharp bounds under MSI and RA.

As for the bounds under LATE, the sharp bounds become empty when the nested densities are not observed because
the identification region of (fY1 , fY0 ) in this case is empty (see Proposition 3.3 and (2)). On the other hand, when the data
generating process exhibits nested densities, the formula of the sharp ATE bounds corresponding to Fenv

fY1
(P,Q )×Fenv

fY0
(P,Q )

is reduced to the presented formula since, for j = 1, 0, we have δYj = maxz{Pr(D = j|Z = z)} and
∫
Y yjfYjdµ =

maxz {E(Y |D = j, Z = z) Pr(D = j|Z = z)}. ■
18
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Fig. B.2. Partitioning the marginal distributions of the outcomes. If the data generating process satisfies 1 − δY0 = λY1 , we can set hY1,t and hY0,t to
he partitions t(1) and t(0) of Fig. B.1 without contradicting the scale and compatibility constraints.

Fig. B.3. Step 1 – Imputation of hY1,a and hY0,a .

ppendix B. A Geometric Illustration for Proposition 3.2

In this appendix, we provide a geometric illustration of how the inequalities in the definition of F∗

fY1
(P,Q ) and

∗

fY0
(P,Q ) emerge in constructing the identification region under RA. For ease of exposition, we first consider the case of

− δY0 = λY1 where Proposition 3.2 says RA does not provide further identification gain beyond MSI. Fig. B.1 draws the
ata generating process and an arbitrary (fY1 , fY0 ) ∈ Fenv

fY1
(P,Q )×Fenv

fY0
(P,Q ) for this case. There, we partition the subgraph

f fY1 into four regions, c(1), a(1), n(1), and d(1), and similarly partition the subgraph of fY0 into c(0), a(0), n(0), and d(0).
he condition 1 − δY0 = λY1 means that the area of the partition outlined between fY0 and fY0 is equal to the area of the
ubgraph of min{pY1 , qY1} (i.e., the area of a(1) is equal to the area of a(0)). Moreover, it can be shown that, 1− δY0 = λY1
mplies not only that a(1) and a(0) but also that c(1) and c(0), n(1) and n(0), and d(1) and d(0) each have the same area.
19
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Fig. B.4. Step 2 – Imputation of hY1,c and hY0,c .

his enables us to pin down hY1,t (y1) and hY0,t (y0) to the height of the partitions t(1) and t(0) for each t = c, n, a, d,
ithout violating the area constraints (6). Moreover, this way of pinning down (hY1,t (y1), hY0,t (y0)) is compatible with the
onstraints (7) (see also Fig. B.2). Thus, we can successfully find feasible non-negative functions (hY1,t , hY0,t ) that allow us
o construct a population that is compatible with RA and (P,Q ) (see Lemma A.1 in Appendix A). Hence, we conclude that
he drawn (fY1 , fY0 ) belongs to IR(fY1 ,fY0 )

(P,Q |RA). Note that this way of imputing hY1,t (y1) and hY0,t (y0) works for arbitrary
fY1 , fY0 ) ∈ Fenv

fY1
(P,Q ) × Fenv

fY0
(P,Q ), so the identification region of (fY1 , fY0 ) under RA is obtained as the Cartesian product

f Fenv
fY1

(P,Q ) and Fenv
fY0

(P,Q ).
Next, let us consider the case of 1 − δY0 < λY1 as drawn in Fig. 1 in the main text (i.e., the area of a(0) is smaller

han the area of a(1)). The preceding way of pinning down hY1,t (y1) and hY0,t (y0) to t(1) and t(0) will now violate the area
onstraints, so we need to come up with a different way of finding feasible hY1,t (y1) and hY0,t (y0). The following algorithm,
raphically illustrated as Fig. B.3 through Fig. B.6, presents a way of proposing feasible hY1,t (y1) and hY0,t (y0) in this case.

lgorithm to impute (hY1,t , hY0,t ), t = c, n, a, d.

tep 1: (Fig. B.3) Draw an arbitrary fY1 ∈ Fenv
fY1

(P,Q ) and fY0 ∈ Fenv
fY0

(P,Q ). We first set hY0,a to the height of the partition a(0)
nd set hY1,a to the height of some subset within min{pY1 , qY1} such that its area is equal to the area of a(0). Note that this
qual area requirement is due to the area constraint

∫
hY1,adµ =

∫
hY0,adµ. In the top figure, the subset imputed for hY1,a

s labeled as a. As we pin down hY0,a and hY1,a, we put their copies in the bottom figure for convenience in later steps.
ow to choose the subset a turns out to be a key for this algorithm and it will be further discussed in Step 4. For now,
et us proceed to Step 2 with the drawn subset a.

tep 2: (Fig. B.4) Impute hY1,c and hY0,c through the first and seventh constraints of (7). That is, we impute hY1,c to the
eight of subset c(1) ∪ (d&c) and hY0,c to the height of subset c(0) as drawn in the top figure. The equal area restriction
hY1,cdµ =

∫
hY0,cdµ is automatically satisfied.

tep 3: (Fig. B.5) Impute hY1,d and hY0,d via the second and eighth constraints of (7). That is, we impute hY1,d to the height

f subset d(1)∪ (d&c) and hY0,d to the height of subset d(0) as drawn in the top figure. Note that the equal area restriction

20
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Fig. B.5. Step 3 – Imputation of hY1,d and hY0,d .

hY1,ddµ =
∫
hY0,ddµ is again automatically satisfied. In the bottom figure, the imputed hY1,d is piled up on the top of

Y1,a and hY1,c .

tep 4: (Fig. B.6) Since the densities of the other three types have been already imputed, hY1,n and hY0,n must be set at
he parts of fY1 and fY0 that were left out from the other imputed densities. The imputed hY1,n and hY0,n are drawn as the
hadow areas in the top figure. Algebraically, the imputed hY1,n and hY0,n are expressed as

hY1,n = fY1 −

∑
t=a,c,n

hY1,t = fY1 − fY1 − [min{pY1 , qY1} − hY1,a],

hY0,n = min{pY0 , qY0}.

Since hY1,n must be non-negative, hY1,n ≥ 0 yields the inequality constraint for the possible choices of hY1,a (given the
proposed fY1 ) that has not been considered in Step 1,

hY1,a ≥ max
{
fY1 + min

{
pY1 , qY1

}
− fY1 , 0

}
, (B.1)

here the maximum operator is needed on the right-hand side since hY1,a must be non-negative.

Step 5: As seen in Step 1, the integration of hY1,a has been constrained to be equal to
∫
hY0,adµ = 1−δY0 . So, the integration

of (B.1) gives

1 − δY0 ≥

∫
max

{
fY1 + min

{
pY1 , qY1

}
− fY1 , 0

}
dµ,

and this can be rewritten as

1 − δY0 ≥ −

∫
min

{
fY1 − fY1 ,min

{
pY1 , qY1

}}
dµ + λY1

⇐⇒

∫
min

{
fY1 − fY1 ,min

{
pY1 , qY1

}}
dµ ≥ λY1 − [1 − δY0 ]  

the area of d&c

. (B.2)
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Fig. B.6. Step 4 – Imputation of hY1,n and hY0,n .

his inequality is exactly the one appearing in the definition of F∗

fY1
(P,Q ). If fY1 proposed in Step 1 meets this inequality,

t implies that there exists a choice of hY1,a ≥ 0 based on which Step 2 through Step 4 guarantee the existence of feasible
hY1,t , hY0,t ), t = c, n, d.

By the implication obtained in Step 5 of the above algorithm, we claim that IR(fY1 ,fY0 )
(P,Q |RA) ⊇ F∗

fY1
(P,Q )×Fenv

fY0
(P,Q ).

In fact, it is also possible to show that IR(fY1 ,fY0 )
(P,Q |RA) ⊆ F∗

fY1
(P,Q ) × Fenv

fY0
(P,Q ) (see the proof of Proposition 3.2 in

Appendix A). A symmetric argument works for the case of 1 − δY0 > λY1 . In this case, the identification region for fY0
becomes smaller than Fenv

fY0
(P,Q ).

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.03.006.
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