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ABSTRACT
We investigate the prospects for using the weak lensing bispectrum alongside the power spectrum to control systematic
uncertainties in a Euclid-like survey. Three systematic effects are considered: the intrinsic alignment of galaxies, uncertainties
in the means of tomographic redshift distributions, and multiplicative bias in the measurement of the shear signal. We find that
the bispectrum is very effective in mitigating these systematic errors. Varying all three systematics simultaneously, a joint power
spectrum and bispectrum analysis reduces the area of credible regions for the cosmological parameters �m and σ 8 by a factor
of 90 and for the two parameters of a time-varying dark energy equation of state by a factor of almost 20, compared with the
baseline approach of using the power spectrum alone and of imposing priors consistent with the accuracy requirements specified
for Euclid. We also demonstrate that including the bispectrum self-calibrates all three systematic effects to the stringent levels
required by the forthcoming generation of weak lensing surveys, thereby reducing the need for external calibration data.
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1 IN T RO D U C T I O N

One of the primary aims of modern cosmology is to constrain cos-
mological parameters within the concordance cosmological model.
An increasingly reliable tool for this purpose is weak gravitational
lensing. Recent galaxy surveys including the Kilo-Degree Survey1

(KiDS), the Dark Energy Survey2 (DES), and the Hyper Suprime-
Cam Subaru Strategic Survey3 (HSC) have already produced strong
constraints on parameters of structure growth (Troxel et al. 2018;
Hikage et al. 2019; Asgari et al. 2021). The next generation of
surveys such as Euclid4 (Laureijs et al. 2011) and the Vera C.
Rubin Observatory Legacy Survey of Space and Time5 (LSST) will
represent a step change in the quantity and precision of weak lensing
data and deliver even tighter parameter constraints. Moreover, the
increased volume and accuracy of the data will make it possible
to use methods and statistics which are not feasible with current
surveys.

One possibility is to make more use of three-point weak lensing
statistics. These are inherently more difficult to measure and analyse
than two-point statistics but nevertheless a three-point weak lensing
signal was first detected as early as 2003 (Bernardeau, Van Waerbeke
& Mellier 2003; Pen et al. 2003). Subsequently Semboloni et al.
(2010) successfully used three-point aperture mass statistics from
the Cosmic Evolution Survey (Scoville et al. 2007) to estimate
cosmological parameters. This work was an important proof of

� E-mail: ucapsep@ucl.ac.uk
1http://kids.strw.leidenuniv.nl/index.php
2https://www.darkenergysurvey.org
3https://hsc.mtk.nao.ac.jp/ssp/
4http://sci.esa.int/euclid/
5https://www.lsst.org

concept. Although the survey was small, with an area of only
1.64 deg2, combining two-point and three-point statistics produced
a modest improvement in parameter constraints. More recently the
feasibility and usefulness of three-point measures were confirmed by
Fu et al. (2014) using the larger Canada–France–Hawaii Telescope
Lensing Survey (CFHTLenS; Heymans et al. 2012).

Several theoretical studies have investigated the weak lensing
bispectrum from the point of view of reducing statistical uncertainties
(Takada & Jain 2004; Kayo, Takada & Jain 2012; Kayo & Takada
2013; Coulton et al. 2019; Rizzato et al. 2019). All these authors
concluded that in principle the bispectrum can provide worthwhile
additional information and thus improve cosmological parameter
constraints, with Coulton et al. (2019) additionally showing improved
constraints on the sum of the neutrino mass. However, these inves-
tigations did not take account of systematic uncertainties and their
conclusions must be considered optimistic. If anything, the results
reinforce the need to control systematic uncertainties. Currently
systematic and statistical errors are of similar size but future surveys
will drastically reduce statistical uncertainties, making control of
systematic effects a priority. Accounting for systematic effects can
also shed light on tension between recent results from weak lensing
(Troxel et al. 2018; Abbott et al. 2019; Hikage et al. 2019; Heymans
et al. 2021; Asgari et al. 2020; Joudaki et al. 2020) and the latest
Planck analyses of the cosmic microwave background (Aghanim
et al. 2018). In particular there are discrepant results for the value
of the structure growth parameter S8 = σ8

√
�m/0.3, derived from

the matter fluctuation amplitude parameter σ 8 and the matter density
parameter �m. The possibility that this apparent tension between
results from different probes stems from uncontrolled systematic
effects has not been ruled out.

In the light of this we investigate the feasibility of using
three-point statistics to control some of the major systematic
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uncertainties which beset weak lensing. Our work is partly motivated
by existing evidence that some systematics affect two-point and
three-point statistics in different ways, e.g. Semboloni et al. (2008)
for weak lensing, Foreman et al. (2020) for the matter bispectrum.
For tomographic weak lensing, we might expect these differences
to be substantial because the weak lensing power spectrum and
bispectrum are differently weighted projections of their matter
counterparts. We also explore the potential for using the com-
bined bispectrum and power spectrum to enable self-calibration
– mitigating systematic effects using only data from the survey
itself.

We focus on three major sources of systematic error: intrinsic
alignments of galaxies, residual uncertainty in the shape of tomo-
graphic redshift distributions expressed through potential shifts in
their means, and multiplicative bias in shear estimation. The effects
of these (and other) systematic errors on two-point weak lensing
statistics have been studied extensively and there is a significant
literature discussing specific types of uncertainty and presenting gen-
eral approaches to estimating and controlling systematics (Huterer
& Takada 2005; Huterer et al. 2006; Ma, Hu & Huterer 2006; Bridle
& King 2007; Kitching, Taylor & Heavens 2008a; Bernstein 2009;
Hearin, Zentner & Ma 2012; Kirk et al. 2012; Massey et al. 2012;
Cropper et al. 2013; Joachimi et al. 2015; Kirk et al. 2015; Troxel
& Ishak 2015; Mandelbaum 2018; Schaan, Ferraro & Seljak 2020).
The resulting methods have been implemented in the analysis of
two-point statistics from recent weak lensing surveys (Hoyle et al.
2018; Zuntz et al. 2018; Hikage et al. 2019; Samuroff et al. 2019;
Giblin et al. 2021; Joachimi et al. 2020).

In contrast, relatively little attention has been paid to the effect
of systematics on three-point weak lensing statistics such as the
bispectrum even though many of the concepts developed for the
power spectrum can readily be adapted. Of the few studies which did
consider systematics in three-point statistics, Huterer et al. (2006)
investigated generic multiplicative and additive biases in future
surveys such as LSST and found that using the bispectrum as well
as the power spectrum could increase the scope for self-calibration
without undue degradation of parameter constraints, and Semboloni,
Hoekstra & Schaye (2013) showed that combining two- and three-
point statistics can largely remove systematics due to baryonic
feedback. For intrinsic alignments, Shi, Joachimi & Schneider (2010)
extended a nulling method from two-point to three-point statistics,
which mitigated the effects of intrinsic alignments but at the expense
of loss of constraining power, and Troxel & Ishak (2011, 2012) used
the redshift dependency within single redshift bins to inform a self-
calibration method. Theoretical explorations of three-point intrinsic
alignment statistics have been presented by Semboloni et al. (2008)
based on simulations and Merkel & Schäfer (2014) using a tidal
alignment model.

In this work, we provide a more complete assessment of the value
of the bispectrum to mitigate weak lensing systematics through self-
calibration in a tomographic survey. We model the effect of each
systematic on the weak lensing power spectrum and bispectrum and
use Fisher matrix analysis to forecast the potential for self-calibration
in a Euclid-like survey.

In Section 2, we summarize the tomographic weak lensing power
spectrum and bispectrum and the structure of their covariance
matrices. Section 3 records our survey and modelling assumptions.
In Section 4, we describe our parametrization of the three systematic
effects, for both the power spectrum and bispectrum, and in Section 5,
we describe our inference methodology. In Section 6, we present
our results. Our conclusions are in Section 7. Appendices A–
C give details of our power spectrum and bispectrum covariance

methodology. Additional plots demonstrating self-calibration are
provided as supplementary material.

2 W EAK G RAVI TATI ONA L LENSI NG

2.1 Tomographic weak lensing power spectrum and bispectrum

Throughout this work, we assume a flat universe. With this assump-
tion, the convergence field κ (i) for the i th tomographic bin at angular
position θ is

κ (i)(θ) =
∫ χlim

0
dχ q (i)(χ ) δ(χ, χθ), (1)

where χ lim is the maximum comoving distance of the survey, δ is the
matter density contrast, and the weight q(i)(χ ) is defined as

q (i)(χ ) = 3H 2
0 �m

2c2

χ

a(χ )

∫ χlim

χ

dχ ′ p(i)(χ ′)
(χ ′ − χ )

χ ′ . (2)

Here a(χ ) is the scale factor, p(i)(χ ) is the line-of-sight distribution
of galaxies in the i th tomographic bin, H0 is the Hubble constant,
and �m is the matter density parameter.

Assuming that the Limber and flat-sky approximations are valid,
the tomographic weak lensing power spectrum at angular multipole
� between redshift bins i and j is

C(ij )(�) =
∫ χlim

0
dχ q (i)(χ ) q (j )(χ ) χ−2Pδ (k; χ ) , (3)

where Pδ is the matter power spectrum, k χ (z) = � + 1/2, and we
use the more accurate extended Limber approximation (LoVerde
& Afshordi 2008) which includes higher order terms from a series
expansion of (� + 1/2)−1.

The corresponding bispectrum is (Takada & Jain 2004; Kayo &
Takada 2013)

B (ijk)(�1, �2, �3) =
∫ χlim

0
dχ q (i)(χ ) q (j )(χ ) q (k)(χ ) χ−4

×Bδ(k1, k2, k3; χ ), (4)

where Bδ is the matter bispectrum and we again use the extended
Limber approximation (Munshi et al. 2011). The vectors ki form
a triangle so that k1 + k2 + k3 = 0. Thus the bispectrum has only
three degrees of freedom, two from the triangle condition and one
from the orientation of the triangle in space.

2.2 Summary statistics

In this work, we treat the weak lensing power spectrum and bispec-
trum as observables, even though they are not directly measurable in
practice because of complications such as incomplete sky coverage of
surveys. Nevertheless we expect our results to be valid for alternative
more practical Fourier-space summary statistics. In the case of two-
point analyses such alternatives include band powers (Van Uitert
et al. 2018; Joachimi et al. 2020) and pseudo-C� estimators (Hikage
et al. 2011; Asgari et al. 2018; Alonso et al. 2019), both of which
contain essentially the same information as the power spectrum.

Three-point summary statistics are less well-developed and it
is less clear how they relate to the underlying bispectrum. The
most recent three-point analyses of survey data (Semboloni et al.
2010; Fu et al. 2014) have used aperture mass statistics, which
can be estimated from correlation functions or modelled from the
bispectrum (Schneider et al. 1998). One advantage is that third-
order aperture mass statistics separate E and B modes of the shear
signal well (Shi, Joachimi & Schneider 2014). This is desirable since
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the detection of B modes can indicate the presence of systematics.
Other three-point Fourier-space estimators have also been suggested,
for example the integrated bispectrum which is sensitive mainly to
squeezed triangles (Munshi et al. 2020b). This has recently been
generalized to other bispectrum configurations through a ‘pseudo’
estimator (Munshi et al. 2020a). So far these new statistics have not
been used to analyse survey data and their practicality and realism
are unknown.

2.3 Weak lensing covariance

Both the matter and weak lensing covariance matrices have the
general form

Covfull = CovG + CovNG + CovSSC, (5)

where the subscripts denote ‘Gaussian’, ‘in-survey non-Gaussian’
and ‘supersample covariance’ (Takada & Jain 2009; Kayo et al.
2012; Takada & Hu 2013). Appendix A summarizes the origin of
these terms in the matter power spectrum and bispectrum covariance.

To calculate the matter covariance, we use the halo model
formalism, following Takada & Hu (2013) for the power spectrum
covariance and Chan & Blot (2017) and Chan, Dizgah & Norena
(2018) for the bispectrum covariance. Appendix B gives further
details of the bispectrum supersample covariance, since the full
expression has not been widely used, and also discusses conflicting
results in the literature, justifying our choice of model.

For ease of computation, we consider only equilateral triangles
when calculating the bispectrum and its covariance, but recognize
that in doing this we are discarding potentially valuable information
from other triangle shapes. For example Barreira (2019) found that
squeezed triangles with two large and one small side provided
useful information. This reduction in information means that our
conclusions about the efficiency of self-calibration are likely to be
conservative.

To estimate the weak lensing power spectrum and bispectrum
covariances and their cross-covariance, we follow the methods in
Takada & Jain (2004) and Kayo et al. (2012). In Appendix C, we
give expressions for all the components of the weak lensing power
spectrum and bispectrum covariances for a single tomographic bin.
Similar results, including for the power spectrum–bispectrum cross-
covariance, can be found in Kayo et al. (2012) and Rizzato et al.
(2019).

Appendix C also illustrates the relative sizes of terms in the weak
lensing covariance matrices. With our assumptions the in-survey
non-Gaussian terms of both the power spectrum and bispectrum
covariance are sub-dominant. Consequently, to simplify calculation,
in our analysis we include only the Gaussian and supersample terms.
Over most of the relevant angular scales the power spectrum and
bispectrum supersample covariance are both dominated by the one-
halo terms, but we nevertheless retain all terms apart from small
dilation terms.

3 C OSMOLOGICAL PARAMETERS, SURV EY
CHARACTERISTICS , AND MODELLING
ASSUMPTIONS

We assume a spatially flat wCDM model and consider six cos-
mological parameters with fiducial values as shown in Table 1.
We model the evolving dark energy equation-of-state parameter by
w(a) = w0 + (1 − a) wa where a is the cosmological scale factor,
which introduces two further parameters: w0, the value of w at the

Table 1. Fiducial cosmological parameters.

Parameter Symbol Fiducial value

Matter density parameter �m 0.27
Baryon density parameter �b 0.05
Density fluctuation amplitude σ 8 0.81
Hubble constant (scaled) h 0.71
Scalar spectral index ns 0.96
Dark energy equation of state w − 1.0

present day, with fiducial value −1, and wa which has fiducial value
zero.

We assume a Euclid-like survey with area 15 000 deg2, total galaxy
density 30 arcmin−2 and redshift range 0.0 ≤ z ≤ 2.5. The assumed
overall redshift probability distribution of source galaxies is

p(z) ∝ zα exp

[
−
(

z

z0

)β
]

, (6)

with α = 2.0, β = 1.5, z0 = zmed/

√
2, and zmed = 0.8. We model

statistical uncertainty in photometric redshift values by assuming
that the redshift distribution within each tomographic bin is Gaussian
with a dispersion σ ph. Thus the conditional probability of obtaining
a photometric redshift zph given the true redshift z has the form

p(zph|z) ∝ exp

[
− (zph − z)2

2σ 2
ph(1 + z)2

]
. (7)

We take σ ph to be 0.05.
With these assumptions, we divide the redshift distribution into

five bins, each containing the same number of galaxies. Because of
uncertainties in photometric measurements, this results in a narrower
redshift range with photometric redshift bin boundaries [0.20,0.51],
[0.51,0.71], [0.71,0.91], [0.91,1.17], and [1.17,2.00]. Future surveys
such as Euclid will allow much finer bin division than this. However
we find that, in the absence of systematic uncertainties, increasing
the number of bins beyond five for either the power spectrum or the
bispectrum provides little extra information. This is consistent with
results in Ma et al. (2006), Joachimi & Bridle (2010), and Rizzato
et al. (2019). In fact we find that, considering statistical uncertainties
only, if five or more bins are used for the power spectrum, there is little
to be gained from using more than two bins for the bispectrum. This
will not necessarily be true if systematic uncertainties are considered.
For example, using only the power spectrum, if intrinsic alignments
are present the information content does not level off until up to
20 bins are used (Bridle & King 2007; Joachimi & Bridle 2010).
Nevertheless we restrict the main self-calibration analysis to five
bins to reduce the complexity of the bispectrum and its covariance. It
is reasonable to expect that the self-calibration power would increase
if more than five bins were used. In Section 6.4, we briefly discuss
results from using 10 bins for the power spectrum.

We use 20 angular bins equally logarithmically spaced from �min =
30 to �max = 3000. This range avoids large scales where the Limber
approximation breaks down and in any case little information is
available, and also small scales where the modelling of non-linear
effects on the matter distribution becomes very uncertain. This
maximum angular scale is conservative compared to �max = 5000
used for most Euclid analysis.

We model the non-linear matter power spectrum with the fitting
formula from Takahashi et al. (2012). For the 3D matter bispectrum,
we use the well-established formula from Gil-Marı́n et al. (2012),
recognizing that this was calibrated over a relatively narrow range
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with k < 0.4 h Mpc−1 and so could be unreliable at the smallest
angular scales which we use. Recently, Takahashi et al. (2020)
derived a more accurate prescription for the matter bispectrum,
especially at highly non-linear scales k < 10 h Mpc−1, which is also
the first such formula to include the impact of baryonic feedback.
This new formula is likely to be more suitable for weak lensing
studies and opens up the possibility of additional self-calibration.
This will be the subject of further work, including an assessment
of the consistency of the new formula with established feedback
approaches for the power spectrum (Mead et al. 2021).

We employ the transfer function from Eisenstein & Hu (1998).

4 MODELLING O F SYSTEMATICS

In this section, we discuss our parametrization of the systematic
effects, in each case starting from methods which have been shown
to work well for the power spectrum and extending them to the
bispectrum.

4.1 Intrinsic alignment of galaxies

The observed (lensed) ellipticity of a galaxy, εobs, is related to its
intrinsic ellipticity, εI, by (Seitz & Schneider 1997)

εobs = εI + g

1 + g∗εI
, (8)

where g = γ /(1 − κ) is the reduced shear. In this equation, all
variables are complex numbers and g∗ is the complex conjugate of
g. In the weak lensing regime κ � 1, γ � 1, so g ≈ γ and

εobs ≈ γG + εI. (9)

[(see Deshpande & Kitching 2020) for a discussion of the validity of
the reduced shear assumption for a Euclid-like survey.]

Assuming that intrinsic ellipticities are random so that 〈εI〉 = 0,
the average ellipiticity over a large number of galaxies provides an
estimate of the true gravitational shear γ G.

From equation (9), we can construct a correlator of the ellipticities
of two galaxy samples, labelled i and j, as〈
ε

(i)
obsε

(j )
obs

〉 = 〈
γ

(i)
G γ

(j )
G

〉 + 〈
γ

(i)
G ε

(j )
I

〉 + 〈
γ

(j )
G ε

(i)
I

〉 + 〈
ε

(i)
I ε

(j )
I

〉
(10)

≡ GG + GI + II. (11)

Note that the correlators on the right-hand side of equation (10) are
illustrative and not true correlation functions because they do not
explicitly take account of the fact that shear is a spin-2 quantity.

The first term of the right-hand side of equation (10) is the
lensing signal, GG, and the fourth represents intrinsic alignment
autocorrelation, II. There are two GI terms representing cross-
correlations between shear and intrinsic alignment. Although we
model both of these, the first will be small if zi < zj unless the
two redshift distributions overlap substantially, because intrinsically
aligned galaxies at higher redshift cannot affect the lensing of
galaxies at lower redshift. In a tomographic analysis, we associate
the labels i and j with different redshift bins.

Analogues of equation (3) can be used to calculate the two intrinsic
alignment power spectra in the extended Limber approximation:

C
(ij )
GI (�) =

∫ χlim

0
dχ q (i)(χ ) p(j )(χ ) χ−2PδδI (k; χ ) (12)

C
(ij )
II (�) =

∫ χlim

0
dχ p(i)(χ ) p(j )(χ ) χ−2PδIδI (k; χ ) , (13)

where, as in Section 2.1, q(i)(χ ) is defined by equation (2), p(i)(χ ) is
the distribution of galaxies in the i th tomographic bin, and k χ (z) =
� + 1/2. The power spectra PδδI and PδIδI are defined by

〈δ̃G(k1; χ )δ̃I(k2; χ )〉 = (2π )3δD(k1 + k2)PδδI (k1; χ ) (14)

〈δ̃I(k1; χ )δ̃I(k2; χ )〉 = (2π )3δD(k1 + k2)PδIδI (k1; χ ), (15)

where δ̃I denotes the Fourier transform of the density contrast of the
field which produces the intrinsic alignment.

This formalism can be extended to three-point statistics. In analogy
to equation (10), we construct a three-point correlator〈
ε

(i)
obsε

(j )
obsε

(k)
obs

〉 = GGG + GGI + GII + III, (16)

where again i, j, and k denote galaxy samples. The four terms on the
right-hand side of this equation are given by

GGG = 〈
γ

(i)
G γ

(j )
G γ

(k)
G

〉
(17)

GGI = 〈
γ

(i)
G γ

(j )
G ε

(k)
I

〉 + 〈
γ

(j )
G γ

(k)
G ε

(i)
I

〉 + 〈
γ

(k)
G γ

(i)
G ε

(j )
I

〉
(18)

GII = 〈
γ

(i)
G ε

(j )
I ε

(k)
I

〉 + 〈
γ

(j )
G ε

(k)
I ε

(i)
I

〉 + 〈
γ

(k)
G ε

(i)
I ε

(j )
I

〉
(19)

III = 〈
ε

(i)
I ε

(j )
I ε

(k)
I

〉
. (20)

As before these are simplified illustrative correlators.
In a similar way, we can split the observed bispectrum Bobs into

four terms

B
(ijk)
obs = B

(ijk)
GGG + B

(ijk)
GGI + B

(ijk)
GII + B

(ijk)
III . (21)

The term B
(ijk)
GGG is the lensing bispectrum defined by〈

κ̃
(i)
G (�1)κ̃ (j )

G (�2)κ̃ (k)
G (�3)

〉 = (2π )2δD(�1 + �2 + �3)B (ijk)
GGG(�1, �2, �3),

(22)

where κ̃G is the Fourier transform of the convergence and only
unique combinations of i, j, and k are included. The bispectrum
B

(ijk)
GGG(�1, �2, �3) is given by equation (4).
The other three terms on the right-hand side of equation (21) can

be defined similarly, replacing κ̃G by κ̃I as appropriate. For example
for GGI〈
κ̃

(i)
G (�1)κ̃ (j )

G (�2)κ̃ (k)
I (�3)

〉 = (2π )2δD(�1 + �2 + �3)B (ijk)
GGI (�1, �2, �3),

(23)

and, in analogy to equation (4)

B
(ijk)
GGI (�1, �2, �3) =

∫ χlim

0
dχ q (i)(χ ) q (j )(χ ) p(k)(χ ) χ−4

×BδδδI (k1, k2, k3; χ ) , (24)

where again the constituents of the equation are defined in Sec-
tion 2.1, with BδδδI defined by

〈δ̃G(k1; χ )δ̃G(k2; χ )δ̃I(k3; χ )〉 = (2π )3δD(k1 + k2 + k3)

×BδδδI (k1, k2, k3; χ ). (25)

With these ingredients, we can evaluate the full observed lensing
bispectrum Bobs in terms of Bδδδ , BδδδI , BδδIδI , and BδIδIδI . Our method
is similar to that in Troxel & Ishak (2012), Merkel & Schäfer (2014),
and Deshpande et al. (2020).

The matter bispectrum Bδδδ is determined straightforwardly from
the fitting function in Gil-Marı́n et al. (2012), which has the form

Bδδδ(k1, k2, k3) = 2F eff
2 (k1, k2)PNL(k1)PNL(k2) + 2 perms., (26)
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2304 S. Pyne and B. Joachimi

Figure 1. Absolute values of the weak lensing bispectrum, B(ijk)
GGG, and the three intrinsic alignment bispectra, B(ijk)

GGI , B(ijk)
GII , and B

(ijk)
III , for illustrative tomographic

bin combinations i, j, and k. Results are for equilateral triangle configurations using five redshift bins, assuming the fiducial values of unity for the intrinsic
alignment amplitude AIA, and zero for the redshift exponent ηIA in equation (27).

where F eff
2 are modifications of the normal perturbation theory

kernels F2 (Bernardeau et al. 2002) and PNL(k) is the non-linear
matter power spectrum.

To obtain expressions for BδδδI , BδδIδI , and BδIδIδI , we adapt the
linear alignment model developed by Hirata & Seljak (2004) for
intrinsic alignment power spectra. This model assumes that the
ellipticity of a galaxy is linearly related to the local quadrupole
of the gravitational potential at the time the galaxy formed. The
model is well-established for two-point statistics (Bridle & King
2007; Kirk et al. 2012) and has been found to be a good fit to
direct measurements of intrinsic alignments (Singh, Mandelbaum &
More 2015; Singh & Mandelbaum 2016; Johnston et al. 2019). We
adopt the so-called non-linear alignment model introduced by Bridle
& King (2007) which replaces the linear power spectrum used in
Hirata & Seljak (2004) with the non-linear matter power spectrum
PNL(k).

Based on this approach, we relate δ̃I to the Fourier transform of
the matter density contrast, δ̃G, by δ̃I = fIAδ̃G, where the factor fIA

has the form

fIA = −AIA
C1�mρcr

(1 + z)D(z)

(
1 + z

1 + z0

)ηIA

. (27)

Here ρcr is the critical density and D(z) is the growth factor normal-
ized to unity at the present day. The parameter C1 is a normalization
factor which in principle can be determined from observations or
simulations. We use the value derived by Bridle & King (2007)
which is 5 × 10−14 h−2 M−1


 Mpc3, leading to C1ρcr = 0.0134Is it
possible to stop this equation from breaking across lines?Is it possible
to stop this equation from breaking across lines? (Joachimi et al.
2011).

Our parametrization of fIA allows for uncertainty in the intrinsic
alignment amplitude and possible redshift dependence through
the free parameters AIA and ηIA, respectively. We do not model
luminosity dependence but ηIA acts as a proxy for any indirect
redshift dependence through luminosity (Troxel et al. 2018). We
set the fiducial value of ηIA to be zero and take the fiducial
value of AIA to be 1, consistent with recent survey results. The

quantity z0 is an arbitrary pivot value which we set to 0.3 in
line with previous work (Joachimi et al. 2011; Joudaki et al.
2016).

In the two-point case, the two intrinsic alignment power spectra
are given by

PδδI (k) = fIAPNL(k), (28)

PδIδI (k) = f 2
IAPNL(k). (29)

We extend this to the three-point case using tree-level perturbation
theory and the fitting function from equation (26) to get

BδδδI (k1, k2, k3) = 2
[
f 2

IAF eff
2 (k1, k2)PNL(k1)PNL(k2)

+ fIAF eff
2 (k2, k3)PNL(k2)PNL(k3)

+ fIAF eff
2 (k3, k1)PNL(k3)PNL(k1)

]
(30)

BδδIδI (k1, k2, k3) = 2
[
f 3

IAF eff
2 (k1, k2)PNL(k1)PNL(k2)

+ f 2
IAF eff

2 (k2, k3)PNL(k2)PNL(k3)

+ f 3
IAF eff

2 (k3, k1)PNL(k3)PNL(k1)
]
, (31)

BδIδIδI (k1, k2, k3) = f 4
IABδδδ(k1, k2, k3). (32)

Then integrating as in equation (24) gives expressions for the weak
lensing intrinsic alignment bispectra. Fig. 1 shows examples of
resulting bispectra for some illustrative tomographic bin combi-
nations. This figure shows equilateral triangle bispectra obtained
with five redshift bins, assuming fiducial values of the intrinsic
alignment parameters AIA and ηIA. The GGI bispectrum is negative
and its magnitude can be almost as large as the GGG signal. The
other bispectra are positive. The GII bispectrum is generally several
orders of magnitude less than the GGI bispectrum, but in some bin
combinations it is as much as 20 per cent of the GGI bispectrum.
The III bispectrum is always sub-dominant, which is consistent with
the findings in Semboloni et al. (2008) from simulations of a survey
similar to CFHTLenS.

In Fig. 2, we show the relative importance of the intrinsic
alignment terms compared with the pure lensing signal, plotted at
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Self-calibration of weak lensing systematics 2305

Figure 2. Left: Absolute values of the total intrinsic alignment power spectrum relative to the lensing power spectrum for all tomographic bin combinations.
Right: Absolute values of the total intrinsic alignment bispectrum relative to the lensing bispectrum for the same tomographic bin combinations i, j, and k as in
Fig. 1, for equilateral triangles. In both panels, results are shown for two illustrative angular scales, � = 100 and � = 1000. Results are for five redshift bins,
assuming the fiducial values of unity for the intrinsic alignment amplitude AIA, and zero for the redshift exponent ηIA in equation (27). Note the different scales
on the vertical axes.

two representative angular scales, � = 100 and � = 1000, for both the
power spectrum and bispectrum. For the power spectrum, all redshift
bin combinations are plotted whereas for the bispectrum we show
the same subset as in Fig. 1. Noting the different vertical scales in
these two figures, we find that intrinsic alignment affects the power
spectrum more than the bispectrum. This contrasts with the findings
from simulations in Semboloni et al. (2008). These authors measured
three-point aperture mass statistics and concluded that the III/GGG
ratio was generally higher than the II/GG ratio. They also found
that the III signal is negative whereas we find it is positive. Despite
these disagreements, we see no obvious reason to discard the linear
alignment model which is well-established and robust for two-point
statistics. The key point for our analysis is that intrinsic alignments
affect the power spectrum and bispectrum differently. Even if our
model is not entirely accurate in detail, conclusions based on it will
still hold. We plan to revisit and validate the modelling assumptions
in future work.

4.2 Redshift uncertainties

Another source of systematic uncertainty is the calibration of tomo-
graphic redshift distributions. Here, we consider a single source of
uncertainty due to the use of photometric redshift measurements: bias
in the mean redshift of each tomographic bin. Thus we consider the
effect of shifting the whole distribution of galaxies in a bin to a higher
or lower redshift, without changing the shape of the distribution.
This has been found to be a good proxy for the uncertainty in
the distribution within a bin (Hikage et al. 2019; Hildebrandt et al.
2020a). We allow for different uncertainty and hence different shifts
in each bin so that the redshift distribution, p(i), in bin i is modelled
as

p(i)(z) = p
(i)
obs(z − �zi), (33)

where p
(i)
obs(z) is the observed redshift distribution. The shifts in the

mean, �zi, are treated as free parameters. A similar method for
forecasting redshift uncertainties was used by Huterer et al. (2006).
It is also the standard approach used for current surveys (Joudaki
et al. 2016; Abbott et al. 2018; Hoyle et al. 2018; Hikage et al. 2019;
Hildebrandt et al. 2020b).

4.3 Multiplicative shear bias

The final type of systematic error which we consider is multiplicative
shear bias which alters the amplitude of the weak lensing signal. We
ignore additive bias which can be calibrated directly on the data.

Multiplicative biases can have several quite distinct origins
(Massey et al. 2012; Cropper et al. 2013; Kitching et al. 2019). For
example they can arise from incorrect modelling of the point spread
function, especially of its size (Cropper et al. 2013; Mandelbaum
2018; Giblin et al. 2021), or from an inappropriate galaxy surface
brightness model (Miller et al. 2013). A more pervasive source of
multiplicative bias is noise bias. This is an unavoidable consequence
of the non-linear transformation from image pixels to ellipticity
measurements and would be present even if the galaxy profile
was known perfectly (Melchior & Viola 2012; Viola, Kitching &
Joachimi 2014).

Simple models of multiplicative bias have been developed by
several authors (Heymans et al. 2006; Huterer et al. 2006; Kacprzak
et al. 2012; Massey et al. 2012). We follow Huterer et al. (2006),
who assumed that multiplicative biases in different redshift bins of
a tomographic survey are independent and uncorrelated. Thus the
measured shear γ̂ (i) in bin i is

γ̂ (i) = (1 + mi)γ
(i)
true, (34)

where γ true is the true (but unmeasurable) shear. We assume this
equation holds for both components of the shear and that mi is a
scalar which is the same for both components.

From equation (34), we can construct the two-point correlator

ξ̂
(ij )
+ (θ ) = 〈γ̂ (i)γ̂ ∗(j )〉 (35)

≈ (1 + mi + mj ) ξ
(ij )
+ (θ ), (36)

where θ is the angle on the sky between a pair of galaxies, and in the
final line we have dropped terms of order m2

i (Huterer et al. 2006;
Massey et al. 2012). An analogous expression can also be defined for
ξ̂

(ij )
− (θ ). Note that these correlators are again simplifications which

ignore the spin-2 nature of the shear. Taking the Fourier transform
leads to a similar expression for the power spectrum

Ĉ(ij )(�) ≈ (1 + mi + mj ) C(ij )(�). (37)
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2306 S. Pyne and B. Joachimi

Similarly for three-point statistics, we can write a generic correlator
as

ζ̂ (ijk)(θ1, θ2, θ3) ≈ (1 + mi + mj + mk) ζ (ijk)(θ1, θ2, θ3), (38)

where we use the facts that the multiplicative factors are real and
the same for both shear components. Once again this expression
is a simplification which ignores the fact that shear is a spin-2
quantity. The shear three-point correlation function in fact has eight
components, or four if considered as a complex quantity (Takada &
Jain 2002; Schneider & Lombardi 2003; Zaldarriaga & Scoccimarro
2003).

The bispectrum is then modelled as (Huterer et al. 2006; Massey
et al. 2012)

B̂ (ijk)(�1, �2, �3) ≈ (1 + mi + mj + mk) B (ijk)(�1, �2, �3). (39)

This method of calibrating multiplicative shear bias by treating the
multiplicative factors as nuisance parameters was used in two-point
analyses of data from CFHTLenS (Kilbinger et al. 2013; Miller et al.
2013) and DES (Abbott et al. 2018). Fu et al. (2014) extended the
method in Kilbinger et al. (2013) to analysis of three-point aperture
mass statistics.

5 IN F E R E N C E M E T H O D O L O G Y

5.1 Fisher matrices and figures of merit

To investigate the impact of systematics, we use the Fisher matrix
(Tegmark, Taylor & Heavens 1997). In simplified notation, the
elements of the Fisher matrix are defined by

Fαβ = ∂ DT

∂pα

Cov−1
D

∂ D
∂pβ

, (40)

where D is the data vector, CovD is the corresponding covariance
matrix, and pα and pβ are parameters which may be the cosmological
parameters which we want to estimate or nuisance parameters associ-
ated with systematic uncertainties. In detail, the matrix multiplication
in equation (40) is a sum over all combinations of angular frequencies
and tomographic bins.

Equation (40) assumes a Gaussian likelihood and that the covari-
ance is independent of the cosmological parameters. As discussed
by Carron (2013), using a parameter-dependent covariance matrix
with a Gaussian likelihood would introduce a spurious term into the
Fisher matrix.

We consider two different data vectors, firstly the power spectrum
and then the power spectrum and bispectrum combined. In the second
case the covariance matrices, including their cross-covariance, are
also combined (Kayo et al. 2012). We do not consider the bispectrum
alone since if the bispectrum is available then we can assume that a
two-point statistic has already been measured.

The diagonal element (F−1)αα of the inverse Fisher matrix provides
a lower bound for the variance of parameter pα after marginalising
over all other parameters. Thus higher values in the Fisher matrix,
or equivalently lower values in its inverse, correspond to lower
uncertainty. In this work we are interested in understanding how well
we must constrain nuisance parameters in order to improve estimates
of the cosmological parameters. To do this we consider the effect of
imposing priors on the nuisance parameters. To add a Gaussian prior
with width �pα to parameter pα , we add 1/�p2

α to Fαα . We then
use the inverse of the updated Fisher matrix to determine revised
constraints on the other parameters (Tegmark et al. 1997). We use
the inverse of the area of the Fisher ellipse as a figure of merit (FoM),
as defined by the dark energy task force (Albrecht et al. 2006). This

Figure 3. Schematic diagram showing self-calibration. The blue line shows
the typical shape of the relationship between an FoM and a prior on a
nuisance parameter. The vertical axis range is illustrative of the percentage
improvement in the FoM compared with the FoM with a wide prior. We define
the self-calibration regime as the region where the improvement in the FoM
is less than 5 percent, shown by the horizontal grey line.

provides a single figure which quantifies how tightly the parameters
are constrained. In the plane of the parameters pα and pβ , the FoM
is defined as

FoMαβ = {(F−1)αα(F−1)ββ − [(F−1)αβ ]2}−1/2. (41)

We focus on FoMs in the �m–σ 8 and w0–wa planes which are most
relevant for weak lensing. The Fisher matrices and FoMs take account
of the cosmological parameters defined in Section 3 together with the
nuisance parameters defined in Section 4: the parameters AIA and ηIA

from equation (27), five nuisance parameters �zi denoting the shift
in the mean value of the redshift bin centred on zi, and five parameters
mi representing the multiplicative bias in each tomographic bin.
To calculate the Fisher matrices, we need the derivatives of the
power spectrum and bispectrum with respect to the parameters. The
derivatives with respect to the intrinsic alignment and multiplicative
bias parameters can be evaluated analytically but the cosmological
parameters and redshift shifts require numerical derivatives for which
we use a standard five-point stencil. We confirmed the accuracy of
the derivative calculations by verifying that, for each parameter pα ,
a Gaussian distribution centred on the fiducial parameter value with
variance (Fαα)−1 matches the 1D posterior for pα .

5.2 Interpretation of figures of merit

We use figures of merit in several ways. First, FoMs in the presence
of systematics can be compared to their values when there are
no systematics. This quantifies the loss of information due to the
systematic uncertainties. This is particularly useful for comparing the
relative importance of two different systematic effects. Secondly, we
can quantify the extra information provided by the bispectrum (with
or without systematics) by comparing the FoMs obtained with the
power spectrum only with those obtained with the combined power
spectrum and bispectrum. Finally, we can consider how the FoMs
change when we alter the priors on nuisance parameters. This gives
insight into the self-calibration regime where a nuisance parameter
can be constrained purely from information in the survey without the
need for external information to set priors, although at the expense
of some loss of overall constraining power.
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Self-calibration of weak lensing systematics 2307

Figure 4. The effects on the �m–σ 8 and w0–wa figures of merit of using the bispectrum as well as the power spectrum and the further effects of priors on the
nuisance parameters.

Fig. 3 shows schematically how an FoM changes as the prior
on a parameter is changed. The values in this figure are purely
for illustration. The prior values considered are typical of those in
our later analysis but the vertical axis values are simply illustrative
of possible improvements in the FoM compared to the FoM with
a wide prior of 10. If the prior value is small (blue region in
Fig. 3), the parameter is tightly constrained by the prior and further
tightening of the prior does not affect it. Conversely, in the orange
region the parameter is independent of the prior; this is the self-
calibration regime where the FoM can be determined purely by
data from the survey. Between these two regimes, in the white
area, the FoM rises rapidly as the prior is tightened. We choose
to define the self-calibration regime as the region where the FoM
is improved by less than 5 per cent of the value it has with a wide
prior, although this definition is somewhat arbitrary. This level is
indicated by the horizontal grey line in Fig. 3. The size of the step
between the orange and blue regions indicates how strongly the FoM
relies on priors outside the self-calibration region. A small step is
desirable.

In Section 6, we consistently present results in the format of
Fig. 3. Throughout we show the percentage improvement in the
FoMs compared with ‘base’ values obtained with wide priors. In
each case, the self-calibration regime, as we define it, can be read off

as the region where the FoM is improved by less than 5 per cent. The
boundary of this region varies from case to case.

5.3 Default priors

For our analysis, we define a set of default priors to represent the
baseline accuracy possible with Euclid. For redshift bin means and
multiplicative bias, we take the default priors to be the accuracy re-
quirements specified in the Euclid Definition Study Report (Laureijs
et al. 2011). This sets a requirement that the mean redshift should be
known to at least an accuracy of 0.002 (1 + z) for each redshift bin.
The corresponding accuracy requirement for multiplicative bias is
also 0.002, based on shear simulations in Kitching et al. (2008b).
There is no specified Euclid accuracy requirement for intrinsic
alignment parameters so we take as our default a conservative value
of 0.1 for both parameters.

6 R ESULTS

6.1 Overview

Our main results are summarized in Fig. 4. This shows the FoMs
obtained in three situations: when all systematics are present but
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2308 S. Pyne and B. Joachimi

Table 2. Figures of merit obtained with the power spectrum only and with the power spectrum
and bispectrum together, when tight priors are imposed on nuisance parameters. In each case wide
priors are assumed for all parameters which do not have priors explicitly imposed.

Analysis type FoM/ratio
�m–σ 8 w0–wa

PS, wide priors on all nuisance parameters 138 0.27
PS, 0.1 prior on IA parameters 188 0.30
PS, 0.002 prior on redshift parameters 148 0.27
PS, 0.002 prior on multiplicative bias parameters 156 0.28

PS+BS, wide priors on all nuisance parameters 12 557 4.54
PS+BS, 0.1 prior on IA parameters 13 182 4.69
PS+BS, 0.002 prior on redshift parameters 13 657 4.63
PS+BS, 0.002 prior on multiplicative bias parameters 13 183 4.59

(PS+BS)/PS, wide priors on all nuisance parameters 90.9 17.0
(PS+BS)/PS, 0.1 prior on IA parameters 70.0 15.6
(PS+BS)/PS, 0.002 prior on redshift parameters 92.4 16.9
(PS+BS)/PS, 0.002 prior on multiplicative bias parameters 84.4 16.6

Table 3. Figures of merit obtained with the power spectrum only, and with
the power spectrum and bispectrum together, when wide priors are imposed
on all nuisance parameters. Since wide priors have been imposed on the
nuisance parameters, in this table it is not assumed that the redshift and
multiplicative bias parameters meet the Euclid accuracy requirements.

Spectrum type FoM/ratio
�m–σ 8 w0–wa

PS, no systematics 68 029 169
PS, intrinsic alignments only 229 0.4
PS, redshift bin shifts only 7808 4.6
PS, multiplicative bias only 53 000 117
PS, all systematics 138 0.3

PS+BS, no systematics 111 834 241
PS+BS, intrinsic alignments only 16 199 5.2
PS+BS, redshift bin shifts only 65 972 34.0
PS+BS, multiplicative bias only 97 796 188
PS+BS, all systematics 12 557 4.5

(PS + BS)/PS, no systematics 1.64 1.43
(PS + BS)/PS, intrinsic alignments only 70.7 13.9
(PS + BS)/PS, redshift bin shifts only 8.4 7.4
(PS + BS)/PS, multiplicative bias only 1.8 1.6
(PS + BS)/PS, all systematics 90.9 17.0

wide priors of 10 are imposed on all nuisance parameters; when
default priors are imposed on each type of nuisance parameter in
turn, but wide priors are imposed on the remaining parameters;
and when no systematics are present – this can be considered as
a baseline that exemplifies the maximum attainable information
content. Table 2 provides the numerical results behind Fig. 4. Using
the bispectrum can be much more beneficial than the alternative
of using the power spectrum alone and imposing tight priors on
the nuisance parameters. When all systematics are taken together,
combining the power spectrum and bispectrum produces a 90-fold
increase in the �m – σ 8 FoM and a nearly 20-fold increase in the w0–
wa FoM, compared with using the power spectrum alone, even when
priors on all nuisance parameters are wide. This improvement can be
compared with the factor of 1.6 gain obtained from the bispectrum
when only statistical uncertainties are considered.

The default prior values used in Fig. 4 are mainly in the self-
calibration regions where the FoMs are insensitive to the prior. This
explains why the FoMs are similar regardless of which systematic

we consider here. This is especially true for the combined power
spectrum and bispectrum, and less so for the power spectrum alone.
We discuss this further in Section 6.5.

One important caveat in interpreting our results is that we have
undoubtedly underestimated the constraining and self-calibration
power of the power spectrum because we use only five tomographic
bins throughout, as discussed in Section 3. We return to this in
Section 6.4.

6.2 Effect of the bispectrum – statistical errors

The first line of each panel in Table 3 shows FoMs (or ratios of
FoMs) obtained when systematic uncertainties are ignored, so only
statistical errors are present. This situation has been investigated
by several other authors (Kayo et al. 2012; Kayo & Takada 2013;
Rizzato et al. 2019). All found that the bispectrum could improve
cosmological parameter constraints: Kayo et al. (2012) estimated
a 20–40 per cent improvement in the signal-to-noise ratio from
using the bispectrum, Kayo & Takada (2013) forecast a 60 per cent
improvement in the dark energy FoM and Rizzato et al. (2019)
forecast an improvement in the signal-to-noise ratio of around
10 per cent. In comparison, we find that including the bispectrum as
well as the power spectrum increases the �m–σ 8 FoM by around
60 per cent and the w0–wa FoM by around 40 per cent. The
differences in the results can be attributed at least partly to different
survey specifications and tomographic set-ups.

6.3 Effect of the bispectrum – systematic errors

The remainder of Table 3 shows the impact of systematic uncer-
tainties on the two FoMs, assuming wide priors on all the nuisance
parameters. Intrinsic alignments have the most deleterious effect.
With the power spectrum only, the presence of intrinsic alignment
nuisance parameters reduces the �m–σ 8 FoM by a factor of more
than 300, and the w0–wa FoM by a factor of 400. Multiplicative
bias is relatively harmless, although certainly not negligible. Again
considering the power spectrum only, multiplicative bias causes
both FoMs to fall by around 20–25 per cent. The effect of redshift
uncertainty is intermediate, reducing the �m–σ 8 FoM by a factor of
around 10 and the w0–wa FoM by a factor of 35. Even with wide
priors on all the nuisance parameters, the bispectrum is hugely helpful
in counteracting the effect systematic uncertainties. This is largely
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Self-calibration of weak lensing systematics 2309

Table 4. FoMs obtained with the power spectrum only with 10 tomographic
bins, and with the power spectrum (10 bins) and bispectrum (5 bins) together,
when wide priors are imposed on all nuisance parameters.

Analysis type FoM/ratio
�m–σ 8 w0–wa

PS, 10 bins, no systematics 111 892 306
PS, 10 bins, intrinsic alignments only 720 1.1
PS, 10 bins, redshift bin shifts only 12 024 7.7
PS, 10 bins, multiplicative bias only 101 056 257
PS, 10 bins, all systematics 531 0.8

PS (10 bins)+BS (5 bins), no systematics 160 982 392
PS (10 bins)+BS (5 bins), intrinsic alignments only 27 140 8.9

(PS+BS)/PS, 10+5 bins, no systematics 1.43 1.28
(PS+BS)/PS, 10+5 bins, intrinsic alignments only 37.7 8.4

because the bispectrum reduces the impact of intrinsic alignments,
which affect the power spectrum and bispectrum very differently
as seen in Section 4.1. However, the bispectrum also considerably
offsets the effect of uncertainty in redshift bin means.

6.4 Number of tomographic bins

An alternative to using the bispectrum is to use the power spectrum
only but with more tomographic bins. To investigate this, we recalcu-
late the FoMs using the power spectrum only with 10 bins. The results
are shown in Table 4. For redshift uncertainties and multiplicative
bias this automatically increases the number of nuisance parameters
so the FoMs also increase. However, for intrinsic alignments even
when 10 bins are used for the power spectrum, the FoMs do not
approach those shown in Table 3. Using the power spectrum with
10 bins reduces the �m–σ 8 FoM by a factor of 20 and the w0–wa

FoM by a factor of 5 compared with using the power spectrum and
bispectrum combined but only five bins.

6.5 Self-calibration

We next investigate the effect on the FoMs of tightening or relaxing
the priors on the nuisance parameters and hence the potential for
self-calibration. Fig. 5 shows the effect of varying priors on the
intrinsic alignment parameters, with fixed priors equal to the Euclid
requirements imposed on all other parameters. The horizontal grey
lines in each panel indicate our definition of self-calibration discussed
in Section 5.2. The self-calibration regime is the region to the right
of the point where these lines cross the orange or blue lines.

When only the power spectrum is considered the self-calibration
regime starts when the priors on AIA and ηIA are about 0.5. Using
the bispectrum as well, the self-calibration regime extends to a prior
value of about 0.1 for AIA, but does not change for ηIA. The bottom
panel of Fig. 5 shows that if priors on both intrinsic alignment
parameters are tightened simultaneously, the self-calibration require-
ments are around 0.5 if only the power spectrum is considered. In
contrast, when the power spectrum and bispectrum are combined,
the self-calibration point is around 0.05, within our default prior
of 0.1.

In all three panels of Fig. 5, the size of the step between the self-
calibration regime and the regime where the FoM is controlled by the
priors is much smaller when the bispectrum and power spectrum are
combined. This means that even outside the self-calibration regime
the bispectrum massively reduces the requirement for tight external

priors and the degradation of the FoM within the self-calibration is
much less than for the power spectrum only.

For the power spectrum, the �m–σ 8 FoM is most sensitive to the
amplitude parameter AIA and the w0–wa FoM is most sensitive to the
the redshift exponent ηIA. This is as expected: �m, σ 8, and AIA have
confounding effects on the amplitude of the weak lensing signal,
whereas the dark energy parameters are highly sensitive to redshift
uncertainty.

We next consider redshift uncertainty and multiplicative bias,
setting fixed priors of 0.1 on the two intrinsic alignment parameters.
The prospects for self-calibration are shown in Fig. 6. Once again
we indicate our criterion for self-calibration by horizontal grey lines.
Vertical dashed lines indicate the Euclid accuracy requirements. For
redshift bin means, if the power spectrum only is used the self-
calibration regime starts at a prior of around 0.1 for both FoMs.
This means that the only way to improve cosmological parameter
constraints is through narrow external priors. In contrast, if the
bispectrum is also used then the boundary of the self-calibration
regime changes to about 0.001, within the Euclid requirement. A
similar pattern is seen for the multiplicative bias parameters. When
only the power spectrum is used the boundary of the self-calibration
regime is at a value of about 0.3, again implying that tight external
priors are needed to improve parameter constraints. If the bispectrum
is used as well self-calibration starts at around 0.005, just outside the
Euclid requirement, except in the case of the �m–σ 8 FoM where the
self-calibration boundary is almost exactly at the Euclid requirement.

In Fig. 7, we explore the joint effect of priors on redshift and
multiplicative bias parameters, together with the effect of using the
bispectrum as well as the power spectrum. This figure shows the
ratio between the FoM obtained with the combined power spectrum
and bispectrum with the default prior of 0.1 imposed on the intrinsic
alignment parameters but varying priors on the other parameters,
and the FoM obtained with the power spectrum only and priors of
0.1 for the intrinsic alignment parameters and 0.002 for the redshift
and multiplicative bias parameters. Thus the panels show, for each
FoM, the improvement from using the bispectrum compared with the
baseline Euclid scenario with the power spectrum only and default
priors. The grey stars indicate the default values of the redshift and
multiplicative bias priors. At these points the �m–σ 8 FoM is around
65 times greater than the baseline Euclid value and the w0–wa FoM
is around 13 times greater. Thus including the bispectrum as well
as the power spectrum produces a large gain compared with any
further tightening of the priors with the power spectrum only. This is
true even when the redshift and multiplicative bias priors are greatly
relaxed. Fig. 7 also shows that there is little interaction between
the redshift parameters on the one hand and the multiplicative bias
parameters on the other. Thus there is only limited opportunity for
trade-offs between the accuracy of the two sets of parameters.

7 C O N C L U S I O N S

In the context of a Euclid-like tomographic weak lensing survey
we have considered three major sources of systematic uncertainty:
contamination by intrinsic alignments which adds additional terms
to the cosmic shear power spectrum and bispectrum; uncertainty in
the mean redshifts of the tomographic bins due to the use of pho-
tometric redshift measurements; and multiplicative bias that affects
the amplitude of the shear signal. We modelled the effects of these
systematics on the weak lensing bispectrum by extending existing
methods which are well-tested for the power spectrum and which
have been used to analyse data from current weak lensing surveys.
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2310 S. Pyne and B. Joachimi

Figure 5. Percentage increase in figures of merit when the priors on the parameters AIA and ηIA are tightened, compared to wide priors of 10. Priors on all
other nuisance parameters are set to their default values – see Section 5.3. Top left: Effect of tightening prior on AIA only. Top right: Effect of tightening prior
on ηIA only. Bottom left: Effect of tightening both priors simultaneously. The vertical dashed lines indicate our default prior of 0.1. The horizontal grey lines
indicate a 5 per cent improvement in the FoM. An improvement less than this is our criterion for self-calibration. Note different vertical scales in each panel.

Figure 6. Percentage increase in FoMs when priors are tightened simultaneously. In each case, the same prior is applied to every parameter. Priors on all other
nuisance parameters are set to their default values – see Section 5.3. Left: Redshift parameters; Right: Multiplicative bias parameters. The vertical dashed lines
indicate the accuracy requirements from the Euclid Definition Study Report (Laureijs et al. 2011). The horizontal grey lines indicate a 5 per cent improvement
in the FoM. An improvement less than this is our criterion for self-calibration. Note different vertical scales in each panel.

We used FoMs based on Fisher matrices to forecast the effect of
these systematics on parameter constraints, focusing in particular
on the large-scale structure parameters �m and σ 8 and the dark
energy equation of state parameters w0 and wa. Whether we consider

the power spectrum only or the combined power spectrum and
bispectrum, the presence of systematic uncertainties causes an order
of magnitude decrease in the figures of merit in both the �m–σ 8 and
w0–wa planes.
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Figure 7. Ratio of FoM with power spectrum and bispectrum to FoM with power spectrum and default priors: 0.1 for the intrinsic alignment parameters and
Euclid accuracy requirement of 0.002 for redshift and multiplicative bias parameters (Laureijs et al. 2011). The grey stars indicate the default prior values for
redshift bin mean and multiplicative bias parameters. Left: �m–σ 8 FoM. Right: w0–wa FoM. Note different scales in the two panels. Priors on the intrinsic
alignment parameters are set to their default values – see Section 5.3.

We compared two strategies for combatting this loss of infor-
mation. The first approach rests on using the power spectrum only
and imposing tight priors on the systematic nuisance parameters,
informed by external calibration data or simulations. This is what
is normally done in weak lensing analysis. In our analysis, we
assume that the external calibration meets requirements in the Euclid
Definition Study Report (Laureijs et al. 2011), where these exist.
The second strategy involves analysing the bispectrum alongside
the power spectrum. We find that this greatly reduces the impact of
systematic uncertainties, especially intrinsic alignments which, with
our modelling assumptions, contribute at different levels to the power
spectrum and bispectrum.

Thus much more can be gained by using the bispectrum than
by setting tight priors but using only the power spectrum. This is
true even though our analysis is based on a ‘cut down’ bispectrum
which depends only on equilateral triangles. Using more triangle
configurations could be expected to produce even greater gains.
Our results are also conservative because we used only a limited
number of tomographic bins. Increasing the number of bins would
increase the constraining power from both the power spectrum and
the combined bispectrum and power spectrum. The relative gain
from the bispectrum might be then smaller but we would still expect
a substantial improvement.

In all the cases which we have considered, combining the bis-
pectrum with the power spectrum improves self-calibration power:
the self-calibration regime starts at a smaller prior value than with
the power spectrum alone and there is less degradation in the FoMs
in the self-calibration regime. For redshift and multiplicative bias
uncertainties, the self-calibration regime for a combined power
spectrum–bispectrum analysis starts near or within Euclid accuracy
requirements. For intrinsic alignment parameters, where there are
no specified Euclid requirements, self-calibration starts close to
our conservatively chosen default prior values. It is important to
recognize, however, that the added constraining power due to the
bispectrum will lead to tighter accuracy requirements on all nuisance
parameters if systematic errors are to be kept well below statistical
errors.

These results are encouraging and we plan to explore several
aspects further. First, we intend to validate our intrinsic alignment
modelling by revisiting the analysis in Semboloni et al. (2008)
using state-of-the-art simulations such as the Euclid Flagship Mock

Galaxy Catalogue,6 or survey data such as the Dark Energy Survey
Instrument Bright Galaxy Survey7 (Levi et al. 2019). Secondly, as
discussed in Section 3, we will review the new formula for the
matter bispectrum derived by Takahashi et al. (2020) to improve our
bispectrum modelling and investigate the potential for further self-
calibration. Finally, we intend to explore the performance of weak
lensing three-point statistics which are readily derived from real data,
such as aperture mass statistics (Schneider et al. 1998). Extending
our work in these ways will help to confirm the practical value of
using three-point statistics to control systematics in Euclid and other
next-generation weak lensing surveys.
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Merkel P. M., Schäfer B. M., 2014, MNRAS, 445, 2918
Miller L. et al., 2013, MNRAS, 429, 2858
Mo H. J., White S. D. M., 1996, MNRAS, 282, 347
Munshi D., Coles P., 2017, J. Cosmol. Astropart. Phys., 2017, 010
Munshi D., Kitching T., Heavens A., Coles P., 2011, MNRAS, 416, 1629
Munshi D., Namikawa T., Kitching T., McEwen J., Takahashi R., Bouchet F.,

Taruya A., Bose B., 2020a, MNRAS, 493, 3985
Munshi D., McEwen J., Kitching T., Fosalba P., Teyssier R., Stadel J., 2020b,

J. Cosmol. Astropart. Phys., 2020, 043
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Pen U.-L., Zhang T., van Waerbeke L., Mellier Y., Zhang P., Dubinski J.,

2003, ApJ, 592, 664
Pielorz J., Rödiger J., Tereno I., Schneider P., 2010, A&A, 514, A79
Rimes C. D., Hamilton A. J. S., 2006, MNRAS, 371, 1205
Rizzato M., Benabed K., Bernardeau F., Lacasa F., 2019, MNRAS, 490, 4688
Samuroff S. et al., 2019, MNRAS, 489, 5453
Sato M., Nishimichi T., 2013, Phys. Rev. D, 87, 123538
Schaan E., Takada M., Spergel D. N., 2014, Phys. Rev. D, 90, 123523
Schaan E., Ferraro S., Seljak U., 2020, J. Cosmol. Astropart. Phys., 2020,

001
Schmidt F., Jeong D., Desjacques V., 2013, Phys. Rev. D, 88, 023515
Schneider P., Lombardi M., 2003, A&A, 397, 809
Schneider P., van Waerbeke L., Jain B., Kruse G., 1998, MNRAS, 296, 873
Scoville N. et al., 2007, ApJS, 172, 1
Seitz C., Schneider P., 1997, A&A, 318, 687
Semboloni E., Heymans C., van Waerbeke L., Schneider P., 2008, MNRAS,

388, 991
Semboloni E., Schrabback T., van Waerbeke L., Vafaei S., Hartlap J., Hilbert

S., 2010, MNRAS, 410, 143
Semboloni E., Hoekstra H., Schaye J., 2013, MNRAS, 434, 148
Shi X., Joachimi B., Schneider P., 2010, A&A, 523, A60
Shi X., Joachimi B., Schneider P., 2014, A&A, 561, A68
Singh S., Mandelbaum R., 2016, MNRAS, 457, 2301
Singh S., Mandelbaum R., More S., 2015, MNRAS, 450, 2195
Takada M., Bridle S., 2007, New J. Phys. 9, 446
Takada M., Hu W., 2013, Phys. Rev. D, 87, 123504
Takada M., Jain B., 2002, ApJ, 583, L49
Takada M., Jain B., 2004, MNRAS, 348, 897
Takada M., Jain B., 2009, MNRAS, 395, 2065
Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761,

152
Takahashi R., Nishimichi T., Namikawa T., Taruya A., Kayo I., Osato K.,

Kobayashi Y., Shirasaki M., 2020, ApJ, 895, 113
Tegmark M., Taylor A. N., Heavens A. F., 1997, ApJ, 480, 22
Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,
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SUPPORTING INFORMATION

Supplementary data are available at MNRAS online.

Figure S1. The ratio of the derivatives of the power spectrum and
bispectrum with respect to the cosmological and intrinsic alignment
parameters and the square root of the data variance.
Figure S2. Percentage change in the FoMs compared with the FoM
obtained with the default prior of 0.1 on the intrinsic alignment
parameters and priors equal to the Euclid accuracy requirement 0.002
for redshift and multiplicative bias parameters (Laureijs et al. 2011).
Figure S3. Percentage increase in FoMs when the prior on the mean
of each redshift bin is tightened individually, compared to a wide
prior of 10.

Please note: Oxford University Press is not responsible for the content
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APPENDIX A : O RIGIN O F TERMS IN THE
MATTER POWER SPECTRU M AND
BISPECTRU M C OVARIANCE

If δ̃ is the Fourier transform of the underlying density contrast, then
an estimator for the power spectrum will involve the product of
two Fourier modes δ̃δ̃. Similarly a bispectrum estimator involves
δ̃δ̃δ̃. From this we can use Wick’s theorem to understand the
corresponding covariances.

The power spectrum covariance has two terms. Schematically,
one term involves 〈δ̃δ̃〉〈δ̃δ̃〉, the product of two power spectra, and
the other involves the connected four-point function or trispectrum,
〈δ̃δ̃δ̃δ̃〉c.

The bispectrum covariance has terms involving

〈δ̃δ̃〉〈δ̃δ̃〉〈δ̃δ̃〉, 〈δ̃δ̃δ̃〉c〈δ̃δ̃δ̃〉c, 〈δ̃δ̃δ̃δ̃〉c〈δ̃δ̃〉, and 〈δ̃δ̃δ̃δ̃δ̃δ̃〉c,

and the power spectrum–bispectrum cross-covariance involves

〈δ̃δ̃〉〈δ̃δ̃δ̃〉c and 〈δ̃δ̃δ̃δ̃δ̃〉c.

Terms that depend only on the power spectrum are referred to as
Gaussian. If the underlying field was Gaussian then these would be
the only non-zero parts of the covariance. The cross-covariance has
no Gaussian terms.

The remaining, non-Gaussian, terms generate non-zero off-
diagonal elements. They arise from mode coupling either between
small-scale modes within the survey window (in-survey covariance)
or between in-survey modes and long-wavelength modes longer than
the survey window dimension (supersample covariance). Supersam-
ple covariance is generated by the four-point correlator in the power
spectrum covariance and the six-point correlator in the bispectrum
covariance.

APPENDIX B: MATTER POWER SPECTRU M
AND BISPECTRU M SUPERSAMPLE
C OVA R I A N C E

Background modes that cause supersample covariance are essentially
constant across the survey footprint, so their effect can be equated to
a change in the mean density within the survey region. Supersample
covariance can thus be thought of as the response of the power
spectrum and bispectrum to a long-wavelength mode δb (Hamilton,
Rimes & Scoccimarro 2006; Rimes & Hamilton 2006; Takada & Hu

2013; Li, Hu & Takada 2014a,b; Barreira, Krause & Schmidt 2018;
Chan et al. 2018; Lacasa 2018).

In this view, the power spectrum supersample covariance is
(Takada & Hu 2013)

CovPP
SSC = σ 2

W

∂P (k1)

∂δb

∣∣∣∣
δb=0

∂P (k2)

∂δb

∣∣∣∣
δb=0

, (B1)

where σ 2
W is the variance of the long-wavelength background mode

within the survey window, given by

σ 2
W = 1

V 2
W

∫
dq

(2π )3
|W̃ (q)|2PL(q). (B2)

Here VW is the volume defined by the survey window, W̃ is the Fourier
transform of the survey window function, and PL is specifically the
linear power spectrum because the long-wavelength mode is in the
linear regime. The power spectrum P may be in the linear or non-
linear regime.

Similarly the bispectrum supersample covariance is (Chan et al.
2018)

CovBB
SSC = σ 2

W

∂B(k1, k2, k3)

∂δb

∣∣∣∣
δb=0

∂B(k4, k5, k6)

∂δb

∣∣∣∣
δb=0

, (B3)

and the power spectrum–bispectrum supersample cross-covariance
is

CovPB
SSC = σ 2

W

∂P (k1)

∂δb

∣∣∣∣
δb=0

∂B(k2, k3, k4)

∂δb

∣∣∣∣
δb=0

. (B4)

Again, the bispectrum B can be in the linear or non-linear regime.
The response functions in equations (B1), (B3), and (B4) can

be derived using the halo model (Cooray & Hu 2001; Cooray &
Sheth 2002) together with perturbation theory (Bernardeau et al.
2002).

The halo model is based round the integrals

Iβ
μ (k1, k2, . . . , kμ) ≡

∫
dMf (M, z)

(
M

ρ̄

)μ

bβ (M)

× ũM (k1)ũM (k2) . . . ũM (kμ). (B5)

Here M(z) is the halo mass, n(M, z) is the number density of haloes,
f(M, z) ≡ dn/dM is the halo mass function, ũM (k) is the Fourier
transform of the halo density profile, μ is the number of points being
correlated, and bβ (M) is the halo bias. We assume a Navarro–Frenk–
White halo matter density profile (Navarro, Frenk & White 1997)
and the mass–concentration relation given in Duffy et al. (2008). We
use results from Tinker et al. (2008) to model the halo mass function
and halo bias.

The bias quantifies the βth order response of the halo mass function
to the long-wavelength mode δb (Mo & White 1996; Schmidt, Jeong
& Desjacques 2013)

bβ (M) = 1

f (M, z)

∂ βf (M, z)

∂δ
β

b

∣∣∣∣
δb=0

. (B6)

We assume linear bias so that b0 = 1, b1 = b(M), and bβ = 0 for β

> 1.
The halo model expression for the power spectrum is

PHM(k) = I 0
2 (k, k) + [

I 1
1 (k)

]2
P (k), (B7)

giving

∂PHM(k)

∂δb

∣∣∣∣
δb=0

= ∂I 0
2 (k, k)

∂δb

∣∣∣∣
δb=0

+ [I 1
1 (k)]2 ∂P (k)

∂δb

∣∣∣∣
δb=0

, (B8)
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where we assume that the one-halo term I 1
1 (k) is not affected by the

background mode δb (Chiang et al. 2014). We further assume that
in the presence of δb the halo mass function changes from f(M, z) to
(1 + δb)f(M, z) but the halo profile does not change (Schaan, Takada
& Spergel 2014), so that

∂I 0
2 (k, k)

∂δb

∣∣∣∣
δb=0

=
∫

dM

(
M

ρ̄

)2

(1 + δb)
∂f

∂δb
[ũM (k)]2

∣∣∣∣
δb=0

. (B9)

From equation (B6)

∂f (M, z)

∂δb

∣∣∣∣
δb=0

= f (M, z) b(M). (B10)

Substituting into equation (B9) gives

∂I 0
2 (k, k)

∂δb

∣∣∣∣
δb=0

=
∫

dM
dn

dM

(
M

ρ̄

)2

b(M) [ũM (k)]2 (B11)

= I 1
2 (k1, k2), (B12)

and equation (B8) becomes

∂PHM(k)

∂δb

∣∣∣∣
δb=0

= I 1
2 (k, k) + [I 1

1 (k)]2 ∂P (k)

∂δb

∣∣∣∣
δb=0

. (B13)

Thus we need the response of the modulated power spectrum
P(k|δb) to the background fluctuation δb. This has been derived in
several ways, including from perturbation theory and consistency
relation arguments (Takada & Hu 2013); a separate universe approach
(Li et al. 2014a); and from the position-dependent power spectrum
and integrated bispectrum (Chiang et al. 2014). The resulting
expression is

∂P (k)

∂δb

∣∣∣∣
δb=0

=
(

47

21
− 1

3

∂ lnP (k)

∂ ln k

)
P (k). (B14)

Substituting into equation (B13) gives the halo model power spec-
trum response

∂PHM(k)

∂δb

∣∣∣∣
δb=0

= I 1
2 (k, k) + [I 1

1 (k)]2

(
47

21
− 1

3

∂ lnP (k)

∂ ln k

)
P (k).

(B15)

The bispectrum response can be derived in a similar way by
expressing the bispectrum as the sum of 1-halo, 2-halo, and 3-halo
terms

∂BHM(k1, k2, k3)

∂δb

∣∣∣∣
δb=0

= ∂

∂δb

(
B1h + B2h + B3h

) ∣∣∣∣
δb=0

(B16)

= ∂

∂δb

[
I 0

3 (k1, k2, k3) + (
I 1

1 (k1)I 1
2 (k2, k3)P (k1) + 2 perms.

)
+I 1

1 (k1)I 1
1 (k2)I 1

1 (k3)BPT(k1, k2, k3)
] ∣∣

δb=0
(B17)

= I 1
3 (k1, k2, k3) +

(
I 1

1 (k1)I 1
2 (k2, k3)

∂P (k1)

∂δb
+ 2 perms.

) ∣∣∣∣
δb=0

(B18)

+I 1
1 (k1)I 1

1 (k2)I 1
1 (k3)

∂BPT(k1, k2, k3)

∂δb

∣∣∣∣
δb=0

= I 1
3 (k1, k2, k3)

+I 1
1 (k1)I 1

2 (k2, k3)P (k1)

(
47

21
− 1

3

∂ ln P (k1)

∂ ln k1

)
+ 2 perms.

+I 1
1 (k1)I 1

1 (k2)I 1
1 (k3)

∂BPT(k1, k2, k3)

∂δb

∣∣∣∣
δb=0

. (B19)

Here BPT is the tree-level matter bispectrum given by

BPT(k1, k2, k3) = 2
[
F2(k1, k2)P (k1)P (k2)

+F2(k2, k3)P (k2)P (k3)

+F2(k3, k1)P (k3)P (k1)
]
, (B20)

where the symmetrized mode-coupling kernel F2 is (Bernardeau et al.
2002)

F2(k1, k2) = 5

7
+ 1

2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 2

7

(k1 · k2)2

k2
1k

2
2

. (B21)

Thus we need the response of the tree-level bispectrum to the long
mode.

Chan et al. (2018) used perturbation theory to obtain

∂BPT(k1, k2, k3)

∂δb

∣∣∣∣
δb=0

= 433

126
BPT(k1, k2, k3) + 5

126
BG(k1, k2, k3)

− 1

3

3∑
i=1

∂BPT(k1, k2, k3)

∂ln ki

, (B22)

where BG is identical to BPT but with the density coupling function
F2 replaced by its velocity counterpart G2

G2(k1, k2) = 3

7
+ 1

2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 4

7

(k1 · k2)2

k2
1k

2
2

. (B23)

For equilateral triangles, we use the computer algebra package
MATHEMATICA8 and equation (B22) to obtain

∂B
equi
PT

∂δb

∣∣∣∣
δb=0

=
(

2623

98
− 36

7

∂ lnP (k)

∂ ln k

)
P (k)2. (B24)

An alternative way to obtain the bispectrum response is to extend
the concept of the position-dependent power spectrum developed
by Chiang et al. (2014) to three-point statistics (Adhikari, Jeong
& Shandera 2016; Munshi & Coles 2017). We use this method, for
equilateral triangles only, as a check on the validity of equation (B22).

We define the position-dependent bispectrum as
〈B(k1, k2, k3, r) δ̄(r)〉, the correlation between the bispectrum
measured in a sub-volume of the survey VL, with length-scale L
and centred at position r , and the mean density contrast at r . It is
equivalent to an integrated trispectrum and can be expressed as

〈B(k1, k2, k3, r) δ̄(r)〉 ≡ iT (k1, k2, k3) (B25)

= 1

V 2
L

∫
d3q1

(2π )3

∫
d3q2

(2π )3

∫
d3q3

(2π )3

× T (k1 − q1, k2 − q2, k3 + q1 + q2 + q3, −q3)

× W̃L(q2)W̃L(−q1 − q2 − q3)W̃L(q3), (B26)

where W̃L(q) is the Fourier transform of the sub-volume window
function which we take to be 1 within the sub-volume and 0
otherwise.

Following Adhikari et al. (2016), we make the assumption that
the trispectrum is dominated by the squeezed limit in which one
wavevector is much smaller than the other three. Equation (B26)
can then be simplified through the bispectrum triangle condition
k1 + k2 + k3 = 0 and a change of variables to get

iT (k1, k2) ≈ 1

V 2
L

∫
d3q

(2π )3
|W̃L(q)|2T (k1, k2, −k1 + k2 + q, −q).

(B27)

8https://www.wolfram.com/mathematica
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Averaging over the solid angles �12 and �13 between two pairs of
wavevectors and fixing the direction of one k vector results in

iT (k1, k2) ≡
∫

d2�12

4π

∫
d2�13

4π
iT (k1, k2) (B28)

≈ 1

V 2
L

∫
d3q

(2π )3
|W̃L(q)|2

∫
d2�12

4π
T (k1, k2, −k2 + q, −q).

(B29)

This derivation depends critically on the assumption that the
squeezed-limit configuration dominates the trispectrum. Strictly the
result is only valid for trispectra which depend only on four items,
say four sides of a quadrilateral or three sides and a diagonal (see
the discussion in Adhikari et al. 2016). Nevertheless we take the
squeezed-limit assumption it to be a reasonable approximation.

We proceed to show that in the equilateral case equation (B29) has
the form

iT (k, k) ≈ σ 2
L f (k)P (k)2, (B30)

for some function f(k), where σ 2
L is the variance of the density field

on the sub-volume scale, given by

σ 2
L = 1

V 2
L

∫
d3q

(2π )3
|W̃L(q)|2P (q). (B31)

It then follows that iT(k, k) measures how the equilateral bispectrum
responds to a large-scale density fluctuation with variance σ 2

L .
To evaluate the trispectrum on the right-hand side of equa-

tion (B29) we use perturbation theory. The general trispectrum
TPT(k1, k2, k3, k4) can be expressed as (Bernardeau et al. 2002;
Pielorz et al. 2010)

TPT = 4Ta + 6Tb, (B32)

where Ta is the sum of 12 terms like

F2(k1,−k1 − k3)F2(k2, k1 + k3)P (k1)P (k2)P (|k1 + k3|),
and Tb is the sum of four terms of the form
F3(k1, k2, k3)P (k1)P (k2)P (k3). Here, F3 is the symmetrized
third-order coupling kernel

F3(k1, k2, k3) = 7

54

[
α(k1, k23)F2(k2, k3) + 2 perms

]
+ 4

54

[
β(k1, k23)G2(k2, k3) + 2 perms

]
+ 7

54

[
α(k12, k3)G2(k1, k2) + 2 perms

]
, (B33)

α(k1, k2) = k12 · k1

k2
1

, β(k1, k2) = k2
12(k1 · k2)

2k2
1k

2
2

, (B34)

with kij = |ki + kj |.
We use this formulation and the computer algebra package

MATHEMATICA to derive an approximation for the squeezed trispec-
trum with three equal short modes and one long mode q. In this
configuration three terms of Ta are zero in the limit q → 0 because
F2(k, −k) = 0 and one term of Tb is zero because F3(k1, k2, k3) = 0
if k1 + k2 + k3 = 0.

We set |ki | = k for i = 1, 2, 3 and ki · kj = k2/2 for i �= j, write
P

′
(k) = ∂P(k)/∂k, and Taylor-expand all terms in Ta and Tb to first

order in q/k. This leads to

T equi
a = 9P (k)2P (q)

98k2q2

[
17(k · q)2 + 42k2k · q + 32k2q2

]
− 9P (k)P ′(k)P (q)

98k3q2

[
(k · q)3 + 14k2(k · q)2 + 6k2q2

]
,

(B35)

Figure B1. Responses of the halo model matter power spectrum (top) and
equilateral bispectrum (bottom) to a long-wavelength super-survey mode δb.

T
equi

b = P (k)2P (q)

84k2q2

[
106(k · q)2 − 216k2k · q + 53k2q2

]
+ P (k)P ′(k)P (q)

126k3q2

[
70(k · q)3 − 216k2(k · q)2 + 93k2q2

]
,

(B36)

T
equi

PT = P (k)2P (q)

98k2q2

[
1354(k · q)2 + 2055k2q2

] − P (k)P ′(k)P (q)

147k3q2

× [
436(k · q)3 − 2268k2(k · q)2 + 327k2q2

]
.

(B37)

Although T equi
a and T

equi
b include terms in k · q/q2 which are

divergent as q → 0, these cancel out in the final expression for T
equi

PT .
Finally, ignoring terms that vanish as q → 0, we get

T
equi

PT = P (q)P (k)

[(
2055

98
+ 1354(k · q)2

98k2q2

)
P (k)

+
(

327

147k
− 2268(k · q)2

147k3q2

)
∂P (k)

∂k

]
. (B38)

We substitute this into equation (B29) and take the average over the
solid angle � between k and q. The angular average of (k · q)2/k2q2

is 1/3 and so we get

iT equi = σ 2
LP (k)2

(
7519

294
− 143

49

∂ ln P (k)

∂ ln k

)
(B39)
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and

∂B
equi
PT

∂δb

∣∣∣∣
δb=0

=
(

7519

294
− 143

49

∂ ln P (k)

∂ ln k

)
P (k)2. (B40)

This is close to but not identical with the result for equilateral
triangles obtained by Chan et al. (2018), equation (B24). We would
not expect exact agreement given the approximations we have made
and the fact that our results are only correct to first order. Nevertheless
our final expression broadly confirms equation (B22) for equilateral
bispectra. We therefore use equation (B22) in our work since it
is more complete and general, substituting into the halo model
expression equation (B19).

We note however that both results are quite different from the
expression obtained by Adhikari et al. (2016) who derived

〈T equi(k)〉ang−av = P (q)P (k)2

(
579

98
− 8

7

∂ ln P (k)

∂ ln k

)
. (B41)

It is difficult to determine the source of the discrepancies since all
three derivations rely on MATHEMATICA (private communications)
and intermediate steps are not transparent.

Fig. B1 illustrates our calculated matter response functions evalu-
ated using modelling assumptions from Section 3. This figure shows
the individual halo model terms and the total response but excludes
the dilation terms – the −1/3 terms in equations (B14) and (B22) –
which are consistently small as also found by Li et al. (2014a) and
Chan et al. (2018).

To obtain the full halo model expressions for the matter super-
sample covariance, we substitute equations (B15) and (B19) into
equations (B1) and (B3).

APPENDIX C : W EAK LENSING COVARIANCE

In this appendix, we give expressions for the components of the
convergence power spectrum and bispectrum covariance for a single
redshift bin. The power spectrum–bispectrum cross-covariance can
easily be derived in a similar way (Kayo & Takada 2013; Rizzato
et al. 2019). Further details and derivations can be found in Takada
& Jain (2009), Kayo & Takada (2013), and Sato & Nishimichi
(2013). Rizzato et al. (2019) give all permutations of terms in these
covariances for a tomographic survey.

We assume a survey with area �s in steradians and consider
angular bins of width ��i centred on the values �i. Thus li − ��/2 ≤
|�i | ≤ li + ��/2. For simplicity, we omit noise terms in this appendix
but in a real survey the intrinsic ellipticity of galaxies will always
induce shape noise. In the main part of this paper, we always im-
plicitly include shape noise in the Gaussian terms of the covariances
(both the power spectrum and the bispectrum). We assume this noise
is Gaussian, so the observed power spectrum between redshift bins i
and j has the form

C
(ij )
obs (�) = C(ij )(�) + σ 2

ε

2n̄i

δK
ij , (C1)

where δK
ij is the Kronecker delta, σ ε is the total intrinsic ellipticity

dispersion, which we take to be 0.35, and n̄i is the galaxy number
density in redshift bin i.

Gaussian covariance

The Gaussian part of the convergence power spectrum covariance is

Cov[C(�1), C(�2)]G = 2δK
�1�2

Npairs(�1)
C(�1)C(�2), (C2)

where δK
�1�2

is the Kronecker delta which is 1 if �1 = �2 and �1 is
within the bin width ��1, and zero otherwise. Npairs(�1) is the number
of independent pairs of modes within the bin width.

The Gaussian part of the convergence bispectrum covariance is

Cov[B(�1, �2, �1), B(�4, �5, �6)]G

= �s

Ntrip(�1, �2, �3)
C(�1)C(�2)C(�3)

× [δK
�1�4

δK
�2�5

δK
�3�6

+ δK
�1�4

δK
�2�6

δK
�3�5

+ δK
�1�5

δK
�2�4

δK
�3�6

+ 3 perms],

(C3)

where Ntrip(�1, �2, �3) is the number of triplets of modes which form
triangles of side lengths �1, �2, and �3 within the specified bin widths
��i.

Npairs and Ntrip can be approximated by (Takada & Bridle 2007;
Joachimi, Shi & Schneider 2009)

Npairs(�) = �s���

2π
, (C4)

Ntrip(�1, �2, �3) = �2
s �1�2�3��1��2��3

2π2
√

2�2
1�

2
2 + 2�2

2�
2
3 + 2�2

3�
2
1 − �4

1 − �4
2 − �4

3

.

(C5)

In-survey non-Gaussian covariance

The in-survey non-Gaussian part of the convergence power spectrum
covariance is

Cov[C(�1), C(�2)]NG = 2π

�s

∫
|�|∈�1

d2�

�1��1

∫
|�′ |∈�2

d2�′

�2��2

× T (�, −�, �′,−�′), (C6)

where T is the convergence trispectrum. The integrals are over all
wavevectors that are within the bin width �� around � or �′.

The in-survey non-Gaussian part of the convergence bispectrum
covariance involves similar integrals over the angular bins. However,
it can be considerably simplified by making use of triangle conditions
and other reasonable assumptions such as that the trispectrum does
not vary much within the bin width. Full details can be found in
appendix A of Kayo & Takada (2013). The resulting simplified
expression is

[B(�1, �2, �3), B(�4, �5, �6)]NG (C7)

2π

�s
B(�1, �2, �3)B(�4, �5, �6)

[
δK
�1�4

�1��1
+ δK

�1�5

�1��1
+ 7 perms

]

+ 2π

�s

[
δK
�1�4

�1��1
C(�1)T (�2, �3, �5, �6)

+ δK
�1�5

�1��1
C(�1)T (�2, �3, �4, �6) + 7 perms

]

+ 1

�s

∫ 2π

0

dψ

2π
P6(�1, �2, �3, �4, �5, �6; ψ), (C8)

where P6 is the six-point function or pentaspectrum. The triangle
conditions �1 + �2 + �3 = 0 and �4 + �5 + �6 = 0 mean that the P6

term depends automatically on two triangles. The only remaining
freedom is the angle ψ between any two wavevectors, one in each of
these triangles, so we can replace the integrals over �i with integrals
over ψ (Kayo & Takada 2013).
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Figure C1. Diagonal terms of the weak lensing power spectrum and bispectrum covariance matrices and their cross-covariance, calculated for a single redshift
bin at z = 0.2. The cross-covariance does not have a Gaussian term.

Figure C2. Individual halo model terms of the weak lensing bispectrum supersample covariance and power spectrum–bispectrum supersample cross-covariance,
calculated for a single redshift bin at z = 0.2. The power spectrum includes both the one-halo and two-halo terms.

Supersample covariance

Using the standard Limber approximation and assuming a spa-
tially flat universe, the weak lensing power spectrum supersample
covariance for a single redshift bin is (Takada & Hu 2013)

Cov[C(�1), C(�2)]SSC = 1

�s

∫ χlim

0
dχ q4(χ ) χ−6σ 2

W(χ )

× ∂Pδ(�1/χ ; χ )

∂δb

∂Pδ(�2/χ ; χ )

∂δb
(C9)

where χ lim is the maximum comoving distance of the survey, q(χ )
is the lensing weight function given by equation (2), and σ 2

W(χ ) is
defined in equation (B2).

Similarly the weak lensing bispectrum supersample covariance is
(Kayo & Takada 2013)

Cov[B(�1, �2, �3), B(�4, �5, �6)]SSC

= 1

�s

∫ χlim

0
dχ q6(χ ) χ−10σ 2

W(χ )
∂Bδ(�1/χ, �2/χ, �3/χ ; χ )

∂δb

×∂Bδ(�4/χ, �5/χ, �6/χ ; χ )

∂δb
. (C10)

Magnitudes of covariance terms

Fig. C1 shows the diagonal Gaussian, in-survey non-Gaussian,
and supersample terms of the weak lensing power spectrum and

bispectrum covariance and their cross-covariance across a range of
angular scales, calculated for a single redshift bin for a 15 000 deg2

survey. For the bispectrum and cross-covariance, we show re-
sults for equilateral configurations only. For the power spectrum
and bispectrum Gaussian terms dominate except at small scales
where the supersample terms are large. The supersample term
dominates the cross-covariance, which has no Gaussian term.
The results are consistent with other similar numerical calcula-
tions for Euclid-like surveys (Barreira et al. 2018; Rizzato et al.
2019).

Fig. C2 splits the supersample terms of the equilateral-triangle
bispectrum covariance and the power spectrum–bispectrum cross-
covariance into their one-halo, two-halo, and three-halo components.
The one-halo term is dominant for � > 50 in the bispectrum
covariance and at all scales in the cross-covariance. At larger scales,
the three-halo term dominates the bispectrum covariance. However,
this is inconsequential since the signal-to-noise ratio in this regime
is very small.
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