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Abstract

Governments and other organisations often rely on data collected by household sur-

veys and censuses to provide estimates of household poverty and identify areas in

most need of regeneration and development investment. However, due to the high

cost associated with manual data collection and processing, many developing coun-

tries conduct such surveys very infrequently, if at all, and only at a coarse level of

spatial granularity. Consequently, it becomes difficult for governments and NGOs

to determine where and when to intervene. This thesis addresses this problem by

examining the feasibility of deriving up to date and high resolution proxy measure-

ments of poverty from an alternative source of data, namely, Call Detail Records

(CDRs), which can be used by organisations to help in decision making.

Specifically, we contribute the following:

1. A detailed spatial analysis of economic wealth in two sub-Saharan countries,

Senegal and Côte d’Ivoire from which we derive two baseline poverty esti-

mators grounded on concrete usage scenarios.

2. We establish a link between communication patterns and wealth through a

simulation-based analysis of information diffusion. We further examine the

influence of contextual factors, including data quality issues and economic

volatility, on the strength of this relationship.

3. An approach to building wealth prediction models based on features of ag-

gregated CDRs. Features include static and simulation based measures of

information access, activity based metrics and econometric inspired metrics.

We further perform a comparative analysis of the results of several models in
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relation to the baseline predictors.

We conclude that it is possible to produce proxy poverty or wealth indicators

from aggregated CDRs that provide a good level of accuracy, particularly where

geographical coverage of the mobile phone network is sufficient. The final outcome

of this thesis is a method for developing aggregated CDR-based poverty or wealth

models that can be readily implemented anywhere in which there is a need for more

up to date and/or finer resolution poverty estimates.



Impact Statement

Through an in depth examination of the relationship between aggregated communi-

cation patters, as represented by mobile phone data, and poverty/wealth, this work

provides a platform from which new research can be undertaken. The methods of

spatial aggregation, analysis and modelling detailed in this thesis constitute a pro-

cess that can be duplicated and adapted to research projects that seek to expand the

scope of this work. Such expansion could be in terms of incorporating new coun-

tries or time spans, or adapting the process to novel sources of data, both behavioural

(input data) and socioeconomic (output data). This work further establishes the lim-

itations that such research may be subject to. The academic impact of this work has

also been established by 4 publications directly related to this thesis, as mentioned

in Chapter 1.

This work also has the potential to provide significant benefits beyond aca-

demic research. Using the established methods to estimate poverty or wealth could

provide huge cost savings for Governments and other organisations compared to

manual surveying methods. In addition, by providing finer grained estimates the

likelihood of identifying smaller pockets of poverty can be increased. The methods

can also provide more up to date estimates of poverty, thereby improving the tar-

geting of development funds, as well as enhancing the monitoring of the affects of

policy and other influences on poverty. Successfully identifying poverty is the first

step towards reducing it, therefore by making poverty identification more accessi-

ble to poorer countries in the above ways, this work has the potential to contribute

towards the UN millennium goal of reducing global poverty levels. To this end,

we have collaborated with UNFPA (United Nations Population Fund) and United
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Chapter 1

Introduction

The United Nations (UN) Sustainable Development Agenda was established in

2015 in order to mobilise efforts to improve many aspects of people’s lives across

the globe. The agenda is encapsulated in 17 goals, the first being to end poverty

in all its forms everywhere. Specifically the aim is to eradicate extreme poverty,

defined as living on less than $1.25 per day, by 2030, and to reduce by half all

other forms of poverty1. In order to alleviate poverty it must first be identified and

measured. As the World Bank states, in addition to keeping the issue on the po-

litical agenda, reasons to measure poverty include the targeting of interventions:

“institutions, including the World Bank and aid agencies, have limited resources,

and would like to know how best to deploy those resources to combat poverty. For

this, they need to know where in the world poor people are located.” In addition,

measuring poverty enables the monitoring and evaluation of the impact of interven-

tions and the effectiveness of institutions designed to reduced it. At both the project

and institutional level it is important to be able to determine which are working

and which are not Haughton and Khandker (2009). Indeed, it is in these respects

that governments, non-governmental organisations (NGOs) and businesses rely on

socioeconomic data to guide decision making and to aid in the understanding of

socioeconomic processes.

Some policies operate at the national or regional level, for example financial

regulation and taxation policies may be designed to increase productivity and eco-

1http://www.un.org/sustainabledevelopment/poverty/
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nomic growth, and thus reduce poverty indirectly. For these kinds of interventions

coarse grained data is sufficient to inform the policymaking process and measure

the policy’s effect. On the other hand, some policies and projects may be designed

to affect a more localised area, for example investing in transportation infrastruc-

ture, or even more localised, government departments and charities may wish to

target highly deprived neighbourhoods for regeneration or social support projects.

To effectively inform this kind of undertaking and measure its effects, much more

fine grained poverty data is required.

Socioeconomic data disaggregated to smaller areas can reveal a large degree

of variation hidden by larger aggregates. For example, it is estimated that 85% of

the world’s poor live in rural areas Alkire et al. (2014), a fact which perhaps helps

explain the dramatic migration of people from rural to urban areas, but which also

highlights the continuing importance of reliable estimates that differentiate at a suf-

ficiently fine level of spatial granularity. Deprivation measures at state level will

hide discrepancies between rural and urban conditions, as well as sharp differences

between urban neighbourhoods. Indeed, a mass urbanisation process is taking place

across much of the globe United Nations, Department of Economic and Social Af-

fairs (2012), and yet the potential for raising the standard of living through efficient

provision of public services and concentrated economic opportunity is not realised

uniformly. A 2008 United Nations report United Nations Human Settlement Pro-

gram (2008) into the state of the world’s cities showed that inequality in urban envi-

ronments is actually on the rise, as some areas and communities benefit more than

others from economic growth and investment in public services with many migrants

to the city locating themselves in highly deprived neighbourhoods. The report states

that urban inequality has a detrimental effect on citizens’ health, education and par-

ticipation in society and the economy, which in turn leads to social unrest, higher

crime levels and the diversion of resources from productive public investment to-

ward security and policing, thus exacerbating the problem further United Nations

Human Settlement Program (2008). To reverse this trend deprived areas need to be

identified in a timely manner so that intervention and regeneration projects can be
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planned and implemented accordingly.

1.1 The problem

Household socioeconomic data and neighbourhood statistics typically requires

manual surveying, which can be prohibitively time consuming and expensive. The

costs involved prevent comprehensive surveys of the entire population of a country

from being carried out and also limit the frequency with which they occur. Instead,

households are sparsely sampled and surveys typically only take place every sev-

eral years. This state of affairs severely limits the spatial and temporal accuracy

of poverty data, and in the case of particularly resource limited nations, this kind

of data may not be available at all. For example, the situation in Côte d’Ivoire is

typical of sub-Saharan countries, where there is socioeconomic data available from

2000 and 2005 that is disaggregated only at the level of 11 subnational regions,

as depicted in Figure 1.1. Consequently, no information is available regarding the

distribution of wealth within the boundaries of these regions, which hides the se-

vere discrepancies between slum dwellers and those living in wealthy communes

in the more densely populated cities. This is in stark contrast to the situation in

some wealthier countries, in which data is often available at the small area level

(i.e., neighbourhoods of a few thousand residents). For example, in Figure 1.2 we

can see the fine spatial granularity of English Index of Multiple Deprivation. How-

ever, even here the measures of poverty are not up to date. For example, for the

IMD published in 2010 the data sources used to calculate the indices date from be-

tween 2000 and 2008. If continuous surveying is infeasible in wealthy countries

such as the UK, then it will certainly be beyond the means of developing countries.

Furthermore, when severe poverty or deprivation is identified, the longer the time

frame in which intervention takes place the more resources are likely to be required

to alleviate problems, and in developing countries experiencing the most rapid ur-

banisation wealth distribution may change significantly year on year. Thus, to meet

Sustainable Development Goal 1: End poverty in all its forms everywhere, and the

aims outlined by the World Bank, it is, among other things, imperative to develop
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Figure 1.1: DHS Wealth Index in Côte d’Ivoire which is provided for just 11 regions

new, low cost ways to identify areas in need of intervention in a timely and spatially

accurate manner.

1.2 Novel approaches to solving the problem
Technological advances and the increasing ubiquity of computing devices in peo-

ple’s lives, along with the rich data they produce, have opened the doors to novel so-

lutions to the above mentioned shortcomings of household surveying. Researchers

have begun to exploit a wide variety of different sources of human digital traces in

order to explore the relationship between different forms of deprivation, or well-

being more broadly. These data sources include content voluntarily published on

online social media platforms such Facebook and Twitter, which is particularly

amenable to sentiment and topic analysis in order to gauge a population’s subjec-

tive well-being and also identify markers for unemployment or other socioeconomic

characteristics Kramer (2010); Wang et al. (2012); Quercia et al. (2012a,b); Quer-

cia and Saez (2014); Venerandi et al. (2015). Remote sensing via satellite imagery

can be utilised to assess the visual impact of society, which in turn may reflect eco-

nomic status through land usage patterns or intensity of night time lights Elvidge

et al. (1997); Doll et al. (2000); Elvidge et al. (2001); Noor et al. (2008); Jean
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Figure 1.2: Index of Multiple Deprivation in England, which is available for 32844 area.
However, even in England the IMD is based partly on out-of-date socioeco-
nomic data.

et al. (2016); Steele et al. (2017). Finally, mobile phone data, or call detail records

(CDRs), that also contain geolocation information reveal patterns of communi-

cation and mobility Eagle et al. (2010); Soto et al. (2011); Frias-Martinez et al.

(2012); Frias-Martinez and Virseda (2012); Blumenstock et al. (2015); Gutierrez

et al. (2013); Steele et al. (2017); Mao et al. (2013); Bruckschen et al. (2015).

1.3 The Orange Data for Development Challenges
An initiative that has helped to fuel research in this area is the organisation of open

research competitions, known as the D4D (Data for Development) Challenges, and

associated conferences around the release of large CDR datasets from telecommuni-

cations providers Orange and Sonatel in developing countries, namely Côte d’Ivoire

and Senegal2.

2http://www.d4d.orange.com/en/Accueil
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Table 1.1: Descriptive statistics of CDR data.

Senegal Côte d’Ivoire

Country Population 20 m 15 m

Time span (weeks) 52 12

Number of BTS towers 1614 1217

Mean Daily Volume 4.0 m 10.8 m

Mean BTS Distance 236 km 228 km

The release of large data scale CDR datasets as part of these challenges has

opened the door to the study of such datasets to researchers who are otherwise

not party to private arrangements with telecoms providers. We capitalise on the

opportunity this affords for the purposes of this thesis. CDR data from Côte d’Ivoire

and Senegal was released as part of the 1st and 2nd D4D Challenge, respectively.

The data do not pertain to individual mobile phone users, but rather consist of the

hourly total volume (number of calls) and duration of calls between pairs of Base

Transceiver Station (BTS) towers, as well as the geographical coordinates of each

BTS. The datasets are summarised in Table 1.1. The dataset from Senegal covers

a much longer period than that from Côte d’Ivoire (52 weeks verses 12 weeks)

however, due to the service provider’s larger market share in Côte d’Ivoire, the

average daily volume is much larger there, at 1.4 calls per person compared to 0.2

calls per person in Senegal.

1.4 Research Hypothesis
In line with the research agenda identified in Section 1.2, we aim to develop and

evaluate effective methods to estimate deprivation in different areas. Specifically,

we will mine CDRs from mobile telecommunication providers in order to extract

features which can be used to predict wealth. We focus on CDRs as a data source

since mobile phones have high adoption rates in all parts of the world and suf-

fer less from biases toward certain user demographics, unlike web based services

which tend to have a user base that is concentrated in high income countries and that

is more likely to misrepresent certain age, ethnic and income level groups. Indeed,
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mobile phone penetration is high enough in many developing countries to make

such datasets sufficiently representative of the population3. The network operators

from which the CDR data is sourced hold a dominant position in their respective

markets, with Orange having 48% market share in Côte d’Ivoire4 and Sonatel com-

manding 52% of the market in Senegal5. As well as high penetration, CDR data

also has the advantage of having high spatial and temporal resolution, which lends

itself to providing the timely and granular poverty estimates we seek.

When dealing with data derived from individual human behaviour, another

important consideration is of course privacy. Much work has been done to create

reliable anonymisation methods which aim to prevent reidentification of individuals

represented in the dataset. However, these methods may not be enough to appease

the end user who is concerned about the use and possible abuse of their data. Tack-

ling this problem directly is not within the scope of this thesis, rather, we sidestep

the problem by using only aggregated CDRs, that is, the data represents aggregated

activity at a particular location and does not contain any information that could

distinguish individual users, even if joined with additional datasets.

The central hypothesis of this thesis is that the spatially embedded interac-

tion networks inherent in aggregated mobile communication data, contain be-

havioural patterns that can be mined in order to provide effective features pre-

dictive of socioeconomic factors such as poverty rate and average wealth at the

areal level.

1.5 Contributions
To test this hypothesis we provide three main contributions:

1. A detailed spatial analysis of economic wealth in two sub-Saharan countries,

3http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf
4http://www.orange.com/en/group/global-footprint/countries/Group-s-activities-in-

Ivory-Coast
5http://www.sonatel.com/wp-content/uploads/2017/02/Sonatel 2016 financial results EN.pdf
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Senegal and Côte d’Ivoire from which we derive two baseline poverty esti-

mators grounded on concrete usage scenarios.

2. We establish a link between communication patterns and wealth through a

simulation-based analysis of information diffusion. We further examine the

influence of contextual factors, including data quality issues and economic

volatility, on the strength of this relationship.

3. An approach to building wealth prediction models based on features of ag-

gregated CDRs. Features include static and simulation based measures of

information access, activity based metrics and econometric inspired metrics.

We further perform a comparative analysis of the results of several models in

relation to the baseline predictors.

1.6 Publications related to this thesis
The validity of this work has been established in four related peer-reviewed publi-

cations listed below. The work represented in these papers is substantially my own,

with L. Capra providing supervision, and A. Mashhadi providing supervision and

repeating analyses on an additional dataset.

• Smith-Clarke, C., Mashhadi, A., Capra, L., Ubiquitous Sensing for Mapping

Poverty in Developing Countries, Proceedings of Netmob 2013, August 2013

• Smith-Clarke, C., Mashhadi, A., Capra, L., Poverty on the cheap: estimating

poverty maps using aggregated mobile communication networks, CHI ’14:

Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, 511–520, April 2014

• Smith-Clarke, C., Capra, L., Beyond the baseline: Establishing the value in

mobile phone based poverty estimates, WWW ’16: Proceedings of the 25th

International Conference on the World Wide Web, 425-434, April 2016

• Smith-Clarke, C., Capra, L., Information Diffusion and Economic Develop-

ment, ASONAM ’17: Proceedings of the 2017 IEEE/ACM International Con-
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ference on Advances in Social Networks Analysis and Mining, 475-483, July

2017

1.7 Structure of Thesis
• First we provide a review of related work in Chapter 2. We critically discuss

previous research and highlight the areas in which the work presented in this

thesis advances the state of the art. We also provide a comparison with similar

research that has taken place either in parallel with the author’s own work or

since.

• In Chapter 3 we provide a detailed analysis of the socioeconomic data we

utilise in later chapters and create baseline models against which CDR models

can be fairly assessed.

• In Chapter 4 we introduce the CDR datasets and lay the ground work for CDR

based models by establishing a link between country-wide communication

patterns and wealth via information diffusion simulations.

• In Chapter 5 we then define and examine a number of features derived from

CDR data, before building and comprehensively testing predictive models

incorporating those features.

• We conclude in Chapter 6 with an overall evaluation of the contributions of

this thesis, discuss the limitations faced and propose an agenda for continued

research in this topic.



Chapter 2

Related Work

Poverty is usually understood as referring to a person or household subsisting on

resources below a certain threshold, where that threshold may be defined in terms

of income or consumption. Researchers have also argued for a broader view of

poverty that represents the (in)capability of a person to properly function in society

(Sen, 1999). In fact, the definition and measurement of poverty is itself a topic

of significant debate (Council et al., 1995; Deaton, 2005), the details of which are

beyond the scope of the current literature review. What is not controversial however,

is the huge difference in wealth between the inhabitants of the richest and poorest

nations and even the large differences that exist within the world’s poorest countries.

Indeed, it should be noted that the aim of this thesis is not to weigh in on the debate

about how poverty ought to be defined and measured, but rather it seeks to provide a

readily available method for producing a proxy measurement for the general ideas of

wealth and poverty. The works discussed in this section all similarly explore novel

ways to predict or approximate some sort of socioeconomic metric for an area. To

help understand how these metrics relate to each other, Table 2.1 summarises the

key types and what they represent.

Until recently, the only viable means of collecting objective socioeconomic

statistics pertaining to individuals or households was by in person interviews and

data collection. This process is costly and labourious - in the 1990’s the advent of

laptop computers was celebrated as a way to reduce the time to collect survey data

from years to months (Deaton, 1997). In fact, the total time taken from inception to
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publication of survey data, is still likely to be upwards of a year. As a concrete ex-

ample, the Demographic and Health Survey (DHS, which is an exemplar source of

socioeconomic survey data for developing countries) manual stipulates a timetable

of 15 months from the initial survey design phase, through translation, staff recruit-

ment and training, interviewing and data entry, to final data checking and clean-

Table 2.1: Types of socioeconomic metric used as target variable in the literature

Metric type Description
Poverty rate The proportion of people who’s income is below the

poverty line, which is defined as half the median house-
hold income of the population1

Asset index These type of metrics, often referred to as multidimen-
sional measures of poverty seek to go beyond simple in-
come based measures by taking into account wealth in
the form of asset ownership. The DHS, for example, in-
cludes questions regarding the ownership of assets such
as mobile phones, computers, vehicles and refrigerators,
as well as questions related to living conditions, such
as access to electricity, sanitation and material used for
flooring. These factors are then combined using Princi-
pal Components Analysis into an index representing the
level of wealth of each household (DHS, 2012).

Composite Another multidimensional approach that aggregates
many factors into a single measure. As well as wealth, a
composite metric usually includes factors such as health,
education, housing or environmental conditions and ac-
cess to essential services. Examples include continuous
measures, such as the English IMD (which is used as tar-
get variable in a number of works cited below and often
referred to simply as deprivation) and ordinal measures,
such as socioeconomic level (SEL) as discussed in Soto
et al. (2011).

Macroeconomic This type of metric include measures of regional or na-
tional economic activity, such as Gross Domestic Prod-
uct (GDP), as referred to in McClellan et al. (2013).

Subjective well being In contrast to the objective measures discussed above,
proponents of this type of metric acknowledge that non-
economic factors are also important in determining over-
all well-being, and attempt to capture people’s self-
reported happiness or satisfaction with life. Examples
include Bhutan’s Gross Domestic Happiness 2.
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ing (DHS, 2012). This is not including time taken for data analysis, report writing

and publication. In contrast, by plugging in analytic software to APIs that provide

access to real time (or near real time) sources of data reflecting people’s behaviour

and interactions (referred to variously as human digital traces and human exhaust

data), after the initial implementation phase, proxy socioeconomic indicators can

be produced immediately and continuously. Continuing with the DHS example, the

survey manual also provides budget guidelines and clearly indicates that, given the

huge human resource requirements, the cost in USD will be several million. Human

digital traces on the hand are more often than not already produced for other pur-

poses, such as customer billing for CDRs or as the primary output of users such as

for social media platforms. Therefore, the cost of repurposing this data for present

purposes is likely to be a small fraction of the cost of manual surveying.

The opening of data APIs by companies such as Twitter, and the advent of

open data challenges, such as the Orange D4D series3, has opened the door for

computer scientists to make significant contributions to applied social sciences, by

utilising data mining tools and computational methods more generally. Here, the

focus of this review is on efforts to exploit human digital traces to develop methods

to infer various indicators of human well being. Although research that exploits

large scale human digital data to predict or understand socioeconomic factors is a

relatively new undertaking, there is already a substantial body of relevant research

taking a variety of approaches and operating on a range of different data sources.

For expository reasons and in order to help place this thesis within the field, this

chapter will be organised according to one salient dimension, namely, the kind of

human behavioural or social data source, namely, CDRs, satellite imagery, social

media content, transit data and international flows.

2.1 Call Detail Records
Call Detail Records are the records of mobile and fixed line telephone calls pro-

duced by telecoms providers primarily for billing and service monitoring. CDRs

3http://www.d4d.orange.com/en/Accueil
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typically contain the calling and called telephone numbers (usually converted to

anonymised identifiers when released for research purposes), call start time and du-

ration, identifiers for the Base Transceiver Station (BTS) towers at which the call

entered and exited the exchange, thereby indicating the approximate location of the

call parties, and the call type (i.e., voice, SMS, MMS or internet data). There will

normally be additional information related specifically to billing and fault monitor-

ing. Despite the proprietary nature of CDRs, this is the most widely studied data

type (Bank, 2015). This is no doubt due in large part to the release of datasets as

part of the D4D challenges mentioned above, as well as the widespread adoption

of mobile phone technology across the globe, in contrast to other technologies and

services which may be limited to particular location or demographic. Given this

relatively high volume of research we can make a further distinction between works

that incorporate individual CDR data and those that use aggregated CDR data. The

former potentially possess greater fidelity in terms of behavioural characteristics but

also raises privacy concerns which the latter avoid.

2.1.1 Individual CDRs

A prime example of the work that combines individual CDR data (both mobile and

fixed line in this case) with socioeconomic data is that of Eagle et al. (2010) who

use England’s Index of Multiple Deprivation (IMD) to test, at the societal level, the-

ories which expect heterogeneous networks to provide greater access to a diverse

range of resources and thus provide individuals with an economic advantage. The

authors derive several measures of ego network diversity that aim to capture this

effect, including as a function of the Shannon entropy of contacts (see Equation 5.7

in Section 5.2.2) and Burt’s measure of Structural Holes (Burt, 2009). A structural

hole is an open triad, or a missing link between any two of a node’s neighbours, the

number of which Burt found correlated with a employees’ salary. They find that a

composite measure of diversity that includes entropy based measures and structural

holes correlates strongly (r = 0.78) with deprivation, suggesting that the advanta-

geous effect of a diverse set of contacts operates at the societal level. The results are

significant and it would be interesting to see if they could be improved by address-
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ing some limitations in the methodology. For example, IMD areas are assigned to

the telephone exchange area they most overlap with, rather than being proportion-

ally assigned to all overlapping exchange areas. This simple approach seems to be

a likely source of error. Secondly, the network data stems from a period of one

month, yet recent research has shown that up to 60% of ties can decay from one

month to the next and only around 20% of weak ties4 remain after a 7 month period

(Miritello et al., 2013). This means that, on a month by month basis, the correlation

between network diversity and neighbourhood deprivation may change. This sug-

gests two follow up steps: firstly compute the correlation between neighbourhood

deprivation and the diversity of a stable network (properties tend to be stable when

aggregated by 7 months or more (Miritello et al., 2013)); secondly, given the effect

of tie creation and decay on information diffusion, the relation between temporal

properties and deprivation ought to be investigated.

Soto et al. (2011) go beyond correlation analysis by combining 6 months of

CDRs with socioeconomic data to train a machine learning model to classify areas

of a Latin-American city by socioeconomic level (SEL). Specifically, the authors

first use feature selection algorithms to determine the most important features from

an initial set of 279 derived from individuals’ CDR. These include 69 consump-

tion features (such as total number of calls), 192 social features (such as number

of contacts) and 18 mobility features (such as distance travelled). Individuals are

associated to the cell tower closest to their residence and the parameters of each cell

tower are the average of all its associated users. The feature selection process uses

the entire dataset, which is a form of ‘peeking’, that is, it has been determined prior

to the training stage which features are relevant to the portion of the data which

will be later reserved for testing. Consequently, the models ought to be tested on a

further dataset in order to be properly validated. After the feature selection process

the data is split into training set (66.6%) and test set (33.4%) and several machine

learning techniques are tested. The best achieves an accuracy rate of 80%. However,

4The definition of weak tie differs from study to study, but in this case two contacts
are considered weakly connected if they make less than 10 calls to each other within the
observation period.
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the dataset is unbalanced: the distribution of 3 SEL classes over the census areas

is, A: 12%, B: 59% and C: 29%, and although the final distribution in the dataset

is altered when weighted (by area of overlap) averages are computed for Voronoi

cells, it is likely that classes remain unbalanced. Furthermore, arguably the most

important class to predict correctly is the lowest (i.e., poorest), and the highest re-

call (or sensitivity) for this class is 68%. Thus, accuracy alone may be a misleading

performance measure in this case. Frias-Martinez et al. (2012) and Frias-Martinez

and Virseda (2012) take a closer look at the relationship between some of the fea-

tures used and SEL. They find that mobility features correlate moderately with SEL

when aggregated to cell region, including radius of gyration (r = 0.54) and number

of cell regions traversed (r = 0.58). They also find that significant differences exist

between mean values of some features when cells are grouped by SEL, including

reciprocity of links, distance between contacts and cost of calls. Using a simple

multivariate regression model combining all the features they achieved R2 = 0.83,

it is therefore quite surprising that when the problem is reformulated as one of clas-

sification and more sophisticated methods are applied in Soto et al. (2011) (and later

in Frias-martinez et al. (2012)) poorer results are produced. Nevertheless these are

important findings, particularly regarding the mobility variables since, unlike com-

munication variables, these features can be derived from other sources of mobility

data, such as GPS traces or public transport systems.

The methods developed in Soto et al. (2011) are implemented in a system with

a GUI presented and evaluated in Frias-martinez et al. (2012). The system is de-

signed to reduce the number of census areas that need to be manually surveyed (and

thus save on costs) by using the SEL of the proportion that is surveyed as training

labels and estimating the remainder. Although apparently operating on the same

dataset, the highest accuracy quoted in this work is 76% for a 3-class problem and

63% for a 6-class problem. However, these results are somewhat compromised by

the fact that the feature selection process incorporates the entire dataset, despite

the fact that the use case scenario stipulates that only a proportion of the ground

truth data would be available. The problem of unbalanced classes applies here too,
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therefore it is difficult to fully evaluate the outcomes.

Frias-Martinez et al. (2013) also investigated whether CDR could not only es-

timate present socioeconomic indicators, but also forecast them. The authors com-

pared the monthly values of state level employment statistics with consumption and

mobility variables derived from a 17 months of CDR in a Latin-American coun-

try. They found that a Multivariate Autoregression Moving Average model, which

estimates future values of the dependent variable based on previous values of it-

self and other time-series, offers an improvement over a univariate model that only

takes into account previous values of the dependent variable time-series: R2 = 0.65

for predicting employment rate one month ahead and R2 = 0.31 for predicting two

months ahead. Visual inspection of the results also shows that the model is fairly

accurate at predicting the direction of change (i.e., whether the employment rate

will rise or fall) if not the exact value. These results are promising, however it is not

clear how significant a benefit is gained from predicting employment rates one or

two months in advance, since policy affecting employment tends to be implemented

and evaluated over longer time scales. Indeed, quarterly or annual forecasts of so-

cioeconomic data may be more appropriate, but no research has so far investigated

the potential for long term forecasts, most likely owing to data limitations.

Blumenstock et al. (2010) present a method for estimating the wealth of an

individual mobile phone user in Rwanda. For a sample of 2200 users, the au-

thors collected survey responses pertaining to demographics and asset ownership

and from the responses constructed a composite wealth index using principle com-

ponent analysis. They then compared the wealth index with simple mobile phone

behaviour variables derived from the CDRs and billing information of those same

users. A linear model predicting expenditure from the CDR variables achieved

R2 = 0.21, indicating a moderate strength relationship between expenditure and

mobile phone usage. A recent followup study similarly surveyed a sample of users,

this time 856, and created a wealth index from the responses (Blumenstock et al.,

2015). The modelling process was enhanced by generating thousands of features

derived from the CDR data and using elastic net regularisation to remove irrele-
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vant features. A cross-validated score of R2 = 0.85 was achieved when predicting

wealth from the CDR based model. However, with thousands of features compared

to 856 data points, cross validation may not be enough to guarantee that the model

has not overfit. Rather, a final validation that is not included in the feature selec-

tion step ought to be reserved and final performance scores reported on this unseen

portion of data. Nevertheless, these results indicate that there is a strong potential

to predict individual wealth from CDRs and in turn predict the aggregated wealth

of geographical areas. The approach presented in these works represents an ideal

situation for examining relationship between mobile phone use and socioeconomic

factors and the results are an important piece of evidence showing that CDRs are a

valuable resource in this context. However, by linking individual CDRs with per-

sonal demographic surveys this comes at rather a high cost, both in terms of human

resources to conduct and process the surveys (albeit this cost is just a fraction of

the cost of a DHS survey) and in terms of individual privacy. Because of these con-

straints it is less feasible to implement this method on a large scale. Instead, what is

needed is a method that does not rely on linking data sources pertaining to the same

individual.

Gutierrez et al. (2013) present what could be called the ‘top-up’ model of

wealth. In developing countries the prevailing mobile subscription method is pay-

as-you-go, as opposed to fixed-term contracts. The reasonable, but as yet unval-

idated, hypothesis is that call time credit top-up behaviour reflects the wealth of

the phone user (i.e., poorer people are likely to top-up their phone credit in small

amounts fairly frequently, whereas wealthier people will top-up infrequently in

larger amounts). Applying their model to a dataset of individual call records from

Côte d’Ivoire, they derive the wealth indicator proxy and map the average and di-

versity (standard deviation) of wealth of different regions in the country. They also

identify communities in a social network constructed from the call data and measure

the diversity of their wealth indicator within communities. An interesting result is

that overall diversity of top-up behaviour within a region is in some cases accompa-

nied by low diversity within the communities in that region, suggesting some form
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of segregation. However, before the top-up model is validated against some known

wealth indicator only speculative conclusions can be drawn.

2.1.2 Aggregated CDRs

Privacy violation (whether perceived or real) is a potential stumbling block for all

the above works which require individuals’ personal phone records in order to com-

pute the model features. To bypass this problem other work has considered fea-

tures derived only from aggregated CDRs in which no personally identifiable data

is present. For example, Mao et al. (2013) looked for correlations between features

of CDRs aggregated to BTS towers in Côte d’Ivoire and economic indicators of ten

centres of economic activity. They find that the ratio of total outgoing calls to total

incoming and outgoing calls correlates strongly with annual income (r = 0.80) and

poverty rate (r =−0.83). No explanation is proposed for this relationship, but it is

similar to a feature, introversion, we formulated and tested on a different poverty

dataset (see Chapter 5, note that this work and ours were submitted independently

to the same venue), which is the ratio of internal flow to external flow. The intuition

is that the more isolated (larger introversion ratio) a region, the less opportunity

for economic development, and indeed we found a strong negative correlation. The

authors also tested a number of other features which showed no correlation. Intrigu-

ingly, one such feature that showed no correlation was diversity (the same entropy

based measure described above) which we tested ourselves, yet we found a strong

correlation. This may be down to the different ground truth datasets used (which

highlights the need to consider sensitivity of these methods to data quality, a fac-

tor we explore in Chapter 4. Another possible explanation for this discrepancy is

that we computed the features for each BTS tower and then aggregated the results

for each region, whereas here the authors first aggregate the flow for each region

and then compute the variables. Edge weight on a highly aggregated network be-

comes much more homogeneous compared to a disaggregated network, an effect

we discuss further in Chapter 3.

More recently, Bruckschen et al. (2015) have attempted to expand the scope of

these efforts to other socioeconomic indicators, such as literacy levels, as well as
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increase the spatial resolution at which estimates are produced. The authors create

a linear model to predict these indicators from a number of features of mobile call

and text communication in Senegal. In many cases good performance is reported,

for example R2 = 0.87 for the model fitted to poverty rate. However, the models

are fitted at the subnational level with just 14 data points and a process of forward

and backward stepwise feature elimination and selection is employed to select the

best performing feature set. Subsequently, there appears to be a significant chance

the model is overfitted to the data and a robust assessment of model performance on

unseen data has not been provided.

2.2 Satellite Imagery

Researchers have also investigated an alternative to directly mining behavioural data

or content, which is to use satellite imagery (often referred to as remote sensing) to

identify the visual signs of economic development. An advantage of this approach

is that satellite imagery covering the entire globe is openly available from a number

of sources, thereby avoiding the hurdle of the proprietary nature of many other data

sources considered here. As early as 1997, the total area lit by Night Time Light

(NTL) measured from satellite imagery was shown to correlate with a country’s

Gross Domestic Product (Elvidge et al., 1997) and later for more countries (Doll

et al., 2000; Elvidge et al., 2001). Noor et al. (2008) analysed the correlation be-

tween NTL and an asset-based wealth index for administrative regions of several

African countries. They found that the mean NTL level (measured as brightness

per pixel) correlated strongly with the wealth index (Pearson’s r = 0.64, Spear-

man’s rank coefficient ρ = 0.79) at the administrative level. Although these works

demonstrate a clear relationship between NTL and wealth, the utility for targeting

the poorest areas or monitoring effects of policy interventions is limited by the ge-

ographical scale of the analyses. Furthermore, work which attempts to estimate

poverty at the small area level suggests that the relationship does not hold at a finer

level of granularity. McClellan et al. (2013) looked at the relationship between NTL

and small area poverty levels at two periods in time in Bangladesh. They found
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that in 2000 NTL could estimate poverty levels reasonably accurately, but in 2005

the correlation had disappeared. In addition, there was no correlation between the

change in NTL intensity and the change in poverty level. The results suggest that

penetration of electricity availability has reached saturation, consequently removing

the signal previously present.

Greater success has been achieved recently by Jean et al. (2016) who employ

convolutional neural networks to improve the accuracy of predictions derived from

satellite imagery. Their models exploit not only night time lights but also feature

visible in day time, such as roofing material and roads. They test their approach on

five African countries and report good R2 values when comparing predicted wealth

to ground truth data (also taken from the DHS survey in each respective country),

ranging from 0.55 to 0.75. Of particular note is that they also assessed predictions

made by models trained on different countries’ data, with most R2 values ranging

between 0.40 and 0.68 in these cases, demonstrating the potential for this approach

to be able to provide wealth estimates for countries where no ground truth data is

available. However, while seemingly impressive from a scientific point of view, it

is not clear whether this level of accuracy is high enough to warrant implementation

in practice. Moreover, a potential shortcoming of this work is that, like much of

the research already discussed, no baseline has been established against which to

compare the results. It may be the case that similar accuracy could be achieved

using only population data and readily available spatial data.

Researchers have also combined features derived from satellite imagery and

CDR data. Steele et al. (2017) found that separate CDR and remote sensing

models performed comparatively well when estimating the DHS wealth index in

Bangladesh, and that a combined model offered a modest improvement over the

separate models. Two shortcomings of the remote sensing based model as compared

to the CDR based model noted were that the currently available spatial resolution

of open satellite imagery is too low to distinguish between urban neighbourhoods

within a city, and also the temporal resolution is low, with updates to satellite im-

agery only being made available every few years.
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2.3 Social Media

The explosion of user-produced online content in recent years has led researchers to

ask whether we can study this content to find new ways to gauge the well-being of

populations. Platforms such as Twitter and Facebook encourage users to frequently

post status updates, opinions and other such content, as well as responses to other

users’ posts. This content is ripe for application of Natural Language Processing

(NLP) techniques that involve the analysis and quantification of different aspects of

unstructured text data, including the classification of the emotion or sentiment con-

tained in the text and determining the topic(s), or what the text is about. In addition,

such content is often geo-tagged, meaning that aggregated characteristics of this

content can be associated with particular locations. As well as textual content, plat-

forms such as Foursquare and Facebook-Places also contain explicit geo-tagging

information, i.e., users recording and sharing visits to certain locations, providing

insight into the usage patterns and qualities of particular locations. Finally, online

social media platforms generally encourage users to connect with one another, for

example as friends on Facebook or followers on Twitter. These relationships con-

stitute rich social graphs that can be further mined to uncover the interactions and

relationships between users and locations.

Kramer (2010) developed a method for approximating Gross National Happi-

ness (GNH), a measure derived from the self-reported satisfaction with life scale

(SWLS) (Diener et al., 1985; Pavot et al., 1991), based on the difference in rate of

positive and negative words present in Facebook status updates . Although the aim

is to provide an unobtrusive measure of subjective well-being at the national level,

validation of the work took place at the individual level; a hierarchical regression

model is used to fit SWLS scores to individual happiness scores of a sample of

users who also filled out a survey. SWLS was found to be a ‘significant’ predictor

of Facebook happiness for this sample, however, the correlation between SWLS and

happiness was low (r = 0.17). Furthermore, a follow up study of Facebook Gross

National Happiness (FGNH) presents contradictory results (Wang et al., 2012): no

correlation was found between FGNH and SWLS but instead a moderately strong
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correlation (r = 0.72) was found between FGNH and the rate of negative words.

The authors cite several possible explanations for their results, including limitations

in the natural language processing techniques and a misalignment between what is

captured in FGNH and SWLS (current mood state and the degree to which aspi-

rations have been met, respectively). In conclusion, although FGNH is not fit to

replace GNH, there does appear to be a signal in the data, and given that the model

operates at the individual level, a finer level of spatial aggregation ought to be pos-

sible. Further research is needed to determine whether Facebook status updates

provide a real window into people’s state of well-being. A major drawback to this

endeavour is of course the risk that users will perceive it to be an encroachment on

their privacy.

Work that has begun to investigate the geographical variation in online senti-

ment includes Quercia et al. (2012a), who found that sentiment expressed in tweets

from Twitter users living London, disaggregated by census area, correlates moder-

ately with deprivation in the area (r = 0.37). Users from less well-off areas tend to

tweet more negatively compared to users from wealthier areas. Note that in this case

deprivation is measured using the IMD, which is composed from various socioeco-

nomic indicators rather than self-reports, and which suggests that current mood state

is more closely related to current circumstances than it is to overall satisfaction with

life. Quercia et al. (2012b) also found that the topic profile of tweets in different

areas of London can predict deprivation. A linear regression model fitting topic

distributions to IMD achieved R2 = 0.49. This a promising result suggesting that

the well-being of communities could be reasonably estimated by monitoring the

content of publicly available socially generated content. Moreover, there is plenty

of room for improvement since these studies were relatively small scale (just 573

Twitter profiles after filtering) and results were presented for 78 areas of London

- fairly low resolution for a city of this size. By scaling up orders of magnitude

it ought to be possible to improve the accuracy of well-being estimates and disag-

gregate at a much finer level of granularity. Stronger confirmation of the relation

between topics and deprivation also requires a longitudinal analysis to determine
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whether significant changes in topic distributions occur over time. Privacy is less of

a concern in the case of Twitter data, since the vast majority of content is already in

the public domain.

Moving on from textual content and looking instead at location-based be-

haviour, Quercia and Saez (2014) studied the land usage data generated by users

of Foursquare and extracted metrics that were found to correlate with deprivation

in London. Venerandi et al. (2015) extended this work to include two more large

urban areas in England and also incorporated data from OpenStreetMap (OSM), a

crowd sourced, freely available online mapping service. OSM users record location

information explicitly to create accurate and free geographical maps, as opposed to

Foursquare users, whose primary aim is to record their personal location history.

The authors found that the relative prevalence of certain types of venue, such as

‘flea market’ or ‘embassy’, could be associated with the level of deprivation in the

neighbourhood, as measured by the IMD. As with Twitter, the data used in these

studies is already in the public domain, therefore privacy violation is not a concern.

However, this approach has so far only been tested in very large, very densely popu-

lated urban regions in England. In rural areas and smaller urban enclaves, where the

variety in types of amenity and point-of-interest will be much lower, it is unlikely

that the associations found in large urban areas will hold.

Considering the aim of inferring poverty or wealth in developing countries, all

online social media platforms suffer the same limitation, namely that the user base

is heavily concentrated in richer countries, and moreover, where a user base does

exist in developing countries it will not be representative of the population at large.

2.4 Transit data

We have seen how geolocated CDR and social media data have been linked to

poverty and well-being. It is no surprise then that other sources of data that explic-

itly capture the movement of people have also been examined for this purpose. Such

sources include automated fare collection (AFC) systems in rail and bus networks

that record the number of passengers travelling between locations. Another example
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is the GPS traces of taxis and ride sharing services, which can reveal the movement

of people around city in a potentially more fine-grained manner, although there is

an obvious demographic bias in this case. To the best of our knowledge there has to

date been no attempt to date to link taxi GPS traces to poverty or well-being.

An example of research that investigates the relationship between mobility

and neighbourhood deprivation is that of Lathia et al. (2012), who use Oyster card

(AFC) data from London’s underground rail network. The authors first infer impor-

tant locations of travellers based on their travel history and compute a flow matrix

based on visits from resident neighbourhoods to others. First they find that total

flow into a station (total number of travellers rather than number of trips) correlates

weakly with IMD (r = 0.21, p < .001), suggesting that deprived areas tend to re-

ceive more visitors. Next the authors formulate two metrics representing homophily

and heterogeneity of neighbourhoods. Homophily is the degree to which nearby

neighbourhoods are similar to each other, and heterogeneity measures the variety in

adjacent neighbourhoods, where, in both cases, similarity between neighbourhoods

is based on IMD. No correlation was found between deprivation and homophily,

and only a very week, negative correlation with heterogeneity (r = 0.16, p < .001).

These are interesting findings, however, given that the correlation coefficients are

low, further analysis is needed to confirm that the relationship is not an artefact of

the important location inference process or the way flows have been defined.

Smith et al. (2013) also used London AFC data, plugging in a number of mo-

bility based features into linear regression and support vector machine models in

order to predict IMD, as well as the constituent factors that make up the IMD sep-

arately, such as education levels and crime, among others. The authors achieved

an accuracy of up to 80% in some cases, demonstrating the potential for mobility-

based features to accurately predict deprivation in an urban environment. However,

the validity of the results is limited by the very low geographical coverage of the rail

network. Although the rail network provides access to much of the city, only around

5% of census areas contain stations and consequently the mobility data could only

be related to this small sample.
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2.5 International flow data

Notable related work that does not fit easily into one of the above categories is that

of Hristova et al. (2016), who examine several international flow networks including

trade, postal, migration and aviation networks, and their relationship to national

socioeconomic indicators such as GDP per capita, the Human Development Index

and poverty rate. The weighted out-degree (i.e., total outgoing volume) of the postal

and trade networks in particular was found to be strongly negatively correlated with

poverty, as was the non-weighted out-degree (i.e., the total number of countries

to which post and trade is sent). The main limitation for present purposes is that

the international flow networks do not reveal any variation within each country.

However, the postal network in particular appears to have the potential to be applied

within a country’s borders if the data were accessible and could provide a picture of

economic wealth at the spatial granularity of local sorting offices.

2.6 Summary

Research has shown that it is possible to extract features of large-scale human be-

havioural and communication data that correlate with socioeconomic factors of ge-

ographic areas, although results are mixed and there remains significant room for

novel contributions to this new research area. Of the works looked at, in some case

the issue of geographical scale has not been solved, that is, the analysis takes place

at too course a level of granularity to be of use to policy makers (Doll et al., 2000;

Elvidge et al., 2001; Noor et al., 2008; Kramer, 2010; Hristova et al., 2016; Steele

et al., 2017), and in others the relationships investigated are ambiguous (Wang et al.,

2012; Lathia et al., 2012; Smith et al., 2013). More promising work has shown that

it is possible to predict the value of deprivation indicators by combining several

features of human behavioural dynamics into a predictive model (Soto et al., 2011;

Frias-Martinez et al., 2012; Frias-Martinez and Virseda, 2012; Blumenstock et al.,

2010, 2015; Gutierrez et al., 2013). However, results are somewhat inconsistent

and their evaluation is incomplete in the sense that it is not clear what improvement

is offered over simpler methods. There also remains room for significant improve-
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ment in terms of accuracy and the data requirements for training the models. To help

place this thesis within the wider literature and to support the choice of source data

type, we present a summary of the pros and cons of using each particular data type

for the purposes of estimating poverty or related socioeconomic factors in Table 2.2.

Individual CDRs are an ideal data source in many respects. Mobile phones

have high penetration rates, making CDR data more representative of the popula-

tion, even in developing countries. It also has high geographical coverage and high

spatial resolution. That is, the BTS towers tend to cover the majority of populated

land within a country and BTS tower density increases with population density,

meaning smaller areas can be disaggregated in high density locations. CDR data

essentially provides a temporally continuous picture of human behaviour, meaning

that poverty estimates can be updated continuously. Individual data also has high

heterogeneity, or the fine details of individual behaviour make it more likely that

distinguishing features indicative of poverty and wealth can be uncovered. How-

ever, this detail comes at the cost of raising privacy concerns. Aggregated CDR

data, on the other hand, trades in some of the detail of individual CDR data in order

to side step these concerns. A significant loss in this aggregation is the ability to

characterise mobility patterns, as individuals can no longer be tracked by the BTS

towers they connect to. CDR data is of course proprietary, which can make it dif-

ficult for researchers to gain access. But despite this, CDR data is the most widely

studied data source and indeed, aggregation makes it easier for telecoms companies

to take part in data sharing arrangements, for example, as part of their corporate

social responsibility agenda.

Satellite imagery, although privacy preserving and open, suffers from having

low spatial resolution that prevents sufficient disaggregation in densely populated

areas, and low temporal resolution, preventing timely updates to poverty estimates

and monitoring of policy effects. Social media data has the benefits of high resolu-

tion and heterogeneity, but the low penetration rates and low geographical coverage

make this kind of data particularly inadequate for developing countries at present.

Transit data similarly suffers from low geographical coverage as public transport
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systems tend to be limited to denser areas. Finally, the various international flows

cannot be used for subnational poverty estimates, but do have some potential, par-

ticularly postal networks, if similar subnational data is made available.

Given the considerations noted above, in this thesis we have chosen to focus on

aggregated CDR data as our source of human behavioural information. Aggregated

CDRs strike a balance between detail and privacy, and in doing so provide an easier

route to wider exploitation. Furthermore, in this work we show that aggregated

CDR data can still be used to produce wealth estimates, thereby justifying this trade

off.



Table 2.2: Pros and cons of different data sources

Data Type Pros Cons Key Works
Individual CDR high penetration; high geographical

coverage; high temporal and spatial
resolution; high heterogeneity

privacy concerns; data is proprietary Eagle et al. (2010); Soto et al.
(2011); Frias-Martinez et al. (2012);
Frias-Martinez and Virseda (2012);
Blumenstock et al. (2010, 2015);
Gutierrez et al. (2013); Steele et al.
(2017)

Aggregated CDR high penetration; high geographical
coverage; high temporal and spatial
resolution; privacy preserving

low heterogeneity; data is propri-
etary

Mao et al. (2013); Bruckschen et al.
(2015)

Satellite Imagery complete geographical coverage;
privacy preserving; open data

low spatial and temporal resolution Elvidge et al. (1997); Doll et al.
(2000); Elvidge et al. (2001); Noor
et al. (2008); Jean et al. (2016);
Steele et al. (2017)

Social Media high temporal and spatial resolu-
tion; high heterogeneity; possibly
open data

possible privacy concerns; low pen-
etration/high bias; low geographical
coverage

Kramer (2010); Wang et al. (2012);
Quercia et al. (2012a,b); Quercia
and Saez (2014); Venerandi et al.
(2015)

Transit high temporal and spatial resolu-
tion; possibly privacy preserving

low geographical coverage, propri-
etary data

Lathia et al. (2012); Smith et al.
(2013)

International Flows possible high temporal resolution;
high geographical coverage

very low spatial resolution Hristova et al. (2016)



Chapter 3

Baselines

When developing and testing a novel approach to solving a problem, it is important

to establish the benefit of the new approach over alternatives. This is typically done

by treating an existing approach, or where one is not available, a simplified version

of the novel approach, as as a baseline, or benchmark, and making a direct com-

parison to the novel approach according some defined performance measure. This

is standard practice when assessing any proposed scientific advancement, such as

a modification to a machine learning algorithm that aims to increase performance

or efficiency. It is equally, if not more, important when considering practical ap-

plications, when the novel approach may require greater resources to implement

compared to existing or simplified approaches and thus by comparing performance

an objective value judgement can be made regarding the trade-off between the costs

and benefits of adopting the new approach.

Research that seeks to overcome the problem of missing poverty data by ex-

ploiting human digital traces, including all of the works discussed in Chapter 2,

has thus far progressed by measuring its success against the alternative of having

no ground truth (i.e., poverty data, wealth index or well-being) estimates at all,

or rather, implicitly making a comparison against a dumb baseline such as a ran-

dom guess (possibly with values drawn from a specific distribution, as below) or a

constant value, both of which will have minimal predictive power. In this light, the

level of accuracy achieved may be considered more remarkable than in fact it should

be. Although the cost of acquiring and analysing mobile phone data is likely to be
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significantly less than that of undertaking a comprehensive household survey, it is

nevertheless non-trivial. Therefore, the benefit of this kind of approach over simpler

and more readily available means of estimating poverty needs to be established. To

this end, in this chapter we perform a detailed analysis of the socioeconomic and

population data at hand, from which we extract two realistic baseline estimators that

will later be used as performance benchmarks for our CDR based models presented

in Chapter 5. In Chapter 5 we will then provide an extensive comparative analysis

of the baseline models against CDR-based models, and establish the circumstances

under which CDR derived features do indeed add value to poverty prediction mod-

els, and to what extent.

In real-life settings, two scenarios can occur: no ground truth at all vs some

ground truth. Correspondingly, two approaches can be taken: applying a general

model vs retraining on the available ground truth in order to produce a bespoke, and

likely more accurate, model. The first approach aims to produce a model fitted to a

sample ground truth dataset that can then be utilised in situations where no ground

truth data pertaining to poverty or socio-economic status are available, as would be

the case for countries in which no recent survey has been undertaken. Research of

this kind will produce general models from the study data that can, in principle at

least, produce predictions or rankings for other countries or regions without the need

for ground truth data from these new regions (Smith-Clarke et al., 2014; Bruckschen

et al., 2015; Pokhriyal and Dong, 2015; Mao et al., 2013), although such ground

truth would of course still be desirable in order to validate the estimates.

The second approach would follow the same modelling method, but also in-

volve retraining on ground truth data from the region of interest in order to fit a

bespoke model for that region. This could be the case if a survey had been under-

taken in the past, in which case a model may be fitted and then projected forward

in time. Or, if a survey had been conducted recently but only for a subsection of

the region (perhaps to cut costs, with the plan to then interpolate the results to un-

surveyed locations), in which case the model can be used to make predictions for

the remaining unsurveyed locations (Soto et al., 2011; Frias-martinez et al., 2012).
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We refer to the two approaches as the general model approach and retrained model

approach respectively.

Works taking either approach appear to demonstrate the value to be gained

from mining CDRs in terms of the predictive power of poverty estimates. However,

they all suffer from the same major limitation; namely, that they have yet to establish

a reasonable baseline against which a fair comparison can be made. The implicit

assumption is that the best available baseline model would be a random guess, or

rather, no prediction at all, and therefore any improvement over this represents a

positive result. Yet the reality is that socio-economic data is strongly correlated

with population density and, furthermore, often contains a strong degree of spatial

autocorrelation. Consequently, we ought to expect a baseline model that takes one

or both of these factors into account to perform significantly better than a simple

random guess.

In order to measure the real added value of mining CDR features to estimate

poverty in developing countries, we need to show that our CDR based model out

performs alternatives. In particular the aim is not to show that a CDR model can

outperform the gold standard of estimating poverty by manual survey, an approach

which has a much greater cost, but rather the aim is to show that a CDR based model

can outperform readily available, low-cost alternatives. Additionally, a baseline

model will need to provide predictions for the same data points and at at same

level of spatial granularity at which will be operating later in Chapter 5 when we

construct models using CDR features (discussed further in the next section). To

this end, we will produce two fair baseline models. The first exploits correlations

with population population density, corresponding to the general model case and to

be used when no ground truth data is available. The second additionally leverages

spatial auto-correlation, corresponding to the retrained model case and to be used

when partial ground truth data exists.

We next introduce the Demographic and Health Surveys (DHS) data, which is

used as ground truth for poverty throughout this thesis, before presenting a detailed

spatial analysis of this data and an investigation its relationship with population
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density - two factors which will inform the development of the baseline models.

3.1 Socioeconomic Data

Demographic and Health Surveys (DHS) are conducted in several developing coun-

tries, usually in collaboration with the national statistical agency and other organ-

isations. Surveys are conducted by interview with household members in order

to guarantee a certain level of quality and consistency in survey responses. How-

ever, this manual process limits the population coverage that is practically feasible.

Subsequently, a household sample process is designed such that the aggregated re-

sponses are statistically representative of the population at the largest subnational

administrative region. At this level of aggregation there are normally only a handful

of regions. In Senegal there are 14 and 11 in Côte d’Ivoire. The household sam-

pling process consists of several stages. First, enumeration areas (EAs) are stratified

by an urban or rural designation within each subnational region; then, within each

stratum, a certain number of EAs are selected with a probability proportional to

their size. EAs normally consist of neighbourhoods in urban areas and villages, or

groups of villages in rural areas. Finally, households are randomly selected with

uniform probability within each EA selected in the previous stage. The group of

selected households within each EA are known as clusters. That is, a cluster is a

random sample of households, normally between 15 and 30, from within a single

EA. The GPS coordinates of the centroid of each cluster is provided with the DHS

in order to enable spatial analysis of the survey data. However, in order to maintain

anonymity of survey respondents, cluster coordinates are obfuscated by randomly

displacing them up to 2 km for urban clusters and 5 km for rural clusters, with 1%

of rural clusters being displaced up to 10 km.

Table 3.1 presents the number of clusters sampled with GPS coordinates

recorded for both Senegal and Côte d’Ivoire, together with their total population

and surface area. It is evident that Côte d’Ivoire is more sparsely populated, with

approximately 15 million people living within 322km2, compared to Senegal, where

20 million live in 197km2. The issue of data sparsity will be addressed in Chapter 5.
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The Senegal DHS took place in 2012-13 and consists of 391 clusters, 6 of which

are missing GPS coordinates. The Côte d’Ivoire DHS dates from 2011-12 and con-

tains 351 clusters, 10 of which are missing coordinates. Cluster locations and their

relative wealth (as measured by the DHS asset index, described below) are mapped

in Figure 3.1. Cluster density closely follows population density, and it is apparent

from these figures that more remote areas tend to be poorer and denser areas tend to

be wealthier, including in the largest city in each respective country, shown in the

zoomed in views on the right. This pattern is analysed in more depth in Section 3.3.

The DHS includes questions regarding the ownership of certain assets, such as

mobile phones, computers, vehicles and refrigerators, as well as questions related

to living conditions, such as access to electricity, sanitation and material used for

flooring. These factors are combined using Principal Components Analysis into

an index representing the level of wealth of each household. Note that the indices

of Senegal and Côte d’Ivoire are computed separately, therefore the values are not

directly comparable. When estimating poverty, we operate at the cluster level rather

than that of individual households, we thus aggregate the wealth index by taking the

median wealth index of households in the cluster to represent the average wealth at

that location. Average wealth is conceptually distinct from the notion of poverty

rate, which measures the proportion of households classified as poor within each

cluster. Average wealth may mask the existence of poverty within the cluster if

it coexists with high wealth within the same cluster. Although use of the median

will mitigate against the influence of extreme wealth, it could still fail to reflect the

existence of poverty in an otherwise wealthy area.

To represent poverty rate from the wealth index data, we can take the per-

centage of households in the cluster that are among the poorest fifth of households

Table 3.1: DHS and country summary statistics

Senegal Côte d’Ivoire

Population 20 million 15 million
Area 197 km2 322 km2

Clusters 385 341
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(a) Côte d’Ivoire (b) Abidjan

(c) Senegal (d) Dakar

Figure 3.1: Median wealth at DHS cluster locations in (a) Côte d’Ivoire (b) Senegal and
their respective largest cities (c) Abidjan and (d) Dakar

nationally. This differs from median wealth in that it is invariant to the distribution

of wealth among the top four fifths of households within the cluster. In other words,

extreme poverty within the cluster is not masked by the coexistence of wealth within

the same cluster. Figures 3.2 and 3.3 show the distribution of wealth and poverty

rate, respectively, as derived from DHS data for the Senegal and Côte d’Ivoire. Fig-

ure 3.4 illustrates the strong correlation between wealth and poverty rate. Given this

strong correlation and the fact that the distribution of median wealth is less skewed

and closer to a normal distribution compared to poverty rate, we focus our efforts

on modelling this attribute rather than duplicating the analysis.

3.2 Wealth and population density
In this section we examine the relationship between wealth and population den-

sity, which will later inform the construction of the baseline models. In ad-
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(a) Senegal (b) Côte d’Ivoire

Figure 3.2: Distributions of median wealth over the DHS survey clusters.

(a) Senegal (b) Côte d’Ivoire

Figure 3.3: Distributions of poverty rate over the DHS survey clusters.

dition to the DHS data, we also obtained gridded population estimates from

www.worldpop.org.uk, an organisation that produces accurate and up to date, high

resolution population maps. Using this gridded population data we compute the

population density of a cluster centroid to be the population with a circle of radius

1 km around the cluster point.

A link between population density and prosperity is often posited, with many

mechanisms proposed to explain this relationship, including efficiency of service

provision and increased access to diverse sources of information and opportunity

(Pan et al., 2013; Gary S. Becker, 1999; Bettencourt et al., 2007). For Senegal

and Côte d’Ivoire, this relationship can clearly be seen in Figure 3.5, where wealth

(as computed before) is plotted against population density, and where denser areas
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(a) Senegal (b) Côte d’Ivoire

Figure 3.4: The relationship between median wealth and poverty rate for DHS clusters

(a) Senegal (b) Côte d’Ivoire

Figure 3.5: Median wealth in relation to population density.

tend to also be wealthier and have lower concentration of poverty. The Spearman’s

rank correlation in Senegal is ρ = 0.72 and in Côte d’Ivoire it is ρ = 0.71, further

indicating a fairly strong correlation between population density and wealth in the

two countries. We can see a marked division between urban and rural locations,

with urban locations tending to be wealthier. Indeed, in Côte d’Ivoire no urban

cluster contains a household among the poorest 20%.

3.3 The spatial distribution of wealth
Figure 3.1 shows the average wealth at DHS cluster locations. A degree of spatial

clustering of wealth is evident, with wealthier clusters tending to appear in close

proximity, although a significant number of exceptions are apparent. These figures
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alone also fail to depict the level of clustering at smaller scales.

We therefore quantify the level of spatial clustering further with a correlogram,

which measures the similarity of the variable of interest (i.e., wealth) at various

distances. The similarity measure used is Moran’s I (Moran, 1950):

I =
N
W

∑i ∑ j wi jziz j

∑i z2
i

(3.1)

where N is the number of points (cluster centroids), zi = (yi− ȳ) is the deviation

from the mean in the quantity of interest (median wealth in our case). The spatial

weights matrix wi j is derived from the distance between point pairs, with zeroes

on the diagonal (i.e., wii = 0), and W is the sum of all wi j. To produce the correl-

ogram, points pairs are divided into bins according the distance between them, at

2 km increments. Moran’s I is then calculated separately for the members of each

bin. Positive values of Moran’s I indicate the presence of positive spatial autocorre-

lation and Figure 3.6 depicts the decrease in the strength of spatial autocorrelation

of median wealth as the distance between points increases. Note that Moran’s I is

not guaranteed to fall between 1 and -1.

It is clear from this simple analysis that estimates of wealth at unsampled points

derived from nearby sampled points would be significantly more accurate than ran-

dom guessing. Subsequently, a baseline against which to evaluate predictions from

CDR data ought to take proximity to sampled points into account, if these were

available. However, it is also clear that, in the case of Senegal and Côte d’Ivoire,

many locations are not within range of sampled points for such an approach to be

reliable on its own. Furthermore, estimating unsampled locations solely as a func-

tion of nearby sample points is likely to miss locations which are outliers relative to

their neighbours, and these are arguably among the most important to identify. To

establish the extent that this is likely to occur, we measure spatial autocorrelation

within the neighbourhood of each point using local Moran’s I, or Local Indicators
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(a) Senegal

(b) Côte d’Ivoire

Figure 3.6: Correlograms showing the strength of spatial autocorrelation in wealth accord-
ing to distance intervals. Distances are binned at 2 km increments with bins
containing a minimum of 55 point pairs. Vertical lines indicate the approxi-
mate distance at which spatial autocorrelation reduces to a level expected from
randomly placed points (fluctuation after this line is not statistically significant
and can be considered as noise).

of Spatial Autocorrelation (LISA) (Anselin, 1995):

Ii =
zi

m∑
j

wi jz j (3.2)

where m = ∑i z2
i /N. Figure 3.7 maps the local Moran’s I of average wealth in the

neighbourhood of each sample point at the spatial scale corresponding to the ap-

proximate distance at which the level of spatial clustering reduces to that expected

from randomly placed points (i.e., 29 km in Côte d’Ivoire and 64 km in Senegal,

indicated by the vertical lines in the correlograms of Figure 3.6). As can be seen,

many points have too few neighbours to allow a statistically significant estimate
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to be computed at the 5% level (p < .05), suggesting that poverty estimates de-

rived from proximity alone would perform poorly in these areas. Furthermore, the

figures also reveal several sample points negatively correlated with their neighbour-

hood, which again indicates that relying solely on spatial dependency for estimating

unsampled points would be inappropriate in this context.

(a) Côte d’Ivoire

(b) Abidjan

(c) Senegal

(d) Dakar

Figure 3.7: Local Moran’s I of wealth at DHS cluster locations in (a) Côte d’Ivoire (b)
Senegal and their respective largest cities (c) Abidjan and (d) Dakar. Shape
represents the sign of correlation, size of shape represents the magnitude of
correlation and solid shapes indicate significance at the 5% level. It can be
seen that there exists a number of cluster points that are negatively (square)
correlated with their neighbours.
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Considering these simple observations, we stipulate that a realistic baseline

prediction method ought to take population density into account. In particular, we

propose to do so by computing the log of population density, instead of using a

binary urban/rural indicator variable, both because the urban/rural designation may

not always be readily available, and because it is more appropriate to use a contin-

uous predictor to estimate a continuous outcome.

3.4 The Baseline Models
We now leverage the above observations to construct two simple yet well-grounded

baseline models to estimate poverty: one exploits the existing correlation between

poverty and population density (as evidenced in Section 3.2); the other expands it,

by adding the spatial auto-correlation of poverty (as evidenced in Section 3.3). The

former is most suitable when no ground truth poverty data about a country exists;

the latter is applicable when partial ground truth data exists instead for a subset of

clusters. In order to later assess the predictive power of these new baseline models,

relative to a random baseline, we first produce a random baseline ourselves.

3.4.1 Random Baselines

First we created two random baseline models that consist of values drawn from dis-

tributions that approximate those exhibited in Figure 3.2. This requires two steps:

we first take 5000 random draws from two distinct normal distributions, and con-

catenate the results to form a vector of length 10000 (the number of draws was

chosen simply to be large enough to provide a stable distribution, whilst still being

small enough to be fast to compute). The parameters of the normal distributions in

the first step were chosen such that the probability density functions of the random

vector in the second step visually resemble the density functions of the observed

data. For Senegal, these are N (20,8) and N (58,12); for Côte d’Ivoire, these are

N (8,6) and N (31,10).

To measure the predictive performance of these random baseline models we

have computed the mean absolute error (MAE), and also Spearman’s rank corre-

lation coefficient (ρ) since we are interested in predicting the relative ordering of
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locations too. We take 1000 draws (again chosen to be large enough to provide a

stable mean) of size n from each respective sample distribution, where n is the num-

ber of clusters, and compute the MAE and ρ with each draw, then take the mean

over all 1000 draws. Results are shown in Table 3.2. The MAE scores of wealth

(23.6 for Senegal and 16.6 for Côte d’Ivoire) provide the benchmark against which

to compare later model performance. As expected, the rank correlation of the ran-

dom predictions is effectively zero. Note that, although random, these baselines are

not the most naive predictions since we have injected some knowledge of the under-

lying distributions. This reflects the more realistic scenario of a researcher having

some background knowledge of the underlying distribution of wealth.

Table 3.2: Random baseline metrics

Wealth

Senegal
MAE 23.6

Spearman’s ρ 0.002

Côte d’Ivoire
MAE 16.6

Spearman’s ρ -0.001

3.4.2 Baseline Models

The first baseline simply consists of a regression model, where the independent

variable is the log of population density for each cluster area, µ , and the predicted

response variable ŷ will be the median wealth of each area:

ŷ = β · ln(µ)+ ε. (3.3)

For the second baseline, we add a spatially-lagged dependent variable:

zi = ∑
j

wi jy j, (3.4)

where y is the response variable, w is a weight that is inversely proportional to the

squared distance between points i and j, and ∑ j wi j = 1. This results in the linear

model,
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ŷ = β1 · ln(µ)+β2 · z+ ε. (3.5)

By using squared distance to calculate the weights, the effect of distant neighbours

on the lagged variable will be negligible for those points with relatively close neigh-

bours, whilst still allowing us to compute a lag for those points with no nearby

neighbours.

3.5 Results

(a) Senegal MAE (b) Senegal ρ

(c) Côte d’Ivoire MAE (d) Côte d’Ivoire ρ

Figure 3.8: Regression test scores for average wealth in Senegal (a, b) and Côte d’Ivoire
(c, d). Predictor variables in each model are, P: Population density, L: lag and
PL: population density + lag. Bands show the standard deviation.

To obtain a robust measure of predictive performance despite the relatively

small number of data points, we varied the proportion of training data and per-

formed 1000 iterations at each proportion, randomly splitting the datasets into train-

ing and testing subsets in each iteration. For the spatial-lag baseline, the lagged
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variable was computed using only members of the training set in each iteration.

Note also that the modelling is always performed separately for Senegal and Côte

d’Ivoire - the data from the two countries is not mixed. Figure 3.8 reports the MAE

and Spearman’s ρ computed with the test data.

The spatial and population density baselines significantly outperform the ran-

dom baselines in all cases, even with relatively few training points. For example,

when estimating wealth in Côte d’Ivoire the random baseline achieved a MAE of

0.210. With 50% training data this reduces to an MAE to 0.116 for the population

density baseline, 0.137 for the spatial lag baseline, and 0.110 for the baseline us-

ing both population density and spatial lag, the latter representing a 52% reduction

in error. As expected, the spatial lag baseline performs less well with fewer train-

ing examples, whereas the population density baseline performance metrics remain

fairly stable as training size increases. A similar story can be told for baselines in

Senegal.

3.6 Discussion

In this chapter, we have found a strong correlation between fine grained poverty

data and population density estimates, as well as a significant degree of spatial de-

pendency in the distribution of wealth. We have used these findings to inform the

construction of baseline predictive models against which we can fairly compare

CDR-based models.

This work is subject to some limitations, owing largely to characteristics of the

available data. For our analyses, we have utilised DHS surveys and explored the

effect of varying levels of training data. However, it should be noted that the sur-

vey clusters themselves represent only a fraction of the census enumeration areas

within each country. For example, in Senegal, the survey clusters represent only

4% of a total of 9733 enumeration areas, and on average only 20% of households

are surveyed within each selected enumeration area. Consequently, some caution

is appropriate when extrapolating the results presented here to the entire country.

However, the sampling methodology employed by the DHS surveyors is such that
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there is nothing inherently different between the selected enumeration areas and un-

selected ones, therefore, we would not expect modelling outcomes to differ greatly

were we to have access to fully representative data. An important direction for

future work would be to perform a comprehensive analysis of a country in which

poverty or socio-economic status data is available for every enumeration area.

In addition, we have not explored the effect of the random displacement that

is applied to DHS cluster and BTS tower locations. This will introduce a degree

of uncertainty in both the predictor and response variables, but we expect this to

be largely compensated for by the spatial smoothing that takes place when aggre-

gating predictor variables. Nevertheless, a proper investigation of sensitivity of our

modelling approach to such displacement would be prudent.

These results have important implications for the reset of this thesis, and in-

deed, other related research. Namely, that in order to fairly evaluate the performance

of CDR (or other data source) based models, a comparison must be made against

the performance of baselines such as those presented here, and moreover, it is not

sufficient to compare results only to a random baseline. In the next chapter we turn

our attention to the CDR data and to inform the development of our CDR based

models we explore the relationship between information diffusion and economic

development, before returning to the baseline models in Chapter 5, against which

we compare the performance of our CDR based models.



Chapter 4

Information Diffusion and Economic

Development

We have so far looked at existing research that seeks to use CDR data to predict

wealth in Chapter 2, before overcoming a common shortcoming in these works by

establishing baseline model performance in Chapter 3. Prior to presenting our own

approach that exploits patterns found in aggregated CDR data to predict wealth in

Chapter 5, we first aim to establish a firmer foundation on which to build up our

approach, and in particular, answer the question, why should we expect to be able

to derive a proxy for wealth or poverty from mobile phone data at all?

Mobile phone ownership and level of usage can reflect the owner’s wealth

to some extent (mobile phone ownership is one factor among many of which the

DHS wealth index is composed), and increased mobile phone adoption can also

be a catalyst for economic growth by providing easier access to information at a

reduced cost (Aker and Mbiti, 2010). The way in which social network struc-

ture mediates access to information has been identified as an important factor in

generating individual prosperity. For example Granovetter’s strength of weak ties

theory (Granovetter, 1973, 2005) and Burt’s theory of structural holes (Burt, 1992,

2009) suggest the degree to which personal networks overlap significantly impacts

the diffusion of influence and information through a social network. It has further

been shown that having a diverse set of contacts is strongly related to living in a less

deprived neighbourhood (Eagle et al., 2010).



59

As well as affecting individual well being, information flow is said to play

an important role in determining prosperity and the rate of innovation in cities.

Many characteristics of urban areas have been found to scale super linearly with

population size, including crime levels, the spread of infectious diseases, and also

economic development as measured by Gross Domestic Product (Arbesman et al.,

2009; Bettencourt et al., 2007, 2010). This relationship has been attributed to denser

social network formation since social networks tend to densify as the number of

individuals increases, which in turn increases the capacity of information flow (Bet-

tencourt, 2013; Pan et al., 2013).

These considerations suggest that ranking cities according to population should

provide some indication of their relative economic development. Indeed, the analy-

sis of the previous chapter, in which we used population density to define a simple

baseline estimator, corroborates this. However, even if such a baseline implicitly

captures the effect of information transfer within a city, it ignores the effect of in-

formation flowing between cities (and other areas) and instead treats cities as infor-

mational silos. Here, we take a wider scope by considering the information flow

between cities (and towns and rural areas), and study the relationship between dif-

fusion rates at this scale and wealth, as a means toward answering the questions

posed at the beginning of this chapter.

There are two main outcomes of this chapter. First, we construct simulations of

country-wide information diffusion processes and present the results, ranking areas

according to their access to information. We establish a strong relationship between

information diffusion and economic development, represented by the DHS wealth

index discussed in the previous chapter. In doing so we lay the ground work for the

feature engineering and predictive modelling of Chapter 5. Second, we examine the

affect on our results of several contextual factors. We find that the measured strength

of association between wealth and access to information is sensitive to the level of

spatial aggregation, the coverage of the mobile network, as well the reliability of

the ground truth data. These findings highlight important considerations for any

interpretation of mobile phone based socioeconomic indicators.
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Next we provide some background on information diffusion modelling, before

describing the simulation process and discussing its results.

4.1 Information Diffusion
Most previous research investigating the flow of information through networks

has taken one of two similar approaches to modelling information diffusion pro-

cesses (Valente, 1995). The first draws on the field of mathematical epidemiology

where models of diffusion were first developed to describe the spread of a dis-

ease (Bailey et al., 1975; Monin et al., 1976). These techniques were later applied

to the study of the spread of rumours (Daley and Kendall, 1965; Rapoport and Yuan,

1989), news (Deutschmann and Danielson, 1960) and information (Funkhouser and

McCombs, 1972). The second approach stems from sociology and focuses more

explicitly on how social relationships determine the cascade of information or adop-

tion of innovations (Ryan and Gross, 1943; Griliches, 1957). In a canonical study of

the diffusion of innovations, Ryan and Gross (1943) demonstrated the importance

of information sharing via interpersonal networks in the adoption among farmers of

a newly developed hybrid variety of corn. Similarly, Coleman et al. (1959) found

that in a community of physicians peer influence drove the adoption of a new drug

more so than positive results from clinical studies. In both cases, the spread of

information through social networks paved the way for what would prove to be a

beneficial development in each respective community.

4.1.1 Epidemic Models

In the basic propagation models of epidemiology, nodes can take one of three states

corresponding to the stages of disease. A person is first susceptible (S) to the disease

and can become infected (I) with some probability if exposed to the disease by an

infectious contact. That person, or node, is then able to infect their own contacts.

Depending on the model, after some time the person can either become recovered

(R) and immune, and will be removed from the network (known as the SIR model),

or recover but once again become susceptible (SIRS model), or indeed can remain

permanently infected (SI model). Early studies of propagation took place on fully
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mixed networks in which a node is equally likely to infect any other node. Since

then, however, research has considered more realistic models that take into account

the structure of social networks (Newman, 2003).

The focus of these works has been primarily on global properties of diffusion

processes, such as the epidemic threshold, or the minimum transmission probability

at which the disease (or information) will spread to a certain fraction of the net-

work. Small-world networks (Watts and Strogatz, 1998) and power law networks,

which real-world networks are often found to be (Al Hasan and Zaki, 2011), exhibit

strikingly different behaviour in this regard, with the latter often having an epidemic

threshold of zero, meaning that an epidemic will always occur with some positive

transmission probability.

For example, Wu et al. (2004) study the flow of information through email net-

works using an SIR model, and compare the results to a modified version in which

the transmission probability decays as the distance from the seed node increases. As

expected, the decay limits the scope of the spread of information, unlike the original

version in which the epidemic threshold is zero as in other scale-free networks. In

contrast to the forms of more commonly studied networks, the networks that we

study are extremely dense (see Section 4.2), therefore we would expect, as in the

case of scale-free networks, that the epidemic threshold would be zero. However,

we are not interested so much in global properties such as this, but rather in the

behaviour of individual nodes as information propagates.

In this vein, researchers have looked at the importance of nodes in propagating

information and the effect that removing the most central nodes has on the diffusion

rate, in order to shed light on the resilience of networks (Albert et al., 2000; Call-

away et al., 2000), and also on how best to limit the spread of computer viruses via

email (Newman et al., 2002). In this work we seek to rank nodes in terms of their

influence and ability to acquire information in order understand how this relates to

economic development.

Relatedly, Pan et al. (2013) hypothesise that the superlinear scaling of urban

characteristics such as wealth and rate of innovation with population size can be
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attributed to social tie density, which in turn enables increased flow of information

through the population. To test this, they simulated information flow using the SI

model in synthetic city-wide social networks and, in support of their hypothesis,

found that diffusion rates also scale super-linearly with population size. Similarly,

an outcome of the work presented in this chapter is evidence to support the hy-

pothesis that information diffusion is what drives the association between a region’s

wealth or poverty level, and features of the mobile call graph.

4.1.2 Cascade Models

In contrast to epidemic models, cascade models attempt to capture the decision

making process of individuals. Cascade models can be further subdivided into

threshold models and independent cascade models. In the linear threshold (LT)

model, each node u in the network chooses a threshold tu ∈ [0,1], typically drawn

from some probability distribution. Every neighbor v of u has a connection weight

wuv, and u adopts an innovation from (or is influenced in some other way by) its

neighbours if ∑v∈S wuv > tu, where S is the set of nodes that have already adopted

the innovation (Watts, 2002).

Independent cascade (IC) models are named so because, unlike the threshold

model, the probability that influence propagates from v to u does not depend on the

weights of u’s other connections, nor on the history of propagation in the network.

Rather, if v adopts an innovation, then at the next time step u will adopt with some

probability pu,v. Moreover, if v fails to influence u at that time step, it will have no

further chances (Goldenberg et al., 2001). Gruhl et al. (2004) measure the influence

of blog authors on one another by modelling the spread of topics using a variation

of the IC model. IC models are also often used in the context of influence maximi-

sation (Kempe et al., 2003) tasks, in which the aim is to find the subset of nodes that

can be seeded such that the maximum number of nodes in the network will adopt or

be influenced.

Here, we adopt these established diffusion modelling approaches in order to

help understand how information flows throughout our countries of interest, and to

reveal differences in the time taken for information to arrive in different regions.
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4.2 Mobile Call Graphs
Using the D4D CDR data to build our call graphs, we aggregate the total volume

between regions over the total period the data covers, giving us a single temporal

snapshot in each country. We investigate information diffusion at three levels of

geographical aggregation corresponding to different administrative levels. In this

setup, nodes of a call graph represent administrative regions and edges represent

the total volume of calls between them. We sum calls in both directions so that edge

weights wi j = w ji, since it is not clear whether the directionality of a call has any

bearing on the direction information is passed, and we normalise edge weights by

dividing by the maximum edge weight in the network. The aggregated networks

each have a density of 1, that is, the networks are completely connected with every

region having some level of communication with every other region. This high level

of connectivity makes this kind of network unlike the majority of networks studied

in relation to information diffusion (Watts, 2002; Kempe et al., 2003; Goldenberg

et al., 2001; Gruhl et al., 2004; Pan et al., 2013; Newman, 2003).

The sizes of the resulting call graphs are summarised in Table 4.1. At the

third administrative level there are 93 regions in Senegal and 177 in Côte d’Ivoire,

and we include all regions as nodes in the call graph in order to more accurately

represent the flow of information. However, we present results pertaining only to

those regions in which ground truth data was available, which is 92 in Senegal and

138 in Côte d’Ivoire. The same is true of the higher level administrative regions,

with the final number shown in parentheses in Table 4.1.

Table 4.1: Number of nodes (regions) of call graphs at different levels of aggregation. The
number of regions containing DHS clusters is shown in parentheses.

Adm. level Senegal Côte d’Ivoire

Adm. 1 11 (11) 19 (19)
Adm. 2 30 (30) 50 (50)
Adm. 3 93 (92) 174 (138)

In the aggregated networks, since the edge density is 1 the degree distribution

is uniform and therefore there is no correlation between a node’s degree and its



4.3. Simulation Models 64

Figure 4.1: Probability density functions of relative node strength (normalised total call
volume) for networks at the BTS level and aggregated to the three administra-
tive (ADM) levels

strength (the total edge weight of a node). Topology alone therefore plays no role

in determining information diffusion processes. However, the distribution of node

strength is highly skewed, owing to the existence of a small number of hubs that ac-

count for a large portion of the total traffic on the network. As shown in Figures 4.1

and 4.2, the weight structure of the network is highly heterogeneous and therefore

this, rather than topology, will significantly affect diffusion processes across the

network.

4.3 Simulation Models

To simulate the flow of information, we experimented with three different models:

a simple Susceptible-Infected (SI) model, the Independent Cascade (IC) model and

a Linear Threshold (LT) model. For the SI and IC models, at each time step a node

is infected by its infected neighbour with some probability relative to the strength

of the connection between them, P(i→ j) ∝ βwi j, where β is a constant control-

ling the rate of diffusion. For the LT model, a uniform cascade threshold is set for

each node, with the node becoming infected if the sum of weights from its infected

neighbours exceeded this threshold. For the SI and LT models, an infected node has



4.3. Simulation Models 65

(a) Côte d’Ivoire adm. level 3 graph (b) Senegal adm. level 3 graph

Figure 4.2: To provide a greater intuition into the kind of network under consideration,
presented here are call graphs at the third administrative level. The graphs have
a geographical layout with nodes positioned at the coordinates of the population
weighted centroids of the regions they represent, and with size corresponding
to the population of that region. The edge thickness is relative to call volume
between nodes (note that node and edge sizes are determined separately for
each country’s graph). It can be seen that the networks contain a small number
of dominant nodes with relatively strong connections.

a chance to infect its neighbours at each time step, whereas for the IC model, the

infected node only has one chance to infect its neighbours. Intuitively, the SI and LT

models represents the case where the information being transmitted has some long-

term value; for example, it could be the adoption of some new technology. The IC

model represents the case where the value of the information being transmitted has

only temporary value, for example market news related to a certain company or in-

dustry, or it could perhaps represent the influence on the sentiment of consumers or

producers regarding certain topics. We measure the flow of information through the

network by running multiple experiments, with each node playing the role of seed

100 times each. The average time taken for a node to be infected (i.e., receive the

information) over all experiments is then used as a measure of access to information

at that location. More precisely, we define susceptibility of node v as

Sv = 1/∑
i

tv,i, (4.1)
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where tv,i denotes the time taken for node v to become infected in experiment i. In

other words, we take the inverse of the mean number of steps taken for the node to

become infected in experiment in which node v is not the seed.

4.4 Results
We look now at the relationship between susceptibility and economic development,

before investigating the effects of various contextual factors.

4.4.1 Susceptibility

For the LT model we found that the infection times where largely the same for all

nodes and depended only on the choice of threshold and the strength of connections

from the seed nodes. Unlike the SI and IC models, the LT model is determinis-

tic, therefore, once the threshold is set sufficiently low for the seed nodes to infect

a neighbour, the entire network becomes infected in just 2 or 3 steps. This result

shows that for the purposes of distinguishing the role of nodes in information dif-

fusion the LT model is inappropriate for the kind of networks that we are studying,

i.e., completely connected. An alternative approach would be to vary the cascade

threshold for each node relative to some characteristic. However, we did not explore

this option since there were no reasonable candidate variables with which to do this.

For the SI and IC models we investigated the effect of varying β but found that

this only has the effect of elongating the distribution of susceptibility, therefore we

present here the results for a single value of β .

Susceptibility of nodes as measured in the simulations of both the IC and SI

models are very similar, as can be seen in Figures 4.3a and 4.3b. For this reason,

going forward we focus on the results of the SI model. To test the hypothesis that

access to information is related to economic development we use as a proxy for

level of economic development median wealth, as described in Chapter 3, which is

derived from the DHS assets index. The number of clusters sampled in Senegal and

Côte d’Ivoire is comparable, with 385 (19.25 per million people) in Senegal and

341 (22.7 per million people) in Côte d’Ivoire. The geographical coverage differs

significantly however, with 1.95 clusters per km2 in Senegal and 1.06 clusters per
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km2 in Côte d’Ivoire. We explore these differences further in Section 4.4.2.

(a) Senegal - SI (b) Côte d’Ivoire - SI

(c) Senegal - IC (d) Côte d’Ivoire - IC

Figure 4.3: (a) and (b) The Susceptible-Infected model and Independent Cascade model
simulations produce similar rankings of areas in terms of susceptibility; (c) and
(d) the association between susceptibility and wealth.

In Senegal we find evidence of a strong association between susceptibility and

wealth. At the third administrative level we have a Pearson’s correlation coeffi-

cient of 0.77 (95% CI [0.67,0.85]). However, the relationship appears to be much

weaker in Côte d’Ivoire, where the correlation between susceptibility and wealth

is 0.31 (95% CI [0.15,0.46]). Figures 4.3c and 4.3d show the association between

susceptibility and the median wealth at all three administrative levels. Full results

are presented in Table 4.2.

4.4.2 Contextual Factors

4.4.2.1 Representativeness

We can see for Senegal that the higher the administrative level, and correspondingly

the greater the level of aggregation, the stronger the correlation between susceptibil-
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Table 4.2: Correlation (r) and confidence intervals (CI) between susceptibility in the SI
model and wealth at the three administrative levels

Adm. Level r CI

Senegal
1 0.88 [0.60, 0.97]
2 0.84 [0.68, 0.92]
3 0.77 [0.67, 0.85]

Côte d’Ivoire
1 0.29 [-0.19, 0.66]
2 0.17 [-0.11, 0.43]
3 0.31 [0.15, 0.46]

ity and wealth. Recalling that the DHS assets index is designed to be representative

at only the highest (most aggregated) administrative level, a likely explanation is

that the strength of the relationship is masked somewhat by the error inherent in

the DHS cluster derived ground truth at lower aggregation levels. The correlation

remains weak in Côte d’Ivoire at all levels, which at first seems to contradict this

hypothesis. However, we note that the number of DHS clusters per region in Côte

d’Ivoire is low with a median of 14, 4 and 1 in administrative levels 1, 2, and 3

respectively, compared to 30, 12, and 3 in Senegal. This difference suggests that

quality, or rather the representativeness, of ground truth data may be a factor in

explaining the poor results in Côte d’Ivoire.

We investigated this aspect further by pruning stepwise the data points (re-

gions) with fewest DHS clusters from the correlation analysis. The results for ad-

ministrative level 3 are shown in Figures 4.4a and 4.4b. Strikingly, the strength of

correlation climbs above 0.93 as we consider only regions with a larger number of

DHS survey clusters in Senegal, although as the number of data points, n, decreases,

so the confidence intervals tend to widen. For example, if we exclude regions with

fewer than 5 clusters the correlation coefficient is 0.91 (n = 29, CI = [0.81,0.96]).

In Côte d’Ivoire the pattern is similar, albeit less pronounced since n drops rapidly

as we prune regions, and consequently the confidence intervals widen. With a min-

imum of 4 clusters the correlation is 0.58 (n = 15, CI = [0.10,0.84]).
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4.4.2.2 Volatility

Socioeconomic indicators are naturally dynamic and can change from one year to

the next, particularly in sub-Saharan Africa, where economies have experienced

both rapid growth and rapid contraction. Considering this, we hypothesise that

a further data quality issue is volatility over time in our chosen wealth indicator,

which may also affect the strength of the correlation we measure. To test this we

compare the 2012 ranking of regions according to the wealth index to the previous

DHS survey (2010) and take the absolute rank change. This change could be at-

tributed to either changing circumstances in the region or to inherent variation in

the cluster sampling process. Stepwise we prune regions that have the largest ab-

solute rank change so that the dataset contains less volatile regions. This is done

only for Senegal as a previous comparable DHS survey was not available for Côte

d’Ivoire. As can be seen in Figure 4.4c, there is some evidence that by excluding

more volatile regions the measured correlation is higher.

4.4.2.3 Network Coverage

We also investigated whether the coverage of the mobile phone networks could be

a factor influencing the relationship between susceptibility and wealth. Poorer cov-

erage in certain parts of a country would mean that the simulation of information

diffusion would be less accurate and therefore we might expect weaker correlation.

Indeed, we find that there is once again a large discrepancy between the geograph-

ical coverage of the mobile networks of Senegal and Côte d’Ivoire. The median

number of BTS towers per region at the third administrative level is 11 in Sene-

gal, compared to just 4 in Côte d’Ivoire. As with number of DHS clusters, we

prune regions with fewest BTS towers and find that the measured correlation in-

creases, as shown in Figures 4.4d and 4.4e. For example, in Senegal if we consider

only regions with a minimum of 13 BTS towers the correlation is 0.90 (n = 34,

CI = [0.80,0.95]), and likewise in Côte d’Ivoire if we consider only regions with at

least 12 BTS towers the correlation is 0.75 (n = 15, CI = [0.38,0.91]).

The number of DHS clusters and BTS towers closely follows population den-

sity, that is, denser regions tend to have more of each. It is tempting to argue that
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the data must therefore be equally representative across all regions. However, such

an argument fails to consider the role of geography, that is, that less dense areas

also have a much less evenly distributed population, meaning that relatively more

DHS clusters or BTS towers may be needed to provide a similar level of coverage

as found in denser areas.

(a) Senegal - minimum clusters (b) Côte d’Ivoire - minimum clusters

(c) Senegal - rank change (d) Senegal - minimum towers

(e) Côte d’Ivoire - minimum towers

Figure 4.4: Change in correlation between susceptibility and wealth as regions with fewest
clusters are removed (a and b), as regions with highest volatility are removed
(c), and as regions with fewest BTS towers are removed (d and e)
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4.4.2.4 Temporal Coverage

Finally, we investigated the effect of the difference in temporal coverage of our

two case studies. Recall that the mobile phone data from Senegal covers a period

of 12 months, compared to just 10 weeks in Côte d’Ivoire. To ascertain whether

this helps explain the difference in strength of relationship between susceptibility

and wealth we subdivided the Senegal data into four sets, with each covering a 3

month period and repeated the simulation experiments on these subsets. We found

no substantial difference in the relative edge weights between each 3 month span,

only a consistent growth across the whole network. Indeed, the correlation between

wealth and susceptibility for each 3 month period is virtually identical. From this

we can conclude that a period of the order of 3 months is sufficient to capture the

prevailing temporal behaviour in a mobile call graph, and therefore the shorter time

span of the Côte d’Ivoire dataset is unlikely to be an important factor in explaining

the weaker results in that country.

4.5 Discussion

We have demonstrated a correlation between the flow of information between re-

gions of a country (as revealed by simulations of network diffusion) and the level

of economic development of those regions. We found that by using susceptibility,

or the average time taken to become ‘infected’ as a proxy, access to information

appears to be related to economic development of a region. The implication for the

remainder of this thesis is that by establishing a firm link between access to infor-

mation and wealth, we have some theoretical grounding from which to begin our

hypothesis-led feature engineering process.

Of the two countries under study we have found a strong relationship in one

but a weaker relationship in the other. We have conducted further investigations into

the effect of contextual factors, the results of which suggest this discrepancy may

be partly explained by the differences in coverage of the DHS cluster survey data

we used as ground truth, as well as the geographical coverage of the mobile phone

networks in each country. Indeed, when focusing on regions with relatively high
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mobile network and DHS coverage, the strength of correlation between suscepti-

bility and wealth is found to be significantly higher. These findings have important

implications for research into mobile phone based proxies of poverty and similar

endeavours. Namely, that by highlighting the effects of data quality and, moreover,

by demonstrating increased performance when the data quality issue is removed,

we can be much more confident that these methods will work in practice, with the

proviso that a minimum level of geographical coverage of the mobile network is

met.

Note that we have not attempted to establish a causal link between information

flow and economic development, and it may be the case that the social connectivity

of a location is reflective of its level of economic development, rather than vice

versa, or indeed that they are effects of some third underlying process. Rather, we

present these findings in order to both increase the body of evidence establishing

the potential for mobile phone based models to help fill the data gaps that exist in

many parts of the world, and also to connect the recent advances in using mobile

data derived models to predict poverty or economic level with theories that specify

the importance of information flow for economic development.



Chapter 5

A Novel Approach to Wealth

Prediction with CDRs

We have defined realistic baseline models in Chapter 3 and established a link be-

tween the communication patterns revealed by aggregated CDRs and economic de-

velopment via information diffusion in Chapter 4. We now turn our attention to

building and evaluating predictive models that take as inputs features derived from

the CDR data. In order to build accurate models of poverty we first need to uncover

features of the data that display some relation to the prevailing socioeconomic sta-

tus of an area. Continuing along the direction taken in Chapter 4, we follow a

hypothesis-led approach, focusing on ways in which the data represents behaviour

related to economic development, from a simple measure of activity, to more so-

phisticated measures of network advantage. We then validate each derived feature

by examining its correlation with wealth, as well its correlation with other features,

before evaluating a number of models trained with different subsets of data and

features.

5.1 Hypotheses and Feature Definition

Here we present a number of hypotheses about how economic behaviour may be

reflected in the aggregated communication flow patterns, and define features that

aim to capture the relationship behind each hypothesis.
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5.1.1 Activity

We expect to find that the level of mobile communication activity in an area will

reflect its social and economic activity, and thus its level of prosperity. A number

of mechanisms have been proposed by which mobile phone adoption could spur

economic development, including by reducing the cost of searching for, and ac-

cessing information, and by improving the efficiency of supply chain management.

Evidence also suggests that mobile phone use is strongly linked to socio-economic

status, with early adopters being primarily young, educated, urban males (Aker and

Mbiti, 2010).

To capture this relationship, the initial features we compute are simple mea-

sures of aggregate activity in terms of call volume (i.e., number of calls) at a node,

i (where a node can be a single BTS tower or a spatial aggregation, as described in

Section 5.2.1):

• Incoming call volume

sin
i = ∑

j 6=i
w ji (5.1)

• Outgoing call volume

sout
i = ∑

j 6=i
wi j (5.2)

• Internal call volume (calls to and from the same node)

wii (5.3)

• External call volume

sext
i = sin

i + sout
i (5.4)

• Total call volume

si = sext +wii (5.5)
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• Total call volume normalised by population

s̄i =
si

P
(5.6)

where wi j is the number of calls from node i to node j. As mobile technology be-

comes more ubiquitous, and in particular, with mobile phone use rapidly increasing

among poorer people (Aker and Mbiti, 2010), we anticipate that the hypothesised

link between these simple measures of activity and wealth will erode. This trend

motivates the search for more sophisticated metrics that may provide more robust

signals of economic well being.

5.1.2 Network Advantage

Our next set of features aims to capture the opportunity for economic development

afforded by an advantageous position in the network with respect to the flow of in-

formation. In Chapter 4 we found a strong relationship between an area’s relative

ability to access information, or its susceptibility, and its wealth, where susceptibil-

ity was computed by taking an average of many hundreds of information diffusion

simulations. This method is computationally intensive and scales at O(nk), where

n is the number of nodes in the network and k is the average degree (in our case

k = n so in fact it scales as O(nn)). Consequently this feature becomes expensive

and impractical to compute for networks larger than the relatively small size with

which we were operating in Chapter 4 (i.e., networks with up to 138 nodes). For this

reason, we opt instead to focus on static network features (i.e., features that do not

require computationally expensive simulations to produce) as described below. To

help justify this choice we then look at the correlation between these static features

and susceptibility.

In studying a social network represented by a fixed-line telephone call dataset,

Eagle et al. (2010) showed that the average normalised entropy (in that work re-

ferred to as diversity) of the social ties of people living in a neighbourhood correlates

strongly with the level of socio-economic deprivation (a concept closely related to

poverty) in that neighbourhood. In this work we are constrained by the aggregation
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of the call records to BTS tower and are unable to look directly at the underlying in-

dividual social network. Instead, we hypothesise that the structure of a BTS tower’s

links will also reflect the poverty level in its location.

We thus extract three measures of a node’s integration and importance in the

communication network:

• Normalised entropy

E(i) =
−∑ j 6=i qi j log(qi j)

log(N)
(5.7)

• PageRank

R(i) = ∑
j 6=i

R( j)
sext

j
(5.8)

• Eigenvector centrality

G(i) =
1
ω

∑
j 6=i

wi jG( j) (5.9)

where qi j = wi j/si is the fraction of node i’s total weight on edge 〈i, j〉, N is the

number of nodes in the graph (equivalent to the degree of node i in a fully connected

graph), and where ω is a scaling constant. We exclude node degree as a feature in its

own right since the BTS tower network is completely connected and subsequently

all node degrees are equal. PageRank (Page et al., 1999; Langville and Meyer, 2005)

and eigenvector centrality (Bonacich, 1987) are two recursively defined measures of

centrality in which the importance of nodes depends on the strength of connections

with other important nodes. Both have previously been found to correlate with a

poverty index in Côte d’Ivoire (Mao et al., 2013), and we find that they also strongly

correlate with the susceptibility values (Senegal: ρ = 0.97, ρ = 0.93; Côte d’Ivoire:

ρ = 0.88, ρ = 0.95 for eigenvector centrality and pagerank, respectively, computed

on the ADM3 level graph). Conversely, normalised entropy appears to be weakly

negatively correlated with susceptibility (Senegal: ρ = −0.36; Côte d’Ivoire: ρ =

−0.34), which suggests that this metric does not capture network advantage in the

same manner as centrality measures. This is perhaps not surprising, since it aims to

measure the diversity of connections with immediate neighbours only and does not

consider the network structure beyond.
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5.1.3 Introversion

We hypothesise that an area’s level of introversion may be a signal of its poverty

level. In other words, if an area has relatively low volume of traffic to other ar-

eas compared to the traffic within it, the less likely it will be able to benefit from

new sources of opportunity arising further afield. The intuition here is that more

introverted areas will have access to fewer resources and thus less opportunities for

economic development. This is similar in spirit to the theory of open economies,

albeit on a different scale, which expects nations that close their borders to inter-

national trade to fare less well than those that are more open (Sachs and Warner,

1997). In conjunction with our first hypothesis, that higher activity reflects lower

poverty, for two regions with equal activity we would expect the area with lower

introversion to have the lower poverty level. It is also related to the idea of network

advantage, except that we now explicitly take into account geography and consider

only a binary property of flow, that is, whether it is internal or external to the area.

A caveat to the above hypothesis is that we may expect denser areas to naturally

exhibit higher introversion given that there will be a higher likelihood of commu-

nications taking place within the vicinity. However, since density of BTS towers

tends to follow population density, the coverage of individual towers in dense ar-

eas is smaller, thus mitigating somewhat against the higher likelihood of internal

communications.

This metric computes the ratio of internal call volume (source and target are

one and the same) to external call volume (source and target are different) of a BTS

tower. We calculate the introversion of BTS towers with the following equation:

I(i) =
wii

sext
i

(5.10)

Intuitively, values of I less than 1 indicate more introverted areas (i.e., internal

flow is higher than external flow), and conversely, values greater than 1 indicate

more extroverted areas.
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5.1.4 Interaction Model Residuals

We next hypothesise that the difference between observed and expected flows be-

tween areas reflects the level of social and economic activity in those areas, and

thus will be related to poverty. That is, from the residuals between observed and

expected flows we aim to capture the restricting effect of poverty on an area’s inter-

actions with others. This hypothesis takes a cue from the gravity model of interac-

tion. First introduced in Zipf (1946), gravity models rest on the observation that the

size of flow between two areas is proportional to the mass (i.e., population) of those

areas, but decays as the distance between them increases. Despite some criticisms

(Simini et al., 2012; Yan et al., 2014), the model has been successfully used to de-

scribe macro scale interactions (e.g., between cities, and across states), using both

road and airline networks (Barrat et al., 2004; Jung and Wang, 2008) and its use

has extended to other domains, such as the spreading of infectious diseases (Balcan

et al., 2009; Viboud et al., 2006), cargo ship movements (Kaluza et al., 2010), and

to model intercity phone calls (Krings et al., 2009).

The simplest form of gravity model has a single scaling parameter:

gi j = β
PiPj

d2
i j

(5.11)

where Pi is the population of area i and di j is the Euclidean distance between BTS

tower locations i and j. The scaling parameter β scales the estimates to bring them

in line with observed weights and is fitted to each dataset separately. In general,

β depends only on the period of observation. In addition to this simple version,

more nuanced models exist to estimate flows, including a 4-parameter version of

the gravity model:

gi j = β1
Pβ2

i Pβ3
j

dβ4
i j

, (5.12)

in which scaling coefficients are also fitted to the mass and distance variables. A

common problem with the gravity model is that it often fits less well at shorter
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distances, hence the existence of a 9-parameter distance-varying version:

gi j =


β1

Pβ2
i P

β3
j

dβ4
i j

if di j < β9

β5
P

β6
i P

β7
j

d
β8
i j

if di j >= β9

(5.13)

in which the parameters are allowed to change at some distance threshold, β9. The

more recently introduced radiation model is a parameter free model that aims to

overcome some of the inconsistencies of the gravity model and has been shown to

reproduce communication volumes between regions more accurately than the grav-

ity model (Simini et al., 2012). One of the main conceptual differences between the

gravity model and radiation model is that the latter takes into account the popula-

tion between the source and target locations as opposed to the distance alone. More

precisely, it includes the population with a circle around location i of radius di j, here

denoted with si j:

gi j = gi
PiPj

(Pi + si j)(Pi +Pj + si j)
, (5.14)

where gi = Pi
Pc
P is the population at location i scaled according to the proportion of

callers in the total population Pc
P . In practice Pc

P acts as a scaling factor that we fit to

the data in a similar manner to β in Equation 5.11 so that the flow estimates match

the scale of the flows in our data.1

For the gravity models, to represent the mass at node locations we take an

approach similar to that described in Section 5.2.1 in order to account for the fact

that the exact spatial coverage of each BTS tower is unknown. That is, we take the

mean population of all population raster cells within 30km of node i (where a node

can be a single tower or multiple adjacent towers), denoted by Hi, weighted by the

inverse squared distance from the node,

Pi = ∑
h∈Hi

Ph/d2
ih. (5.15)

1In the original presentation of the radiation model in Simini et al. (2012) gi represented
the number of daily commuters at location i.
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This effectively gives an estimate of the population density within the node’s cov-

erage area. For the radiation model, si j is similarly calculated overlaying the popu-

lation raster data with a circle of radius di j and summing the values of the enclosed

raster cells.

For each of the interaction models we compute the residual flows on each edge

as zi j =wi j−gi j (each model contains a scaling factor so we end up with reasonable

values for zi j), and to produce features associated with a node i we calculate the

mean of the negative and positive residuals separately so that we they do not cancel

each other out. Consequently, we have two residual flow features for each model:

res−ve
i =

1
|Z−ve

i | ∑
j∈Z−ve

i

zi j,

res+ve
i =

1
|Z+ve

i | ∑
j∈Z+ve

i

zi j,

(5.16)

where Zi is the set of edges connected to i that are negative or positive depending

on the superscript.

In addition to the residual flows, we also compute the other features defined in

this section on the estimated flows (i.e., introversion, PageRank, eigenvector cen-

trality, and entropy), and take the residuals of these as additional features. The

motivation is the same, which is that we surmise that differences between observed

and expected values of these features could indicate lower levels of wealth. For ex-

ample, high entropy gravity residual could indicate that that location is experiencing

a less diverse set of interactions with other areas than might be expected.

We experimented with all three gravity model variants and the radiation model.

Figure 5.1 shows how well the estimated flows from each model fit the observed vol-

ume (top row in each subfigure) as well as how closely the estimates correlate with

those of the other models, which will help us to anticipate potential differences in

predictive performance when comparing residuals as model features later in Sec-

tion 5.2.2. It can be seen that in Senegal all model estimates show a moderately

strong correlation with observed volume flows, with the simple gravity model, 4

parameter, 9 parameter and radiation model having a Pearson’s r of 0.612, 0.619,
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(a) Senegal

(b) Côte d’Ivoire

Figure 5.1: Scatter matrices showing the correlation (of logged values) between volume
and each of the flow estimates and between each pair of flow estimates. grav1
is the simple gravity model, grav2 is the 4 parameter version, grav3 the 9 pa-
rameter version, and rad is the radiation model. Note that these plots show a
sample of 1000 points.
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0.631 and 0.535 respectively. We also see in Senegal that the gravity variants are

strongly correlated with each other as is the radiation model, albeit less so. In

Côte d’Ivoire the correlation with volume is present but weaker, with an r of 0.409,

0.450, 0.492 and 0.411 respectively. Note also the bimodal distributions in the 1

and 4 parameter gravity models - evidence that they are not able to fit well the full

range of distances and motivation for the 9 parameter version. We also see that in

Senegal the variants of the gravity model residuals are strongly correlated with each

other, whereas in Côte d’Ivoire they are less so. Together with the overall better

fit of the gravity models in Senegal, this suggests that the choice of gravity model

variant may have less impact when the underlying data is more representative, as it

is Senegal. The radiation model fits the observed volumes less well than the gravity

models in both countries. However, it does not follow that the residuals of the radi-

ation model will be less predictive of poverty. In fact, by fitting parameters to the

observed flows, the gravity model may mask the very signal we hope to uncover.

The predictive power of all the residual based features will be examined in the next

section. Note that we exclude negative residual features from the radiation model

as the majority are null owing to the radiation model’s tendency to underestimate

flows (i.e., the majority of residuals from the radiation model are positive).

5.2 Method
Here we outline the steps required in order to go from the features as defined above

to trained models and wealth predictions.

5.2.1 Spatial Aggregation

In Chapter 3 we created baseline estimators using the DHS clusters as data points.

Then in Chapter 4 we looked at the flow of information between regions within the

country at three levels of aggregation corresponding to three administrative divi-

sions. Here, in order to compare predictions with the baseline models we again use

the DHS clusters as data points, or rather, the grid cell that a cluster finds itself in,

as explained below.

The spatial distribution of BTS towers tends to align with a country’s pop-



5.2. Method 83

ulation density distribution and in doing so can be highly skewed. In the most

densely populated areas such as city centres, towers can be situated within a few

hundred metres of each other, whereas in sparsely populated regions there may be

several hundred kilometres between towers. Furthermore, in densely populated ar-

eas several BTS towers may have overlapping coverage and the tower that a phone

connects to will not always be the closest but will depend on the directionality of

the tower cells, the velocity of the caller and other load balancing considerations.

For all towers, the maximum range in any given direction is determined by many

things, including its design, configuration, the local terrain and climate, and the ac-

tual coverage area and load balancing policy of each BTS tower is unknown to the

author. To account for this uncertainty in BTS coverage we took two steps. Firstly,

we aggregated the call volume of towers within close proximity. To do this we over-

laid a 1km hexagonal grid and treated all towers with the same grid cell as a single

node within the call graph. The edge weights of the combined towers are summed

and this step takes place before the input features are computed. The second step is

to use an inverse-distance weighting scheme when aggregating features, which has

the effect of creating a smoother feature surface than alternative approaches such as

using Voronoi cells. More precisely, the value of a feature, λh, at grid cell h is the

inverse-squared-distance weighted mean of the feature, λn, at all nodes n in the call

graph G:

λh = ∑
n∈V (G)

1
d2

hn
λn, (5.17)

where a node could be a single tower or an aggregation within a grid cell, and dhn

is the distance from cell h to node n.

We avoid applying a limit on the distance to ensure that all grid cells are as-

signed a value. Using squared distance as weights also means that, in denser envi-

ronments many towers (nodes) will be much closer to the assignee grid cell, mean-

ing that the effect of more distant towers on the computed mean will be negligible.

We chose the distance weighting approach over Voronoi cells, which is the more

common approach in related work, since the latter assumes that call activity at any

given location is captured solely by the closest tower - an assumption that we have
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(a) Senegal

(b) Côte d’Ivoire

Figure 5.2: Bar plots indicating the correlation between features (excluding residual fea-
tures) and the target variable, median wealth.

argued above is unrealistic.

To associate features with DHS cluster points we simply take the values of the

grid cell within which the cluster point resides.

5.2.2 Feature Validation

Next, we examine the relationship between each feature and the target variable,

as well as the cross correlation among the features. Figures 5.2 and 5.4 show the

magnitude of the Spearman’s rank correlation coefficient, ρ , between input features

and median wealth at cluster locations. Population within a 1km radius is also in-

cluded as a benchmark, which we know from Chapter 3 is highly correlated with

wealth. Figures 5.3 and 5.5 show the cross correlation (ρ) among features. Interac-

tion model residual features are separated from other features in order to keep the

correlation matrices to a reasonable size.
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(a) Senegal

(b) Côte d’Ivoire

Figure 5.3: Correlation matrices indicating the cross correlation between features (exclud-
ing residual features).
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(a) Senegal

(b) Côte d’Ivoire

Figure 5.4: Bar plots indicating the correlation between residual features and the target
variable, median wealth.

5.2.2.1 Activity

Looking first at activity levels, we see that, somewhat counter intuitively, nor-

malised call volume, or the average volume per person (vol sum norm) has no

correlation with wealth in either Senegal nor Côte d’Ivoire. This can most likely

be explained by population within a radius of 1km (effectively population density)

not being an accurate measure of the number of callers contributing to the total call

volume for a particular BTS tower. As population density rises, so does the den-

sity of BTS towers, and the coverage of individual towers depends on many factors.

Ideally, normalised call volume would be computed directly from individual CDRs.

On the other hand we see that other measures of activity have a relatively strong

correlation with wealth at cluster locations. Incoming volume (vol out sum), out-

going volume (vol out sum), external volume (ext vol sum) and internal volume

(int vol) all show a similar strength of correlation as population in both Senegal and

Côte d’Ivoire, albeit slightly weaker in Côte d’Ivoire. Figure 5.3 shows that these
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(a) Senegal

(b) Côte d’Ivoire

Figure 5.5: Correlation matrices indicating the cross correlation between residual features.

activity indicators are also, unsurprisingly, all highly correlated with each other

(ρ > 0.9), therefore we take only total volume (vol sum) forward as a feature.
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This confirms that aggregated communication activity provides a simple proxy

for poverty level; however, as mentioned in the previous section, this relationship

may depend in part on the maturity of the mobile telecoms market. Therefore we

are particularly interested in the results of the remaining features since these are

potentially more robust in the face of market saturation.

5.2.2.2 Network Advantage

We computed normalised entropy across edges on outgoing volume (vol out ent),

incoming volume (vol in ent), external volume (ext vol ent) and found only a weak

correlation with wealth at cluster locations, and significant only in Côte d’Ivoire.

Despite the weak correlation, we retain entropy as a feature in case it turns out to be

predictive in combination with other features. We also see that these measures of

entropy are highly correlated with each other, therefore we take entropy on external

volume (ext vol ent) forward alone.

PageRank and eigenvector centrality are computed on the external volume

(vol pagerank and vol evc, respectively) and we find the these correlate with wealth

fairly strongly. This echos the results of Chapter 4 in which we found that a clus-

ter’s susceptibility to collecting information in simulated experiments also correlates

with its wealth, and is in line with previous work which found a link between net-

work advantage and socioeconomic deprivation at the individual level (Eagle et al.,

2010), suggesting that similar forces are at play in bestowing greater opportunity to

those areas with increased access to sources of information.

5.2.2.3 Introversion

We find that introversion has a fairly weak, but significant, negative correlation with

wealth, which, in line with our hypothesis from the previous section, provides some

evidence that the more introverted an area the lower its average wealth.

5.2.2.4 Interaction Model Residuals

Turning now to the features derived from interaction model residuals, the most con-

sistent result that can be seen in Figure 5.4 is the fairly strong correlation of residual

entropy of the gravity model variants and wealth. This feature captures the diversity
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of the residuals from each model, so higher values indicate a more even spread of

residual sizes on a node’s edges, whereas lower values indicate the presence of one

or a few large residuals that dominate others. The correlation is positive, suggest-

ing that the existence of a small number of dominating residuals is associated with

lower wealth.

We also see a weak but significant and consistent positive correlation between

the mean positive residuals of each gravity model variant and wealth. Positive val-

ues of this feature mean that the interaction model tends to underestimate the total

volume on a node’s edges, so this result suggests that areas with higher than ex-

pected call volume are also wealthier. This supports our hypothesis that areas with

lower than expected interaction experience lower wealth since the gravity models

are fitted to the data. This is further supported by the weaker correlation between

the mean negative residuals and wealth. Here, larger magnitude negative residuals

mean that volumes tend to be overestimated, so a positive correlation suggests that

areas that are overestimated more also tend to be less wealthy.

In general, the pattern of correlations is similar between the different gravity

models and countries, no one type of model residual appears to be a better predictor

of wealth from this analysis. For the radiation model the pattern is different. Other

than PageRank, residuals are computed separately on incoming and outgoing call

volumes and only have very weak correlations with wealth or none at all. PageRank

on the radiation residuals has a fairly strong correlation in Senegal, but this could be

put down to the fact that PageRank tends to be strongly correlated with population

density.

5.2.3 Feature and Model Selection

Having pruned a number of features based on strength of correlation with the tar-

get variable and cross correlation with other features, we continue a manual feature

selection and model comparison process before settling on the final feature set and

model type. We purposefully avoid an automated method in order to maintain con-

sistency in the features selected, specifically when considering the interaction model

residual based features. That is, to acquire a more easily interpretable feature set
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we wish to choose residual features from a single interaction model, whereas an

automated feature selection approach would likely result in a mixture of sources.

We tested the following sets of features:

• P - log of population density alone

• L - spatially lagged wealth alone

• PL - both log of population density and spatially lagged wealth

• C - mobile phone (CDR) based features alone

• CPL - all features

We tested the above sets of features separately for each of the following interaction

model types. In each case the C features include the residuals from the respective

interaction model.

• gravity - the single parameter gravity model

• gravity-fit - the 4 parameter gravity model

• gravity-split - the 9 parameter gravity model

• radiation - the radiation model

We compared the following machine learning models:

• LR - linear regression model

• RF - random forest model

The classic LR model, fitted using ordinary least squares regression, provides more

easily interpretable set of feature weights, allowing us to identify the effect of each

feature on the model’s predictions. Interpretability is important when considering

the use case of policy makers using model outputs to inform policy decisions, when

they will need to provide clear justifications. However, LR models are known to

perform less well in the presence of correlated input variables, and in such cases
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the model coefficients also become less easy to interpret. Therefore, we also tested

the RF model in order to better establish the predictive power of selected features.

We chose Random Forest over alternative machine learning models, such as artifi-

cial neural networks, since they are known to perform well on a range of different

problems whilst maintaining a reasonable level of interpretability by allowing the

inspection of feature importance, and are less sensitive to correlated inputs than the

LR model.

To compare model performance we take a staged approach. Firstly, we focus

on the C features alone for each model type in order to identify the most predictive

set of interaction model residual features - 8 models in total for each country. With

the chosen set of C features we then compare different feature sets for each model

type in order to determine the added predictive power of the C features over the

baseline models introduced in Chapter 3 - a total of 16 models for each country,

as summarised in Table 5.1. To see how well they perform with limited data, each

model with each set of features is trained with different proportions of training

to test data, ranging from 50% to 90%. Taking both Côte d’Ivoire and Senegal

together, 160 models are compared in total in the following comparison. For each

training proportion, in order to obtain a robust measure of predictive performance,

we ran 100 iterations of random train/test splits and took the mean over all iterations.

Note that the 100 splits are a subset of the 1000 splits generated for the baseline

models, discussed in Section 3.5. We reduced the number of iterations to 100 at this

stage in order for the training to complete in reasonable time.

5.3 Results

Firstly, in order to determine which residual-type features give the best predictive

performance, we compare models that include only CDR features. Figure 5.6 shows

that for the gravity and gravity-fit model residuals the results are inconsistent. For

example, the gravity residuals are among the worst performing in Côte d’Ivoire

with the LR model type and with training proportions below 80%, but among the

best performing with RF model type. On the other hand, in the majority of cases
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# Feature Set Residual Type Model Type
1 C gravity LR
2 C gravity-fit LR
3 C gravity-split LR
4 C radiation LR
5 C gravity RF
6 C gravity-fit RF
7 C gravity-split RF
8 C radiation RF
9 P NA LR

10 L NA LR
11 PL NA LR
12 CPL best LR
13 P NA RF
14 L NA RF
15 PL NA RF
16 CPL best RF

Table 5.1: A summary of the combinations of different features and model types that are
compared. Note that best refers to the best residual feature type as determined
by the comparison of models 1-8. Each of the 16 combinations is tested with
5 different training set proportions and for each country, making a total of 160
models. Each model is then trained and tested 100 times with random train/test
splits to give cross-validated scores.

models with features derived from residuals of the radiation model have relatively

poor performance across all training proportions and with both LR and RF model

types, and indeed, models with features derived from residuals of the gravity-split

model general are among the best performing across the board. For this reason, the

remaining analysis of results will focus on models containing only the gravity-split

residuals.

Figure 5.7 shows that for LR models, using C features performs worse than

the baseline P, L and PL feature sets, and in Senegal even CPL under performs

compared to PL with LR model. But for RF models, CPL is consistently the best

performer and even C on its own is comparable and consistently out performs the

best baseline feature sets, PL. The inclusion of C features results in poorer predictive

accuracy than the baselines when using the LR model, but greater accuracy when

used with the RF model, which demonstrates the importance of considering non

linear modelling techniques.
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(a) Senegal - LR (b) Côte d’Ivoire - LR

(c) Senegal - RF (d) Côte d’Ivoire - RF

Figure 5.6: Comparison of mean cross-validation errors for different residual types across
varying training set proportions and model types. Models trained with gravity-
split residuals tend to perform best over all training set proportions.

(a) Senegal - LR (b) Côte d’Ivoire - LR

(c) Senegal - RF (d) Côte d’Ivoire - RF

Figure 5.7: Comparison of mean cross-validation errors for different feature sets and across
varying training set proportions and model type. Models trained with all fea-
tures tend to perform best over all training set proportions.
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(a) Senegal (b) Côte d’Ivoire

Figure 5.8: Comparison of mean cross-validation errors for different model types across
varying training set proportions. RF model type tends to perform best over all
training set proportions.

Focusing on CPL as the best performing feature set, Figure 5.8 shows that the

RF model is generally more accurate than the LR over all training proportions. In

Senegal, the performance improvement of the RF model over LR is more marked,

at approximately 12% on average, and for Côte d’Ivoire the improvement is approx-

imately 2.5% on average.

The headline result here is that the models that include CDR features as pre-

dictors outperform those that do not. To quantify this, we look in more detail at the

magnitude of gains provided by CDR features. Looking first at Senegal, the MAE

of the RF model with CP features is 20.08% lower than with the RF model with

P when estimating average wealth with 50% training data, and reaches a 20.80%

improvement with 90% training data. We see a similar improvement brought in by

spatial lag: comparing RF models with PL and CPL features, we find the addition

of CDR features offers a reduction in MAE of between 13.86% and 15.27%.

We see a similar story in Côte d’Ivoire. When predicting average wealth,

the RF model with CP features provides an improvement of between 13.49% and

15.09% in MAE over the P baseline. When adding lag, CPL features offers an

improvement over PL features of between 9.68% and 10.67%.

5.4 Discussion
We can frame the comparison of results from models trained with the alternative

feature sets in terms of concrete situations in which different kinds of data are avail-
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able. That is, the general model case and the retrained model case, as described in

Chapter 3. The two situations differ in the availability of ground truth poverty or

socio-economic status data with which we can create a spatially lagged variable.

In the general model case, where there is no ground truth data available, we

can compare baselines that use population density only as an input with models

that use CDR features only, and that combine both CDR features and population

density. Focusing on the random forest models, which perform comparatively better

in the majority of cases, we can see that in both Senegal and Côte d’Ivoire models

with CDR features only out performs those with population density only, and the

combined model offers a further marginal improvement. These results suggest that

organisations wishing to produce the best possible estimates of wealth and poverty

in a region for which there is no available socio-economic data could use a pre-

trained CDR based model as a reasonable proxy.

In the retrained model case, where there is some ground truth data from which

to compute the spatially lagged variable, we can then compare the lag only baseline

model, the population density and lag baseline model, the CDR features only model,

and the combined model with CDR features, population density and spatial lag.

Baseline models with just the lagged variable as input perform worst out of all

models, which is somewhat surprising given the high level of spatial autocorrelation

present in the data. However, as expected, the performance gap narrows as more

training data becomes available. When population density is included, accuracy

improves but is still surpassed by models with CDR data only. As before, models

combining CDR data with baseline features have the highest performance. These

results suggest that organisations wishing to produce the best possible estimates of

wealth and poverty in a region for which there is some existing socio-economic data

available (but for which it is infeasible to collect more) could use our approach to

train a CDR based model to provide a reasonable proxy.

By means of a comparative performance analysis using data from two develop-

ing countries (namely, Senegal and Côte d’Ivoire), we have shown that it is possible

to predict wealth using models trained on features derived from CDR data, and that
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these models offer significantly improved predictive performance when compared

to baseline models that do not utilise CDR features. Thus we can be optimistic about

the value that our approach can offer to governments and organisations that lack the

means to perform a more comprehensive survey of a country’s socio-economic sta-

tus. We have also found that results vary across the two studied countries, with the

added value of CDR features being smaller in Côte d’Ivoire compared to Senegal.

Continuous testing and refinement ought to be an integral part of any implementa-

tion of the methods described in this chapter.



Chapter 6

Conclusions

In this final chapter we first recap and evaluate the main contributions of this thesis

(Section 6.1) before discussing their wider impact (Section 6.2). We then outline the

main limitations of this work and propose directions for future work (Section 6.3).

6.1 Overall Evaluation of Contributions
Here we recap the main contributions of this thesis and evaluate their significance

in light of the work discussed in preceding chapters.

Contribution 1. In Chapter 3 we presented an analysis of the spatial de-

pendency of wealth and its relationship with population density in Senegal and

Côte d’Ivoire. We showed that two baseline wealth estimators, each grounded on

concrete usage scenarios, can be derived from population density data and sparse

poverty data respectively, and moreover, that these baselines provide significantly

more predictive power than random baselines. These results highlight a serious

limitation of much research in the area, which has thus far failed to compare re-

sults of models using CDR features with realistic baselines and therefore failed to

properly show the value of such an approach. In doing so this contribution can help

ensure governments and NGOs are informed of potential limitations when deciding

whether or not to pursue a data driven approach to poverty estimation.

Contribution 2. In Chapter 4 we studied the output of information diffusion

simulation models over the BTS network in each country and found that an area’s

susceptibility, or ability to receive information is strongly correlated with its level
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of wealth. We further analysed these results in relation to a number of contextual

factors and saw that data quality issues have a significant impact on the strength

of correlation between poverty and susceptibility. This has an important impli-

cation for this thesis and future work, not least for data providers (both telecoms

and socioeconomic) to ensure that more consistent and representative data is made

available to researchers. Were these data quality issues resolved we might expect

the predictive power of CDR based models to significantly improve.

Contribution 3. In Chapter 5 we presented a number of original hypothesis-

based features of aggregated CDRs that can be used as inputs to a poverty prediction

model. These include static and simulation based measures of information access,

activity based metrics and econometric inspired features. We looked at the correla-

tion of these features with wealth in each country, and at their cross-correlation, in

order to downselect a smaller number of important features. These features can be

reproduced and used by other researchers in future work. We also built and tested

a number of models that incorporate the CDR based features to estimate wealth.

We further performed a detailed analysis of the results of this model in relation

to the baseline predictors in order to establish their real added value over simpler

approaches. In summary, we found that the most successful approach in terms of

model accuracy involves training a Random Forest model on a feature set that in-

cludes population density, spatially lagged wealth (if available), 9-parameter gravity

model residuals, as well as activity and network based features. Further work is re-

quired to refine this approach and test in wider variety of circumstances, however,

this modelling approach has the potential to be used in practice to provide poverty

or wealth estimates in a timely fashion and at fine level of spatial granularity in

countries that lack comprehensive survey data.

6.2 Who cares?

This work has the potential to impact the practices of policymakers and NGOs

working to improve the living standards of people in countries that lack the re-

sources to manually collect socio-economic data on a frequent basis and at sample
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rates that would allow fine spatial disaggregation. Tools built upon these results

would be relatively low cost to implement and could provide interpretable results

(in contrast to a black-box machine learning approach) to act upon in a timely man-

ner. Furthermore, we enable disaggregation at multiple levels of spatial granularity

thus potentially influencing policy implemented at different levels, from neighbour-

hood to region. Since we use only aggregated CDR data, mobile phone users also

benefit by having their privacy protected from the outset, thus removing a barrier to

wider adoption of this approach.

In discussion with the United Nations Population Fund (UNFPA) to determine

how to put the methodology to actual use, an important need identified is the avail-

ability of maps at different levels of spatial granularity, so to provide information as

required for different purposes. For example, national governments determining the

allocation of a development budget to regional governments would require coarser

grained information at the level of the administrative division in question. At the

other end of the scale, regeneration or aid projects implemented at the local level for

the benefit of small communities would require much finer resolution poverty maps

to ensure the most needy areas are targeted. The methodology we have presented

provides for both situations, with the ability to aggregate data at multiple levels of

granularity, unlike sparsely sampled survey data that must be aggregated to a cer-

tain minimum (and often impractically coarse) level in order to achieve statistical

significance.

Indeed, tools built upon the methods we have described would be a useful aug-

mentation to socio-economic data collection processes in any country. The cost

of producing estimates from passively and automatically collected communication

data is negligible compared to that of manual surveying, thus a main barrier to ob-

taining up to date poverty estimates has been removed. Côte d’Ivoire and Senegal

are good examples of countries in which timely and accurate information regarding

poverty is severely lacking. In cases such as these, the ability to obtain estimates of

poverty levels on a continuous basis would represent a vast improvement. UNFPA

has stressed the value that any indicative estimates would provide in certain situa-
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tions where none are currently available; even if they carried with them a signifi-

cant level of uncertainty such estimates would still represent a large improvement

in many cases. Indeed, novel methods to provide low cost poverty indicators would

represent significant value to many governments and NGOSs working to improve

people’s lives. Limited resources could be allocated in much more efficient manner

thereby helping to alleviate some of the detrimental effects of poverty and inequal-

ity.

6.3 Limitations and Future Work

By replicating results in two developing economies we have shown that our results

are not simply chance correlations. This represents a significant advance towards

general application compared to related work. However, difficulty in obtaining

CDR data currently prevents us from establishing the global applicability of our

work. More examples are required in order to further verify the approach and being

able to produce estimates in one country from a model trained in another would also

represent a significant advance.

It might be suggested that validity is threatened by variation in adoption rates,

but rather, we argue that this is an important factor that will be reflected in the fea-

tures we derive (others being individual usage, infrastructure, etc.). Consequently,

use of our features would not disadvantage groups with low adoption rates, but in

fact they would show up as black spots in our models. Most intuitively when mea-

suring activity, that is, low adoption will mean low activity, but also in the other fea-

tures. For example, an area with lower adoption rates may exhibit higher interaction

model residuals, reflecting the fact that it may in turn have relatively lower levels

of communication with other areas and would thus be identified much sooner than

with traditional methods. To test this argument, we need to combine fine grained

adoption rate data with our approach in order to determine the real impact of varia-

tions. Conversely, we may expect that this particular signal will weaken as adoption

rates increase over time. As mobile phone ownership become more ubiquitous and

the cost of usage lowers, we may find that simple measures such as number of
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calls made will no longer reliably track wealth. Instead, we may need to focus on

more complex features such as gravity residuals and centrality measures that aim

to capture signals related to economic and network advantage. Since these types

of features reflect the interaction between areas we might expect them to become

more robust as adoption rates increase, since, in turn, mobile communication as a

medium will become more representative of the relationships between areas.

Despite being the main motivation for this work, the lack of up to date and spa-

tially accurate socio-economic ground truth data also represents a significant hurdle

toward a rigorous evaluation of the results. In order to be confident that the features

we extract can be used to accurately track poverty in a timely and spatially accurate

manner, we initially require knowledge of real poverty rates that also fulfil these

constraints. Instead we have a lag of 4 years in Côte d’Ivoire and 3 years in Senegal

between the DHS data we use as ground truth and the mobile phone data from which

we derive our features. Although this temporal lag will undoubtedly affect the ac-

curacy of predictive models that use CDR data, we would expect their accuracy and

utility to increase were this lag removed. Furthermore, as discussed in Section 3.1,

aggregated wealth indices may not reveal the existence of extreme poverty if it is in

close proximity to wealthier households, and therefore using such an index as a tar-

get variable for training models will also limit the ability of those models to identify

such cases. Future work should take steps towards overcoming these limitations by

acquiring ground truth data that is both more recent and has a more precise level

of geo-location. This will allow us to fully investigate the relationship between

geographical hierarchies and validate estimates at finer granularity.

CDR data is collected on a continuous basis as users make and receive calls.

As such a potentially fruitful extension of this work would be to produce continuous

(or regularly updated) estimates, and from these derive forecasts and identify trends,

thereby providing early warning of conditions worsening in specific areas. This

would could also provide the ability to evaluate the effect of policy and projects

in a reasonable time frame (i.e., as soon as changes occur and before policy is due

for renewal) by monitoring changes in CDR derived poverty estimates. Relatedly,
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more data would allow us to experiment with more sophisticated machine learning

models, such as artificial neural networks, which could provide greater accuracy.

Recent advances in methods for explaining the predictions of black box models such

as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016) could also be

investigated and would allow us to maintain the emphasis on interpretability, which

is essential for policy making. Finally, the methods presented in this thesis are not

specific to wealth or poverty prediction and indeed could be adapted to provide

predictions for other similarly sparse socio-economic or health factors.
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Quercia, D., Séaghdha, D. Ò., and Crowcroft, J. (2012b). Talk of the city: Our

tweets, our community happiness. In The 6th international AAAI Conference on

weblogs and social media, Dublin.

Rapoport, A. and Yuan, Y. (1989). Some aspects of epidemics and social nets. The

Small World, pages 327–348.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?”

Explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining,

pages 1135–1144.

Ryan, B. and Gross, N. C. (1943). The diffusion of hybrid seed corn in two Iowa

communities. Rural sociology, 8(1):15.

Sachs, J. D. and Warner, A. M. (1997). Sources of slow growth in african

economies. Journal of African Economies, 6(3):335–376.

Sen, A. (1999). Commodities and Capabilities. Number 9780195650389 in OUP

Catalogue. Oxford University Press.
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