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Abstract

This thesis investigates the application of non-linear supervised machine learning algo-
rithms for estimating Probability of Default (PD) of corporate clients. To achieve this, the
thesis is separated into three different experiments:

1. The first experiment investigates a wrapper feature selection method and its appli-
cation on the support vector machines (SVMs) and logistic regression (LR). The
logistic regression model is the most popular approach used for estimating PD in a
rich default portfolio. However, other alternatives to PD estimation are available.
SVMs method is compared to the logistic regression model using the proposed fea-
ture selection method.

2. The second experiment investigates the application of artificial neural networks
(ANNs) for estimating PD of corporate clients. In particular ANNs are regular-
ized and trained both with classical and Bayesian approach. Furthermore, different
network architectures are explored and specifically the Bayesian estimation and
regularization is compared to the classical estimation and regularization.

3. The third experiment investigates the k-Nearest Neighbours algorithm (KNNs).
This algorithm is trained using both Bayesian and classical methods. KNNs could
be efficiently applied to estimating PD. In addition, other supervised machine learn-
ing algorithms such as Decision trees (DTs), Linear discriminant analysis (LDA)
and Naive Bayes (NB) were applied and their performance summarized and com-
pared to that of the SVMs, ANNs, KNNs and logistic regression.

The contribution of this thesis to science is to provide efficient and at the same time
applicable methods for estimating PD of corporate clients. This thesis contributes to the
existing literature in a number of ways.

1. First, this research proposes an innovative feature selection method for SVMs.

2. Second, this research proposes an innovative Bayesian estimation methods to regu-
larize ANNs.

3. Third, this research proposes an innovative Bayesian approaches to the estimation
of KNNs.

Nonetheless, the objective of the research is to promote the use of the Bayesian non-linear
supervised machine learning methods that are currently not heavily applied in the industry
for PD estimation of corporate clients.



Impact Statement

The impact of this research is twofold. The first area of impact has mainly an academic
focus. The quantitative methods used in the study cover extensively and in detail the theo-
retical aspect of supervised machine learning methods. In particular the research proposes
innovative estimation algorithms that can be applied to estimate the model parameters of
selected supervised machine learning algorithms such as neural networks and k-nearest
neighbours. The application and benefits of the Bayesian approach to estimating model
parameters is covered in detail. The research can be a solid starting point for other re-
searches in the field of supervised machine learning to explore the most efficient and at
the same time simple model to classify between performing and non-performing clients.
The second area of impact has mainly managerial focus. The proposed quantitative mod-
els can support managers at various lending institution to optimize the lending process by
employing efficient methods to accurately identify non-performing clients. In particular
managers involved in corporate lending can benefit from the conducted research. Major
financial drivers have been identified that contribute significantly to the probability of de-
fault. Managers have the opportunity to leverage on these default drivers and effectively
monitor corporate borrowers. As a consequence this will lead to cost optimization of
the lending process. Overall the impact of the research conducted covers both academic
topics and topics relevant for practitioners. The work has the potential to bridge the gap
between purely theoretical issues and those stemming from the industry.
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1 Introduction

This chapter presents an overview of the thesis. First, explaining the motivation for this
research by introducing the research topic and relevant works that have been done so far in
this field. Subsequently, the chapter describes the objective of the research: estimating PD
models for corporate credit risk using non-linear supervised machine learning algorithms.

1.1 Motivation

The last two decades have seen a rapid growth in both the availability and the use of
credit. Until recently, the decision to grant credit was based on human judgement to as-
sess the risk of default. The growth in the demand for credit, however, has led to a rise
in the use of more formal and objective methods (generally known as credit scoring) to
help credit providers decide whether to grant credit to an applicant. This approach, first
introduced in the 1940s, has evolved over the years and developed significantly. In recent
years, the progress in credit scoring was fuelled by increased competition in the financial
industry, advances in computer technology, and the exponential growth of large databases.
All these facts serve as a motivation for researches to analyse and apply new methods for
credit scoring and mainly for estimating PD. Therefore, the rapid development of machine
learning algorithms in the last two decades can significantly improve the credit scoring
models and in particular the PD estimation of corporate entities (whole-sale clients). The
estimation of the PD for the retail clients, differs from that of the whole sale clients Pluto
and Tasche (2011). Many authors investigate the low default portfolio problem as a major
obstacle in estimating the PD of wholesale clients Pluto and Tasche (2011). One of the
main motivation of this research is to focus not on the low default portfolio problem but
to examine another problem that is far more difficult to tackle than the low default portfo-
lio issue. Given the huge data sets existing today, collecting data on defaulted wholesale
clients is not such a major problem as it was decades ago. Credit rating agencies such
as Moody’s and S&P have acquired and created huge and accurate databases containing
default information for corporate clients. Additionally, global top-tier international banks
have also developed sophisticated data infrastructures that allow them to correctly mon-
itor corporate defaults. Nonetheless, the problem of interaction between default drivers
and default indicators is of vital importance to the PD estimation of wholes-sale clients.
By interaction between risk drivers and default indicators, we mean the misalignment be-
tween risk drivers and default indicators. For example, corporate clients almost always
disclose financial statements that lack any obvious liquidity or capital issues. Moreover,
qualitative information for corporate clients such as prestige and quality of management,
market position and operational structure is typically subjective and biased as well. All
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these facts present a challenge for developers of PD models to properly capture the de-
fault patterns that are typical for retail/individual obligors. For instance, an individual that
has defaulted on his debt, normally has either a bad credit history or his income potential
has diminished significantly. The credit bureau companies collect accurate and timely
data on the default history of individual clients. Therefore, the use of linear classifica-
tion method such as logistic regression had become so popular for retail PD estimation.
The ease of interpretation of linear logistic regression combined with its classification
accuracy made possible the development of highly accurate PD models for individual
clients Bailey (2006). However, the motivation of this research is to provide evidence
and justification that through the use of Bayesian non-linear supervised machine learning
algorithms such as SVMs, ANNs and KNNs, the hidden defaults patterns inherent to cor-
porate clients could be more easily captured than by using linear classification methods.
The motivation of this research is driven by the fact that a combination of different finan-
cial factors/ratios can be a key to properly identify the default risk of corporate clients
Simkovic and Kaminetzky (2011). In order to capture interactions among key financial
factors we will use non-linear machine learning methods that are capable of capturing the
data non-linearity.

1.2 Research objectives

The research objective of the thesis is to offer alternatives to the PD estimation of cor-
porate entities by using non-linear supervised learning methods. Although logistic re-
gression is extensively used by financial institutions for predicting probability of default
(PD), non-parametric models exist that allow a developer to achieve a higher accuracy
in predicting PD. An important objective of this research is to provide an extensive set
of supervised algorithms with different estimation and regularization approaches to im-
prove the PD estimation of corporations. Moreover, this research investigates the impact
of Bayesian estimation on the PD of corporate clients. The benefits of using Bayesian
statistics to estimate PD are several. The problem of over-fitting the training set could
be addressed by using the Bayesian approach. The problem of finding optimal param-
eters and thus improving the classification performance could also be addressed by the
application of Bayesian statistics. Overall the objective of the research is to expand the
current methodology on corporate PD estimation. Each method for PD estimation has its
own merit and should be considered by practitioners. However, some methods are more
appropriate than others for certain type of portfolios.
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1.3 Research experiments

1.3.1 Experiment one

SVMs have been extensively used for classification problems in many areas such as gene,
text and image recognition. However, SVMs have been rarely used for probability of de-
fault (PD) estimation in credit risk. In this experiment we propose a wrapper selection
method for SVMs that is applicable to estimate the PD. The feature selection method
is based on the distance of the support vectors from the separating hyperplane and on
the number of support vectors. In order to assess the applicability of this feature selec-
tion method for SVMs, we compare the classification performance of SVMs and logistic
regression (LR). We also make a comparison with other feature selection methods for
SVMs. The results show that the proposed feature selection method is able to identify
relevant features for both SVMs and LR. The data on which the variable selection method
for SVMs are applied consist of annual financial statements of medium retail companies
head-quartered in Eastern Europe, Poland and the method is also applied to German retail
data.

1.3.2 Experiment two

ANNs have been extensively used for classification problems in many areas such as gene,
text and image recognition. Although ANNs are popular methods for probability of de-
fault (PD) estimation in credit risk, ANNs have their own drawbacks that should be ad-
dressed. One major drawback of ANNs is the tendency to over fit the data. In this exper-
iment we propose an improvement of a Bayesian estimation and regularization approach
to train the ANNs. The improved Bayesian estimation and regularization is compared to
the classical back-propagation algorithm for training a feed-forward network. In order
to assess the applicability of the Bayesian regularization, different network architectures
were investigated. Furthermore, the over fitting process was controlled by monitoring the
error on the test data, while training the network on the development data set. We call
this process early stopping. The results show that the applied Bayesian regularization
method is able to produce a good classification accuracy by not introducing bias to the
regularization parameters. The results also indicate the different sensitivity of the classical
regularization and the Bayesian regularization to the early stopping procedure. The data
on which the regularization algorithm is applied consist of annual financial statements of
medium retail companies head-quartered in Eastern Europe, Poland and the method is
also applied to German retail data.
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1.3.3 Experiment three

The k-nearest neighbours (KNNs) method is extensively used for classification prob-
lems in many areas. This paper proposes a Bayesian estimation approach to train KNNs
(BKNNs). The Bayesian estimation averages over the number of nearest neighbours and
therefore allows to avoid the problem of specifying the number of neighbours. A Genetic
algorithm (GA) and three innovative MCMC upgrades are proposed and utilised for the
estimation of BKNNs. Furthermore, a family of linear and non-linear supervised methods
is applied to the data and compared to BKNNs. Three data sets are used to test the classi-
fication methods: first consists of annual financial statements of East-European corporate
obligors, second of Polish corporate obligors and third of German retail clients. The re-
sults show that the BKNNs with GA estimation is able to generate a reasonable default
classification accuracy, when compared to other classification methods.

1.3.4 Scientific contribution

The contribution of this thesis to science is to provide efficient and at the same time
applicable methods for estimating PD of corporate clients. The thesis contributes to the
existing literature in a number of ways.

1. First, this research proposes an innovative feature selection method for SVMs.

2. Second, this research proposes an innovative Bayesian estimation methods to regu-
larize ANNs.

3. Third, this research proposes an innovative Bayesian approaches to the estimation
of KNNs.

Nonetheless, the objective of the research is to promote the use of the Bayesian non-linear
supervised machine learning methods that are currently not heavily applied in the industry
for PD estimation of corporate clients.

1.3.5 Thesis structure

This work is organized in several chapters. Each of the chapters gives information about
a specific part of the work done. The chapters are listed below:

• Chapter 1 "Introduction" introduces the main research objective of the work, its
motivations and its contribution to literature.

• Chapter 2 "Literature review" gives on overview of the works devoted to PD esti-
mation of both retail and wholesale portfolios. The idea of this chapter is to provide
a comprehensive description of the ideas and methods applied to PD estimation.
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• Chapter 3 "Exploratory data analysis" provides information about the data used in
the three experiments. Here a preliminary analysis on the data is performed. The
goal of this chapter is to provide a high level descriptive statistics on the data used.

• Chapter 4 "Experiment results" contains the application of the supervised machine
learning methods to the data. This chapter is divided into sub-chapters based on the
experiments conducted.

• Chapter 5 "Conclusions" contains the conclusions drawn from the application of the
models. This chapter explains whether the research objective has been achieved.
Future areas of investigation are discussed and additional research questions are
raised for further analysis.
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2 Literature review

Financial organizations store, collect and distribute huge quantities of real time data. The
problem of harnessing the power of hidden data patterns is of a vital importance to each
financial organization. The PD estimation is by nature a data mining problem, which
could be summarized as a sequence of actions aimed at finding useful relationships in
the data Thuraisingham (1999). Recently, data mining serves as a pillar of many fields
spanning from image recognition and digit recognition to credit scoring and customer
segmentation Kamath (2009).
Here we provide a brief qualitative overview of the most popular data mining methods,
focusing on their advantages and disadvantages.

2.1 Linear methods

• LDA is linear method used for classification. It was the first method applied to fi-
nancial data in 1960s Altman (1968). LDA is a plug in classification method, where
two normal distributions are compared to each other. A major assumption is that
the distributions have the same covariance structure and that structure further meets
additional requirements such as the covariance structure matrix has to be Hermi-
tian. Given these assumptions, the LDA is able to classify between two classes.
There exists a slightly different version of the LDA called "the Fisher discriminant
analysis". It does not require the two distributions to be normal. An advantage of
LDA is simplicity and ease of use. A disadvantage of the LDA is that it requires
the independent variables to be numerical (if they are categorical then Canonical
discriminant analysis should be used). Another disadvantage of LDA is that it re-
lies on many assumptions about the distributions of the variables. In practise these
assumptions are usually not met.

• LR belongs to the family of generalized linear models Cox (1958). It is the most
popular approach used for estimation of PD. The link function of LR is the logit
function, which allows to estimate a response that ranges from 0 to 1. There are
extensions to the LR model enabling the classification of more than two classes. An
advantage of the LR is its simple parametric form, allowing the LR to be applied in
many different fields. LR is also straightforward to estimated, meaning the method
does not take a lot of computational time. A disadvantage of LR is its ability to
easily overfit the data.

• NB is a probabilistic method. The Bayes theorem is the building block of the NB
method Hand and Yu (2001). One main assumption of NB is the conditional inde-
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pendence of observations. One advantage of the method is its simplicity and use of
computations. The main disadvantage of NB is its assumption on the conditional
independence of the observations. This assumption is rarely met in practice.

2.2 Non-linear methods

2.2.1 SVMs

SVMs method maximizes the distance between two planes Theodoridis Sergios (2009).
The observations that follow from either side of the separating hyper-plane are allocated
to class 1 and class 2 respectively. The hyper-plane that separates the classes is based
on some of the observations. These special observations are called support vectors. The
original version of the SVMs method was applicable to linear classification only. How-
ever, it was extended to non-linear classification through the use of the kernel trick. The
kernel allows to transfer into n-dimensional space where the observations can be linearly
separable. Additionally, soft-margin is allowed which means some of the observations
are not classified correctly but this is reflected in the loss function by introducing addi-
tional penalty to it. An extension of SVMs method exists where the SVMs optimization
problem is formulated differently (least square SVMs). Moreover, the SVMs concept can
be reformulated and used for regression problems as well. The main advantage of SVMs
method is its built-in regularization feature and its flexibility trough the use of kernels.
The main disadvantage is the computational difficulties that arise when the training data
are huge.

SVMs can be used in calculating bank’s capital requirements stipulated by the introduc-
tion of the Basel III guidelines (BCBS, 2017). The new capital requirements that banks
must meet have established the necessity of an accurate risk assessment. The probabil-
ity of default (PD) measure is a key estimate not only for risk assessment, but also for
impairment purposes under the changes introduced by International Financial Reporting
Standard 9 (IFRS9) (Onali and Ginesti, 2014). Accurate PD assessment is vital for de-
creasing the cost of capital (Gavalas, 2015). The estimation of PD has been a topic of
extensive research for many years. A high number of different algorithms have been used
to estimate the PD: ANNs, DTs, LDA, SVMs, LR. Harris (2015) provides a good general
explanation of these methods. However, LR remains the most widely used PD estimation
method for both corporate and retail borrowers.

Extensive research has been conducted comparing several PD estimation methods. Meyer
et al. (2003) compared SVMs to 25 other methods used for PD estimation. They found
that although the performance of the SVMs model is good, other methods such as ANNs
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and DTs sometimes outperform SVMs. In a more general study, Mukherjee (2003) used
SVMs and LR to classify traded companies on the Greek stock exchange, showing that
SVMs classification was better, still without focus on the feature selection process. An-
other comparison between SVMs and ANNs was made by (Li et al., 2006). They showed
that the SVMs model slightly outperforms ANNs and the SVMs model needs fewer fea-
tures than ANNs to achieve maximum classification performance. Huang et al. (2007)
compared SVMs with ANNs, genetic programming, and DTs. In this comparison the
feature selection process was covered, but the LR model was not used as a comparison.
Bellotti and Crook (2009b) compared LR and SVMs, but without showing the feature
selection method for the LR. Bellotti et al. (2011) compared LR with SVMs, but for re-
gression purposes, not for classification. They found that the SVMs model outperforms
LR. Furthermore, Chen et al. (2011) compared LR and SVMs with regard to the feature
selection process. However, the features selected for the SVMs were automatically used
for LR and this way the comparison was biased toward the SVMs model: as expected, the
SVMs model outperformed the LR in this case. Hens and Tiwari (2012) again focused
on the comparison of SVMs with genetic programming without including LR. Lessmann
et al. (2015) found that SVMs and ANNs perform better, but the performance of the LR
is still relatively good. Finally, Harris (2015) compared SVMs to LR. Although this study
used LR as the only alternative to SVMs, a lot of the details of this comparison were not
shared; for instance, the feature selection for both models is not covered at all.

The feature selection process for SVMs is a key step in comparing SVMs to other algo-
rithms. The existing literature indicates that some research on SVMs feature selection
has been developing recently. Weston et al. (2000) proposed a method that is based upon
finding those features which minimize bounds on the leave-one-out error. They show
that their method is superior to some standard feature selection algorithms. Guyon and
Elisseeff (2003) provided a good high-level overview of the different feature selection
algorithms available in the literature. Rakotomamonjy (2003) proposed relevance crite-
ria derived from SVMs that are based on a weight vector. He showed that the criterion
based on the weight vector derivative achieves good results and performs consistently
well. Chen and Lin (2006) combined SVMs and various feature selection strategies.
Some of them were filter-type approaches, i.e., general feature selection methods inde-
pendent of the SVMs, and some were wrapper-type methods, i.e., modifications of the
SVMs which can be used to select features. Recently, variable and feature selection has
become the focus of much research. Becker et al. (2009) investigated a penalized version
of SVMs for feature selection. They argued that keeping a high number of features could
avoid overfitting if the performance function uses an L1 norm regularization. Huang and
Huang (2010) investigated a recursive feature selection scheme in SVMs. Their results
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have indicated that one-vs-one SVMs with embedded recursive feature selection outper-
forms other multi-class SVMs. In this context, Kuhn and Johnson (2013) presented a
generalized backward feature elimination procedure for selecting a final combination of
features.

2.2.2 ANNs

ANNs are a generative method. They utilize the non-linearity of the data by applying a
special type of activation functions such as logistic or sigmoid functions Bishop (1995).
Particularly, the derivative of these function has a very special form that allows to find an
analytical solution of the optimization problem. Normally ANNs are of a feed-forward
type with one or more hidden layers. The loss function of the network is usually either
mean square error (MSE) or entropy function. A main advantage of ANNs is that they
can solve a range of different problems such as: regression, classification and function
approximation. ANNs can be applied to time series problems as well. ANNs also allow
for different estimation algorithms starting from the original one: the back-propagation
and going to Bayesian estimation methods. ANNs are capable of capturing the non-
linearity of data by adjusting the number of neurons and hidden layers. A disadvantage
of ANNs is their ability to over-fit data and ANNs training does not guarantee a global
solution. To maximize the performance, ANNs need more training data then compared to
other algorithms.

ANNs can be used for scoring obligors in the context of credit risk. Credit scoring be-
came popular in the USA during the 1950s. The boosting economy in that decade and the
next required the need for accessible credit and it was during this period when the meth-
ods used for automated credit scoring became more advanced. In fact the first scoring
model was presented by Fisher (1936) who applied linear discriminant analysis (LDA) as
a discrimination and classification technique; this was followed by Durand (1941) who
possibly was the first to use multiple discriminant analysis to examine car loan applica-
tions.

Among the many options offered and investigated in the literature for credit scoring,
ANNs are a flexible and rich concept to solve not only classification problems but also
to offer solutions to clustering, time series and function approximation problems (Bell,
2015). The flexibility of ANNs inspired researchers to investigate their applicability to
classification tasks. Recently, an extensive research has been conducted to utilize and ap-
ply ANNs for corporate credit scoring given the large amount of financial data collected.
The studies of Heaton et al. (2017) and Pérez-Martín et al. (2018) advocate for exten-
sive use of ANNs with many layers, the so-called deep learning approach. Furthermore,
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Bonini and Caivano (2018) showed that artificial intelligence methods including ANNs
outperform traditional statistical methods. Nonetheless the performance advantages of
ANNs were questioned by Addo et al. (2018) and Kalaycıet al. (2018), who showed that
ANNs underperform when compared to decision trees and logistic regression respectively.

Here we focus on the overfitting issue of ANNs. Several recent studies have been devoted
to this problem. Zhang et al. (2018) investigated various ways of detecting overfitting
in ANNs and advocated splitting the data into training and validation as a main way of
dealing with overfitting. Using a genetic algorithm, (Nicolae-Eugen, 2016) prevented
ovefitting in an ANN by encoding the weights of the ANN into binary chromosomes
and applying high-probability mutation in the genetic algorithm. A different approach to
reduce overfitting was proposed by Vincent et al. (2010), who applied a drop-out strategy
combined with a stacked denoising autoencoder; they found that this strategy outperforms
a single drop-out strategy and is computationally more efficient. One of the reasons for
overfitting is the noise in the training data. In that context Hindi and Al-Akhras (2011)
recommended to smooth the decision boundaries by eliminating border instances from
the training set before training an ANN; this is achieved by using a variety of instance
reduction techniques.

In contrast to these studies on overfitting in ANNs, we take a Bayesian approach to solve
the issue. Bayesian estimation in an ANN has become applicable only since the advance-
ment of computational power has increased enough. Initially Bayesian learning in ANNs
was used to create an optimal network architecture. For example, Neal (1992) explored
the difficulties related to the selection of the prior knowledge as well as the problems
associated with the computation of the posterior distribution. Neal (1996) studied the
effect of using different priors for the estimation of the network weights. Rasmussen
(1996) investigated how to estimate the weights of a network using dynamic simulation.
Furthermore, Lampinen and Vehtari (2001) applied ANNs with Bayesian learning to re-
gression and classification. Titterington (2004) reviewed the various approaches taken to
determine the network architecture, involving the use of Gaussian approximations and of
non-Gaussian but deterministic approximations called variational approximations. The
Bayesian estimation of an ANNs for credit scoring implies that the optimal architecture
of the neural network is important to the performance because the architecture greatly
impacts the estimation efficiency of the network (Heaton et al., 2017). However, in this
thesis we focus on the Bayesian regularization of the network in order to avoid over-
fitting. We compare our approach to the classical regularization approach examined in
Ashiquzzaman et al. (2017).
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2.2.3 KNNs

KNNs method is a local non-linear supervised machine learning method that can be used
for both regression and classification Altman (1992). The method is based on finding
the neighbouring observations to the observation under investigation. The neighbours are
determined by using a distance metric. The label of the observation is determined by the
label of the majority of the neighbours. The advantage of KNNs method is that it is not
dependent on parametric and probabilistic assumptions that are normally difficult to meet.
The disadvantage of the method is it works like a black box that is hugely affected by the
number of neighbours and the distance metric applied to the observations.

As discussed in 2.2.2 credit scoring emerged in the 1950s and the question of automating
the credit assessment process became critical to the financial industry. Along with arti-
ficial neural networks (ANNs) Sariev and Germano (2019, 2020), k-nearest neighbours
(KNN) is one of the most popular and flexible concepts to solve classification problems
(Gök, 2015; Henley and Hand, 1996). Recently, extensive research has been conducted
to utilize and apply KNNs for corporate credit scoring. Most of this research is oriented
towards comparing KNNs to other classification algorithms with the aim of proving that
KNNs achieves a similar performance as that of other popular scoring methods such as
logistic regression, decision trees, SVMs, and many other methods coming from survival
analysis and operational research (Gaganis et al., 2007).

Currently, several of the above methods have been applied to estimate the probability
of default (PD) (Abdou et al., 2016), including time-series methods (Agosto et al., 2016).
Antonakis and Sfakianakis (2009) found that classical KNN perform well when compared
to other methods. The flexibility of KNNs inspired researchers to investigate its applica-
bility to credit risk classification tasks (Huang and Wu, 2011). Brown and Mues (2012)
investigated the performance of KNNs on imbalanced data, showing that it is lower than
that of random forest classifiers. Faez et al. (2014) placed KNNs somewhere in the mid-
dle in terms of accuracy when compared to other classification algorithms. The overall
performance of classical KNNs depends on many factors including data transformations,
feature selection, performance indicator, etc.

The growth of computational power allowed the use of Bayesian estimation for KNNs.
Bayesian learning in KNNs offers a solution to determine an optimal number of neigh-
bours. Holmes and Adams (2002) explored the difficulties related to the selection of the
prior knowledge as well as the problems associated with the computation of the poste-
rior distribution. They also studied the effect of using different priors for the estimation
of KNNs. Everson and Fieldsend (2004) introduced a variable metric extension to the
probabilistic KNNs classifier, which permits averaging over all rotations and scalings of
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the data. The results from synthetic data showed that BKNNs provide good classification
accuracy. Manocha and Girolami (2007) concluded that there is no outright performance
advantage of BKNNs over KNNs. Nonetheless, the main advantage of BKNNs is method-
ological. BKNNs provides continuous predictive probabilities in a natural manner which
gives a way the need of allocating uneven miss-classification costs and further propagating
these levels of predictive uncertainty as a part of further possible downstream processing.
Furthermore, Villa et al. (2008) used a slightly different version of the original KNNs.
The KNNs method was combined with a bootstrap procedure to provide the posterior
probability of a newly classified object. He also found that the bootstrapped KNNs per-
forms better than the classical KNNs. Su et al. (2008) also investigated the BKNNs and
presented some evidence to show that BKNNs still significantly underestimates model
uncertainty. They reasoned that BKNNs is unable to account for the uncertainty in the
spatial locations of the neighbours. Guo and Chakraborty (2010) investigated a practical
approach based on the BKNNs. In their work, the shape of the neighborhood is automat-
ically selected according to the concentration of the data around each query point with
the help of discriminants. Liu et al. (2013) applied KNNs with Bayesian learning on
simulated and real data sets in order to evaluate the performances of the BKNNs. They
found that the BKNNs outperforms the classical KNNs. Yoon and Friel (2015) applied
the integrated nested Laplace approximation instead of MCMC to estimate the BKNNs.
They concluded that the Laplace approximation resulted in an acceptable accuracy when
compared to that of the MCMC application.

2.2.4 DTs

DTs are a very popular non-linear supervised machine learning algorithm. Typically a
DT consists of a parent node, intermediate nodes and terminating nodes Quinlan (1999).
Different algorithm for training DTs exist. One of the most popular are ID3, C4.5, CART,
CHAID, MARS. To improve DTs’ performance, they are combined with ensemble meth-
ods such as: Boosting, Random forests and Bagging. DTs can also be pruned to improve
the classification accuracy. DTs can be used for both classification and regression. An
advantage of DTs method is they are simple to understand and are easily combined with
other methods. A disadvantage is they favour variables with many categories and there-
fore they can overfit the data set.

In addition to the above described models, linear/non-linear mathematical programming
and survival analysis are also used for PD estimation. However, they are out of the scope
for this thesis.
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A topic of interest is the problem of identifying the best classifier among a family of
classifiers. In principal there is no single winner but clearly the non-linear supervised
machine algorithms are considered to have higher classification accuracy Conway and
White (2012). However, the classification accuracy is only one of the aspects that should
be considered when a selection of final models is to be made. Another point of consider-
ation is the model interpretation. If a model is not well understood by model users then
the model risk increases which can negatively affect the business Black (2004). The time
to train models is another aspect that has to be considered. Some models take more time
to be computed than others. The infrastructure where the model is implemented plays an
important role as well. Sometimes models that are easily integrated are the one that are
chosen as final. Nonetheless, the choice of a model is dependent on the data structure
and quality, the transformations used on the data and the variable selection method. In
summary, we need to highlight model selection is a subjective process. Despite that sub-
jectivity, model selection has to be done in a way that minimizes the bias and emphasises
the model quantitative performance.
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3 Exploratory data analysis

Three main data set have been used in this thesis.

3.1 East-European data set

The data set contains information for 7996 observations on 34 independent variables (co-
variates or features) and on one binary target variable, which indicates whether a default
occurred one year after the issue of the financial statement. The 34 variables are con-
structed based on data from the entity’s financial statements. The variables are split into
several groups and further analysed. The data are on an annual basis from the period
2007–2012. As it usually happens, the financial statements contain missing values. In
order to tackle this problem a detailed analysis is performed on the missing patterns in the
data and finally a multiple chain imputation method (Abayomi et al., 2008) is used for the
East-European data, see Table 27 in Appendix A, which present the descriptive statistics
before and after imputation. A sigmoid transformation is applied to all the covariates,
thus bounding the covariates’ value between 0 and 1 (Han and Moraga, 1995). This is
a typical approach applied to variables before using them for classification purposes.The
data set is not publicly available, but the author can share the data set if requested.

3.2 Polish data set

The data set is publicly available (Tomczak, 2016) and was collected from Emerging
Markets Information Service, which is a database containing information on emerging
markets around the world. Defaulted companies are analysed in the period 2000–2012,
while still operating companies are evaluated from 2007 to 2013. The default indicator
tracks the default status with a year lag. The data set has 5910 observations on 64 inde-
pendent variables. Simple mean imputation is applied to the Polish data due to the low
number of missing values, see Table 28 in Appendix A, which present the descriptive
statistics before and after imputation. The Polish data are standardised. Standardization
is a popular transformation applied in classification problems.

3.3 German data set

The data set is publicly available (Hofmann, 1994). It contains retail data for German
credit borrowers with 1000 observations on 20 independent variables (covariates or fea-
tures) and on one binary target variable, which indicates the presence of default with
a year lag. The data set contains categorical and numerical variables. For clarity and

21



simplicity, we follow (Agresti, 2019). He argues the choice of scores for categorical vari-
ables has little impact on the final result. Thus we transform the categorical variables on
a continuous scale by mapping them to integer number corresponding to the level of each
category. Afterwards all variables (continuous and categorical) are standardised. Missing
values are not present in the data. For variable names and variable construction refer to
Appendix A, Table 26.

From Figures 1a, 1b, 2a and 2b it can be seen each variable has a significantly different
summary statistics when data are split by non-default and default cases. This is promising
because increases the possiblity of non-linear relation between the default drivers and PD.
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Figure 1: (a) Box plots on the variables in the East-European corporate data (b) Box plots
on the variables in the German retail data.
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Figure 2: (a) Box plots on the variables from 1 to 34 in the Polish corporate data. (b) Box
plots on the variables from 35 to 64 in the Polish corporate data.
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4 Experiment results

4.1 Experiment 1

With respect to the above discussed studies on feature selection for SVMs, see 2.2.1, this
experiment contributes to the literature firstly by proposing an innovative feature selection
for SVMs and LR. Secondly by showing that on two out of three datasets SVMs model
renders higher classification accuracy than logistic regression. Our findings support the
findings of Bellotti et al. (2011) and Harris (2015).

The rest of the thesis is organized as follows. Section 4.1.1 presents the theoretical formu-
lation of SVMs. Section 4.1.2 contains an empirical analysis, including the presentation
of the data and the obtained results. Section 4.1.3 discusses the business rationale of the
selected default drivers. Finally, Section 4.1.4 concludes the experiment, summarizes the
main findings of this research, and proposes some future research directions.

4.1.1 Theoretical foundations

4.1.1.1 Support vector machines Consider a dataset of n pairs A = {(xi, yi) | xi ∈
Rp, yi ∈ {−1,+1}}ni=1, where xi is a p-dimensional “feature” vector and yi is a label, i.e.
a categorical variable whose value gives the class to which xi belongs. Provided the data
are linearly separable, SVMs build a hyperplane that separates the points with yi = +1

from those with yi = −1 maximizing the margin M , i.e. the minimum distance between
the hyperplane and each point; the width of the separating band is thus 2M . For this
reason SVMs are also known as maximum margin binary classifiers. A hyperplane can
be written as the set of points x satisfying the implicit equation

w · x− b = 0, (1)

where w is a normal to the hyperplane, · is the scalar product and b/||w|| is the distance
between the hyperplane and the origin. Thus the objective is

max
w,b

M subject to yi(w · xi − b) ≥ 1 for 1 ≤ i ≤ n. (2)

This optimization problem can more conveniently be rephrased as (Kuhn and Johnson,
2013)

min
w,b

w subject to yi(w · xi − b) ≥ 1 for 1 ≤ i ≤ n, (3)

where M = 1/||w||, and the distance of the hyperplane from the origin is b/||w|| (Boser
et al., 1992). Mathematically it is more convenient to reformulate this as a quadratic
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optimization problem:

arg max
α

(
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj

)
(4)

subject to 0 ≤ αi for 1 ≤ i ≤ n and
n∑
i=1

αiyi = 0,

where αi are Lagrange multipliers. The solution α∗ determines the parameters w∗ and
b∗ of the optimal hyperplane for the dual optimization problem. Usually, only a small
number of Lagrange multipliers are positive and the corresponding vectors are in the
proximity of the optimal hyperplane. The training vectors xi corresponding to the positive
Lagrange multipliers are called support vectors.

An extension of the above concept can be found in the non-separable case (Cortes and
Vapnik, 1995). The problem of finding the optimal hyperplane has the expression

arg min
w,b,ξ

(
1

2
w2 + C

n∑
i=1

ξi

)
(5)

subject to yi(w · xi + b+ ξi − 1) ≥ 0 and ξi ≥ 0,

where ξ is a positive “slack” variable and C is a user-defined penalty parameter. The
optimization problem in Eq. (5) can be solved with the Lagrangian method Rockafellar
(1993) as before, except that now 0 ≤ αi ≤ C.

Non-linear SVMs map the training samples from the input space to a higher-dimensional
feature space via a function Φ(xi) (Cristianini and Shawe-Taylor, 2000). The use of a
kernel function avoids to specify an explicit mapping:

Φ (xi) ·Φ (xj) = k (xi,xj) . (6)

Many kernel functions have been investigated in the literature. One of the most useful
Broomhead and Lowe (1988) is a radial basis function (RBF),

k(xi,xj) = exp

(
− 1

2σ2
‖xi − xj‖2

)
(7)

= exp(−γ||xi||) exp(−γ||xj||2) exp(2γxi · xj), (8)

where γ = 1/σ2 is the scaling parameter. The kernel generalization of the decision
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function for each z is

f(xi, z,α∗, b∗) = sgn

(
n∑
i=1

αiyik (xi, z) + b

)
, (9)

where z ∈ Rp is a vector containing the number of features of a new observation.

One of the less investigated areas of SVMs is the width of the hyperplane that separates
the labels (Chang and Lin, 2011). The average distance of the support vectors from the
hyperplane is called hyperplane width:

D̄ =
1

s

s∑
l=1

Dl. (10)

The distance Dl of support vector l from the hyperplane is

Dl =
1

w
|f(xl,α∗, b∗)|, (11)

where

w =

√√√√ s∑
l=1

s∑
m=1

ylymαlαmk(xl,xm), (12)

where s is the total number of support vectors.

Instead of predicting a label yi, many applications require a posterior class probability
P (yi = 1|xi). The transformation of class labels to PD estimates is done with Platt’s
method (Platt, 1999).

4.1.1.2 Data transformations The comparison of different models depends on how
the data are transformed. This is another aspect that is rarely discussed when model per-
formance is assessed. From a practical point of view, data transformations play a pivotal
role in every statistical model (Box and Cox, 1964). A truncated sigmoid transformation
was applied to the East-European data, see 3.1, prior to modelling the default proba-
bilities. The sigmoid function is a popular practical choice that allows to diminish the
outliers’ effect and to bound the feature values between 0 and 1 (Balaji and Baskaran,
2013):

f(x) =

0 if |x− x0| ≥ 100

1
1+e−k(x−x0)

if |x− x0| < 100,
(13)

where x0 = (max x − minx))/2 is the midpoint and k = 2.95/(maxx − x0) gives the
steepness of the curve. The choice of k has been discussed in Strasburger (2001). Based
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on his study we explore different choices of the numerator 2.95 of k so that k is in the
range from 1 to 10 as suggested by Strasburger (2001). We note that the above sigmoid
transformation has been applied to East-European data only. For illustrative purposes
Figure 3 below shows the sigmoid transformation on simulated data between 0 and 1. As
one can see the curvature of the function can vary by changing the value of k.
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Figure 3: Sigmoid function for different values of k that range between 1 and 10.

Table 1 presents a robustness check on how the AUC changes on real test data compared
to the base scenario of k = 2.95/(maxx−x0). In all cases the AUC deviation is between
1% and 2%, which is considered not significant.
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Table 1: AUC deviation in % from base scenario k = 2.95/(maxx − x0) per different
values of slope parameter k.

k SVM LR

0.95/(maxx− x0) 1% 2%
1.95/(maxx− x0) 1% 2%
2.95/(maxx− x0) 0% 0%
4.95/(maxx− x0) 2% 2%

4.1.2 Empirical analysis

4.1.2.1 Feature selection The objective of variable selection is threefold: improve the
prediction performance of the predictors, provide faster and more cost-effective predic-
tors, and provide a better understanding of the underlying process that generates the data.

The statistical literature offers many approaches for feature selection (Guyon and Elisse-
eff, 2003). However, there is no proven methodology that works for each data set. Based
on previous experience on the selection of appropriate features for different models, we
decided that an automatic script shall be written that overcomes many of the drawbacks
of a manual feature selection process. An univariate analysis on the features is the most
common approach used for feature selection: those features that exhibit good performance
based on a specific measure, for example the F -score (Güneş et al., 2010), are selected for
further analysis. Nevertheless, there are some negative aspects of this approach (Quan-
quan et al., 2011):

1. Some variables cannot discriminate well on a standalone basis but show better ex-
planatory power in a combination with other factors.

2. Often the modeller selects a combination of factors that is highly correlated and
even though they have a strong performance on a univariate level, it is difficult to
select a combination of factors with a low multicollinearity.

In order to avoid the above drawbacks of the simpler methods for variable selection, we
propose an innovative variable selection method that we apply to the three data sets de-
scribed above. The applied feature selection algorithm consists of the following steps:

1. Initialization: set F = initial set of n features, D = development sample, V = vali-
dation sample and S = selected set of features, where S ⊆ F . Define fkS = set of all
feature combinations at k, where k ∈ {1, . . . , n} is a generation index for a feature
combination S = {i, j, . . . , z} with cardinality l ≤ n. Set P k ⊆ S = final approved
combinations of features for generation k.
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2. for k = 1, . . . , N

1. Create generation k of feature combinations Sk = {i, j, . . . , z} =⇒ fkS
where i 6= j 6= . . . 6= z. The number of different feature combinations is(
n
r

)
= n!

r!(n−r)! , where r is the cardinality of Sk and n is the total number of
features.

2. For each {i, j, . . . , z} of generation k compute:
if model == SVMs then

1. D̄k
{i,j,...,z} = hyperplane width for fkS .

2. sk{i,j,...,z} = number of support vectors for fkS .

3. AUCk
{i,j,...,z} = area under the curve (AUC) for fkS on V k, where V k is a

validation sample for a feature combination from generation k.

end if
if model == LR then

1. p-valuek{i,j,...,z} = a p-value for fkS

2. AICk
{i,j,...,z} = an Akaike information criterion (AIC) for fkS

3. BICk
{i,j,...,z} = a Bayes information criterion (BIC) for fkS on V k, where

V k is a validation sample for a feature combination from generation k

end if
OnDk compute the l×l feature correlation matrixA, where l is the cardinality
of {i, j, . . . , z}.

3. For each {i, j, . . . , z} of generation k, given a predefined AUC threshold
AUCt test:
if AUCk

{i,j,...,z} ≥ AUCt and maximum element of A ≤ 60% then accept
P k ⊆ Sk for {i, j, . . . , z}
end if

4. Given all accepted feature combinations (P k) from generation k, increase the
cardinality of the set {i, j, . . . , z} by 1 until k = n.

end for

3. Test the performance of the model on test data on all accepted feature combinations
(P k) from each generation k.
if model == SVMs then
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1. Select the l feature combinations with the highest AUC, distance to the hyper-
plane and the lowest number of support vectors on the test data in that order.

end if
if model == LR then

1. Select the l feature combinations with the highest AUC, AIC and BIC on the
test data in that order.

end if

For the data sets under investigation the algorithm explained above is run under the fol-
lowing conditions:

1. The initial number of features is equal to n, i.e. to the total number of variables in
each data set for both models.

2. The first generation k = 1 contains only 2 features for both models. It is assumed
that including more than 5 features can result in overfitting the data especially for
the logistic regression. SVMs method has an embedded regularization, i.e., it in-
troduces additional information in order to prevent overfitting Fan et al. (2012), but
overfitting is still possible.

3. The AUC threshold in Step 2.3 is set to 60% on the validation sample. We set the
threshold of 60% based on Mukaka (2012) and Schober et al. (2018) who show
that a moderate to high correlation could be assumed around the range 60%-80%.
We set the correlation to the lower bound of 60% in order to increase the com-
putational efficiency of the algorithm. However, we can increase the threshold in
order to apply a more exhaustive search of different variable combinations. Table 2
presents with how many percentages the AUC deviates from the base scenario of
60% threshold. Changes are considered to be not significant. We note that increas-
ing the variable correlation in LR could undermine the statistical inference in LR,
therefore using low correlated variables is preferable.

Table 2: AUC deviation in % from base scenario (60% correlation threshold).

Variable correlation threshold SVM LR

60% 0% 0%
70% 1% 2%
80% 1% 2%

4. The feature correlation matrix in Step 2.2 is estimated using the Pearson product-
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moment correlation coefficient.

5. The number of final selected feature combinations l on Step 3 of the algorithm is
set to 5 for the SVMs and LR.

6. To improve the computational efficiency of the algorithm, the total number of vari-
ables is reduced by randomly sampling 10 variables out of n without replacement
and running the algorithm 10 times on different random sub-samples of n.

7. The SVMs model is run with an RBF kernel with parameter γ = 1
k+1

. The penalty
parameter C is kept constant across the iterations and the feature combinations.
This allows a direct comparison of the number of support vectors for each combi-
nation. The number of support vectors is also affected by the number of features in
the model. However the effect is not significant and therefore this factor is ignored
when comparing the number of support vectors. The expectation is that the lower
the number of support vectors the better the model. Nonetheless, we have to point
out that the number of support vectors is affected by several factors:

1. the size of the data (the number of observations for the validation sample and
the training sample is constant for each iteration, only the content is different);

2. the cost C of constraints violation;

3. the RBF kernel.

4.1.2.2 Selection of the best performing LR models on test data Table 3 presents
the output from the feature selection method on the German training data, see 3.3. The
calibration data are split into training set and test set. The feature selection method is run
on the training data and the performance is measured on the test (validation) data. The
columns of Table 3 show the BIC, AIC and AUC on the test data. The algorithm selects
the five feature combinations with the lowest BIC, AIC and with the highest AUC on the
German test data. Table 4 and Table 5 present the output of the feature selection method
on the East-European, see 3.1 and Polish data, see 3.2.
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Table 3: Final feature combinations for LR, German retail data. AUC, AIC and BIC on
test (validation) data.

Feature combination BIC AIC AUC

1, 2, 7, 9, 19 250.22 270.01 77.94%
1, 2, 7, 14, 19 245.43 265.22 77.71%
1, 2, 7, 8, 19 249.26 269.05 77.70%
1, 2, 7, 18, 19 250.28 270.07 77.49%
1, 2, 7, 19, 20 249.26 269.05 77.48%

Table 4: Final feature combinations for LR, East-European corporate data. AUC, AIC
and BIC on test (validation) data.

Feature combination BIC AIC AUC

1, 8, 14, 25, 30, 32 1019.43 1053.20 77.92%
1, 14, 25, 30, 32, 33 1024.97 1058.74 77.84%
1, 13, 14, 25, 30, 32 1024.67 1058.45 77.80%
8, 9, 14, 26, 29, 30 997.45 1031.22 77.58%
9, 11, 14, 25, 29, 30 958.74 992.51 77.55%

Table 5: Final feature combinations for LR, Polish corporate data. AUC, AIC and BIC on
test (validation) data.

Feature combination BIC AIC AUC

2, 21, 26, 34, 39 462.11 486.06 84.85%
2, 21, 34, 39, 45 466.38 490.34 84.33%
2, 11, 21, 34, 39 464.94 488.89 83.93%
6, 32, 43, 55, 56 473.58 497.53 83.69%
2, 11, 34, 39, 45 465.78 489.73 83.59%

4.1.2.3 Selection of the best performing SVMs models on test data Table 6 presents
the output from the feature selection method on the German training data. The calibration
data are split into a training set and a test set. The feature selection method is run on the
training data and the performance is measured on the test data. The columns of Table 6
show the distance to the hyperplane, the number of support vectors and the AUC on the
German test data. The algorithm selects the five feature combinations with the highest
distance to the hyperplane, the lowest number of support vectors and the highest AUC on
the test data. Table 7 and Table 8 present the output of the feature selection method on the
East-European and Polish data.

32



Table 6: Final feature combinations for SVMs, German retail data. AUC, distance to the
hyperplane and number of support vectors on test (validation) data.

Feature combination Distance Number of SV AUC

1, 11, 13, 14, 15 0.119 153 79.45%
1, 10, 13, 14, 15 0.077 152 79.34%
1, 4, 10, 13, 14 0.062 148 79.13%
1, 4, 13, 14, 19 0.055 152 78.98%
1, 2, 6, 11, 17 0.072 151 78.90%

Table 7: Final feature combinations for SVMs, East-European corporate data. AUC,
distance to the hyperplane and number of support vectors on test (validation) data.

Feature combination Distance Number of SV AUC

9, 14, 25, 30 0.437 554 75.09%
14, 25 0.159 588 74.95%
1, 6, 30 0.155 568 74.82%
9, 25, 30 0.061 588 74.26%
1, 25, 30 0.066 568 74.10%

Table 8: Final feature combinations for SVMs, Polish corporate data. AUC, distance to
the hyperplane and number of support vectors on test (validation) data.

Feature Combination Distance Number of SV AUC

2, 26, 39 0.196 309 83.79%
2, 11, 39 0.177 310 83.74%
2, 39, 45 0.181 310 83.72%
2, 21, 39 0.181 310 83.72%
2, 26, 34, 39, 55 0.272 309 83.71%

4.1.2.4 Out-of sample results The final feature combinations selected from the LR
are further tested on out-of sample data. The results are shown in Table 9, Table 10
and Table 11. The columns of the tables below show the percentage of overall correctly
classified obligors, the percentage of correctly classified good obligors, the percentage of
the correctly classified bad olbiogrs and the AUC on the out-of-sample data for LR.

The data have been split into training, test and validation. The validation data (on which
the out-of sample results are calculated) consist of 100 defaulted and 100 non-defaulted
observations for each of the three data sets explored in this thesis. The validation data
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(out-of sample data) have been randomly sampled 100 times, each time sampling 90%.
Based on that sampling we calculated a standard deviation for the total number of cor-
rectly classified observations. The standard deviation is in the range of 0.7% to 1.4%,
which is expected. The training and test data are equal in size and are based on the total
number of defaults-100 for each data set. We exclude 100 because these were allocated
to the validation data. Additionally the training and test data are balanced, have equal
number of defaulted and non-defaulted observations.

Table 9: Final feature combinations for LR, out-of-sample German retail data. Percentage
of correctly classified (All), percentage of the correctly classified bad obligors (Bad),
percentage of the correctly classified good obligors (Good), AUC.

Feature combination All Good Bad AUC

1, 2, 7, 9, 19 70%(1.1) 70% 70% 77%
1, 2, 7, 14, 19 68%(1.0) 69% 66% 75%
1, 2, 7, 8, 19 70%(1.0) 68% 72% 78%
1, 2, 7, 18, 19 67%(1.1) 68% 65% 75%
1, 2, 7, 19, 20 69%(1.0) 69% 68% 75%

Table 10: Final feature combinations for LR, out of sample East-European corporate data.
Percentage of correctly classified (All), percentage of the correctly classified bad obligors
(Bad), percentage of the correctly classified good obliogors (Good), AUC.

Feature combination All Good Bad AUC

1, 8, 14, 25, 30, 32 62%(1.3) 60% 63% 69%
1, 14, 25, 30, 32, 33 61%(1.4) 63% 58% 67%
1, 13, 14, 25, 30, 32 60%(1.4) 62% 58% 67%
8, 9, 14, 26, 29, 30 65%(1.1) 58% 71% 67%
9, 11, 14, 25, 29, 30 62%(1.2) 55% 70% 69%

Table 11: Final feature combinations for LR, out of sample Polish corporate data. Per-
centage of correctly classified (All), percentage of the correctly classified bad obligors
(Bad), percentage of the correctly classified good obliogors (Good), AUC.

Feature combination All Good Bad AUC

2, 21, 26, 34, 39 87%(0.7) 85% 89% 93%
2, 21, 34, 39, 45 88%(0.7) 87% 88% 93%
2, 11, 21, 34, 39 87%(0.7) 86% 88% 92%
6, 32, 43, 55, 56 71%(0.7) 80% 61% 81%
2, 11, 34, 39, 45 81%(0.7) 83% 79% 89%
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The final feature combinations selected from the SVR are further tested on out-of sample
data. The results are shown in Table 12, Table 13 and Table 14. The columns of the tables
are analogous to those of Tables 9–11.

Table 12: Final feature combinations for SVMs, out-of-sample German retail data. Per-
centage of correctly classified (All), percentage of the correctly classified bad obligors
(Bad), percentage of the correctly classified good obliogors (Good), AUC.

Feature combination All Good Bad AUC

1, 11, 13, 14, 15 70%(1.1) 64% 75% 70%
1, 10, 13, 14, 15 69%(1.2) 58% 79% 71%
1, 4, 10, 13, 14 71%(1.3) 59% 83% 72%
1, 4, 13, 14, 19 73%(1.1) 65% 81% 74%
1, 2, 6, 11, 17 76%(1.0) 78% 74% 77%

Table 13: Final feature combinations for SVMs, East-European corporate out-of-sample
data. Percentage of correctly classified (All), percentage of the correctly classified bad
obligors (Bad), percentage of the correctly classified good obliogors (Good), AUC.

Feature combination All Good Bad AUC

9, 14, 25, 30 70%(1.1) 70% 69% 69%
14, 25 64%(1.4) 52% 76% 64%
1, 6, 30 70%(1.2) 65% 74% 70%
9, 25, 30 66%(1.2) 68% 64% 66%
1, 25, 30 70%(1.1) 72% 67% 70%

Table 14: Final feature combinations for SVMs, Polish corporate out-of-sample data.
Percentage of correctly classified (All), percentage of the correctly classified bad obligors
(Bad), percentage of the correctly classified good obliogors (Good), AUC.

Feature combination All Good Bad AUC

2, 26, 39 79%(0.7) 83% 74% 80%
2, 11, 39 79%(0.7) 83% 74% 80%
2, 39, 45 79%(0.7) 83% 74% 82%
2, 21, 39 83%(0.7) 83% 83% 84%
2, 26, 34, 39, 55 81%(0.7) 76% 85% 81%

The results based on one out-of-sample data set indicate that in terms of AUC the logistic
regression should out-perform the SVMs on all data sets. For the German data the AUC
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of the LR ranges from 75% to 78%, whereas the AUC of the SVMs ranges from 70–77%.
For the East-European data the AUC of the LR ranges from 67–69%, whereas the AUC
of the SVMs ranges from 64–70%. For the Polish data the AUC of the LR ranges from
81–93%, whereas the AUC of the SVMs ranges from 80–84%. However, the percentage
of the overall correctly classified obligors is a better measure of classification accuracy,
whereas the AUC is a rank-ordering measure. In terms of correctly classified obligors
the SVMs out-performs the LR on two out of three data sets (the German and the East-
European data), see column “All” in Tables 12–14.

For that reason the final feature combinations selected from the LR and the SVMs models
are further tested 100 times with different out-of-sample data sets (subsets of the main
out-of-sample data set). Figures 4–9 show the results. SVMs performers better than LR
in two out of three data sets.
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4.1.2.5 Comparison of the variable selection method to an alternative variable se-
lection methods Table 15 presents the output of the sequential variable selection method
implemented in MATLAB. Hira and Gillies (2015) provide a comprehensive discussion
on feature selection methods. The results show that the proposed variable selection
method performs similarly to the challenger selection method on the out-of sample data.
On the Polish data the proposed method outperforms significantly the alternative variable
selection method.

Table 15: Final feature combinations; challenger feature selection method applied to
the out-of-sample data. Percentage of correctly classified (All), percentage of the cor-
rectly classified bad obligors (Bad), percentage of the correctly classified good obliogors
(Good), AUC.

Data Set Method Feature combination All Good Bad AUC

German retail data LR 1, 2, 3, 10, 12, 19 73% 74% 71% 77%
German retail data SVMs 1, 2, 3, 10, 12, 19 77% 81% 73% 78%
East-European data LR 6, 9, 21, 22, 25, 30 65% 60% 69% 70%
East-European data SVMs 6, 9, 21, 22, 25, 30 72% 74% 69% 72%
Polish data LR 1, 28, 32, 47, 62 79% 84% 73% 86%
Polish data SVMs 1, 28, 32, 47, 62 77% 86% 67% 80%

We further test the performance of the challenger sequential variable selection method
100 times with different out-of-sample data sets (subsets of the main out-of-sample data
set). In the case we show that the performance of the proposed selection method works
well for the SVMs when it is based on the distance to the hyperplane. The SVMs distance
to the hyperplane method outperforms the challenger method on all data sets as can be
seen by comparing Figures 5, 7 and 9 with Figures 11, 13 and 15. In the case of LR,
where we do not use the distance to the hyperplane and the number of support vectors
(this is possible only for SVMs), the proposed method has similar performance and LR
outperforms the challenger only on the Polish data as can be seen by comparing Figures 4,
6 and 8 with Figures 10, 12 and 14. However, this is due to the fact that in general LR is a
more suitable method for that data set as can be concluded when compared to the SVMs.
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Figure 11: AUC distribution on out-of-
sample German retail data, SVMs.
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sample East-European corporate data, LR.
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Figure 13: AUC distribution on out-
of-sample East-European corporate data,
SVMs.
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Figure 15: SVMs, AUC distribution on out-
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4.1.3 Managerial insights

The economic interpretation of the final results is important. For that reason we identify
the most frequent default drivers in each data set. Referring back to tables Tables 9–15
and counting the occurrence of variables in both models (LR and SVMs) we present in Ta-
ble 16 the occurrence of each feature in each data set. Then we compare the most frequent
variables from the proposed variable selection method to the ones given by the challenger
variable selection method. If possible, we identify the common features between the two
methods considering only those variables from the proposed method that appear at least
6 times (in 50% of the cases, we have 10 final models for each data set). For the Polish
data set there is no common frequent variables between the two methods and therefore
we further discuss the variables from the proposed method only.
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Table 16: Selection of the most frequent variables on the test (validation) data across
the three different data sets: German (G), East-European (E), Polish (P). The last three
columns are based on the challenger variable selection method applied to the data sets:
German (CV_G), East-European (CV_E), Polish (CV_P); Id colums show the variable
id in a given data set, Freq columns show the number of times a variable appears in all
the final variable combination (maximum can be 10, 5 models for LR and 5 models for
SVMs).

Id (G) Freq (G) Id (E) Freq (E) Id (P) Freq (P) Id (CV_G) Id (CV_E) Id (CV_P)

1 10 30 9 2 9 1 6 1
2 6 25 8 39 9 2 9 28

19 6 14 7 34 5 3 21 32
7 5 1 5 21 4 10 22 47

14 5 9 4 11 3 12 25 62
13 4 32 3 26 3 19 30
4 2 8 2 45 2

10 2 11 2 55 2
11 2 29 2 6 1
15 2 6 1 43 1
6 1 13 1 56 1
8 1 26 1
9 1 33 1

17 1
18 1
20 1

Following the logic described above we have identify the following common variables:

1. For the German retail data the most common variables across the two selection
methods are: status of existing checking account, duration of the account in months
and phone number availability.

2. For the East-European corporate data the most common variables across the two
selection methods are: earnings on operating income and total assets.

3. For the Polish corporate data the most common variables are: total liabilities/total
assets and profit on sales/sales.

The results are shown in Table 17.
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Table 17: Selected most frequent variables for each data set, based on proposed and
challenger variable selection methods.

Data set Variable ID Variable name

German 1 status of existing checking account
German 2 duration in months of the account
German 19 telephone availability

East-European 25 earnings on operating income
East-European 30 total assets

Polish 2 total liabilities/total assets
Polish 39 profit on sales/sales

One explanation for the total assets to significantly affect the PD is that the change in
total assets is related to business growth. If a business grows substantially in terms of
assets, this means that large long-term investments were made in that business. All other
factors being equal, the long-term investments will result in higher profit if the company
keeps the same level of operational risk. In the retail, the final variables that appear most
are the “status of existing checking account” and the “duration in months of the checking
account”.

The above difference in the most frequent ratios across the models and the datasets shows
that model selection is not only a function of the best performing model but also a function
of the business goals and the business environment of the lending institution.

4.1.3.1 Reference to the findings of other authors Bellotti and Crook (2009b) found
that one of the most important factors for default estimation are “home owner status” and
the “time with bank”. We also found that the time spent with the bank is a main indicator
of default risk. However, Bellotti and Crook (2009b) found other significant indicators
of default such as “total outstanding balance excluding mortgages on all active CAIS
accounts” and “total number of credit searches in last 6 months”. In contrast, we did not
identify similar variables to appear frequently as default risk drivers. One reason is the
fact the we kept the total number of variables down to five, whereas Bellotti and Crook
(2009b) used as many as eleven variables in their final model.

A study on wholesale data was done by (Chen et al., 2011). They found that the vari-
able “account payable turnover” is a significant factor in measuring credit risk. The other
seven variables proposed by Chen et al. (2011) were mainly based on the total assets and
sales. Another interesting study is by (Hammer et al., 2012). They evaluated the credit-
worthiness of banks using statistical, as well as combinatorics-optimization logic-based
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methodologies. In their study the Fitch risk ratings of banks were reversed-engineered
using ordered logistic regression, SVMs, and Logical Analysis of Data (LAD). They also
indicated that total assets and liabilities play an important role in differentiating between
good and bad obligors. This solidifies our findings and shows that although the individual
factors can be slightly different, the major components of these factors are the same in
both studies. This is also consistent with the findings of (Tian et al., 2015). The busi-
ness intuition is that the amount of the total assets relative to the liquid assets or other
balance sheet items such as net profit provide a clear picture of how efficient the utiliza-
tion of those assets by a particular obligor is. Minimizing the amount of total assets and
maximizing the net profit is the objective of every private company. Another common
default driver is the short-term (current) liabilities. This is consistent with the findings of
Gök (2015). The business intuition is that current liabilities is a significant indicator of
short-term debt. Companies with high levels of current liabilities in relation to other bal-
ance sheet items such as cash and sales are riskier and therefore they have a higher default
probability. Finally we stress on that fact that although some differences exist between the
Polish obligors and those of East-European obligors, most of the default drivers are the
same, namely total assets, total liabilities and sales. This is consistent with the findings of
Hosaka and Takata (2016).

4.1.4 Conclusion

The findings of this research experiment yield promising insights into the potential of
SVMs to estimate the probability of default (PD) of corporate and retail clients. Our work
is consistent with the findings of Bellotti and Crook (2009b) with respect to the usefulness
of SVMs for credit scoring.

Furthermore, we apply a wrapper approach for feature selection based on the distance
of the support vectors from the separating hyperplane. We show that a combination of
a wider hyperplane and fewer support vectors leads to a higher discrimination power for
SVMs.

From a financial point of view, the most frequently applied variables for PD estimation are
total assets, total liabilities and sales in the corporate segment. In the retail segment the
variables that appear most are current account status and duration of the current account.

Future work may include more experiments on estimating other Basel measures such as
loss-given default (LGD) and exposure at default (EAD). Supervised non-linear machine
learning methods can be successfully applied for the estimation of PD, LGD and EAD in
a way that accounts for their correlations. The collateral prices and their evolution, which
are an important aspect of the capital calculations under the Basel guidelines, can also be
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modelled with non-linear machine learning methods.

Overall, the SVMs model proposed here shows promising results. Practically, this could
save time and effort and will lead to making better-informed credit risk decisions.
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4.2 Experiment 2

With respect to the above discussed studies on ANNs, see 2.2.2, this experiment con-
tributes to the literature first by proposing an update to the estimation of the regulariza-
tion parameters and secondly by exploring classical and Bayesian regularization in the
estimation of a network with different architectures.

The rest of the thesis is organized as follows. Section 4.2.1 presents the theoretical formu-
lation of an ANNs in a classical and in a Bayesian framework. Section 4.2.2 presents the
results from the regularized networks. Section 4.2.3 discusses the policy implications of
the selected default factors and their business intuition. Finally, Section 4.2.4 concludes
the experiment by summarizing the main findings.

4.2.1 Theoretical foundations

In theory, there are several neural network architectures. In practice, most researchers
(Hagan et al., 2014) focus on three main types: feed-forward, competitive and recurrent
networks. While competitive and recurrent networks are definitely an interesting area of
research, in this experiment we explore the most popular kind of network architecture, the
feed-forward network. It is called a feed-forward network because data moves in forward
direction only: initially the data input is processed in the first layer of the network, then it
is pushed forward to the next layer until it reaches the final output layer. In a feed-forward
network, data are not fed back from a layer to the previous, which instead happens in a
recurrent network. A detailed description of a feed-forward network is given in the next
subsection.

4.2.1.1 Feed-forward neural network architecture In this section we briefly intro-
duce the most basic theoretical concepts behind an ANNs. A detailed discussion is given
by Kim et al. (1996). A multilayer ANNs can be described as a system with the following
elements:

1. An input data vector x ∈ Rp and a categorical variable y ∈ {0, 1}.

2. An output ŷ = P (Y = 1|X = x).

3. Layers k = 1, . . . , l with m units per layer; the layers with k < l are hidden, the
layer l is the output layer. Each layer has a bias bk ∈ R and each unit has an
activation hki ∈ R. The units in layer k are connected to those in the previous layer
by weights wkij ∈ R, i, j = 1, . . . ,m, k = 1, . . . , l.

4. A previous layer is defined as layer k − 1 in respect to layer k.
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5. The individual inputs x ∈ Rp are each weighted by weights wkij . Each neuron i is
weighted in each layer k.

6. The final output has a bias bl+1 ∈ R and is connected to the units of the output layer
by weights wl+1

j ∈ R.

7. An activation function ski (.) for layer k and unit i. An activation function deter-
mines how each node reacts in an artificial neural network and what output each
node generates. This output is then used as input for the next node in an itera-
tive procedure until the estimation process converges to a local or global optimum.
The most popular choices of activation functions are the logistic sigmoid and the
hyperbolic tangent (Farhadi, 2017).

Below we present the sequence in which the estimation of the network weights is per-
formed. The first step in the estimation process of the network weights w is to feed data
into the first layer of the network. The unit activations of the first layer are computed from
the input data as

h1i = s1i

(
b1 +

p∑
j=1

w1
ijxj

)
, (14)

where s1i (·) is an activation function. After receiving the output from the first layer, we can
proceed with the estimation of the second layer activation functions. The unit activations
of the next layer are computed from those of the previous layer as

hk+1
i = sk+1

i

(
bk+1 +

m∑
j=1

wk+1
ij hki

)
. (15)

After reaching the final output by sequentially moving through each hidden layer k, the
output probability is estimated as

ŷ = bl+1 +
m∑
j=1

wl+1
j hli. (16)

In the estimation process described above the activation function s(.) plays a vital role. In
our analysis we apply the logistic function which is the most common non-linear activa-
tion function,

s(x) =
1

1 + exp(−x)
. (17)

The above estimation process can be described as a learning process where the weights
of the network are estimated through learning from the data. In particular the weights
wkij for layer k and neuron i in the neural network are estimated sequentially and itera-
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tively. Afterwards, the network performance with weights learned from the training data
is monitored on a test data.

In order to estimate the network weights a cost function is required. The purpose of the
cost function is to serve as an objective to be minimized during the learning process. A
typical choice of a cost function is the mean squared error (MSE) that can be written as

E =
1

N

N∑
i=1

(yi − ŷi)2, (18)

where N is the number of observations, i.e. the number of input data vectors and categor-
ical variables. Another popular cost function is the cross entropy (CE)

S = −
N∑
i=1

pi log qi, (19)

where pi and qi, i = 1, . . . , N , are the probability masses of two discrete probability
distributions.

A common issue in estimating network weights is the overfitting of the network in which
the network cannot generalize well and subsequently the network performance on new
data is poor. When overfitting occurs the network weights are calculated in way that
maximizes the network performance on the training data but this is achieved through
significantly decreasing the performance on the test data. The most common way of
solving the overfitting issue that occurs in the estimation process is applying regularization
during the estimation (Deng et al., 2014). Regularization can be applied to penalize the
cost function with the squared sum of the weights so that the generalization performance
of the network is maintained. For the MSE cost function this can be written as

Ereg = γ

l∑
k=1

m∑
i,j=1

(wkij)
2 + (1− γ)E = γEw + (1− γ)E, (20)

where γ ∈ (0, 1) is a regularization constant. Usually the backpropagation algorithm
(Dreyfus, 1990) is used to estimate the weights. A common optimization algorithm used
for reaching a convergence of the estimation procedure is the gradient descent algorithm.

Although classical regularization as described above works adequately, in this experiment,
we recommend a Bayesian approach to regularization which we describe in the next-
subsection. We advocate that the Bayesian approach to regularization allows for more
flexibility by reducing the bias inherent to classical regularization (through the choice of
regularization constant) and therefore leading to a higher performance.
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4.2.1.2 A Bayesian approach for feed-forward neural networks After we have ex-
plained what a feed-forward network is, in this section we present the theory behind our
proposed approach to regularization. The networks are trained using supervised learning,
with a training data set of inputs and targets D = {(x1, y1), (x2, y2), . . . , (xN , yN)}. We
choose an interpolating functions of the form

g(x) =
k∑

h=1

whφh(x), (21)

where φh(x) are basis functions andwh are coefficients inferred from the data. We assume
that the targets are generated by

yi = g(xi) + εi, (22)

where g(xi) is an unknown function and εi are independent Gaussian random variables
with average zero and variance σ2. The initial objective of the training process is to
minimize the sum of squared errors

ED =
N∑
i=1

1

2
(yi − ŷi)2, (23)

where ŷi represents the neural network response for observation i.

An extensive work on Bayesian estimation and regularization has been done by MacKay
(1992). In summary the Bayesian regularization requires the Hessian matrix of the ob-
jective function. For the MSE cost function and regularization by the sum of squared
weights, it follows that the Hessian matrix is a quadratic function and it can be approxi-
mated by using the Levenberg-Marquardt algorithm (Gill and Murray, 1978). The objec-
tive function becomes

F = αEW + βED, (24)

where EW was defined in Eq. (20), and α and β are objective function parameters.

In the Bayesian framework (Foresee and Hagan, 1997) the weights of the network are
considered random variables. Given the data, the probability density function of an array
w of network weights is

f(w|D,α, β,M) =
f(D|w, β,M)f(w|α,M)

f(D|α, β,M)
, (25)

where M is the particular neural network model used; f(w|α,M) is the prior density,
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which represents our knowledge of the weights before any data are collected; f(D|w, β,M)

is the likelihood function, which is the probability of the data occurring given the weights;
f(D|α, β,M) is a normalization factor, which guarantees that the total probability is 1.

Under the assumption of Gaussian noise, the probability of the data given the parameters
w is

f(D|w, β,M) =
exp(−βED)

ZD(β)
, (26)

where ZD(β) =
(

2π
β

)N
2

, β = 1
σ2 . The density of the prior can be written as

f(w|α,M) =
exp(−αEW )

ZW (α)
, (27)

where ZW (α) =
∫

exp(−αEW )dw. If Eq. (26) and Eq. (27) are substituted into Eq. (25),
we obtain

f(w|D,α, β,M) =
exp(−(βED + αEW ))

ZW (α)ZD(β)
=

exp(−F (w))

ZF (α, β)
. (28)

where ZF (α, β) =
∫

exp(−F )dw. In this Bayesian framework, the optimal weights
should maximize the posterior probability.

4.2.1.3 Optimizing the regularization parameters After we showed that the weights
are a function of the parameters α and β, we optimize these parameters using Bayes’
theorem,

f(α, β|D,M) =
f(D|α, β,M)f(α, β|M)

f(D|M)
. (29)

If a uniform prior density f(α, β|M) is taken for the regularization parameters α and
β, then maximizing the posterior is achieved by maximizing the likelihood function
f(D|α, β,M). However, note that this likelihood function is the normalization factor
in Eq. (25). Since all probabilities have a Gaussian form, the posterior can expressed as

f(D|α, β,M) =
f(D|w, β,M)f(w|α,M)

f(w|D,α, β,M)
=

ZF (α, β)

ZW (α)ZD(β)
. (30)

ZD(β) andZW (α) are known from from Eq. (26) and Eq. (27). ZF (α, β) can be expressed
as a Taylor series expansion. Since the objective function has a quadratic shape in the
surrounding of the minimum, we can expand ZF (w) around the minimum point of the
posterior density wMP, where the gradient is zero. We refer to wMP as the most probable
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interpolant and therefore F can be written as

F = F (wMP) +
1

2
(w −wMP)TH(w −wMP), (31)

where∇2ED = B,∇2EW = C, H = αC + βB, wMP = H−1BwML. It follows that ZF
is a Gaussian integral that can be expressed as

ZF = e−F (wMP)(2π)
k
2 (det H)−

1
2 . (32)

Thus we can rewrite the log evidence for α and β as

log f(D|α, β,A,R) = −αEW−βED+
k

2
log(2π)−1

2
log detH−logZW (α)−logZD(β).

(33)
Notice that this expression contains the logarithm of the Occam factor (2π)

k
2 (det H)−

1
2/ZW (α),

which can control the overfitting. Substituting ZD from Eq. (26) and ZW from Eq. (27),

log f(D|α, β,A,R) = −αEW − βED −
1

2
log detH +

k

2
logα +

N

2
log β. (34)

We differentiate the log evidence with respect to α and β to find the condition that is
satisfied at the maximum. Differentiating with respect to α and setting the result equal to
zero gives

αMP =
γ

2EW (wMP)
; (35)

differentiating with respect to β gives and setting the result equal to zero gives

βMP =
N − γ

2ED(wMP)
. (36)

One step of the calculation is ∂
∂α

log det H = tr
(
H−1 ∂H

∂α

)
= tr (H−1I) = tr H−1 =

(tr H)−1, where ∇∇TEW = I. Here γ = k − 2αMP tr H−1MP is the effective number of
parameters and k is the total number of parameters in the network. The parameter γ is a
measure of how many parameters in the neural network are effectively used in reducing
the error function; it can range from zero to k.

Summarizing, the steps required for the Bayesian optimization of the regularization pa-
rameters with a quadratic approximation of the Hessian matrix are:

1. Initialize the parameters α, β and the weights w.

2. Take one step of the Levenberg-Marquardt algorithm to minimize the objective
function F (w) = αEW + βED.
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3. Compute the effective number of parameters γ = k − 2α tr H−1 using the Gauss-
Newton approximation of the Hessian available in the Levenberg-Marquardt train-
ing algorithm, H = ∇2F (w) ≈ 2βJTJ + 2αIk, where J is the Jacobian matrix of
the training set errors.

4. Compute new estimates for the objective function parameters α = γ
2EW (w)

, β =
N−γ

2ED(w)
.

5. Iterate steps (ii) through (iv) until convergence.

4.2.1.4 Markov chain Monte Carlo estimation for α and β We propose an improve-
ment on the estimation of the regularization parameters developed by MacKay (1992). We
advocate applying a Markov chain Monte Carlo (MCMC) scheme to estimate α and β
rather than approximating ZF (α, β) and consequently approximating the Hessian matrix
to estimate the parameters α, β. Collecting these paramenters into the two-dimensional
vector x and indicating their estimate with X, the MCMC method (Gelfand and Smith,
1990) can be described as

1. Choose the target distribution on X with density π(x).

2. Choose the proposal distribution q: for any x ∈ R2
+ we have q(x|x) ≥ 0,

∫
q(x|x)dx =

1.

3. Starting with X1, for t = 2, 3, . . . ,M , sample X∗ ∼ q(·|Xt−1).

4. Compute α(X∗|Xt−1) = min
{

1, π(X∗)q(Xt−1|X∗)
π(Xt−1)q(X∗|Xt−1)

}
.

5. Sample U ∼ U(0,1). If U < α(X∗|Xt−1), set Xt = X∗, otherwise set Xt = Xt−1.

We apply a standard normal prior distribution to the MCMC scheme.

4.2.2 Application of neural networks to financial data

As discussed in the literature, neural networks are a powerful concept that can be ap-
plied to different problems ranging from function approximation to clustering. There are
many studies devoted to the comparison of neural networks to each other or to other algo-
rithms. Specht (1990) investigated probabilistic neural networks; Wang and Peng (2000)
explored vector-quantization networks; Stallkamp et al. (2012) compared convolutional
neural networks with linear discriminant analysis and decision trees. In contrast to the
above studies, in our analysis we focus on the concept of regularization and how it is
applied in the context of neural networks. We test the performance of feed-forward net-
works with and without regularization. We report our results as an average performance
over a range of different network architectures, i.e. combinations of layers and neurons.
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Overfitting is one of the main challenges faced by statisticians today. The volume and the
complexity of the data increase every year, which requires special attention to not overfit
the classification algorithm. In this work, we use a combination of different network ar-
chitectures combined with early stopping (ES) and regularization to tackle the problem of
overfitting. We define ES as the process where we monitor the test error in n consecutive
runs, while training the network. If the test error increases n times then the training of
the network is terminated. We used n = 6, which is a typical choice for most classifica-
tion problems. Furthermore, we combine the regularization with ES. However, the main
focus of the analysis is on the Bayesian approach to regularization for neural networks.
In contrast to the classical approach to regularization, in the Bayesian approach the reg-
ularization parameters are inferred from the data. We propose an improvement of the
Bayesian estimation over the one suggested by MacKay (1992). Our estimation approach
provides objectivity to the estimation and reduces the bias. MacKay (1992) proposed a
Gauss-Newton approximation to the posterior distribution of the regularization parame-
ters. In this Gauss-Newton approximation an objective function with parameters α and
β is maximized. MacKay (1992) proposed an iterative solution for α and β by apply-
ing the Levenberg-Marquardt algorithm. On the other hand we apply a MCMC scheme
to estimate the regularization parameters. In our approach α and β are considered ran-
dom variables and are based on the mean of a posterior distribution. Finally, we compare
the improved Bayesian regularization approach to the classical regularization and to the
Bayesian regularization based on the Gauss-Newton approximation.

We now apply the methodology proposed in Section 4.2.1 to three different data sets
on 1. corporate obligors based in Eastern Europe, see 3.1, 2. corporate obligors based
in Poland, see 3.2, and 3. retail obligors based in Germany, see 3.3. We use data on
corporates from Poland and Eastern Europe because these are developing markets where
the relations between the risk factors and the default event are not yet well investigated.
In a developing market the group of default drivers could be significantly different from
what we observe in a developed market. By using data from developing markets we try
to find out whether the default drivers in these markets are significantly different from the
default drivers in developed markets. Finally, we examine retail data from a developed
market to check whether the default identification of our proposed algorithm is adequate
on a data set that is not corporate.

4.2.2.1 Feature selection The literature offers a variety of algorithms for variable se-
lection such as filter and wrapper methods. However, the main goal of our analysis is to
examine the effect of Bayesian regularization on ANNs. Therefore, we apply a simple
approach to variable selection based on the 80% percentile of the vector containing the
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absolute value of the correlation with the target variable. We select only variables whose
correlation is equal or above the 80% percentile of the vector containing the absolute value
of the correlation with the target variable. This leads to a balanced number of variables
that are shown in Table 18. Nonetheless, not to bias our results based on a single combi-
nation of variables, we report our results for different numbers of variables by changing
the percentile value from 0% to 90%; see appendix B. This is consistent with the principle
applied in Sariev and Germano (2019), where model performance is assessed comparing
a model on a different set of variables.

Table 18: Selected variables by data set based on the 80% percentile of the correlation to
the target variable.

Data set Selected variables

East-European data payables turnover, return on assets, cash ratio, income from
sales/total assets, liquid assets/total assets, interest coverage

Polish data total costs/total sales, (sales − cost of products sold)/sales,
profit on sales/sales, working capital, sales(n)/sales(n− 1),
sales/inventory, working capital/total assets, sales/receiv-
ables, short-term liabilities/total assets, total liabilities/total
assets, sales/total assets, logarithm of total assets

German data duration in months of the account, credit history, checking
account status

4.2.2.2 Results Table 19 presents eight different feed-forward neural network archi-
tectures. Prior to applying the networks on the data we need to make a choice on the
number of neurons and the number of layers for each network. Determining the number
of neurons and layers is driven by many factors such as: the number of variables in the
model, the number of data points and etc. In order to avoid reporting biased result we run
each network on a range of different combinations of layers and neurons. This allows us
to monitor the performance of the network over different network architectures and allows
us to summarize the network performance. Although there is no clear rule on selecting the
number of neurons and layers, we follow Hagan et al. (2014) who argue that the number
of neurons should be lower than the number of variables used in the network. Further, the
number of hidden layers should not be more than 2-3 because most problems are tack-
led even with one hidden layer. Adding many hidden layers on data sets that are not big
(more than one million observations) does not result in a better performance. Therefore,
we decide to report the performance of the network on a combination of: neurons that
range from 1 to 25 and hidden layers that range from 1 to 3. We investigate combinations
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with more neurons than Hagan et al. (2014) suggests, so that our results are more compre-
hensive. However, we show that increasing the number of layers does not lead to a higher
performance; see Section 4.2.2.3.

We acknowledge that our decision on the number of neurons and layers is subjective, but
we aim to cover a wide enough range of neurons and layers so that our results are less
biased than using just a single combination of hidden layers and neurons. For the classical
regularization, the regularization parameter should be determined before applying the
network to the data. Based on 10 fold cross-validation we estimated the regularization
parameter (γ, see Eq. (20)) for classical regularization to be 0.05. All networks are trained
with MSE loss function. One third of the data are left for testing the networks, two-thirds
of the data are allocated for training and validating.

Following the above logic we report our results in Table 19. The first column in Table 19
shows the architecture type; the second column shows the regularization type used: clas-
sical, Bayesian and Bayesian based on MCMC; the third column indicates whether ES
was applied or not. The fourth to seventh columns give the mean percentage of correctly
classified observations, the percentage of non-defaulted obligors, the percentage of de-
faulted obligors and the Gini coefficient on the grid of 1 to 25 neurons and 1 to 3 hidden
layers. All results are reported on test data. Finally, the eight column presents the average
CPU time in seconds to compute a network on an Intel Celeron N2840 with 2.16GHz.

Based on Table 19, we observe that:

1. The percentage of overall correctly classified obligors is the highest for a network
architecture where the regularization parameters are estimated by the Bayesian ap-
proach with the proposed MCMC estimation rather than the Gaussian approxima-
tion.

2. In some cases the ES procedure can lead to a better performance but in other cases
ES undermines the network performance.

3. The computational time needed for the MCMC estimation of the network is signifi-
cantly higher than for the other networks but the Bayesian estimation automatically
estimates the regularization thus reducing the bias.

The above observations are valid for all data sets. Below we examine the results for each
data set separately.

1. For the East-European data, see 3.1, Bayesian regularization with MCMC leads to
the highest overall performance. The improvement in performance is 4%, which
is high enough to make a difference from a practical point of view. In terms of
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identification of bad obligors and Gini coefficient, Bayesian regularization with
MCMC performs similarly to classical regularization.

2. For the Polish data, see 3.2, Bayesian regularization with MCMC leads to the high-
est overall performance. The improvement in performance is 1%, which can be
ignored for practical purposes. However, in terms of identification of bad obligors
and Gini coefficient, Bayesian regularization with MCMC performs significantly
better than the other methods.

3. For the German data, see 3.3, Bayesian regularization with MCMC leads to the
highest overall performance. The improvement in performance is 2%, which makes
a difference in situation where overall performance is of utmost importance. How-
ever, in terms of identification of bad obligors and Gini coefficient, Baeysian regu-
larization with MCMC under-performs compared to the other methods.

The results in Table 19 are based on the 80% percentile of the correlation to the target
variable. In Appendix B one can see the results for the other combinations of variables
but the conclusion stays the same. In all cases Bayesian regularization with MCMC over-
all outperforms the other methods. The orginial data set has been randomly sampled 10
times, each time sampling 60% of it, ensuring defaulted and non-defaulted observations
are equal in numbers. Afterwards, a training, test and validation sets have been gener-
ated based on the sampled data, in the following proportions: 70%-training data,15%-
validation data, 15%-test data. Finally we computed a standard deviation based on the 10
runs. In all cases the standard deviation is in the range of 0.1% to 1.4%, which is in the
expected range.

Finally, in Table 29 in Appendix B we apply a two-sample t-test on the overall perfor-
mance of our proposed method namely Architecture 7 and 8. The two-sample t-test is
a parametric test that compares the location parameter of two independent data samples.
The test statistics of the test follow a Student’s t distribution. The null hypothesis states
that the means of two populations are equal. In Table 29, 1 indicates a rejection of the null
hypothesis. Therefore, we can claim our results are statistically different for each data set.
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Table 19: Performance of the ANNs on the East-European, Polish and German test data
when using factors based on the 80% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient; CPU time/s: the CPU time in seconds needed for one run
of the network.

Architecture Regularization ES Correct Good Bad Gini CPU time/s

East-European data

1 No No 66%(0.7) 59% 73% 59% 1.2
2 No Yes 67%(0.8) 58% 75% 61% 0.9
3 Classical No 66%(0.7) 58% 73% 59% 0.9
4 Classical Yes 67%(0.8) 58% 75% 60% 0.9
5 Bayesian No 66%(1.3) 59% 73% 55% 1.6
6 Bayesian Yes 67%(1.4) 73% 62% 50% 1.7
7 Bayesian MCMC No 71%(0.4) 69% 74% 61% 19.1
8 Bayesian MCMC Yes 70%(0.5) 70% 70% 57% 18.3

Polish data

1 No No 67%(0.3) 75% 57% 52% 0.8
2 No Yes 65%(0.3) 75% 56% 52% 0.8
3 Classical No 67%(0.5) 79% 54% 53% 0.9
4 Classical Yes 65%(0.4) 76% 55% 52% 0.8
5 Bayesian No 63%(0.8) 68% 52% 55% 1.5
6 Bayesian Yes 64%(0.6) 87% 39% 53% 1.6
7 Bayesian MCMC No 68%(0.5) 75% 64% 52% 17.1
8 Bayesian MCMC Yes 68%(0.7) 66% 69% 56% 16.4

German data

1 No No 68%(0.7) 63% 72% 60% 1.2
2 No Yes 67%(0.1) 63% 71% 61% 1.0
3 Classical No 68%(0.1) 61% 74% 61% 1.3
4 Classical Yes 67%(0.8) 61% 74% 61% 1.0
5 Bayesian No 66%(0.3) 67% 65% 57% 2.0
6 Bayesian Yes 61%(1.0) 43% 75% 55% 2.3
7 Bayesian MCMC No 68%(0.3) 65% 70% 57% 20.6
8 Bayesian MCMC Yes 70%(0.4) 72% 67% 58% 19.4

Figure 16 presents distributions of the overall correctly classified obligors per data set and
per network architecture that are shown in Table 19. We can see from Figure 16 that the
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distribution of the overall correctly classified obligors for Architectures 7 and 8 is right
skewed for the East-European and Polish data. The results in Figure 16 are based on the
80% percentile of the correlation to the target variable. In Appendix B one can see the
results for the other combinations of variables but the conclusion stays the same. In all
cases Bayesian regularization with MCMC overall outperforms the other methods.
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Figure 16: Distribution of the overall correctly classified obligors for the East-European
(a), Polish (b) and German (c) data. Results are based on the 80% percentile of the
correlation to the target variable.

4.2.2.3 Neural network performance on increasing the number of layers Inspired
by the flexibility of the deep neural network paradigm, we tried to increase the number
of layers with the goal of increasing the performance on the test data. However, contrary
to our expectations the generalization power of the network decreased for each data set,
as can be seen from Figure 17. The decrease in performance is different for each data
set. For the Polish and German the decrease of performance is not significant but for the
East-European data the decrease is significant. The reason is that our data sets are not big
enough to allow the application of many layers. The networks with more than 4 layers
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significantly overfit the data.
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Figure 17: Percentage increase/decrease per number of layers for each data set.

4.2.2.4 Comparison to other classification algorithms The main objective of our
research is to analyse the effect of Bayesian regularization and compared it to classical
regularization for ANNs. We report our results as an average over different combinations
of layers and neurons. Therefore, we do not report the maximum classification accuracy
that can be achieved rather we aim to present the effect of Bayesian regularization with
MCMC over different network architectures and advocate that on average our proposed
approach leads to higher performance when compared to other regularization approaches
for ANNs. However, for the purpose of completeness we apply two other non-linear clas-
sification methods to the three data sets. The first is SVMs and the second is KNNs. The
results in terms of classification accuracy are shown in Table 20. Overall the performance
is similar to our proposed method. On the Polish corporate data SVMs and KNNs out-
perform but as we emphasised before the results we report in Table 19 are averaged over
a grid of different neurons and layers and therefore are not directly comparable to the
results in Table 20. Therefore, the performance reported in Table 19 is not the highest that
could be achieved using Bayesian regularization but this average performance is close to
the maximum performance we achieve when we apply SVMs and KNNs to the data.
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Table 20: Overall accuracy (percent of classified obligors) by SVMs, KNNs and ANNs.
The results are shown per variable selection combination based on the 0%, 50%, 60%,
70%, 80% and 90% percentile of the correlation to the target variable.

Percentile
East-European data Polish data German data

SVMs KNNs ANNs SVMs KNNs ANNs SVMs KNNs ANNs

0% 0.62 0.63 0.69 0.70 0.71 0.64 0.49 0.70 0.67
50% 0.65 0.63 0.70 0.73 0.74 0.67 0.63 0.62 0.70
60% 0.69 0.63 0.71 0.69 0.73 0.66 0.69 0.67 0.70
70% 0.67 0.62 0.69 0.69 0.73 0.67 0.71 0.63 0.69
80% 0.66 0.62 0.70 0.72 0.74 0.68 0.65 0.57 0.70
90% 0.66 0.61 0.68 0.72 0.69 0.74 0.62 0.65 0.68

4.2.3 Policy implications

Identifying a classification method to estimated the PD is an important factor but equally
important is deriving business intuition from the selected default factors. Typically PD
models are used by non-technical audience and the interpretation of the default factors
from an industry prospective is of utmost importance. For that reason we split the selected
ratios into three categories1

1. Leverage category — ratios that signal how much debt and debt related costs a com-
pany utilizes against company’s equity or assets. Effectively this category indicates
the level of indebtedness of a company.

2. Profitability category — ratios that signal the ability of a company to generate in-
come relative to its equity or assets. Effectively this category indicates how effi-
ciently a company utilizes it assets.

3. Liquidity category — ratios that signal a company ability to meet the current li-
abilities when they become due with its current assets. Effectively this category
indicates the ability of a company to pay off its short-term obligations.

Table 21 presents the allocation of the selected ratios from the variable selection method
on the two corporate data sets (East-European and Polish) to each of the above three
categories.

1payables turnover = supply payables×360/cost of goods sold from the East-European data and working
capital/total assets as well as logarithm of total assets from the Polish data cannot be allocated to these three
groups
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Table 21: Selected ratios based on the 80% percentile of the correlation to the target,
allocated into three main financial categories: leverage, profitability and liquidity on the
East-European (E) and on the Polish (P) data.

Category Ratio

Leverage ratios interest coverage (E), short-term liabilities/total assets (P),
total liabilities/total assets (P), total costs/total sales (P)

Profitability ratios return on assets (E), income from sales/total assets (E),
sales/total assets (P), sales/inventory (P), sales/receiv-
ables(P), sales(n)/sales(n− 1) (P), profit on sales/sales (P),
(sales − cost of products sold)/sales(P)

Liquidity ratios cash ratio (E), liquid assets/total assets (E), working capital
(P)

As can be seen from Table 21 the default risk in the Polish data set is driven mainly by
the profitability ratios, followed by the leverage ratios. Liquidity ratios don’t play an
important role in determining the default risk of the Polish obligors. We compare our
approach with that of Liang et al. (2016) where they split the financial ratios into sev-
eral groups namely: solvency(leverage) ratios, profitability ratios, capital structure ratios,
cash flow ratios, ownership ratios, turnover ratios ratios, growth ratios. They found that
leverage and profitability ratios are the most important categories in identifying defaults.
Interestingly they have used data from the Taiwan Stock Exchange. The fact that their
findings align with ours proofs the significance and the universality of the leverage and
profitability ratios. Another study by Al-Kassar and Soileau (2014) also indicates the
importance of profitability and leverage ratios through the use of factor analysis. How-
ever, they advocate non-financials data are also important in identifying and measuring
default risk. Furthermore a study by Chen et al. (2011) emphasise the role of the prof-
itability and leverage ratios. The analysis is done on 20000 solvent and 1000 insolvent
companies. Their study applies SVMs on German companies and shows the importance
of profitability and leverage in identifying defaults.

Similarly the default risk in the East-European data set is driven by profitability and lever-
age ratios but it is also driven by liquidity ratios. We compare our approach with that of
Marilena and Alina (2015) where liquidity and leverage ratios are identified as a major
default driver. Their work applies multiple discriminant analysis, logistic regression anal-
ysis, and artificial neural networks analysis. The data used are from the Bucharest Stock
Exchange principal market. Moreover a study by Tian et al. (2015) also indicates the
importance of liquidity and leverage ratios. They use North American financial data on
corporate obligors and apply the LASSO method for variable selection. Finally, Tian et al.
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(2015) claim their approach is superior to the one given by the popular distance to default
model proposed by Merton (1974).

We note that the major difference in default drivers between the East-European data and
the Polish data is the higher importance of liquidity ratios for the former, the reason
being that Polish Companies are in general bigger and liquidity is not a major indication
of default risk. Practically, larger companies have access to cheaper funding, whereas
smaller companies incur higher funding costs.

Due to the low number of selected features in the German retail data set we are not able to
allocate them into different groups. However, most of the variables in the German retail
data are based on the status and duration of the current account. This is aligned with the
study of Barrell et al. (2010), which shows evidence that the status of the current account
is a major predictor of mortgage defaults.

4.2.4 Discussion and conclusions

In this experiment we propose an improvement of a Bayesian approach to regularize feed-
forward neural networks. The Bayesian approach is attractive because it provides auto-
matic determination of the regularization parameters. Moreover, we demonstrate that the
improved Bayesian approach performs well when compared to the classical regulariza-
tion approach for neural networks. We find that using a MCMC scheme to estimate the
Bayesian regularization parameters leads to a higher performance than using a Gauss-
Newton approximation. Furthermore, the application of ES on the network does not guar-
antee higher performance.

We analysed three data sets; two are corporate and one retail. From a policy prospective
three groups of financial ratios are identified as major drivers of default risk: profitability
ratios, leverage ratios and liquidity ratios. The effect of liquidity ratios is higher on the
East-European data and the of profitability ratios is higher on the Polish data.

The findings of this experiment yield promising insights into the potential of Bayesian
regularization to efficiently estimate the network weights. Practically, this leads to making
better-informed and less biased credit risk decisions.
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4.3 Experiment 3

With respect to the above discussed studies on KNNs, see 2.2.3, this experiment con-
tributes to the literature first by first using a GA algorithm to estimate BKNNs and second
by applying innovative MCMC proposal schemes to estimate the BKNNs.

The rest of the thesis is organized as follows. Section 4.3.1 presents the theoretical for-
mulation of KNNs in a Bayesian framework. Section 4.3.2 presents the results from the
BKNN and the results from other classification methods that are used as a benchmark.
Section 4.3.3 discusses the business intuition of the proposed default drivers. Finally, sec-
tion 4.3.4 concludes the experiment by summarizing the main findings of this research.

4.3.1 Theoretical foundations

Consider a data set D = {(Y1,X1), (Y2,X2)} with n = n1 + n2 observations, where
(Y1,X1) = {(y11,x11), (y12,x12), . . . , (y1n1 ,x1n1)} is the training set with n1 observa-
tions, and (Y2,X2) = {(y21,x21), (y22,x22), . . . , (y2n2 ,x2n2)} is the test set with n2 ob-
servations. X1 = (x11, . . . ,x1n1) and X2 = (x21, . . . ,x2n2) are n1 × p and n2 × p data
matrices for training and test, respectively. The subscript 1 indicates the training set,
whereas the subscript 2 indicates the test set. Y1 is a 1× n1 vector of known class labels
for the training set, whereas Y2 is a 1 × n2 unknown vector and must be predicted. The
dimension of the predictors is p and n is the total number of observations. Suppose that
there are Q classes, yli ∈ 1, 2, . . . , Q, l = 1, 2, i = 1, 2, . . . , nl. We wish to classify the
points in the test set by assigning them to one of the Q classes, based on the known infor-
mation in the training set. In short, we need to predict the unknown class memberships
Y2. In this case the likelihood function is

f(Y|X, β, k) =
n∏
i=1

exp

(
β
k

∑
j
k∼i

δy1iy1j

)
Q∑
q=1

exp

(
β
k

∑
j
k∼i

δqy1j

) , (37)

where β acts as the parameter for the strength of association among nearest neighbours
and k is the neighbourhood size required to construct a KNNs classifier. The δ is the
Kronecker delta, defined as δab = 1 if a = b and zero otherwise. In the likelihood, the term
1
k

∑
j
k∼i

δqy1j calculates the proportion of training points among the k-nearest neighbours of
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xi belonging to class q. The predictive distribution for a new observation is

f(yn+1|xn+1,Y,X, β, k) =

exp

(
β
k

∑
j
k∼n+1

δyn+1y1j

)
Q∑
q=1

exp

(
β
k

∑
j
k∼n+1

δqy1j

) , (38)

so the most probable class for yn+1 is given by the most common class found among its
k-nearest neighbours. Treating β and k as known and fixed a priori is an unrealistic com-
ponent of uncertainty in the model. To accommodate for this we assign prior probabilities
to β and k, leaving the marginal predictive distribution as

f(yn+1|xn+1,Y,X) =
∑
k

∫
f(yn+1|xn+1,Y,X, β, k)f(β, k|Y,X)dβ, (39)

where
f(β, k|Y,X) ∝ f(Y,X|β, k)f(β, k). (40)

We have little prior knowledge about the likely values of β and k, other than the fact that
β should be positive. Hence we adopt independent default probability densities

f(k) = fu(1, . . . , kmax) =
1

kmax
, kmax = s (41)

f(β) = cIR+(β), (42)

where fu is a uniform discrete probability function, c and s are constants and I is an
indicator function prior so that the prior on β is uniform on R+. A proper prior could also
be applied in the form of

f(β) = 2N(0, σ2)IR+(β), (43)

where σ2 = c. We propose Markov chain Monte Carlo (MCMC) to draw M samples
from f(β, k|Y,X) and then to approximate the distribution by

f(yn+1|xn+1,Y,X) ≈ 1

M

M∑
i=1

f(yn+1|xn+1,Y,X, β(i), k(i)), (44)

where β(i), k(i) represent the sample i in the converged chain. We use a single joint pro-
posal with

k̂ = k ± U(0,4), (45)

β̂ = β +N(0, σ2), (46)
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where σ2 = c = 1/2. We impose a reflection at the boundaries of the prior range in
density, so that if β̂ < 0 it is reset to |β̂|. The MCMC method can be described as

1. Choose the target distribution on X with density π(x).

2. Choose the proposal distribution q: for any x, ∈ R+ we have q(x|x) ≥ 0,
∫
q(x|x)dx =

1.

3. Starting with X(1), for t = 2, 3, . . . ,M , sample X∗ ∼ q(·|X(i−1)).

4. Compute α(X∗|X(i−1)) = min
{

1, π(X∗)q(X(i−1)|X∗)

π(X(i−1))q(X∗|X(i−1))

}
.

5. Sample U ∼ U(0,1). If U < α(X∗|X(i−1)), set X(i) = X∗, otherwise set X(i) =

X(i−1).

In the Metropolis-Hastings algorithm, pick q(X∗|X) = g(X∗ − X) with g a symmetric
distribution, e.g. a zero-mean multivariate normal or t-Student; thus

X∗ = X + ε, (47)

where ε has a distribution g. The acceptance probability becomes

α(X∗|X(i−1)) = min

{
1,

π(X∗)

π(X(i−1))

}
. (48)

Applying MCMC to the target in Eq (40) and using the uniform priors in Eq (42), the
proposals are then accepted with probability

α(X∗|X(i−1)) = min

{
1,
p(Y|X, β̂, k̂)

p(Y|X, β, k)

}
. (49)

In determining the neighbourhood of the point xi, the following distances are considered:

1. the Euclidean distance

d(xi,xj) =
√

(xi − xj)T(xi − xj); (50)

2. the Mahalanobis distance

d(xi,xj) =
√

(xi − xj)TC−1(xi − xj), (51)

where C = 1
n
(X−E(X))T(X−E(X)) is the p×p covariance matrix of the vectors

xi, i = 1, . . . , n, forming the columns of the p× n matrix X;
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3. the cosine distance
d(xi,xj) = 1− x̂T

i x̂j, (52)

where x̂i = xi/xi and xi = ‖x‖ = d(xi,0) =
√

xT
i xi (i.e., the Euclidean norm of

xi).

4.3.1.1 Proposed MCMC updates Inspired by the work of Atchade (2006), we ex-
plore alternative MCMC algorithms, where the proposal distribution was changed in one
of three ways:

1. Use a combined rather than a single proposal distribution for β. The combined
random variable that we applied can be written as

β̂ =
n∑
k=1

β +N(0, σ2
k), (53)

where σ2
k is selected based on cross-validation. We investigated different ranges of

σ2
k and then set the final range for σ2

k to [1,10]. This is done with the aim of ex-
ploring distributions with significantly different variances so that the mixing of the
chain is improved. We highlight that our analysis is biased in terms of selecting a
prior distribution and its hyperparameters. However, subjectivity can be interpreted
as awareness of multiple perspectives and context dependence (Gelman and Hen-
nig, 2017). Applying Bayesian analysis to our problem requires a certain amount
of subjectivity, which can be used to spur more research questions rather than to
invalidate the results of the analysis.

2. Randomize the variance of the normal distribution N(0, σ2) used to sample the
parameter β, drawing it e.g. from a standard uniform variate, i.e. σ2 ∼ U(0, 1). If
β̂i ∼ N(0, σ2

i ) was accepted on iteration i, then on successive iteration i + 1, the
variance stays the same, i.e. σ2

(i+1) = σ2
i and thus β̂(i+1) = N(0, σ2

i ).

3. Sample β̂ = β + N(0, 1) + ∂L(β)
∂β

, where L(β) = exp

(
β
k

∑
j
k∼n

δy1iy1j

)
. Introducing

the derivative of the numerator in Eq (37) can increase the mixing of the chain.

4.3.1.2 GA algorithm In addition to the MCMC updates suggested in 4.3.1.1, a GA
algorithm is proposed to estimate β and k from Equation 37. The GA algorithm for
mixed-integer problems is based on the following equations (Deb, 2000), (Deep et al.,
2009).
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F (xi) = f(xi) +
J∑
j=1

Rjφj(xi)
2, (54)

where F (xi) is defined as the sum of the objective function f(xi), J-number of con-
straints, and a penalty term which depends on the constraint violation φj(xi). The fitness
function to be minimized Fit(xi) then is written as

Fit(xi) =

f(xi), if F (xi) is fesible

Fw +
∑J

j φj(xi) , otherwise
, (55)

where, Fw is the objective function value of the worst feasible solution currently available
in the population. Thus, the fitness of an infeasible solution not only depends on the
amount of constraint violation, but also on the population of solutions at hand. However,
the fitness of a feasible solution is always fixed and is equal to its objective function value.
φj(xi) refers to value of the left hand side of the inequality constraints (equality constraint
are also transformed to inequality constraints using a tolerance).

The logical steps of the GA are outlined below (Goldberg, 1989) .

1. The algorithm begins by creating a random initial population.

2. The algorithm then creates a sequence of new populations. At each step, the algo-
rithm uses the individuals in the current generation to create the next population.
To create the new population, the algorithm performs the following steps

1. Scores each member of the current population by computing its fitness value.
These values are called the raw fitness scores.

2. Scales the raw fitness scores to convert them into a more usable range of val-
ues. These scaled values are called expectation values.

3. Selects members, called parents, based on their expectation.

4. Some of the individuals in the current population that have best fitness are
chosen as elite. These elite individuals are passed to the next population.

5. Produces children from the parents. Children are produced either by making
random changes to a single parent—mutation—or by combining the vector
entries of a pair of parents—crossover.

6. Replaces the current population with the children to form the next generation.

3. The algorithm stops when the average cumulative change in value of the fitness
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function over the pre-specified number of generations is less than a predefined con-
stant.

4.3.2 Application of BKNNs to financial data

We apply a sequential feature selection to choose a set of default predictors (Aha and
Bankert, 1996). Starting from an empty feature set, sequential feature selection creates
candidate feature subsets by sequentially adding each of the features not yet selected.
For each candidate feature subset, sequential feature selection performs 10-fold cross-
validation by repeatedly estimating the misclassification error with different training sub-
sets

Going forward the final set of predictors is selected to be the same for each classification
method. The list of final variables for the East-European data, for the Polish data and for
the German data can be found in Table 25 in section 4.3.3.

The original data set is split into training and test data. The results below refer to the
test data. As discussed in the literature, KNNs method is a flexible and popular method
for classification problems. In this work we examine KNNs from both a classical and
a Bayesian prospective. The MCMC of the posterior distribution of β̂ in the Bayesian
estimation of KNNs is checked for convergence using a time series plot and an autocorre-
lation plot for β̂. The plots are produced for each MCMC version of the BKNNs: original
sampling, combined proposal, randomized variance, derivative approach. The plots are
shown in Appendix C.

The GA algorithm applied to BKNN is run with the following specifications.

1. Population size is set to 50.

2. Number of generations (iterations) is unbounded.

3. Penalty parameter is set to 10.

We observed that GA algorithm is stable with the respect of the above specifications
see Figure 33 in Appendix E. Additionally, we tested the GA algorithm in regards to its
pseudo-parameters such as population size, number of iterations and penalty parameter.
In all cases the parameters produced by the algorithm did not change significantly see
Table 38 in Appendix E. The GA algorithms converged in all cases.

The list of algorithms examined here does not pretend to be exhaustive but it contains the
most popular methods for PD estimation. Other PD estimation methods exist (Bellotti
and Crook, 2009a), but their exploration is not discussed here. We compare the BKNNs
algorithm to the following family of popular classification algorithms: LR, LDA, naive
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Bayes, DTs, ANNs SVMs. The flexibility of decision trees allows two different versions
of it to be applied on the data: boosted D Ts and classical DTs method without any adjust-
ments. The boosting is based on the Logitboost algorithm where the binomial deviance is
minimized. We apply different architectures and number of neurons for the ANNs. Based
on performance and simplicity, we use a feed-forward network with 1 hidden layer and
10 neurons using cross entropy as a loss function and logistic regression as an activation
function. We apply a linear kernel to the SVMs.

The split between train and test sets for the East Europe data set, see 3.1, is 70% train and
30% test data. Both sets test and train are balanced, have equal number of defaulted and
non-defaulted observations.

The split between train and test sets for the Polish data, see 3.2, is 75% train and 25%
test data. Both sets test and train are balanced, have equal number of defaulted and non-
defaulted observations.

The split between train and test sets for the German data, see 3.3, is 70% train and 30%
test data. Both sets test and train are balanced, have equal number of defaulted and non-
defaulted observations.

The train and test data are randomly sampled 10 times. Based on that sampling we cal-
culated a standard deviation for the total number of correctly classified observations. The
standard deviation for most algorithms is in the range of 0.4% to 3.3%, which is an ac-
ceptable level of variation based on updating the development sample on each trial.

4.3.2.1 Results on East-European corporate data A bootstrap procedure with re-
placement is applied on the data with the aim of constructing ten different train/test sam-
ples. Table 22 presents the mean output from the bootstrapping. Table 22 shows the per-
centage of overall correctly classified observations, the percentage of correctly classified
observations for non-defaulted obligors, the percentage of correctly classified observa-
tions for defaulted obligors and the CPU time/s in seconds required for the estimation of
each classification method.

Based on Table 22 several conclusions can be drawn:

1. Estimation of BKNN with a GA algorithm leads to the same results as MCMC
estimation.

2. The classical KNNs method is under-performing when compared to the BKNNs.

3. The BKNN method in all their versions outperform all other benchmark methods
aside from boosted DTs.
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Table 22: Performance of the classification methods on the East-European test data. %
correct: the percentage of overall correctly classified obligors; % good: the percentage
of correctly classified good obligors; % bad: the percentage of correctly classified bad
obligors; CPU time/s: the CPU time in seconds needed for one run of the method.

Method % correct (std. in %) % good % bad CPU

BKNNs, GA 70%(2.1) 70% 70% 251.02
BKNNs 70%(1.9) 69% 71% 43.70
BKNNs, randomized variance 70%(1.8) 71% 69% 414.7
BKNNs, combined proposal 70%(1.9) 68% 72% 76.80
BKNNs, derivative 70%(1.7) 68% 72% 44.30
KNNs 67%(1.9) 69% 65% 0.17

DTs 62%(2.7) 63% 61% 0.08
DTs, boost 70%(2.5) 70% 69% 5.06
ANNs 65%(1.3) 63% 67% 0.90
SVMs 68%(2.8) 68% 68% 0.22

LDA 69%(2.6) 65% 73% 0.19
NB 68%(2.8) 68% 68% 0.07
Logistic 69%(2.6) 66% 72% 1.20

The distribution density of the overall correctly classified observations and that of the per-
centage of correctly classified observations for defaulted obligors are plotted in Figure 18
and Figure 19 respectively. The figures are split into three panels. The upper panel shows
the density for the linear models: LDA, naive Bayes and LR. The middle panel shows the
density for the non-linear models: decision trees and ANNs and the bottom panel shows
the density for the KNNs and the BKNNs.

Figure 18 reconfirms the findings from Table 22 where we observed that BKNNs and
boosted DTs outperform the other algorithms in terms of overall classification accuracy.
The BKNNs lead to the highest performance in terms of overall classification accuracy.
Likewise, Figure 19 reconfirms the findings from Table 22 where we observe that LDA,
naive Bayes and ANNs also provide high accuracy in identifying defaulted obligors.

Nonetheless, we stress that BKNN with GA estimation, leads to the same level of accu-
racy as BKNN with MCMC estimation. Moreover, due to the potential issues with the
autocorrelation in MCMC, see Figure 30, Appendix C. We observe that only in case of
MCMC with derivative adjustment there is a decrease in the autocorrelation of the chain.
Although BKNN with MCMC estimation has the same level of accuracy as BKNN with
GA estimation, the letter is a preferable choice due to its stability, see Figure 33 and Table
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38.

Figure 18: Density plots of the overall classification accuracy per classification algorithm;
upper panel: density for the linear models: LDA, naive Bayes and LR; middle panel:
density for the non-linear models: decision trees and ANNs; bottom panel: density for
the KNNs and the BKNNs; East-European data.
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Figure 19: Density plots of the default obligors classification accuracy per algorithm;
upper panel: density for the linear models: LDA, naive Bayes and LR; middle panel:
density for the non-linear models: decision trees and ANNs; bottom panel: density for
the KNNs and the BKNNs; East-European data.

Table 35 in Appendix D provides the results from testing whether there is a statistical dif-
ference in the mean of the percentage of overall correctly classified observations based on
the bootstrapping results. When compared to classical KNN, all BKNN have statistically
higher results. In Table 35, the number 1 indicates that there is a statistically significant
difference in the mean, 0 indicates the opposite. Results are based on a two sample t-test
(5% conf.interval), where the samples are derived using bootstrapping. We observe that
the performance of the BKNNs methods is statistically different from that of classical
KNNs.

4.3.2.2 Results on Polish corporate data Similarly to the East-European data study
we apply the classification methods to the Polish data. The information contained in
Table 23 is exactly the same as in Table 22 from the previous section.

Based on Table 23 the following conclusions can be drawn:
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1. Estimation of BKNN with a GA algorithm leads to the same results as MCMC
estimation.

2. The classical KNNs method is under-performing when compared to the BKNNs.

3. The BKNN method in all their versions outperform all other benchmark methods
aside from boosted DTs.

Table 23: Performance of the classification methods on the Polish test data. % correct:
the percentage of overall correctly classified obligors; % good: the percentage of correctly
classified good obligors; % bad: the percentage of correctly classified bad obligors; CPU
time/s: the CPU time in seconds needed for one run of the method.

Method % correct (std. in %) % good % bad CPU

BKNNs, GA 75%(2.6) 84% 66% 139.53
BKNNs 75%(2.6) 85% 66% 41.90
BKNNs, randomized variance 75%(2.6) 84% 66% 327.5
BKNNs, combined proposal 75%(2.4) 84% 66% 56.82
BKNNs, derivative 75%(2.6) 85% 66% 46.43
KNNs 72%(2.6) 78% 66% 0.18

DTs 74%(0.5) 77% 68% 0.12
DTs, boost 75%(2.4) 85% 63% 5.54
ANNs 57%(0.9) 56% 58% 1.09
SVMs 74%(2.8) 88% 59% 0.19

LDA 68%(5.4) 92% 28% 0.22
NB 57%(0.6) 96% 53% 0.16
Logistic 72%(8.6) 88% 21% 0.85

The distribution density of the overall correctly classified observations and that of the per-
centage of correctly classified observations for defaulted obligors are plotted in Figure 20
and Figure 21 respectively. These two figures present exactly the same information as
Figure 18 and Figure 19 but for the Polish corporate data.

Figure 20 reconfirms the findings from Table 23 where we observe that BKNNs and DTs
outperform the other algorithms in terms of overall classification accuracy. Figure 21
reconfirms the findings from Table 23 where we observed that LR, LDA and naive Bayes
provide a significantly lower accuracy in identifying defaulted obligors than the other
algorithms.

Nonetheless, we stress that BKNN with GA estimation, leads to the same level of accu-
racy as BKNN with MCMC estimation. Moreover, due to the potential issues with the
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autocorrelation in MCMC, see Figure 31, Appendix C. Although BKNN with MCMC
estimation has the same level of accuracy as BKNN with GA estimation, the letter is a
preferable choice due to its stability, see Figure 33 and Table 38.

Figure 20: Density plots of the overall classification accuracy per classification algorithm;
upper panel: density for the linear models: LDA, naive Bayes and LR; middle panel:
density for the non-linear models: decision trees and ANNs; bottom panel: density for
the KNNs and the BKNNs; Polish data.
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Figure 21: Density plots of the overall classification accuracy per classification algo-
rithm;upper panel: density for the linear models: LDA, naive Bayes and LR; middle
panel: density for the non-linear models: decision trees and ANNs; bottom panel: density
for the KNNs and the BKNNs; Polish data.

Table 36 in Appendix D provides the results from testing weather there is a statistical dif-
ference in the mean of the percentage of overall correctly classified observations based on
the bootstrapping results. When compared to classical KNN, all BKNN have statistically
higher results. In Table 36 one indicates that there is a statistically significant difference
in the mean, zero indicates the opposite. Results are based on a two sample t-test (5%
conf.interval), where the samples are derived using bootstrapping.

4.3.2.3 Results on German corporate data Similarly to the East-European data study
we apply the classification methods to the German retail data. The information contained
in Table 24 is exactly the same as in Table 22 from the previous section.

Based on Table 24 several conclusions can be drawn:

1. The classical KNNs method is under-performing when compared to the Bayesian
approach in terms of correctly classified observations.
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2. The BKNNs shows the highest performance in terms of correctly classified obser-
vations.

3. LR, LDA and naive Bayes provide similar performance to DTs and BKNNs.

Table 24: Performance of the classification methods on the German test data. % correct:
the percentage of overall correctly classified obligors; % good: the percentage of correctly
classified good obligors; % bad: the percentage of correctly classified bad obligors; CPU
time/s: the CPU time in seconds needed for one run of the method.

Method % correct (std. in %) % good % bad CPU

BKNNs, GA 65%(3.1) 66% 64% 65.99
BKNNs 66%(2.9) 67% 65% 33.45
BKNNs, randomized variance 66%(2.7) 71% 60% 250.6
BKNNs, combined proposal 66%(2.6) 70% 61% 46.81
BKNNs, derivative 67%(2.7) 66% 68% 32.18
KNNs 63%(2.4) 77% 50% 0.15

DTs 58%(2.2) 61% 52% 0.08
DTs, boost 65%(1.9) 66% 60% 4.17
ANNs 65%(1.1) 64% 76% 0.82
SVMs 66%(3.3) 67% 65% 0.12

LDA 65%(3.0) 66% 56% 0.17
NB 65%(5.7) 74% 49% 0.11
Logistic 66%(4.5) 67% 65% 0.64

The distribution density of the overall correctly classified observations and that of the per-
centage of correctly classified observations for defaulted obligors are plotted in Figure 22
and Figure 23 respectively. These two figures present exactly the same information as
Figure 18 and Figure 19 but for the German data.

Figure 22 reconfirms the findings from Table 24 where we observe that BKNNs outper-
form the other algorithms in terms of overall classification accuracy. Among the different
versions of BKNNs the one with a derivative adjustment shows the highest performance
in terms of overall classification accuracy. Figure 23 confirms the findings that LDA and
naive Bayes provide a relatively good accuracy in identifying defaulted obligors.

Nonetheless, we stress that BKNN with GA estimation, leads to slightly lower level of
accuracy as BKNN with MCMC estimation. Due to the potential issues with the autocor-
relation in MCMC, see Figure 32, Appendix C. Although BKNN with MCMC estimation
has slightly higher level of accuracy when compared to BKNN with GA estimation, the
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letter is a preferable choice due to its stability, see Figure 33 and Table 38.

Figure 22: Density plots of the overall classification accuracy per classification algorithm;
upper panel: density for the linear models: LDA, naive Bayes and LR; middle panel:
density for the non-linear models: decision trees and ANNs; bottom panel: density for
the KNNs and the BKNNs; German data.
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Figure 23: Density plots of the overall classification accuracy per classification algo-
rithm;upper panel: density for the linear models: LDA, naive Bayes and LR; middle
panel: density for the non-linear models: decision trees and ANNs; bottom panel: density
for the KNNs and the BKNNs; German data.

Table 37 in Appendix D provides the results from testing weather there is a statistical
difference in the mean of the percentage of overall correctly classified observations based
on the bootstrapping results. When compared to classical KNN, most BKNN have sta-
tistically higher results. In Table 37 one indicates that there is a statistically significant
difference in the mean, zero indicates the opposite. Results are based on a two sample
t-test (5% conf.interval), where the samples are derived using bootstrapping.

4.3.3 Business intuition of the default drivers

Identifying a classification method to estimated the PD is an important factor but equally
important is deriving business intuition from the final default factors. Typically PD mod-
els are used by non-technical audience and the interpretation of default factors from an
industry prospective is of utmost importance. We analyse two data sets of corporate oblig-
ors and identify a group of variables for each data set that drive the default risk. The
analysis performed on the Polish data set shows that six ratios significantly contribute to
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the PD, see Table 25. The analysis performed on the East-European data of corporate
clients shows elven drivers of defaults, see Table 25. Instead of focusing our analysis on
a single ratio structure, we highlight the most frequent components of the selected default
drivers. This way we generalize the default indicators rather than base our conclusions
on certain type of financial ratios. Accordingly in the analysis below we discuss the main
components of the selected default drivers.

We start with the similarities among default factors in the two datasets. We observe that
total assets are a common default driver component for both data sets. This is consistent
with the findings of Tian et al. (2015). The business intuition is that the amount of total as-
sets relative to liquid assets or other balance sheet items such as net profit provide a clear
picture of how efficient the utilization of these assets by a particular obligor is. Minimiz-
ing the amount of total assets and maximizing the net profit is an objective of every private
company. Another common default driver component is the short-term (current) liabili-
ties. This is consistent with the findings of Dragos et al. (2008). The business intuition is
that current liabilities are a significant indicator of sort-term debt. Companies with high
levels of current liabilities in relation to other balance sheet items such as cash and sales
are riskier and therefore they have a higher default probability. Nevertheless, a default
driver component present only in the East-European data is the cash variable. Clearly
the amount of cash is more indicative measure of default for the smaller companies in
East-Europe. The default rate in the Polish economy due to its scale and level of develop-
ment is driven by more complex financial ratio structures than that of the East-European
economies. Although some differences in default factor components exist between the
Polish obligors and the East-European obligors, most of the default driver components
are the same, namely total assets (the size of the company) and current liabilities. This is
consistent with the findings of Hosaka and Takata (2016).

The analysis performed on the German retail data set shows that nine ratios significantly
contribute to the PD; see Table 25. In this data set, most of the variables are based on the
status and duration of the current account and the obligor’s credit history. This is aligned
with the study of Barrell et al. (2010), which shows evidence that the status of the current
account is a major predictor of mortgage defaults.
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Table 25: Final default drivers (based on the variable selection method) for the Polish
data, East-European data and German data.

Polish data East-European data German data

net profit / total assets interest coverage status of existing checking
account

net profit / inventory cash ratio = (total cash and
cash equivalents) / current
liabilities

duration in months of the
account

gross profit / short-term
(current) liabilities

total liabilities / total assets credit history

gross profit / sales equity / total liabilities other debtors/guarantors

(current liabilities * 365) /
cost of products sold

return on operating in-
come

telephone availability

inventory×365 / cost of
products sold

inventory turnover = (aver-
age inventory * 360) / cost
of goods sold

credit amount

payables turnover = supply
payables × 360 / cost of
goods sold

present employment since

supply payables / total as-
sets

present residence since

relative annual change in
total sales

property indicator

relative annual change in
total assets

income from sales / total
assets

4.3.4 Conclusion

In this experiment, we propose three innovative MCMC schemes to estimate the model
parameters of a BKNNs as well as a GA algorithm that can be applied to estimate BKNN.
We demonstrate that the Bayesian approach provides an automatic determination of the
number of neighbours and outperforms the classical KNNs as well as many other classi-
fication algorithms. In particular, the BKNNs estimation based on GA algorithm leads to
high performance and it has low dependence on potential autocorrelation issues typical
for MCMC estimations. On the two corporates data sets: Polish and Eastern European,
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the BKNN GA estimation has same level of accuracy as BKNN MCMC but its more sta-
ble. On the German retail data, BKNN GA estimation has slightly lower accuracy than
BKNN MCMC but still sufficiently high. Results reported in this experiment provide
evidence that BKNN GA estimation enhances corporate PD estimation. From a policy
prospective the total assets and current liabilities are identified as main drivers of default
for both Polish and East European corporate obligors. For the German retail data the main
default drivers refer to the status of the current account and the obligor’s credit history.
Based on the above findings, we conclude that in principle the application of non-linear
models to corporate PD estimation should be widely used in practice.
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5 Conclusions

In this thesis we aim to provide evidence that Bayesian non-linear supervised machine
learning algorithms stand as a superior alternative to their linear and non-linear counter-
parts. Extensive evidence has been provided that Bayesian non-linear supervised machine
learning methods result in higher accuracy when compared to the linear and non-linear al-
ternatives. In particular, we proposed a new estimation approach on the Bayesian regular-
ization of ANNs. It has been shown that the new estimation provides higher classification
accuracy for most data sets in this thesis. Moreover, we proposed a new estimation up-
dates on the learning of BKNNs and managed to show the BKNNs estimated in this new
way result in higher classification accuracy. Last but not least, we proposed an innovative
variable selection method for SVMs that is based on the specific structure of SVMs. We
showed the variable selection method outperforms other variable selection methods for
most data sets used.

With respect to the above contributions of our research, we also highlight the limitations
of our study. First, the proposed estimation updates on ANNs and KNNs are applied to
classification problems only. It would be interesting to see their relevance in other con-
texts such as clustering and regression problems. Second, the superior performance of
the proposed estimation and variable selection is benchmarked to several algorithms but
this is not an exhaustive list of classification benchmarks. There are some classification
methods that have not been covered but are also used in practice. Third, the proposed esti-
mation principles can be applied to some of the linear classification methods and perhaps
offer another superior alternative to the methods currently used in the industry.

Overall, in our research we aimed to open a new horizon for exploring classification
methods and applying them to real data. Although this work could be expanded further,
we believe in its current for, it presents enough evidence in support of Bayesian non-linear
classification methods and we advocate their use is increased both in the academia and in
the industry.
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Appendices

Appendix A

Table 26: Summary statistics for all ratios, German retail data. The median and the mean
are shown before standardization of the variable.

Ratio number and name Median Mean

1 status of existing checking account 2 2.58
2 duration in months of the account 18 20.9
3 credit history 3 3.6
4 credit purpose 2 2.9
5 credit amount 2320 3271
6 savings account/bonds 1 2.1
7 present employment since 3 3.9
8 installment rate in percentage of disposable income 3 2.973
9 personal status and sex 3 2.7

10 other debtors/guarantors 1 1.2
11 present residence since 3 2.845
12 property indicator 2 2.4
13 age in years 33 35.55
14 other installment plans 3 2.7
15 housing indicator 2 1.9
16 number of existing credits at this bank 1 1.41
17 job status 3 2.9
18 number of people being liable to provide maintenance for 1 1.2
19 telephone availability 1 1.4
20 foreign worker indicator 1 1

Table 27: Summary statistics for all ratios, East-European data. Mean, mean_i, median
and median_i are the mean and median before and after imputation; % missing is the
percentage of missing values.

Ratio name Mean Median Mean_i Median_i % Missing

1 return on assets (ROA) 0.13 0.08 0.13 0.08 0.00

Continued on next page
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Table 27 — continued from previous page

Ratio name Mean Median Mean_i Median_i % Missing

2 ROA before financial expenses 0.18 0.13 0.18 0.12 0.00
3 return on operating income -0.07 0.08 -0.07 0.08 0.28
4 return on sales income -0.01 0.11 -0.01 0.11 0.44
5 return on investment 0.06 0.03 0.06 0.03 0.00
6 cash ratio 0.45 0.01 0.45 0.01 4.24
7 quick ratio 2.02 0.50 2.06 0.50 4.24
8 operating cash flow ratio 4.04 1.14 4.21 1.16 4.24
9 liquid assets/total assets 0.04 0.00 0.03 0.00 0.00

10 working capital/total assets 0.49 0.48 0.49 0.48 0.00
11 financial autonomy 6.67 0.64 14.25 20.34 0.00
12 total funding ratio 0.83 0.76 0.83 0.00 0.00
13 long term funding ratio 0.39 0.20 0.39 0.00 0.00
14 total liabilities/total assets 0.39 0.23 0.39 0.22 0.00
15 supply payables/total assets 0.16 0.09 0.16 0.09 0.00
16 financial liabilities/total liabili-
ties

0.39 0.35 0.39 0.35 0.00

17 equity/total liabilities 2.01 0.29 2.04 0.29 1.88
18 short term funding ratio 0.62 0.68 0.62 0.68 1.88
19 total liabilities coverage 1.35 0.17 1.37 0.17 1.88
20 financial liabilities coverage 12.15 0.40 11.45 0.41 20.40
21 current financial liabilities cov-
erage

7.30 0.87 NA NA 84.54

22 interest coverage 47.44 4.17 99.86 4.43 16.17
23 income from sales/total assets 1.74 1.00 1.73 1.00 0.00
24 employees’ expense/sales in-
come

0.13 0.06 0.13 0.06 0.44

25 earnings on operating income 1.10 0.95 1.10 0.94 0.44
26 payables turnover 243.32 39.27 263.44 39.30 0.89
27 inventory turnover 248.54 66.59 251.29 66.41 0.89
28 receivables turnover 96.08 20.27 97.17 20.27 0.44
29 total sales income 5349 524 5348.68 524.00 0.00
30 total assets 3365 531 3365.22 531.00 0.00
31 relative annual change in total
sales

2.37 0.12 4.62 0.14 33.00

Continued on next page
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Table 27 — continued from previous page

Ratio name Mean Median Mean_i Median_i % Missing

32 relative annual change in total
assets

1.13 0.16 1.34 0.15 32.94

33 relative annual change in profit
from main activities

4.33 -0.09 11.18 -0.08 34.28

34 absolute annual change in total
liabilities

0.03 0.00 0.03 0.00 32.94

Table 28: Summary statistics for all ratios, Polish data. Mean, mean_i, median and me-
dian_i are the mean and median before and after imputation; % missing is the percentage
of missing values.

Ratio name Mean Median Mean_i Median_i % Missing

1 net profit/total assets -0.02 0.05 -0.02 0.05 0.00
2 total liabilities/total assets 0.47 0.45 0.47 0.45 0.00
3 working capital/total assets 0.19 0.22 0.19 0.22 0.00
4 current assets/short-term liabili-

ties
4.89 1.65 4.89 1.66 0.00

5 (cash + short - term securi-
ties + receivables - short-term
liabilities)/(operating expenses-
depreciation)×365

19.41 0.49 19.41 0.57 0.00

6 retained earnings/total assets 0.02 0.00 0.02 0.00 0.00
7 EBIT/total assets -0.11 0.06 -0.11 0.06 0.00
8 book value of equity/total liabili-

ties
5.74 1.15 5.74 1.16 0.00

9 sales/total assets 1.59 1.14 1.59 1.14 0.00
10 equity/total assets 0.55 0.52 0.55 0.52 0.00
11 (gross profit + extraordinary
items + financial expenses)/total as-
sets

-0.01 0.07 -0.01 0.07 0.00

12 gross profit/short-term liabilities 1.07 0.17 1.07 0.17 0.00
13 (gross profit + deprecia-
tion)/sales

0.35 0.07 0.35 0.07 0.00

Continued on next page
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Table 28 — continued from previous page

Ratio name Mean Median Mean_i Median_i % Missing

14 gross profit + interest)/total as-
sets

-0.11 0.06 -0.11 0.06 0.00

15 (total liabilities×365)/(gross
profit + depreciation)

1033.62 872.16 1033.62 875.25 0.00

16 (gross profit + deprecia-
tion)/total liabilities

1.19 0.24 1.19 0.24 0.00

17 total assets/total liabilities 6.83 2.21 6.83 2.21 0.00
18 gross profit/total assets -0.10 0.06 -0.10 0.06 0.00
19 gross profit/sales -0.09 0.04 -0.09 0.04 0.00
20 (inventory×365)/sales 56.67 38.62 56.67 38.62 0.00
21 sales(n)/sales(n-1) 2.46 1.12 2.46 1.12 2.00
22 profit on operating activities/to-
tal assets

-0.00 0.06 -0.00 0.06 0.00

23 net profit/sales -0.10 0.03 -0.10 0.03 0.00
24 gross profit(in 3 years)/total as-
sets

0.14 0.16 0.14 0.16 2.00

25 (equity - share capital)/total as-
sets

0.38 0.42 0.38 0.42 0.00

26 (net profit + depreciation)/total
liabilities

1.09 0.21 1.09 0.21 0.00

27 profit on operating activities/fi-
nancial expenses

463.64 0.98 463.64 1.15 7.00

28 working capital/fixed assets 10.23 0.53 10.23 0.55 2.00
29 logarithm of total assets 4.15 4.17 4.15 4.17 0.00
30 (total liabilities,cash)/sales 0.85 0.22 0.85 0.22 0.00
31 (gross profit + interest)/sales -0.07 0.04 -0.07 0.04 0.00
32 (current liabilities * 365)/cost of
products sold

2111.59 81.13 2111.59 81.91 1.00

33 operating expenses/short-term
liabilities

8.34 4.47 8.34 4.50 0.00

34 operating expenses/total liabili-
ties

5.01 1.71 5.01 1.72 0.00

35 profit on sales/total assets -0.01 0.06 -0.01 0.06 0.00
36 total sales/total assets 2.05 1.56 2.05 1.56 0.00

Continued on next page
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Table 28 — continued from previous page

Ratio name Mean Median Mean_i Median_i % Missing

37 (current
assets,inventories)/long-term
liabilities

114.03 3.66 67.02 5.00 43.00

38 constant capital/total assets 0.65 0.62 0.65 0.62 0.00
39 profit on sales/sales 0.02 0.04 0.02 0.04 0.00
40 (current
assets,inventory/receivables)/short-
term liabilities

2.21 0.18 2.21 0.18 0.00

41 total liabilities/((profit
on operating activities +
depreciation)×(12/365))

2.19 0.09 2.19 9.00 1.00

42 profit on operating activi-
ties/sales

-0.02 0.04 -0.02 0.04 0.00

43 rotation receivables + inventory
turnover in days

155.56 106.41 155.56 106.41 0.00

44 (receivables×365)/sales 98.88 58.79 98.88 58.79 0.00
45 net profit/inventory 66.63 0.26 66.63 0.29 5.00
46 (current assets-inventory)/short-
term liabilities

4.01 1.07 4.01 1.07 0.00

47 (inventory×365)/cost of prod-
ucts sold

137.42 41.99 137.42 42.35 1.00

48 EBITDA/total assets -0.09 0.02 -0.09 0.02 0.00
49 EBITDA/sales -0.07 0.01 -0.07 0.01 0.00
50 current assets/total liabilities 4.17 1.29 4.17 1.29 0.00
51 short-term liabilities/total assets 0.43 0.33 0.43 0.33 0.00
52 (short-term liabilities×365)/cost
of products sold)

0.73 0.22 0.73 0.22 1.00

53 equity/fixed assets 11.20 1.28 11.20 1.30 2.00
54 constant capital/fixed assets 12.11 1.43 12.11 1.45 2.00
55 working capital 10817 1803 10817 1803 0.00
56 (sales, cost of products
sold)/sales

0.06 0.05 0.06 0.05 0.00

Continued on next page
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Table 28 — continued from previous page

Ratio name Mean Median Mean_i Median_i % Missing

57 (current assets-inventory-short-
term liabilities)/(sales-gross profit-
depreciation)

-0.26 0.11 -0.26 0.11 0.00

58 total costs/total sales 0.96 0.95 0.96 0.95 0.00
59 long-term liabilities/equity 0.28 0.01 0.28 0.01 0.00
60 sales/inventory 911.03 9.04 911.03 9.45 5.00
61 sales/receivables 10.94 6.20 10.94 6.21 0.00
62 (short-term
liabilities×365)/sales

241.98 73.78 241.98 73.78 0.00

63 sales/short-term liabilities 9.13 4.93 9.13 4.94 0.00
64 sales/fixed assets 65.28 4.10 65.28 4.22 2.00
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Appendix B

Table 29: Statistical significance of Bayesian MCMC (Architectures 7 and 8) on the over-
all accuracy per data set: East-European(E), Polish (P), German (G). 1 indicates statistical
difference, 0 indicates no statistical difference. MCMC1 and MCMC2 stand for Archi-
tectures 7 and 8 in Table 19

E MCMC1 E MCMC2 P MCMC1 P MCMC2 G MCMC1 G MCMC2

Architecture 7 8 7 8 7 8

1 1 1 1 1 0 1
2 1 1 1 1 1 1
3 1 1 1 1 0 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 0 1 0 0 0 1
8 1 0 0 0 1 0

Table 30: Performance of the ANNs on the East-European, Polish and German test data
when using factors based on the 90% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient.

Architecture Regularization ES Correct Good Bad Gini

East-European data

1 No No 0.67 0.56 0.77 0.58
2 No Yes 0.67 0.57 0.77 0.60
3 Classical No 0.67 0.56 0.77 0.58
4 Classical Yes 0.67 0.57 0.77 0.60
5 Bayesian No 0.66 0.54 0.77 0.59
6 Bayesian Yes 0.66 0.51 0.80 0.61
7 Bayesian MCMC No 0.67 0.58 0.77 0.62
8 Bayesian MCMC Yes 0.68 0.66 0.70 0.58

Polish data

1 No No 0.67 0.73 0.60 0.52
2 No Yes 0.67 0.66 0.67 0.59
3 Classical No 0.67 0.70 0.64 0.52
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Table 30 – continued from previous page

4 Classical Yes 0.67 0.68 0.66 0.59
5 Bayesian No 0.65 0.82 0.46 0.54
6 Bayesian Yes 0.68 0.66 0.70 0.56
7 Bayesian MCMC No 0.74 0.74 0.71 0.61
8 Bayesian MCMC Yes 0.74 0.73 0.75 0.66

German data

1 No No 0.68 0.63 0.72 0.60
2 No Yes 0.67 0.63 0.71 0.61
3 Classical No 0.68 0.61 0.74 0.61
4 Classical Yes 0.67 0.61 0.74 0.61
5 Bayesian No 0.66 0.67 0.65 0.57
6 Bayesian Yes 0.61 0.43 0.75 0.55
7 Bayesian MCMC No 0.68 0.65 0.70 0.57
8 Bayesian MCMC Yes 0.68 0.64 0.72 0.58

Table 31: Performance of the ANNs on the East-European, Polish and German test data
when using factors based on the 70% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient.

Architecture Regularization ES Correct Good Bad Gini

East-European data

1 No No 0.66 0.63 0.69 0.58
2 No Yes 0.66 0.59 0.73 0.60
3 Classical No 0.66 0.62 0.70 0.58
4 Classical Yes 0.66 0.60 0.73 0.60
5 Bayesian No 0.67 0.55 0.80 0.55
6 Bayesian Yes 0.67 0.63 0.71 0.54
7 Bayesian MCMC No 0.70 0.71 0.68 0.58
8 Bayesian MCMC Yes 0.69 0.72 0.66 0.56

Polish data

1 No No 0.66 0.78 0.55 0.51
2 No Yes 0.64 0.76 0.53 0.54
3 Classical No 0.66 0.76 0.57 0.50
4 Classical Yes 0.65 0.77 0.52 0.54
5 Bayesian No 0.66 0.71 0.59 0.53
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Table 31 – continued from previous page

6 Bayesian Yes 0.65 0.56 0.66 0.49
7 Bayesian MCMC No 0.69 0.73 0.62 0.51
8 Bayesian MCMC Yes 0.67 0.67 0.66 0.54

German data

1 No No 0.68 0.68 0.66 0.59
2 No Yes 0.67 0.65 0.68 0.59
3 Classical No 0.68 0.69 0.66 0.59
4 Classical Yes 0.67 0.65 0.69 0.59
5 Bayesian No 0.68 0.67 0.69 0.52
6 Bayesian Yes 0.60 0.65 0.53 0.54
7 Bayesian MCMC No 0.70 0.68 0.71 0.59
8 Bayesian MCMC Yes 0.69 0.70 0.69 0.60

Table 32: Performance of the ANNs on the East-European, Polish and German test data
when using factors based on the 60% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient.

Architecture Regularization ES Correct Good Bad Gini

East-European data

1 No No 0.67 0.63 0.70 0.59
2 No Yes 0.65 0.57 0.73 0.60
3 Classical No 0.66 0.61 0.71 0.58
4 Classical Yes 0.65 0.57 0.73 0.60
5 Bayesian No 0.68 0.61 0.74 0.53
6 Bayesian Yes 0.67 0.62 0.70 0.55
7 Bayesian MCMC No 0.70 0.69 0.70 0.59
8 Bayesian MCMC Yes 0.71 0.67 0.75 0.63

Polish data

1 No No 0.66 0.74 0.57 0.51
2 No Yes 0.62 0.79 0.45 0.53
3 Classical No 0.66 0.76 0.56 0.51
4 Classical Yes 0.63 0.82 0.42 0.54
5 Bayesian No 0.63 0.64 0.59 0.53
6 Bayesian Yes 0.63 0.59 0.64 0.48
7 Bayesian MCMC No 0.67 0.72 0.64 0.53
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Table 32 – continued from previous page

8 Bayesian MCMC Yes 0.66 0.68 0.64 0.52

German data

1 No No 0.70 0.66 0.73 0.59
2 No Yes 0.68 0.67 0.68 0.58
3 Classical No 0.70 0.66 0.72 0.59
4 Classical Yes 0.68 0.67 0.68 0.58
5 Bayesian No 0.69 0.73 0.65 0.52
6 Bayesian Yes 0.62 0.52 0.68 0.50
7 Bayesian MCMC No 0.69 0.69 0.69 0.58
8 Bayesian MCMC Yes 0.70 0.71 0.69 0.59

Table 33: Performance of the ANNs on the East-European, Polish and German test data
when using factors based on the 50% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient.

Architecture Regularization ES Correct Good Bad Gini

East-European data

1 No No 0.66 0.62 0.69 0.59
2 No Yes 0.66 0.61 0.71 0.59
3 Classical No 0.66 0.62 0.69 0.59
4 Classical Yes 0.66 0.61 0.71 0.59
5 Bayesian No 0.66 0.58 0.74 0.54
6 Bayesian Yes 0.67 0.74 0.60 0.56
7 Bayesian MCMC No 0.69 0.72 0.66 0.58
8 Bayesian MCMC Yes 0.70 0.73 0.67 0.58

Polish data

1 No No 0.68 0.78 0.57 0.51
2 No Yes 0.64 0.73 0.54 0.54
3 Classical No 0.67 0.77 0.57 0.51
4 Classical Yes 0.64 0.75 0.53 0.54
5 Bayesian No 0.64 0.45 0.81 0.53
6 Bayesian Yes 0.65 0.57 0.73 0.49
7 Bayesian MCMC No 0.69 0.74 0.56 0.52
8 Bayesian MCMC Yes 0.67 0.67 0.68 0.53
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Table 33 – continued from previous page

German data

1 No No 0.66 0.65 0.67 0.56
2 No Yes 0.66 0.67 0.65 0.59
3 Classical No 0.66 0.65 0.67 0.56
4 Classical Yes 0.66 0.68 0.64 0.58
5 Bayesian No 0.68 0.65 0.70 0.55
6 Bayesian Yes 0.61 0.44 0.72 0.50
7 Bayesian MCMC No 0.69 0.70 0.68 0.59
8 Bayesian MCMC Yes 0.70 0.69 0.70 0.61

Table 34: Performance of the ANNs on the East-European, Polish and German test data.
when using factors based on the 0% percentile of the correlation to the target variable.
Correct: the percentage of overall correctly classified obligors; Good: the percentage of
correctly classified good obligors; Bad: the percentage of correctly classified bad oblig-
ors; Gini: the Gini coefficient.

Architecture Regularization ES Correct Good Bad Gini

East-European data

1 No No 0.65 0.60 0.70 0.60
2 No Yes 0.65 0.60 0.71 0.60
3 Classical No 0.65 0.60 0.70 0.60
4 Classical Yes 0.65 0.60 0.71 0.60
5 Bayesian No 0.65 0.65 0.66 0.55
6 Bayesian Yes 0.67 0.66 0.67 0.56
7 Bayesian MCMC No 0.71 0.67 0.75 0.61
8 Bayesian MCMC Yes 0.69 0.68 0.70 0.60

Polish data

1 No No 0.65 0.76 0.52 0.51
2 No Yes 0.62 0.74 0.49 0.54
3 Classical No 0.66 0.80 0.50 0.51
4 Classical Yes 0.62 0.78 0.44 0.54
5 Bayesian No 0.63 0.67 0.55 0.51
6 Bayesian Yes 0.64 0.87 0.39 0.53
7 Bayesian MCMC No 0.67 0.79 0.56 0.52
8 Bayesian MCMC Yes 0.64 0.65 0.60 0.51

German data

1 No No 0.65 0.68 0.62 0.56
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Table 34 – continued from previous page

2 No Yes 0.66 0.68 0.64 0.57
3 Classical No 0.65 0.67 0.62 0.56
4 Classical Yes 0.66 0.68 0.64 0.57
5 Bayesian No 0.68 0.76 0.59 0.53
6 Bayesian Yes 0.67 0.67 0.62 0.54
7 Bayesian MCMC No 0.68 0.66 0.69 0.61
8 Bayesian MCMC Yes 0.67 0.62 0.72 0.58
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Figure 24: Distribution of the overall correctly classified obligors for the East-European
data, based on the 0%, 50%, 60%, 70%, 80% and 90% percentile of the correlation to the
target variable.
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Figure 25: Distribution of the overall correctly classified obligors for the Polish data,
based on the 0%, 50%, 60%, 70%, 80% and 90% percentile of the correlation to the
target variable.
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Figure 26: Distribution of the overall correctly classified obligors for the German data,
based on the 0%, 50%, 60%, 70%, 80% and 90% percentile of the correlation to the target
variable.
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Appendix C

Figure 27: Trace plots on the BKNNs for the East-European data. Upper panel: original
sampling; middle panels: randomized variance and combined proposal; bottom panel:
derivative adjustment. All plots show that the estimation of the β parameter is stable.
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Figure 28: Trace plots on the BKNNs for the Polish data. Upper panel: original sampling;
middle panels: randomized variance and combined proposal; bottom panel: derivative
adjustment. All plots show that the estimation of the β parameter is stable.
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Figure 29: Trace plots on the BKNNs for the German data. Upper panel: original sam-
pling; middle panels: randomized variance and combined proposal; bottom panel: deriva-
tive adjustment. All plots show that the estimation of the β parameter is stable.
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Figure 30: Sample autocorrelation functions on the BKNNs for the East-European data.
Top left: original sampling; top right: randomized variance; bottom left: combined pro-
posal; bottom right: derivative adjustment. All plots show that autocorrelation gradually
decreases and therefore provide evidence of low autocorrelation in the chain.
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Figure 31: Sample autocorrelation functions on the BKNNs for the Polish data. Top left:
original sampling; top right: randomized variance; bottom left: combined proposal; bot-
tom right: derivative adjustment. All plots show that autocorrelation gradually decreases
and therefore provide evidence of low autocorrelation in the chain.
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Figure 32: Sample autocorrelation functions on the BKNNs for the German data. Top left:
original sampling; top right: randomized variance; bottom left: combined proposal; bot-
tom right: derivative adjustment. All plots show that autocorrelation gradually decreases
and therefore provide evidence of low autocorrelation in the chain.
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Appendix D

Table 35: Two sample t-test results on the overall classification accuracy for the East-
European data. 1 indicates that the mean difference is significant.

N Method 1 2 3 4 5 6

1 BKNNs, GA - 0 0 0 0 1
2 BKNNs 0 - 0 0 0 1
3 BKNNs, randomized variance 0 0 - 0 0 1
4 BKNNs, combined proposal 0 0 0 - 0 1
5 BKNNs, derivative 0 0 0 0 - 1
6 KNNs 1 1 1 1 1 -
7 DTs 1 1 1 1 1 1
8 DTs, boost 0 0 0 0 0 1
9 ANNs 1 1 1 1 1 1

10 SVMs 1 1 1 1 1 0
11 LDA 0 0 0 0 0 1
12 NB 0 0 0 0 0 1
13 Logistic 0 0 0 0 0 1

Table 36: Two sample t-test results on the overall classification accuracy for the Polish
data. 1 indicates that the mean difference is significant.

N Method 1 2 3 4 5 6

1 BKNNs, GA - 0 0 0 0 1
2 BKNNs 0 - 0 0 0 1
3 BKNNs, randomized variance 0 0 - 0 0 1
4 BKNNs, combined proposal 0 0 0 - 0 1
5 BKNNs, derivative 0 0 0 0 - 1
6 KNNs 1 1 1 1 1 -
7 DTs 0 0 0 0 0 0
8 DTs, boost 0 0 0 0 0 1
9 ANNs 1 1 1 1 1 1

10 SVMs 0 1 1 1 1 0
11 LDA 0 1 1 1 1 0
12 NB 1 1 1 1 1 1
13 Logistic 0 0 0 0 0 0
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Table 37: Two sample t-test results on the overall classification accuracy for the German
data. 1 indicates that the mean difference is significant.

N Method 1 2 3 4 5 6

1 BKNNs, GA - 0 0 0 1 0
2 BKNNs 0 - 0 0 1 1
3 BKNNs, randomized variance 0 0 - 0 1 1
4 BKNNs, combined proposal 0 0 0 - 1 1
5 BKNNs, derivative 1 1 1 1 - 1
6 KNNs 0 1 1 1 1 -
7 DTs 1 1 1 1 1 1
8 DTs, boost 0 0 0 0 1 0
9 ANNs 0 0 0 0 0 1

10 SVMs 0 0 0 0 0 0
11 LDA 0 0 0 0 0 0
12 NB 0 0 0 0 0 0
13 Logistic 0 0 0 0 0 0
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Appendix E

Table 38: Sensitivity to GA parameters, measured in terms of standard deviations for each
parameter and each data set. Some very small deviation is observed when the population
size is small (10 cases).

German Polish East-
European

Sensitivity in respect to β k F.V. β k F.V. β k F.V.

number of iterations 0 0 0 0 0 0 0 0 0
population size 0.46 0 0.14 0.05 11.6 0.13 0 0 0
penalty parameter 0 0 0 0 0 0 0 0 0

Figure 33: Penalty function value per GA iteration for each data set. After first 10 itera-
tions the value of the penalty function stabilizes.
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