MORE IS BETTER: 3D HUMAN POSE ESTIMATION

FROM COMPLEMENTARY DATA SOURCES

A

DENIS TOME

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY COLLEGE LONDON

THIS THESIS IS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

JANUARY 2021






DECLARATION:

I, Denis Tome confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indi-

cated in the thesis.

Denis Tome

JANUARY 2021






ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Prof. Lourdes de Agapito Vincente, for
her valuable counsel and insight. I am very grateful for her support and involvement
she has constantly demonstrated during our collaboration. I would also like to thank

Dr. Chris Russell for his assistance and great support during the first year of Ph.D.

I would also like to sincerely thank the professors that inspired me during my entire
education span, starting from G. Falcone during my high school years to Dr. Marco
Tagliasacchi who supervised me during my MSc thesis. They deeply inspired me

and made me enjoy what I do, a privilege I am very thankful for.

Furthermore, I would like to thank my parents, Mauro Tome and Nadia Fumagalli,
for giving me every ounce of support a person can ever ask. I am proud and honored
to have them as parents; my friend and colleague Federico Monti for competing
with me during our undergrad and post-grad studies in getting better marks, which

made me push my boundaries beyond what I could have considered possible.

Finally, I would like to express my gratitude for my scholarship to the European

Union, which every years allows many students like myself to follow a dream.






ABSTRACT

Computer Vision (CV) research has been playing a strategic role in many different
complex scenarios that are becoming fundamental components in our everyday life.
From Augmented/Virtual reality (AR/VR) to Human-Robot interactions, having a
visual interpretation of the surrounding world is the first and most important step to

develop new advanced systems.

As in other research areas, the boost in performance in Computer Vision algorithms
has to be mainly attributed to the widespread usage of deep neural networks. Rather
than selecting handcrafted features, such approaches identify which are the best
features needed to solve a specific task, by learning them from a corpus of carefully
annotated data. Such important property of these neural networks comes with a
price: they need very large data collections to learn from. Collecting data is a
time consuming and expensive operation that varies, being much harder for some
tasks than others. In order to limit additional data collection, we therefore need
to carefully design models that can extract as much information as possible from

already available dataset, even those collected for neighboring domains.

In this work I focus on exploring different solutions for and important research
problem in Computer Vision, 3D human pose estimation, that is the task of estimat-
ing the 3D skeletal representation of a person characterized in an image/s. This has
been done for several configurations: monocular camera, multi-view systems and

from egocentric perspectives.



Abstract 8

First, from a single external front facing camera a semi-supervised approach is used
to regress the set of 3D joint positions of the represented person. This is done by
fully exploiting all of the available information at all the levels of the network, in
a novel manner, as well as allowing the model to be trained with partially labelled

data.

A multi-camera 3D human pose estimation system is introduced by designing a
network trainable in a semi-supervised or even unsupervised manner in a multi-
view system. Unlike standard motion-captures algorithm, demanding a long and
time consuming configuration setup at the beginning of each capturing session, this

novel approach requires little to none initial system configuration.

Finally, a novel architecture is developed to work in a very specific and significantly
harder configuration: 3D human pose estimation when using cameras embedded in
a head mounted display (HMD). Due to the limited data availability, the model
needs to carefully extract information from the data to properly generalize on un-
seen images.

This is particularly useful in AR/VR use case scenarios, demonstrating the versatil-

ity of our network to various working conditions.






IMPACT STATEMENT

Human 3D pose detection for human-computer interaction is a very well known
problem, part of the computer vision spectrum, which aims at identifying the 3D
skeletal representation — which may vary based on the approach (E.g. positions,
rotations, etc.) — of people from input images. Different variations of this task
rely on different amount of available information to estimate the final pose. This
ranges from complex systems made of multiple cameras with temporal consis-
tency, to less complex ones relying for example on a single rgb camera set-up with

frame-by-frame predictions.

As in other areas of computer vision, human 3d pose estimation is a task where
deep learning approaches prevail in terms of accuracy in the estimations. However,
these models require significantly larger datasets to learn from, to accurately and
robustly work. The larger the data collection, the better. Yet, collecting the amount
of necessary data is a non-trivial challenge which involves expensive equipment,
properly calibrated, with an intense/time-consuming data preprocessing stage. This
expensive and time consuming task is fundamental but few research groups have

the resources to afford this.

Instead of limiting ourselves to the availability of data, we propose an alternative
and less demanding solution which makes used of already existing and partially
labeled data. Rather than relying on a single big dataset, we make use of a collec-
tion of complementary datasets, containing all the necessary information: dataset/s

consisting of images with 2D annotations along with dataset/s consisting of 3D an-
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notation only. Consequently, if needed, also the generation of new data becomes
easier and less cumbersome.

These ideas and set of strategies can be translated to other research areas of com-
puter vision for performance improvement, since introducing new data increase the

robustness of the model towards variability of the input data.

As human 3D pose detection can be used in a variety of applications, we therefore
explore also how this technology can be adapted to less common tasks of great use
for augmented and virtual reality. We propose a novel and robust architecture which
is able to couple with the larger amount of pose self-occlusion generated by using
headset-mounted-cameras that is also able to achieve state-of-the art results on the
normal front-facing-camera pose estimation task. This novel and unique work, is
one of the first to open research towards a specific problem of AR/VR that if solved

will push us closer to the futuristic idea of AR/VR we all have in mind.
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CHAPTER 1

INTRODUCTION

Computer Vision (CV) is concerned with the automatic extraction, analysis and un-
derstanding of relevant information from images and has been at the core of the new
“automation revolution” providing tools to “perceive the world”. It is a broad re-
search field with areas ranging from robotic vision, where the interest is in studying
image based techniques to allow robots to interact with and understand the world
(such as safely navigating in an environment), to bio-medicine, where new algo-
rithms are developed to assist doctors in making better diagnosis or assisting them

in surgery tasks.

A well defined area of research in Computer Vision (CV) is Human Pose Estima-
tion, which focuses on solving the problem of estimating the body configuration of
one or multiple people from an image / multiple images / video sequences / etc.
Specifically, from the input data (image, images, footage etc.) the goal is to find
each of the poses characterizing the people represented in the data.

The pose definition varies according to the applications. For example it can be
expressed as a set of 2D joint locations, 3D joint locations, joint angles as rotations

relative to the parent node, etc.

Human Pose Estimation is a problem that has been researched in the community for

more than four decades and despite the many years of research it is still considered
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to be very challenging due to its large variability of conditions and characteristics.
If we analyze the human anatomy, we can understand where part of the complexity
comes from. A human body has a large number of muscles (over 600) that when
flexed and moved change the appearance of the body, making it hard for a pure
visual model the learn the large number of possible combinations. Moreover, we
have 200 bones with over 200 joints, each increasing the capability of our body to

bend and move in specific ways.

Additional variability is introduced by considering the various degrees of occlusion
or self-occlusion that can occur when observing the body. Occlusion refers to the
term for which only part of the body is directly visible from a camera perspective
due to: a) objects being placed in front of limbs / areas of the body (occlusion), or
b) due to the body (self-occlusion) where part of the body itself prevents us from
observing other areas; for example, when crossing arms, only a portion of the arms
is visible. Finally, humans also bulge, breath, flex and jiggle. Our shape changes
with our age and fitness level and most importantly our visual appearance changes
based on our outfit, the clothes materials and colors, which by itself introduces

enormous variability.

Even if we only consider the factors described so far, without accounting for ad-
ditional causes of complexity, one can easily understand the level of intricacy in

solving this task and why it remains an open problem.

As in other areas of computer vision, machine learning (ML) algorithms have re-
cently proven to outperform other types of solutions. However, when dealing with
ML solutions, a discussion about data availability needs to be addressed as data col-
lection is a challenging problem and machine learning models need to be carefully

designed to deal with the scarcity of training data.

State-of-the-art approaches for human pose estimation introduced before the work
presented in this thesis did not focus on the issue of how to exploit partially la-
belled datasets with models that are able to use the limited available information

in a complementary way to improve the model performance. Specifically, a) end-
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to-end approaches would only consider fully-labelled datasets where every input x
would have an associated ground truth label y to be used for training, b) pipeline-
approaches would use the partially labelled dataset in an independent manner. The
model is trained to infer y in two independent steps going through intermediate fu-
tures z: x — z and z — y. This would only partially tackle the problem of data
availability because the model would not fully exploit interdependencies between

the partial labels.

Without using datasets captured from different domains, the resulting solutions will
suffer major generalization issues, with models not able to perform properly under
different working conditions: e.g. different environments (indoor, outdoor, etc.),
with dynamic lighting conditions, the different number of people, etc. Furthermore,
this is particularly true when considering ML algorithms which are known to de-

mand large datasets to be able to correctly model the solution.

Human Pose Estimation is an important research topic that has gained interest due
to the complexity of the problem and the many challenges involved with solving it.
There are many research topics in computer vision that require attention, however
this specific task has proven to be particularly challenging to solve; with a large
enough labelled dataset, every problem can be relatively solved with a pure learning
strategy, however for Human Pose Estimation it is not possible to collect a corpus
large enough to satisfy such requirements. Instead, the solutions need to be carefully

designed to limit the problem and use the only available data to identify a solution.

There is a large abundance of applications that would benefit from such technology,
from AR/VR to Robotics. It is a crucial step in the new “advanced automation”,
where systems need to be aware of people and know how to interact with them.
For example, research is being developed to use human pose estimation to help
elderly people being humanly unsupervised and autonomous in their homes, with a

non-invasive Al system to monitor them and assist them when needed.

Many other applications lie in Augmented/Virtual reality and gaming applications.
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For example, it plays a fundamental role in the new gaming concept of "Meta-
verse”, a space where people virtually interact in a digital world that can be cus-
tomized as pleased by the players to fit their creativity. In this scenario, human pose
estimation is used for example to learn how people behave, look, move and interact

with each other and to drive the avatars of the players.

THESIS OVERVIEW

This thesis is about designing machine learning models for the task of 3D hu-
man pose estimation that are able to use all the available information contained
in the datasets. It is done to achieve better performance by exploiting the partially
available labels during the model training stage, capitalizing on the data depen-
dencies that would have not being otherwise exploited by previous state-of-the-art
approaches. The set of solutions would facilitate the usage of different datasets,
captured in different domains, to train models that as an effect would generalize

better due to the variability of the input training data, as demonstrated in this thesis.

The remain of this chapter introduces the main concepts related to human pose
estimation. Finally, I outline the thesis structure and I summarize the thesis contri-

butions.

1.1 2D HUMAN POSE ESTIMATION

For 2D Human Pose Estimation we are going to solve this problem using machine
learning. Here, the Convolutional Neural Network (CNN) model is predicting a
pose as a collection of 2D joint positions, also called 2D skeletal representation.

Given a dataset of n pairs {(I(i) , P(i))}?zl, we want to identify the best model 0 that
maps input images I) € R$*S*3 to their corresponding 2D poses P() € R7*2 with
J € Z being the number of joints contained in the skeleton definition (see Fig. 1.1).

Ground truth 2D joint positions P are usually annotated by users that manually
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Figure 1.1: Example of skeleton definition from OpenPose [1].

label each joint in a sequence, frame by frame, using systems specifically designed
to facilitate fast annotation. These annotations, although not perfect (as shown in

Fig. 1.2), are fast to create and do not require any specific equipment.

Generic images downloaded from the internet are perfect candidates to be anno-
tated. The ease of creating new data has enormous potential since it is possible,
by carefully selecting which images to chose, to have a diverse dataset that if used
during training allows a model to cope with a large variation of possible lighting
conditions, clothes, etc. as well as different pose complexity with several levels of

occlusions / self-occlusions.

The large number of available annotated datasets together with the large variability
of human activities and conditions they cover, has allowed the community to de-
velop accurate 2D joint estimation approaches. Current state-of-the-art approaches
rely on deep convolutional neural networks, described later in this chapter, which
have proven to be the best performing family of ML approaches.

However, the diversity of datasets has not been accompanied with a unified skeletal
representation (see [2]). In practice, different definitions for datasets have intro-
duced different definitions for skeleton which does not facilitate training of models

across datasets (see Fig. 1.5 for example of different skeleton definitions).
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Figure 1.2: Example of 2D joint annotations by humans (in red) compared against the re-
sulting labels produced by [3] post-processing approach (in green). It is clear
how annotations are not perfect, but due to the diversity a dataset and its size it
is still valuable information.

MOUTH

Figure 1.3: Fisher & Elshlager: Reference description of a face.

Not all approaches tackling 2D pose estimation however rely on ML solutions. For
example in “The representation and Matching of Pictorial Structures” [4], Fisher
and Elshlager defined a representation made of rigid pieces (components) held to-
gether by “springs”, serving both as a constraint to the relative movement and a
measure of cost of the movement by how much they are stretched (see Figure 1.3).
Here, applying dynamic programming according to the algorithm described in the
paper, they were able to run some image-matching experiments using faces as

shown in Fig. 1.4.
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Figure 1.4: Fisher & Elshlager image matching experiment.

1.2 3D HUMAN POSE ESTIMATION

Similarly to the 2D pose estimation problem, we are going to focus exclusively on
machine learning approaches for 3D human pose estimation. In order to describe the
complications introduced by having 3D and for the sake of simplicity, we consider a
scenario in which the model only uses a single input image to predict the 3D poses,

represented as a set of 3D joint positions.

Given a dataset of n pairs {(I),P!)}"_ we want to identify the best model 6 that
maps input images I) € RS*S*3 to their corresponding 3D poses P() € R7*3 with

J € Z being the number of joints contained in the skeleton definition (see Fig. 1.1).

The additional challenge arising with respect to the previous Img — 2D scenario
is the concept of projections which in this case plays an important role: if we look
at Figure 1.6a an illustration of the pinhole camera model is shown — with the
image plane in front of the lens to simplify visualization — which can be used to
describe the information loss coming from projections when acquiring images. In
that diagram a 3D point P = (X,Y,Z) is projected onto the image plane (screen),

producing coordinate (xy,ys)

yo=oxf=—rxf (1.1)

which can be described in matrix notation using homogeneous coordinates as
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(b) Human3.6M dataset

Eee

(¢) OpenCV model

(e) PoseTrack dataset

Figure 1.5: Variability of skeleton definitions. This is an example of skeleton definitions
according to different algorithms or datasets. The definition changes both in
terms of number and joint positions.
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Figure 1.6: Given a 2D point lying on the image plane, there is an infinite number of 3D
positions that would satisfy the projection.

According to Eq. 1.2, the inverse operation of estimating a 3D point given its 2D
corresponding coordinate results in an infinite number of possible solutions, as
shown in Figure 1.6b. Therefore It is not possible to extract 3D information from

input 2D data without defining additional constraints in the model.
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(a) 3D Cube (b) 2D key-points on image

Figure 1.7: Human 3D labeling example.

As previously described, for machine learning based approaches, the data avail-
ability is a critical factor in determining a model that is able to learn the correct
information to reliably perform under a different set of conditions, with good gen-
eralization. Unfortunately, unlike the 2D version of human pose estimation where
image annotation is relatively easy, creating 3D pose labels results to be a very

challenging task.

The main complication lies on the inability of humans to reliably and accurately
estimate 3D locations. If we look at Fig. 1.7a, a person would be able to fairly
reliably estimate the 2D key-points corresponding to the vertices of the cube as
represented with blue spheres in Fig. 1.7b. However the person would perform
extremely poorly in estimating their 3D corresponding positions, even in the case

in which the cube dimensionality is known.

The process of 3D data annotation therefore requires a system capable of automat-
ically annotate the data: a motion capture-like configuration. A motion capture
studio is a specifically designed room containing a large number of cameras, from
which it is possible to compute the 3D skeleton of a person. This technology relies
on detecting small markers placed on the actor’s body, which can then be used to
geometrically compute their 3D position, knowing where the cameras were located.

A visual representation of this is shown in Figure 1.8.
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MoCap studios are currently used by industry, in cinematography as well as gaming,
to animate virtual characters, mimicking the actor’s performance. Although very
accurate, these systems are very expensive, requiring constant and precise camera
calibrations before each recording. Most notably, the biggest drawback of using
such systems is in the constraints defined by this technology itself: whoever is cap-
tured is required to wear a motion capture suit (MoCap suit) as the actor represented
in Fig. 1.8. As a result of this, the variability of the data captured in a MoCap stu-
dio is extremely limited due to the actor appearance as well as due to the static
background which remains constant throughout the entire data capture sessions.

These constraints are such that a machine learning model purely trained on these
data would not be able to generalize to “images in the wild” ( images captured
in the real-world — see Fig. 1.9b). Furthermore, even if dynamic backgrounds
and different cloth combinations were used as a workaround for this problem, the
markers (see Fig. 1.9) would still need to be visible in order for the system to work.
These markers would introduce additional information absent on test data for which,

again, the model would not be able to generalize well.

Due to these problems it is important to use diversified data captured under different
conditions, from different domains, such that machine learning models train on
those datasets are able to learn how to deal with a variety of different conditions

and have better generalization performance.

In the next section, an exploration of basic machine learning techniques directly in-
volved with the next chapters is introduced to better understand the concepts behind

our model designs.
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Figure 1.8: Motion capture studio showing various cameras capturing the actor while per-
forming. The actor needs to wear a mocap suit (black dress) with markers
(white dots) placed on it.

1.3 MACHINE LEARNING

The subject of ML is the study of mathematical models and algorithms that provide
from the input data (training data) it receives the ability to make inferences and
predictions without being explicitly programmed to do so. The widely accepted

definition of what constitutes ML, given by Mitchell [5], is as follows:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T, as measured by P , improves with experience E. In general,
to have a well-defined learning problem, we must identify these three
features: the class of tasks, the measure of performance to be improved,

and the source of the experience.”

With the source of experience being the observable input data for the defined rask.
Furthermore, input data may be provided with target output and based on the avail-
ability of output, ML model can be trained according to different levels of supervi-

sions.
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(a) Motion Capture image with actor wearing markers

(b) Realistic images we would need to train models

Figure 1.9: Top: image captured from a motion capture studio where markers can be seen
on the actor. Furthermore, the entire dataset is captured in the same static
environment. Bottom: real image we would ideally like to have with associated
3D skeleton information.



Machine Learning 37

1.3.1 LEVELS OF SUPERVISION

Based on the available output information provided during the training phase of the
model, different modalities of supervision emerge!: supervised, semi-supervised,
self-supervised and unsupervised. The level of supervision is referred to the avail-

ability of data used for training the model.

The dataset is divided into sets with different functionality: train-set) the part of
the dataset dedicated exclusively to train the model; validation-set) the part of the
dataset used to evaluate the model during the training phase; and test-set) the part
of the dataset dedicated exclusively to test the model; these data are unseen to the

model during training or evaluation.

SUPERVISED
Supervised learning in ML is the task of learning a function/model that maps an

input to an output, based on training {(1),y) 1V  pairs.

Without constraining the description to any specific ML algorithm, if we consider
a model O, given input data /, ideally we want the model to predict the known

expected output y. This could be described as
arg;nin(Hy—f(U@)H) (1.3)

where we want to find a model for which the predicted output f(7|0) = J is as close
as possible to the expected one y. An example of supervised learning approach is

by Bogo et al. [6].

SEMI-SUPERVISED
Semi-supervised learning in ML is the task of learning a function/model that also

makes use of unlabeled data for training. Typically, a small amount of labeled data

IReinforcement and active learning have been omitted since they are outside the scope of this
work
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with a large amount of unlabeled data.

As in supervised learning, we are given a set of N independently identical dis-

tributed examples {(1(),y())}V ~with I input and y corresponding labels. Addi-

tionally, we are given U unlabeled examples {/ (@) f/: J;VUH with input data only.
Semi-supervised learning attempts to make use of this combined information to

improve the performance of the model. An example of such approach is [7].

SELF-SUPERVISED

Self-supervised learning (inspired by Biology (see work by Gopnik e? al. [8])) i1s a
more recent form of training that unlike previous levels of supervision it requires
less feedback to be given to the model and where the model is trained to predict any

part of its input from any observed part.

The justification for self-supervision is that it is expensive to label data for new
datasets and some areas are ‘“‘supervision-starved” where annotations are hard to
obtain. It is based on the idea that large availability of unlabeled data that could be
exploited to generate better models.

Self-supervised learning is therefore a form of unsupervised learning where the data
provides the supervision: retain part of the data and train the model to predict that.

An example of such approach is [9].

UNSUPERVISED
Unsupervised learning is a type of self-organizing Hebbian learning in which it is
possible to extract unknown patterns in datasets without preexisting labels: only

input data is available and no corresponding target labels.

The goal for unsupervised learning is to model the underlying structure of distribu-
tion in the data in order to learn more about the data. K-Means [10] is an example

of this type of approaches.



Machine Learning 39

1.3.2 CLASSICAL ML

In classical ML, algorithms rely on hand-crafted feature-representations which are
then used to solve the task. Such features are the result of complex feature engineer-
ing, in which an exploratory analysis is performed on the data in order to understand
what are the important characteristics that need to be selected and passed on to the
machine learning algorithm. Due to this selection process, these algorithms result

to be easier to interpret and understand.

Hand-crafted features are the response to the well known problem of the curse of
dimensionality [11], where the learning complexity increases exponentially with
the dimensionality of data, resulting in the need to exponentially larger data col-
lections for a larger number of dimensions. Consequently, by selecting features in
a lower-dimensional space, fewer data samples are required to reach statistically
stable results. This feature selection process however also reduces the predictive

power of the system that compromises the algorithm’s performance for the task.

Several techniques have been developed to manually or automatically select those
features which contribute the most to the predicted variable or output. These set
of techniques are part of the feature selection or variable selection process. A fea-
ture selection algorithm can be seen as the combination of a search technique for
proposing new feature subsets, along with an evaluation measure which scores the
different feature subsets. The most trivial and intuitive selection process would be
an algorithm that tests each possible subset of features, finding the one which min-

imizes the error rate.

Ideally, we would prefer to design non-parametric learning algorithms which are
capable of automatically learning the best set of features, tailored for solving a spe-
cific task: learning a feature extractor able to transform raw data into an appropriate

representation.
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1.3.3 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are computing systems inspired by biological neural net-
works, a population of neurons interconnected by synapses that carry out a specific

function when activated.

The precursor of current Artificial Neural Networks is the perceptron algorithm,
introduced by Frank Rosenblatt [12], in which the idea was to use mathematical
models to mimic parts of neurons, such as dendrites, cell bodies and axons.

In the biological neuron, signals are received from dendrites and sent through the
axon once enough signal is received; this signal can then be used by another neu-
ron as input (see Figure 1.10). Some signals are more important than others and
connections can become stronger or weaker. This can be translated into a function
that receives as input a list of weighted input signals and outputs a signal if the sum
reaches a certain threshold. This simple model is powerful enough to solve simple
classification tasks, however a single layer of perceptrons alone is not able to solve

non-linear classification problems.
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Figure 1.10: Mimicking biological neuron with an artificial one.
Image from https://towardsdatascience.com
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