
MORE IS BETTER: 3D HUMAN POSE ESTIMATION

FROM COMPLEMENTARY DATA SOURCES

DENIS TOMÈ
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ABSTRACT

Computer Vision (CV) research has been playing a strategic role in many different

complex scenarios that are becoming fundamental components in our everyday life.

From Augmented/Virtual reality (AR/VR) to Human-Robot interactions, having a

visual interpretation of the surrounding world is the first and most important step to

develop new advanced systems.

As in other research areas, the boost in performance in Computer Vision algorithms

has to be mainly attributed to the widespread usage of deep neural networks. Rather

than selecting handcrafted features, such approaches identify which are the best

features needed to solve a specific task, by learning them from a corpus of carefully

annotated data. Such important property of these neural networks comes with a

price: they need very large data collections to learn from. Collecting data is a

time consuming and expensive operation that varies, being much harder for some

tasks than others. In order to limit additional data collection, we therefore need

to carefully design models that can extract as much information as possible from

already available dataset, even those collected for neighboring domains.

In this work I focus on exploring different solutions for and important research

problem in Computer Vision, 3D human pose estimation, that is the task of estimat-

ing the 3D skeletal representation of a person characterized in an image/s. This has

been done for several configurations: monocular camera, multi-view systems and

from egocentric perspectives.
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First, from a single external front facing camera a semi-supervised approach is used

to regress the set of 3D joint positions of the represented person. This is done by

fully exploiting all of the available information at all the levels of the network, in

a novel manner, as well as allowing the model to be trained with partially labelled

data.

A multi-camera 3D human pose estimation system is introduced by designing a

network trainable in a semi-supervised or even unsupervised manner in a multi-

view system. Unlike standard motion-captures algorithm, demanding a long and

time consuming configuration setup at the beginning of each capturing session, this

novel approach requires little to none initial system configuration.

Finally, a novel architecture is developed to work in a very specific and significantly

harder configuration: 3D human pose estimation when using cameras embedded in

a head mounted display (HMD). Due to the limited data availability, the model

needs to carefully extract information from the data to properly generalize on un-

seen images.

This is particularly useful in AR/VR use case scenarios, demonstrating the versatil-

ity of our network to various working conditions.





IMPACT STATEMENT

Human 3D pose detection for human-computer interaction is a very well known

problem, part of the computer vision spectrum, which aims at identifying the 3D

skeletal representation — which may vary based on the approach (E.g. positions,

rotations, etc.) — of people from input images. Different variations of this task

rely on different amount of available information to estimate the final pose. This

ranges from complex systems made of multiple cameras with temporal consis-

tency, to less complex ones relying for example on a single rgb camera set-up with

frame-by-frame predictions.

As in other areas of computer vision, human 3d pose estimation is a task where

deep learning approaches prevail in terms of accuracy in the estimations. However,

these models require significantly larger datasets to learn from, to accurately and

robustly work. The larger the data collection, the better. Yet, collecting the amount

of necessary data is a non-trivial challenge which involves expensive equipment,

properly calibrated, with an intense/time-consuming data preprocessing stage. This

expensive and time consuming task is fundamental but few research groups have

the resources to afford this.

Instead of limiting ourselves to the availability of data, we propose an alternative

and less demanding solution which makes used of already existing and partially

labeled data. Rather than relying on a single big dataset, we make use of a collec-

tion of complementary datasets, containing all the necessary information: dataset/s

consisting of images with 2D annotations along with dataset/s consisting of 3D an-
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notation only. Consequently, if needed, also the generation of new data becomes

easier and less cumbersome.

These ideas and set of strategies can be translated to other research areas of com-

puter vision for performance improvement, since introducing new data increase the

robustness of the model towards variability of the input data.

As human 3D pose detection can be used in a variety of applications, we therefore

explore also how this technology can be adapted to less common tasks of great use

for augmented and virtual reality. We propose a novel and robust architecture which

is able to couple with the larger amount of pose self-occlusion generated by using

headset-mounted-cameras that is also able to achieve state-of-the art results on the

normal front-facing-camera pose estimation task. This novel and unique work, is

one of the first to open research towards a specific problem of AR/VR that if solved

will push us closer to the futuristic idea of AR/VR we all have in mind.





CONTENTS

FIGURES 17

TABLES 20

NOMENCLATURE 22

1 INTRODUCTION 24

1.1 2D HUMAN POSE ESTIMATION . . . . . . . . . . . . . . . . . . . 27

1.2 3D HUMAN POSE ESTIMATION . . . . . . . . . . . . . . . . . . . 30

1.3 MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 LEVELS OF SUPERVISION . . . . . . . . . . . . . . . . . . 37

1.3.2 CLASSICAL ML . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.3 ARTIFICIAL NEURAL NETWORKS . . . . . . . . . . . . . 40

1.4 THESIS STRUCTURE AND CONTRIBUTIONS . . . . . . . . . . . . . 48

1.4.1 CHAPTERS . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.4.2 PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . 54

2 RELATED WORK 55

2.1 MONOCULAR CONFIGURATION . . . . . . . . . . . . . . . . . . . 58

2.1.1 2D POSE FROM IMAGES . . . . . . . . . . . . . . . . . . . 58

2.1.2 3D POSE FROM KNOWN 2D JOINT POSITIONS . . . . . . . 60

2.1.3 3D POSE FROM IMAGES . . . . . . . . . . . . . . . . . . . 61

2.2 MULTI-VIEW CONFIGURATION . . . . . . . . . . . . . . . . . . . 66

2.3 EXTERNAL CAMERA VIEWPOINT . . . . . . . . . . . . . . . . . . 68

2.3.1 FIRST PERSON CAMERA VIEWPOINT . . . . . . . . . . . 68

13



CONTENTS 14

2.3.2 POSE ESTIMATION FROM SENSORS . . . . . . . . . . . . . 69

3 POSE FROM MONOCULAR IMAGE 70

3.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 3D POSE DETECTION FRAMEWORK . . . . . . . . . . . . . . . . . 73

3.2.1 PROBABILISTIC MODEL . . . . . . . . . . . . . . . . . . . 74

3.2.2 2D TO 3D POSE INFERENCE . . . . . . . . . . . . . . . . . 78

3.3 DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1 HUMAN3.6M . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.2 MPII AND LEEDS DATASET . . . . . . . . . . . . . . . . . 88

3.4 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 89

3.4.1 EVALUATION PROTOCOLS . . . . . . . . . . . . . . . . . . 89

3.4.2 QUANTITATIVE RESULTS . . . . . . . . . . . . . . . . . . 90

3.4.3 QUALITATIVE RESULTS . . . . . . . . . . . . . . . . . . . 92

3.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 POSE FROM MULTI-CAMERA VIEWS 97

4.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 MULTI-VIEW FRAMEWORK . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.2 3D POSE ESTIMATION . . . . . . . . . . . . . . . . . . . . 105

4.3 DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.1 HUMAN3.6M . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2 CMU PANOPTIC DATASET . . . . . . . . . . . . . . . . . 111

4.4 DATA AUGMENTATION . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 LABELING DATA . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.2 SEMI-SUPERVISED LEARNING . . . . . . . . . . . . . . . . 118

4.5 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 121

4.5.1 EVALUATION PROTOCOLS . . . . . . . . . . . . . . . . . . 121

4.5.2 QUANTITATIVE RESULTS . . . . . . . . . . . . . . . . . . 122

4.5.3 QUALITATIVE RESULTS . . . . . . . . . . . . . . . . . . . 128



CONTENTS 15

4.6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5 EGOCENTRIC HUMAN POSE ESTIMATION 132

5.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 3D POSE DETECTION FRAMEWORK . . . . . . . . . . . . . . . . . 137

5.2.1 ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.2 2D POSE DETECTION . . . . . . . . . . . . . . . . . . . . 138

5.2.3 2D-TO-3D MAPPING . . . . . . . . . . . . . . . . . . . . 139

5.2.4 POSE ROTATION REPRESENTATION . . . . . . . . . . . . . 142

5.2.5 IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . 143

5.3 DATASET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.1 xR-EGOPOSE DATASET . . . . . . . . . . . . . . . . . . . 144

5.3.2 xR-EGOPOSER DATASET . . . . . . . . . . . . . . . . . . 148

5.3.3 EGOCAP DATASET . . . . . . . . . . . . . . . . . . . . . . 148

5.3.4 MO2CAP2 DATASET . . . . . . . . . . . . . . . . . . . . . 149

5.4 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . 154

5.4.1 EVALUATION PROTOCOL . . . . . . . . . . . . . . . . . . . 154

5.4.2 QUANTITATIVE RESULTS ON XR-EGOPOSE . . . . . . . . 155

5.4.3 ABLATION STUDIES . . . . . . . . . . . . . . . . . . . . . 159

5.4.4 RESULTS ON EGOCENTRIC REAL DATASETS . . . . . . . . 163

5.4.5 EVALUATION ON FRONT-FACING-CAMERA DATASETS . . 166

5.4.6 DATA-AUGMENTATION . . . . . . . . . . . . . . . . . . . . 167

5.4.7 QUALITATIVE RESULTS . . . . . . . . . . . . . . . . . . . 168

5.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 CONCLUSIONS AND FUTURE RESEARCH 175

6.1 POSE FROM MONOCULAR IMAGE . . . . . . . . . . . . . . . . . . 175

6.2 POSE FROM MULTI-CAMERA VIEWS . . . . . . . . . . . . . . . . 177

6.3 POSE FROM EGOCENTRIC PERSPECTIVE . . . . . . . . . . . . . . 178

6.4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



CONTENTS 16

APPENDICES 180

A 3D LIFTER — GRADIENT PROPAGATION 181

A.1 COMPUTING DERIVATIVES . . . . . . . . . . . . . . . . . . . . . . 181

A.1.1 LANDMARK GRADIENTS . . . . . . . . . . . . . . . . . . 182

A.1.2 MAPPING HM GRADIENTS . . . . . . . . . . . . . . . . . 184



FIGURES

1.1 SKELETON COMPOSITION . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 2D LABELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 FISHER & ELSHLAGER: REFERENCE DESCRIPTION OF A FACE . . . . . 29

1.4 FISHER & ELSHLAGER: IMAGE MATCHING EXPERIMENTS . . . . . . . 30

1.5 SKELETON DEFINITION VARIABILITY . . . . . . . . . . . . . . . . . 31

1.6 ILL POSED PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.7 HUMAN 3D LABELING . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8 3D LABELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.9 MOTION CAPTURE MARKERS . . . . . . . . . . . . . . . . . . . . . 36

1.10 BIOLOGICAL VS. ARTIFICIAL NEURON . . . . . . . . . . . . . . . . . 40

1.11 FEATURE HYPERPLANE . . . . . . . . . . . . . . . . . . . . . . . . 42

1.12 FEED FORWARD NEURAL NETWORKS . . . . . . . . . . . . . . . . . 43

1.13 ACTIVATION FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . 44

1.14 CONVOLUTION OPERATION . . . . . . . . . . . . . . . . . . . . . . 45

1.15 RECEPTIVE FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.16 RECEPTIVE FIELD PIXELS . . . . . . . . . . . . . . . . . . . . . . . 47

1.17 MONOCULAR POSE DETECTION . . . . . . . . . . . . . . . . . . . . 49

1.18 MULTI-VIEW 3D POSE DETECTION ARCHITECTURE . . . . . . . . . . 51

1.19 EGOCENTRIC 3D POSE ESTIMATION . . . . . . . . . . . . . . . . . . 52

1.20 EGOCENTRIC CAMERA PERSPECTIVE . . . . . . . . . . . . . . . . . 52

1.21 EGOCENTRIC POSE ESTIMATOR ARCHITECTURE . . . . . . . . . . . 53

2.1 Pupet representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Tracking from multi-view . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Tracking cyclic human motion . . . . . . . . . . . . . . . . . . . . . . . 56

17



FIGURES 18

3.1 HYBRID ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 POSE ALIGNMENT OF 3D POSES . . . . . . . . . . . . . . . . . . . . 77

3.3 ESTIMATIONS THROUGHOUT THE STAGES . . . . . . . . . . . . . . . 79

3.4 EVOLUTION OF HEATMAPS THROUGH FUSION LAYER . . . . . . . . . 81

3.5 JOINT PREDICTION REFINEMENT . . . . . . . . . . . . . . . . . . . 84

3.6 HUMAN3.6M CAMERA POSITIONS . . . . . . . . . . . . . . . . . . . 87

3.7 HUMAN3.6M ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.8 RESULTS ON IMAGES FROM THE MPII DATASET . . . . . . . . . . . . 93

3.9 RESULTS ON IMAGES FROM THE LEEDS DATASET . . . . . . . . . . . 94

3.10 RESULTS FROM THE HUMAN3.6M DATASET . . . . . . . . . . . . . . 95

4.1 MULTI-VIEW CAMERA SET-UP . . . . . . . . . . . . . . . . . . . . . 97

4.2 EXPLOITING GEOMETRY IN MULTI-VIEW . . . . . . . . . . . . . . . 101

4.3 MULTI-VIEW ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . 103

4.4 HUMAN3.6M CAMERA POSITIONS . . . . . . . . . . . . . . . . . . . 111

4.5 CMU PANOPTIC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 CAMERA PLACEMENT IN CMU PANOPTIC DATASET . . . . . . . . . . 112

4.7 EXAMPLE IMAGES FROM CMU PANOPTIC DATASET . . . . . . . . . . 113

4.8 LABELING DATA WITH MULTI-CAMERA 3D POSE ESTIMATOR . . . . . 115

4.9 MASK R-CNN OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.10 CROPPING REGION FROM SEGMENTATION MAP . . . . . . . . . . . . 118

4.11 MULTI-VIEW 3d POSE RECONSTRUCTIONS ON HUMAN3.6M DATASET . 129

4.12 SUPERVISED VS. SEMI-SUPERVISED MULTI-VIEW RECONSTRUCTIONS 129

4.13 SINGLE VS. MONOCULAR . . . . . . . . . . . . . . . . . . . . . . . 130

4.14 LEVEL OF MISPREDICTIONS . . . . . . . . . . . . . . . . . . . . . . 131

5.1 EGOCENTRIC HUMAN POSE ESTIMATION PROBLEM . . . . . . . . . . 133

5.2 GENERATED EGO-HMD DATASET . . . . . . . . . . . . . . . . . . . 134

5.3 CAMERA PERSPECTIVE FROM EGOCENTRIC POINT OF VIEW . . . . . 135

5.4 EGOCENTRIC POSE ESTIMATION ARCHITECTURE . . . . . . . . . . . 139

5.5 LATENT SPACE WITH SINGLE AND DUAL-BRANCH AE ARCHITECTURE 141



FIGURES 19

5.6 EXTENDED ARCHITECTURE . . . . . . . . . . . . . . . . . . . . . . 142

5.7 EXAMPLE FRONT FACING CAMERA DATASETS . . . . . . . . . . . . 144

5.8 XR-EGOPOSE CHARACTERS . . . . . . . . . . . . . . . . . . . . . . 145

5.9 XR-EGOPOSE DATASET CHARACTER HEIGHTS . . . . . . . . . . . . . 147

5.10 EGOCAP CAMERA SETUP . . . . . . . . . . . . . . . . . . . . . . . 148

5.11 EGOCAP VS. XR-EGOPOSE CAMERA VIEW . . . . . . . . . . . . . . . 150

5.12 MO2CAP2 CAMERA SETUP . . . . . . . . . . . . . . . . . . . . . . . 150

5.13 MO2CAP2 SAMPLED FRAMES . . . . . . . . . . . . . . . . . . . . . 151

5.14 XR-EGOPOSE SHADOWS . . . . . . . . . . . . . . . . . . . . . . . . 153

5.15 MO2CAP2 VS. EGO-HMD . . . . . . . . . . . . . . . . . . . . . . . . 153

5.16 JOINT PDF OVER THE TEST-SET . . . . . . . . . . . . . . . . . . . . 158

5.17 HAND VISIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.18 HM ESTIMATORS PERFORMANCE UNDER NOISE . . . . . . . . . . . 161

5.19 HEATMAPS RECONSTRUCTION FROM THE DECODER BRANCH . . . . 169

5.20 CHARACTER ANIMATION . . . . . . . . . . . . . . . . . . . . . . . 170

5.21 ANALYSIS OF THE ANGLE PREDICTIONS THROUGH TIME . . . . . . . 170

5.22 QUALITATIVE RESULTS ON XR-EGOPOSE . . . . . . . . . . . . . . . 171

5.23 QUALITATIVE RESULTS ON XR-EGOPOSER . . . . . . . . . . . . . . . 171

5.24 QUALITATIVE EVALUATION ON MO2CAP2 DATASET . . . . . . . . . . 172

5.25 LATENT SPACE INSPECTION . . . . . . . . . . . . . . . . . . . . . . 173



TABLES

3.1 EVALUATION ON HUMAN3.6M DATASET USING PROTOCOL 1 . . . . . 91

3.2 EVALUATION ON HUMAN3.6M DATASET USING PROTOCOL 2 . . . . . 91

3.3 EVALUATION ON HUMAN3.6M DATASET USING PROTOCOL 3 . . . . . 92

3.4 EVALUATION OF PIXEL ERROR ON HUMAN3.6M DATASET . . . . . . . 92

4.1 EVALUATION ON HUMAN3.6M USING PROTOCOL 1 . . . . . . . . . . 123

4.2 EVALUATION ON HUMAN3.6M USING PROTOCOL 2 . . . . . . . . . . 124

4.3 TWO CAMERA ONLY EVALUATION ON HUMAN3.6M DATASET . . . . . 124

4.4 DATA AUGMENTATION EVALUATION ON MONOCULAR APPROACHES . 125

4.5 MODEL TRAINED ON UNLABELED DATA EVALUATED ON P1 . . . . . 126

4.6 MODEL TRAINED ON UNLABELED DATA EVALUATED on P2 . . . . . . 127

4.7 MONOCULAR EVALUATION WITH DIFFERENT LEVELS OF LABELS . . 127

4.8 POSE ESTIMATOR VARIATIONS . . . . . . . . . . . . . . . . . . . . . 128

5.1 XR-EGOPOSE PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 XR-EGOPOSE EVALUATION . . . . . . . . . . . . . . . . . . . . . . 155

5.3 AVERAGE RECONSTRUCTION ERROR ON XR-EGOPOSE . . . . . . . . 157

5.4 HM REGRESSORS ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 160

5.5 AVERAGE RECONSTRUCTION ERROR PER JOINT . . . . . . . . . . . . 162

5.6 AVERAGE RECONSTRUCTION ERROR BASED ON HM SIZES . . . . . . 162

5.7 MODEL EVALUATION BASED ON SKIN TONES . . . . . . . . . . . . . 163

5.8 RECONSTRUCTION ERROR ON REAL DATA . . . . . . . . . . . . . . 164

5.9 COMPARISON AGAINST EGOCAP METHOD . . . . . . . . . . . . . . 164

5.10 EVALUATION ON MO2CAP2 DATASET . . . . . . . . . . . . . . . . . 165

5.11 EVALUATION ON HUMAN3.6M DATASET . . . . . . . . . . . . . . . . 167

20



TABLES 21

5.12 TRAINING SIZE: XR-EGOPOSE . . . . . . . . . . . . . . . . . . . . . 168

5.13 TRAINING SIZE: FRONT FACING CAMERA . . . . . . . . . . . . . . . 168



NOMENCLATURE

Roman Symbols

b Bias vector A Matrix

a Vector

W Weight matrix

Greek Symbols

λ Penalty weight

φ Nonlinear function

θ Parameters of a Neural Network model

Π Projection

σ Noise

Superscripts

(i) Index

i j Specific element of a matrix

† Pseudo-inverse matrix

Other Symbols

| · | Dimensionality of mathematical space

L Loss function

R Real number set

Z Integer number set



Nomenclature 23

Acronyms / Abbreviations

AE Autoencoder

ConvNet Convolutional neural network

DeconvNet Deconvolutional neural network

DAE Denoising Autoencoder

e.g. Exempli gratia (for example)

FC Fully-Connected

i.e. Id est (that is to say)

I Input Image

Belief maps Heatmaps

HM Heatmaps

ˆHM Predicted heatmaps

MSE Mean Squared Error

NN Neural Network

P Human pose

P̂ Pose prediction

PCA Principal Component Analysis

ReLU Rectified linear unit

Leaky ReLU Leaky Rectified linear unit

SGD Stochastic gradient descent

VAE Variational Autoencoder

IRLS Iterative Reweighted Least Squares

FOV Field ov View

DoF Degree of Freedom

NRSfM Non-Rigid Structure from Motion

MoCap Motion Capture



CHAPTER 1

INTRODUCTION

Computer Vision (CV) is concerned with the automatic extraction, analysis and un-

derstanding of relevant information from images and has been at the core of the new

“automation revolution” providing tools to “perceive the world”. It is a broad re-

search field with areas ranging from robotic vision, where the interest is in studying

image based techniques to allow robots to interact with and understand the world

(such as safely navigating in an environment), to bio-medicine, where new algo-

rithms are developed to assist doctors in making better diagnosis or assisting them

in surgery tasks.

A well defined area of research in Computer Vision (CV) is Human Pose Estima-

tion, which focuses on solving the problem of estimating the body configuration of

one or multiple people from an image / multiple images / video sequences / etc.

Specifically, from the input data (image, images, footage etc.) the goal is to find

each of the poses characterizing the people represented in the data.

The pose definition varies according to the applications. For example it can be

expressed as a set of 2D joint locations, 3D joint locations, joint angles as rotations

relative to the parent node, etc.

Human Pose Estimation is a problem that has been researched in the community for

more than four decades and despite the many years of research it is still considered
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to be very challenging due to its large variability of conditions and characteristics.

If we analyze the human anatomy, we can understand where part of the complexity

comes from. A human body has a large number of muscles (over 600) that when

flexed and moved change the appearance of the body, making it hard for a pure

visual model the learn the large number of possible combinations. Moreover, we

have 200 bones with over 200 joints, each increasing the capability of our body to

bend and move in specific ways.

Additional variability is introduced by considering the various degrees of occlusion

or self-occlusion that can occur when observing the body. Occlusion refers to the

term for which only part of the body is directly visible from a camera perspective

due to: a) objects being placed in front of limbs / areas of the body (occlusion), or

b) due to the body (self-occlusion) where part of the body itself prevents us from

observing other areas; for example, when crossing arms, only a portion of the arms

is visible. Finally, humans also bulge, breath, flex and jiggle. Our shape changes

with our age and fitness level and most importantly our visual appearance changes

based on our outfit, the clothes materials and colors, which by itself introduces

enormous variability.

Even if we only consider the factors described so far, without accounting for ad-

ditional causes of complexity, one can easily understand the level of intricacy in

solving this task and why it remains an open problem.

As in other areas of computer vision, machine learning (ML) algorithms have re-

cently proven to outperform other types of solutions. However, when dealing with

ML solutions, a discussion about data availability needs to be addressed as data col-

lection is a challenging problem and machine learning models need to be carefully

designed to deal with the scarcity of training data.

State-of-the-art approaches for human pose estimation introduced before the work

presented in this thesis did not focus on the issue of how to exploit partially la-

belled datasets with models that are able to use the limited available information

in a complementary way to improve the model performance. Specifically, a) end-
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to-end approaches would only consider fully-labelled datasets where every input x

would have an associated ground truth label y to be used for training, b) pipeline-

approaches would use the partially labelled dataset in an independent manner. The

model is trained to infer y in two independent steps going through intermediate fu-

tures z: x→ z and z→ y. This would only partially tackle the problem of data

availability because the model would not fully exploit interdependencies between

the partial labels.

Without using datasets captured from different domains, the resulting solutions will

suffer major generalization issues, with models not able to perform properly under

different working conditions: e.g. different environments (indoor, outdoor, etc.),

with dynamic lighting conditions, the different number of people, etc. Furthermore,

this is particularly true when considering ML algorithms which are known to de-

mand large datasets to be able to correctly model the solution.

Human Pose Estimation is an important research topic that has gained interest due

to the complexity of the problem and the many challenges involved with solving it.

There are many research topics in computer vision that require attention, however

this specific task has proven to be particularly challenging to solve; with a large

enough labelled dataset, every problem can be relatively solved with a pure learning

strategy, however for Human Pose Estimation it is not possible to collect a corpus

large enough to satisfy such requirements. Instead, the solutions need to be carefully

designed to limit the problem and use the only available data to identify a solution.

There is a large abundance of applications that would benefit from such technology,

from AR/VR to Robotics. It is a crucial step in the new ”advanced automation”,

where systems need to be aware of people and know how to interact with them.

For example, research is being developed to use human pose estimation to help

elderly people being humanly unsupervised and autonomous in their homes, with a

non-invasive AI system to monitor them and assist them when needed.

Many other applications lie in Augmented/Virtual reality and gaming applications.
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For example, it plays a fundamental role in the new gaming concept of ”Meta-

verse”, a space where people virtually interact in a digital world that can be cus-

tomized as pleased by the players to fit their creativity. In this scenario, human pose

estimation is used for example to learn how people behave, look, move and interact

with each other and to drive the avatars of the players.

THESIS OVERVIEW

This thesis is about designing machine learning models for the task of 3D hu-

man pose estimation that are able to use all the available information contained

in the datasets. It is done to achieve better performance by exploiting the partially

available labels during the model training stage, capitalizing on the data depen-

dencies that would have not being otherwise exploited by previous state-of-the-art

approaches. The set of solutions would facilitate the usage of different datasets,

captured in different domains, to train models that as an effect would generalize

better due to the variability of the input training data, as demonstrated in this thesis.

The remain of this chapter introduces the main concepts related to human pose

estimation. Finally, I outline the thesis structure and I summarize the thesis contri-

butions.

1.1 2D HUMAN POSE ESTIMATION

For 2D Human Pose Estimation we are going to solve this problem using machine

learning. Here, the Convolutional Neural Network (CNN) model is predicting a

pose as a collection of 2D joint positions, also called 2D skeletal representation.

Given a dataset of n pairs {(I(i),P(i))}n
i=1, we want to identify the best model θ that

maps input images I(i) ∈ RS×S×3 to their corresponding 2D poses P(i) ∈ RJ×2 with

J ∈ Z being the number of joints contained in the skeleton definition (see Fig. 1.1).

Ground truth 2D joint positions P are usually annotated by users that manually
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Figure 1.1: Example of skeleton definition from OpenPose [1].

label each joint in a sequence, frame by frame, using systems specifically designed

to facilitate fast annotation. These annotations, although not perfect (as shown in

Fig. 1.2), are fast to create and do not require any specific equipment.

Generic images downloaded from the internet are perfect candidates to be anno-

tated. The ease of creating new data has enormous potential since it is possible,

by carefully selecting which images to chose, to have a diverse dataset that if used

during training allows a model to cope with a large variation of possible lighting

conditions, clothes, etc. as well as different pose complexity with several levels of

occlusions / self-occlusions.

The large number of available annotated datasets together with the large variability

of human activities and conditions they cover, has allowed the community to de-

velop accurate 2D joint estimation approaches. Current state-of-the-art approaches

rely on deep convolutional neural networks, described later in this chapter, which

have proven to be the best performing family of ML approaches.

However, the diversity of datasets has not been accompanied with a unified skeletal

representation (see [2]). In practice, different definitions for datasets have intro-

duced different definitions for skeleton which does not facilitate training of models

across datasets (see Fig. 1.5 for example of different skeleton definitions).
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Figure 1.2: Example of 2D joint annotations by humans (in red) compared against the re-
sulting labels produced by [3] post-processing approach (in green). It is clear
how annotations are not perfect, but due to the diversity a dataset and its size it
is still valuable information.

Figure 1.3: Fisher & Elshlager: Reference description of a face.

Not all approaches tackling 2D pose estimation however rely on ML solutions. For

example in “The representation and Matching of Pictorial Structures” [4], Fisher

and Elshlager defined a representation made of rigid pieces (components) held to-

gether by ”springs”, serving both as a constraint to the relative movement and a

measure of cost of the movement by how much they are stretched (see Figure 1.3).

Here, applying dynamic programming according to the algorithm described in the

paper, they were able to run some image-matching experiments using faces as

shown in Fig. 1.4.
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Figure 1.4: Fisher & Elshlager image matching experiment.

1.2 3D HUMAN POSE ESTIMATION

Similarly to the 2D pose estimation problem, we are going to focus exclusively on

machine learning approaches for 3D human pose estimation. In order to describe the

complications introduced by having 3D and for the sake of simplicity, we consider a

scenario in which the model only uses a single input image to predict the 3D poses,

represented as a set of 3D joint positions.

Given a dataset of n pairs {(I(i),P(i))}n
i=1, we want to identify the best model θ that

maps input images I(i) ∈ RS×S×3 to their corresponding 3D poses P(i) ∈ RJ×3 with

J ∈ Z being the number of joints contained in the skeleton definition (see Fig. 1.1).

The additional challenge arising with respect to the previous Img→ 2D scenario

is the concept of projections which in this case plays an important role: if we look

at Figure 1.6a an illustration of the pinhole camera model is shown — with the

image plane in front of the lens to simplify visualization — which can be used to

describe the information loss coming from projections when acquiring images. In

that diagram a 3D point P = (X ,Y,Z) is projected onto the image plane (screen),

producing coordinate (xs,ys)

ys =
Y
d
∗ f =−Y

Z
∗ f (1.1)

which can be described in matrix notation using homogeneous coordinates as
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(a) COCO dataset (b) Human3.6M dataset

(c) OpenCV model (d) OpenPose model

(e) PoseTrack dataset

Figure 1.5: Variability of skeleton definitions. This is an example of skeleton definitions
according to different algorithms or datasets. The definition changes both in
terms of number and joint positions.
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(a) Perspective Projection: estimating Sy point on the image plane from 3D position

(b) 3D from 2D keypoint: infinite number of possible solutions represented with red dots

Figure 1.6: Given a 2D point lying on the image plane, there is an infinite number of 3D
positions that would satisfy the projection.

According to Eq. 1.2, the inverse operation of estimating a 3D point given its 2D

corresponding coordinate results in an infinite number of possible solutions, as

shown in Figure 1.6b. Therefore It is not possible to extract 3D information from

input 2D data without defining additional constraints in the model.



3D Human Pose Estimation 33

(a) 3D Cube (b) 2D key-points on image

Figure 1.7: Human 3D labeling example.

As previously described, for machine learning based approaches, the data avail-

ability is a critical factor in determining a model that is able to learn the correct

information to reliably perform under a different set of conditions, with good gen-

eralization. Unfortunately, unlike the 2D version of human pose estimation where

image annotation is relatively easy, creating 3D pose labels results to be a very

challenging task.

The main complication lies on the inability of humans to reliably and accurately

estimate 3D locations. If we look at Fig. 1.7a, a person would be able to fairly

reliably estimate the 2D key-points corresponding to the vertices of the cube as

represented with blue spheres in Fig. 1.7b. However the person would perform

extremely poorly in estimating their 3D corresponding positions, even in the case

in which the cube dimensionality is known.

The process of 3D data annotation therefore requires a system capable of automat-

ically annotate the data: a motion capture-like configuration. A motion capture

studio is a specifically designed room containing a large number of cameras, from

which it is possible to compute the 3D skeleton of a person. This technology relies

on detecting small markers placed on the actor’s body, which can then be used to

geometrically compute their 3D position, knowing where the cameras were located.

A visual representation of this is shown in Figure 1.8.
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MoCap studios are currently used by industry, in cinematography as well as gaming,

to animate virtual characters, mimicking the actor’s performance. Although very

accurate, these systems are very expensive, requiring constant and precise camera

calibrations before each recording. Most notably, the biggest drawback of using

such systems is in the constraints defined by this technology itself: whoever is cap-

tured is required to wear a motion capture suit (MoCap suit) as the actor represented

in Fig. 1.8. As a result of this, the variability of the data captured in a MoCap stu-

dio is extremely limited due to the actor appearance as well as due to the static

background which remains constant throughout the entire data capture sessions.

These constraints are such that a machine learning model purely trained on these

data would not be able to generalize to “images in the wild” ( images captured

in the real-world — see Fig. 1.9b). Furthermore, even if dynamic backgrounds

and different cloth combinations were used as a workaround for this problem, the

markers (see Fig. 1.9) would still need to be visible in order for the system to work.

These markers would introduce additional information absent on test data for which,

again, the model would not be able to generalize well.

Due to these problems it is important to use diversified data captured under different

conditions, from different domains, such that machine learning models train on

those datasets are able to learn how to deal with a variety of different conditions

and have better generalization performance.

In the next section, an exploration of basic machine learning techniques directly in-

volved with the next chapters is introduced to better understand the concepts behind

our model designs.
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Figure 1.8: Motion capture studio showing various cameras capturing the actor while per-
forming. The actor needs to wear a mocap suit (black dress) with markers
(white dots) placed on it.

1.3 MACHINE LEARNING

The subject of ML is the study of mathematical models and algorithms that provide

from the input data (training data) it receives the ability to make inferences and

predictions without being explicitly programmed to do so. The widely accepted

definition of what constitutes ML, given by Mitchell [5], is as follows:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E. In general,

to have a well-defined learning problem, we must identify these three

features: the class of tasks, the measure of performance to be improved,

and the source of the experience.”

With the source of experience being the observable input data for the defined task.

Furthermore, input data may be provided with target output and based on the avail-

ability of output, ML model can be trained according to different levels of supervi-

sions.
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(a) Motion Capture image with actor wearing markers

(b) Realistic images we would need to train models

Figure 1.9: Top: image captured from a motion capture studio where markers can be seen
on the actor. Furthermore, the entire dataset is captured in the same static
environment. Bottom: real image we would ideally like to have with associated
3D skeleton information.
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1.3.1 LEVELS OF SUPERVISION

Based on the available output information provided during the training phase of the

model, different modalities of supervision emerge1: supervised, semi-supervised,

self-supervised and unsupervised. The level of supervision is referred to the avail-

ability of data used for training the model.

The dataset is divided into sets with different functionality: train-set) the part of

the dataset dedicated exclusively to train the model; validation-set) the part of the

dataset used to evaluate the model during the training phase; and test-set) the part

of the dataset dedicated exclusively to test the model; these data are unseen to the

model during training or evaluation.

SUPERVISED

Supervised learning in ML is the task of learning a function/model that maps an

input to an output, based on training {(I(i),y(i))}N
i=1 pairs.

Without constraining the description to any specific ML algorithm, if we consider

a model θ , given input data I, ideally we want the model to predict the known

expected output y. This could be described as

argmin
θ

(||y− f (I|θ)||) (1.3)

where we want to find a model for which the predicted output f (I|θ) = ŷ is as close

as possible to the expected one y. An example of supervised learning approach is

by Bogo et al. [6].

SEMI-SUPERVISED

Semi-supervised learning in ML is the task of learning a function/model that also

makes use of unlabeled data for training. Typically, a small amount of labeled data

1Reinforcement and active learning have been omitted since they are outside the scope of this
work
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with a large amount of unlabeled data.

As in supervised learning, we are given a set of N independently identical dis-

tributed examples {(I(i),y(i))}N
i=1 with I input and y corresponding labels. Addi-

tionally, we are given U unlabeled examples {I(i)}N+U
i=N+1 with input data only.

Semi-supervised learning attempts to make use of this combined information to

improve the performance of the model. An example of such approach is [7].

SELF-SUPERVISED

Self-supervised learning (inspired by Biology (see work by Gopnik et al. [8])) is a

more recent form of training that unlike previous levels of supervision it requires

less feedback to be given to the model and where the model is trained to predict any

part of its input from any observed part.

The justification for self-supervision is that it is expensive to label data for new

datasets and some areas are “supervision-starved” where annotations are hard to

obtain. It is based on the idea that large availability of unlabeled data that could be

exploited to generate better models.

Self-supervised learning is therefore a form of unsupervised learning where the data

provides the supervision: retain part of the data and train the model to predict that.

An example of such approach is [9].

UNSUPERVISED

Unsupervised learning is a type of self-organizing Hebbian learning in which it is

possible to extract unknown patterns in datasets without preexisting labels: only

input data is available and no corresponding target labels.

The goal for unsupervised learning is to model the underlying structure of distribu-

tion in the data in order to learn more about the data. K-Means [10] is an example

of this type of approaches.
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1.3.2 CLASSICAL ML

In classical ML, algorithms rely on hand-crafted feature-representations which are

then used to solve the task. Such features are the result of complex feature engineer-

ing, in which an exploratory analysis is performed on the data in order to understand

what are the important characteristics that need to be selected and passed on to the

machine learning algorithm. Due to this selection process, these algorithms result

to be easier to interpret and understand.

Hand-crafted features are the response to the well known problem of the curse of

dimensionality [11], where the learning complexity increases exponentially with

the dimensionality of data, resulting in the need to exponentially larger data col-

lections for a larger number of dimensions. Consequently, by selecting features in

a lower-dimensional space, fewer data samples are required to reach statistically

stable results. This feature selection process however also reduces the predictive

power of the system that compromises the algorithm’s performance for the task.

Several techniques have been developed to manually or automatically select those

features which contribute the most to the predicted variable or output. These set

of techniques are part of the feature selection or variable selection process. A fea-

ture selection algorithm can be seen as the combination of a search technique for

proposing new feature subsets, along with an evaluation measure which scores the

different feature subsets. The most trivial and intuitive selection process would be

an algorithm that tests each possible subset of features, finding the one which min-

imizes the error rate.

Ideally, we would prefer to design non-parametric learning algorithms which are

capable of automatically learning the best set of features, tailored for solving a spe-

cific task: learning a feature extractor able to transform raw data into an appropriate

representation.
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1.3.3 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are computing systems inspired by biological neural net-

works, a population of neurons interconnected by synapses that carry out a specific

function when activated.

The precursor of current Artificial Neural Networks is the perceptron algorithm,

introduced by Frank Rosenblatt [12], in which the idea was to use mathematical

models to mimic parts of neurons, such as dendrites, cell bodies and axons.

In the biological neuron, signals are received from dendrites and sent through the

axon once enough signal is received; this signal can then be used by another neu-

ron as input (see Figure 1.10). Some signals are more important than others and

connections can become stronger or weaker. This can be translated into a function

that receives as input a list of weighted input signals and outputs a signal if the sum

reaches a certain threshold. This simple model is powerful enough to solve simple

classification tasks, however a single layer of perceptrons alone is not able to solve

non-linear classification problems.

Figure 1.10: Mimicking biological neuron with an artificial one.
Image from https://towardsdatascience.com

https://towardsdatascience.com
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This problem can be overcome by using multiple-layers of neurons, which has lead

to the development of Artificial Neural Networks as we use them nowadays.

Mathematically, the perceptron can be described as a function that given some input

~x = x1,x2, . . . ,xn produces an output variable o

o = f (w1 ∗ x1 +w2 ∗ x2 + . . .+wn ∗ xn) (1.4)

with wi the weights that have been learned by the network using an activation function f ,

defined as follows

f (x) =

1 if w1 ∗ x1 +w2 ∗ x2 + . . .+wn ∗ xn > b

0 otherwise
(1.5)

where the linear combination of the input values or features is compared to a thresh-

old value b called bias.

The problem with the Rosenblatt perceptron is in its expressive power: it only works

with linearly separable data. To better visualize this, if we consider Equation 1.5

for a classification problem, all the elements with ~w ·~x > b (vector representation)

would belong to class A, whereas if element has ~w ·~x 6 b it would belong to class

B, as shown in the example in Figure 1.11b.

In this particular case it is possible to divide the space according to the hyperplane

shown in Figure 1.11a. If the data we want to classify is not linearly separable,

this approach is not usable to identify the best solution, and a more powerful model

needs to be used: multi-layer neural networks.

Artificial Neural Networks, unlike classical machine learning approaches, learn the

best set of features to be selected for a specific task to minimize the reconstruction

error where, unlike the Rosenblatt perceptron, non-linearity can be used to solve the

problem previously described.
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FEEDFORWARD NEURAL NETWORKS

Feed-forward neural networks, also called multi-layer perceptrons, form the basis

of many recently developed and more complex architectures. It is called “feed-

forward” since the information always moves in one direction (from input layer to

output layer) and never backwards, and each neuron in a layer has direct connection

to the neurons of the subsequent layer, as shown in Figure 1.12.

In a feedforward neural network, Equation 1.4 is iteratively used to compute each

neuron in the subsequent layer. Particularly, the output/activation a of a neuron is

computed as

a(l)j = f

(
∑

i
w(i, j) ·a(l−1)

i

)
= f

(
Wl ·al−1

)
(1.6)

where W is the matrix containing the weights describing the connections between

neurons. Note how in this formulation the bias b has been embedded in the matrix

formulation (a value corresponding to each bias is 1). This operation is performed

on all layers of the network, where the final output becomes

y = f
(
WL ·aL−1) (1.7)

(a) Hyperplane defined by ~w and b (b) Class assignment

Figure 1.11: Feature hyperplane
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with output y defined as y = [y1,y2]
T .

During the learning stage of the network, the goal is to identify the model (set

of weights connecting the neurons) such that the network is able to reproduce the

desired output when the corresponding input information is provided. This can be

mathematically described as minimizing a loss function

L(W ) =
1
2
||y− ŷ||2 (1.8)

where y is the expected output and ŷ is the output predicted by the model: network

with the current weights W. To produce more accurate results, the weights need to

be properly adjusted.

The non-linearity of a neural network causes most interesting loss functions to be-

come non-convex, which means that neural networks are usually trained by using

iterative, gradient-based optimizers that merely drive the cost function to a very low

value, rather than the linear equation solvers used to train linear regression models.

Figure 1.12: Feed forward neural network architecture
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Figure 1.13: Activation functions

The learning process can be summarized by a sequence of steps 2

1. forward pass: given input data x, the network predicts output ŷ which pro-

duces error 1
2 ||y− ŷ||2

2. backward pass3: gradient computation to identify the “contribution“ of each

weight to the output error

∂L
∂W l

3. updating the model: update the weights according to the gradient

w(l,t+1) = w(l,t)− learning rate∗ ∂L
∂W (l,t)

with t indicating the iteration step.

2In the simplest case of full-supervision: each input x is provided with corresponding label y
3more efficient mathematical formulations can be used to compute the gradients; such techniques

will not be described as they are outside the scope of the thesis
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Figure 1.14: Convolution operation in 2D. Input image is convolved with the weights ma-
trix resulting in the convolved feature matrix.

Activation function: the activation function described previously in Equation 1.5

when introducing the perceptron can be non-linear. Several functions have been

used based on the task, as summarized in Figure 1.13.

CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks are a class of deep neural networks most commonly

applied to analyzing visual imagery. They are also known as shift invariant or space

invariant artificial neural networks (SIANN), based on their shared-weights archi-

tecture and translation invariance characteristics.

Convolutional Neural Networks is a specialization of feedforward nets where the

hidden layers typically consist of a series of convolutional layers. This is the key-
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Figure 1.15: Receptive field across 3 different layers using 3×3 filters.

concept from which the name of the networks is derived from.

The convolution between two 1D continuous functions f and g is defined as

( f ∗g),
∫

∞

−∞

f (τ)g(t− τ)δτ (1.9)

which, for a discrete case becomes

( f ∗g)[n] =
M

∑
m=−M

f [n−m]g[m] (1.10)

A visual representation of a discrete 2D convolution is shown in Figure 1.14, with

the Weights matrix representing the set of weights that need to be learned by the

network to maximise the output accuracy.

This new type of architecture exploits the deepness of the network to learn complex

features able to generalize on different tasks. Furthermore, Convolutional Neural

Networks introduce the concept of receptive field, which was firstly introduced by

Alonso et al. [13] in biology as

“The receptive field is a portion of sensory space that can elicit neuronal

responses when stimulated”

The receptive field in CNNs refers to the region of the input space that affects a

particular unit of the network. Note that this input region can be not only the input
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Figure 1.16: Convolution operation shown for two architectures. On the left, feature map
visualization as previously represented; on the right, fixed size CNN feature
map visualization and feature is located at the center of the receptive field.
In both architectures the blue area represents the input image on which the
convolution is performed on. If the first pixel of the image considered as the
center of the convolution, it is possible to see the “visibility” of the operation
over the information in the input as we move in the following conv layers,
namely green and then orange. The deeper the CNN architecture, the more
visibility we have over the input image when considering an output pixel of
the convolution.

to the network but also outputs from other units in the network. Therefore the

receptive field can be calculated relative to the input that is considered, and also

relative the unit that is taken into consideration as the “receiver”of the input region

(see Figure 1.15).

The receptive field of a feature can be described as its center location and size.

Nonetheless, pixels in the receptive field are not equally important to the CNN’s

feature as, within a receptive field, the closer a pixel is to the center the more it

contributes to the computation of the output feature. This means that a feature does

not only look at a particular region of the input, but it also focuses exponentially

more on the center of that region, as illustrated in 4 Figure 1.16.

4Source image taken from [14]
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1.4 THESIS STRUCTURE AND CONTRIBUTIONS

Based on Sections 1.1 and 1.2, it is clear that any pose estimation approach depends

on the availability of training data due to the nature of the regressors that have

been used: deep learning approaches. DL models have proven to perform better

than standard non-DL algorithms (e.g. [4] vs. [15]), however the amount of data

needed by them makes the problem even harder to solve due to the difficulties in

data annotation and quality level previously described.

We argue that we must develop models that can manipulate data in a “smarter” and

more efficient way, by not limiting ourselves to fully labelled datasets designed for

the task (3D Human Pose Estimation), but rather to exploit relevant features that

can be found in adjacent tasks we could benefit from to train better performing

models and remove some working constraints currently being used (E.g. accurate

3D human pose labels in images in the wild).

1.4.1 CHAPTERS

In Chapter 3 a novel semi-supervised convolutional neural network hybrid-

architecture is presented, shown in Figure 1.17). With this CNN design we address

the fact that some frames carry both 2D and 3D information, whereas some others

only presents 2D labels. E.g. if a frame is not fully labelled, it is still valuable to use

the provided information as a support for the model to improve the performance.

The architecture is classified as “hybrid” and it is composed by two dependent

modules which share information but that are responsible to tackle sub-tasks of

the overall problem. The module in Fig 1.17a) generates an initial estimation for

2D joint locations from the input image, expressed as a set of heatmaps — prob-

ability distribution of the joint location in the image — which can be quickly and

easily translated into (u,v) pixel coordinates. The module in Fig 1.17b) takes the

estimations generated by the previous module and relies on 3D information that has

been mapped into a specifically constrained latent space to refine the estimation by



Thesis structure and contributions 49

(a) Initial estimation

(b) Refinement using 3D

Figure 1.17: Deep neural network architecture for monocular 3D human pose estimation.
It includes novel layers and it exploits 3D projection to train with limited
3D annotations by including 3D information in 2D predictions to refine the
estimations.

injecting 3D constraints into 2D data, using a fusion layer.

The model is trained such that the data dynamically flows throughout the architec-

ture, making the modules dependent.

This architecture has been defined as “hybrid” since it can be described as a solution

in between two standard architecture designs:

a) Pipeline architectures: models made of a sequence of modules in which the

output of one becomes the input to the consecutive one. This allows to have an in-

termediate representation of the data that can be controlled, visible as output of each

module, that makes the model more flexible to train. Controlling the information

propagated in the network however penalizes the performance, since the module’s

output futures are manually defined. E.g. To predict 3D poses from an input im-

age, the first module predicts 2D joint locations from the RGB input data, followed

by the second module which predicts 3D joint positions starting from the 2D joint

information only; the 2D to 3D module has no awareness of the RGB information

that could potentially help generating better results.
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b) End-to-end architectures: models are trained to regress the final output infor-

mation from the input data without any intermediate handcrafted feature representa-

tion, but instead automatically learn the piece of information and its representation

needed at each level of the architecture, to produce the best results. Approaches

based on this method are less flexible to train on partially labeled datasets, since the

network’s internal representation is not legible.

The hybrid architecture introduced in this chapter is a hybrid between the two pre-

viously described designs: it has the flexibility of pipeline approaches — training

the modules with the not fully labelled data — with the advantage of end-to-end

approaches for which the modules are now dependent, exchanging information: the

data flows throughout the entire network and the model has more flexibility in learn-

ing features that could be helpful in the consecutive modules. We prove how this

novel method allows to use 3D information to improve 2D estimations, as well as

achieving state-of-the-art results in 3D pose detection.

In Chapter 4 a more complex configuration is studied: a multi-view camera set-

up where multiple images covering the recording area are jointly used generate

more accurate predictions. The architecture presented in this work exploits some of

the properties illustrated in the monocular counterpart, achieving similar flexibility.

Specifically, the benefit of the newly-introduced “hybrid-architecture” — proven to

perform well on monocular images — is extended to work in a different configu-

ration. In this unique composition, the network can now exploit some geometrical

constraints, due to the multi-view information, which consequently leads to better

results. This novel architecture is presented in Fig. 1.18. Furthermore, this partic-

ular network design is flexible enough to allow us to further push the limit of data

availability by permitting us to refine the model in an unsupervised manner.

It is shown how this novel multi-view architecture achieves state-of-the-art results

on 3D human pose estimation on the most popular datasets. Moreover, we provide
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Figure 1.18: Deep neural network hybrid-architecture for 3D human pose estimation from
multiple input images. It contains two modules: a) The initial estimator, pro-
ducing 2D joint locations, and b) the refinement module which injects multi-
view 3D pose constraints into 2D poses, by exploiting a pose latent space
separately learned. Information is shared among the modules to guarantee
better performance.

additional experimentation to show how such architecture can be used in a different

configuration: as adata annotator. Given input images without associated labels,

generate annotations using a learned model by producing qualitatively good labels

that improve results of the methods trained with these new data.

Finally, Chapter 5 introduces a solution to a recent problem that has emerged within

AR/VR research fields: 3D pose estimation from an egocentric perspective (see

Figure 1.19).

Egocentric is used in this context to describe the camera perspective used for the

images: the user is “wearing the camera” — either on an helmet or on the chest

— which is then used to extract the required information. This is a relatively new

problem that arose after the hardware miniaturization for which cameras could be

mounted on VR/AR headsets or helmets in general. This new possibility offers
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Figure 1.19: Egocentric 3D Human Pose Estimation where given as input image b), repre-
senting pose a), we want to identify the skeleton representation shown in c)
which can be used for example to drive a virtual avatar as in d).

freedom of movements to the user wearing the headsets without constraining them

to a physical environment.

Due to nature of these unique camera perspectives (see Fig. 1.20), traditional front-

facing camera datasets are not representative enough of real working camera per-

spectives to guarantee good reconstruction performance and generalization. This

led to the generation of a new, highly photo-realistic synthetic dataset, publicly dis-

tributed to the community, that has proven to be effective for training models that

can then transition to real world applications. It is orders of magnitude larger than

the only other available dataset with dramatically higher photo-realism.

Figure 1.20: Egocentric Camera Perspective captured from a Headset Mounted Device
(HMD) camera. Notice the level of occlusion of the lower body, character-
istic of this task.
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Figure 1.21: Architecture for 3D human pose estimation from an egocentric camera per-
spective. It relies on a multi-branch auto-encoder module which is able to
compress the 3D poses with their associated prediction uncertainty in a latent
space with good level of smoothness.

This dataset has been produced with tools and technologies used by VFX studios

to produce the highest possible image quality and it has the equivalent size of two

Pixar animated movies.

The peculiar camera perspective also proves to be challenging due to the large

amount of self-occlusion — area of the body not visible due to been occluded by

other areas — for which traditional CNN architectures for 3D human pose estima-

tion would be ineffective. A novel architecture has been design (see Figure 1.21) to

cope with such hard working conditions, generating poses with comparable recon-

struction errors to those produced by typical front facing camera models.

This novel architecture makes use of an auto-encode architecture in a unique man-

ner: using a multi-branch version. Having multiple branches allows us to make sure

the latent space is including all the relevant information we want to be able to re-

construct, as well as the ability to rely on joint prediction uncertainties to learn how
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the ambiguity of the joint locations can be properly minimized when accounting for

3D physically plausible poses.

We demonstrate how embedding joint uncertainty as well as locations is the key to

this novel solution to work on such challenging conditions.
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• Denis Tome, Chris Russell and Lourdes Agapito.
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• Denis Tome, Matteo Toso, Lourdes Agapito and Chris Russell.

Rethinking pose in 3d: Multi-stage refinement and recovery for markerless motion

capture. [7] International Conference on 3D Vision (3DV), 2018.

• Denis Tome, Patrick Peluse, Lourdes Agapito and Hernan Badino.

xR-EgoPose: Egocentric 3D Human Pose from an HMD Camera. [17]

Proceedings of the IEEE International Conference on Computer Vision (ICCV),

2019.

• Denis Tome, Thiemo Alldieck, Patrick Peluse, Gerard Pons-Moll, Lourdes Agapito,

Hernan Badino and Fernando de la Torre.

SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera. [18]

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2020



CHAPTER 2

RELATED WORK

3D Human pose estimation is quite a large area of computer vision that has been

tackled for many years and it involves different specializations where the solution

is found by using different levels of information.

Figure 2.1: Pupet with representation defined in G.E. Hinton [19] with some extra rectan-
gles. The idea solution only preserves the correct rectangles.

Since the first paper by G.E. Hinton [19] introduced almost 43 years ago (Fig. 2.1),

many new approaches have been published, trying to find the right solution to deal

with such a hard task. From generative methods, where the goal is to find a pose

that matches the image data (edges, regions, color, textures, etc.), to approaches
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Figure 2.2: Tracking sequence results from Gavrila et al. [21] from four cameras (front,
right, back and left) of a person.

that try to model poses using non-rigid structure from motion [20], or exploiting

multi-camera setups systems, like the one proposed by Gavrila et al. [21] (Fig. 2.2).

After not seeing any substantial improvement, new methods tried to improve the

results by adding prior information, such as, Sidenbbladh & Black [22] (Fig. 2.3),

Urtasun et al. [23] and even by using early deep neural networks [24].

Figure 2.3: Tracking of a person walking, using Sidenbbladh & Black [22] showing results
for frame 0, 10, 20, 30 , 40 and 50 with the projection of model configuration
overlaid.
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As in many other research fields, the introduction of deep learning led to a new era

of research, where suddenly new promising results were achieved. From these nicer

results, the interest of the community in this task has been constantly increasing

which has led in the very last few years to new techniques producing astonishing

results.

Some of these approaches rely on 2D pose estimations to later identify their pro-

jected 3D correspondences. The 2D visual recognition task of localizing body joints

in the image is made difficult by multiple possible confusing factors including oc-

clusion, variability in the color, shape and texture of clothing and the lighting con-

ditions, while the task of lifting the 2D joint positions into 3D is even more chal-

lenging and intrinsically limited by the existence of perspective ambiguities. Due

to this separation between 2D and 3D estimation, some important visual clues are

lost and cannot contribute to the estimation of the 3D pose; however the interme-

diate representation, joint pixel position, is something that can be easily annotated

by people, providing easy solutions for data augmentation to generate more robust

feature detectors.

Other approaches directly use images to regress the 3D joint locations. In this ar-

chitecture design, the model learns which are the most relevant features to exploit

for better reconstruction performance. However, due to the nature of the informa-

tion, no human-annotators can be used to label data and the set of images captured

in specifically designed studios results in models performing poorly in real-world

images.

In the next section it becomes evident how little emphasis has been given to the

design of accurate models when the data availability is limited. Specifically, on

how to deal with different data sources that when combined can be the solution to

our data issues. Addressing this problem is however non trivial, mainly due to the

different data representations used by the many available sources, as well as the

challenges in designing a model that can be flexible enough in using at best the
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information to achieve better results.

In this thesis we tackle the problem of how to deal with such small data availability

to have models with good performance that is flexible enough towards training on

multiple data sources.

This chapter is structured as follows: firstly I introduce the related work trying

to solve 3D human pose estimation when using one or multiple cameras that are

externally placed in the environment and face the person to be reconstructed (front-

facing camera approaches). Secondly, I introduce a more recent set of methods

describing a problem that has emerged with the advent of virtual and augmented

reality where, due to agility and convenience reasons, cameras are placed on the

person. This will introduce a new set of challenges for which the early approaches

would not work.

2.1 MONOCULAR CONFIGURATION

Different approaches have been developed when a single RGB camera, pointing at

the actor, is used to infer joint positions.

2.1.1 2D POSE FROM IMAGES

Pictorial structures: one of the classical approaches for articulated pose estima-

tion, used by many methods [25, 26, 27, 28, 29, 30, 31, 32]. The idea is to infer

body parts from local observations as well as to identify the correlation between the

different parts. In order to express this, a tree-structured graphical model is used.

Such methods proved to work well when all the limbs of the person are visible in

the image. However, an effect that manifests itself with such approaches is also the

double-counting of image evidence that occur due to correlations between variables

that have not been captured by the tree-structured model. For example, if some parts

have similar appearance, e.g. left and right arms or legs, the optimal score some-

times has them placed at the same position. This problem is especially prevalent in
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2D where there is an inherent ambiguity, since two parts may project to the same

image area even if they do not occupy the same volume in 3D.

Non-tree models: an extension of the previous approach used by [33, 34, 35, 36,

37], where the tree structure is augmented with additional edges to capture occlu-

sions, symmetry and long-range relationships.

Hierarchical models: extension of pictorial structures model [38, 39] that repre-

sents the relationship between the different body parts at several sizes and scales,

using a hierarchical tree structure. The idea behind this is that larger parts (e.g.

limbs) usually have an image structure which is easier to detect then the single

joints. Therefore, having this information would help in identifying smaller and

harder to detect parts.

Deep convolutional architectures: with the introduction of DeepPose by Toshev et

al. [40] research started to shift from the classical approaches to deep networks. In

this case given an input image the [x,y] coordinates of the joints are regressed using

a standard convolutional architecture. A different approach, proposed by Tomp-

son et al. [41] instead generates a heat-map for each of the joints by running the

image through multiple resolution banks in parallel to simultaneously capture fu-

tures at different scales. It jointly uses ConvNet and a graphical model, which

learns typical spatial relationships between joints. Other approaches are iterative or

multi-stage training methods. Carreira et al. [42] uses the concept of Iterative Error

Feedback, in which each run through the network takes as input both the image

and the predictions from the previous run and further refines them. In similar spirit

the work proposed by Wei et al. [15], Convolutional Pose Machines (CPM), builds

on previous work of multi-stage pose machines [43], using ConvNets for feature

extraction. Similarly to Carreira, each stage takes as input both the image and the

heat-maps predicted at the previous stage, and performs a refinement operation in

the predictions. Finally, Cao et al. [44] introduced a novel approach to efficiently
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detect 2D poses of multiple people, simultaneously, in an image. This is possible

due to the generation of additional information, part affinity fields, to learn how to

associate body parts with individuals in the image.

2.1.2 3D POSE FROM KNOWN 2D JOINT POSITIONS

A large body of work has focused on recovering the 3D pose of people given perfect

2D joint positions as input. Early approaches [45, 46, 47, 48] took advantage of

anatomical knowledge of the human skeleton or joint angle limits to recover pose

from a single image. More recent methods [49, 50, 51] have focused on learning a

prior statistical model of the human body directly from 3D mocap data.

Non-rigid structure from motion approaches (NRSfM) also recover 3D articulated

motion [52, 53, 54, 55] given known 2D correspondences for the joints in every

frame of a monocular video. Their huge advantage, as unsupervised methods, is

they do not need 3D training data, instead of learning a linear basis for the 3D

poses purely from 2D data. On other hand, their main drawback is their need for

significant camera movement throughout the sequence to guarantee accurate 3D

reconstruction. Recent work on NRSfM applied to human pose estimation has fo-

cused on escaping these limitations by the use of a linear model to represent shape

variations of the human body. For instance, Cho et al. [56] defined a generative

model based on the assumption that complex shape variations can be decomposed

into a mixture of primitive shape variations and achieve competitive results on the

CMU dataset. Since NRSfM methods use video data as input, temporal smoothness

constraints can be used to improve performance.

Representing human 3D pose as a linear combination of a sparse set of 3D bases,

pre-trained using 3D mocap data, has also proved a popular approach for articu-

lated human motion [50, 57, 58]. While Zhou et al. [58] use a convex relaxation

of the orthogonality constraint to convert the entire problem into a spectral-norm

regularized least square problem, which is a convex program, [50] and [57] enforce
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limb length constraints. Although these approaches can reconstruct 3D pose from

a single image, their best results come from imposing temporal smoothness on the

reconstructions of a video sequence.

There has been a lot of interest in the use of deep convolutional architectures for

the task of articulated pose estimation, and recently Zhao et al. [59] has achieved

state-of-the-art results by training a simple neural network to recover 3D pose from

known 2D joint positions, where a new layer to solve the problem of occluded

joints is introduced. While the results on perfect 2D input data are impressive, the

inaccuracies in 2D joint estimation are not modeled and the performance of this

approach combined with joint detectors is unknown.

2.1.3 3D POSE FROM IMAGES

Most approaches to 3D pose inference directly from images fall into one of two

categories: (i) models that learn to regress the 3D pose directly from image features,

and (ii) pipeline approaches where the 2D pose is first estimated, typically using

discriminatively trained part models or joint predictors, and then lifted into 3D.

While regression based methods suffer from the need to annotate all images with

ground truth 3D poses — a technically complex and elaborate process — for

pipeline approaches the challenge is how to account for uncertainty in the measure-

ments. Crucial to both types of approaches is the question of how to incorporate the

3D dependencies between the different body joints or to leverage other useful 3D

geometric information in the inference process.

Many earlier works on human pose estimation from a single image relied on dis-

criminatively trained models to learn a direct mapping from image features such as

silhouettes, HOG or SIFT, to 3D human poses without passing through 2D land-

mark estimation [60, 61, 62, 63, 64]. A variety of learning frameworks such as

random forests, regression, nearest neighbors, exemplars or SVMs have been used

for this purpose.
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Many recent direct approaches treat 3D pose estimation from a single input image as

a fully supervised learning problem [65, 66, 41, 40]. Regression-based approaches

make use of deep architectures to directly regress the 3D coordinates of human

joints from the image [40, 65, 66, 67]. Much of the novelty of these approaches has

involved combining end-to-end learning with expressive 3D priors to constrain the

final 3D pose. Li and Chan [65] proposed strategies to jointly train for pose regres-

sion and body part detection. While [66] incorporate model joint dependencies in

the CNN via a max-margin formalism, others [67] impose kinematic constraints by

embedding a differentiable kinematic model into the deep learning architecture.

Tekin et al. [68] propose a deep regression architecture for structured prediction

that combines traditional CNNs for supervised learning with an auto-encoder to

learn a high-dimensional latent pose representation and which accounts for joint

dependencies. Zhou et al. [67] enforce bone lengths in predictions. Tekin et al. also

leverage 2D image data [69] by adding a second network stream whose outputs are

fused with the 3D regressor.

Following the trend in 2D human pose estimation to predict heatmaps rather than

regressing 2D landmarks, Pavlakos [70] predicted per-voxel likelihoods, or 3D

heatmaps, for each joint using a coarse-to-fine approach.

Rogez et al. [71] proposed an end-to-end architecture that combines a region pro-

posal network for human localization with classification and regression branches

for joint estimation of 2D and 3D human pose. Sun et al. [72] adopted a bone

based representation for the pose and propose a unified setting for 2D and 3D pose

estimation that encoded long range interactions between bones. Both approaches

achieve best results when a 2D loss is combined with the standard 3D loss. Zhou et

al. [73] shared common representations between the 2D and the 3D tasks inside the

network which is trained end-to-end with both 2D and 3D losses.

These methods share the disadvantage of generalizing poorly to images in the wild:
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the need for ground truth 3D poses to train the image to 3D pose regressor means

that they must be trained exclusively on images captured in MoCap studios, with all

the limitations that come with it.

As CNNs have become more prevalent, 2D joint estimation [15, 74, 75] has become

increasingly reliable and many recent works have looked to exploit this using a

pipeline approach. Papers such as [76, 77, 41, 78] first estimate 2D landmarks

and later 3D spatial relationships are imposed between them. The task becomes

lifting the 2D coordinates into 3D either by model fitting [50, 51, 79, 80, 6, 81] or

regression [82, 83, 84].

Simo-Serra et al. [85] was one of the first to propose an approach that naturally

copes with the noisy detections inherent to off-the-shelf body part detectors by mod-

eling their uncertainty and propagating it through 3D shape space while guarantee-

ing that geometric and kinematic 3D constraints were satisfied. The work proposed

by Sanzari et al. [81] estimates the location of 2D joints using a state-of-the-art

approach before predicting 3D pose using appearance and the probable 3D pose of

discovered parts using a hierarchical Bayesian non-parametric model.

Zhou et al. [86] tackles the problem of 3D pose estimation for a monocular image

sequence integrating 2D, 3D and temporal information to account for uncertainties

in the model and the measurements. The uncertainty in the 2D joint estimates,

predicted by a regression-based CNN, is marginalized out by an EM algorithm that

lifts 2D poses into 3D while imposing 3D spatial relationships between joints via

a pre-learnt sparsity-driven 3D geometric prior and temporal smoothness. Similar

to our proposed approach, Zhou et al.’s method [86] does not need synchronized

2D-3D training data, i.e. it only needs 2D pose annotations to train the CNN joint

regressor and a separate 3D mocap dataset to learn the 3D sparse basis; it however

relies on temporal smoothness for its best performance, and poorly estimated human

pose from a single image.
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Moreno-Noguer [83] estimated 3D pose from 2D inputs using 2D-to-3D distance

matrix regression. Chen and Ramanan [87] estimated the depth of 2D landmarks

by matching them to a library of 3D poses. Bogo et al. [6] fitted a dense statistical

shape and pose model, trained on thousands of 3D scans [88], to 2D joints obtained

with DeepCut [75]. Martinez et al. [82] shows how even a simple regressor — a

feed-forward network with residual connections and batch normalization — vastly

outperforms previous approaches when given ground truth 2D landmarks as input,

suggesting that the largest source of errors in 3D pose reconstruction is incorrect

2D estimation.

Sarandi et al. [89] generates volumetric heatmaps per body joint, which are con-

verted to coordinates using soft-argmax and are used together with absolute person-

center depth to produce the final 3d coordinates. Luvizon et al. [90] proposes a

multitask framework for jointly 2D and 3D pose estimation from still images and

human action recognition from video sequences, by showing that a single architec-

ture can be used to solve the two problems in an efficient way and still achieves

state-of-the-art results. Kanazawa et al. [91] achieve good reconstruction results by

producing a richer and more useful mesh representation that is parameterized by

shape and 3D joint angles.

Recently, Pavlakos et al. [92] proposed a solution to alleviate the need for accurate

3D ground truth by proposing to use a weaker supervision signal provided by the

ordinal depths of human joints. This information can be acquired by human an-

notators for a wide range of images and poses. Furthermore these annotations can

be easily incorporated in the training procedure of typical ConvNets for 3D human

pose with results improvements on the model performance.

Training with 2D-only loss: A few approaches bypass the need to annotate images

with 3D ground truth labels by keeping an internal 3D representation of the pose

but training based on 2D re-projection losses. These approaches benefit from both
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their ability to generalize to in-the-wild images as they do not rely on 3D annotated

images that can only be captured in studios; and the added structural 3D pose priors

afforded by internal 3D representation. Tome et al. [16] proposed a multi-stage ar-

chitecture that reasons jointly about 2D and 3D pose to improve both tasks. Key to

their architecture is a 3D lifting module that reconstructs 2D estimated landmarks

in 3D and projects them back into 2D, as their end-to-end training minimizes de-

viations of the re-projected 3D landmarks from the ground truth 2D labels. Wu et

al.’s single image 3D interpreter network [93] also uses a loss based on the 2D

re-projection error of predicted 3D landmarks, along with a supervised 2D land-

marks to 3D pose regressor. Tung et al. [94] combine a similar 2D re-projection

loss with an adversarial loss and later [95] propose to combine strong supervision

from synthetic data with a self-supervised loss based on consistency checks against

2D estimates of keypoints, segmentation and optical flow.

Yang et al. [96] proposes an adversarial learning framework, which distills the 3D

human pose structures learned from the fully annotated dataset to in-the-wild im-

ages with only 2D pose annotations. Nibali et al. [97] proposes a 3D coordinate

prediction with flexible statistical modelling capabilities without being memory-

intensive, that is differentiable and that spatially generalise well by predicting 2D

marginal heatmaps under an augmented soft-argmax scheme.

Multi-person 3D pose estimation: fewer works tackle the problem of multi-person

3D human pose estimation from monocular images. Some of these perform on a

top-down manner by firstly identifying bounding boxes likely to contain a person

and then proceed with single-person 3d human pose estimation. Among such ap-

proaches, Rogez et al. [98] classifies the bounding boxes into a set of K-poses.

These are then evaluated by a classifier and later refined. This approach produces

multiple proposals per subject that need to be accumulated and fused. Zanfir et

al. [99] combine constraints such as mutual volume exclusion, joint inference and

ground plane estimation with a single person model. Moon et al. [100] predict
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absolute 3D human root localization and a root-relative 3D single-person for each

person independently. All these approaches however rely on the accuracy of the

people detector and do not scale well when dealing with scenes containing large

number of people.

A different type of approaches are instead those that predict multi-person joint lo-

cations in a single pass, from which the 3D pose can be inferred even when con-

sidering scenarios with strong occlusions. Mehta et al. [101] predict 2D and 3D

poses for all the subjects in a single forward pass regardless of the number of peo-

ple in the scene. This approach is robust to occlusions however it heavily relies on

2D estimations, limiting the accuracy to that of the 2D module. Zanfir et al. [102]

utilize a multitask DNN where the person grouping problem is arranged as an inte-

ger program based on learned body part scores parameterized by both 2D and 3D

information.

2.2 MULTI-VIEW CONFIGURATION

An example of a more complex system than a monocular configuration, is one re-

lying on multiple input images (with certain viewing angles and overlapping) used

for estimating the 3D skeletal representation.

The computation of 3D points in a space by using n-views together with the camera

intrinsic and extrinsic is one of the most studied problems in computer vision. These

set of publications fall outside the scope of the work presented in thesis as they

tackle a subset of different problems, most of which are not of interest for 3D human

pose estimation. I will therefore not address this body of work in the related work

section. For an overview of such approaches please refer to [103].

Better accuracy can be achieved due to geometrical constraints that can be exploited

in the model as well as consistency of information across the multiple views. Initial

non-deep learning approaches [104, 105, 106, 107] addressed the problem by opti-

mizing simple parametric models of the human body to match hand-crafted image
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features in each view.

As with other research fields, the wide usage of deep learning produced a drastic

accuracy improvement in the results. Elhayek et al. [108] approach this problem by

fusing 2D body part detections, from a ConvNet-based 2D pose estimation, with a

generative model-based multi-view tracking algorithm to reconstruct human pose in

indoor and outdoor datasets. Tremble [109] made use of a CNN trained on proba-

bilistic visual hull data obtained from multi-viewpoint videos, and an LSTM frame-

work to exploit the temporal continuity of reconstructions. Pavlakos et al. [110]

introduces a geometry-driven multi-view approach that automatically annotated im-

ages with 3D poses starting from generic 2D detections [74]. Their harvested 3D

poses are used to demonstrate their effectiveness in two applications: 2D pose pe-

nalization and training a ConvNet from scratch for single view 3D human pose

prediction. Iskakov et al. [111] used a different strategy by projecting heatmaps to

a 3D volume using a differentiable model and in a sequential step regresses the esti-

mated root-centered 3D pose through a learnable 3D convolutional neural network.

This allows for an end-to-end model training.

Unlike the previously described approaches, Ladkhodamohammadi et al. [112] pro-

pose a lightweight solution that concatenate 2D detections and pre-process this in a

fully connected network to predict global 3d joint positions. Qiu et al. [113] instead

incorporate multi-view priors in the model. The process is divided in two steps

where the first is responsible of estimating 2D joint predictions using multi-view

images, whereas the second recovers the 3D pose by using the 2D multi-view pre-

dictions of the previous step. Similarly, Remelli et al. [114] present a lightweight

solution by exploiting 3D geometry to fuse input images into a unified latent repre-

sentation of pose, which is disentangled from camera view-points. This allows them

to reason effectively about 3D pose across different views without using computer

intensive volumetric grids.



External Camera Viewpoint 68

In this thesis, unlike approaches such as [108, 110, 109, 113], we do not perform

pose estimation1 for each view before fusing them in a final stage. Instead, we

generalize multi-stage approaches [15, 16] to multiple views, and iteratively seek

an estimate consistent over all views.

2.3 EXTERNAL CAMERA VIEWPOINT

The related work that has been previously described in this section for both monoc-

ular and multi-view configurations share one property: the camera set-up is such

that the camera/s is/are externally placed in the environment, pointing at the actor

or actors that need to be 3D pose reconstructed. We are going to refer to this config-

uration as outside-in camera set-up. Such configuration has been the only possible

way of tackling the problem of 3D human pose estimation for a long time. However,

the advancement of hardware miniaturization it is not possible to use body-cameras

as a mean for body pose reconstruction. This new research task is what is called

Egocentric 3D Human Pose Estimation.

In this section I am going to introduce a new class of approaches, egocentric 3d

pose estimators — also called first person 3d pose estimators — where a wearable

system such as a head-mounted camera is used to collect the information used to

infer the pose of the person.

2.3.1 FIRST PERSON CAMERA VIEWPOINT

While capturing users from an egocentric camera perspective for activity recogni-

tion has received significant attention in recent years [115, 116, 117], most methods

detect, at most, only upper body motion (hands, arms or torso). Capturing full 3D

body motion from head-mounted cameras is considerably more challenging due

to the unique perspective effects of an egocentric viewpoint and to the severe self-

occlusions. Some head-mounted capture systems are based on RGB-D input and re-

construct mostly hand, arm and torso motions [118, 119]. Jiang and Grauman [120]
1Silhouettes in the case of [109].



External Camera Viewpoint 69

reconstruct full body pose from footage taken from a camera worn on the chest by

estimating ego motion from the observed scene, but their estimates lack accuracy

and have high uncertainty.

A step towards dealing with large parts of the body not being observable was pro-

posed in [121] though for external camera viewpoints. Rhodin et al. [122] pioneered

the first approach towards full-body capture from a helmet-mounted stereo fish-eye

camera pair. The cameras were placed around 25 cm away from the user’s head,

using telescopic sticks, which resulted in a fairly cumbersome setup for the user but

with the benefit of capturing large field of view images where most of the body was

in view.

Monocular head-mounted systems for full-body pose estimation have more recently

been demonstrated by Cha et al. [123] and Xu et al. [124] (who propose a real-time

compact setup mounted on a baseball cap) although in both cases the egocentric

camera is placed considerably further from the user’s forehead than in our proposed

approach and none of them make their code or data available for comparison.

2.3.2 POSE ESTIMATION FROM SENSORS

Inertial Measurement Units (IMUs) worn by the subject provide a camera-free al-

ternative solution to first person human pose estimation. However, such systems are

intrusive and complex to calibrate. While reducing the number of sensors leads to a

less invasive configuration [125] recovering accurate human pose from sparse sen-

sor readings becomes a more challenging task. An alternative approach, introduced

by Shiratori et al. [126] consists of a multi-camera structure-from-motion (SFM)

approach using 16 limb-mounted cameras. Still very intrusive, this approach suf-

fers from motion blur, automatic white balancing, rolling shutter effects and motion

in the scene, making it impractical in realistic scenarios.



CHAPTER 3

POSE FROM MONOCULAR IMAGE

3.1 OVERVIEW

Estimating the full 3D pose of a human from a single RGB image is one of the

most challenging problems in computer vision. It involves tackling two inherently

ambiguous tasks. First, the 2D location of the human joints, or landmarks, must

be found in the image, a problem plagued with ambiguities due to the large varia-

tions in visual appearance caused by different camera viewpoints, external and self

occlusions or changes in clothing, body shape or illumination. Next, lifting the

coordinates of the 2D landmarks into 3D from a single image is still an ill-posed

problem – the space of possible 3D poses consistent with the 2D landmark loca-

tions of a human, even with perfect 2D landmark locations, is infinite. Finding the

physically valid, and anatomically correct 3D pose that matches the image requires

injecting additional information usually in the form of 3D geometric pose priors

and temporal or structural constraints.

Most research in human pose estimation from images focuses on solving one of

these tasks while ignoring the other, i.e. estimating the 2D image coordinates of

landmark locations given a single RGB image, or solving for 3D pose given known

2D landmark positions as input. However, decoupling these interrelated problems

comes at a price. 2D pose recovery algorithms do not leverage 3D geometric in-

formation that could aid localization, 3D human pose estimation typically assumes



Overview 71

perfect landmark detections and ignores uncertainty in the location estimates.

We propose a new joint approach to 2D landmark detection and full 3D pose es-

timation from a single RGB image that takes advantage of reasoning jointly about

the estimation of 2D and 3D landmark locations to improve both tasks. We propose

a novel CNN architecture that learns to combine the image appearance based pre-

dictions provided by convolutional-pose-machine style 2D landmark detectors [15],

with the geometric 3D skeletal information encoded in our novel pretrained model

of 3D human pose. Our probabilistic model of 3D human poses is learned exclu-

sively from 3D mocap data and encodes the space of valid human 3D.

The information captured by our 3D human pose model is embedded in the end-to-

end CNN architecture as an additional layer that lifts 2D landmark coordinates into

3D while imposing that they lie on the space of physically plausible poses. The ad-

vantage of integrating the output proposed by the 2D landmark location predictors

— based purely on image appearance — with the 3D pose predicted by a probabilis-

tic model, is that the 2D landmark location estimates are improved by guaranteeing

that they satisfy the anatomical 3D constraints encapsulated in the human 3D pose

model. In this way, both tasks clearly benefit from each other.

Many earlier approaches to reasoning jointly about 2D joint estimation and 3D pose

reconstruction focused on designing algorithms that can incorporate the inaccura-

cies of 2D joint detections into the 3D reconstruction task without attempting to

re-estimate the 2D joint locations using 3D information [86, 85].

We take this a step further and design a multistage CNN trained to estimate the 2D

joint locations. Crucially our new deep architecture includes a novel layer, based

on a pre-learned 3D pose model, that injects 3D structural information into the 2D

joint estimation. 3D information about the skeletal structure encoded in this layer

is propagated to the 2D convolutional layers. In this way, the learning is end-to-end
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and the prediction of 2D pose benefits from the 3D information encoded.

A further advantage of our approach is that our 2D and 3D training data sources may

be completely independent. Our deep architecture only needs that images annotated

with 2D poses, not 3D poses. The human pose model is trained independently and

exclusively from 3D mocap data. This decoupling between 2D and 3D training

data presents a huge advantage since we can augment our training sets completely

independently. For instance we can take advantage of extra 2D pose annotations

without the need for 3D ground truth or extend the 3D training data to further mocap

datasets without the need for synchronized 2D images.

Our contribution: In this chapter, we show how to integrate a pre-learned 3D

human pose model directly within a novel architecture CNN for joint 2D landmark

and 3D human pose estimation. In contrast to pre-existing methods, we do not take

a pipeline approach that takes 2D landmarks as given. Instead, we show how such a

model can be used as part of the CNN architecture itself, and how the architecture

can learn to use physically plausible 3D reconstructions in its search for better 2D

landmark locations. Furthermore, due to the nature of our architecture, a dataset

with both 2D and 3D annotation is not required to train our model, but rather two

distinct datasets, one with 2D information and one with 3D data. This allows us to

exploit the amount of data contained in the well know datasets for each of the two

tasks, with the possibility of increasing their size by merging other datasets. Our

method achieves state-of-the-art results on the Human3.6M dataset both in terms of

2D and 3D errors.
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3.2 3D POSE DETECTION FRAMEWORK

Our proposed framework to tackle the problem of 3D pose detection from a monoc-

ular RGB camera, is a hybrid method in contrast to the previously mentioned

pipeline approaches (see Sec. 2.1), since it exploits all the available information

in all the modules of the architecture.

Figure 3.1 illustrates the main contribution of our approach, a new multi-stage CNN

architecture that can be trained end-to-end to estimate jointly 2D and 3D joint lo-

cations. Crucially it includes a novel layer, based on our probabilistic 3D model of

human, responsible for lifting 2D poses into 3D and propagating 3D information

about the skeletal structure to the 2D convolutional layers. In this way, the predic-

tion of 2D pose benefits from the 3D information encoded. Each stage t produces

as output a set of belief maps (heatmaps) for the location of the 2D landmarks (one

per joint). The heatmaps from each stage t, combined with learned image features,

are used as input to the next stage t +1 (grey arrows in the figure show information

flowing from one stage to the next). Finally, the last operation generates the most

accurate 3D pose.

STAGE 1

2D joint prediction

3D lifting &
projection

Fusion

Feature extraction

Loss

STAGE 2

2D joint prediction

3D lifting &
projection

Fusion

Feature extraction

Loss

STAGE 6

2D joint prediction

3D lifting &
projection

Fusion

Feature extraction

Loss

Probabilistic 3D
pose model

3D pose

3D/2D
projection

predicted
belief maps

projected pose
belief maps

9
9

99 99 9
9

1 1 1 1

predicted
belief maps

predicted
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belief maps
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fusion

fused
belief maps

Input image

Probabilistic 3D
pose model

Output 2D pose

Final 3D pose

Figure 3.1: Hybrid architecture for monocular pose detection

Section 3.2.1 describes the proposed probabilistic 3D model of human pose, trained

on a dataset of 3D mocap data. Section 3.2.2 describes all the new components

and layers of the CNN architecture. Finally, Section 3.4 describes the experimental
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evaluation of the approach with quantitative results on the Human3.6M dataset,

as well as some qualitative results on images from the MPII [127] and LEEDS

datasets [128].

3.2.1 PROBABILISTIC MODEL

One fundamental challenge in creating models of human poses lies in the lack of

access to 3D data of sufficient variety to characterize the space of human poses. To

compensate for this lack of data we identify and eliminate confounding factors such

as rotation in the ground plane, limb length, and left-right symmetry that lead to

conceptually similar poses being unrecognized in the training data.

We eliminate some factors by simple pre-possessing. Variance due to limb-length

is addressed by normalizing the data such that the sum of squared limb lengths on

the human skeleton is one; while left-right symmetry is exploited by flipping each

pose in the x-axis and re-annotating left as right and vice-versa.

3.2.1.1 Aligning 3D Human Poses in the Training Set

Allowing for rotational invariance in the ground-plane is more challenging and re-

quires integration with our data model. We seek the optimal rotations for each pose

such that after rotating the poses they are closely approximated by a low-rank com-

pact Gaussian distribution.

We formulate this as a problem of optimization over a set of variables. Given a set

of N training 3D poses, each represented as a (3×L) matrix Pi of 3D joint locations,

where i∈ {1,2, ..,N} and L is the number of human joints; we seek global estimates

of an average 3D pose µ , a set of J orthonormal basis matrices1 e and noise variance

σ , alongside per sample rotations Ri and basis coefficients ai such that the following

estimate is minimized

1When we say e is a set of orthonormal basis matrices we mean that each matrix, if unwrapped
into a vector, is of unit norm and orthogonal to all other unwrapped matrices.
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argminR,µ,a,e,σ

N

∑
i=1

(
||Pi−Ri (µ +ai · e) ||22 (3.1)

+
J

∑
j=1

(ai, j ·σ j)
2 + ln

J

∑
j=1

σ
2
j
)

Where ai ·e = ∑ j ai, jej is the tensor analog of a multiplication between a vector and

a matrix, and || · ||22 is the squared Frobenius norm of the matrix. Here the y-axis

is assumed to point up, and the rotation matrices Ri considered are ground plane

rotations of the form

Ri =


cosθi 0 sinθi

0 1 0

−sinθi 0 cosθi

 (3.2)

With the large number of 3D pose samples considered (of the order of 1 mil-

lion when training on the Human3.6M dataset [129]), and the complex inter-

dependencies between samples for e and σ , the memory requirements means that

it is not possible to solve directly as a joint optimization over all variables using a

non-linear solver such as Ceres [130]. Instead, we carefully initialize and then alter-

nate between performing closed-form PPCA [131] to update estimates of µ,a,e,σ ;

and updating the rotations Ri using Ceres [130] to minimize the above error.

From this, we find the planar rotations that minimize the distance between each

sample and the rest shape, and alternate between making estimates of µ,a, and e

using probabilistic PCA, and re-optimizing the rotation. As we do this, we steadily

increase the size of the basis from 1 through to its target size J. This stops apparent

deformations that could be resolved through rotations from becoming locked into

the basis at an early stage, and empirically leads to lower cost solutions.

To initialize we use a variant of the Tomasi-Kanade [132] algorithm to estimate the

mean 3D pose µ . As the y component is not altered by planar rotations, we take as

our estimate of the y component of µ , the mean of each point in the y direction. For
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the x and z components, we interleave the x and z components of each sample and

concatenate them into a large 2N×L matrix M, and find the rank two approximation

of this such that M≈ A ·B. We then calculate Â by replacing each adjacent pair of

rows of A with the closest orthonormal matrix of rank two, and take Â†M as our

estimate2 of the x and z components of µ .

The end result of this optimization is a compact low-rank approximation of the

data in which all reconstructed poses appear to have the same orientation. This is

particularly clear by looking at Fig. 3.2, where it is possible to see how standing-up

poses a), b), c) and d) are all close to each other and far from sitting-down poses f)

and h) which form another clear cluster.

In the next section we extend our model to be described as a multi-modal distribu-

tion to better capture the variations in the space of 3D human poses.

3.2.1.2 A Multi-Modal Model of 3D Human Pose

Although it is possible to directly use the learned Gaussian model in the previous

section 3.2.1.1 to estimate the 3D (see results in section 3.4), inspection of figure

3.2 shows that the data cannot be represented as Gaussian distribution and is better

described using a multi-modal distribution. In doing this, we are heavily inspired

both by approaches such as [133] which characterize the space of human poses as a

mixture of PCA bases, and by related works such as [134, 52] that represent poses

as an interpolation between exemplars. These approaches are extremely good at

modeling tightly distributed poses (e.g. walking) where samples in the testing data

are likely to be close to poses seen in training. This is emphatically not the case in

much of the Human3.6M dataset, which we use for evaluation. Zooming in on the

edges of Figure 3.2 reveals many isolated paths where motions occur once and then

are never revisited again.

Nonetheless, it is precisely these regions of low-density that we are interested in

2A† being the pseudo-inverse of A.
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modeling. As such, we seek a coarse representation of the pose space that says

something about the regions of low density but also characterizes the multi-modal

nature of the pose space. Therefore, we choose to represent our data as a mix-

ture of probabilistic PCA models using few clusters, and trained using the EM-

algorithm [131]. When using a small number of clusters, it is important to initialize

the algorithm correctly, as accidentally initializing with multiple clusters about a

single mode, can lead to poor density estimates. To initialize our clusters we make

use of a simple heuristic.

We first sub-sample the aligned poses (which we refer to as P), and then compute

the Euclidean distance d among pairs. We seek a set of k samples S such that the

d)

c)

b)

a) g)

h)

f)

e)

Figure 3.2: Pose alignment of 3D poses. a-h represent the 3D poses corresponding the red
points highlighted in the higher dimensional pose-space, whereas blue are all
the points defining the space.
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distance between points and their nearest sample is minimized

argmin
S

∑
p∈P

min
s∈S

d(s, p) (3.3)

We find S using greedy selection: we iteratively hold our previous estimate of S

constant and select the next candidate s such that {s} ∪ S minimizes Eq. 3.3. A

selection of 3D pose samples found using this procedure can be seen in the rendered

poses of Figure 3.2. In practice, we stop proposing candidates when they occur too

close to the existing candidates, as shown by samples (a–d), and only choose one

candidate from the dominant mode. This prevents the algorithm from clustering too

much denser areas.

Given these candidates for cluster centers, we assign each aligned point to a cluster

representing its nearest candidate and then run the EM algorithm of [131], building

a mixture of probabilistic PCA bases.

3.2.2 2D TO 3D POSE INFERENCE

Our 3D pose inference from a single RGB image makes use of a multistage deep

convolutional architecture, that repeatedly fuses and refines 2D and 3D poses, and a

second module which takes the final predicted 2D joint positions and lifts them one

last time into 3D space for our final estimate (see Figure 3.1).

At its heart, our architecture is a novel refinement of the Convolutional Pose Ma-

chine of Wei et al. [15], who reasoned exclusively in 2D, and proposed an architec-

ture that iteratively refined 2D pose estimations of joints using a mixture of knowl-

edge of the image and of the estimates of joint locations of the previous stage. We

modify this architecture by generating, at each stage, projected 3D pose belief maps

which are fused in a learned manner with the standard maps. From an implementa-

tion point of view this is done by introducing two distinct layers, the probabilistic

3D pose layer and the fusion layer (see figure 3.1).

Figure 3.3 shows how the 2D uncertainty in the belief maps is reduced at each stage
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of the architecture and how the accuracy of the 3D poses increases throughout the

stages: Top) Evolution of the 2D skeleton after projecting the 3D points back into

the 2D space; Center) Evolution of the beliefs for the joint positions Left hand

through the stages; Bottom) 3D skeleton with the relative mean error per joint in

millimeters. Even when the estimated locations are incorrect, the model returns a

physically plausible solution.

3.2.2.1 Architecture of each stage

The entire architecture consists of 6 stages. Internally, each stage learns to combine

a) appearance-based belief maps provided by convolutional 2D joint predictors,

with b) projected pose belief maps, proposed by our new probabilistic 3D pose

model that encodes 3D structural information.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
Err: 9.19 mm Err: 7.30 mm Err: 6.64 mm Err: 3.34 mm Err: 3.28 mm Err: 3.10 mm

Figure 3.3: Estimation of the 2D and 3D skeleton throughout the stages, showing both a
2D and 3D accuracy improvement as we move towards the output. Specifically,
every stage performs a refinement operation that fixes some miss predictions or
improves the results.
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The accuracy of the 2D and 3D joint locations increases progressively through the

stages. Each stage in our sequential architecture is made out of 4 clear components

(see figure 3.1).

Predicting CNN-based belief-maps: we use a set of convolutional and pooling

layers, equivalent to those used in the original CPM architecture [15], that combine

evidence obtained from image learned features with the belief maps obtained from

the previous stage (t−1) to predict an updated set of belief maps for the 2D human

joint positions. This step is described in section 3.2.2.2.

Lifting 2D belief-maps into 3D: the output of the CNN-based belief maps is then

input to a new layer that uses our new pre-trained probabilistic 3D human pose

model to lift the proposed 2D poses into 3D. The process of lifting 2D into 3D is

described in section 3.2.2.3.

Projected 2D pose belief maps: The 3D pose estimated by our 3D pose inference

layer is then projected back onto the image plane to produce a new set of projected

pose belief maps. These belief maps encapsulate 3D dependencies between the

body parts. We describe the projection from 3D to 2D in section 3.2.2.4.

2D Fusion layer: The final layer in each stage (described in section 3.2.2.5) learns

the weights to fuse the two sets of belief maps into a unique set which is then input

into the next stage t + 1 of the architecture. It fuses: (i) “appearance-based belief

maps”, proposed by the 2D joint predictors (a set of convolutional layers) and (ii)

“3D manifold belief maps”, proposed by our new manifold-layer.

The novel layers were implemented as an extension of the published code of Convo-

lutional Pose Machines [15] inside the caffe framework as python layers, and with

all weights updated using Stochastic Gradient Descent with momentum.
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3.2.2.2 Predicting CNN-based belief-maps

Convolutional Pose Machines [15] can be understood as an updating of the earlier

work of Ramakrishna et al. [43] to use a deep convolutional architecture. In both

approaches, at each stage t and for each landmark p, the algorithm returns dense

per pixel belief maps bp
t [u,v], which show how confident it is that a joint center or

landmark occurs in any given pixel (u,v).

See Figure 3.4 for a visualization of stage 1 belief maps, where the heatmap corre-

sponding to the Spine joint goes through the fusion layer, which fuses both the ini-

tial convolutional heatmap (Fig 3.4a), and the projected pose estimation (Fig 3.4b),

to generate the fused heatmap (Fig 3.4c).

For stages t ∈ {2, . . . ,T} the belief maps are a function of not just the information

contained in the image but also the information computed by the previous stage.

In the case of convolutional pose machines, and in our work which uses the same

architecture, a summary of the convolution widths and architecture design is shown

in Figure 3.1, with more details of training given in Convolutional Pose Machines

(CPM) [15].

Both approaches [15, 43] predict joints in the image with a different skeletal struc-

ture than the one used by the Human3.6M dataset, both in terms of number of joints

as well as their connectivity. As such the input and output layers in each stage of

(a) Stage 1 bp (b) Projected b̂p (c) Fusion F p

Figure 3.4: Evolution of heatmaps through fusion layer
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the architecture are replaced with a larger set to account for the greater number of

joints. The new architecture is then initialized by using the weights with those found

in CPM’s model for all pre-existing layers with the new layers randomly initialized.

After retraining, convolutional pose machines return per-pixel estimates of land-

mark locations, while our techniques for 3D estimation (described in the next sec-

tion) make use of 2D locations. To transform these heatmaps into locations, we

select the most confident pixel as the location of each joint

Yp = argmax
(u,v)

bp[u,v] (3.4)

3.2.2.3 Lifting 2D heatmaps into 3D

We follow Zhou et al. [86] in assuming a weak perspective model, and first describe

the simplest case of estimating the 3D pose of a single frame using a uni-modal

Gaussian 3D pose model as described in section 3.2.1. This model is composed of

a mean shape µ , a set of basis matrices e and variances σ2, and from this we can

compute the most probable sample from the model that could give rise to a projected

image.

argmin
R,a

||Y − sΠER(µ +a · e)||22 + ||σ ·a||22 (3.5)

Where Π is the canonical orthographic projection matrix, E a known external cam-

era calibration matrix, and s the estimated per-frame scale. Although, given R this

problem is convex in a and s together3, for unknown rotation matrix R the problem

is extremely non-convex, even if a is known and prone to sticking in local minima

using first or second order gradient descent. The local optima often lie far apart

in pose space and getting stuck in poor optima loads to a significantly worse 3D

reconstruction.

We take advantage of the matrix R’s restricted form that allows it to be parameter-

ized in terms of a single angle θ (see Eq. (3.2)). Rather than attempting to solve

3To see this consider the trivial re-parameterization where we solve for sµ + b · e and then let
a = b/s.
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this optimization problem using local gradient based methods we quantize over the

space of possible rotations, and for each choice of rotation, we hold this fixed and

solve for s and a, before picking the minimum cost solution of any choice of R. With

fixed choices of rotation the terms ΠERµ and ΠERe can be computed in advance,

and finding the optimal a becomes a simple linear least square problem.

This process is highly efficient and by oversampling the rotations and exhaustively

checking in 10,000 locations we can guarantee that a solution extremely close to the

global optima is found. In practice, using 20 samples and refining the rotations and

basis coefficients of the best found solution using a non-linear least squares solver

obtains the same reconstruction, and we make use of the faster option of checking

80 locations and using the best found solution as our 3D estimate. This puts us

close to the global optima and has the same average accuracy as finding the global

optima. Moreover, it allows us to upgrade from sparse landmark locations to 3D

using a single Gaussian at around 3,000 frames a second using python code on a

standard laptop.

To solve our mixture of PPCA models solution, we follow [133] and solve for each

Gaussian model independently and select the most probable solution.

3.2.2.4 Projecting 3D poses onto 2D belief maps

Our projected pose model is interleaved throughout the architecture (see Figure 3.1).

The goal is to correct the beliefs regarding landmark locations at each stage, by

fusing extra information about 3D physical plausibility. Given the solution R, s, and

a from the previous component, we estimate a physically plausible projected 3D

pose as

Ŷp = sΠER(µ +a · e) (3.6)

which is then embedded in a belief map as
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Predicted joint Improved predictions
positions using projected 3D pose

Figure 3.5: Joint prediction refinement
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b̂p
i, j =

1 if(i, j) = Ŷp

0 otherwise.
(3.7)

and then convolved using Gaussian filters. The difference in terms of quality of

predictions can be seen in Figure 3.5, where results are produced using two models:

the first one as a plain CPM architecture, and the second one containing our layers,

fusing 2D and 3D information together for better predictions.

3.2.2.5 2D Fusion of belief maps

The 2D belief maps predicted by our probabilistic 3D pose model are fused with

the CNN-based belief maps bp according to the following equation

f p
t = wt ∗bp

t +(1−wt)∗ b̂p
t (3.8)

where wt ∈ [0,1] is a weight trained as part of the end-to-end learning. This set

of fused belief maps ft is then passed to the next stage and used as an input to

guide the 2D re-estimation of joint locations, instead of the belief maps bt used by

convolutional pose machines.

3.2.2.6 The Objective and Training

Following [15], the objective or cost function ct minimized at each stage is the the

squared distance between the generated fusion maps of the layer f p
t , and ground-

truth belief maps bp
∗ generated by Gaussian blurring the sparse ground-truth loca-

tions of each landmark p.

ct =
L+1

∑
p=1
|| f p

t −bp
∗ ||22 (3.9)

For end-to-end training the total loss is the sum over all layers ∑t≤6 ct . Notice that

no 3D loss is included here. One could extend this loss to account also for 3D labels,

by projecting back the gradient to estimate better pose bases, however this would

limit us on having fully annotated datasets.
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The novel layers were implemented as an extension of the published code of Con-

volutional Pose Machines [15] inside the Caffe framework [135] as Python layers,

with weights updated using Stochastic Gradient Descent with momentum.

Details of the novel gradient updates used lifting estimates through 3d pose space

are given in the appendix A.

3.2.2.7 Final lifting

The belief maps produced as the output of the final stage (t = 6) are then lifted into

3D to give the final estimate for the pose (see Figure 3.1) using our algorithm to lift

2D poses into 3D.

3.3 DATASETS

Data driven applications like Deep Learning approaches require a large amount of

data to work with. The larger the dataset the better the model can learn how to

perform a specific task.

There is a large availability of data on the web for 2D Human Pose Estimation, but

there is currently a lack of data in 3D mocap datasets with RGB images. This is

also part of the challenges of 3D Human Pose Estimation.

3.3.1 HUMAN3.6M

Our model was trained and tested on the Human3.6M dataset, which is one of the

largest datasets consisting of 3.6 millions accurate 3D human poses [129], acquired

by recording the performance of 5 female and 6 male actors, under 4 different view-

points (see Figure 4.44)

The actions performed by the actors include typical activities like talking on the

phone, walking, greeting, eating, etc. (see Fig. 3.7).

4Images taken from the Human3.6M dataset’s website.
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Figure 3.6: Human3.6M camera positions

Figure 3.7: Human3.6M actions

During the training of our model, the four different camera views have been consid-

ered to be independent. i.e. The same pose captured from different camera views
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are considered individually, without exploiting any camera positioning.

The proposed approach has been evaluated both in 2D and 3D on all the different

actions, using different evaluation protocols (see Sec. 3.4)

3.3.2 MPII AND LEEDS DATASET

As mentioned in previous sections, one of the main advantages of our hybrid

pipeline approach consists in the ability to combine different datasets during train-

ing, by only using the available information of each individual one. A demonstra-

tion of this statement comes from using the MPII [127] and the Leeds [128] datasets

in combination with the Human3.6M one.

MPII Human Pose dataset: it includes around 25K images containing over 40K

people with annotated body joints, covering a total of 410 human activities, where

each image was extracted from a YouTube video.

Leeds Sports Pose Dataset: it contains 2000 pose annotated images of mostly

sports people gathered from Flickr. Each image is annotated with 14 joint locations

and left and right joints are consistently labeled from a person-centric viewpoint.

Images with 2D annotations are used either from MPII or LEEDS datasets to inform

the 2D module of our hybrid pipeline, whereas the Human3.6M mocap data are used

to learn a 3D lifter that agrees with the 2D estimations provided by the previous

module.

Qualitative results on both datasets showing the performance in reconstructions of

the proposed approach are shown in Section 3.4.3.
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3.4 EXPERIMENTAL EVALUATION

In this section the model is evaluated quantitative on the Human3.6M dataset and

additional qualitative results are shown on 2D annotated only datasets like MPII and

Leeds.

3.4.1 EVALUATION PROTOCOLS

2D Evaluation: since the goal of the approach is 3D Human Pose Estimation, we

limit our evaluation of 2D performance to measuring the pixel distance of predicted

joints with their corresponding ground truth location. Therefore, what we refer to

as 2D pixel error is defined as:

error =
1
N

1
L

N

∑
n

L

∑
l
||P̂n

l −Pn
l ||2

where N is the number of frames, L is the number of joints, Pn
l is the ground truth

position of joint l for the n-th frame, and P̂n
l is its predicted location.

3D Evaluation: Several evaluation protocols have been followed by different au-

thors to measure the performance of their 3D pose estimation methods on the Hu-

man3.6M dataset.

Protocol 1, the most standard evaluation protocol on Human3.6M was followed

by [129, 66, 136, 68, 137, 86, 81]. The training set consists of 5 subjects (S1, S5,

S6, S7, S8), while the test set includes 2 subjects (S9, S11). The original frame

rate of 50 fps is down-sampled to 10 fps and the evaluation is on sequences coming

from all 4 cameras and all trials. The reported error metric is the 3D error which

corresponds to the average Euclidean distance of the estimated 3D joints to the

ground truth. The error is averaged over all 17 joints of the Human3.6M skeletal

model.
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Protocol 2, followed by [138, 139], selects 6 subjects (S1, S5, S6, S7, S8 and S9) for

training and subject S11 for testing. The original video is down-sampled to every

64th frame and evaluation is performed on sequences from all 4 cameras and all

trials. The error metric reported in this case is the 3D pose error equivalent to the

per-joint 3D error up to a similarity transformation (i.e. each estimated 3D pose is

aligned with the ground truth pose, on a per-frame basis, using Procrustes analysis).

The error is averaged over a subset of 14 joints.

Protocol 3, followed by [6] selects the same subjects for training and testing as

Protocol 1. However, evaluation is only on sequences captured from the frontal

camera (“cam 3”) from trial 1 and the original video is not sub-sampled. The error

metric used in this case is the 3D pose error as described in Protocol 2. The error is

averaged over 14 joints

3.4.2 QUANTITATIVE RESULTS

A quantitative evaluation of the proposed approach against other competing ap-

proaches is shown in Table 3.1, using Protocol 1 as the evaluation protocol. Our

baseline method using a single unimodal probabilistic PCA model outperforms al-

most every method in most action types, with the exception of Sanzari et al. [81],

which it still outperforms on average across the entire dataset. Our mixture model

improves on this again, offering a 4.76mm improvement over Sanzari et al., our

closest competitor.

Note: some approaches [136, 86] infer the poses by exploiting temporal informa-

tion, therefore using more information than what has been used by our method,

where each frame is processed independently.

Due to the dissimilarity of evaluations by other approaches, we need to perform

additional separate comparisons. The reconstruction errors generated using evalu-

ation Protocol 2 are shown in Table 3.2, where our approach outperforms all other
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases

LinKDE [129] 132.71 183.55 132.37 164.39 162.12 205.94 150.61 171.31
Li et al. [66] - 136.88 96.94 124.74 - 168.68 - -
Tekin et al. [136] 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61
Tekin et al. [68] - 129.06 91.43 121.68 - 162.17 - -
Tekin et al. [137] 85.03 108.79 84.38 98.94 119.39 95.65 98.49 93.77
Zhou et al. [86] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78
Sanzari et al. [81] 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Ours - Single PPCA Model 68.55 78.27 77.22 89.05 91.63 110.05 74.92 83.71
Ours - Mixture PPCA Model 64.98 73.47 76.82 86.43 86.28 110.67 68.93 74.79

Sitting Sitting Down Smoking Waiting Walk Dog Walking Walk Together Average

LinKDE [129] 151.57 243.03 162.14 170.69 177.13 96.60 127.88 162.14
Li et al. [66] - - - - 132.17 69.97 - -
Tekin et al. [136] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28
Tekin et al. [68] - - - - 130.53 65.75 - -
Tekin et al. [137] 73.76 170.4 85.08 116.91 113.72 62.08 94.83 100.08
Zhou et al. [86] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01
Sanzari et al. [81] 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Ours - Single PPCA Model 115.94 185.72 88.25 88.73 92.37 76.48 77.95 92.96
Ours - Mixture PPCA Model 110.19 173.91 84.95 85.78 86.26 71.36 73.14 88.39

Table 3.1: Evaluation on Human3.6M dataset using Protocol 1 with error expressed in mm.

competitors. Although in this specific case, our model had been trained using only

the 5 subjects used for training in Protocol 1 (one fewer subject), our model still

outperforms both other methods [138, 139].

Finally, evaluation Protocol 3 generates errors shown in Table 3.3. The only other

approach using such protocol is Bogoet al. [6], where the same sub-set of joints is

matched for better comparison.

Our method outperforms Bogo et al. [6] by almost 3mm on average. It is important

to remind the reader that, unlike our approach, Bogo et al. [6] exploits a high-quality

detailed statistical 3D body model [88] trained on thousands of 3D body scans, that

captures both human body shape identities and the body deformation based on the

Average error

Yasin et al. [138] 108.3
Rogez et al. [139] 88.1
Ours - Mixture PPCA Model 70.7

Table 3.2: Evaluation on Human3.6M dataset using Protocol 2 with error expressed in mm.
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Average error

Bogo et al. [6] 82.3
Ours - Mixture PPCA Model 79.6

Table 3.3: Evaluation on Human3.6M dataset using Protocol 3 with error expressed in mm.

2D pixel error

Zhou et al. [86]5 10.85

Trained CPM [15] architecture 10.04
Ours including 3D refinement 9.47

Table 3.4: Evaluation of pixel error on Human3.6M dataset

pose the actor is performing. Nonetheless, even with less available data for training,

our approach outperforms Bogo et al. [6].

Finally, Table 3.4 shows the comparison between our approach and [15, 86] on

the 2D prediction error. The 2D error reduction using our full approach over the

estimates of [15] is comparable in magnitude to the improvement due to the change

of architecture moving from the work Zhou et al. [86] to the state-of-the-art 2d

architecture [15] (i.e. a reduction of 0.59 pixels vs. 0.81 pixels).

3.4.3 QUALITATIVE RESULTS

Our proposed approach trained exclusively on the Human3.6M dataset can be used

to identify 2D and 3D landmarks of images contained in different datasets.

Figure 3.8 shows some qualitative results on the MPII dataset. Our model was not

trained on images as diverse as those contained in this dataset, however it often

retrieves correct 2D and 3D joint positions. The last row shows example cases

where the method fails either in the identification of 2D or 3D landmarks.

Figure 3.9 shows qualitative results on the Leeds dataset, including failure cases.

5Results obtained by using temporal smoothness and knowing the action label.
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Success cases

Failure cases

Figure 3.8: Results on images from the MPII dataset. The left failure case is an example in
which the 2D pose estimator swaps the arms and the 3D pose module therefore
fails. The right failure case instead has the wrong 2D estimation, that is then
fixed by the 3D module.

Notice how our probabilistic 3D pose model generates anatomically plausible poses

even though the 2D landmark estimations are not all correct. However, as shown

in on the right, even small errors in 2D pose can lead to drastically different 3D

poses. These inaccuracies could be mitigated without further 3D data by annotating

additional RGB images for training from different datasets.

Finally, Figure 3.10 show some qualitative results on some sampled frames from the

test-set. The identified 2D landmark positions and 3D skeleton is shown for each
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Success cases Failure cases

Figure 3.9: Results on images from the Leeds dataset

pose taken from different actions: Walking, Phoning, Greeting, Discussion, Sitting

Down.
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Figure 3.10: Results from the Human3.6M dataset
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3.5 CONCLUSION

In this chapter, inspired by the work by [86, 85, 15] we have presented a novel

hybrid pipeline approach to human 3D pose estimation from a single image that

outperforms previous approaches to this problem. To our knowledge we are the

first to approach this problem as a problem of iterative refinement in which 3D

proposals help refine and improve upon the 2D estimates.

This approach shows the importance of thinking in 3D even for 2D pose estimation

within a single image, with the iterative 3D model demonstrating better 2D accuracy

than Convolutional Pose Machines [15], the iterative 2D approach it is based upon.

Such approach allows us to estimate the correct 3D pose of a person from an external

camera point of view that can be used to guide a robot/robotic arm in the interaction

with a person, making sure that person safety is always respected and the task can

be completed as designed.

Our novel module for upgrading poses from 2D to 3D is extremely efficient, and

runs in CPU-based python at around 1,000 frames a second, while a GPU-based

real-time approach for Convolutional Pose Machines has been announced, com-

pared to the current version with 6 stages which runs at 10 fps (current bottle-neck).

Intuitively, one could decrease the number of stages to get a faster execution time

with a direct drop in accuracy (trade-off between speed and accuracy).

Integrating the faster CPM version with our architecture would provide a reliable

real-time 3D pose estimator seems like a natural future direction, as does integrating

our approach with a simpler 2D approach for real-time pose estimation on lower

power devices.



CHAPTER 4

POSE FROM MULTI-CAMERA VIEWS

Figure 4.1: Multi-view 3D human pose estimation set-up.

In this chapter a less trivial but more precise configuration is presented: a multi-

camera set-up, as shown in Figure 4.1. To goal is to have such approach to be

working with images captured in a natural environment, not only in an indoor stu-

dio.

4.1 OVERVIEW

One fundamental challenge in the 3D estimation of dynamic and moving objects lies

in finding a rich source of ground-truth data. This is not just a problem for mod-

ern learning based approaches, that require an abundance of data in order to make
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inferences about the world, but also for the traditional ones such as model-based

reasoning that make heavy use of constraining prior information about the world.

Even these traditional methods rely on carefully tuned parameters which control

expressiveness of the model [52], internal connectivity priors [140], or both [141]

that must be adjusted to recover plausible reconstructions.

Extracting 3D data from images is a fundamentally ill-posed problem that even

people find challenging. Unlike standard image labeling problems, such as Ima-

genet [142], that make heavy use of human annotation, we cannot simply expect

people to reliably annotate images with the distance of joints from the camera. The

gold standard for accurately capturing 3D information of full-body human poses

data remains using Multi-camera Motion Capture (MoCap) systems. These sys-

tems make use of early vision techniques based on the identification of markers

across multiple cameras and on the estimation of the 3D location of these points

through triangulation.

Such systems generates very reliable annotations, however they also require strong,

unambiguous cues to identify the points. In practice, this means that successful

MoCap relies on the subject wearing dark tight clothing and brightly colored mark-

ers attached to the subject’s clothes and their movements captured from multiple

cameras, allowing pose reconstruction via triangulation. Even though the quality of

these reconstructions is undisputed, there are limitations associated with this proce-

dure. For example, conditions inside studios — such as lighting and backgrounds

— must be heavily controlled. The resulting images are not representative of natural

images leading to poor generalization images captured in-the-wild. In addition, ex-

isting MoCap datasets do not necessarily capture a vast enough set of human poses

or sufficient variations across clothes and subjects.

In response to these limitations, some recent works [129, 139, 143] have generated

more varied synthetic images using MoCap pose data as the source of the human

poses. Although these images are more varied than MoCap data, they are still not
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natural images; and these images tend not to capture information and confusion

caused by the deformation of loose fitting clothing [144].

Another approach to avoiding these problems is to chain together different regres-

sors based on multiple data sources; one network is trained to predict 2D joint loca-

tions in natural images, while a second regressor upgrades these 2D joint locations

to 3D using MoCap data. This approach comes with caveats similar to those of the

methods discussed above. We might know that a method gives highly accurate 3D

poses on MoCap data and good 2D joint locations in natural images, but we remain

fundamentally unsure as to its 3D accuracy in natural images.

As such, effective marker-less motion capture is an important tool to train networks

to generate reliable 3D models from natural images: not only would it enable the

capture of more natural data and reduce the constraints during studio capture, but

also to capture outside of the studio and increase the amount of training data without

limits.

In response to these difficulties we present a novel architecture, that takes many of

the best aspects of the approach introduced in the previous chapter operating on sin-

gle camera images, and places it in a multi-camera framework, allowing additional

sources of data to be exploited.

We present a Huber loss based robust estimator for fusing multi-view 2D pose pre-

dictions into a coherent 3D pose, consistent with natural human poses. Unlike ex-

isting 3D frameworks, this is not simply done at the end of a pipeline for 2D joint

estimation, but is iterated through multiple-stages. This carries substantial benefits.

Our use of a robust estimator means that at each stage the 3D model can discard a

minority of incorrect 2D joint estimates; the knowledge of where the joints should

be in each image is fed back into the algorithm for image-based refinement.

One fundamental question regarding these datasets composed of millions of frames,
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such as Human3.6M, is whether they are in fact large enough. The primary issue is

whether the dataset is sufficiently diverse to allow trained networks to exhibit good

generalization to a held-out test set. Even in restrictive cases, such as the test set

used in Human3.6M, where the held-out data consists of new actors performing the

same movements in similar clothes in the same studio, there is enough variability in

individual body shapes and in how they move that generalization is not guaranteed.

To help address this issue, we demonstrate how unlabeled data can be labeled by

our algorithm and augment the datasets used for the training of existing methods,

leading to overall better performance on standard benchmarks.

We also present a weakly-supervised approach that combines weak supervision

from 2D joint labels for which ground truth labels are available, and a self-

supervised loss, for an additional corpus of unlabeled images, expressed as the

agreement between joints detected in the 2D images and the re-projection of an

estimated 3D model. We show how this notion of 2D estimates consistent with a

global 3D pose can be exploited for end-to-end self-supervised training.

By using a mixture of weakly labeled (2D labels only) and unlabeled data, we are

able to train a network that minimizes the predicted error between 2D estimates and

the global 3D position. We show how this form of self-supervision is not restricted

to multi-camera setups and can be equally applied to the case of monocular 3D

human pose estimation with similar improvements in performance.

We evaluate multiple networks and find consistent multi-millimeter improvement.

When the differences between state-of-the-art networks are so small, this raises

questions as to whether we are over-fitting and if time would be better spent build-

ing larger datasets rather than fighting for small improvements obtained from archi-

tectural changes.
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Our contribution: in this chapter, we extended existing work on single view recon-

struction to a multi-camera setting. We also show how such single view methods

can be enhanced by training on multi-view based annotation of unlabeled data.

The use of an iterative, and robust, multistage approach to multi-view reconstruction

allows us to correct mistakes in body joint estimations as they arise, and to think

again, reconsidering the 2D position of joints in the image using interim knowledge

of 3D pose. Finally, we show how this can be turned into a weakly-supervised

approach.

4.2 MULTI-VIEW FRAMEWORK

Figure 4.2: Exploiting geometry in multi-view configuration.

Our proposed framework, tackling the problem of 3D pose detection from a multi-

view camera setup which differs from the previous chapter due to the possibility

to exploit geometrical information as an additional constraint (see Fig. 4.2). The

presented work follows the approach described in the previous chapter (see Sec. 3)

in maintaining a six-stage Convolutional Neural Network.

Unlike existing approaches such as [108, 110, 109], we do not perform independent
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predictions for 2D poses1 for each view before fusing them in a final stage. Instead,

we generalize the multi-stage approach to human pose estimation used by methods

such as [15, 16] to multiple views.

Each stage of the CNN (see Fig. 4.3) takes as inputs a) the set of images from differ-

ent cameras we are trying to reconstruct from, and b) the set of 2D pose heatmaps

predicted in the previous stage for each multi-view image.

Inside each stage the algorithm independently improves the 2D locations of joints

in each image and uses them to reconstruct a 3D model consistent with the 2D

joint predictions for all the views. Maintaining this internal representation of pose

as a 3D model, coherent with all views, allows us to inject 3D information into

the learning process. In addition, by re-projecting the 3D model into all the camera

views using known camera geometry we can use 2D losses throughout all the stages

bypassing the need for 3D annotations associated with the images.

This novel multi-view and multi-stage reconstruction allows us to rethink joint lo-

cations in light of knowledge of an interim 3D reconstruction, to recover from mis-

takes made, and to try again to find support in the image for the predictions of joint

locations made by a coherent working hypothesis of 3D positions. Details are given

in section 4.2.1.

Importantly, our approach maintains the computable sub-gradients used in the pre-

vious chapter, described in Appendix A, when generating and projecting the 3D

model. This allows the system to be trained end-to-end.

We make substantial changes that improve the robustness of the system while pre-

serving the guarantees of [16] that the model fitting procedure will not get stuck

in poor fitting local optima. This is done by replacing the Least Squares procedure

(see Sec. 3.2.2.3), with an Iterative Re-weighted Least Squares (IRLS) approach that

mimics the Huber loss and preserves convexity for any particular choice of planar

1Silhouettes in the case of [109]
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Figure 4.3: Detailed description of the multi-stage architecture designed 3D human pose
estimation. The multiple stages serve as a refinement process and all stages
following the first one are given as input the predictions estimated by the pre-
vious stage. The multi-camera probabilistic model is the key in injecting 3D
information back to the the 2D module.

rotation. Details of this are given in section 4.2.1.

4.2.1 ARCHITECTURE

The proposed architecture is a multi-stage convolutional neural network inspired by

the work described on Chapter 3, which was in turn an extension of the architec-

ture introduced by Wei et al. [15]. They introduced Convolutional Pose Machines

(CPM), a multi-stage 2D pose estimator in which each stage performed a refinement

of the estimate computed by the previous stage.
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As shown in Figure 4.3, the first step in each stage independently predicts, in every

camera view, the 2D pose of the person in the image. These predictions take the

form of heatmaps generated via a convolutional architecture with the weights shared

between all camera views.

These heatmaps are generated by: a) a set of convolutional layers shared by all

stages that are performing feature extraction; followed by b) a set of convolutional

layers, unique to each stage, that compute a heat map representing the location of

each joint. All stages (except stage 1) also take as input the heatmaps generated in

the previous stage.

The size and connections of these convolutional layers remain the same as in

CPM[15]. However, we additionally apply batch normalization before the ReLu

activation function.

The next step within each stage takes heat-maps as input and computes the 3D pose

most consistent with the 2D information provided by each camera view. Heat-maps

are then converted into 2D locations by selecting the most confident pixel as the

location of each of the joints

Ic
p = argmax

(u,v)
Hc

p[u,v]

where Hc
p is the heat-map representing joint p for camera view c.

The 2D poses are then used by the multi-camera probabilistic 3D pose estimator

(described in section 4.2.1) to generate a single 3D pose that agrees over all the

different camera 2D poses. This pose is projected back onto the 2D image for each

camera view using a weak perspective projection, and the new projected 2D poses

are converted into heat-maps by a Gaussian convolution
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Ĥc
p[u,v] =

1 if(u,v) = Îc
p

0 otherwise.

where Îc
p is joint p of the projected 2D pose in camera c.

The final operation fuses the heat-maps regressed by the convolutional layers with

those estimated by projecting the 3D pose into 2D. This fusion is implemented by

applying a convolutional layer with filters of size [1×1] and number joints filters,

to each camera view independently, giving a set of heatmaps, one for each choice

of joint and camera.

As an implementation detail, all the computations performed on each camera view

make use of the same convolutional operations; this enables us to have an efficient

implementation by setting the batch size to be equal to the number of cameras and

ordering the images appropriately.

4.2.2 3D POSE ESTIMATION

In Chapter 3, we suggested approaching human pose estimation using a formulation

inspired by non-rigid structure from motion. Assuming a known basis of human

poses given by a set of matrices e, a standard deviations σ and a rest shape µ , we

suggested estimating the cost of a particular parameterized human pose, given 2D

locations I, as:

argmin
s,a,R

||I− sΠER(µ +a · e)||22 +σ
2 ·a2 (4.1)

Where Π is the canonical orthographic projection matrix, E a known transforma-

tion from the world coordinates to those of the camera, R is a planar rotation matrix

that describes the rotation of the human pose in the ground-plane, and s is the es-

timated per-frame scale. Here a is a vector of basis coefficients, e a 3D tensor
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e ∈ RBases×Points×3.

The tensor product a ·e is defined as ∑i aiei, and the square terms in the final expres-

sion refer to an element-wise square. The closest parameterized pose for 2D data I

was given by minimizing Eq. 4.1, which can be expressed more compact as

argmin
s,a,R

P(s,a,R|I) (4.2)

We observed that, for any given choice of rotation, the global minima could be

interpreted as an unconstrained linear least squares problem and solved efficiently.

Furthermore, we suggested brute forcing over a small set of ground plane rotations

to quickly find a global minima without needing to worry about getting stuck in

poor quality local optima.

We provide several additions to the framework: Rotation marginalization has

proven to improve the stability of the model; the introduction of Principled shape

warping for multiple views, and the a new robust loss for outlier rejection which

is particularly important when dealing with multi-view systems, since the model

needs to be able to disregard proposals that disagree with the predictions from the

cameras majority.

4.2.2.1 Rotation marginalization for improved stability

We observed that using more than 80 sampled rotations did not improve the overall

accuracy of the reconstructions. Although this is true, the model yields flicker-

ing and unstable reconstructions when run on videos. Much of this flicker can be

attributed towards trying to reconstruct ambiguous poses that can be equally well

explained by two or more different rotations.

We write the optimal reconstruction, given a choice of rotation R as
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QR = Rs(µ +a · e)

where a and s are found by solving the following optimization problem

{s,a}= argmin
s,a

P(s,a,R|I) (4.3)

Marginalizing over the discrete set of rotations R, gives the following 3D body pose

estimate

∑R∈R exp(−ρP(sR,aR,R|I))QR

∑R∈R exp(−ρP(sR,aR,R|I))
(4.4)

with ρ an arbitrary number which defines the shape of the Gaussian function for

the weight and P being the residual of the reconstructed pose using rotation R. This

means that instead of only selecting the best rotation for a pose (as done in the

previous chapter 3), we are now taking all possible choices of in-plane rotation
2π

100n with n ∈ [0,99], for each of those R we find the optimal 3D pose, and then a

weighted average of all those poses is performed to identify the final 3D pose. Since

the exponential weights depend on the residual of each pose QR, only the rotations

that best explain the 2D detections are significantly contributing to the average.

This elimination of flickering is highly desirable, not just in that it makes the recon-

structions of video appear more lifelike and appealing to humans, but also in that

the stability of the reconstructions carries important semantic information. If we

are to use 3D reconstructions of people as a first step in action analysis, the stability

and dynamics of the reconstructions contains important information that informs

our understanding of the actions.

4.2.2.2 Principled shape warping for multiple views

We approached the problem of reconstruction through the lens of probabilistic

PCA [131] with a known basis. After generating a reconstruction from basis co-
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efficients, a final stage was to warp the reconstruction to lie closer to the input data.

In the context of 3D reconstruction from an single orthographic camera this can be

done as post processing, where a weighted average of the x and y coefficients of the

image and the reconstruction QR are taken together while the z component remains

constant.

When multiple cameras are being used, this fusion between the model and the data

can not be performed as a simple post-processing step. Instead, we jointly estimate

a new shape Q̃ consistent with all frames and close to the model estimate.

Given a rotation R, this can be written as

argmin
Q̃R,s,a

λ ∑
c∈C
||IC−ΠEQ̃R||22 + ||Q̃R− sR(µ +a · e)||22 +σ

2 ·a2 (4.5)

where C refers to a set of cameras, λ is a known scale factor, and E is the known

external calibration that aligns world co-ordinates with the camera’s frame of ref-

erence. As is standard in geometry, this formulation finds the single body pose

that best explains all viewpoints; this is not equivalent to applying a single camera

approach to each view and averaging the results.

Under this loss formulation, the camera terms are not independent but share a single

3D pose reconstruction Qr, to which they contribute in equal measure.

Again, this can be directly solved as an unconstrained least squares problem given

R; and as discussed in the previous subsection, we continue to marginalize over the

space of rotations.

4.2.2.3 Robust losses for outlier rejection

Finally, the use of the squared Frobenius norm as in the previous section makes

the reconstruction less robust to occlusions and to wrongly predicted joints. If the

camera views were aligned, the first term of (4.5) would be minimized by a pose

that averages over the different predictions. Use of the Frobenius norm would mean

that if only one prediction is in the wrong place, it would “pull” the reconstruction
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towards the mistake rather than discarding it as an outlier. Instead we replace the

squared Frobenius norm with a Huber loss.

argmin
Q̃R,s,a

λ ∑
c∈C
||Ic−ΠEQ̃R||ε + ||Q̃R− sR(µ +a · e)||22 +σ

2 ·a2 (4.6)

where the Huber Loss ||x||ε = ∑i |xi|ε and

|x|ε =


|xi|2

2 if |xi| ≤ ε

ε|xi|− ε2

2 otherwise.
(4.7)

Although (4.6) is not a least square problem, it can be solved as an iterative re-

weighted least squares problem (IRLS).

In practice, 5 iterations of least squares are sufficient to obtain a high quality solu-

tion. Although robust to outliers, this new loss remains convex given a choice of

rotation, so local minima are not a concern.

As an implementation detail, the IRLS is solved by using a loop in which, at each

step, the matrices involved in the least square problem are re-weighted by taking the

rows corresponding to the re-projection loss term and multiplying them by weights

determined by the contribution of each row to the residual during the previous step.

As a consequence, this procedure has no impact on the gradient propagation dur-

ing training and allows an end-to-end training as in the previous framework (see

Sec. 3.2).
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4.3 DATASETS

Data driven applications like the proposed approach require a large amount of data

to be trained with. The larger the dataset the better the model can learn how to

perform a specific task.

Similarly to what has been described in the previous chapter (see Sec. 3.3), we make

use of the Human3.6M dataset [129] for training and evaluating the model.

Following the camera model and inference of the previous Chapter 3, we continue

to assume a scaled orthographic model. Importantly, we assign the same choice

of scale to all cameras. This assumption is noticeably stronger than the previous

scaled orthographic reconstruction, which is equivalent to assuming that perspective

distortions due to the varying depth of the object in any one frame can be safely

ignored.

4.3.1 HUMAN3.6M

Our model was trained and tested on the Human3.6M dataset, which is one of the

largest datasets consisting of 3.6 millions accurate 3D human poses [129], acquired

by recording the performance of 5 female and 6 male actors, which wasgenerated in

a multi-source capture studio with the ground-truth reconstructions coming from a

ten camera Vicon studio, and four video cameras facing each another at right angles

and far enough to fullycapture a 4 by 3 meter studio environment. (see Figure 4.42)

Unlike the previous chapter (see Sec. 3.3), during the training of our model, the four

different camera views have been considered together in order to be able to exploit

geometry, when the camera extrinsic parameters are known.

With the four cameras facing towards each other, our stronger assumption does

not allow increase in overall scale due to movements towards one camera, as this

would correspond with movement away from another camera and a corresponding

2Image taken from the Human3.6M dataset’s website.
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Figure 4.4: Human3.6M camera positions

decrease in scale. However, it does allow for changes in scale of the object itself

allowing our algorithm to handle people of different sizes.

The proposed approach has been evaluated both in 2D and 3D on all the different

actions, using different evaluation protocols (see Sec. 3.4).

4.3.2 CMU PANOPTIC DATASET

The CMU Panoptic Dataset by Joo et al. [145], consists of 65 sequences (5.5 hours),

for a total 480 synchronized video streams of multiple people engaged in social

activities, that have been used to produce the labeled time-varying 3D structure

of anatomical landmarks on individuals in the space, for a total of 1.5 million 3D

skeleton annotations.

The system used to capture the dataset (see Fig. 4.5 3) consists of:

• 480 VGA cameras, 640×480 resolution, 25 fps

• 31 HD cameras, 1920×1080 resolution, 30 fps

3Image taken from the CMU Panoptic Dataset website.
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Figure 4.5: System developed for capturing the CMU Panoptic Dataset

• 10 Kinect 2 Sensors: 1920×1080 (RGB), 512×424 (depth), 30 fps

• 5 DLP Projectors, synchronized with HD cameras

Figure 4.6 shows the camera positions inside the dome.

An example of images contained in the dataset can be seen in Figure 4.74. Among
4Images taken from the CMU Panoptic Dataset website.

Figure 4.6: Camera placement in CMU Panoptic Dataset
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Figure 4.7: Example images from the CMU Panoptic Dataset

those, we have only used a subset containing a single person per frame (Pose se-

quences).
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4.4 DATA AUGMENTATION

One concern when trying to show how additional data can lead to improved re-

sults in the 3D reconstruction of people, is the restrictive form of the Human3.6M

evaluation dataset. With the limited appearance and repetitive range of actions,

that occur both in the training and in the evaluation sets, networks trained on more

general datasets might perform worse than those trained on restrictive datasets that

are closer to the test data. To avoid such issues, we make use of an additional set

of actors performing the same actions captured by the authors of the Human3.6M

dataset.

As with many datasets in computer vision, Human3.6M was originally subdivided

into training, test and validation sub-sets; the reconstructions for the test-set were

not made publicly available, to avoid over-fitting. However, for historic reasons,

the test set has gone largely unused, with detailed evaluations being reported on the

validation set. This means that we have access to a publicly available additional

corpus, composed of unlabeled images from 2 men and woman5, captured in the

same environment.

To illustrate how 3D data gathered by our method can improve existing results, we

augment two existing networks using this data. The produced results provided in

section 4.5 show clear improvement over published results, and help make the case

not just that better networks are needed for better results, but also more data.

Additional data can help 3D predictions in two separate ways, either a) by improv-

ing the 2D localization of joints, or b) by improving the 3D lifting from the same

2D inputs.

To show that our method returns results of sufficiently high quality to improve both

components, we perform two separate experiments: i) we show improvements on

2D joint prediction while keeping the 3D lifting constant; ii) we show how a generic

5Human3.6M dataset does not provide video for subject S10.
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Figure 4.8: Labeling data using multi-camera 3D pose estimator

lifter that takes as input pre-computed joint locations can be improved by training

on our additional 3D data.

4.4.1 LABELING DATA

The process of generating additional data by labeling the official test-set contained

in the Human3.6M dataset is shown in Figure 4.8, where, given as input N sets of C

camera RGB images

{(I1
1 , . . . , I

1
C), . . . ,(I

N
1 , . . . , I

N
C )}

using the described multi-camera approach, the goal is to generate a set of 2D and

3D poses Q

Q = {(p̂1
1, . . . , p̂1

C, P̂
1), . . . ,(p̂N

1 , . . . , Î
N
C , p̂N)}

where P̂ j is the 3D pose expressed in world coordinates predicted using set of im-

ages (I j
1, . . . , I

j
C), and p̂ j

i is the 2D pose resulting from the orthogonal projection of

P̂i over camera j.

Although conceptually simple, multiple small issues arise from most experiments

reporting results on an automatically pre-processed version of the Human3.6M

dataset.

First, images are independently run through the vanilla Mask R-CNN architecture
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Figure 4.9: Mask R-CNN output

[146] (see Fig. 4.9), without any fine-tuning, in order to extract both the bounding

box and the silhouette of the person represented in the images.

This information is essential for cropping the area of the image containing the per-

son in a similar manner to what is done on images with ground truth 2D data, guar-

anteeing that: i) all the joints are inside the cropped region, centered around the

center of mass of the person; ii) the aspect ratio is one and iii) 25 pixels of margin

are added to the cropped region.

The approach used to identify the cropping area around the person is based on a

heuristic, where the silhouette S identified by Mask R-CNN is firstly used to find

the center Rc as
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Rcx = (max(Sx)−min(Sx))/2

Rcy = (max(Sy)−min(Sy))/2

followed by the distance d, for which all the joints are contained inside the region,

as well as the aspect ration is close to one

dx = max |Sx−Rcx |

dy = max |Sy−Rcy |

d = max{dx,dy}+margin

where Sx, Sy are the vectors containing all the x and y coordinates of the silhouette

expressed in pixels and margin corresponds to the 25 pixels margin added around

the person.

Finally, the cropped region correspond to the rectangle whose top left (TL) corner

and bottom right (BR) corner coordinates are

RT L = (Rcx−d,Rcy−d)

RBR = (Rcx +d,Rcy +d)

assuming (0,0) is in the top-left corner of the image.

The result of applying this approach using as input the segmentation mask shown

in Fig 4.9, where S corresponds to the red region, is shown in Figure 4.10.

These cropped regions are then used as inputs to our multi-camera network which

estimates 2D body poses for each camera view and identifies the 3D pose most

consistent with the set of 2D poses. Finally, the 3D pose is projected into 2D for
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Figure 4.10: Cropping region from segmentation map

each camera view using the known camera calibration.

Data labeled by our approach is used to extend existing datasets. We simply treat

the predicted bounding-boxes, 2D landmarks and 3D reconstructions the same way

as existing ground truth training data.

4.4.2 SEMI-SUPERVISED LEARNING

Using the novel multi-camera pose estimator described in the previous Sec-

tion 4.2.2, we can now augment the corpus used for training the 2D pose detector

where, when no ground-truth data exists, we can train using a 3D pose that mini-

mizes the 2D re-projection error with respect to the 2D multi-view predictions.

This gives us a unified framework for training a CNN, where we solve for 2D pre-

dictors xc that take a set of images I f as input to minimize the following training
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loss:

argmin
x ∑

f∈S
∑

c∈C
`
(
xc(I f ),g( f ,c)

)
+ ∑

f∈U
∑

c∈C
`
(
xc(I f ),Pc

(
R(x(I f ))

))
(4.8)

where I f is a set of images associated with the full set of cameras for a particular

frame f and x(I f ) is the collection of 2D estimates of joint locations for each camera

c ∈ C , where C is the set of cameras of known calibration. This loss function can

be broken down into two main components:

• For supervised frames, S , that have 2D ground-truth of joint locations g( f ,c)

associated with them, we apply as loss a mse-loss function between predic-

tions and ground truth positions

• For unsupervised frames U , we induce the same loss between the projection

into a particular cameras viewpoint Pc(·) of a unified reconstruction R(x(I f ))

generated from the set of estimated 2D poses of across all cameras.

The definition of x is inherently somewhat involved, as it refers to a multistage

estimator that makes per-camera 2D estimates of joints which are fused together into

a coherent 3D pose at each stage, which is then refined in the 2D pose estimation

of the next stage. This refinement is performed per camera, and means that the

joint estimation of each joint in any camera is distinct from the projection of the 3D

estimated point.

The question is what form does R — a function of the 2D poses — need to have

to guarantee convergence? We first note that choosing R as an arbitrary regression

function that maps from 2D points to 3D (e.g. [82]) does not imply convergence.

The reason for this is that arbitrary regression functions are powerful enough to

correct for systematic biases in the 2D estimation, such as incorrectly offset points

or a shrinking bias that causes points to be estimated closer to the centroid than it

should be. Using such an R can lead to divergent estimates as on unsupervised data;

the neural network updates so that xc equals Pc(R(x(Ic))), leading to a new estimate

of R that drifts from its previous position.
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In contrast, if we choose R to be an implicit minimizer defined over a combination

of a re-projection loss and a regularization term i.e.

R(xc,z) = argmin`(xc,Pc(z))+ reg(z) (4.9)

with xc the image from camera c, Pc(.) the projection of the 3D pose z onto camera

c, and reg a regularizer that enforce bone length preservation. Optimizing on x is

guaranteed to converge as iteratively updating x using gradient descent and then

re-estimating for z equates to hill-climbing optimization where we jointly optimize:

min
x

(
∑

f∈S
∑

c∈C
`
(
xc(I f ),g f ,c

)
+ ∑

f∈U
min

z ∑
c∈C

`
(
xc(I f ),Pc

(
R(x(I f ),z)

)))
(4.10)

The challenge is that the estimates xc are sparse co-ordinates induced by taking the

argmax over a heatmap. Here we make use of a variant of the sub-gradient approach

of [16], and note that if xc is not in a valid location a sub-gradient of the argmax

can be obtained by decreasing the heatmap around one of its maximal values and

increasing it at any non-maximal location.

We choose to increase the heatmap at the point Pc(R(x(I f ))) as it drives convergence

faster towards a zero re-projection error. This is equivalent to the standard updates

of [15], where the update is the difference between current heatmap and a ground-

truth heatmap induced by the true 2D locations, but instead of using the true 2D

locations, we use the projection of the estimated 3D pose. As with [15, 16] to avoid

vanishing gradients this loss is imposed at all stages.
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4.5 EXPERIMENTAL EVALUATION

This section describes the various evaluation protocol used on the different perfor-

mance comparisons with other state-of-the-art approaches. Following, the recon-

structed poses are analyzed to asses the quality of the reconstructions.

Finally, an analysis over the loss function effects is provided.

4.5.1 EVALUATION PROTOCOLS

2D Evaluation: since the goal of the approach is 3D Human Pose Estimation, we

limit our evaluation of 2D performance to measuring the pixel distance of predicted

joints with their corresponding ground truth location. Therefore, what we refer to

as 2D pixel error is defined as:

error =
1
N

1
L

N

∑
n

L

∑
l
||P̂n

l −Pn
l ||2

where N is the number of frames, L is the number of joints, Pn
l is the ground truth

position of joint l for the n-th frame, and P̂n
l is its predicted location.

3D Evaluation: Several evaluation protocols have been followed by different au-

thors to measure the performance of their 3D pose estimation methods on the Hu-

man3.6M dataset.

Protocol 1, the most standard evaluation protocol on Human3.6M was followed

by [129, 66, 136, 68, 137, 86, 81]. The training set consists of 5 subjects (S1, S5,

S6, S7, S8), while the test set includes 2 subjects (S9, S11). The original frame rate

of 50 fps is down-sampled to 10 fps and the evaluation is on sequences coming from

all 4 cameras and all trials. The error metric is the Euclidean distance from the esti-

mated 3D joints to the ground truth, averaged over all 17 joints of the Human3.6M

skeletal model, without performing any data alignment.
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Protocol 2, followed by [6], it selects the same subjects for training and testing as

Protocol 1. However, evaluation is only on sequences from trial 1 and the origi-

nal video is not sub-sampled. The error metric used in this case is the the average

per-joint 3D error after aligning the reconstruction with the ground-truth using Pro-

crustes analysis, averaged over 14 joints.

4.5.2 QUANTITATIVE RESULTS

The comparison of the proposed multi-camera approach with other state-of-the-art

techniques (both monocular and multi-view) under protocol 1 is shown in Table

4.1. Our proposed approach outperforms monocular methods, reducing the error by

over 10 millimeters, and gives better results than the best multi-camera method of

Pavlakos et al. [110] with an improvement of more than 4 millimeters.

We also create a novel baseline based on generating monocular reconstructions from

each view using the method of Martinez et al. [82] and averaging them after align-

ment. [82] was chosen due to its great performance coming from the data pre-

processing step, which uses predicted 2D joint locations as input to estimate the 3D

pose. This performs almost as well as Pavlakos et al., and is reported in table 4.1 as

“Multi-view Martinez”.

Similarly, Table 4.2 shows a comparison with other state of the art approaches using

protocol 2, when the entire set of four camera views is used. The approach is

assessed for both skeleton definitions consisting of a total of 14 and 17 joints.

Having a multi-camera system as the one provided by the Human3.6M dataset (see

Sec 4.3), it is interesting to run the same set of experiments run earlier on a sub-set

of cameras, to identify how their position is affecting the overall results, shown in

Table 4.3.

It is particularly noticeable how some multi-camera placements are more effec-

tive than others, especially when using a small number of cameras (two in this
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experiment). When evaluating camera whose positions are opposite to each other

({cam1,cam4} and {cam2,cam3}), the performance drops.

4.5.2.1 Labeling data

Given the noticeable improvement in accuracy obtained by using multiple cameras

rather than just one, we have then assessed the ability of the proposed multi-view

3D human pose estimator to meaningfully label unlabeled data that can be used at

train time in order to achieve better performance.

First test consists in evaluating both 2D and 3D reconstruction errors when unla-

beled data are used during training of monocular 3D pose estimators. Specifically,

the approach proposed in Chapter 3 and the method introduced by Martinez et

al. [82] have been evaluated on a variety of experiments where the models were

trained using ground-truth training data provided by the Human3.6M dataset [129],

and additional unlabeled data (Subjects {S2,S3,S4}), automatically labeled as pre-

viously described in section 4.4. Results of the training are shown in Table 4.4. Note

that in both approaches, the original training hyper-parameters were used and the

respective models have been retrained using the augmented training data, without

performing any hyper-parameters tuning (results can be improved by performing

Monocular Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

LinKDE [129] 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3 151.6 243.1 162.1 170.7 177.1 96.6 127.9 162.1
Li et al. [66] - 136.9 96.9 124.7 - 168.7 - - - - - - 132.1 69.9 - -
Tekin et al. [136] 102.4 158.5 87.9 126.8 118.4 185.1 114.7 107.6 136.2 205.7 118.2 146.7 128.1 65.9 77.2 125.3
Zhou et al. [80] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Tome et al. [16] 64.9 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2 172.9 84.9 85.8 86.3 71.4 73.1 88.4
Pavlakos et al. [70] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Tekin et al. [69] 53.9 62.2 61.5 66.2 80.1 79.5 64.6 83.2 70.9 107.9 70.4 68.0 77.8 52.8 63.1 70.8
Katircioglu et al. [147] 54.9 63.3 57.3 62.3 70.3 77.4 56.7 57.1 79.0 97.1 64.3 61.9 67.1 49.8 62.3 65.4
Zhou et al. [73] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.15 66.05 51.4 63.2 55.3 64.9
Martinez et al. [82] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Multi-view Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Multi-View Martinez 46.5 48.6 54.0 51.5 67.5 70.7 48.5 49.1 69.8 79.4 57.8 53.1 56.7 42.2 45.4 57.0
PVH-TSP [109] 92.7 85.9 72.3 7 93.2 86.2 101.2 75.1 78.0 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3
Pavlakos et al. [110] 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 39.4 56.9
Ours 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8

Table 4.1: Evaluation of multi-view 3D pose estimator on Human3.6M dataset using Pro-
tocol 1 compared to other approaches.
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Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Akhter & Black [51] 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1
Ramakrishna et al. [50] 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3
Zhou et al. [79] 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7
Bogo et al. [6] 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Tome et al. [16] 14j - - - - - - - - - - - - - - - 79.6
Moreno-Noguer [83] 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Ours 14j 40.4 42.8 39.8 44.8 47.5 59.1 36.6 37.0 55.8 82.3 46.8 48.9 48.2 38.8 40.4 47.6

Pavlakos et al. [70] 17j - - - - - - - - - - - - - - - 51.9
Martinez et al. [82] 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ours 17j 38.2 40.2 38.8 41.7 44.5 54.9 34.8 35.0 52.9 75.7 43.3 46.3 44.7 35.7 37.5 44.6

Table 4.2: Evaluation of multi-view 3D pose estimator on Human3.6M dataset using Pro-
tocol 2 compared to other approaches. Comparison is shown for both skeleton
definitions (14 and 17 joints version)

Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Cam 1 2 56.9 60.6 53.6 57.3 62.7 78.5 49.9 52.2 74.2 114.5 60.2 65.9 59.7 55.0 57.6 64.24
Cam 1 3 55.6 58.2 54.8 60.9 66.4 81.5 54.4 53.6 80.6 125.8 63.0 65.2 62.5 55.9 60.1 66.70
Cam 1 4 68.9 71.4 63.5 82.8 82.5 109.5 70.4 78.7 102.4 130.2 76.1 77.8 73.1 64.2 68.8 81.18
Cam 2 3 69.8 72.9 63.9 83.1 72.9 101.4 66.9 60.8 112.4 123.7 74.2 79.1 71.9 63.6 69.3 79.37
Cam 2 4 50.8 63.8 49.3 56.6 57.9 78.1 47.0 49.7 65.5 113.0 56.0 66.1 63.5 58.1 57.4 62.41
Cam 3 4 49.9 59.2 50.7 59.2 61.2 76.8 47.4 52.0 81.2 111.3 59.9 63.4 62.0 53.7 56.1 63.33

Protocol 2 14j Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Cam 1 2 48.8 49.6 50.6 53.0 55.3 70.6 45.8 43.6 66.2 93.6 56.3 58.0 54.0 49.6 50.7 56.59
Cam 1 3 48.2 51.0 52.1 54.7 60.5 75.1 46.9 49.4 70.9 100.0 58.6 59.3 57.7 49.4 51.8 59.23
Cam 1 4 57.0 57.4 56.9 69.4 67.3 97.3 53.1 58.5 75.7 106.2 61.4 63.9 65.7 56.2 62.8 66.71
Cam 2 3 60.2 55.9 55.6 68.7 62.8 81.0 51.3 49.7 76.1 99.2 61.5 64.2 63.7 57.8 61.4 64.52
Cam 2 4 47.0 50.2 42.8 51.2 54.6 68.7 41.3 42.8 59.5 99.1 52.1 54.3 57.0 49.2 48.8 54.78
Cam 3 4 47.5 52.1 47.7 54.0 58.0 68.3 42.3 42.9 65.0 97.2 54.6 55.6 58.3 48.5 50.8 56.67

Protocol 2 17 j Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Cam 1 2 45.5 46.4 48.5 49.2 51.3 65.5 42.9 40.7 61.7 85.4 51.6 54.4 50.0 45.2 46.3 52.51
Cam 1 3 45.0 47.6 49.6 50.7 55.8 69.5 44.2 46.4 66.1 91.5 53.9 55.9 53.2 45.2 47.4 54.94
Cam 1 4 53.1 53.6 54.0 64.0 62.5 90.4 50.0 55.4 71.0 97.6 56.9 59.7 60.1 51.1 57.1 61.93
Cam 2 3 56.5 52.2 53.7 64.0 58.6 75.7 48.0 46.7 71.8 91.0 56.2 60.3 59.0 52.7 55.9 60.07
Cam 2 4 44.3 47.2 41.2 47.7 50.7 63.7 39.5 40.8 55.8 90.6 48.0 50.9 52.7 45.2 44.8 51.05
Cam 3 4 44.6 48.7 45.6 50.2 53.5 63.2 39.8 40.3 61.3 89.0 50.2 52.3 53.8 44.1 46.5 52.64

Table 4.3: Two camera evaluation on Human3.6M dataset

grid-search).

The authors of [82] no longer have access to the retrained stacked-hourglass 2D

networks that they take as an input, so we can not compute their 2D joint estimations

on the held-out unlabeled data. Instead we repeat their experiments, by training the

network using the 2D poses estimated by our monocular approach (see Chapter 3)

as input, and using these inputs to drive the 3D prediction. Without optimizing



Experimental evaluation 125

the hyper-parameters, this leads to a noticeable decrease in the performance of the

algorithm over that reported by their paper, even though our 2D pose estimator has

a lower 2D error than that of Martinez et al. reported in Tab 4.1 4.2.

Despite this, we still observe a substantial improvement in the 3D reconstruction

from using more data. Note that for this experiment, we do not update the 2D pose

estimations, and all improvement comes from the updated 3D estimator.

To illustrate that our method also improves 2D joint localization, we also retrain

our own monocular approach, where as an initial step in training the algorithm,

we computed a shape basis from MoCap data. This basis is not updated during

the end-to-end training of the pose estimator, and the network itself is trained to

improve 2D loss in joint predictions, returning a 3D pose as a side-effect of its 2D

pose computation. Although we could update the 3D basis using our newly labeled

data, we restrict ourselves to only updating the 2D pose predictor. As can be seen in

table 4.4, this leads to a significant improvement in 2D error, and a corresponding

reduction in the 3D error.

The noticeable improvement due to the newly labeled data, needs to be verified

further, by proving that this is also happening when using multi-view 3D pose esti-

mators. For this reason, the new multi-view architecture has been trained on a small

subset of the Panoptic Dataset (see Sec 4.3) as used as an initialization when further

training the model with a) Train-set (S) as ground truth data from the Human3.6M

Approach Experiment Human3.6M dataset ∆ %
Train Train + new data

Tome et al. [16] 3D error (P#1) 88.4 mm 84.4 mm 4.0 4.52
3D error (P#2) 70.7 mm 67.2 mm 3.5 4.95
2D error 9.5 pix 8.6 pix 0.9 9.47

Martinez et al. [82] 3D error (P#1) 75.8 mm 72.5 mm 3.3 4.35
3D error (P#2) 57.6 mm 55.9 mm 1.7 2.95

Table 4.4: Evaluation on Human3.6M dataset of monocular approaches with unlabeled data
used for training the models.
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Protocol 1 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

MONOCULAR with 3D supervision
LinKDE [129] 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3 151.6 243.1 162.1 170.7 177.1 96.6 127.9 162.1
Li et al. [66] - 136.9 96.9 124.7 - 168.7 - - - - - - 132.1 69.9 -
Tekin et al. [136] 102.4 158.5 87.9 126.8 118.4 185.1 114.7 107.6 136.2 205.7 118.2 146.7 128.1 65.9 77.2 125.3
Zhou et al. [80] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0
Pavlakos et al. [70] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Tekin et al. [69] 53.9 62.2 61.5 66.2 80.1 79.5 64.6 83.2 70.9 107.9 70.4 68.0 77.8 52.8 63.1 70.8
Katircioglu et al. [147] 54.9 63.3 57.3 62.3 70.3 77.4 56.7 57.1 79.0 97.1 64.3 61.9 67.1 49.8 62.3 65.4
Zhou et al. [73] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.15 66.05 51.4 63.2 55.3 64.9
Martinez et al. [82] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

MULTI-VIEW
PVH-TSP [109] 92.7 85.9 72.3 7 93.2 86.2 101.2 75.1 78.0 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3
Pavlakos et al. [110] 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 39.4 56.9

Ours
Train-set (S) 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8
Train-set (U) 53.5 60.8 53.8 60.5 69.0 71.9 46.0 57.0 87.2 129.6 66.2 64.4 67.0 58.3 62.0 67.7
Unlabeled-set (U) 56.1 63.1 56.7 63.3 71.7 75.1 49.1 59.3 94.0 140.1 69.5 67.1 69.7 60.6 67.9 71.4
Train-set (S) + Unlabeled-set (U) 43.9 50.0 41.7 46.8 49.1 61.3 36.2 39.2 64.5 100.4 49.6 50.2 47.9 41.0 43.1 51.6
Train (S) + Unlabeled (U) + Evaluation (U) 42.7 46.6 41.8 47.3 51.2 61.9 38.3 44.6 65.0 90.0 50.6 49.5 49.9 43.1 44.3 51.4

Table 4.5: Evaluation of the proposed multi-view 3D pose estimator against its competitors
on the Human3.6M dataset. The reported 3D pose error results are expressed in
mm using the metric defined in Protocol 1. All methods in the top part of the
table are monocular approaches supervised with ground truth 3D poses, while
[109, 110] and Ours are multi-camera approaches. U and S stand for Unsu-
pervised and Supervised respectively; where not indicated, assume supervised
training.

train-set, b) Train-set (U) as data from the Human3.6M train-set labeled using our

labeling process, c) Unlabeled-set (U) as data from the Human3.6M original test-set

labeled using our labeling process, and finally d) as a combination of labeled and

unlabeled sets.

The results of these trained models are shown in Table 4.5 and Table 4.6 where they

are assessed using protocol 1 and protocol 2 respectively.

We assess again the effect of the labeled data on the monocular approach described

in Chapter 3 considering a different amount of labeled data. Results are shown in

Table 4.7.

4.5.2.2 Loss function

Finally, we explore the importance of the changes to the pose estimator made in

Sec 4.2.1; particularly the use of a more robust Huber loss in place of the squared
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Protocol 2 Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Akhter & Black [51] 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1
Ramakrishna et al. [50] 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3
Zhou et al. [79] 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7
Bogo et al. [6] 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Tome et al. [16] 14j - - - - - - - - - - - - - - - 79.6
Moreno-Noguer [83] 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0
Ours 14j

Train-set (S) 40.4 42.8 39.8 44.8 47.5 59.1 36.6 37.0 55.8 82.3 46.8 48.9 48.2 38.8 40.4 47.6
Train-set (U) 50.2 56.1 52.3 56.1 66.1 69.9 42.8 46.9 70.9 112.1 61.4 62.7 63.4 55.0 58.6 62.4
Unlabeled-set (U) 52.5 58.7 55.6 59.3 68.6 72.0 46.9 48.9 75.2 118.5 65.0 64.3 66.7 58.0 64.2 65.7
Train (S) + Unlabeled (U) 41.0 45.0 40.4 43.5 46.8 58.5 34.5 37.0 62.4 94.8 48.6 46.5 46.3 36.9 37.6 48.7
Train (S) + Unlabeled (U) + Evaluation (U) 39.1 41.8 40.5 42.9 47.8 58.1 33.8 37.1 56.2 80.5 46.4 47.7 47.9 38.3 39.9 46.9

Pavlakos et al. [70] 17j - - - - - - - - - - - - - - - 51.9
Martinez et al. [82] 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Ours 17j

Train-set (S) 38.2 40.2 38.8 41.7 44.5 54.9 34.8 35.0 52.9 75.7 43.3 46.3 44.7 35.7 37.5 44.6
Train-set (U) 46.5 51.5 49.3 51.5 61.0 64.9 39.7 43.9 67.0 101.6 56.1 59.3 57.7 49.4 53.2 57.5
Unlabeled-set (U) 48.2 53.7 52.0 54.2 63.1 67.0 43.1 46.0 71.1 107.1 59.2 60.4 60.5 51.9 58.0 60.4
Train (S) + Unlabeled(U) 38.3 41.7 38.4 40.3 43.2 54.5 32.2 35.6 57.7 86.5 44.6 44.5 42.7 33.7 34.6 45.1
Train (S) + Unlabeled (U) + Evaluation (U) 37.1 39.5 39.6 40.1 45.0 54.2 32.2 35.1 53.1 74.3 43.2 45.8 44.6 35.3 37.0 44.1

Table 4.6: Evaluation of the proposed multi-view 3D pose estimator against other ap-
proaches using evaluation Protocol 2 on the Human3.6M dataset. Note that all
other methods are monocular. The 14 j/17 j annotation indicates the number of
joints used in evaluation.

Training 2D Error 3D Protocol 2 14j

Panoptic(S) 25px 104.8 mm
Panoptic init. + Human3.6M train(S) 8.8 px 48.7 mm
Panoptic init. + Human3.6M train (S) + unlabeled. (U) + eval(U) 8.17 px 44.1 mm

Table 4.7: Evaluation of the monocular approach (see Chapter 3) using different amount of
labelled data. Note: since Panoptic 2D labels are a sub-set of the Human3.6M’s
2D poses, using only Protocol 2 on 14 joints. U and S stand for Unsupervised
and Supervised respectively.

Frobenius norm, (Eq. 4.5 and Eq. 4.6). The reconstruction error for different

variants of our approach is shown in Table 4.8.

Huber loss (2 cameras) shows the mean and standard deviation of the reconstruction

using only a pair of cameras at right angles with one another. GT Orthographic

Triangulation shows the error due to the use of an orthographic camera, i.e. the the

reconstruction error given perfect detections.

Although, many works make use of the Huber loss as a more stable approximation

of the `1 norm, this is not the case for us. Upon inspection, we found that the

optimal choice of ε that resulted in the lowest 3D reconstruction error treated half
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Formulation Error Protocol 1 Error Protocol 2

Squared Frobenius (no averaging) 59.6 mm 51.1 mm
Squared Frobenius 59.4 mm 51.8 mm
Huber loss 52.8 mm 44.6 mm
Huber loss (2 cameras) 64.2 52.8

GT Orthographic Triangulation 27.9 mm 20.7 mm

Table 4.8: Pose estimator variations

of the joints with `1 norm and the other half with the squared Frobenius norm which

confirms that the Huber loss is effectively used to weigh the relevance of each joint

on a case by case basis.

A small improvement can also be seen from marginalizing over the rotations, al-

though this modification primarily improves the stability of reconstructions rather

than reducing the overall error. Finally we show how much error can be attributed

to the camera model, by triangulating ground-truth detections under orthographic

assumptions. This is reported as “GT Orthographic Triangulation”.

4.5.3 QUALITATIVE RESULTS

Figure 4.11 shows some sampled 2D and 3D poses with the respective reconstruc-

tion error for some multi-camera frames taken from the test-set of Human3.6M

dataset. The sorted error plot is based on sampling the error every 10th frame of

trial 1. Ground-truth reconstructions are given in blue, and the rows labelled proto-

col 1 and protocol 2 both show the same reconstructions in red, however protocol

1 shows the reconstruction unaligned with the ground-truth, and protocol 2 shows

the reconstruction aligned to the ground-truth.

A similar experiment is in Figure 4.12 where the difference between fully-

supervised and semi-supervised performance is shown.

An additional qualitative result that is expected but equally important to demonstrate
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Figure 4.11: Multi-view 3D pose reconstructions on Human3.6M dataset

Figure 4.12: Supervised vs. Semi-Supervised multi-view reconstructions

is the visual difference between predictions computed using the multi-view model

versus predictions using a monocular approach. Please refer to Figure 4.13.
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Figure 4.13: Single vs. Monocular reconstruction against ground truth pose.
Notice how multi-view approach produces a more accurate pose.

Finally, in Figure 4.14 we showcase how the multi-view approach is able to deal

with multiple mispredictions on one or multiple joints simultaneously. Particularly,

notice how in figure 4.14a) and 4.14b) can deal with one or even two cameras failing

in predicting the correct joint location, and still be able to predict the correct pose

(pose with a small error compared to the ground truth one). In 4.14c) three out of

four cameras wrongly estimate the joint and therefore the left arm is not correctly

estimated in 3D, as one would expect.
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Figure 4.14: Robustness to mispredictions.
Notice how multi-view approach produces a more accurate pose.

4.6 CONCLUSION

In this chapter, inspired by the work by [16, 15, 110] we have presented a novel “hy-

brid pipeline approach” for marker-less multi-camera motion-capture with a multi-

stage architecture that allows us to recover from initial misdetections, and still make

use of image cues in locating joints in subsequent stages.

We have demonstrated the clear benefits and robustness of our approach by no-

ticeably improving over existing multi-view marker-less motion capture system,

achieving state-of-the-art results that allow this approach to be used in more accu-

rate 3D human pose detection applications than what it could be achieved using

monocular approaches.

Finally, we have demonstrated how such method can be used to improve the per-

formance of “standard” monocular approaches by labeling additional data that can

be used at running time, with the advantage of decreasing the reconstruction error

while at the same time using a single monocular approach at inference time.



CHAPTER 5

EGOCENTRIC HUMAN POSE ESTIMATION

5.1 OVERVIEW

The advent of VR and AR technologies have led to a wide variety of applications

in areas such as entertainment, communication, medicine, CAD design, art, and

workspace productivity. These technologies mainly focus on immersing the user

into a virtual space by the use of a head mounted display (HMD) which renders

the environment from the very specific point of view of the user. However, current

solutions have been focusing so far on the video and audio aspects of the user’s

perceptual system, leaving a gap in the touch and proprioception senses. Partial

solutions to the proprioception problem have been limited to hands whose positions

are tracked and rendered in real time by the use of controller devices. The 3D pose

of the rest of the body can be inferred from inverse kinematics of the head and hand

poses [148], but this leads to inaccurate estimates of the body configuration with

a large loss of signal which impedes compelling social interaction [149] and even

lead to motion sickness [150].

In this paper we present a novel approach for full-body 3D human pose estimation

from a monocular camera installed on a HMD (see Fig. 5.1). In our novel solution,

the camera is mounted on the rim of a HMD looking down, effectively just 2.1 cen-

timeters away from an average size nose. With this unique camera viewpoint, most

of the lower body appears self-occluded (see Fig. 5.2). In addition, the strong per-
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Figure 5.1: Egocentric Human Pose Estimation: (a) external camera viewpoint showing
a synthetic character wearing the headset; (b) example image rendered from
the egocentric camera perspective with the person placed in a photo-realistic
environment; (c) 2D and (d) 3D poses estimated with our algorithm; (e) real
image acquired with our HMD-mounted camera with predicted 2D heatmaps;
and (f) the estimated 3D pose, showing good generalization to real images.

spective distortion, due to the fish-eye lens and the camera being so close to the face,

results in a drastic difference in resolution between the upper and lower body (see

Fig. 5.3). Consequently, estimating 2D or 3D pose from images captured from this

first person viewpoint is considerably more challenging than from the more stan-

dard external perspective and therefore even state of the art approaches to human

pose estimation [151] fail on our input data.

Our work tackles the two main challenges described above: i) given the unique

visual appearance of our input images and the complete lack of training data for

our specific scenario of a HMD mounted camera we have created a new photo-

realistic synthetic dataset for training with both 2D and 3D annotations; and (ii)

to tackle the challenging problem of self-occlusions and difference in resolution
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Figure 5.2: Example images from our Ego-HMD Dataset showing the wide variety of char-
acters, clothing, backgrounds and poses and the high quality of the renders. Our
Ego-HMD Dataset contains a total of 383000 images and will be made publicly
available.

between lower and upper body we have proposed a new architecture which takes

into account uncertainty in the estimation of body joint positions.

More specifically, our solution adopts a two step approach. Instead of regressing

directly the 3D pose from input images, we first train a model to extract the 2D

heatmaps of the body joints and then regress the 3D pose via a dual-branch auto-

encoder. The auto-encoder helps to hallucinate accurate joint poses for occluded

body parts or those with high uncertainty. Both sub modules are first trained inde-

pendently and finally end-to-end as the resulting network is fully differentiable.

The training is performed on real and synthetic data. The synthetic dataset was

created with a large variety of body shapes, environments, and body motions, and

will be made open access to the community for future research.

Finally, this proposed solution has deep impacts in human-robot interaction tasks

since, unlike approaches that rely on single or multiple external cameras, it is more

portable, it is able to reconstructs poses with a significant amount of occlusion and

self-occlusion: something that external cameras cannot compare with.
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Figure 5.3: Visualization of different poses with the same synthetic actor.
Top: poses rendered from an external camera viewpoint. The blanked out body
parts are those that would not be visible from the egocentric perspective.
Bottom: the same poses rendered from the egocentric camera viewpoint. The
color gradient indicates the density of image pixels for each area of the body:
green indicates higher pixel density, whereas red indicates lower density. This
figure illustrates the most important challenges faced in egocentric human pose
estimation: severe self-occlusions, extreme perspective effects and drastically
lower pixel density for the lower body.

5.1.1 CONTRIBUTIONS

Novel modular egocentric encoder-decoder network for egocentric full-body 3D

pose estimation from monocular images, captured from a camera equipped VR

headset.The proposed approach firstly regresses 2D heatmaps that encode body joint

positions, and then estimates the corresponding 3D joint locations via a novel multi-

branch auto-encoder network. The main branch is responsible of regressing 3D

poses from the pose embedding, while the additional auxiliary branches reconstruct

information that helps to shape the latent space. The redundancy in this information

enforces the latent vector to encode the uncertainty of the 2D joint estimates, as

well as to preserve the limb orientation information. Both modules are first trained

independently and finally end-to-end as the resulting network is fully differentiable.

Versatile 3D pose representation: the modular design of our proposed multi-

branch auto-encoder architecture allows us to easily change the representation of

the pose depending on the task at hand: from 3D joint location estimation to lo-
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cal joint rotations that can be used to drive a virtual character based on the user’s

movements.

Synthetic dataset: a unique photo-realistic large-scale training corpus, composed

of 383K frames rendered from a novel viewpoint (a fish-eye camera mounted on a

VR display). It has superior photo-realism and a larger variability in the data with

respect to the only other available monocular egocentric dataset Mo2Cap2 [124].

This dataset is already publicly available to promote progress in the area of egocen-

tric human pose capture.

Performance analysis for egocentric pose estimation: analysis of different well-

known 2D pose estimators combined with the proposed multi-branch auto-encoder

architecture to measure their performance under different conditions. Furthermore,

we explore how the architectures can be tailored for better pose reconstructions

when using both synthetic and in-the-wild input images.

We conducted quantitative and qualitative evaluations on both synthetic and real-

world benchmarks with ground truth 3D annotations, showing that our approach

outperforms previous egocentric state-of-the-art Mo2Cap2 [124] by more than 25%.

In addition, we achieve state-of-the-art performance on the more standard front-

facing cameras 3D human pose reconstruction scenario, without any architec-

ture modifications, performing second best after [152] on the Human3.6M bench-

mark [129].
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5.2 3D POSE DETECTION FRAMEWORK

The problem of egocentric human pose estimation differs considerably from normal

3D human pose estimation approaches for the following reasons:

• Standard approaches assume front facing cameras. The person is most of the

time entirely captured and all parts of the body have a uniform pixel density

whereas in the egocentric scenario, the various parts of the body are captured

with quite different coverage areas in the image and not always within the

field of view (see Fig. 5.3).

• Front-facing cameras capture bodies with little self-occlusion. On the con-

trary, form the egocentric perspective the lower-body areas are self-occluded

most of the time making the problem much harder to solve and requiring a

strong inference machine to deal with the problem. An example of the sever-

ity of this problem is shown as white areas in the top row of Fig. 5.3.

• Standard approaches usually use pinhole camera models with relatively low

lens distortion. The subject usually also stands at a relatively large distance al-

lowing to even assume orthogonal projection. Instead, egocentric approaches

use wide or fisheye lenses to capture as much of the body as possible to in-

crease the observability of the body parts (see bottom row of Figure 5.3).

To tackle the problem, the proposed solution involves a deep neural network with

two main sub-modules: a) a 2D-heatmap regressor, and b) a novel dual-branch

auto-encoder that outputs 3D poses, using the predicted heatmaps as input, while

enforcing the latent vector to encode the uncertainty information in the body joints.

We show that this strategy not only leads to improved accuracy in the 3D pose esti-

mates (particularly in the lower body) but also to better generalization to real data.

Due to the complete lack of visual data with ground truth for training and evaluation,

we present the Ego-HMD Dataset, a new large-scale photo-realistic open-access

synthetic dataset.
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Our experimental results demonstrate that our novel architecture provides substan-

tial improvements over a 2D-to-3D state-of-the art and in-the-wild input images

monocular human pose estimation approach with good qualitative results on real

data captured from a camera installed on a VR headset 2.1cm away from the face.

In the next sections each of the individual modules of the proposed architecture will

be described in details.

5.2.1 ARCHITECTURE

Our proposed architecture, shown in Fig. 5.4, is a two step approach with two mod-

ules. The first module detects 2D heatmaps of the locations of the body joints in

image space using a ResNet [153] architecture. The second module takes the 2D

heatmaps as inputs and regresses the 3D coordinates of the body joints using a novel

dual branch auto-encoder.

The most important advantage of this pipeline approach, which decouples 2D and

3D estimation, is that each module can be trained independently, according to the

available training data. For instance, if a sufficiently large corpus of images with

3D annotations is unavailable, the 3D lifting module can be trained using 3D mo-

cap data and projected heatmaps without the need of paired images. Once the two

modules are pre-trained the entire architecture can be fine-tuned end-to-end since it

is fully differentiable.

5.2.2 2D POSE DETECTION

Given an RGB image I ∈R368×368×3 as input, the 2D pose detector has the purpose

of identifying 2D poses, represented as a set of heatmaps HM ∈R47×47×15, one for

each of the body joints.

For this task we have used a standard ResNet 101 [153] architecture, where the last

average pooling and fully connected layers have been replaced by a deconvolutional

layer, with kernel size = 3 and stride = 2. The weights have been randomly initial-
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Figure 5.4: Our novel two-step architecture for egocentric 3D human pose estimation has
two modules: a) the 2D heatmap estimator, based on ResNet101 [153] as the
core architecture; b) the 3D lifting module takes 2D heatmaps as input and is
based on our novel dual branch auto-encoder.

ized using Xavier initialization [154]. The model was trained using normalized

input images, obtained by subtracting the mean value and dividing by the standard

deviation, and using the MSE of the difference between the ground truth heatmaps

and the predicted ones as the loss:

Loss2D = mse(HM, ˆHM) (5.1)

5.2.3 2D-TO-3D MAPPING

The 3D pose module takes as input the 15 heatmaps computed by the previous

module and identifies the final 3D pose P ∈ R16×3. Note that the number of output

3D joints is 16 since we include the head, whose position cannot be estimated in the

2D images since the person is wearing a headset; but can be regressed in 3D.

In most pipeline approaches the 3D lifting module typically takes as input the 2D



3D Pose detection framework 140

coordinates of the detected joints. Instead, similarly to [155], our approach re-

gresses the 3D pose from heatmaps, not just 2D locations. The main implication is

that the heatmaps carry important information about the uncertainty of the 2D pose

estimates.

The main novelty of our architecture (see Fig. 5.4), and where it departs from other

human pose estimation models, is that we ensure that this uncertainty information is

not lost. We use an auto-encoder with a dual-branch decoder that ensures the latent

vector encodes information about the uncertainty in the joints. While the encoder

takes as input a set of heatmaps, and encodes them into a low-dimensional vector ẑ,

the decoder has two branches — one that regresses the 3D pose from ẑ and another

that reconstructs the input heatmaps. The purpose of this branch is to force to map

back the latent vector into the probability density function of the solution found by

the 2D regressor, e.g., the heatmaps.

The overall loss function for the auto-encoder becomes

LossAE = ||P− P̂||2 +λhm|| ˆHM− ˆ̃HM||2 +λcR(P, P̂) (5.2)

where P̂ is the pose predicted by the decoder and P the ground truth; ˆ̃HM is the set of

heatmaps regressed by the decoder from the latent space and ˆHM are the heatmaps

regressed by ResNet (see Sec. 5.2.2). Finally R is an additional loss operating on

the poses only R(P, P̂) = λθ θ(P, P̂)+λLL(P, P̂) with

θ(P, P̂) =
L

∑
l

Pl · P̂l

||P|| ∗ ||P̂l||

L(P, P̂) =
L

∑
l
||Pl− P̂l||

corresponding to the cosine-similarity error and the limb-length error, with Pl ∈ R3

the lth limb of the pose.
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Figure 5.5: t-SNE plot showing projections of the training data mapped on the latent space
with each color representing a different character, when: a) the auto-encoder
consists of a single decoder; or b) the decoder has a second branch as regular-
izer used only during training. The dual-branch architecture generates a much
better distributed latent space that solves generalization issues.

Single vs. double branch decoder: Visualizing the reconstructed poses, it is clear

that the single-branch approach is failing mainly in reconstructing the lower body,

failing to detect the identity of the actors (set of limb lengths), and as a consequence

also the position of the lower joints.

To better understand the effect of the second branch in the auto-encoder, a better

and more in depth analysis over the latent space has to be performed to understand

if the better results comes from an expected behaviour.

Figure 5.5 shows further justification for our proposed dual-branch decoder. The

plots show the distribution of training poses after mapping them into the latent space

and projecting in 2D using t-SNE, in two cases: a) when the AE was trained with

a single-branch encoder, or b) when the AE was trained with the proposed dual-

branch architecture. Here the visualization of the distributions per character: each

color represent a different character.

Quantitative results of the ablation study are shown in Sec. 5.4.2.
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Figure 5.6: Egocentric pose estimation architecture extended to include rotation pose rep-
resentation. A new decoder branch is introduced to be able to change the pose
representation without the need to re-train the model and to guarantee even
better smoothness of the learned latent space.

It is clear that forcing the latent space to learn to embed the uncertainty of the 2D

estimates, results in a much better distributed space, leading to better generaliza-

tion than the single-branch architecture (as numerically demonstrated in Sec. 5.4.2)

where we found that the average 3D error in the pose reconstructions is more than

halved when the second branch is added to the decoder.

When looking at Image (b) of Figure 5.5 some “string-like” shapes can be seen in

the distribution. After inspection (see results in Sec 5.4.7) of the latent space with

the related poses, it is possible to see that they corresponds to poses in which the

person is staying in a steady pose and only one of the limbs is moved.

5.2.4 POSE ROTATION REPRESENTATION

The architecture definition visualized in Fig. 5.4 can be slightly modified to extend

the capabilities of the model in representing poses, as shown in Fig. 5.6. Noticeably,

the architecture is very similar with the only difference of a third branch in the

decoder section where the rotation representation is now an additional output.

Due to this new addition, the loss is updated as follows:
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LAE = λp(||P− P̂||2 +W (P, P̂))+

λr||FK(R̂)− P̂)||2 +

λhm||ĤM− H̃M||2 (5.3)

with P the ground truth; R̂ the predicted local joint rotations and FK(R̂) the func-

tion that estimates joint positions by performing differentiable forward kinematics

using predicted rotations; H̃M is the set of heatmaps regressed by the decoder from

the latent space and ĤM are the heatmaps regressed by 2D pose estimator module.

Different local joint rotation representations were tested and ultimately a Quater-

nion representation was chosen due to the stability of the rotations during training,

leading to more robust models. The rotation branch also helps generating better

results as shown in Sec. 5.4.2 with smoother transitions on consecutive frames on

poses estimated frame-by-frame.

All the losses and regularizers previously defined and not specified in this section

remain the same.

5.2.5 IMPLEMENTATION DETAILS

The model has been trained on the entire train-set of our custom dataset described

in Sec 5.3 for 3 epochs, with a learning rate of 1e−3 using batch normalization on

a mini-batch of size 16. The deconvolutional layer used to identify the heatmaps

from the features computed by ResNet has kernel size = 3 and stride = 2. The

convolutional and deconvolutional layers of the encoder have kernel size = 4 and

stride = 2. Finally, all the layers of the encoder use leakly ReLU as activation

function with 0.2 leakiness.

The λ weights used in the loss function were identified through grid search and set

to λhm = 10−3, λc = 10−1, λθ = 10−2 and λL = 0.5.

Finally, the model has been trained from scratch with Xavier weight initializer.
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5.3 DATASET

Data driven applications like Deep Learning approaches require a large amount of

data to work with. The larger the dataset the better the model can learn how to

perform a specific task.

All available datasets for 3D Human Pose Estimation have been generating under

the condition that the camera/all the cameras are statically placed in an environment

pointing towards the person, such that the person contained in the images is most of

the time entirely captured and all body parts have a uniform pixel density.

To better understand this, Fig 5.7 shows the camera placement as well as an example

of frame contained in the Human3.6m dataset described in the previous chapters

(see Sec 3.3 and Sec 4.3).

5.3.1 XR-EGOPOSE DATASET

In the design of the dataset, we were focused on scalability, with augmentation of

characters, environments, and lighting conditions. A rendered scene is randomly

generated from the total number of characters, environments, lighting rigs, and an-

imation actions that are then re-targeted from mocap data. The headset on which

the camera is mounted can be randomly offset and re-positioned for each character

during this generation process. Figure 5.8 shows some sampled characters taken

Figure 5.7: Example of dataset assuming front facing cameras: a) camera placement; b)
image capture from one of those cameras.
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Figure 5.8: Sample of characters generated with randomly selected scenes and lighting
conditions from the xR-EgoPose dataset. Notice the data diversity in terms
of skin color, illumination, clothing, environments and actions.

from the generated dataset.

During character creation, from a single average character we generate additional a)

skinny short, b) skinny tall, c) full short and d) full tall different versions. The height

distribution of each of the characters can be seen in Fig 5.9. This is to improve the

diversity of body types and occlusion areas from a single camera perspective.

Skin: we started with a diverse set of skin colors from the initial set of scanned

actors. Color tones include white (Caucasian, freckles or Albino), light-skinned Eu-

ropean, dark-skinned European (darker Caucasian, European mix), Mediterranean

or olive (Mediterranean, Asian, Hispanic, Native American), dark brown (Afro-

American, Middle Eastern) and black (Afro-American, African, Middle Eastern).

We also built random skin tone parameters into the shaders of each character used

with the scene generator.

Clothing: we focused on silhouettes, textures, local colors. Clothing types (mod-

eled by an artist) include Athletic Pants, Jeans, Shorts, Dress Pants, Skirts, Jackets,

T-Shirts, Long Sleeves, Tank Tops. Various shoes including, Sandals, Boots, Dress

Shoes, Athletic Shoes, Crocs.

Actions: the characters included in the dataset perform a variety of actions that
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have been clustered to nine broad classes: Gaming, Gesticulating, Greeting, Lower

(body) stretching, Patting, Reacting, Talking, Upper (body) stretching and Walking.

Images: we rendered a total of 383 thousand 1024× 1024 fisheye 16-bit images

sampled at a rate of 30fps. Rgb, depth, normals, body segmentation, and pixel

world position images are generated for each frame, with the option for exposure

control for augmentation of lighting.

A json file is provided for each frame including joint positions in world space, height

of the character, environment, camera pose, body segmentation id, and animation

rig.

In addition to the render scene generator we built a post composite process for

adding 3D decals, which consists into a material projected onto other geometry

used to add variety to a scene. This means we can perform this operation to already

rendered scenes for clothing augmentation without having to re-render the entire

scene and decreasing the render time by a factor of 100.

Overall quality of the data was optimized for render times targeted under 30s on a

Titan X GPU, or 130s 12 core CPU per frame. The characters were created initially

with global custom shader settings applied across clothing, skin, and lighting of

environments for all rendered scenes. This was to keep things normalized and to

maintain a physically based rendering setup.

5.3.1.1 Properties

The dataset has a total size of 383 thousand frames, with 23 male and 23 female

characters, divided into three sets: Train-set with size 252K frames; Test-set with

size 115K frames; and the Validation-set of size 16K frames.

The gender distribution in the sets is the following one: 13, 7 and 3 males and 11,
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Figure 5.9: Distribution of heights in the dataset for the different actors; sorted from short-
est to tallest.

Action N. Frames Size Train Size Test

Gaming 24019 11153 4684
Gesticulating 21411 9866 4206
Greeting 8966 4188 1739
Lower Stretching 82541 66165 43491
Patting 9615 4404 1898
Reacting 26629 12599 5104
Talking 13685 6215 2723
Upper Stretching 162193 114446 46468
Walking 34989 24603 9971

Table 5.1: Total number of frames per action and their distribution between train and test
sets.

5, and 3 females respectively for train, test and validation set.

Table 5.1 provides a detailed description about how the dataset has been partitioned

according to the different actions.

Both quantitative and qualitative results are shown in Sec. 5.4.
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5.3.2 XR-EGOPOSER DATASET

The ∼ 10K frames of our small scale real-world data set were captured from a

fish-eye camera mounted on a VR HMD worn by three different actors wearing

different clothes, and performing 6 different actions. The ground truth 3D poses

were acquired using an internal custom mocap system. The network was trained on

our synthetic corpus (xR-EgoPose) and fine-tuned using the data from two of the

actors. The test set contained data from the unseen third actor.

5.3.3 EGOCAP DATASET

A competitor egocentric dataset working in different conditions than our has been

introduced by Rhodin et al. [122] called EgoCap.

This is a realistic dataset annotated with the joint locations of a kinematic skeleton

and other body parts such as the hands and feet, whose camera setup is shown in

Figure 5.10.

To avoid the tedious and error-prone manual annotation of locations in thousands of

images, the authors use a state-of-the-art marker-less motion capture system (Cap-

tury Studio of The Captury) to estimate the skeleton motion in 3D from eight sta-

tionary cameras placed around the scene. The skeleton joints are then projected into

Figure 5.10: Left) EgoCap [122] dataset camera setup. A different camera configuration
has been mounted on Oculus goggles in a similar setup; Right) Camera per-
spective sample.
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the fisheye images of their head-mounted camera rig.

The authors mention that several videos were recorded capturing eight subjects per-

forming various motions in a green-screen studio. For the training set, chroma

keying the background of each video frame has been replaced with a random, floor-

related image downloaded from Flickr.

In addition, data augmentation is performed by changing the appearance of subjects,

varying the colors of clothing, while preserving shading effects, using intrinsic re-

coloring.

The resulting dataset consists of a train-set containing approximately 75.000 six-

subjects annotated fisheye images. Two additional subjects are captured and pre-

pared for validation purposes.

5.3.3.1 Comparison with xR-EgoPose dataset

Due to the nature of this dataset, it is natural to ask the set of differences that distin-

guish this dataset from the former one (xR-EgoPose dataset).

Unlike this dataset, our xR-EgoPose dataset is monocular only, for which the 3D

pose inference is performed using a single camera. Furthermore, the distance of

the camera to the character face is dramatically different making the problem way

harder to solve, due to the increasing about of body self-occlusion.

A good visual interpretation of this is shown in Figure 5.11, where a side-by-side

comparison of the camera point of view between these two dataset is highlighted.

5.3.4 MO2CAP2 DATASET

A competitor egocentric dataset has been introduced in Mo2Cap2 [124], which has

been built on top of the large scale synthetic human SURREAL dataset [143], de-

signed specifically for their approach where a camera is mounted on a baseball cap,
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Figure 5.11: Camera perspective comparison between EgoCap and xR-EgoPose datasets.
Our dataset camera position generates more body self-occlusions which re-
sults in more challenging predictions.

Figure 5.12: Mo2Cap2 [124] egocentric approach camera setup.

approximately 8 cm away from the nose, see Figure 5.12. Such camera configura-

tion results in a lower level of self-occlusion due to the larger distance of the camera

to the nose.

They animate characters using the SMPL body model [88] with uniformly sampled

motions from the CMU MoCap dataset [156]. Body textures are chosen randomly

from the texture set provided by the SURREAL dataset [143].
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A total of 530,000 images were rendered, which encompass around 3000 different

actions and more than 700 different body textures. Additionally, for improving

realism, there is a process which tries to mimic the camera according to both the

light condition and the background of the captured real world. Some sample frames

are shown in Figure 5.13.

Figure 5.13: Mo2Cap2 [124] sampled frames from the synthetically generated dataset.

5.3.4.1 Details

Images are rendered from a virtual fisheye camera attached to the forehead of the

character at a distance similar to the size of the brim of the used real world baseball

cap. To this end, they calibrate the real world fisheye camera using the omnidi-

rectional camera calibration toolbox ocamcalib and apply the intrinsic calibration

parameters to the virtual camera.

The characters are rendered using a custom shader that models the camera distortion

of a fisheye camera. Note that the camera position with respect to the head might
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change slightly, due to the camera movements and varying wearing angles and po-

sitions of the cap. To simulate this effect, the authors add random perturbation to

the virtual fisheye camera position.

Finally, random spherical harmonics illumination is used with a special parameter-

ization to ensure a realistic top down illumination.

All images are augmented with the backgrounds chosen randomly from a set of

more than 5000 indoor and outdoor ground plane images captured by our fisheye

camera. To gather such background images, a fisheye camera has been attached to

a long stick, in such a way of obtaining images that do not show the person holding

the camera.

5.3.4.2 Comparison with xR-EgoPose dataset

Due to the nature of this dataset, it is natural to ask the set of differences that distin-

guish this dataset from the former one (xR-EgoPose dataset).

Apart from the obvious different camera placement, which is a non-trivial differ-

ence that consequently makes the problems harder to solve mainly due to the larger

amount of self-occlusion, both datasets consists of a set of synthetically generated

images. The difference is that the former dataset renders scenes in which the char-

acter is part of it, whereas the latter only renders the character which is then added

to the image and adjusted according to the environment. The solution implemented

in our dataset (Ego-HMD) has the significant effect of generating shadows both

in the environment and on the character that can greatly affect the difficulty of the

task. This statement can be quantitatively verified in the Experimental section 5.4.

To better illustrate this, see Figure 5.14, where we show two different frames rep-

resenting a single character wearing the same clothes, placed in the same environ-

ment, and as it is possible to see hot the shadow changes. Since the second pose

is facing the right part of the body towards the window, the left part becomes more
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challenging to correctly predict. These kind of effects is what is needed in order to

have a real life application that works under all different conditions.

Finally, the last and most important characteristic that differentiates the two datasets

is the quality of the synthetic images. A side by side comparison is shown in Fig-

ure 5.15.

Figure 5.14: Shadow comparison between two poses with a character wearing the same
clothes in the same environment.

Figure 5.15: Sample frames from both dataset to show the difference in quality of the syn-
thetic images.
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5.4 EXPERIMENTAL EVALUATION

In the following, we thoroughly evaluate our proposed approach on our novel xR-

EgoPose dataset, we perform parameter and architecture ablations, and we evaluate

on the real-world Mo2Cap2 test-set [157] which includes 2.7K frames of real images

with ground truth 3D poses of two people captured in indoor and outdoor scenes.

In addition, we show qualitative results on our controlled small-scale real-world

dataset and demonstrate how our approach can be used to animate virtual characters

for xR telepresence.

Finally, we evaluate quantitatively on the Human3.6M dataset to show that our ar-

chitecture generalizes well without any modifications to the case of an external

camera viewpoint 3D human pose estimation with state-of-the-art results.

5.4.1 EVALUATION PROTOCOL

Taking inspiration from the evaluation protocol defined in the Human3.6M dataset

(see Sec 3.3 and Sec 4.3), we use as an evaluation protocol to asses the quality of the

reconstructions by sampling every frame of the test-set using as an error function

E(P, P̂) =
1

N f

1
N j

N f

∑
f=1

N j

∑
j=1
||P( f )

j − P̂( f )
j ||2 (5.4)

where P( f )
j and P̂( f )

j are the 3D locations for the ground truth pose and the predicted

pose at frame f for joint j. This is averaged over the N f number of frames and N j

number of joints.

To ensure high reproducibility of our results on our novel synthetic x R-EgoPose

dataset, we first evaluate our method on a randomly initialized ResNet 50. We in-

tentionally do not perform any pre-training strategies as shown later in this section.

This affects the final results. We want to establish the x R-EgoPose as a benchmark

dataset and therefore report reproducible numbers, that have been computed using

a standard network architecture, trained with a simple protocol.
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5.4.2 QUANTITATIVE RESULTS ON XR-EGOPOSE

Firstly, we evaluate our approach on the test-set of our synthetic xR-EgoPose

dataset. Unfortunately, it was not possible to establish a comparison on our dataset

with state-of-the-art monocular egocentric human pose estimation methods such as

Mo2Cap2 [157] given that their code has not been made publicly available. Instead

we compare with Martinez et al. [82], a recent state of the art method for a tradi-

tional external camera viewpoint.

Such method is a pipeline-approach, in which two – sometimes independent – mod-

ules are used sequentially: the output of the former is used as input of the latter.

Here, the second module is given 2D joint locations on the image, and it predicts

the 3D positions of the joints.

For a fair comparison, the training-set of our xR-EgoPose dataset has been used

to re-train the model of Martinez et al.; This way we can directly compare the

performance of the 2D to 3D modules.

There are several state-of-the-art approaches other than Martinez’s which employs

Approach Gaming Gesticulating Greeting
Lower
Stretch.

Patting Reacting Talking
Upper

Stretch.
Walking All (mm)

Martinez [82] 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1

Ours — p3d 138.3 108.5 100.3 133.3 117.8 175.6 93.5 129.0 131.9 130.4
Ours — p3d+rot 110.7 90.9 91.9 119.1 98.6 106.8 86.9 88.0 88.2 91.2
Ours — p3d+hm 56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2
Ours — p3d+hm+rot 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4 54.7

Table 5.2: Quantitative evaluation with Martinez et al. [82], a state-of-the-art approach de-
veloped for front-facing cameras. Both upper and lower body reconstructions
are shown as well. A comparison with our own architecture where different con-
figurations are analyzed. Specifically, the impact of the additional branches is
evaluated. Note how the competing approach fails consistently across different
actions in lower body reconstructions. This experiment emphasizes how, even
a state-of-the-art 3D lifting method developed for external cameras fails on this
challenging task. It also emphasizes the contribution of encoding uncertainty for
achieving low-reconstruction errors.
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a pipeline strategy, like the one proposed by Zhou et al. [73], and their main draw-

back consists in not fully exploiting the information generated by the 2D pose de-

tector when regressing the final 3D pose. Namely, the uncertainty: such approaches

usually perform an argmax operation over the generated heatmaps, loosing the un-

certainty of the 2D estimations and being left only with their (u,v) position.

Using the evaluation protocol defined in 5.4, we compare the reconstruction error of

our proposed approach with the one by Martinezet al. [82], showing the results in

Table 5.2. Our approach outperforms the one proposed by Martinez et al. by 36.4%

in the upper body reconstruction, 60% in the lower body reconstruction, and 52.3%

overall, showing a considerable improvement.

This emphasizes the complexity of the task as well as how important is to properly

identify the identity of the person when retrieving its pose. A failure in doing this

leads to a drastically larger reconstruction error for the lower body, which is the

part of the body relying more on prior knowledge to infer joint positions, due to the

large amount of self-occlusions.

5.4.2.1 Effect of the decoder branches

Table 5.2 reports an ablation study to compare the performance of three versions of

our approach. We report results using: i) only 3D pose supervision only (Ours —

p3d); ii) additional supervision on regressed rotations (Ours — p3d+rot); iii) and

on regressed heatmaps (Ours – p3d+hm); finally for our novel multi-branch auto-

encoder supervised on all three signals (Ours — p3d+hm+rot).

The overall average error of the single branch encoder is 130.4 mm, far from the

54.7 mm error achieved by our novel multi-branch architecture. The dual branch

encoders produce an error of 91.2 mm and 58.2 mm, respectively. Ours results

clearly demonstrate that all branches contribute to our final result. Both, forcing the

network to encode uncertainty of the 2D joint estimates by regressing heatmaps, as

well as preserving the limb orientation information by regressing rotations, helps to
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estimate better 3D poses.

5.4.2.2 Reconstruction error per joint type

Table 5.3 reports a decomposition of the reconstruction error into different individ-

ual joint types. The highest errors are in the hands and feet. This observation is

in accordance with the fact that hands and feet are often not or only barely visible.

Hands can go out of the camera field of view e.g. by lifting or stretching the arms or

may be occluded by the body. Feet are only visible when the subject looks slightly

down and always cover only a very small portion of the image, due to the strong

distortion. Nevertheless, our method always predicts plausible poses, even for high

occlusions as displayed in Fig. 5.22.

Additional statistical analysis over the joint reconstruction errors over the test-set

is included in Figure 5.16, by presenting the log-probability errors of the model on

our novel xR-EgoPose dataset. As already mentioned, this test confirms as well that

the neck is the easiest joint to detect, whereas the hands are the worse performing

joints.

We find the joints contributing the most to the overall error are the hands. This

is somehow in contrast with the larger lower-body reconstruction observed before-

Joint Error (mm) Joint Error (mm)

Left Leg 34.33 Right Leg 33.85
Left Knee 62.57 Right Knee 61.36
Left Foot 70.08 Right Foot 68.17
Left Toe 76.43 Right Toe 71.94
Neck 6.57 Head 23.20
Left Arm 31.36 Right Arm 31.45
Left Elbow 60.89 Right Elbow 50.13
Left Hand 90.43 Right Hand 78.28

Table 5.3: Average reconstruction error per joint using Eq. 5.4, evaluated on the entire test-
set (see Sec. 5.3) with model trained using only synthetic data.
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Figure 5.16: Analysis of the log-probability error of each joint evaluated on the xR-
EgoPose test-set. The neck is the best performing joint whereas the hands
are the worse performing ones.

hand. The main reasons for this to happen is that: a) the upper body reconstruc-

tion error includes neck and shoulders. Such joints are “more rigid” in the human

anatomy and lower the overall average error; b) hands – and arms in general – cor-

respond to the part of the human body that moves the most with a larger degree

of freedom; this consequently means that is harder to learn the set of all possible

motions from a normal size dataset; and c) hands might frequently fall outside the

camera field of view. When this happens, as they are not observed, our approach

fails to estimate their poses accurately: there are many possible interpretations – all

correct – about the pose, since the hands are not accounted for the prediction. A
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Figure 5.17: The area of the images highlighted in green represents what is visible from the
egocentric camera perspective. In this particular pose, the hands are clearly
outside the camera FoV (represented in black), and therefore it is not possible
to precisely infer their position.

visual illustration of this particular situation is shown in Fig. 5.17.

5.4.3 ABLATION STUDIES

One of the main advantages of this proposed architecture is its structure, which

allows to swap some of the modules for others for better customization over specific

applications as well as to provide better generalization properties. In this section,

we are performing ablation studies to further explore the capability of the approach.

5.4.3.1 Heatmap Estimation: Architecture Ablation

So far, we have used the established ResNet 50 [153] architecture in all our ex-

periments. In order to study the effect of the heatmap estimation network, we

experiment with different architectures and initialization strategies. Specifically,

we experiment with ResNet 50 [153] and U-Net [158]. We use ResNet 50 in two

variants: randomly initialized using Xavier initialization [154] and pre-trained on

ImageNet [159].

The U-Net is composed from a ResNet 18 backbone encoder, pre-trained on Ima-

geNet, and a randomly initialized decoder. The ResNet 50 consists of 24.2 million
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Configuration Gaming Gesticulating Greeting
Lower

Stretch-
ing

Patting Reacting Talking
Upper

Stretch-
ing

Walking All (mm)

ResNet 50 60.4 54.6 44.7 56.5 57.7 52.7 56.4 53.6 55.4 54.7
ResNet 50 (p) 51.6 44.6 64.6 52.4 50.8 44.0 46.5 51.4 52.8 51.1
U-Net (p) 52.5 49.2 72.0 37.3 53.0 44.4 46.1 39.3 37.2 41.0

Table 5.4: Performance analysis: different combinations of 2D pose detectors combined
with the multi-branch lifting network. All variants have been trained and tested
on the synthetic dataset. Variants with (p) have been pre-trained on ImageNet.

trainable parameters. The U-Net contains 18.3 million parameters. All variants pro-

duce the same heatmap resolution for better comparison. The lifting networks share

the same architecture and number of parameters, but have been trained specifically

for each 2D pose estimation network, to accommodate its unique heatmap prop-

erties. We additionally experimented with ResNet 101 [153], Convolutional Pose

Machines [15], and Stacked Hourglass Network [74]. These experiments resulted

in comparable performance at a higher computational cost compared to ResNet 50,

and are therefore not discussed further.

The experiments suggest that pre-training helps. The full pipeline using a pre-

trained ResNet 50 improves the MPJPE error to 51.1 mm, compared to 54.7 for

random initialization, see Tab. 5.4. While a recent work [160] suggests that pre-

training usually is not necessary, the authors describe two aspects where pre-training

does help. First, pre-training helps faster convergence. Second, for small datasets,

pre-training helps to improve accuracy. While our synthetic dataset is large, it fea-

tures less variability in scenes and subjects, compared to large real-world datasets

like e.g. MPII [161].

In a following step, we experiment using a U-Net for 2D pose estimation. Using

a U-Net architecture boosts the performance of our pipeline and significantly im-

proves the MPJPE error to 41.0 mm. Empirically, we found that the U-Net-based

2D pose estimator also generalizes, to a certain extent, to real data, predicting plau-

sible heatmaps for unseen data, while only having been trained on our synthetic
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Figure 5.18: Performance of our proposed pipeline using different 2D pose estimation net-
works under the influence of white Gaussian noise in the image domain. Net-
works with (p) have been pretrained on ImageNet.

dataset.

The Resnet 50-based estimator fails without prior refinement. We hypothesize, that

the improved performance, and the observed behavior on real images, demonstrate

better generalization properties of the U-Net. To support this hypothesis, we per-

form an additional experiment. We add white Gaussian noise to the test images of

our synthetic dataset and measure the performance of our pipeline using the dif-

ferent 2D pose estimation networks. In Fig. 5.18 we plot the MPJPE error under

various levels of noise. Notably, the error of the U-Net-based pipeline increases

slowly, while Resnet 50-based pipelines produce large errors already under small

noise levels. This behavior supports our hypothesis that the U-Net architecture fea-

tures better generalization properties.

5.4.3.2 Lifting Network: Parameter Ablation

In order to validate the architecture design choices of our multi-branch 3D pose

lifting network, we perform an ablation study of two main parameters.

First, we find the optimal size of the embedding ẑ, that encodes the 3D pose, the

joint rotations, and the 2D pose uncertainty. Table 5.6 lists the MPJPE error using

different sizes for ẑ for all three different heatmap estimation networks. Regardless

of the choice of the heatmap estimation network, we find that ẑ ∈ R50 produces the
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best results. Smaller embeddings produce significantly higher errors, while larger

embeddings only slightly impair the results.

Further, we study how the dimensions of the regressed heatmaps H̃M influence the

results, see 5.5. Unsurprisingly, we find that regressing the full heatmap produces

the best results. This is in accordance with the experiments in Sec. 5.4, where we

show that encoding uncertainty via regressing heatmaps helps over using them only

as input.

To contribute towards fostering fairness in Computer Vision and Machine Learning

we analyze the performance of the proposed models on our diverse dataset based

ẑ size
Error (mm)

ResNet50 ResNet50 (p) UNet (p)

10 70.6 61.0 45.8
20 67.3 52.5 45.3
50 54.7 51.1 41.0
70 55.7 54.5 41.6

100 58.9 54.2 41.3
500 61.0 56.0 41.2

Table 5.5: Average reconstruction error per joint using Eq. 5.4, evaluated on the entire test-
set when the model architecture differs based on the size of the embedding ẑ.
Increasing the latent space dimension produces worse results as with a larger
dimensionality it starts to model noise together with the data.

HM size
Error (mm)

ResNet50 ResNet50 (p) UNet (p)

48 54.7 51.1 41.0
36 57.8 59.6 44.2
24 59.9 57.7 43.8
16 61.2 56.8 41.4

8 61.4 56.7 41.7

Table 5.6: Average reconstruction error per joint using Eq. 5.4, evaluated on the entire test-
set for different heatmap (HM) reconstruction sizes. Notice how little uncer-
tainty information still has dramatic impact on the reconstruction accuracy.
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on different skin tones. A comparison is shown in Table 5.7.

5.4.4 RESULTS ON EGOCENTRIC REAL DATASETS

In this section I am going to present a quantitative evaluation of our approach on

egocentric real datasets — datasets with images captured by cameras — which ac-

counts for a very limited set, including our own xR-EgoPoseR dataset. Our novel

approach shows substantial improvements over all competing approaches.

5.4.4.1 xR-EgoPoseR

One of the main challenges when assessing an approach trained exclusively on syn-

thetic datasets – like ours – is to find a way of evaluating how these results transform

when the model is assessed on real data.

Generating real data in such condition is extremely hard since: a) it would require

a mocap studio that can identify the 3D position of each joint to be used as ground

truth; and b) that does not require the actor to wear a mocap suit, since this would

alter the evaluation.

We have been able to generate a small real dataset withe two actors performing a

subset of the actions contained in the main synthetic dataset for a total of 15000

frames, to quantitatively assess what is shown later only in the qualitative results.

The reconstructing results for the different actions are shown in Table 5.8.

Skin tone Error (mm)
ResNet50 ResNet50 (p) UNet (p)

White 42.7 46.5 46.3
Light European 61.9 58.2 43.5
Dark European 63.6 52.0 35.6
Dark brown 22.5 28.7 27.5
Black 89.0 68.8 42.7

Table 5.7: Model evaluation based on skin tones.
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Action name Average error (mm)
Greeting 51.78
Talking 47.46
Playing Golf 68.74
Shooting 52.64
Upper Stretching 61.09
Throwing Arrow 88.54
Average 61.71

Table 5.8: Average reconstruction error per action on the test-set real data acquired from a
mocap studio consisting of 2000 frames.

Approach Evaluation error (mm) Camera distance Num Cameras

EgoCap et al. [122] 70 35 cm 2
Ours 58.2 2.1 cm 1

Table 5.9: Comparison of our proposed approach with a state-of-the-art egocentric pose
estimator proposed by Rhodin et al. [122]. Since the dataset provided by [122]
does not contain ground truth data compatible with the information required by
our approach (monocular) and [122] requires a two-camera system dataset, we
are not able to directly compare the two approaches on the same set of data. We
therefore show a numerical evaluation of each approach on its own dataset.

5.4.4.2 Evaluation on EgoCap dataset

Rhodin et al. [122] presented one of the first egocentric 3D pose estimator from a

multi-camera system. The objective comparison against this approaches is partic-

ularly challenging as model requires a multi-view dataset to be trained on, and the

authors do not provide any 3D annotations for training data used to train their model

on.

We show the results expressed in the paper in Table 5.9, however it is worth noticing

that Rhodin et al. [122] has the advantage of using a stereo camera system where the

cameras are placed 35 cm far form the face1 (and thus better visibility conditions),

while we count on a single monocular camera practically attached to the face.

1Camera distance is reported with respect to an average size noise and it is reported in centimeters
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INDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [162] 48.76 101.22 118.96 94.93 57.34 60.96 111.36 64.50 76.28
VCNet [163] 65.28 129.59 133.08 120.39 78.43 82.46 153.17 83.91 97. 85
Xu [157] 38.41 70.94 94.31 81.90 48.55 55.19 99.34 60.92 61.40
Ours - ResNet 50 38.39 61.59 69.53 51.14 37.67 42.10 58.32 44.77 48.16
Ours - U-Net (p) 45.83 47.24 47.35 45.15 48.72 47.00 46.15 46.45 46.61

OUTDOOR walking sitting crawling crouching boxing dancing stretching waving total (mm)

3DV’17 [162] 68.67 114.87 113.23 118.55 95.29 72.99 114.48 72.41 94.46
VCNet [163] 84.43 167.87 138.39 154.54 108.36 85.01 160.57 96.22 113.75
Xu [157] 63.10 85.48 96.63 92.88 96.01 68.35 123.56 61.42 80.64
Ours - ResNet 50 43.60 85.91 83.06 69.23 69.32 45.40 76.68 51.38 60.19
Ours - U-Net (p) 53.96 52.24 55.50 55.65 54.38 54.48 54.46 56.12 54.61

Table 5.10: Quantitative evaluation on Mo2Cap2 dataset [157], for both indoor and out-
door test-sets. Our approach outperforms all competitors by more than 21.6%
(13.24 mm) on indoor data and more than 25.4% (20.45 mm) on outdoor data
when using only the provided synthetic data for training the model. Similarly
to other experiments we provide in Sec 5.4.2, when using a pre-trained U-Net
model with the configuration defined as in Sec 5.4.3.1, results improve even
further: 24.9% (14.79 mm) and 32.28% (26.03 mm) respectively.

5.4.4.3 Evaluation on Mo2Cap2 dataset

This dataset consists of a similar size to our own xR-EgoPose, but of a lower qual-

ity in terms of both image resolution and realism of the data. To guarantee a fair

comparison of the results, we have been provided by the authors the heatmaps gen-

erated by their own 2D estimator such that only the module taking care of lifting

the points in 3D is assessed and no other factor is tampering the comparison, which

was trained on xR-EgoPose’s 3D data. Results of this comparison are shown for

both indoor and outdoor scenarios in Table 5.10.

Our approach outperforms all competitors with a large margin (23.5% on average)

on both indoor and outdoor test-sets, demonstrating indeed that the dataset intro-

duced by Xu et al. [124] is not more challenging than our xR-EgoPose dataset, both

in terms of actions or camera placement, which plays a big role in the amount of

self-occlusion generated by the body.

An additional interesting experiments which can be introduced after proving all

previous assumptions, is whether a pipeline approach can indeed exploit the benefit
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which consists in increasing the dataset size with partially labelled data, leading to

result improvements.

Such statement is often claimed as one of the best benefits of pipeline approaches.

E.g. new heatmaps without having the corresponding 3D annotations. To prove

this, we add heatmaps belonging to the indoor set when training the model on the

mo2cap2 dataset and perform the identical evaluation as previously done on the

outdoor test-set. The final error after performing this data augmentation reduces

from 60.19 mm to 60.05 mm proving the desired effect.

5.4.5 EVALUATION ON FRONT-FACING-CAMERA DATASETS

The proposed architecture proves to be working particularly well when the 2D pose

represented in the image is affected by a large amount of self-occlusion, and the

reconstructed 3D pose is able to handle that without being heavily compromised.

However, there is a very related – but at the same time different – problem which

consists in solving the task of 3D pose detection from a front facing camera.

As already mentioned, although the final goal of both tasks is identical, the con-

ditions under which the algorithm has to work are extremely different, since front

facing camera approaches:

• the “pixel density” of each joint represented in the image is the same

• very often they assume a weak-perspective camera model, since this doesn’t

seem to affect significantly the results

• the amount of self occlusion is very limited compared to egocentric camera-

views.

One significant effect of all these differences is the possibility to download an al-

ready available dataset or even a pre-train model to be used as an initialization step.

Regardless of these conditions, we expect our architecture to maintain good perfor-

mance on this task as well.
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Protocol #1 Chen Hossain Dabral Tome Moreno Kanazawa Zhou Jahangiri Mehta Martinez Fang Sun Sun Ours
[87] [165]* [166]* [16] [83] [91] [167] [168] [162] [82] [169] [72] [152]

Errors (mm) 114.2 51.9 52.1 88.4 87.3 88.0 79.9 77.6 72.9 62.9 60.4 59.1 49.6 51.3

Protocol #2 Yasin Hossain Dabral Rogez Chen Moreno Tome Zhou Martinez Kanazawa Sun Fang Sun Ours
[170] [165]* [166]* [139] [87] [83] [16] [167] [82] [91] [72] [169] [152]

Errors (mm) 108.3 42.0 36.3 88.1 82.7 76.5 70.7 55.3 47.7 58.8 48.3 45.7 40.6 42.3

Table 5.11: Comparison with other state-of-the-art approaches on the Human3.6M dataset
(front-facing cameras). Approaches with * make use of temporal information.
No specific modifications have been applied to our architecture: UNet 2D pose
detector pre-trained on ImageNet has been used to estimate joint-heatmaps fed
through our dual-branch auto-encoder architecture, since rotation information
is not available for these data.

For this evaluation, we chose the Human3.6M dataset [129, 164]. We used two

evaluation protocols. Protocol 1 has five subjects (S1, S5, S6, S7, S8) used in

training, with subjects (S9, S11) used for evaluation. The MPJPE error is computed

on every 64th frame. Protocol 2 contains six subjects (S1, S5, S6, S7, S8, S9)

used for training, and the evaluation is performed on every 64th frame of Subject

11 (Procrustes aligned MPJPE is used for evaluation). The results are shown in

Table 5.11 from where it can be seen that our approach is on par with state-of-the-

art methods, scoring second overall within the non-temporal methods.

5.4.6 DATA-AUGMENTATION

An important advantage of our architecture is that the model can be trained on a mix

of 3D and 2D datasets simultaneously: if an image sample only has 2D annotations

but no 3D ground truth labels, the sample can still be used, only the heatmaps will

contribute to the loss. We evaluated the effect of adding additional images with 2D

but no 3D labels on both scenarios: egocentric and front-facing cameras. In the

egocentric case we created two subsets of the xR-EgoPose test-set. The first subset

contained 50% of all the available image samples with both 3D and 2D labels. The

second contained 100% of the image samples with 2D labels, but only 50% of the

3D labels. Effectively the second subset contained twice the number of images

with 2D annotations only. Table 5.12 compares the results between the subsets,

where it can be seen that the final 3D pose estimate benefits from additional 2D
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annotations. Equivalent behavior is seen on the Human3.6M dataset. Table 5.13

shows the improvements in reconstruction error when additional 2D annotations

from COCO [171] and MPII [161] are used.

5.4.7 QUALITATIVE RESULTS

In this section, a qualitative evaluation of the approach is provided by analyzing the

reconstructed poses on different use cases and datasets.

5.4.7.1 Encoding uncertainty in the latent space

One of the main statements made about the proposed model is about the ability of

generating a better and more robust latent space that is able not only to express the

position of each individual joint composing a pose, but also its uncertainty of esti-

mation. This is enforced by adding the second branch that reconstructs the set of 2D

heatmaps (one per joint) from the latent vector. It has been proved numerically that

this novel architecture generates much better results compared to its single-branch

version (see Sec. 5.4.2), however something that needs to be proven is whether or

not the reconstructed uncertainties correspond to the original ones.

To this end, Figure 5.19 shows how the heatmaps decoded from the latent space

closely resemble the ground truth ones with per-estimation variations of the uncer-

tainties, especially when considering the same joint. This therefore demonstrates

3D 2D Error (mm)

50% 50% 68.04
50% 100% 63.98

Table 5.12: Availability of training data for xE-EgoPose dataset

Training dataset Error (mm)

H36M 67.9
H36M + COCO + MPII 53.4

Table 5.13: Availability of training data for front facing camera datasets
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Figure 5.19: Reconstruction of Heatmaps through the multi-branch AE that encodes the
heatmaps into a latent vector z, forcing the latent space to learn both to regress
the joint position and also to account for the joint uncertainty. Here we are
making sure that the model is not learning a constant uncertainty per joint (e.g.
uncertainty of wrist predictions is always worse than the one for the shoulders)
but rather the model is properly learning how to encode uncertainty based on
the input pose.

the ability of our approach to encode the uncertainty of the 2D heatmap predictions

in the latent vector, to be used for better 3D pose estimations.

5.4.7.2 Character animation

The proposed architecture has, among some of the benefits already introduced, the

ability of generating different representations for the pose: i.e. a) 3D joint positions

and b) local joint rotations with respect to the parent node.

In the experiment section 5.4.2 we have so far addressed the evaluation of the pre-

cision for the 3D joint predictions. In Figure 5.20 we instead focus on the rotation

representation of the pose, showcasing few rendered reconstructions of a larger se-

quence to highlight how this model can be used to directly drive an avatar, when the

predicted local joint rotations are used to generate the animation.
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Figure 5.20: Character animation from the joint local rotation predictions computed from
the input image. Note how the model is able to retrieve most of the desired
information even when limbs fall outside the camera field of view.
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Figure 5.21: Analysis of the angle predictions through time for the Right Foot in sequence
of the test-set.

To better visualize the stability of the local rotations through time, Figure 5.21

shows the variation of the right-foot angle — a joint that moves with higher fre-

quency than other joints in the sequence — through time, compared to the ground

truth local rotation.

5.4.7.3 Qualitative results on our datasets

A qualitative evaluation of the performance of the proposed architecture is shown

in Figure 5.22 on synthetic data from the xR-EgoPose dataset and on real captured

with the Headset-Mounted Camera. As shown in the figure, the model can handle

a large amount of self occlusions and is able to perform good reconstructions even
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Figure 5.22: Qualitative results on synthetic images from our xR-EgoPose dataset. Blue
are ground truth poses and red predictions;

Figure 5.23: Qualitative results on real images from our xR-EgoPoseR dataset.

with very difficult poses. Note that due to the diversity of the generated dataset, it is

also possible to reliably identify the pose with actors wearing clothes matching the

background.

Additional results for our xR-EgoPoseR dataset are shown in Figure 5.23 where both

2D heatmap predictions and 3D reconstructions are displayed.

5.4.7.4 Reconstructions on Mo2Cap2

A qualitative evaluation of the performance of the proposed architecture is shown in

Figure 5.24 on real data capture outside, from the Mo2Cap2 dataset. As shown in

the figure, the model is able to retrieve correctly the pose from real data even with

very difficult poses. Since the authors of the Mo2Cap2 dataset don’t provide camera

calibration parameters, for visualization reasons we plot all the poses according to

the same reference system (not the camera one).
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Figure 5.24: Qualitative results on real images captured outside from the Mo2Cap2
dataset.

5.4.7.5 Latent Space

In Figure 5.4 we presented the projected latent space (using t-SNE) of the model

trained both with a standard AE and with the proposed dual-branch AE. Carefully

analyzing figure b, some “string-like” shapes appear which need to be investigated.

The analysis of some of those poses is presented in Figure 5.25 where we show

how the reconstructions are consistent and those latent vectors are not the result of

any artifact, but appear only due to some short sequences in the dataset, where one
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Figure 5.25: Analysis of the latent space generated with the proposed dual-branch AE, by
inspecting a small area (highlighted in black), specifically one character (red),
to see the reconstructed poses. Among those poses, we sample few repre-
sentative ones to show. This is done to investigate the string-like shape of a
set of poses. The poses are close together since they share most of the joint
positions, and only few joints move (as expected).

character is performing some repetitive movements with most of the joints in the

same position for the entire duration of the small sequence.
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5.5 CONCLUSION

We have presented a solution to the problem of 3D body pose estimation from a

monocular camera installed on a HMD. Our solution involves a fully differentiable

network that estimates input images to heatmaps, and from heatmaps to 3D pose

via an dual-branch autoencoder. This particular autoencoder architecture was fun-

damental for training and generalization purposes. We have also introduced the

EgoHMD-Dataset, a new large scale photorealistic synthetic dataset that was es-

sential for training and will be made publicly available to promote research in this

exciting area. While our results are state-of-the-art, there are a few failures cases

due to extreme occlusion and the inability of the system to measure hands when

they are out of the field of view. This could be potentially be remedied by adding

additional cameras to the headset to cover currently unseen areas. Further improve-

ments in accuracy could be potentially be achieved by the use of a stereo system.

These two improvements are the focus of our future work.



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

To conclude, we summarise the main contributions of this thesis by highlighting the

strengths and weaknesses of the different proposed solutions, as well as potential

directions for future research, taking into account the current developments within

the filed of study.

We have tried to keep the related work in section 2 up-to-date — including new

approaches published after the publication of our contributions — in this very dy-

namic and fast-moving research area.

6.1 POSE FROM MONOCULAR IMAGE

The first core chapter (Chapter 3) of this thesis introduces a novel approach for

3D human pose estimation from a single input image, with a novel hybrid neural

network solution.

Prior research focused either on purely end-to-end or pipeline approaches, each

with their own limitations. The former has generally better performance but suf-

fers data collection limitations and therefore generalization on new data, since it

requires {x,y} data samples with pairs of input images with their corresponding

3D annotated labels. The latter, on the other hand, is more flexible since it allows

to use data sources from multiple datasets — captured in different domains — at
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a cost of worse performance, due to not exploiting the interdependence between

2D and 3D data. We therefore bridged the gap between these two approaches by

introducing a hybrid architecture which has the flexibility of pipeline approaches

with better performance of end-to-end methods due to the exploitation of 2D-3D

inter-dependency.

Our quantitative evaluation (Sec 3.4) demonstrates how this novel architecture out-

performed on average all competing approaches, as well as dominating almost all

action types on the challenging Human3.6M dataset [129], even when comparing

against approaches exploiting temporal information. Most significantly, we found

that our proposed solution performs well on images-in-the-wild (as shown in the

Sec. 3.4.3) which is possible due to the design of the proposed architecture which

can easily be trained on a collection of complementary datasets with partial annota-

tions, which could have not been used in end-to-end approaches.

Our novel architecture shows the importance of thinking in 3D even for 2D pose

estimation within a single image, with the iterative 3D model demonstrating better

2D accuracy than Convolutional Pose Machines [15], the iterative 2D approach it is

based upon.

After the publication of our approach many new methods have followed this idea of

designing model to better exploit data from different domains. So far 2.5D models

(e.g. the approach by Pavlakos [70]) have demonstrated the same flexibility of a

hybrid architecture with more end-to-end like performance, with results that can

only be incrementally be improved at this point if focusing on bridging the gap

between 2D and 3D.

An area of improvement that has been largely underrated instead is bridging the gap

between skeleton representations. There are several 3D datasets currently available

to the research community. Unfortunately, each has their own skeletal representa-

tion (number of joints and their connectivity) which makes it hard to fuse all those
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data in a unified dataset. The future work for this approach would be to create

a skeleton-independent representation to learn from, which will produce a model

than can finally unify 2D and 3D from different domains as well as different repre-

sentations.

6.2 POSE FROM MULTI-CAMERA VIEWS

Our work on a hybrid multi-view camera system introduced in Chapter 4 once again

pushed the state-of-the-art results in 3D pose estimation from a multi-view set-up

by exploiting dependencies between 2D and 3D data.

Here we demonstrated how the design decision introduced in the previous chap-

ter for the monocular architecture can be extended for a multi-view set with simi-

lar performance improvement. Furthermore, given the noticeable improvement in

accuracy obtained by using multiple cameras rather than just one, we have then

assessed the ability of the proposed multi-view3D human pose estimator to mean-

ingfully label unlabeled data that can be used at train time in order to achieve better

performance.

We have shown how, with this novel architecture, using both data with labels (su-

pervised training) and data without any associated annotations (unsupervised) leads

to the best performance.

Similarly to what has been seen on monocular 3D pose estimation approaches, a

major result improvement could be seen if a skeleton representation independent

approach would be introduced. However, unlike the monocular case, not much

effort has been put by the community in designing better multi-view systems.

An interesting extension of this approach would be to have a definition where cam-

eras are allowed to move and zoom in on a person. Nowadays, mocap-studios are

being used by VFX studios to capture actors performing various actions. Rather

than relying on a static system, we could think of a system that adapts based on what
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the actor is doing, to ensure better reconstruction accuracy, by focusing the camera

on the actor instead of “wasting” pixels on background, non-interesting ares, etc.

6.3 POSE FROM EGOCENTRIC PERSPECTIVE

The interest of the community and the potential applications of VR/AR has led us in

designing a 3D pose estimator from egocentric perspectives. Here, the already chal-

lenging 3D pose estimation problem has been pushed even further, with a far more

challenging configuration where occlusions and distortions play a very important

role.

Unlike the monocular and multi-view scenarios introduced in the previous chapters,

where large amount of data is already available and “just” needs to be properly and

carefully used, in this specific scenario this is not the case. Therefore, we had to rely

on highly realistic synthetic data generation which would allow us to still generalize

on in-the-wild images.

Additionally, due to the consequences of an embedded camera on the headset-

mounded-device (i.e. distortion and occlusion), we had to design a novel neural

network architecture able to deal with such harsh conditions. We introduced a multi-

branch AE architecture capable of large levels of occlusions and self-occlusion com-

bined with fish-eye distortions cameras.

We have proven how this novel architecture is significantly better than competing

approaches, drastically outperforming them even on their own dataset and how this

approach is capable of generalizing on images-in-the-wild under a variety of differ-

ent conditions. Furthermore, we have extensively analyzed the performance of such

approach, trying to understand the current limitations both from a model perspective

as well as a hardware one.

From our analysis we have been able to assess the limitation of our current model:

visibility of the limbs is a problem. For a fully product-ready method, the hands
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need to be visible even when the user if performing weird motions, which is not

the case in the current configuration. Future work therefore should be focusing on

a multi-view system for which the hands are more visible and more accuracy on

the hand reconstructions can be guaranteed, especially important due to the current

main nature of these devices (i.e. gaming).

6.4 SUMMARY

In summary, this thesis is a collection of four research contributions, aiming at

using all possible information that can be extracted from the data to ensure better

performance for 3d human pose estimation on a variety of working conditions.

We have unequivocally demonstrated how having more data, captured from differ-

ent domains, benefits the performance of the model and we have shown some tech-

niques to due so. Using 3d labels, when available, together with 2D annotations

improve not only 3D prediction accuracy, but 2D reconstructions we well.

Finally, we have proven how the uncertainty of the estimation is incredibly valuable

in extreme working conditions for the model to operate in, e.g. with egocentric

human pose estimation, where the uncertainty plays a fundamental role in achieving

accurate reconstructions.
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APPENDIX A

3D LIFTER — GRADIENT PROPAGATION

A.1 COMPUTING DERIVATIVES

As discussed by the Convolution Pose Machine paper [15], recurrent-like architec-

tures such as ours have problems with vanishing gradients and for effective training

they require an additional loss function to be defined for each layer, that indepen-

dently drives each individual layer to return correct predictions regardless of how

this information is used in subsequent layers.

Before we give the derivation of the gradients it should be emphasized that it is

entirely possible to train the network without using them – in fact similar results

can be obtained by only using the 3D lifting for the forward pass, and not back-

propagating the lifting derivatives through the rest of the network.

As the additional layers make use of custom Python-based derivatives rather than

an efficient implementation, for computational reasons it might preferable to avoid

this step. Nonetheless for completeness we include the derivatives.

There are two reasons the gradients are unneeded: a) the lifting 3D model we use

makes its best predictions when the 2D predictions of the same layer are closest to

ground truth, and this is a constraint naturally enforced by the objective of equa-

tion 3.9 of the main paper. Further, as with Convolutional Pose Machines [15] our

architecture suffers from problems with vanishing gradients. To overcome this Wei

et al. [15] defined an objective at each layer, which acted to locally strengthen the
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gradients. However, a side effect of this multi-stage objective is that most of the ef-

fects of back-propagation happen locally and gradients back-propagated from other

layers have little effect on the learning. This makes subtle interactions between lay-

ers less influential, and forces the learning process to concentrate on simply making

accurate 2D predictions in each layer.

We first give the results for computing the gradients of sparse predicted locations Ŷ

from Y (see section 5 of the main paper), before discussing the gradients induced

on the confidence maps by these sparse locations.

A.1.1 LANDMARK GRADIENTS

In the interests of readability we neglect the use of indices to indicate stages, the

reader should assume that all variables are taken from the same stage. Similarly,

when dealing with a mixture of Gaussians, as we are only interested in computing a

sub-gradient, the reader should assume that the best model has already been selected

in the forward pass and we are computing gradients using only this model.

Recall (section 5 of main body of paper) that the mapping from the initial landmarks

Y to the projected 3D proposals Ŷ is given by

Ŷ = ΠR(µ +a · e) (A.1)

where

R,a = argmin
{R∗∈R,a∗∈RJ}

||Y −ΠR∗(µ +a∗ · e)||22 +(σ ·a∗)2 (A.2)

where R is a discrete set of rotations we exhaustively minimize over, and J is the

number of bases in e. Owing to the use of discrete rotations, this mapping from

Y to Ŷ is a piece-wise smooth approximation of the smooth function defined over

a continuous R, and sub-gradients can be induced by fixing R to its current state.

Hence:
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dŶ
da

= ΠRe (A.3)

For the remainder of the section, and to compact notation we will write E for the

matrix of size 2L× J (L the number of landmark points and J being the number

of bases in e ) formed by unwrapping tensor ΠRe. Similarly, we will unwrap the

2×L matrices Y and Ŷ and write them as y and ŷ. We also write p for the vector

representing the unwrapped set of 2D landmark positions ΠRµ .

We will use [y,0] for the vector formed by vector y followed by J zeros, and Ē for the

matrix of size (2L+ J)× J formed by concatenating E with the matrix that has val-

ues σ along the diagonals and zero everywhere else. We can rewrite equation (A.3)

in its new notation as:

dŷ
da

= E (A.4)

and given R, we can rewrite equation (A.2) as

a = argmin
a∗∈RJ

|[y,0]− [p,0]−a∗Ē||22 (A.5)

or

a = [(y− p),0]Ē† (A.6)

with Ē† continuing to represent the pseudo-inverse of Ē. Hence

da
d[y,0]

= Ē† (A.7)

and

dŷ
dy

=
dŷ
da

da
dy

= E Ēt (A.8)

where Ēt is the truncation of Ē†.
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A.1.2 MAPPING HM GRADIENTS

The coordinates of each predicted landmark Ŷp induce a Gaussian in the belief map

b̂p. So a change in the x component of Ŷp induces an update which is equivalent to

a difference of Gaussians.

db̂p

dŶ x
p
≈ G(Ŷp

(x)
+δx)−G(Ŷp

(x)−δx)

2δx
(A.9)

and the same for the y component as well. For computational purposes we take δx

as one pixel. As such, an induced gradient on the projected belief map near the

predicted location Ŷ b̂p induces an updating of Ŷ that is propagated through to Y

using the sub-gradients described in equation (A.8).

A.1.2.1 Updating B

Writing B for the the set of all bp, and assuming Yp is not in the right location, i.e.

given updates ∆B̂ on B̂ such that

∆B̂.
dB̂
dŶ

dŶ
dYp
6= 0,

any update of b in which we decrease the belief at bp
Yp

and increase anywhere else

is a valid sub-gradient. We choose as a sensible update a negative step at bp of

magnitude m = k||∆B̂.dB̂
dŶ

dŶ
dYp
|| and a positive update for each element Y of of Bp of

the magnitude m ·N(Y,σ2) in the quadrant of a Gaussian of the same width used to

generate b̂ (i.e. σ = 1 see section 5.6 of main paper) and with the same direction as

∆B̂.dB̂
dŶ

dŶ
dYp

in each x and y coordinate.
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