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Abstract 
Designing building energy performance with confidence 
requires accurate information on the properties of 
building materials and on assemblies of these materials. 
However, thermal properties of the building in use are 
rarely compared to manufacturers’ specifications.  The 
approach reported in this paper determines building 
thermal properties using simulations of dynamic heating 
tests. It replaces the need for physical tests with the actual 
buildings, by conducting these tests with calibrated 
simulation models using data from energy performance 
monitoring of that building during its normal operation. 
The resultant method represents a tool for establishing 
physics properties of buildings in use before and after 
retrofit, and facilitates quality control of retrofit projects. 
The results pinpoint major discrepancies between 
theoretical and actual thermal properties before and after 
the retrofit, giving practical guidance for safety margins 
in relation to technical specifications of building material 
properties and re-evaluation of corresponding technical 
specifications. 
Introduction 
The research introduced here seeks to answer a practical 
question on how to assess whether U-values of the 
components of external envelope are equal to or higher 
than those in manufacturers’ specifications. Designing 
building energy performance with confidence requires 
accurate information on the properties of building 
materials and on assemblies of these materials. This 
includes properties of thermal insulation and masonry 
materials, as well as glazing and cladding assemblies. But 
how can we find out if these properties are different from 
manufacturers’ specifications, once the building is built or 
retrofitted? Would answers be available from research 
into inverse modelling or model calibration? 
Yuna Zhang et al. (2015) worked on comparing inverse 
modelling approaches for predicting building energy 
performance. They reviewed a change-point regression 
model, a Gaussian process regression model, a Gaussian 
mixture regression model and an Artificial neural network 
model. Whilst some of these models exhibited lower 
RMSE in comparison with the others (Gaussian mixture 
regression model), and some were better at capturing 
nonlinear relationships, such as Artificial neural network 
model, establishing building physics parameters was 
outside of the scope of their research. Ruiz et al. (2016) 

worked on a genetic algorithm for building envelope 
calibration. In addition to achieving a calibrated model 
and comparing it to four different calibration standards, 
they outline several possible uses of this research, 
including model based control, commissioning, and most 
relevantly for the subject of this article “to take into 
account thermal energy storage in buildings”. Despite of 
this statement, no attempt was made to quantify the effect 
of thermal energy storage property of the building. Rezaee 
et al. (2019) used linear inverse modelling for 
performance based design exploration, and established a 
relationship between a range of design parameters and 
preferred thermal performance, however no attempt to 
establish building physics parameters was made. 
(Abushakra, 1997) used Stepwise Multiple Linear 
Regression, Fourier series, and Monte Carlo simulation to 
create an inverse model of a building based on sort term 
measurements and predict its long term performance 
before and after retrofit, with prediction errors between 
4% and 23%. As in the previous cases, establishing 
building physics parameters was outside of the scope of 
this work. 
There are two tests that can help to establish the combined 
effect of material properties on building performance: a 
co-heating test (Jankovic, 2017, p. 251) and a dynamic 
heating test (Jankovic, 2017, p. 259). The former involves 
the use of portable electric heaters and measures the 
overall transmittance-area product when the building 
reaches equilibrium after the heaters have been switched 
on. The latter measures the building time constant, the 
overall thermal capacitance, and the overall 
transmittance-area product while the building goes 
through dynamic change of temperature after the heaters 
have been switched on. Both tests require the building to 
be unoccupied during one to two weeks, with stable 
weather conditions throughout that period. This is 
impractical for several reasons: the tests can only be 
conducted in cold weather, and this may not coincide with 
the completion of retrofit work; the occupants need to be 
provided with alternative accommodation during the test 
period; the weather conditions may become unstable and 
influence the test results, causing an extension of the test 
period; and dynamic heating can cause cracks at 
interfaces of different building materials and different 
rates of thermal expansion, due to higher than usual 
internal temperatures. The approach reported in this paper 
replaces the need for physical tests with the actual 
buildings, by conducting these tests with calibrated 
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simulation models using data from energy performance 
monitoring of that building during its normal operation.  
The research described here was carried out on a 
residential building, shown in Figure 1, that had 
undergone deep energy retrofit in a project called Retrofit 
Plus (Jankovic & Basurra, 2016).  
 

 
a) before retrofit 

 
b) After retrofit 

Figure 1: Residential building used as evidence base. 
This residential building consisted of two semi-detached 
houses, attached through a party wall. The construction 
type of the existing building was ‘Wimpey-no fines’, 
refereeing to a solid concrete wall construction that was 
common in the UK after the second world war. Due to 
shortage of skilled labour and the increased need for new 
housing, the construction industry was under pressure to 
find a solution that overcomes these conflicting 
constraints. The Wimpey construction was successful in 
addressing that problem, and some 300,000 houses were 
built in the late 1940s and early 1950s. The ‘no-fines’ part 
of the name of this construction refers to concrete without 
fine aggregates, such as sand. 
The retrofit was carried out on the basis of ‘TCosy’ 
approach, in which the existing building is completely 
surrounded by a Passivhaus type of thermal envelope 
(Beattie, 2017). The building was extensively monitored 
before and after the retrofit. Data from a project weather 
station was used to synthesize the simulation weather data 
file used in this analysis. 
The envelope characteristics before and after the retrofit 
are summarised in Table 1. 

Table 1: Envelope characteristics before and after 
retrofit (Jankovic, 2018).  

Before 
retrofit 

After 
Retrofit 

U-value 
W/(m2K) 

External walls 1.48 0.11 

External glazing 1.60 0.79 

External door 2.56 0.78 

Ground floor slab 1.49 0.26 

Roof 0.47 0.10 

House Air tightness 
1/h at 50 Pascal 

A 6.05 calibrated 0.8 
measured 1.78§ 

B 10.74 calibrated 0.8 
measured 1.78§ 

§Attempts to calibrate the model with fixed air tightness 
values obtained from a measurement by a third party 
resulted in calibration non-convergence, indicating a 
measurement error; instead, air tightness was set as a 
variable and a value obtained from the calibration was 
used. 
 
The simulation model calibration was carried out before 
and after the retrofit, thus giving an accurate 
representation of the building in both phases. Dynamic 
heating test simulations were subsequently carried out for 
both phases, and the building time constant, effective 
thermal capacitance, and effective conductance-area 
product were obtained for the building before and after 
the retrofit.  
The method introduced in this article represents a tool for 
establishing physics properties of buildings in use before 
and after retrofit, and facilitates quality control of retrofit 
projects.  
The results of this research give new insights into the scale 
of differences between theoretical and actual building 
physics parameters before and after the retrofit, and raise 
important issues about the use of theoretical values of 
material properties by designers. Practical guidance for 
safety margins is provided on the basis of results of this 
research. 
Method 
When a building is subjected to a step heat input, its 
temperature changes exponentially, as shown in Figure 2. 
The method for determining building thermal properties 
from dynamic tests is based on previously published and 
ongoing research (Jankovic, 1988, p. 95;  Jankovic, 2017, 
p. 261). Thus, the change of internal temperature is 
defined as 

𝑇" = 𝑇$"%&" + (𝑇)%* − 𝑇$"%&") × .1 − 𝑒
12 ""3

45 (1) 
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Figure 2: Dynamic heating test simulation. 

Minimisation of root mean squared error (RMSE), 
defined with Equation (2), is carried out using the 
differences between simulated temperatures and 
temperatures calculated from Equation (1) on an hourly 
basis. The time constant tc is then obtained as a direct 
result of the RMSE minimisation. The minimisation in this 
particular case was carried out using Microsoft Excel 
Data Solver. 

𝑅𝑀𝑆𝐸 = :∑ (𝑇& − 𝑇")<=
>

𝑛  (2) 

Subsequently, the overall transmittance-area product is 
obtained from the steady-state part of the dynamic test as 
follows: 

𝑈𝐴 =
𝑄

𝑇& −	𝑇D
 (3) 

As the time constant tc and the overall conductance-area 
product UA are now known, that enables the calculation 
of the effective thermal capacitance C as follows: 

𝐶 = 𝑡G × 𝑈𝐴 (4) 

In order to implement the above calculations, the 
simulation model needs to be calibrated using data from 
monitoring. 
The simulation model was developed in EnergyPlus, and 
the model calibration was carried out using parametric 
simulation and multi-objective optimisation in JEA, 
(Zhang & Jankovic, 2017) which uses EnergyPlus as its 
underlying simulation engine. The parameters varied 
were: wall and roof constructions; windows 
constructions; infiltration rates; heating set temperatures; 
lighting power density; and miscellaneous gains power 
density. The ranges for these parameters were chosen 
wide enough below and above the respective design 
values, and the steps of parameter changes were chosen to 
be sufficiently small to detect discrepancies from design 
values. The objective functions were specified to 
represent the absolute value of relative error between 
simulated and measured energy performance as follows:  

𝜀 =
|(𝐸)J%$K&JL − 𝐸$M)KN%"JL)|

𝐸)J%$K&JL
 (5) 

Each energy source, gas and electricity, was assigned 
such objective function. Thus, gas energy consumption 
calibration was carried out by varying wall, roof and 
window constructions; infiltration rates; and heating set 
temperatures; and minimising the error between measured 
and simulated gas consumption. Electricity energy 
consumption calibration was carried out by varying the 
lighting power density and miscellaneous gains power 
density and minimising the error between measured and 
simulated electricity consumption. The minimisation of 
errors was achieved through multi-objective optimisation 
using NSGA-II algorithm (Deb et al., 2002). 
The calibration process is illustrated in Figure 3, where 
the arrow points to the minimum errors in respect of 
electricity and gas consumption. The parameters of the 
simulation model that resulted in the minimum errors for 
each are shown in the yellow rectangle in this figure, and 
are taken forward into the simulation model to be used for 
dynamic tests. 
Model calibration was carried out for both pre-retrofit and 
post-retrofit cases, and the results of calibration will be 
shown in the next section, together with the results of 
dynamic tests. 
The calibrated model, together with the method described 
above now enables a practical calculation of the building 
thermal properties through dynamic heating tests, and a 
comparison with theoretical values of these properties 
obtained from manufacturers’ specifications. 
Results 
The results of calibration of the models before and after 
retrofit are shown in Figure 4. The high accuracy of these 
models, as evidenced from the table, justified their use for 
conducting dynamic heating tests.  
Prior to the tests, the models were adjusted so that all 
internal heat gains were switched off. The model pre-
conditioning period was set to zero days, and a heat input 
schedule was created to start the heating after the first 24 
hours of the simulation and to keep it on until the end of 
simulation. 

Table 2: Model calibration results. 

Description Before 
retrofit 

After 
retrofit 

Gas consumption error 0.33% 0.42% 

Model accuracy - gas consumption 99.67% 99.58% 

Electricity consumption error 0.17% 0.05% 

Model accuracy - electricity 
consumption 99.83% 99.95% 

The results of a set of tests with 8 kW input are shown in 
Figure 4. Both pre-retrofit and post-retrofit cases are 
shown, as pairs of simulated and fitted curves. The curve 
fitting was based on Equations (1) and (2), and the 
building time constant tc was obtained from this process.  
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Figure 3: Simulation model calibration. 

 
The calculation of the overall transmittance-area product 
UA and of the effective thermal capacitance C was then 
carried out on the basis of Equations (3) and (4). 
 

 
Figure 4: Dynamic heating test results with 8 kW heat 

input. 
The first observation that can be made from Figure 4 is 
that in the pre-retrofit case the final balance temperature 
of 26 oC was significantly lower than in the post-retrofit 
case of 57 oC. As both tests were run with 8 kW input 
using the same weather data file over the same period, the 
differences of balance temperatures were attributed to 
different heat loss rates in the two cases. 

The results of building physics parameters obtained from 
dynamic tests are summarised in Table 3. 

Table 3: Building physics parameters obtained from 8 
kW dynamic tests. 

  Post-
retrofit 

Pre-
retrofit 

Ratio Post-
retrofit/Pre

-retrofit 
tc (h) 80.69 19.83 4.07 

UA (W/K)  157.69 356.65 0.44 

C  (MJ/K)  45.81 25.47 1.80 

U (W/m2K) 0.74 1.73 0.43 

 
The initial observations from Figure 4 can now be 
elaborated upon using the numerical results from Table 3. 
As the UA value in the post-retrofit case is only 0.44 of 
the UA value in the pre-retrofit case, that explains the 
final balance temperatures of 57 oC and 26 oC reached 
with 8 kW input in both cases. 
The time constant of 19.8 hours before the retrofit is 
significantly shorter than the time constant of 80.7 hours 
after the retrofit. The practical implication of this finding 
is that the post-retrofit case is about four times slower in 
responding to heat input, which means that it delivers 
more stable internal temperatures. This will have 
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implications on higher thermal comfort and lower heating 
energy consumption. 

Table 4: Pre-retrofit tests with varying heat input. 

Heat 
input 3 kW 6 kW 9 kW Mean 

St
an

da
rd

 
de

vi
at

io
n 

tc  
(h) 25.57 20.90 19.33 21.93 2.65 

UA  
(W/K) 284.17 338.66 363.28 328.70 33.05 

C   
(MJ/K) 26.16 25.48 25.27 25.64 0.38 

U 
(W/m2K) 1.33 1.58 1.70 1.54 0.15 

 
Table 5: Post-retrofit tests with varying heat input. 

Heat 
input 3 kW 6 kW 9 kW Mean 

St
an

da
rd

 
de

vi
at

io
n 

tc 
(h) 77.11 80.33 77.72 78.39 1.40 

UA 
(W/K) 130.59 150.64 160.71 147.32 12.52 

C 
(MJ/K) 36.25 43.56 44.97 41.59 3.82 

U  
(W/m2K) 0.61 0.70 0.75 0.69 0.06 

However, the four times higher time constant will not 
contribute to four times lower energy consumption. 
Energy consumption improvements cannot be solely 
determined on the basis of the relationship between 
individual physics parameters, including the UA values 
before and after the retrofit. Thus, heating energy 
consumption after retrofit will not be a direct reflection of 
the reduction of the UA value of 66%, as derived from 
Table 3. This is because the reduction of the heating 
energy consumption will be the consequence of a 
combination of all building physics properties, including 
the UA value, the time constant, and the effective thermal 
capacitance.  
The correct way to determine the energy savings from this 
analysis is to run the simulations with the calibrated 
models, and to normalise the results to long term weather 
changes. This will be revisited later in this section.  
However, before calculating heating energy savings, we 
wanted to investigate whether the same results of building 
physics parameters would be obtained with different heat 
input rates during dynamic heating test simulations. The 
tests were therefore repeated with 3 kW, 6 kW and 9 kW. 
The results for the pre-retrofit case are shown in Table 4, 
and for the post-retrofit case in Table 5. 
The post-retrofit and pre-retrofit cases can now be 
compared more generally, as shown in Table 6. 
Table 4 and Table 5 show that different heat inputs 
resulted in different values of building physics 
parameters, while similar temperature change pattern was 

observed as in Figure 4.  Can therefore the building 
physics be different just on the basis of different heat 
inputs? Definitely not, as fundamental properties of 
building materials could not have changed just on the 
basis of different heat input, and there were no phase 
change materials that could have, for instance, changed 
the thermal storage properties. The explanation lies in the 
precursor to this analysis, where parametric simulation 
and multi-objective optimisation were used to calibrate 
the simulation models. 
Table 6: Comparison of results with varying heat input. 
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tc  
(h) 78.39 1.40 21.93 2.65 3.57 

UA  
(W/K) 147.32 12.52 328.70 33.05 0.45 

C   
(MJ/K) 41.59 3.82 25.64 0.38 1.62 

U 
(W/m2K) 0.69  1.54  0.45 

As the simulation models were calibrated using measured 
data, there is a measurement error embedded in the results 
of dynamic heating test simulations. The correct way of 
calculating the results is therefore to carry out several 
simulations and express the results as mean value ± 
standard deviation. 
Therefore, when expressed in this more general way, the 
results of dynamic heating test simulations can be 
compared with theoretical U-values. Thus, both 
theoretical and measured values are shown in Table 7. 

Table 7: Theoretical and measured UA values. 

Description Post-retrofit Pre-retrofit 

Theoretical UA value 
(W/K) 97.89 318.56 

UA value obtained from 
simulated dynamic heating 

tests (W/K) 

147.32 ± 
12.52 

328.70 ± 
33.05 

The theoretical UA values in this table were adjusted 
taking the influence of infiltration/ventilation and thermal 
bridging into account (UAtheoretical = S UiAi + NV/3 + S 
Ljyj), in order to make a fair comparison with the 
measured UA values obtained from simulated dynamic 
heating tests. As air tightness figures relate to test 
conditions of 50 Pa in Table 1, these figures were 
proportionally scaled down from 50 Pa to the expected 3 
Pa under normal operational conditions, before 
calculating these theoretical values. 
The results from Table 7 can be unpacked in terms of 
lower and higher end values, by either subtracting or 
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adding the standard deviation to the mean value, as shown 
in Table 8. 
Table 8: Comparison between theoretical and measured 

UA values. 

 Post-
retrofit 

Pre-
retrofit 

Theoretical UA value (W/K) 97.89 318.56 

Measured values from simulated dynamic heating tests 

Lower end of range (W/K) 134.79 295.65 

Higher end of range (W/K) 159.84 361.75 

Average (W/K) 147.32 328.70 

discrepancy = (measured – theoretical)/theoretical 

Lower end of range (%) 38% -7% 

Higher end of range (%) 63% 14% 

Average (%) 50% 3% 
 

Table 9 Energy consumption normalisation factors 

Degree Days calculation 
(base temperature 15.5 oC) 

Energy 
consumption 
normalisation 
factor (ECNF) 

Post retrofit (source: 
monitoring system weather 
station) 

1826 1.00 

Pre-retrofit (source: weather 
file 
GBR_Birmingham.035340_I
WEC.EPW) 

2300 1.26 

Pre-retrofit (source: CIBSE 
for Birmingham-Elmdon) 2425 1.33 

These results will be discussed in the next section. Going 
back to the calculation of heating energy savings, referred 
to earlier in the text, we first need to calculate weather 
normalisation factors from Degree Days, as shown in 
Table 9, and apply these factors to simulated energy 
consumption figures with the calibrated models, as shown 
in Table 10. 
Table 10: Long term energy consumption calculations.  

Pr
e-

re
tr

of
it 

he
at

in
g 

en
er

gy
 

co
ns

um
pt

io
n 

in
 k

W
h 

 a
nd

 in
 (k

W
h/

m
2)

 

Po
st

- r
et

ro
fit

 h
ea

tin
g 

en
er

gy
 

co
ns

um
pt

io
n 

in
 k

W
h 

 a
nd

 in
 (k

W
h/

m
2)

 

U
na

dj
us

te
d 

sa
vi

ng
s 

D
eg

re
e 

da
y 

no
rm

al
ise

d 
sa

vi
ng

 
(W

ea
th

er
 fi

le
 D

D
)  

D
eg

re
e 

da
y 

no
rm

al
ise

d 
sa

vi
ng

 
(C
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SE

 D
D

) 

Including 
base load 

12179 
(162)  

5699 
(76)  

53% 41% 38% 

Excluding 
base load 

11511 
(153)  

5032 
(67)  

56% 45% 42% 

As it can be seen from Table 10, the lowest energy 
consumption savings are 38% including the base load, or 

42% excluding the base load. The base load was 
established as gas energy consumption during summer 
months when heating was not in operation, and it was 
attributed to energy used for cooking and domestic hot 
water. These could not have been anticipated from the 
individual physics parameters alone, due to a combined 
influence of these parameters on the dynamics of heat 
transfer. 
Discussion 
As it can be seen from the Results section, there are 
significant discrepancies between the theoretical and 
measured UA values. These go as high as 14% in the pre-
retrofit case and as high as 63% in the post-retrofit case. 
These discrepancies are one of the factors that contribute 
to the performance gap between design simulations and 
building performance in use. 
How can these discrepancies be addressed? Technical 
specifications of building materials need to be re-
evaluated systematically and new guidance for designers 
needs to be published by professional organisations such 
as CIBSE and ASHRAE. Before such new technical 
guidance becomes available, a significant safety margin 
in terms of building material properties could be deployed 
by designers. That safety margin could be as high as the 
discrepancies found in this research. 
The results show that surrounding a solid concrete 
building with a new thermal envelope increases its time 
constant. This is especially evident in Table 6, from where 
it can be seen that the time constant has increased 3.57 
times as result of retrofit. Considering that no high density 
material was added to the building through retrofit but 
only lightweight thermal insulation, the increase of time 
constant could be counterintuitive. However, this is 
consistent with the definition: “Thermal mass is a 
relationship between the building thermal capacitance C 
and the overall transmittance-area product UA of the 
building, which through the time constant tc gives 
information on the speed of response of a building to a 
heat input.” (Jankovic, 2017, p. 130). Therefore, thermal 
mass is not just the high density material in the building, 
but a combination of that material and the surrounding 
thermal insulation. This is evident from Equation (4), 
where a reduced UA value resulting from retrofitting 
thermal insulation on a building with a constant thermal 
capacitance C will result in an increase of the time 
constant tc. 
What is the meaning of the increased time constant? The 
building will be slower to respond to heat gains and 
losses. It will heat up more slowly and it will cool down 
more slowly. Building occupants will therefore 
experience more gradual temperature changes, and the 
resultant thermal comfort will be better. 
Table 6 also shows 1.62 times increase in the effective 
thermal capacitance C. As no high density materials were 
added to the building through retrofit, the scale of increase 
is unexpected. This could be attributed to the timber frame 
construction of the external envelope panels (Figure 5), 
where the timber most likely contributed to the increase 
of effective thermal capacitance.  
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Figure 5: External insulation panel built from timber 

frame, before installation and insulation injection. 
Alternatively, this could be attributed to a combined effect 
of multiple variables used in the calibration process. 
Whilst the accuracy of the calibrated models before and 
after retrofit was exceptionally high as shown in Table 2, 
this could have been a consequence of a ‘cocktail’ effect 
of multiple parameters acting simultaneously.  
This means that different parameters, such as time 
constant and effective thermal capacitance, could have 
both been changed as result of multi-objective 
optimisation, but in reality, only one could have changed 
and the other could have remained constant. They could 
be ‘two sides of the same coin’ and to be collectively 
holding information on the dynamics of building heat 
transfer. 
This is one of the reasons why energy savings through 
retrofit cannot be evaluated on the basis of changes of the 
individual physics parameters alone. Another reason is, as 
already stated in the Results section, that UA value 
reduction is not directly proportional to energy savings, 
without also taking into account heat transfer dynamics 
effects represented by the time constant and effective 
thermal capacitance. Thus, energy savings need to be 
evaluated through dynamic simulation with the calibrated 
models, rather than on the basis of changes of the 
individual building physics properties alone. 
Initially, it was somewhat surprising that dynamic heating 
test simulations with different rates of heat input produced 
different values of building physics parameters. As there 
were no phase change materials in the building, and as 
there were no other reasons for alterations of heat related 
physics properties, an explanation for these differences 
was sought in the steps preceding the simulations of 
dynamic heating tests. The simulation models were 
calibrated prior to conducting the tests, in order to achieve 
accurate representations of the building before and after 
retrofit. The calibration used data from monitoring, and 

the calibrated models therefore had become a 
measurement instrument that carried forward the 
measurement errors. The resolution of these differences 
was a realisation that a dynamic test with a single heat 
input rate is not sufficient to obtain results. Several tests 
need to be carried out with different heat input rates, and 
the results need to be expressed in the same way as results 
of other measurements, namely as mean value ± standard 
deviation. 
Despite of the uncertainties introduced in this section, the 
method of measuring building physics properties 
represents a useful tool to ensure that design performance 
specification is correctly implemented.  
Conclusion 
The current practice of building design simulations is to 
use theoretical properties of materials, either built into the 
simulation tools, or obtained from manufacturers’ 
specifications or from technical reference tables. These 
properties are rarely compared to actual properties of 
buildings in use. That leads to a performance gap between 
design simulations and actual performance of the 
constructed building. This is significant in deep energy 
retrofit projects, where it is important to know the 
properties of the existing building to be retrofitted, and of 
the materials to be retrofitted, in order to be able to design 
with confidence. 
Building physics properties can be obtained from physical 
tests, such as co-heating tests or dynamic heating tests, but 
these tests are impractical, as they require the building to 
be unoccupied, during a period of stable winter weather. 
The use of additional heaters required to carry out these 
tests could result in cracks in the building materials due to 
differential thermal expansion rates caused by higher than 
usual internal temperatures. 
This research introduces an alternative method for 
obtaining building physics properties through simulation 
of dynamic heating tests using calibrated simulation 
models. It uses a real deep energy retrofit project as 
evidence base, which was monitored extensively before 
and after the retrofit. The calibration is based on data 
obtained from ongoing monitoring during normal use of 
the building. 
In seeking to answer a practical question on how to assess 
whether U-values of the components of external envelope 
are equal to or higher than those in manufacturers’ 
specifications, this research has made two lasting 
contributions. First, the method introduced in this article 
represents a tool for establishing physics properties of 
buildings in use before and after retrofit, and facilitates 
quality control of retrofit projects. Second, this research 
raises the awareness of the discrepancies between 
theoretical and actual building material properties, and 
calls for re-evaluation of technical guidance for designers. 
Considering that the highest discrepancy calculated was 
63%, commensurable safety margins need to be 
implemented in design projects. 
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Nomenclature 
y – thermal bridge transmittance (W/mK) 
DT – temperature difference Tr - To (oC) 
C  – effective thermal capacitance (MJ/K) 
Emeasured  – measured energy consumption (kWh) 
Esimulated  – simulated energy consumption (kWh) 
GA – genetic algorithm 
L – length of a linear thermal bridge (m) 
n  – number of data points  
N – air changes per hour (1/h) 
Q  – heating rate (W) 
STD – standard deviation 
tc = C/UA  – building time constant (h) 
Tmax  – maximum internal air temperature (oC) 
To  – outside air temperature (oC) 
Tr  – simulated room air temperature (oC) 
Tstart  – starting internal air temperature (oC) 
Tt  – calculated room air temperature (oC) 
UA  – overall transmittance-area product 

   (W/m2K) 
V – internal volume of air (m3) 
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