
Subject Knowledge
for Primary teachers

Computing Scotland

SUPPORTED BY

In 2017, Education Scotland revised the computing
science content within the Broad General Education
phase, with significant input from Computing At
School Scotland, to reflect the developing worldwide
understanding of the importance of the subject.

For most of us, technology and computers play
a vital role in our lives: at home, at work, for our
health and for our informal learning. It is important
that our children learn how this stuff works, rather
than treating it as magic. Just as we introduce the
traditional sciences in primary school, we must now
teach computing science, the ‘fourth science’, from
the early years, to ensure children leave school
equipped with the skills and knowledge they need to
participate effectively in society, whether or not they
go on to become computing professionals.

QuickStart Computing can help primary teachers
to pick up the necessary subject knowledge for
computing science. It should be read in conjunction
with the guide for teachers available at http://
teachcs.scot, which explains the structure of
the Experiences and Outcomes (‘Es and Os’) and
Benchmarks in detail, and provides links to a wealth of
activities that can be used at primary.

This QuickStart resource is focused on primary schools,
but there is a companion pack for early secondary.

A word about sponsorship. The QuickStart project
was funded by Microsoft, with matched funding
from the English Department for Education, and
further funding from Education Scotland, and it is
heartening to see such tangible support for teachers,
both from business and from government. I would
like to thank them warmly and to emphasise that the
QuickStart resources were developed for teachers by
a Computing At School working group, without the
direct influence of the sponsors.

The new computing curriculum is a huge opportunity
for schools to make a difference to children’s futures.
Let’s make the most of it! I hope that QuickStart will
help you design, develop and deliver an invigorating
computing curriculum that will inspire you and your
children.

Foreword

Quintin Cutts
Chair, Computing At School Scotland

Every effort has been made to trace copyright holders and obtain
their permission for the use of copyright materials. The author and
publisher will gladly receive information enabling them to rectify any
error or omission in subsequent editions.

Although every effort has been made to ensure that website
addresses are correct at time of going to press, Computing At School
cannot be held responsible for the content of any website mentioned.
It is sometimes possible to find a relocated web page by typing in the
address of the home page for a website in the URL window of your
browser.

© Crown Copyright 2017
Published 2017

Author: Miles Berry
Adjusted for Scotland: Bill Sargent
Consultants: Yvonne Walker, Graham Hastings
Cover, text design and typesetting: Burville Riley Partnership

Computing At School is grateful to the following contributors:
Bill Mitchell, Lee Goss, Miles Ellison, Roger Davies, Michael Kölling,
Hugh Milward, Clare Riley, Phil Bagge, Mark Dorling, Andrea Carr,
Becca Law, Tracey Cowell, Sarah Snashall, Jane Jackson, Hilary
Beaton, Teresa Watts and Helen Royle from Stuck Ltd, Eruke Ideh-
Ichofu.

Photo and text credits:
With thanks to Mark Dorling and Matthew Walker for permission
to use the Progression Pathways. © Mark Dorling and Matthew
Walker.Page 7: Barefoot would like to acknowledge the work of Julia
Briggs and the eLIM team at Somerset County Council for their
contribution to this poster.
Pages 11, 22, 24–28: Scratch is developed by the Lifelong
Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.
Page 13: With thanks to iFixit. CC by-nc-sa.
Page 18, 20: With thanks to TTS.
Pages 21, 25 and 28: With thanks to Stuart Ball for providing the
Kodu screenshots.
Pages 33–37: With thanks to Advocate Art.
Page 39: Tim Berners-Lee image CC by Silvio Tanaka.
Page 41: PageRank example created by 345Kai. Public domain.

To reference this work, please use the following citation: Berry, M.
(2017) QuickStart Scotland Primary Handbook. Swindon: BCS.

This content is free to use under the Open Government Licence v3.0.

A catalogue record for this title is available from the British Library.
ISBN: 978-1-78017-440-2

User guide 4

QuickStart Computing roadmap 5

Computational thinking 6

Programming 18

Technology 30

Computer networks 32

Communication and collaboration 42

Productivity and creativity 44

Safe and responsible use 46

Planning learning, teaching and assessment 50

Resources 53

Knowledge and skills audit form 54

Glossary 56

Contents

4

QuickStart Computing

User guide
Welcome to QuickStart Computing: a CPD toolkit for
the new primary curriculum. Computing is a new
subject. It draws together the strands of computer
science and digital literacy, and seeks to equip children
with computational thinking skills and the creativity
they need to understand and change the world.

Through the programme of study for Computing
Science and Digital Literacy, primary school-aged
children learn the fundamental principles and
processes of computation; they gain repeated, practical
experience of writing code to solve problems and to
model systems; they become skilled at creating high-
quality products and content using digital technology;
and they become safe, responsible and critical users of
technology1.Computing is an enjoyable and empowering
subject to learn, and it’s a very rewarding one to
teach. However, unlike other subjects in the primary
curriculum, it’s not one many primary teachers learned
themselves when they were at school, or were taught
about in their teacher training.

Quickstart Computing is a set of resources that
addresses the subject knowledge and the subject-
specific pedagogy teachers need in order to plan,
teach and assess the primary computing curriculum
effectively and confidently.

This handbook is broken down into two sections:
●● Computing subject knowledge with suggestions
for tried-and-tested classroom activities to run in
school (see pages 6–49)

●● Advice for planning, teaching and assessing the
computing curriculum (see pages 50–52).

Both sections are supported by:

weblinks to useful information, including
activity ideas from Computing At School,
Barefoot Computing and CS Unplugged.

All the resources are available to download free
of charge from http://computingatschool.org.uk/
scotland/quickstart.

Delivering computing CPD
This toolkit can be used to develop and deliver
computing CPD sessions to colleagues and
computing coordinators. We have suggested a model
for the use of this CPD on the page opposite but you
can decide how best to share the training to meet
the needs of your school, cluster or hub.

All timings and durations are suggestions only and
should be adapted to fit with the needs of both the
course leader and session attendees. For example,
the diagram opposite outlines two half-day CPD
sessions to take place at the beginning and end of a
school term, but depending on availability of session
leaders and attendees, it may be better to hold three
shorter twilight sessions.

These resources are designed to be used flexibly and
it is important to spend time reviewing the materials
provided and developing these prior to delivering CPD
sessions, to ensure they fit the needs of your attendees.
The handbook and CPD session presentations are
provided in editable format to help you with this.

Developing computing knowledge
and skills
To benefit most from these resources, it’s important
to engage fully with them.

●● Read the handbook, particularly those areas
of content in which you are less confident (see
pages 54–55 for the knowledge and skills audit
form, and the interactive audit tool is at http://
computingatschool.org.uk/scotland/quickstart).

●● Have a go at creating some code, for example
making games in Scratch or Kodu; think about
how you would apply these ideas in school.

●● Look for existing examples of computational
thinking that you make use of in your job.

●● Try out some of the classroom activities
described in the handbook.

●● Engage with others. Learning as part of a group
allows you to share knowledge and ideas. This
can be done in school and by joining an online
community such as Computing At School: www.
computingatschool.org.uk/.

Note: throughout the guide we have highlighted
computing terms in blue. The definitions of these
terms are in the glossary.

What is QuickStart Computing?

1 Technologies Benchmarks [Education Scotland 2017]

http://www.computingatschool.org.uk/
http://www.computingatschool.org.uk/

1

Wave 1

Wave 2

Local computing champion
Computing
coordinator Class teacher

1

School School

School
CAS hub / local

cluster lead
CAS hub / local

cluster lead

CPD Session 1

Local computing champion introduces

Computing course to computing

coordinators at local meeting.

Computing coordinators lead face-

to-face CPD concept sessions in

school with colleagues.

Computing coordinators use the

CPD resources to develop personal

knowledge and practise teaching

activities in classroom.

Class teachers use the CPD

resources to develop personal

knowledge and practise teaching

activities in classroom.

Computing coordinators re-group

at local meeting for a debrief on

learning experiences and discuss

next steps.

Class teachers re-group in staff

meeting for a debrief on learning

experiences and discuss next steps.

Personal learning time
+

Classroom teaching time

Personal learning time
+

Classroom teaching time

CPD Session 1

CPD Session 2

CPD Session 2

School

2

+ Online

Online+

+

+

+

+

++

+ +

2

3

3

QuickStart Computing
roadmap

5

6

QuickStart Computing

How do we think
about problems
so that computers
can help?

Computers are incredible devices: they extend
what we can do with our brains. With them, we can
do things faster, keep track of vast amounts of
information and share our ideas with other people.

Getting computers to help us to solve problems is a
two-step process:

 1. First, we think about the steps needed to solve
 a problem.

 2. Then, we use our technical skills to get the
 computer working on the problem.

Take something as simple as using a calculator to
solve a word problem in maths. First, you have to
understand and interpret the problem before the
calculator can help out with the arithmetic bit.

Similarly, if you’re going to make an animation, you
need to start by planning the story and how you’ll
shoot it before you can use computer hardware and
software to help you get the work done.

In both of these examples, the thinking that is
undertaken before starting work on a computer is
known as computational thinking.

Computational thinking describes the processes
and approaches we draw on when thinking about
problems or systems in such a way that a computer
can help us with these.

Computational thinking is not thinking about
computers or like computers. Computers don’t think
for themselves. Not yet, at least!

Computational thinking is about looking at a problem
in a way that a computer can help us to solve it.

When we do computational thinking, we use the
following processes to tackle a problem:

●● Logical reasoning: predicting and analysing
(see pages 8–10)

●● Algorithms: making steps and rules (see pages
10–12)

●● Decomposition: breaking down into parts
(see pages 12–14)

●● Abstraction: removing unnecessary detail
(see pages 14–15)

●● Patterns and generalisation: spotting and using
similarities (see pages 15–16)

●● Evaluation: making judgements.

Although computational thinking describes the sort
of thinking that computer scientists and software
developers engage in, plenty of other people think
in this way too, and not just when it comes to using

Computational
thinking

What is computational
thinking?

What can you do with
computational thinking?

7

Computational thinking

computers. The thinking processes and approaches
that help with computing are really useful in many
other domains too.

For example, the way a team of software engineers
goes about creating a new computer game, video
editor or social networking platform is really not
that different from how you and your colleagues
might work together to put on a school play, or to
organise an educational visit.

In each case:

●● you take a complex problem and break it down
into smaller problems

●● it’s necessary to work out the steps or rules for
getting things done

●● the complexity of the task needs to be managed,
typically by focusing on the key details

●● the way previous projects have been
accomplished can help.

Ideas like logical reasoning, step-by-step approaches
(algorithms), decomposition, abstraction and
generalisation have wide applications to solving
problems and understanding systems across (and
beyond) the school curriculum. There are many ways
to develop these in school beyond the computing

curriculum, but as pupils learn to use these in their
computing work, you should find that they become
better at applying them to other work too.

You will already use computational thinking in many
different ways across your school.

●● When your pupils write stories, you encourage
them to plan first: to think about the main events
and identify the settings and the characters.

●● In art, music or design and technology, you will
ask pupils to think about what they are going to
create and how they will work through the steps
necessary for this, by breaking down a complex
process into a number of planned phases.

●● In maths, pupils will identify the key information
in a problem before they go on to solve it.

As their digital literacy becomes more sophisticated
they embed computation to solve problems.
Increasingly they apply the core principles
underpinning digital technologies to develop their
own ideas1

How is computational thinking
used in the curriculum?

Where does computational
thinking fit in the new
computing curriculum?

1 How Good is our School? [Education Scotland 2015]

8

QuickStart Computing

Whilst programming (see pages 18–29) is an important
part of the new curriculum, it would be wrong to
see this as an end in itself. Rather, it’s through the
practical experience of programming that the insights of
computational thinking can best be developed.

Computational thinking shouldn’t be seen as just a
new name for ‘problem-solving skills’. It does help to
solve problems and it has wide applications across
other disciplines, but it’s most obviously apparent, and
probably most effectively learned, through the rigorous,
creative processes of writing code – as discussed in the
next section.

 Classroom activity ideas

●● Ask your pupils to write a recipe for a sandwich,
thinking carefully about each step that needs
to be carried out. Point out that the step-by-
step sequence of instructions is an algorithm.
Ask them to share each other’s recipes and spot
patterns in them (this is called generalisation).
Read a range of recipes and discuss the layers
of simplification (abstraction) present in even
relatively simple recipes, such as for pizza.

●● Plan a traditional ‘design, make and evaluate’
project for design and technology, drawing out
the parallels with computational thinking. For
example, plan the process for making a musical
instrument. Tell the pupils to break this complex
problem down into smaller stages, such as:
●» planning their design (an abstraction – a simplified
version – capturing the key elements of this)
●» sourcing their materials (using decomposition to
identify the different components)
●» assembling the materials to create the
instrument (a systematic, step-by-step
approach – an algorithm)
●» evaluating (testing) the instrument.

●● Challenge older pupils to work individually or
collaboratively on more complex projects, for
example researching and writing up aspects of a
curriculum topic such as the Viking invasion, or
putting together an assembly or a class play. In
each case ask them to note down the individual
steps needed for the task and to think about what
they have left out to make the subject fit their brief.

 Further resources

●● Barefoot Computing, ‘Computational Thinking’,
available at: http://barefootcas.org.uk/barefoot-
primary-computing-resources/concepts/
computational-thinking/ (free, but registration
required).

●● Berry, M., ‘Computational Thinking in Primary
Schools’ (2014), available at: http://milesberry.
net/2014/03/computational-thinking-in-primary-
schools/.

●● Computer Science Teachers Association,
‘CSTA Computational Thinking Task Force’ and
‘Computational Thinking Resources’, available
at: http://csta.acm.org/Curriculum/sub/
CompThinking.html.

●● Computing At School, ‘Computational
Thinking’, available at: http://community.
computingatschool.org.uk/resources/252.

●● Curzon, P., Dorling, M., Ng, T., Selby, C. and
Woollard, J., ‘Developing Computational Thinking
in the Classroom: A Framework’ (Computing At
School, 2014), available at: http://community.
computingatschool.org.uk/files/3517/original.pdf.

●● Google for Education, ‘Exploring Computational
Thinking’, available at: www.google.com/edu/
computational-thinking/index.html.

●● Wing, J., ‘Computational Thinking and Thinking
about Computing’ (The Royal Society, 2008),
available at: http://rsta.royalsocietypublishing.
org/content/366/1881/3717.full.pdf+html.

Logical reasoning

If you set up two computers in the same way, give them
the same instructions (the program) and the same
input, you can pretty much guarantee the same output.

Computers don’t make things up as they go along
or work differently depending on how they happen
to be feeling at the time. This means that they
are predictable. Because of this we can use logical
reasoning to work out exactly what a program or
computer system will do.

Children quickly pick this up for themselves: the
experience of watching others and experimenting

Can you explain why
something happens?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://milesberry.net/2014/03/computational-thinking-in-primary-schools/
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://csta.acm.org/Curriculum/sub/CompThinking.html
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/resources/252
http://community.computingatschool.org.uk/files/3517/original.pdf
http://community.computingatschool.org.uk/files/3517/original.pdf
www.google.com/edu/computational-thinking/index.html
www.google.com/edu/computational-thinking/index.html
http://rsta.royalsocietypublishing.org/content/366/1881/3717.full.pdf+html
http://rsta.royalsocietypublishing.org/content/366/1881/3717.full.pdf+html

9

Computational thinking

for themselves allows even very young children to
develop a mental model of how technology works. A
child learns that clicking the big round button brings
up a list of different games to play, or that tapping
here or stroking there on the screen produces a
reliably predictable response.

This process of using existing knowledge of a
system to make reliable predictions about its future
behaviour is one part of logical reasoning. At its
heart, logical reasoning is about being able to explain
why something is the way it is. It’s also a way to
work out why something isn’t quite as it should be.

Logic is fundamental to how computers work: deep
inside the computer’s central processing unit (CPU),
every operation the computer performs is reduced to
logical operations carried out using electrical signals.

It’s because everything a computer does is
controlled by logic that we can use logic to reason
about program behaviour.

Software engineers use logical reasoning all the
time in their work. They draw on their internal
mental models of how computer hardware, the
operating system (such as Windows 8, OS X) and
the programming language they’re using all work,
in order to develop new code that will work as they
intend. They’ll also rely on logical reasoning when
testing new software and when searching for and
fixing the ‘bugs’ (mistakes) in their thinking (known
as debugging – see page 17) or their coding when
these tests fail.

There are many ways in which children will already
use logical reasoning in their computing lessons and
across the wider curriculum.

●● In English, pupils might explain what they think
a character will do next in a novel, or explain the
character’s actions in the story so far.

●● In science, pupils should explain how they have
arrived at their conclusions from the results of
their experiments.

●● In history, pupils should discuss the logical
connections between cause and effect; they
should understand how historical knowledge is
constructed from a variety of sources.

In the computing curriculum, at Early Level, pupils
are expected to use logical thinking to identify and
correct errors in a set of instructions.
At Level 1, they should be able to identify when a
program does not do what was intended, and to
correct errors/bugs; and, at Level 2, to identify any
mismatches between the task description and the
programmed solution, indicating how to fix them.2

 Classroom activity ideas

●● Provide pupils with floor turtles and ask them to
make predictions of where the robot will end up
when the ‘go’ button is pressed. Then ask them
to explain why they think that. Being able to give
a reason for their thinking is what using logical
reasoning is all about.

●● In their own coding, logical reasoning is key to
debugging (finding and fixing the mistakes in
their programs). Ask the pupils to look at one
another’s Scratch or Kodu programs and spot
bugs. Encourage them to test the programs to
see if they can isolate exactly which bit of code
is causing a problem. If pupils’ programs fail to
work, get them to explain their code to a friend or
even an inanimate object (e.g. a rubber duck).

●● Give pupils a program of your own or from the
Scratch or Kodu community sites and ask them to
work backwards from the code to work out what
it will do.

●● Ask pupils to think carefully about some school
rules, for example those in the school’s computer
Acceptable Use Policy. Can they use logical
reasoning to explain why the rules are as they are?

How is logical reasoning used
across the curriculum?

How is logical reasoning
used in computing?

Where does logical reasoning
fit in the new

computing curriculum?

2 Technologies Benchmarks [Education Scotland 2017].

10

QuickStart Computing

●● There are many games, both computer-based
and more traditional, that draw directly on the
ability to make logical predictions. Organise for
the pupils to play noughts and crosses using
pencil and paper. As they are playing, ask them
to predict their opponent’s next move. Let them
play computer games such as Minesweeper, Angry
Birds or SimCity, as appropriate. Ask them to
pause at certain points and tell you what they
think will happen when they move next. Consider
starting a chess club if your school doesn’t
already have one.

 Further resources

●● Barefoot Computing, ‘Logic: Predicting and
Analysing’, available at: http://barefootcas.org.
uk/barefoot-primary-computing-resources/
concepts/logic/ (free, registration required).

●● Computer Science for Fun, ‘The Magic of
Computer Science’, available at: www.cs4fn.org/
magic/.

●● Computer Science Unplugged, ‘Databases
Unplugged’, available at: http://csunplugged.org/
databases.

●● McOwan, P. and Curzon, P. (Queen Mary University
of London), with support from EPSRC and Google,
‘Computer Science Activities With a Sense of Fun’,
available at: www.cs4fn.org/teachers/activities/
braininabag/braininabag.pdf.

●● The P4C Co-operative, a co-operative providing
resources and advice on philosophy for children,
available at: www.p4c.com/.

●● PhiloComp.net, website highlighting the strong
links between philosophy and computing, available
at www.philocomp.net/.

Algorithms

An algorithm is a sequence of instructions or a set of
rules to get something done.

You probably know the fastest route from school to
home, for example, turn left, drive for five miles,

 turn right. You can think of this as an ‘algorithm’
– as a sequence of instructions to get you to your
chosen destination. There are plenty of algorithms
(i.e. routes) that will accomplish the same goal; in
this case, there are even algorithms (such as in your
satnav) for working out the shortest or fastest
route.

Search engines such as Bing or Google use
algorithms to put a set of search results into order,
so that more often than not, the result we’re looking
for is at the top of the front page.

Your Facebook news feed is derived from your
friends’ status updates and other activity, but it only
shows that activity which the algorithm (EdgeRank)
thinks you’ll be most interested in seeing. The
recommendations you get from Amazon, Netflix and
eBay are algorithmically generated, based in part on
what other people are interested in.

Given the extent to which so much of their lives is
affected by algorithms, it’s worth pupils having some
grasp of what an algorithm is.

Helping pupils to get an idea of what an algorithm
is needn’t be confined to computing lessons. You
and your pupils will already use algorithms in many
different ways across the school.

●● A lesson plan can be regarded as an algorithm for
teaching a lesson.

●● There will be a sequence of steps pupils follow for
many activities, such as getting ready for lunch or
going to PE.

●● In cookery, we can think of a recipe as an
algorithm.

●● In English, we can think of instructional writing as
a form of algorithm.

●● In science, we might talk about the method of an
experiment as an algorithm.

●● In maths, your approach to mental arithmetic (or
many computer-based educational games) might
be an implementation of a simple algorithm.

How are algorithms used in the
real world?

How are algorithms used
across the curriculum?

What’s the best way to solve
a problem?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/logic/
www.cs4fn.org/magic/
www.cs4fn.org/magic/
http://csunplugged.org/databases
http://csunplugged.org/databases
www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
www.cs4fn.org/teachers/activities/braininabag/braininabag.pdf
www.p4c.com/
www.philocomp.net/

11

Computational thinking

Where do algorithms fit
in the new computing

curriculum?

An example of this might be:
●» repeat ten times:
●» ask a question
●» wait for a response
●» provide feedback on whether the response
was right or wrong.

The computing curriculum expects pupils at Level
1 to have an understanding of algorithms as a
sequence of steps.

There can be many algorithms to solve the same
problem, and each of these can be implemented
using different programming languages on different
computer systems: it can be useful for pupils to
compare how they draw a square with a floor turtle
and how they would do this on screen in Logo or
ScratchJr.

Scratch Jnr programming for drawing a square.

Level 2 builds on this: pupils are expected to design
programs with particular goals in mind, which will
draw on their being able to think algorithmically,
as well as using logical reasoning (see pages 8–10)
to explain algorithms and to detect and correct
errors in them. To practise this, encourage pupils to
carry out the steps for an algorithm: to follow the
instructions themselves rather than writing these
as code for the computer. Errors and inconsistencies
should become apparent!

Whilst programming languages like Scratch and Kodu
(see pages 21–22) can make it seem unnecessary to
go through the planning stage of writing a program,

it is good practice for pupils to write down the
algorithm for a program, perhaps as rough jottings,
a storyboard, pseudocode (a written description
of how a program will operate) or even as a flow
chart (see below). This makes it far easier for them
to get feedback from you or their peers on their
algorithms before implementing these as code on
their computers.

Repeat 10 times:

 Ask a maths question

 If the answer is right then:

 Say well done!

 Else:

 Say think again!

An example of pseudocode.

An example of a flow chart.

 Classroom activity ideas

●● Talk to the pupils about what makes one
algorithm better than another. In early
programming work, pupils will come to realise
that a Bee-Bot program which uses fewer steps
than another to get to the same place is quicker
to type and quicker to run.

●● Play the classroom game ‘Guess my number’ to
demonstrate this. Tell the pupils that you have

Ask a question

Say ‘that’s right’

Say ‘that’s
wrong’

No

Yes

Pupil
responds

Start

Is the
answer

correct?

12

QuickStart Computing

chosen a number between 1 and 100 and they are
to guess what it is. Tell them that they can ask
you questions about the number but that you can
only answer ‘yes’ or ‘no’, and that they can only
ask you one question per pupil.
●» For the first go, ask the pupils to guess numbers
randomly.
●» Next, using a new number, ask the pupils to guess
the number sequentially from one, e.g. ‘Is the
number one?’ and so on. Explain that this is called
a linear search. Allow them to have as many goes
as needed to guess the number.
●» Finally, using a new number again, explain how
to use a binary search. Explain to the learners
that they already know the number is less than
100, so suggest they ask ‘Is it less than 50?’.
then ‘Is it less than 25?’ or ‘Is it less than 75?’.
depending on the answer. Tell the pupils to keep
halving the section they are searching in until
the number is found.
●» Afterwards, talk about which approach found
the number quicker. When they are familiar with
using a binary search method, replay the game
using a number between 1 and 1000.

●● Organise the pupils to sort a set of unknown
weights into weight order using a simple pan
balance, thinking carefully about the algorithm
they’re following to do this, and then to think of a
quicker way to accomplish the same activity. See
http://csunplugged.org/sorting-algorithms for a
demonstration of this.

●● Explain to the pupils that not all algorithms are
made of sequences of instructions: some are rule
based. Introduce rule-based algorithms by writing a
number sequence on the board, e.g. 3, 6, 9, 12 or
2, 4, 8, 16. Ask the pupils to work out the rule for the
sequence (adding 3, or doubling the number) and to
predict the next number. Explain that the rule for the
sequence is the algorithm and the process by which
they worked it out was logical reasoning.

 Further resources

●● Bagge, P., ‘Flow Charts in Primary Computing
Science’, available at: http://philbagge.blogspot.
co.uk/2014/04/flow-charts-in-primary-
computing-science.html.

●● Barefoot Computing, ‘KS2 Logical Number
Sequences Activity’, available at: http://
barefootcas.org.uk/programme-of-study/use-
logical-reasoning-explain-simple-algorithms-
work/ks2-logical-number-sequences-activity/
(free, but registration required).

●● Cormen, T., ‘Algorithms Unlocked’ (MIT Press,
2013).

●● Peyton Jones, S. and Goldberg, A. (Microsoft
Research), ‘Getting from A to B: Fast Route-
Finding Using Slow Computers’, available at: www.
ukuug.org/events/agm2010/ShortestPath.pdf.

●● Slavin, K., ‘How Algorithms Shape Our World’,
available at: www.ted.com/talks/kevin_slavin_
how_algorithms_shape_our_world?language=en.

●● Steiner, C., ‘Automate This: How Algorithms Came
to Rule Our World’ (Portfolio Penguin, 2013).

Decomposition

The process of breaking down a problem into smaller
manageable parts is known as decomposition.
Decomposition helps us solve complex problems and
manage large projects.

This approach has many advantages. It makes the
process a manageable and achievable one – large
problems are daunting, but a set of smaller, related
tasks is much easier to take on. It also means that
the task can be tackled by a team working together,
each bringing their own insights, experience and
skills to the task.

Decomposing problems into their smaller parts is
not unique to computing: it’s pretty standard in
engineering, design and project management.

Software development is a complex process, and
so being able to break down a large project into
its component parts is essential – think of all the
different elements that need to be combined to
produce a program like PowerPoint.

The same is true of computer hardware: a
smartphone or a laptop computer is itself
composed of many components, often produced
independently by specialist manufacturers and
assembled to make the finished product, each

How do I solve a problem by
breaking it into smaller parts?

How is decomposition used in
the real world?

http://csunplugged.org/sorting-algorithms
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://philbagge.blogspot.co.uk/2014/04/flow-charts-in-primary-computing-science.html
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://barefootcas.org.uk/programme-of-study/use-logical-reasoning-explain-simple-algorithms-work/ks2-logical-number-sequences-activity/
http://www.ukuug.org/events/agm2010/ShortestPath.pdf
http://www.ukuug.org/events/agm2010/ShortestPath.pdf
www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en
www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world?language=en

13

Computational thinking

under the control of the operating system and
applications.

A tablet can be broken down (decomposed) into smaller components.

You’ll have used decomposition to tackle big projects
at school, just as programmers do in the software
industry. For example:

●● Delivering your school’s curriculum — typically
this would be decomposed as years and subjects,
further decomposed into terms, units of work
and individual lessons or activities. Notice how
the project is tackled by a team working together
(your colleagues), and how important it is for the
parts to integrate properly.

●● Putting on a school play, organising a school trip
or arranging a school fair

A task such as organising a school trip can be decomposed into

smaller chunks.

You and your pupils will already use decomposition in
many different ways across the curriculum.

●● In science or geography, labelling diagrams
to show the different parts of a plant, or the
different nations which make up the UK.

●● In English, planning the different parts of a story.
●● In general project planning, planning a research
project for any subject or working collaboratively
to deliver a group presentation. Technology can
help with this sort of collaborative group work, or
can even be a focus for it, and great collaborative
tools are available in Office 365 and other
software.

●● In maths, breaking down a problem to solve it.

The computing curriculum expects that, at Level 1,
pupils simplify problems by breaking them down into
smaller, more manageable parts3.

As pupils plan their programs or systems, encourage
them to use decomposition: to work out what the
different parts of the program or system must do,
and to think about how these are inter-related.
For example, a simple educational game is going to
need some way of generating questions, a way to
check if the answer is right, some mechanism for
recording progress such as a score, and some sort of
user interface, which in turn might include graphics,
animation, interactivity and sound effects.

Plan opportunities for pupils to get some experience
of working as a collaborative team on a software
development project, and indeed other projects
in computing. This could be media work such as
animations or videos, shared online content such as
a wiki, or a challenging programming project such as
making a computer game or even a mobile phone app.

How is decomposition used
in school?

How is decomposition used
across the curriculum?

Consent
letters

Staffing

Book
coach

Check
weather Resources

TRIP TO
FARM

3 Technologies Benchmarks [Education Scotland 2017]

Where does decomposition
fit in the new computing

curriculum?

14

QuickStart Computing

 Classroom activity ideas

●● Organise for the pupils to tackle a large-
scale programming project, such as making a
computer game, through decomposition. Even
for a relatively simple game the project would
typically be decomposed as follows: planning,
design, algorithms, coding, animation, graphics,
sound, debugging and sharing. A project like this
would lend itself to a collaborative, team-based
approach, with development planned over a
number of weeks.

●● Take the case off an old desktop computer and
show the pupils how computers are made from
systems of smaller components connected
together. Depending on the components involved,
some of these can be disassembled further
still, although it’s likely to be better to look at
illustrations of the internal architecture of such
components.

●● Organise for the pupils to carry out a
collaborative project online, for example through
developing a multi-page wiki site. For example,
pupils could take the broad topic of e-safety,
decompose this into smaller parts and then work
collaboratively to develop pages for their wiki,
exploring each individual topic. The process of
writing these pages can be further decomposed,
through planning, research, drafting, reviewing
and publishing phases.

 Further resources

●● Apps for Good, available at: www.appsforgood.
org/.

●● Barefoot Computing, ‘Decomposition’, available
at: http://barefootcas.org.uk/sample-resources/
decomposition/ (free, but registration required).

●● Basecamp (professional project management
software) can be used by teachers with their
class (free), available at: https://basecamp.com/
teachers.

●● Gadget Teardowns, available at: www.ifixit.com/
Teardown.

●● NRICH, ‘Planning a School Trip’, available at:
http://nrich.maths.org/6969.

●● Project Management Institute Educational
Foundation, ‘Project Management Toolkit for
Youth’, available at: http://pmief.org/learning-
resources/learning-resources-library/project-
management-toolkit-for-youth.

Abstraction

For American computer scientist Jeanette Wing,
credited with coining the term, abstraction lies at
the heart of computational thinking:

The abstraction process – deciding what details
we need to highlight and what details we can
ignore – underlies computational thinking.4

Abstraction is about simplifying things, identifying
what is important without worrying too much
about the detail. Abstraction allows us to manage
complexity.

We use abstractions to manage the complexity of
life in schools. For example, the school timetable is
an abstraction of what happens in a typical week: it
captures key information such as who is taught which
subject where and by whom, but leaves to one side
further layers of complexity, such as the learning
objectives and activities planned in any individual lesson.

Abstraction is such a powerful way of thinking
about systems and problems that it seems worth
introducing pupils to this whilst they’re still at
primary school. This doesn’t have to be just in
computing lessons.

●● In maths, working with ‘word problems’ often
involves a process of identifying the key
information and establishing how to represent
the problem in the more abstract language of
arithmetic, algebra or geometry.

●● In geography, pupils can be helped to see a
map as an abstraction of the complexity of the
environment, with maps of different scales
providing some sense of the layered nature of
abstraction in computing.

●● In history, pupils are taught world history
or national history as an abstraction of the
detail present in local histories and individual
biographies, which are themselves abstractions
of actual events.

How do you manage
complexity?

How is abstraction used
across the curriculum?

4 ‘Computational thinking and thinking about computing’
(The Royal Society, 2008).

www.appsforgood.org/
www.appsforgood.org/
http://barefootcas.org.uk/sample-resources/decomposition/
http://barefootcas.org.uk/sample-resources/decomposition/
https://basecamp.com/teachers
https://basecamp.com/teachers
www.ifixit.com/Teardown
www.ifixit.com/Teardown
http://nrich.maths.org/6969
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth
http://pmief.org/learning-resources/learning-resources-library/project-management-toolkit-for-youth

15

Computational thinking

●● In music, the piano score of a pop song might be
thought of as an abstraction for that piece of
music.

Abstraction as a separate concept appears at Level
3, where pupils are:

developing their understanding of information and
can use an information model to describe particular
aspects of a real-world system.5

In computing lessons, pupils can learn about the
process of abstraction from playing computer games,
particularly those that involve interactive simulations
of real-world systems (see Classroom activity ideas).
Encourage pupils’ curiosity about how things work,
helping them to think about what happens inside the
computer or on the internet as they use software or
browse the web.

When pupils put together a presentation or video
on a topic they know about, they’ll need to focus on
the key information and think about how this can be
represented, whilst leaving to one side much of the
detail of the subject: this too involves abstraction.

 Classroom activity ideas

●● Encourage pupils who are learning to program
to create their own games. If these are based
on real-world systems then they’ll need to use
some abstraction to manage the complexity of
that system in their game. In a simple table tennis
game, e.g. Pong, the simulation includes the ball’s
motion in two dimensions and how it bounces
off the bat, but it ignores factors such as air
resistance, spin or even gravity. Ask your pupils
to think really carefully about what detail they
need to include, and what can be left out when
programming a similar game.

 Further resources

●● Barefoot Computing, ‘Abstraction’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/abstraction/
(free, but registration required).

●● BBC Bitesize, ‘Abstraction’, available at: www.
bbc.co.uk/education/guides/zttrcdm/revision.

●● BBC Cracking the Code, ‘Simulating the
Experience of F1 Racing Through Realistic
Computer Models’, available at: www.bbc.co.uk/
programmes/p016612j.

●● Google for Education, ‘Solving Problems at Google
Using Computational Thinking’, available at: www.
youtube.com/watch?v=SVVB5RQfYxk.

●● ‘The Art of Abstraction – Computerphile’,
available at: www.youtube.com/
watch?v=p7nGcY73epw.

Patterns and
generalisation

In computing, the method of looking for a general
approach to a class of problems is called generalisation.
By identifying patterns, we can make predictions, create
rules and solve more general problems. For example,
in learning about area, pupils could find the area of a
particular rectangle by counting the centimetre squares
on the grid on which it’s drawn. But a better solution
would be to multiply the length by the width: not only
is this quicker, it’s also a method that will work on all
rectangles, including really small ones and really large
ones. Although it takes a while for pupils to understand
this formula, once they do it’s so much faster than
counting squares.

Pupils are likely to encounter the idea of generalising
patterns in many areas of the primary curriculum.5 Technologies Benchmarks [Education Scotland 2017]

Where does abstraction
fit in the new computing

curriculum?

How can you make things
easier for yourself?

How are patterns and
generalisation used in the

Scottish curriculum?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/abstraction/
www.bbc.co.uk/education/guides/zttrcdm/revision
www.bbc.co.uk/education/guides/zttrcdm/revision
www.bbc.co.uk/programmes/p016612j
www.bbc.co.uk/programmes/p016612j
www.youtube.com/watch?v=SVVB5RQfYxk
www.youtube.com/watch?v=SVVB5RQfYxk
www.youtube.com/watch?v=p7nGcY73epw
www.youtube.com/watch?v=p7nGcY73epw

16

QuickStart Computing

●● From an early age, they’ll become familiar
with repeated phrases in nursery rhymes and
stories; later on they’ll notice repeated narrative
structures in traditional tales or other genres.

●● In music, children will learn to recognise repeating
melodies or bass lines in many musical forms.

●● In maths, pupils typically undertake investigations
in which they spot patterns and deduce
generalised results.

●● In English, pupils might notice common rules for
spellings, and their exceptions.

 Classroom activity ideas

●● In computing, encourage pupils to always look
for simpler or quicker ways to solve a problem or
achieve a result. Ask pupils to explore geometric
patterns, using turtle graphics commands in
languages like Scratch, Logo or TouchDevelop
to create ‘crystal flowers’ (see pages 26–27).
Emphasise how the use of repeating blocks
of code is much more efficient than writing
each command separately, and allow pupils to
experiment with how changing one or two of
the numbers used in their program can produce
different shapes.

●● Organise for the pupils to use graphics software
to create tessellating patterns to cover the
screen. As they do this, ask them to find quicker
ways of completing the pattern, typically by
copying and pasting groups of individual shapes.

●● Help the pupils to create rhythmic and effective
music compositions using simple sequencing
software in which patterns of beats are repeated.

●● Ask the pupils to experiment with number
patterns and sequences using Scratch or other
programming languages. Can they work out a
general program which they could use to generate
any linear number sequence?

 Further resources

●● Barefoot Computing, ‘Patterns’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/patterns/
(free, but registration required).

●● Isle of Tune app, available at: http://isleoftune.com.
●● Laurillard, D., Teaching as a Design Science: Building
Pedagogical Patterns for Learning and Technology
(Routledge, 2012).

●● Pattern in Islamic art, available at:
www.patterninislamicart.com.

●● M. C. Escher website, available at:
www.mcescher.com.

How does software
get written?
As well as the above processes, there are also a
number of approaches that characterise computational
thinking. If pupils are to start thinking computationally,
then it’s worth helping them to develop these
approaches to their work, so they can be more effective
in putting their thoughts into action.

Tinkering
There is often a willingness to experiment and
explore in computer scientists’ work. Some elements
of learning a new programming language, or
exploring a new, system look quite similar to the sort
of purposeful play that’s seen as such an effective
approach to learning in the best nursery and
reception classrooms.

Open-source software makes it easy to take
someone else’s code, look at how it’s been made
and then adapt it to your own particular project
or purpose. Platforms such as Scratch and
TouchDevelop positively encourage users to look at
other programmers’ work and use this as a basis for
their own creative coding.

In class, encourage pupils to play with a new piece of
software, sharing what they discover about it with
one another, rather than you explaining exactly how
it works. Also, look for ways in which pupils can use
others’ code, from you, their peers, or online, as a
starting point for their own programming projects.

Creating
Programming is a creative process. Creative work
involves both originality and making something of
value: typically something that is useful or at least
fit for the purpose intended.

Encourage pupils to approach tasks with a creative
spirit, and look for programming tasks that allow
some scope for creative expression rather than
merely arriving at the right answer.

Encourage pupils to reflect on the quality of the
work they produce, critiquing their own and others’
projects. The process of always looking for ways to

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/patterns/
http://isleoftune.com
www.patterninislamicart.com
www.mcescher.com

17

Computational thinking

improve on a software project is becoming common
practice in software development. Look for projects
in which artistic creativity is emphasised, such as
working with digital music, images, animation, virtual
environments or even 3D printing.

Debugging
Because of its complexity, the code programmers
write often doesn’t work as it’s intended.

Getting pupils to take responsibility for thinking
through their algorithms and code, to identify and fix
errors, is an important part of learning how to think
and work like a programmer. It’s also something to
encourage across the curriculum: get pupils to check
through their working in maths, or to proofread their
stories in English. Ask pupils to debug one another’s
code (or indeed proofread one another’s work),
looking for mistakes and suggesting improvements.
There’s evidence that learning from mistakes is a
particularly effective approach, and the process of
pupils debugging their own or others’ code is one way
to do this. Keep an eye on the bugs that your pupils do
encounter, as these can sometimes reveal particular
misconceptions that you may need to address (see
pages 28–29).

Persevering
Computer programming is hard. This is part of
its appeal – writing elegant and effective code
is an intellectual challenge requiring not only
an understanding of the ideas of the algorithms
being coded and the programming language you’re
working in, but also a willingness to persevere with
something that’s often quite difficult and sometimes
very frustrating. Carol Dweck’s work on ‘growth
mind-sets’ suggests that hard work and a willingness
to persevere in the face of difficulties can be key
factors in educational outcomes. Encourage pupils
to look for strategies they can use when they do
encounter difficulties with their programming work,
such as working out exactly what the problem is,
searching for the solution on Bing or Google (with
the safe search mode locked), KidRex or Swiggle, or
asking a friend for help.

Collaborating
Software is developed by teams of programmers and
others working together on a shared project. Look
for ways to provide pupils with this experience in
computing lessons too. Collaborative group work has
long had a place in primary education, and computing
should be no different.

Many see ‘pair programming’ as a particularly
effective development method, with two
programmers sharing a screen and a keyboard,
working together to write software. Typically, one
programmer acts as the driver, dealing with the
detail of the programming, whilst the other takes
on a navigator role, looking at the bigger picture.
The two programmers regularly swap roles, so both
have a grasp of both detail and big picture. Working
in a larger group develops a number of additional
skills, with each pupil contributing some of their own
particular talents to a shared project. However, it’s
important to remember that all pupils should develop
their understanding of each part of the process,
so some sharing of roles or peer-tutoring ought
normally to be incorporated into such activities.

 Further resources

●● Barefoot Computing, ‘Computational Thinking
Approaches’, available at: http://barefootcas.
org.uk/barefoot-primary-computing-resources/
computational-thinking-approaches/ (free, but
registration required).

●● Briggs, J., ‘Programming with Scratch Software:
The Benefits for Year Six Learners’ (Bath Spa
MA dissertation, 2013), available at: https://
slp.somerset.gov.uk/cypd/elim/somersetict/
Computing_Curriculum_Primary/Planning/MA_
JBriggs_Oct2013.pdf.

●● DevArt: Art Made with Code, available at: https://
devart.withgoogle.com/.

●● Dweck, C., ‘Mindset: How You Can Fulfil Your
Potential’ (Robinson, 2012).

●● Education Endowment Foundation toolkit,
available at: http://
educationendowmentfoundation.org.uk/toolkit/.

●● Papert, S. and Harel, I., ‘Situating
Constructionism’ (Ablex Publishing Corporation,
1991), available at: www.papert.org/articles/
SituatingConstructionism.html.

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://slp.somerset.gov.uk/cypd/elim/somersetict/Computing_Curriculum_Primary/Planning/MA_JBriggs_Oct2013.pdf
https://devart.withgoogle.com/
https://devart.withgoogle.com/
http://educationendowmentfoundation.org.uk/toolkit/
http://educationendowmentfoundation.org.uk/toolkit/
www.papert.org/articles/SituatingConstructionism.html
www.papert.org/articles/SituatingConstructionism.html

18

QuickStart Computing

Programming

What is
programming?

Programming is the process of designing and writing
a set of instructions (a program) for a computer in a
language it can understand.

This can be really simple, such as the program to
make a robot toy trace out a square; or it can be
incredibly sophisticated, such as the software used
to forecast the weather or to generate a set of
ranked search results.

Programming is a two-step process.

●● First, you need to analyse the problem or system
and design a solution. This process will use
logical reasoning, decomposition, abstraction
and generalisation (see pages 6–17) to design
algorithms to solve the problem or model the
system.

●● Secondly, you need to express these ideas in a
particular programming language on a computer.
This is called coding, and we can refer to the
set of instructions that make up the program as
‘code’.

Programming provides the motivation for learning
computer science – there’s a great sense of
achievement when a computer does just what you
ask it, because you’ve written the precise set of
instructions necessary to make something happen.
Programming also provides the opportunity to test
out ideas and get immediate feedback on whether
something works or not.

It’s possible to teach computational thinking
without coding and vice versa, but the two seem to
work best hand-in-hand.

Teaching computational thinking without giving
pupils the opportunity to try out their ideas as
code on a computer is like teaching science without
doing any experiments. Similarly, teaching coding
without helping pupils to understand the underlying
processes of computational thinking is like doing
experiments in science without any attempt to teach
pupils the principles which underpin them.

This is reflected in the new computing curriculum,
which states that pupils should not only know
the principles of information and computation,
but should also be able to put this knowledge to
use through programming. One of the aims of the
Scottish curriculum for computing is that pupils can
analyse problems in computational terms and have
repeated practical experience of writing computer
programs in order to solve problems.

At Level 1, pupils should be taught how simple
algorithms are implemented as programs on digital
devices. The phrase ‘digital devices’ encompasses
tablets, laptop computers,
programmable toys, and perhaps
also distant web servers. It can be
useful for pupils to be able to see
their lgorithms (in whatever way
they’ve recorded these) and their
code, side by side.

What should programming
be like in schools?

Children can use simple arrow cards to
record algorithms for programmable toys.

19

Programming

Pupils also should have the opportunity to create
and debug (see pages 28–29) their own programs, as
well as predicting what a program will do.

At Level 2, pupils should be taught to design and
write programs that accomplish specific goals, which
should include controlling or simulating physical
systems, for example making and programming a
Lego robot. They should be taught to use sequence,
selection and repetition in their programs (see
pages 24–28), as well as variables to store data.
They should also learn to use logical reasoning to
detect and fix the errors in their programs.

 Classroom activity ideas

●● There are simple activities on the Barefoot
Computing website; see Further resources below.

●● Here are some ideas for extended programming
projects:
●» Year 2: solve a maze using a floor/screen turtle
●» Year 3: create a simple animation
●» Year 4: create a question-and-answer maths game
●» Year 5: create more complex computer games
●» Year 6: develop a simple app for a tablet or
smartphone.

 Further resources

●● Barefoot on ‘Programming’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/
(free, but registration required).

●● BBC Bitesize: Controlling physical systems,
available at: www.bbc.co.uk/guides/zxjsfg8.

●● BBC Cracking the Code, for examples of source
code for complex software systems such as robot
footballers and a racing car simulator, available
at: www.bbc.co.uk/programmes/p01661pj.

●● CAS Chair, Prof Simon Peyton Jones’ explanation
of some of the computer science that forms
the basis for the computing curriculum:
http://community.computingatschool.org.uk/
resources/2936.

●● Code.org for activities and resources, available at:
http://code.org/educate.

●● Rushkoff, D., Program or be Programmed: Ten
Commands for a Digital Age (OR Books, 2010).

How do you program
a computer?
Programming a computer involves writing code.
The code is the set of instructions for the computer
written in a programming language that the
computer understands. In fact, the programming
languages we use are a halfway house – they’re
written in a language we can understand which then
gets translated by the computer into the ‘machine
code’ of instructions that can be run directly on the
silicon chips which control it.

Programs comprise precise, unambiguous instructions
– there’s no room for interpretation or debate about
the meaning of a particular line of computer code.
We can only write code using the clearly defined
vocabulary and grammar of the programming
language, but typically these are words taken from
English, so code is something that people can write
and understand, but the computer can also follow.

There are many languages to choose from. The
majority are more complex than necessary for those
just getting to grips with the ideas of programming,
but there are plenty of simple, well supported
languages that can be used very effectively in the
primary classroom. Try to pick a language that you’ll
find easy to learn, or better still, know already.

Consider these points when choosing a programming
language:

●● Not all languages run on all computer systems.
●● Choose a language that is suitable for your pupils.

There are computer languages that are readily
accessible to primary pupils – in most cases this
will mean one that has been written with pupils in
mind, or at least adapted to make it easier to learn.

●● Choose a language supported by a good range of
learning resources. It’s better still if it has online
support communities available, both for those
who are teaching the language and those who are
learning it.

●● It is beneficial to the pupils if they can continue
working in the language on their home computer,
or, even better, if they can easily continue work
on the same project via the internet.

What programming languages
should you use?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
www.bbc.co.uk/guides/zxjsfg8
www.bbc.co.uk/programmes/p01661pj
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://code.org/educate

20

QuickStart Computing

There’s a view that some languages are better at
developing good programming ‘habits’ than others.
Good teaching, in which computational thinking is
emphasised alongside coding, should help to prevent
pupils developing bad coding habits at this stage.

The table below illustrates a progressive approach to
programming languages in a primary setting.

Whilst there’s much to be said for letting pupils
explore several programming languages, it’s
important that they develop a degree of fluency in
one fairly general-purpose language, so that this
becomes a medium in which they can solve problems,
get useful things done and work creatively.

 Further resources

●● Iry’s ‘brief, incomplete and mostly wrong history
of programming languages’: http://james-iry.
blogspot.mx/2009/05/brief-incomplete-and-
mostly-wrong.html.

●● Utting, I., Cooper, S., Kolling, M., Maloney, J. and
Resnick, M., (2010) ‘Alice, Greenfoot, and Scratch
– A Discussion’, available at: http://kar.kent.
ac.uk/30617/2/2010-11-TOCE-discussion.pdf.

●● Wikipedia list of ‘Hello, world!’ in many
programming languages, available at:
http://en.wikipedia.org/wiki/List_of_Hello_
world_program_examples.

How do you program
a floor turtle?
Programming in Early Years and Level 1 is much more
likely to involve working with simple programmable
toys than using computers. It’s much easier for
pupils to learn the idea of programming when
working with a really simple language and interface,
and for them to plan and check their programs when
they can, quite literally, put themselves in the place
of the device they’re programming.

A programmable floor turtle, such as the Bee-
Bot or Roamer-Too, is ideal for this. The Bee-Bot
programming language consists of five commands:
forward, back, turn left, turn right and pause.
Programming a Bee-Bot is simply a process of
pressing buttons in the desired order to build a
sequence of commands, with new commands being
added to the end of the sequence.

This simple device can be used as a basis for many
engaging activities, both for early programming and
across the curriculum. Younger pupils will often work
with the Bee-Bot one instruction at a time, whilst
older children will become adept at creating longer
sequences of instructions.

A number of tablet or smartphone apps and web-
based tools are based on the idea of device-specific
languages like these. These are often in the form
of a game with a sequence of progressively harder
levels in which players create ever more complex
sequences of instructions to solve challenges. For
example: Bee-Bot, LightbotTM, A.L.E.X and Cargo-Bot.

One approach for scaffolding the transition from
floor-turtle programming to programming on-screen
is to use an on-screen simulation of a Bee-Bot: it’s
relatively easy to make (or adapt) one yourself in
Scratch 2.0.

Which language is right for
which Level?

Level Language type Language See

Early Level Device-specific
Bee-Bot Page 20

Roamer-Too Page 20

Level 1
Limited
instruction

ScratchJr Page 21

LightbotTM Pages 20–21

Level 2

Game
programming

Kodu
Pages 21, 22,
25 and 28

Block-based Scratch
Pages 21–22,
24–28

Text-based
Logo

Pages 22-23
26–27, 29

TouchDevelop Page 23

Moves the
Bee-Bot forward
through its own
body length

Turns the
Bee-Bot 90°
anti-clockwise

Moves the Bee-
Bot backwards
through its own
body length

Turns the
Bee-Bot 90°
clockwiseAllows stored

program to run

Clears the
Bee-Bot
memory

http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples

21

Programming

 Classroom activity ideas

●● Allow very young pupils to play with a floor
turtle, tinkering with it so they can develop their
own sense of the relationship between pressing
buttons and running their program.

●● Encourage pupils to plan a sequence of instructions
for a particular objective, such as getting the floor
turtle from one ‘flower’ to another. Ask pupils
to predict what will happen when they run their
program, and to explain their thinking (logical
reasoning).

●● For more complex challenges, provide pupils with
the code for a floor turtle’s route from one place
to another, including an error in the code. Ask the
pupils to work out where the bug is in the code and
then fix this, before testing out their code on the
floor turtle.

 Further resources

●● BBC on how to program a robot, available at:
www.bbc.co.uk/learningzone/clips/programming-
robots/4391.html.

●● Bee-Bots are available from TTS. Other
programmable toys include Roamer-Too (by
Valiant) and Pro-Bot (by TTS).

●● Barefoot on ‘KS1 Bee-Bots, 1, 2, 3 Programming
Activity’, available at: http://barefootcas.org.
uk/barefoot-primary-computing-resources/
concepts/programming/ks1-bee-bots-12-3-
programming-activity/ (free, but registration
required).

●● Bee-Bot and Roamer-Too simulator activities,
available at: http://scratch.mit.edu/
projects/19799927/.

●● LightbotTM, available at: http://lightbot.com/.

How do you program
things to move
around the screen?
There are a number of graphical programming
toolkits available; these make learning to code easier
than ever. In most of these, programs are developed
by dragging or selecting blocks or icons which
represent particular instructions in the programming
language. These can normally only fit together in

ways that make sense, and the amount of typing, and
thus the potential for spelling or punctuation errors,
is kept to an absolute minimum.

With toolkits like these it’s easy to experiment with
creating code. By letting programmers focus on the
ideas of their algorithm, rather than the particular
vocabulary and grammar of the programming
language, learning to program becomes easier and
often needs less teacher input.

Kodu
Microsoft’s Kodu is a rich, graphical toolkit for
developing simple, interactive 3D games.

Each object in the Kodu game world can have its own
program. These programs are ‘event driven’: they are
made up of sets of ‘when [this happens], do [that]’
conditions, so that particular actions are triggered
when certain things happen, such as a key being
pressed, one object hitting another, or the score
reaching a certain level.

Kodu interface.

Programmers can share their games with others in
the Kodu community, which facilitates informal and
independent learning. There’s plenty of scope for
pupils to download and modify games developed by
others, which many find quite an effective way to
learn the craft of programming. This can also offer
pupils a sense of creating games with an audience
and purpose in mind.

Scratch
In MIT’s Scratch, the programmer can create
their own graphical objects, including the stage
background on which the action of a Scratch
program happens, and a number of moving objects,
or sprites, such as the characters in an animation or
game.

www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://scratch.mit.edu/projects/19799927/
http://scratch.mit.edu/projects/19799927/
http://lightbot.com/

22

QuickStart Computing

Screenshot of a Scratch program.

Each object can have one or more scripts, built up
using the building blocks of the Scratch language. To
program an object in Scratch, you drag the colour-
coded block you want from the different palettes
of blocks, and snap this into place with other blocks
to form a script. Scripts can run in parallel with one
another or be triggered by particular events, as in
Kodu.

A number of other projects use Scratch as a starting
point for their own platforms; for example ScratchJr
is an iPad app designed for young programmers
(Level 1), and Berkeley’s Snap! allows even more
complex programming ideas (such as functions) to
be explored through the same sort of building-block
interface.

There’s a great online community for Scratch
developers to download and share projects globally,
making it easier for pupils to pursue programming in
Scratch far beyond what’s needed for the Scottish
curriculum. There’s also a supportive educator
community, which has developed and shared high-
quality curriculum materials.

Scratch is available as a free web-based editor or as
a standalone desktop application. Files can be moved
between online and offline versions.

 Classroom activity ideas

●● Pupils could develop a game in Kodu, taking
inspiration from some of the games on the Kodu
community site. As a starting point, tell them to
create a game in which Kodu (the player’s avatar
in the game) is guided around the landscape
bumping into (or ‘zapping’) enemies.

●● Ask your pupils to create a simple scripted
animation in Scratch, perhaps with a couple of
programmed characters who take turns to act out
a story. Designing the algorithm for a program like
this is very similar to storyboarding in video work.

 Further resources

●● Armoni, M. and Ben-Ari, M., ‘Computer science
concepts in Scratch’, available at: http://stwww.
weizmann.ac.il/g-cs/scratch/scratch_en.html.

●● Berry, M., ‘Scratch across the curriculum’,
available at: http://milesberry.net/2012/06/
scratch-across-the-curriculum/.

●● Creative Computing, ‘An Introductory Computing
Curriculum Using Scratch’, available at: http://
scratched.gse.harvard.edu/guide/.

●● Kelly, J., Kodu for Kids (Que Publishing, 2013).
●● Kinect2Scratch, to program Microsoft Kinect with
Scratch, available at: http://scratch.saorog.com/.

●● Kodu Game Lab Community, available at:
www.kodugamelab.com/.

●● Other graphical programming environments for
education include Espresso Coding, 2Code from
2Simple, and J2Code.

●● Scratch, available at http://scratch.mit.edu/.
●● ScratchEd online community for educators,
available at: http://scratch.mit.edu/educators/.

●● ScratchJr: www.scratchjr.org/.
●● Snap!, available at: http://snap.berkeley.edu/.

What is real
programming?
Most software development in academia and industry
takes place using text-based languages, where
programs are constructed by typing in the commands
in a programming language using a keyboard.

Historically, text-based programming has been a
real barrier for children when learning to code, and
there’s no need to rush into text-based programming
as part of the primary curriculum. It is, however,
worth considering text-based programming for
an extra-curricular programming club or even in
class, if you or your colleagues feel confident with
this. Possible text-based programming languages
for primary schools could include Logo and
TouchDevelop.

http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
http://scratch.saorog.com/
www.kodugamelab.com/
http://scratch.mit.edu/
http://scratch.mit.edu/educators/
www.scratchjr.org/
http://snap.berkeley.edu/

23

Programming

Logo
Logo was developed by Seymour Papert and others
at MIT as an introductory programming language
for children. It’s probably best known for its use of
‘turtle graphics’ – an approach to creating images
in which a ‘turtle’ (either a robot or a representation
on-screen) is given instructions for drawing a shape,
such as:

REPEAT 4 [
 FORWARD 100
 RIGHT 90]

Papert saw Logo as a tool for children to think with,
just as programming is both the means to, and
motivation for, computational thinking.

In Logo programming, more complex programs are
built up by ‘teaching’ the computer new words.
These are called procedures; for example, defining
a procedure to draw a square of a certain size
using the key words of the language. Once you have
defined the procedure ‘square’, typing it in will then
result in the turtle drawing a square. For example:

TO SQUARE :SIDE
 REPEAT 4 [
 FORWARD :SIDE
 RIGHT 90]
 END
SQUARE 50

TouchDevelop
Typing code on a tablet computer or a smartphone
is not easy, and this can be problematic for schools
that use these devices extensively.

Developed by Microsoft Research, TouchDevelop is
a programming language and environment, which
takes into account both the challenges posed and
the opportunities offered by touch-based interfaces,
such as those on tablets and smartphones.

TouchDevelop makes it quite easy to develop an app
for a smartphone or tablet on the device.

Although TouchDevelop is a text-based language,
programmes aren’t typed but are created by
choosing commands from the options displayed
in a menu system. In this way, TouchDevelop is a
halfway house between graphical and text-based
programming.

As with Logo, turtle graphics commands are available
as standard. On many platforms, TouchDevelop can
also access some of the additional hardware built into
the device, such as the accelerometer or GPS locator,
allowing more complex apps to be developed; these
can be hosted online as web-based apps, or installed
directly on the device if it’s a Windows phone.

Program to draw a square using a turtle.

A particularly nice feature of TouchDevelop is
the use of interactive tutorials to scaffold pupils’
learning of the language.

 Classroom activity ideas

●● Revisit the turtle graphics activities you might
have been using for programming in the past.

●● Explore how different programming languages
can be used to simulate dice being rolled. First,
ask pupils to think about how they would do that
in Scratch. Then, challenge your pupils to create
an app in TouchDevelop which simulates rolling
a dice when the phone or tablet is shaken, or
when the screen is tapped. Ask pupils to think
about how deterministic computers can simulate
random events such as these.

 Further resources

●● Archived lesson plan from DfES for creating crystal
flowers: http://webarchive.nationalarchives.gov.
uk/20090608182316/http://standards.dfes.gov.uk/
pdf/primaryschemes/itx4e.pdf.

●● Horspool, N. and Ball, T., TouchDevelop:
Programming on the Go (APress, 2013), available
at: www.touchdevelop.com/docs/book.

●● Logo, available at: www.calormen.com/jslogo/ and
elsewhere.

●● Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books Inc., 1980), available
at: http://dl.acm.org/citation.cfm?id=1095592.

●● TouchDevelop interactive tutorials for Hour of
CodeTM: www.touchdevelop.com/hourofcode2.

●● TouchDevelop from Microsoft Research: www.
touchdevelop.com/.

http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
www.touchdevelop.com/docs/book
www.calormen.com/jslogo/
http://dl.acm.org/citation.cfm?id=1095592
www.touchdevelop.com/hourofcode2
www.touchdevelop.com/
www.touchdevelop.com/

24

QuickStart Computing

What’s inside
a program?
Whilst the detail will vary from one language to
another, there are some common structures and
ideas which programmers use over and over again,
from one language to another and from one problem
to another:

●● Sequence: running instructions in order (see
below)

●● Selection: running one set of instructions or another,
depending on what happens (see pages 25–26)

●● Repetition: running some instructions several
times (see pages 26–27)

●● Variables: a way of storing and retrieving data
from the computer’s memory (see pages 27–28).

These are so useful that it’s important to make sure
all pupils learn these.

This Scratch script shows sequence, selection,
repetition and variables. Can you work out which bit
is which,
before we
look at
these
ideas in
detail?

 Further resources

●● BBC Bitesize programming tutorial ‘How do we
get computers to do what we want?’ (covering
sequence, selection and repetition), available at:
www.bbc.co.uk/guides/z23q7ty.

●● Cracking the Code clip, available at: www.bbc.
co.uk/programmes/p016j4g5.

●● Scratch multiplication test, available at: http://
scratch.mit.edu/projects/26116842/#editor.

Sequence
Programs are built up of sequences of instructions.
When pupils start programming with floor turtles,
their programs consist entirely of sequences of
instructions, built up as the stored sequence of

button presses for what the floor turtle should do.
As with any program, these instructions are precise
and unambiguous, and the floor turtle will simply take
each instruction (the stored button presses) and turn
that into signals for the motors driving its wheels.

Initially, pupils might type in just one instruction at
a time, clearing the memory after each, but as they
become more experienced as programmers, or want
to solve a problem more quickly, sequences become
more complex.

Forward
Forward
Forward
Turn left
Forward
Forward

Pupils’ first Scratch programs are also likely to be
made up of simple sequences of instructions. Again,
these need to be precise and unambiguous, and of
course the order
of the
instructions
matters. In
developing their
algorithms, pupils
will have had to
work out exactly
what order to put
the steps in to
complete a task.

A program that children
might create in Scratch.

 Classroom activity ideas

●● Give pupils progressively more complex problems
to solve with a floor turtle, asking them first
to plan their algorithm for solving these before
creating single programs on the floor turtle.

●● Provide pupils with existing projects from Scratch
(see Further resources on page 26). Allowing them
to ‘remix’ these projects, by changing the code
and seeing how this affects the program, is a
useful learning experience.

●● Ask pupils to design, plan and code scripted
animations in Scratch, perhaps using a timeline
or storyboard to work out their algorithm before
converting this into instructions for sprites in
Scratch.

www.bbc.co.uk/guides/z23q7ty
www.bbc.co.uk/programmes/p016j4g5
www.bbc.co.uk/programmes/p016j4g5
http://scratch.mit.edu/projects/26116842/#editor
http://scratch.mit.edu/projects/26116842/#editor

25

Programming

 Further resources

●● Animation 14: UK Schools Computer Animation
Competition (Level 2), available at:
http://animation14.cs.manchester.ac.uk/gallery/
winners/KS2/.

●● Barefoot on ‘Sequence’, available at: http://
barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/programming/sequence/
(free, but registration required).

●● Cracking the Code clip on programming a robotic
toy car: www.bbc.co.uk/programmes/p01661yg.

●● Viking invasion animation in Scratch from
Barefoot Computing (for Level 2), available at:
http://barefootcas.org.uk/programme-of-study/
use-sequence-in-programs/upper-ks2-viking-
raid-animation-activity/ (free, but registration
required).

Selection
Selection is the programming structure through
which a computer executes one or other set of
instructions according to whether a particular
condition is met or not. This ability to do different
things, depending on what happens in the computer
as the program is run—or out in the real world—lies
at the heart of what makes programming such a
powerful tool.

Selection is an important part of creating a game in
Kodu. An object’s behaviour in a game is determined
by a set of conditions; for example: WHEN the
left arrow is pressed, the object will move left.
Similarly, interaction with other objects, variables
and environments in Kodu is programmed as a set
of WHEN … DO … conditions; for example, WHEN I
bump the apple DO eat it AND add 2 points to score.

In Scratch (and other programming languages), you
can build selection into a sequence of instructions,
allowing the computer to run different instructions
depending on whether a condition is met.

Examples of how selection can be used to start a script in Scratch.

At the core of many educational games is a simple
selection command: if the answer is right then give
a reward, else say the answer is wrong. See the
Scratch script for the multiplication game in the
Further resources on page 24.

It’s also worth noting that selection statements
can be nested inside one another. This allows more
complex sets of conditions to be used to determine
what happens in a program. Look at the way some
if blocks are inside others in the following script
to model a clock in Scratch. The script also uses
repetition and three variables for the seconds,
minutes and hours of the time:

 Classroom activity ideas

●● Encourage pupils to explore the different
conditions to which the character in Kodu can
respond in its event-driven programming. Get
pupils to think creatively about how they might
use these when developing a game of their own.
Give them time to design their game, thinking
carefully about the algorithm, i.e. the rules
they’re using.

http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://www.bbc.co.uk/programmes/p01661yg
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/

26

QuickStart Computing

●● Ask pupils to design simple question-and-answer
games in Scratch. Encourage them to first think
about the overall algorithm for their game before
coding this and working to develop the user
interface, making this more engaging than just a
cat asking lots of questions. It’s helpful if pupils
have a target audience in mind for software
like this.

 Further resources

●● Barefoot Computing on ‘Selection’, available at:
http://barefootcas.org.uk/programme-of-study/
use-selection-programs/selection/ (free, but
registration required).

●● Papert, S., ‘Does Easy Do It? Children, Games, and
Learning’, available at: www.papert.org/articles/
Doeseasydoit.html.

Scratch projects to remix

●● Analogue clock by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/28742256/#editor.

●● Addition race by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/15905989/#editor.

Repetition
Repetition in programming means to repeat the
execution of certain instructions. This can make a
long sequence of instructions much shorter, and
typically easier to understand.

Using repetition in programming usually involves
spotting that some of the instructions you want the
computer to follow are the same, or very similar,
and therefore draws on the computational thinking
process of pattern recognition/generalisation (see
pages 15–16). You’ll sometimes hear the repeating
block of code referred to as a loop, i.e. the computer
keeps looping through the commands one at a time
as they’re executed (carried out).

Think about the Bee-Bot program for a square
(forward, left, forward, left,
forward, left, forward, left). how, for
each side, we move forward and then turn left. On a
Roamer-Too or a Pro-Bot, you could use the repeat
command to simplify the coding for this by using the
built-in repeat command, replacing this code with,
for example, repeat 4 [forward, left].

The same would apply in Logo, from which
the Roamer-Too and Pro-Bot device-specific
programming languages are derived.

Compare:

FORWARD 100
LEFT 120
FORWARD 100
LEFT 120
FORWARD 100
LEFT 120

with:

REPEAT 3 [
 FORWARD 100
 LEFT 120]

Both programs draw equilateral triangles. Using
repetition reduces the amount of typing and makes
the program reflect the underlying algorithm more
clearly.

In the examples above, the repeated code is run
a fixed number of times, which is the best way to
introduce the idea. You can also repeat code forever.
This can be useful in real-world systems, such as
a control program for a digital thermostat, which
would continually check the temperature of a room,
sending a signal to turn the heating on when this
dropped below a certain value. This is a common
technique in game programming. For example,
the following Scratch code would make a sprite
continually chase another around the screen:

Repetition can be combined with selection, so that
a repeating block of code is run as many times as
necessary until a certain condition is met, as in this
fragment in Scratch:

You can nest one repeating block inside another. The
‘crystal flower’ programs in Logo use this idea. For
example:

REPEAT 6 [
 REPEAT 5 [
 FORWARD 100
 LEFT 72]
 LEFT 60]

http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
www.papert.org/articles/Doeseasydoit.html
www.papert.org/articles/Doeseasydoit.html
http://scratch.mit.edu/projects/28742256/
http://scratch.mit.edu/projects/15905989/#editor

27

Programming

draws:

 Classroom activity ideas

●● Ask pupils to use simple repetition commands to
produce a ‘fish tank’ animation in Scratch, with
a number of different sprites each running their
own set of repeating motion instructions. This
can be made more complex by including some
selection commands to change the behaviour of
sprites as they touch one another.

●● Encourage pupils to experiment with ‘crystal
flower’ programs in Scratch, Logo or other
languages that support turtle graphics, and
investigate the effect of changing the number of
times a loop repeats, as well as the parameters
for the commands inside the loop. There are
some great opportunities to link computing with
spiritual, social and cultural education.

 Further resources

●● Barefoot Computing on ‘Repetition’, available at:
http://barefootcas.org.uk/programme-of-study/
use-repetition-programs/repetition (free, but
registration required).

●● Digital Schoolhouse dance scripts, available at:
www.resources.digitalschoolhouse.org.uk/key-
stage-2-ages-7-10/218-scratch-teaching-dance.

●● Scratch 2.0 Fishtank Game tutorial, available at:
www.youtube.com/watch?v=-qTZ5bFEdC8.

Variables
Unlike the programming structures of sequence,
selection and repetition, a variable is an example of
a data structure. It is a simple way of storing one
piece of information somewhere in the computer’s
memory whilst the program is running, and getting
that information back later. There’s a degree of
abstraction involved. The actual details of how
the programming language, operating system and
hardware manage the storing and retrieving of
data from the computer’s memory chips aren’t
important to us as programmers. In the same way,
these details aren’t important when we’re using the
clipboard for copying and pasting text. One way of
thinking of variables is as labelled shoeboxes, with

the difference that the contents don’t get removed
when they’re used.

The concept of a variable is one that many pupils
struggle with and it’s worth showing them lots
of examples to ensure they grasp this. A classic
example which pupils are likely to be familiar with,
particularly from computer games, is that of score.

You can use variables to store data input by the
person using your program and then refer to this
data later on.

Here, name is a variable, in which we store whatever
the user types in, and then use it a couple of times in
Scratch’s response; answer is a special temporary
variable used by Scratch to store for the time being
whatever the user types in. Notice that variables
can store text as well as numbers. Other types of
data can be stored in variables too, depending on the
particular programming language you’re working in.

Variables can also be created by the program,
perhaps to store a constant value so that we can
refer to it by name (Pi, below), the result of a
computation (Circumference in the code below),
or random numbers generated by the computer (e.g.
Radius below):

The idea that the contents of the ‘box’ are still there
after the variable is used is sometimes a confusing
one for those learning to program. Have a look at the
following code and decide what will be displayed on
the screen:

http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
www.youtube.com/watch?v=-qTZ5bFEdC8

28

QuickStart Computing

You should see ‘a is 20’ followed by ‘b is 20’. Try it!

In Kodu and other game programming, variables
are useful for keeping track of rewards, such as a
score, and for introducing some sort of limit, such
as a time limit or health points that reduce each
time you’re hit. Kodu’s event-driven approach allows
particular actions to be done when variables reach a
predetermined level.

One particularly useful example of variables in
programming is as an iterator – this is a way of keeping
track of how many times you’ve been round a repeating
loop, and of doing something different each time you do.
To achieve this, at the beginning of the loop we initialise
a counter to zero or one and then add one to it each time
we go round the loop. For example, the following script
would get Scratch to say its eight times table:

You can also use an iterator like this to work with
strings (words and sentences) one letter at a time,
or through lists of data one item at a time. Take care
with the beginning and end, as it’s all too easy to
start or end too soon or too late with iterators.

 Classroom activity ideas

●● In Scratch, get pupils to create a mystery function
machine which accepts an input, stores this in a
variable and then uses mathematical operators
to produce an output shown on-screen. Setting
the display to full screen in Scratch, pupils can
challenge one another (and you) to work out what
the program does by trying different inputs.

●● Pupils can use variables in their games programs,
in say Scratch or Kodu, using a score to reward the
player for achieving particular objectives (such as
collecting apples), and imposing a time limit.

 Further resources

●● Bagge, P., ‘Text Adventure Game’ for Scratch,
available at: http://code-it.co.uk/year4/text_
adventure_game.pdf.

●● Barefoot Computing on ‘Variables’, available at:
http://barefootcas.org.uk/programme-of-study/
work-variables/variables/ (free, but registration
required).

●● BBC Bitesize article ‘How do computer programs
use variables?’, available at: www.bbc.co.uk/
guides/zw3dwmn.

●● Binary search jigsaw and solution by
mgberry, available at: http://scratch.mit.edu/
projects/20255402/ and http://scratch.mit.edu/
projects/28907496/.

●● How to program a Scratch 2.0 times-table
test, available at: www.youtube.com/
watch?v=YHGyPfGg1x8.

●● Notes and tutorial on variables in Scratch,
available at: http://wiki.scratch.mit.edu/wiki/Variable
and http://wiki.scratch.mit.edu/wiki/Variables_
Tutorial.

Can we fix the code?
Errors in algorithms and code are called ‘bugs’,
and the process of finding and fixing these is called
‘debugging’. Debugging can often take much longer
than writing the code in the first place. Whilst fixing a
program so that it does work can bring a great buzz,
staring at code that still won’t work can be the cause
of great frustration too. This can be tricky to manage
in class.

At Level 1, pupils are expected to identify when a
program does not do what was intended to be able to
correct errors/bugs to evaluate solutions/programs
and to suggest improvements.

At Level 2, they should be able to identify any
mismatches between the task description and the
programmed solution, and indicate how to fix them.

In programming classes, pupils who are focusing
on the task of writing a program for a particular
goal might want help from you or others to fix
their programs. Tempting as this may be, you and
they should remember that the objective in class is
not to get a working program, but to learn how to
program; their ability to debug their own code is a
big part of that.

http://code-it.co.uk/year4/text_adventure_game.pdf
http://code-it.co.uk/year4/text_adventure_game.pdf
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
www.bbc.co.uk/guides/zw3dwmn
www.bbc.co.uk/guides/zw3dwmn
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/28907496/
http://scratch.mit.edu/projects/28907496/
https://www.youtube.com/watch?v=YHGyPfGg1x8
https://www.youtube.com/watch?v=YHGyPfGg1x8
http://wiki.scratch.mit.edu/wiki/Variable
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial

29

Programming

One way that you can help is to provide a reasonably
robust, general set of debugging strategies which
pupils can use for any programming, or indeed more
general strategies which they can use when they
encounter problems elsewhere.

Debugging should be underpinned by logical
reasoning. The Barefoot Computing team suggest
a simple sequence of four steps, emphasising the
importance of logical reasoning:

1. Predict what should happen.
2. Find out exactly what happens.
3. Work out where something has gone wrong.
4. Fix it.

One way to help predict what should happen is to
get pupils to explain their algorithm and code to
someone else. In doing so, it’s quite likely that they’ll
spot where there’s a problem in the way they’re
thinking about the problem or in the way they’ve
coded the solution.

In finding out exactly what happens, it can be useful
to work through the code, line by line. Seymour
Papert described this as ‘playing turtle’. So, in a
turtle graphics program in Logo (or similar), pupils
could act out the role of the turtle, walking and
turning as they follow the commands in the language.

In working out where something has gone wrong,
encourage pupils to look back at their algorithms
before they look at their code. Before they can get
started with fixing bugs, they’ll need to establish
whether it was an issue with their thinking or with
the way they’ve implemented that as code.

Some programming environments allow you to step
through code one line at a time – you can do this
in Scratch by adding in (wait until [space]
pressed) blocks liberally. Scratch will default to
showing where sprites are (and the contents of any
variables) as it runs through code, which can also be
useful in helping to work out exactly what caused the
problem.

Debugging is a great opportunity for pupils to
learn from their mistakes and to get better at
programming.

 Classroom activity ideas

●● Pupils are likely to make many authentic errors
in their own code, which they’ll want to fix.
You might find that it’s worth spending some
time giving pupils some bugs to find and fix in
other programs, both as a way to help develop
their strategies for debugging and to help with
assessment of logical reasoning and programming
knowledge. Create some programs with
deliberate mistakes in, perhaps using a range
of logical or semantic errors, and set pupils the
challenge of finding and fixing these.

●● Encourage pupils to debug one another’s code.
One approach is for pupils to work on their own
program for the first part of the lesson and then
to take over their partner’s project, completing
this and then debugging it for their friend.

●● A similar paired activity is for pupils to write code
with deliberate mistakes, setting a challenge to
their partner to find and then fix the errors in the
code.

 Further resources

●● Barefoot Computing on ‘Debugging’, available
at: http://barefootcas.org.uk/barefoot-primary-
computing-resources/computational-thinking-
approaches/debugging/ (free, but registration
required).

●● BBC Bitesize ‘What is debugging?’, available at:
www.bbc.co.uk/guides/ztkx6sg.

●● Debugging challenges from Switched on
Computing, available via: http://scratch.mit.edu/
studios/306100/.

●● Rubber duck debugging, available at: http://
en.wikipedia.org/wiki/Rubber_duck_debugging.

What strategies can you use
to support debugging?

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
www.bbc.co.uk/guides/ztkx6sg
http://scratch.mit.edu/studios/306100/
http://scratch.mit.edu/studios/306100/
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

30

QuickStart Computing

Technology

What is a computer?

The term ‘computer’ originally referred to people
whose job it was to perform repeated numerical
calculations according to a set of instructions (i.e. an
algorithm). Since the 1940s it has been used to refer
to digital machines that accept data input, process
this according to some set of stored instructions
(i.e. a program) and output some sort of information.

The power of digital computers comes from their
ability to run through these stored instructions
incredibly quickly. The silicon chip at the heart of
a modern smartphone can execute over a billion
instructions per second!

A digital computer comprises two inter-related systems.

●● Hardware: the physical components, including the
processor, memory, power supply, screen, etc.

●● Software: the core operating system, embedded
control programs, compilers or interpreters and
many application programs.

There is an incredible variety of electronic devices
that contain some sort of digital computer. There are
two different types of device:

Computer-controlled for specific purpose
• digital watch
• digital television
• digital camera …

Programmable computer – can do many
different things
• laptop
• tablet
• smartphone …

The memory of a computer stores both the programs
it needs to operate and the data that it processes.
There are different types of computer memory and
usually there’s a trade-off between speed and cost.
These days, high-capacity storage has become very
cheap, so that data centres can provide users with
vast amounts of storage for little or no cost through
services such as Microsoft OneDrive and Google Drive.

Irrespective of where programs or data are stored in
computer memory, they are always stored in a digital
format. Information is represented as sequences of
numbers. The numbers themselves are stored in a
binary code, represented using just two symbols:
0 and 1 (this number system is called ‘base 2’). Each 0
or 1 is called a ‘bit’.

A range of standard codes is used to convert machine
code, images, sound or video into a digital format.
These provide standard ways to represent information
of different types in binary. Text data is encoded in
Unicode. A byte is a group of eight bits; it’s used as a unit
of memory. Eight bits are more than enough to store
one character from the Latin alphabet, in upper or lower
case, a punctuation symbol, a digit, etc. One thousand
bytes make a kilobyte: enough to store 1000 characters
(a short paragraph).

Images, sound and video have their own accepted
standards for being encoded digitally, such as bitmaps
for images or ‘WAV’ files for audio. These typically
take up much more room than text, so often a form
of compression is used (where patterns in the data
help reduce the amount of storage space needed). If
the original data can be recovered perfectly, this is

How do computers
remember things?

31

Technology

called lossless compression. If some of the original
information is thrown away, the original image, sound
or video can be stored in a much more compact format,
although some of the original quality is lost in the
process: this is ‘lossy’ compression.

In order for a computer to be able to do anything
in the real world, it needs some form of input (to
receive data) and some form of output (to push
information back out).

The form of input will vary:

Laptop inputs
• keyboard
• trackpad/touchpad
• microphone
• webcam
• through a port (e.g. USB mouse)
• via a network connection …

Smartphone inputs
• touch-sensitive screen
• buttons
• microphone
• camera
• GPS receiver
• accelerometer
• barometer
• through a port
• via a network connection …

A computer will need to convert the analogue, real-
world data it receives into a digital format before
it can be processed, stored or transmitted. We call
this process ‘digitisation’ and it inevitably involves
throwing away some of the fine detail of the real-
world information.

Computers can produce many different forms of output:

Laptop/desktop PC outputs
• screen
• speakers
• printer
• headphones
• network connections ...

Smartphone/tablet outputs
• screen
• speakers
• small motor to produce vibrations
• bright LEDs used as a flash
• network connections ...

What is a robot?
A robot is a computer that can move. This could be a
single, integrated system such as a programmable
toy, or it could be a motor under a computer’s
control, such as a robotic arm in manufacturing.

Robots are used widely in industry, where repetitive
tasks can be performed effectively and efficiently by
machines. As ‘smarter’ algorithms have been developed
by computer scientists, more and more decision-making
capabilities have been built into robots, so that they can
autonomously react to changes in their environment.

 Further resources

●● ‘Arduino the cat, Breadboard the mouse and
Cutter the Elephant’: video of a group of girls
planning and programming soft toys, available at:
http://vimeo.com/4313755.

●● Barefoot on ‘Computer systems’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/computer-
systems/ (free, but registration required).

●● Barefoot on ‘Inputs’, available at: http://
barefootcas.org.uk/programme-of-study/
work-various-forms-input/inputs/ (free, but
registration required).

●● Barefoot on ‘Outputs’, available at: http://
barefootcas.org.uk/programme-of-study/
work-various-forms-output/outputs/ (free, but
registration required).

●● BBC Cracking the Code: Miniature computers,
available at: www.bbc.co.uk/programmes/
p01661f7.

●● BBC Cracking the Code: Robots, available at:
www.bbc.co.uk/programmes/p01661tn.

How do computers interact
with the real world?

http://vimeo.com/4313755
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computer-systems/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://www.bbc.co.uk/programmes/p01661f7
http://www.bbc.co.uk/programmes/p01661f7
http://www.bbc.co.uk/programmes/p01661tn

32

QuickStart Computing

How do computers
communicate?

Connecting computers to form computer networks and
the internet (a network of networks) has had a huge
impact on our lives.

Think about how limited our use of technology in school
would be if we had no access to the local network or
the internet. Think about how frustrating it is when we
have no data signal for our smartphones or wifi for our
laptops.

The internet has made it possible to communicate
and collaborate with a richness and immediacy never
experienced before. And yet, it’s something that most of
us take for granted.

The new computing curriculum sets out to change this.

●● At Level 1, pupils can demonstrate an
understanding of the different functions of a
browser and search engine, and can recognise
what should and shouldn’t be searched for on the
internet.

●● At Level 2, pupils can use search engines to search
the internet for specific or relevant information,
e.g. using quotation marks to narrow the results1.

The internet is a physical thing: it’s the cables, fibre,
transmitters, receivers, switches, routers (and all the
rest of the hardware) that connect computers – or
networks of computers – to one another.

The internet has been designed to do one job: to
transport data from one computer to another. This
information might be an email, the content of a web
page, or the audio and video for a video call.

The data that travels via the internet is digital: this
means it is expressed as numbers. All information on the
internet is expressed this way, including text, images
and audio. These numbers are communicated using
binary code, which is made up of 1s and 0s, using on/
off (or low and high) electrical or optical signals. Binary
code is similar to the Morse code used for the telegraph
in Victorian times, but it’s much, much faster. A good
telegraph operator could work at maybe 70 characters
(letters) a second, but even a basic school network
can pass data at 100 million on/off pulses a second,
enough for some 12.5 million characters per second. One
transatlantic fibre connection has the capacity for up to
400 billion characters per second!

Digitised information needs to be broken down into small
chunks by the computer before it can be sent efficiently.
These smaller chunks of data are known as ‘packets’.

The small packets can be passed quickly through the
internet to the receiving computer where they are re-
assembled into the original data. The process happens
so quickly that high-definition video can be watched this
way, normally without any glitches.

1 Technologies Benchmarks [Education Scotland 2017]

How does the internet work?

Computer
networks

33

Computer networks

The packets don’t all have to travel the same way
through the internet: they can take any route from
sender to recipient. However, there is generally a most
efficient route, which all the packets would take.

A sample network: note there is more than one route for packets to travel.

It’s perhaps easier to understand how the internet
works now by looking at a picture of how it worked in
1969 when it started:

Here you see the internet made up of just four routers:
UCLA, SRI, UCSB and UTAH. Each router is a piece
of hardware that passes packets of data from the
networks they are connected to (in the case of UTAH,
PDP10, in the case of UCLA, SIGMA 7) to any of the other
three networks.

So if you were using the PDP10 network at the
University of UTAH and sent a message to someone

at UCLA, your message would be passed first to your
router at UTAH, then on to the router at Stanford
Research Institute (SRI), then (normally) to UCLA’s
router, where it would be passed on to whichever
recipient it was intended for on their SIGMA 7 network.

The internet is obviously much, much bigger than this
example. In real life, the journey of a packet of data from
your home computer to one of Microsoft’s server farms
might look something like this:

your home wifi access point

your home switch and router
(usually all in the same black box)

switches in your nearest BT green cabinet

more switches in your local telephone exchange

London internet exchange

routers near Porthcurno in Cornwall

fibre optics under the Atlantic

further switches and routers in the USA,
until Microsoft’s internet connection, at whichever

of its data centres you are communicating with

When you type a URL (such as www.bbc.co.uk or
www.computingatschool.org.uk) into your browser,
you send a packet of data requesting the content of
these pages be returned to you. But before this can
happen, the domain name first needs to be converted
into numbers. This is the job of the Domain Name
Service (DNS), which converts these familiar web
addresses into numbers known as IP (Internet
Protocol) addresses. The DNS itself uses the internet
to look up (in the equivalent of huge phone books) the
numeric address corresponding to the domain names.

Each packet has a destination IP address on it. With
it the router can easily look up which way to pass the
packet on.

Server

Server

Most efficient route
for packets

Key

Router

Network

Stanford Research Institute
University of UTAH

University of California, Santa Barbara

University of California, Los Angeles

Key

Router

Network

Stanford Research Institute
University of UTAH

University of California, Santa Barbara

University of California, Los Angeles

Key

Router

http://www.bbc.co.uk
www.computingatschool.org.uk

34

QuickStart Computing

Who can see the data we transmit?

There’s nothing to stop routers from looking at the data
in the packet before they pass it on (just as there was
nothing to stop telegraph clerks reading the messages
they passed on in Morse code).

To be able to send information, such as passwords or
bank account details, via the internet secretly, it’s
important to encrypt the data first. This happens
automatically when using the ‘https’ version of websites
(see page 37). In these situations, you’ll see a little
green padlock displayed in your browser’s address bar.
The data is decrypted when it
reaches its destination.

 Classroom activity ideas

●● Ask pupils to draw a picture of the internet. This
will allow you to spot any misconceptions they
have, and provide an opportunity for pupils to
share their understanding.

●● Carry out this ‘unplugged’ activity to model how
the internet passes packets of data.
●» Organise all but four of your pupils into groups.
●» Tell the pupils to choose one pupil in their group
to be the ‘group router’. The rest of the group
will be ‘computers’.
●» Ask the remaining four pupils to take on the role
of ‘internet routers’, which connect the group
routers together.
●» Give each ‘computer’ a numerical address,
comprising a group number and a computer
number (e.g. 1.1, 1.2, 1.3; 2.1, 2.2, 2.3, etc.).
●» Ask each ‘computer’ to write a short message to
another ‘computer’ in a different group, splitting
their message over three different slips of paper
and marking their slips ‘1 of 3’, ‘2 of 3’ and ‘3 of
3’. Tell them to write their numerical address
and the numerical address of the recipient, e.g.
‘To: 2.2; From: 3.4; 2 of 3.’ This is the ‘packet
header’.
●» Ask the ‘computers’ to pass their slips to their
‘group router’, who can pass these on one at a
time to the ‘internet routers’. They in turn pass
them to the correct ‘group router’, who passes
them to the recipient themselves, who can
reassemble the message as their other packets
arrive.

●● Investigate the physical infrastructure of the school
network. Tell the pupils to walk from their laptop to
the local wifi point, or to follow the network cable
from the computer to the classroom switch. Next,
walk together to the school’s main network switch,
firewall and router. If you can, then walk down to the
nearest BT green cabinet, and perhaps to your local
telephone exchange, depending on how close this is
to you.

●● Explore the steps on the journey of a packet using
the ‘tracert’ command at the Windows command
prompt, if you have access to this. Also see the visual
traceroute reference in Further resources below.

●● Ask your school network manager to talk pupils
through how the school network connects their
computers to the rest of the internet.

 Further resources

●● Bagge, P., ‘Year 5 Computer Science Planning’,
available at: www.code-it.co.uk/year5/index.htm.

●● Barefoot on ‘KS2 Modelling the Internet activity’,
available at: http://barefootcas.org.uk/programme-
of-study/understand-computer-networks-including-
internet/ks2-activity-modelling-the-internet/ (free,
but registration required).

●● Barefoot on ‘Internet Services’, available at: http://
barefootcas.org.uk/programme-of-study/multiple-
services-provided-networks-internet/internet-
services/ (free, but registration required).

●● BBC Bitesize clip ‘Computer networks – LAN and
WAN’, available at: www.bbc.co.uk/learningzone/
clips/computer-networks-lan-and-wan/4381.html.

●● Blum, A., Tubes: Behind the Scenes at the Internet
(Viking, 2012).

Table 1 (6 pupils)

Table 2 (6 pupils)

Router

Router

1.41.3 1.5

1.11.0 1.2

2.42.3 2.5

2.12.0 2.2

To: 2.3
Sequence: 1 of 3
Data: What
From: 1.5

To: 2.3
Sequence: 2 of 3
Data: is for
From: 1.5

To: 2.3
Sequence: 3 of 3
Data: tea?
From: 1.5

Message slips

Role-playing a computer network in class.

http://www.code-it.co.uk/year5/index.htm
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/understand-computer-networks-including-internet/ks2-activity-modelling-the-internet/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://barefootcas.org.uk/programme-of-study/multiple-services-provided-networks-internet/internet-services/
http://www.bbc.co.uk/learningzone/clips/computer-networks-lan-and-wan/4381.html
http://www.bbc.co.uk/learningzone/clips/computer-networks-lan-and-wan/4381.html

35

Computer networks

●● Andrew Blum’s talk ‘Discover the physical side of the
internet’, available at: www.ted.com/talks/andrew_
blum_what_is_the_Internet_really.

●● Artistic representations of what the internet means,
available at: www.canyoudrawtheinternet.com.

●● Mark Dorling and others’ Digital Schoolhouse
planning on networks, ‘Networks Unplugged’,
available at: www.digitalschoolhouse.org.uk/
documents/networks-unplugged-workshop-pack.

●● Naughton, J., From Gutenberg to Zuckerberg: What
You Really Need to Know About the Internet (Quercus,
2012).

●● Visual traceroute to find the path from your web
server to an internet address, available at: www.
yougetsignal.com/tools/visual-tracert/.

Picture the train network, efficiently routing trains of
all kinds from one point to another, irrespective of what
those trains contain. Some will have passengers, others
freight, others are perhaps maintenance stock. In the
same way, the infrastructure of the internet can be used
for lots of different things.

The services which run on computer networks, including
the internet, fall into roughly two groups:
1. client–server: one computer (the client) accesses

services or content running or stored on another,
typically larger, computer (the server)

2. peer-to-peer: two computers communicate directly as
equals, passing data directly to and from each other.

The World Wide Web (see page 36) fits into the client–
server model, but so do lots of other services which
use computer networks and the internet as a means of
communicating.

A school network will often have one or more computers
acting as servers, responding to requests from the
desktop, laptop and tablet computers which act as
clients. On a local area network (LAN) like this, the
servers might provide: central storage and backup for
files; access to documents from any computer on the
network; a management information system (such
as SIMS); local email accounts; access to printers;
username and password authentication; filtering and
logging of access to the web; and even locally stored
copies of frequently visited web pages.

Email is a good example of a client–server system using
the internet (although many people’s experience of email
is as webmail accessed through a browser like Internet
Explorer). The journey of an email might be something
like this:

●● Alice opens up Outlook and starts typing in her email
to Bob. She includes Bob’s email address, bob@
builders.com, in the ‘To’ line of the email and clicks
‘send’.

●● The email is transmitted via the internet (or the local
network) to her outgoing mail server. If the email
is intended for another domain (say, builders.com)
rather than Alice’s own (lookingglass.org) then
Exchange will forward the email as packets of data
via the internet, which routes these through to the
incoming mail server for builders.com, as discussed
above.

●● The inbound mail server at builders.com (again
perhaps running Exchange) re-assembles the
message from the packets of data, accepts this and
stores this ready for Bob to collect.

●● Later on, Bob’s email client (perhaps also Outlook)
connects to his mail server and asks if there are
any messages for him. The one from Alice gets
transmitted to Bob’s computer via the local network
or the internet, where Bob can read it in his email
software.

Although it might look to Alice and Bob as though they
are communicating directly with each other, all their
emails are going via the outbound and inbound mail
servers. Notice that the contents of their emails aren’t
encrypted, so the organisations running the two mail
servers can read the contents of these messages if
they wish.

Not all communication on the internet uses a client–
server model. For example, peer-to-peer communication
is a model used for Skype and a number of other video
conferencing or voice-over-internet systems. Although
Skype uses a server to maintain a list of logged-in users
and the IP addresses of their computers, when a call

Client–server

Client computer

Client computer

Server computer

Client computer

Peer-to-peer

What can you do with the internet?
Role-playing a computer network in class.

http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.ted.com/talks/andrew_blum_what_is_the_Internet_really
http://www.canyoudrawtheinternet.com
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.digitalschoolhouse.org.uk/documents/networks-unplugged-workshop-pack
http://www.yougetsignal.com/tools/visual-tracert/
http://www.yougetsignal.com/tools/visual-tracert/

36

QuickStart Computing

is connected, the packets of data that make up the
digitised video and audio for the call are routed directly
through the internet between the two parties.

Some online gaming websites use a similar peer-to-peer
system, as does BitTorrent, a protocol which allows
large files to be shared between many computers by
allowing direct peer-to-peer connections. Because peer-
to-peer connections are harder for large organisations
to monitor, they are favoured by those using the
internet for criminal purposes, for example the use of
the BitTorrent protocol for illegally sharing copyrighted
material.

 Classroom activity ideas

●● Role-play can be used very effectively to teach
about how email works, and about issues with
email security. Explain to pupils that email
addresses can be ‘spoofed’ or accounts hacked.
So, not all emails are from whom they appear
to be. Warn them that files attached to emails
can contain viruses. Also explain that links in
emails can sometimes point to websites that are
set up to capture personal information such as
passwords. You might like to run this as part of a
larger topic looking at the effective and safe use
of email, perhaps in a twinning project with a class
in this or another country.

●● Share and write a range of emails and written
letters. Discuss the advantages and
disadvantages of each type of communication.

●● Use a video conferencing system to allow experts
to talk to the class or to allow two classes to
communicate. As you set up the computer, talk
through the technical aspects of the call with
your pupils. Note: Skype and most other video
conferencing systems don’t allow children to
register for accounts, so you will need to run this
as a whole-class activity.

●● Encourage pupils to talk about how they and
their families use the internet to communicate,
highlighting any services they use in addition to
the World Wide Web.

 Further resources

●● Guha, S., Daswani, N. and Jain, R., ‘An Experimental
Study of the Skype Peer-to-Peer VoIP System’
(2006), available at: http://saikat.guha.cc/pub/
iptps06-skype.pdf.

●● The journey of a letter, available at:
www.anpost.ie/anpost/schoolbag/primary/
our+people/the+journey+of+your+mail/.

●● ‘Story of Send on Google Green’ (a short cartoon
about the journey of a gmail), available at: www.
youtube.com/watch?v=5Be2YnlRIg8.

In 1989, British computer scientist Tim Berners-Lee
decided to combine the capabilities of the internet
with the functions of hypertext (documents that
include hyperlinks that allow connections to be
made between different files) to manage information
systems at CERN where he was working.

The links in the hypertext take the reader to different documents which
extend or support the information in the original document.

Berners-Lee developed a specification for how an
internet-based version of hypertext would work, and
then wrote the software for the first web servers
and web browsers. The result was the World Wide
Web.

The internet is about connecting computers together,
but the World Wide Web is about the connections
between documents. When you click on a web link,
another web page is requested from (typically) a
different web server somewhere else on the internet.

Hypertext

What is the World Wide Web?

http://saikat.guha.cc/pub/iptps06-skype.pdf
http://saikat.guha.cc/pub/iptps06-skype.pdf
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.anpost.ie/anpost/schoolbag/primary/our+people/the+journey+of+your+mail/
http://www.youtube.com/watch?v=5Be2YnlRIg8
http://www.youtube.com/watch?v=5Be2YnlRIg8

37

Computer networks

The content of this web page is then delivered to
your web browser.

The World Wide Web is about the connection (the links) between
documents.

To ensure that all computers could communicate with
one another, Berners-Lee developed a set of standards
(called protocols) for the web. Versions of these are all
still used today.

1. HTTP (HyperText Transfer Protocol)
This is the process that computers use to request and
transfer hypertext to one another.

The web is a client–server system: we use a web
browser on our computer to request a web page
from one of the many, many web servers connected
to the internet. The request travels as a packet
of data via switches and routers until it reaches
the intended web server. The server responds by
sending back the content of the page, together with
any images and formatting instructions and mini
programs (typically in JavaScript) needed for the
page. If the page isn’t there, it sends back a ‘404:
Not found’ error message – sometimes you’ll see
other error messages too.

Remember that the internet doesn’t encrypt packets
of data: there’s another version of HTTP, called HTTPS,
where the request for a page, the contents of the page
and any information entered into a form (such as a
password) are sent over the internet in an encrypted
form. This encryption can sometimes be bypassed by
network managers and government agencies.

2. URL (Uniform Resource Locator)
URLs are the precise location on the web where web
pages or their components are stored. It’s what you
type in to your browser’s address bar to request a page.

Each bit of a URL means something. Let’s look at the
URL of one of the first web pages – Berners-Lee’s
home page for the World Wide Web project itself –
to work out what each bit means:

http://info.cern.ch/hypertext/WWW/TheProject.html

●● http: this is the protocol we’re using to request
hypertext and the content that comes back – see
above.

●● :// is just punctuation – Berners-Lee now thinks it
would have been better if he’d skipped the // bit!

●● info is the name of the web server we’re connecting
to. Often this will be ‘www’ these days, or this is just
omitted as the main web server for the organisation
will be assumed.

●● cern is the name of the organisation, in this case the
European Centre for Nuclear Research.

●● ch is an abbreviation for the country where the
organisation has registered its domain name, in
this case Switzerland. Some countries also show
what sort of organisation it is registered as,
e.g ‘.co.uk’ for a commercial site and ‘.sch.uk’ for a
school site in the UK. If no country is shown, then it
will be registered in the USA: ‘.com’ for commercial
sites, ‘.edu’ for university sites, and so on.

●● /hypertext is a sub-directory (folder) on the web
server.

●● /WWW is a directory inside the /hypertext
directory on the web server.

●● TheProject is the name of the actual file we’re
requesting, in this case a web page about the
World Wide Web project. Sometimes you don’t see
a file name at the end of a URL, in which case the
web server will send back the default file for the
directory, often an index page such as index.html.

●● .html is the ‘file extension’, which shows what
format the page is written in – in this case HTML
(see page 38). This is like ‘.doc’ or ‘.docx’ for a
Word file, or .jpg or .jpeg for an image.

Although it is often convenient to use search engines
like Google or Bing to find pages rather than typing
in URLs, the URL is a good way to check that you’re
connecting to the intended web server (rather
than a spoof website). URLs are also useful when
acknowledging sources of information, and for
creating links between pages (and so building more
of the connections that make the web so useful).

What standards does the
World Wide Web use?

http://info.cern.ch/hypertext/WWW/TheProject.html

38

QuickStart Computing

3. HTML (HyperText Mark-up Language)
HTML is the computer language (code) in which the
content and structure of a web page are described,
or ‘marked up’.

The content of web pages is stored in HTML format
on web servers. Creating a web page involves writing
(or getting a computer to generate) the HTML that
describes the page. HTML can be read, and written,
by humans as well as computers. You can view the
HTML source code for any web page using tools built
into your web browser. (There’s a menu command to
do this, or you can press ‘ctrl-u’ in Internet Explorer.)

These days, the HTML for a web page might not
be stored as a file on the web server; in content
management systems, when a page is requested it
will be generated automatically using a database
of content, a template and some programs running
on the web server. For example, every time you
visit www.bbc.co.uk/newsround/ the page will be
generated using the latest news in the database.

More recently, a couple of other languages have come
to play an important part in developing the Web.

CSS (Cascading Style Sheets)
CSS provides formatting information alongside the
content and structure of HTML, allowing designers
and developers to specify exactly how the content of
the page should be displayed in the web browser on a
computer, tablet, smartphone or printer.

JavaScript
JavaScript is a programming language that can be
interpreted by the web browser itself, allowing
interaction with the content of a page to be handled
by the user’s computer (the client) rather than on
the server itself. The web-based version of Office
365 relies heavily on JavaScript.

The amazing thing about the Web isn’t really these
technologies though. It’s that, from its early days as the
preserve of academic scientists, so many organisations
and individuals have connected their own web servers
to the internet and added their own content to the Web.
In part this was because Berners-Lee created a system
that was accessible, scalable and extensible, capturing
the imagination of many. But it’s also because he and

CERN gave it to the world for free – the standards and
the technology were entirely open, without any central
authority or commercial company licensing or charging
for their use.

 Classroom activity ideas

●● The benchmarks for Social Studies at level 1 say
that pupils should be able to ‘Draw comparisons
between modern life and life from a time in the
past.’ Ask pupils to investigate the effects of
introduction of the printing press to Europe in
the 15th century compared to the creation of the
WWW in the 20th century.

●● Encourage pupils to look at the different parts
of the URLs for the web pages they visit, asking
them to explain what each part of the URL means.
Make a display showing the different parts of
some interesting or common URLs.

●● Ask pupils to talk to their parents, grandparents
or carers about the difference the World Wide
Web has made in their lives.

●● Tell pupils to keep a diary of the different ways
they use the Web over a week.

 Further resources

●● BBC Bitesize, ‘What is the world wide web?’,
available at: http://www.bbc.co.uk/guides/z2nbgk7.

●● Tim Berners-Lee, ‘Answers for Young People’,
available at: www.w3.org/People/Berners-Lee/
Kids.html.

●● The original CERN home page for the web,
available at: http://info.cern.ch/hypertext/WWW/
TheProject.html.

●● Codecademy curriculum materials, available
at: www.codecademy.com/schools/curriculum
(registration required).

●● Mozilla Web Literacy whitepaper, available at: http://
mozilla.github.io/webmaker-whitepaper/.

●● Wayback Machine to search for historic web
pages, available at: http://archive.org/web/.

There are plenty of tools available for you and your
pupils to create your own content for the web.

Your school’s learning platform or VLE provides one
way to get content online, as do blogging platforms

How do you make a web page?

What’s the most amazing
thing about the web?

www.bbc.co.uk/newsround/
http://www.bbc.co.uk/guides/z2nbgk7
http://www.w3.org/People/Berners-Lee/Kids.html
http://www.w3.org/People/Berners-Lee/Kids.html
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/TheProject.html
www.codecademy.com/schools/curriculum
http://mozilla.github.io/webmaker-whitepaper/
http://mozilla.github.io/webmaker-whitepaper/
http://archive.org/web/

39

Computer networks

like WordPress. These platforms usually include a
‘WYSIWYG’ (what you see is what you get) editor.
This makes writing content for the web similar to
using Microsoft Word, with a range of formatting
controls built in. In most of these editors, you can
swap into code (or ‘source view’), seeing and editing
the HTML itself. This can be a good introduction to
working directly in HTML, as you can always swap
back to the WYSIWYG view to see the effects of
editing the code.

Giving pupils some experience of writing content
for the web through editing HTML ‘by hand’ is well
worth doing, although it isn’t, strictly speaking,
programming. It adds to their understanding of
networks, including the internet which the Scottish
curriculum at Level 2 expects, and is one more way
of using software on a range of devices to create
content. It is also a good way to get pupils used to
working in a formal, text-based computer language.
As with other text-based languages, working in
HTML helps reinforce the importance of spelling,
punctuation and grammar: mistakes in the mark-up
of the page usually become quite apparent in the way
the browser displays the page.

Many pupils are likely to find these skills useful in the
long term too, both at secondary school and beyond:
developing content for the web is part of many jobs,
teaching included.

Let’s compare the HTML code for a simple web page
and the page itself.
<!doctype html>
<html>
 <head>
 <meta charset=“utf-8”>
 <title>A simple webpage</title>
 </head>
 <body>
 <h1>Origins of the Web</h1>
 <p>Tim Berners-Lee started working on
the world-wide web project in 1989.</p>
 <p>He was working at <a href=“http://
home.web.cern.ch/”>CERN in Switzerland
at the time.</p>
 <img src=“http://upload.wikimedia.org/
wikipedia/commons/thumb/7/7e/Tim_Berners-
Lee_CP_2.jpg/320px-Tim_Berners-Lee_CP_2.
jpg”>
 </body>
</html>

Can you see where the content for the page comes
from in the code? Can you see what effect some of
the HTML tags (the bits in the <...> angle brackets,
like <h1> and <p>) have on how the content is
structured?

Notice how most of the tags come in matched pairs,
e.g.

●● <html> and ending </html> for the whole page
●● <head> to </head> for the information about the
page, such as its character set and title

●● <body> to </body> for the content of the page
●● <h1> to </h1> around the main heading for the
page

●● <p> to </p> around each paragraph.

Compare the underlined link in the web page with the
corresponding code. In the code, <a> to shows
where the link should be, and href=“http://home.
web.cern.ch/” inside the <a> tag details where the
link should point to.

An image is inserted from elsewhere on the web,
using a single tag, this time without a
matched closing tag, and again giving the location of
the image using src=“http://upload.wikimedia.
org/wikipedia/commons/thumb/7/7e/Tim_
Berners-Lee_CP_2.jpg/320px-Tim_Berners-
Lee_CP_2.jpg” inside the tag.

Mozilla’s Thimble tool for creating websites
(available at: https://thimble.webmaker.org/) makes
it easy to get started with coding in HTML, as it
displays the source code alongside the resulting
web page.

What does HTML look like?

How do I get started with HTML?

Origins of the Web
Tim Berners-Lee started working on the world-wide web project in 1989.

He was working at CERN in Switzerland at the time.

http://home.web.cern.ch/
http://home.web.cern.ch/
https://thimble.webmaker.org/

40

QuickStart Computing

Rather than starting from a blank page, pupils can
try editing other web pages, exploring the structure
and HTML code of these pages and seeing what
effect changing the code has on how the page is
displayed in the browser.

On Internet Explorer, you can use the Developer
Tools (hit F12, or launch via the menu) to view and
edit the source code (the HTML code which describes
the content and structure) for a page. Alternatively,
you can install Mozilla’s X-Ray Goggles as an active
bookmarklet (see Further resources) to remix and
share edited web pages.

 Classroom activity ideas

●● When using their learning platform, VLE or class
blog, encourage pupils to swap from the normal
WYSIWYG (what you see is what you get) mode
of the built-in editor, to the code, source or HTML
mode, and to try writing their post or page in that.
Remind them that they can swap back and forth
to see how the code relates to the page that’s
displayed. Give pupils a list of some common HTML
tags to try out for themselves.

●● Set pupils the challenge of making a parody of a web
page by using either the Developer Tools in Internet
Explorer, or X-Ray Goggles, to edit the code for the
page. It’s wise to decide some ground rules for this
activity in advance. Show pupils how easily a spoof
page can be created this way, and explain why it’s so
important to check the address of the page they’re
visiting, to confirm it is authentic rather than merely
one which looks convincing.

●● Rather than asking pupils to write up a story or a
report using Word, challenge them to do this using
HTML code to make a web page. Emphasise that they
need to concentrate on the content and structure
of their page, which is what HTML is designed
for. Encourage them to add in links to supporting
material, using the <a> tag, if they’re creating a non-
fiction account, and perhaps to add in some images
from elsewhere on the web using the tag.

 Further resources

●● Learn to code tutorials from Codecademy, available
at: www.codecademy.com/ (registration required).

●● Shay Howe ‘Learn to Code and CSS’ tutorials,
available at: http://learn.shayhowe.com/.

●● ‘App Design Basics: Learn to code using HTML
and CSS’ from Playto, available at: https://learn.
playto.io/html-css/lesson/0.

●● Thimble: https://thimble.webmaker.org/.
●● Tutorials on a wide range of computer languages

from w3schools, available at: www.w3schools.com/.
●● See the source code behind web pages using X-Ray

Goggles, available at: https://goggles.webmaker.org/.

Search engines like Google and Bing have
transformed the way we use the web. Instead of
having to remember URLs for the pages we want, or
following the links from one page to another, we can
normally rely on these web-based programs to give
us the most relevant results for our query.

Given how much we use search engines, it’s
important to use them effectively and efficiently,
to show some discernment in deciding how far a
particular page can be trusted, and to have some
grasp of the algorithms that underpin them.

In order for Bing or Google to be able to respond
to a search query, they use their index of the web.
A search engine builds its index by using specially
written programs called ‘web crawlers’. The
web crawlers create a huge copy of the publicly
accessible bits of the web (called a cache) storing it
on the search engine’s servers.

When a new or updated copy of a web page is added
to the cache, an entry for the page will be added to
(or updated in) the search engine’s index of the web
for each of the words on the page (typically ignoring
small, common words like ‘and’, ‘the’ and so on). The
web crawlers continue to build and update the cache
by following all the hyperlinks in the page, requesting
and making copies of those pages too, adding or
updating index entries for them, and following the
links on those pages too. And so on.

So, when we type a keyword such as ‘dog’ into a
search engine, it consults the index and returns a list
of all the web pages on which that keyword appears.
Typing in several keywords, e.g. ‘dog’ and ‘bowl’, will
only return pages with both of these keywords, which
helps to narrow down the set of results.

The really clever bit about web searches is not the
list of results, but the right rank order the results
are put into. How do the search engine algorithms
decide what to put top of the list?

How does a search engine work?

How are search results ranked?

www.codecademy.com/
http://learn.shayhowe.com/
https://learn.playto.io/html-css/lesson/0
https://learn.playto.io/html-css/lesson/0
https://thimble.webmaker.org/
http://www.w3schools.com/
https://goggles.webmaker.org/

41

Computer networks

Google’s founders, Larry Page and Sergei Brin,
recognised that the key to determining how relevant a
particular result was likely to be lay in the links between
other pages and the result. They realised that a high-
quality page is a page that has lots of links pointing to
it from other web pages, particularly if they too were
high-quality results. This is shown in the illustration
below, where the larger the circle is, the higher the
quality of the web page.

The cached and indexed copy of the (publicly accessible)
web on the servers of search engines also includes
the links between them. This allows Page and Brin’s
PageRank algorithm to work out which pages are
considered the highest quality to other web developers
(as they add links to those into their own content). Thus,
for many queries, the Wikipedia entry will often be at
the top of, or at least high up, the results list – not
because of its accuracy or authority, or even because
people click on this more than other results, but because
lots of the other high-quality search results link to it.

The actual algorithms that search engines use can be
very complicated and are frequently tweaked to keep
one step ahead of the ‘search engine optimisation’ (SEO)
industry that tries to improve the ranking for its clients’
pages. These days, the ranking of results is typically
personalised: based on location, the history of what the
user’s searched for and clicked on before, and close on
200 other factors or ‘signals’.

When teaching pupils about how search engines work,
point out the ‘sponsored’ results which are shown above
or to the side of those results generated using this
relevance algorithm. The sponsored results are also
algorithmically generated, based on the keyword, some
quality measure for the advert, the page it points to
and often your search history. They’re placed on a ‘pay
per click’ basis: the search engine doesn’t charge for
showing the advert, but the advertiser pays when you
click on it, so it’s in their interests to only show the most
relevant adverts here.

The mechanics will vary from one search engine to
another, but a good search engine should also: filter
out explicit content automatically; allow you to search
within a particular site; allow results to be filtered by
their location (e.g. just the UK) and by date range (e.g.
just pages created or edited in the last year). Some
search engines even allow results to be filtered by
reading level, for example restricting the results to
those written using shorter words or less complex
sentences.

 Classroom activity ideas

●● Encourage pupils to use search engines for
independent or guided research projects. Get
pupils to experiment with the effect that adding
in additional keywords, or searching for phrases
(by putting quotation marks around each phrase)
has on a set of results.

●● Demonstrate, and ask pupils to use, some of the
more advanced search features, such as filtering
by date and reading level. Show pupils how they
can view the cached copy of a web page. For both
Google and Bing, this is hidden under the green
drop-down next to the URL on the results page).

●● Read through the Digital Schoolhouse notes on a
simulation of how a search engine works, based
on Google engineer Doug Aberdeen’s presentation
at the 2012 CAS Conference (see Further
resources below). Print off the resources and run
this as an activity with your class.

 Further resources

●● Doug Aberdeen’s simulation from the
2012 CAS Conference, available at: www.
computingatschool.org.uk/index.php?id=aberdeen.

●● Useful list of advanced search keywords in Bing,
available at: http://onlinehelp.microsoft.com/en-
us/bing/ff808421.aspx.

●● Short animated presentation ‘How Search Works’
by Matt Cutts, available at: www.youtube.com/
watch?v=BNHR6IQJGZs.

●● Peter Dickman’s lecture ‘How Google Search
Works’, available at: www.youtube.com/
watch?v=C8v7AM1o7uM.

●● Digital Schoolhouse simulation of how a
search engine works: http://community.
computingatschool.org.uk/files/3874/original.pdf.

●● Eli Pariser’s talk ‘Beware online “filter bubbles”’
(how individually focused our search results are),
available at: www.ted.com/talks/eli_pariser_
beware_online_filter_bubbles?language=en.

http://www.computingatschool.org.uk/index.php?id=aberdeen
http://www.computingatschool.org.uk/index.php?id=aberdeen
http://onlinehelp.microsoft.com/en-us/bing/ff808421.aspx
http://onlinehelp.microsoft.com/en-us/bing/ff808421.aspx
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=BNHR6IQJGZs
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://www.youtube.com/watch?v=C8v7AM1o7uM
http://community.computingatschool.org.uk/files/3874/original.pdf
http://community.computingatschool.org.uk/files/3874/original.pdf
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles?language=en

42

QuickStart Computing

How can you use
computers to work
with others?

There’s more to computing than computer science.
With the use of digital technology such as smartphones
and the internet, it’s hard to think of any sphere of
life which hasn’t been changed by the near ubiquitous
nature of communication technology.

Young people are usually comfortable using a range
of digital technologies to communicate with one
another (although you should not presume that
they act safely and responsibly when doing so: see
Safe and responsible use, pages 46–49). They are
perhaps less skilled in using technologies to work
collaboratively on shared projects.

Different technologies work with different-sized groups:

One-to-one
●● email
●● video calls
●● instant messaging...

One-to-many
●● blogging
●● personal website
●● publishing on YouTube
●● podcasting
●● posting to social media...

Many-to-one
●● searching the web
●● watching YouTube
●● browsing social media...

Many-to-many
●● discussion forums
●● Wikipedia...

We need to develop pupils’ understanding of these
technologies (and some critical discernment
about their use) rather than just their ability to
use any particular platform. The implementation
of communication technology will change, but
underlying principles are likely to remain the same.

Yes! Many schools are now using digital
communication and collaboration technologies as
part of their day-to-day work.

Again, yes! The internet can provide many opportunities
for pupils in one class to communicate with or work
collaboratively with pupils in another class.

There’s so much that can be gained through even
a simple, email-based eTwinning project. Think
of the scope for exploring ‘contrasting localities’
in geography, or for practising other languages,

Can pupils communicate with
other schools?

Can communication technology
be embedded across the whole

curriculum?

Communication
and collaboration

43

Communication and collaboration

or for looking at a period in history from a global
perspective.

These days, it’s easy for a teacher to set up a class
blog, perhaps as open access so that a child’s work
can reach an audience, potentially, of close on three
billion others. Blogs are also a great way to share
what’s happening in your class with your pupils’
parents and with other teachers.

Blogs can be used as a basis for partnership
projects with another class or group of classes,
taking turns to respond to work that’s posted (as
in David Mitchell’s QuadBlogging® projects: see
Further resources). However, it’s really important
that comments posted to a class or school blog are
moderated by a teacher before they’re seen by pupils.

Blogging can be easily used to record and share
pupils’ work in computing. Even without blogging,
pupils could share their programming work through
community sites for tools such as Scratch and Kodu
(taking care that all involved observe the terms and
conditions that apply to these platforms).

The internet makes it easy for pupils to work
collaboratively online, just as they have always been
able to do in class.

Web-based platforms such as Office 365 mean that
pupils can work on files together, either by inviting
comment and review from others, or through real-
time collaboration. The efficiency with which joint
projects can be undertaken and reviewed can make
this a very exciting mode of work.

Teachers and pupils alike will be aware of the
collaborative nature of Wikipedia. This can provide
a good opportunity for pupils to become more
discerning in evaluating digital content, and indeed
to correct errors or add content in Wikipedia when
they can. The Simple English Wikipedia is far less
‘complete’ than the main edition, and so it’s practical
for primary classes to ‘adopt’ pages here, editing
or monitoring these for other users. Alternatively,

teachers can set up their own wiki for their class,
using one of a number of online tools.

Online collaborative working is a very important part
of software development. Pupils themselves can get
some experience in collaborative software development
through the remix feature built into platforms such as
Scratch, TouchDevelop and Kodu.

It’s important to establish an agreed set of rules for
any online activities. Pupils need to be aware that
terms and conditions do apply to them, even if they
are rarely written in accessible language. You should
brief pupils on what is expected of them. From the
Early Level, pupils should understand appropriate
behaviour and language.

It’s helpful to have a set of guiding principles here:
pupils should behave online just as they would
offline. This would include:

●● not being deliberately hurtful
●● taking care of shared resources
●● being prepared to stand up for doing the right
thing, even if it’s unpopular

●● not talking to strangers
●● being honest.

Explain to pupils that most online systems automatically
log the activities that take place in them: someone (or
something) is watching what they do online!

 Further resources

●● eTwinning: connect with classes across Europe,
available at: www.eTwinning.net.

●● 100 Word Challenge: carry out and share short
literacy projects, available at: http://100wc.net/.

●● Quadblogging®, collaborative blogging in groups
of four classes across the world, available at:
http://quadblogging.com/.

●● Simple English Wikipedia, available at: http://
simple.wikipedia.org/wiki/Main_Page.

●● Wikipedia: Five pillars: the guiding principles
behind Wikipedia, available at: http://en.wikipedia.
org/wiki/Wikipedia:Five_pillars.

●● Wikispaces Classroom: creating wikis in school,
available at: www.wikispaces.com/content/
classroom.

How can pupils work
collaboratively?

What audience can
pupils reach?

What ground rules should we
establish?

http://www.eTwinning.net
http://100wc.net/
http://quadblogging.com/
http://simple.wikipedia.org/wiki/Main_Page
http://simple.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://en.wikipedia.org/wiki/Wikipedia:Five_pillars
http://www.wikispaces.com/content/classroom
http://www.wikispaces.com/content/classroom

44

QuickStart Computing

Can we teach our
old ICT topics?

The answer to this is yes! There are few, if any, topics
from the old ICT curriculum that don’t appear in the
new Digital Literacy curriculum.

The 2017 Technologies benchmarks make a clear
distinction between Digital Literacy and Computing
Science. As can be seen from the curricular
organisers for Digital Literacy:

Using digital products and services in a variety of
contexts to achieve a purposeful outcome;
Searching, processing and managing information
responsibly; Cyber resilience and internet safety1

encompass the older concept of ‘ICT across the
curriculum’. The topics which encompassed the broad
areas of productivity and creativity will remain an
important part of the new curriculum.

David Jonassen and others coined the term
‘meaningful learning’. They were thinking particularly
about learning activities that involved using
technology, but the principles can be applied more
broadly. Jonassen’s list2 was:

●● active: pupils should do something
●● constructive: pupils should make something
●● intentional: pupils should have some say in what
they do or how they accomplish something

●● authentic: link to pupils’ direct experience,
including that of school: look for connections with
other areas of the curriculum

●● cooperative: look for activities where pupils can
learn with and from one another.

For example, pupils could work together to create
and then analyse the results from an online survey
of other pupils’ views on the breadth of the school’s
curriculum, choosing for themselves how they might
present the results of their survey.

It’s important to find a balance between getting
things done in the time available and developing good
working habits for extended projects.

It’s probably best to mix a range of short activities
with more extended projects in which the processes of
planning, implementing, revising and evaluating are fully
explored. Working through the stages of a project in
detail is good experience for this sort of work elsewhere.

Look for ways to get pupils involved in managing
projects. This can include deciding what programs and
equipment they’ll need to use. The project management
skills involved in creative media work are very similar to
those required in software development.

The Benchmarks are quite careful not to specify
particular digital media. Technology currently

Productivity
and creativity

How can we make ICT activities
more meaningful for pupils?

How should pupils go about
project work?

What digital tools should pupils
work with?

2 Jonassen, D. H. et al., Meaningful Learning with Technology (Upper
Saddle River NJ: Pearson, 2008).

1 Technologies Benchmarks [Education Scotland 2017]

45

Productivity and creativity

available in most schools can be used for work
across a very wide range of media, including: text,
images, sound, animations, video and 3D. Ensure that
your pupils experience working across this full range.
A PowerPoint presentation is likely to include text
and images, and perhaps video, audio and animations.

Also, aim to ensure that your pupils work on a
variety of devices and are able to draw on web-based
services, tablets, smartphones, digital cameras or
other systems, rather than just using traditional
Windows PCs in their IT work.

Sir Ken Robinson defines creativity as ‘the process of
having original ideas that have value’3: creative work
should be original, and this should at least mean that
it’s a pupil’s own work, not something where they’ve
simply filled in a blank or copied something. Creative
work should also be of value: at the very least to the
pupils themselves, but also to a wider audience.

As well as originality and value, creative work also
implies that the pupil has made something. An emphasis
on creativity recognises how powerful the process of
making things for others, is as a means to learning.

In the classroom, help pupils to become masters
of the software tools and digital devices they use,
helping them to develop confidence, competence and
independence. Then encourage them to use them,
playfully or experimentally, as a way of helping them
express their own insights and ideas.

The computing curriculum includes a requirement
for pupils to work with numerical data. This is an
important application of computer systems and
seems likely to become even more so in the future.

There’s much you can do to provide pupils with an
authentic experience of working with both small and
large datasets. Pupils can generate interesting sets
of data, or access large, open data repositories.

Online survey tools, such as Google Forms or Excel
Online, allow pupils to design and deploy quick
opinion polls or surveys, and then analyse, evaluate
and present the results. Choosing topics of genuine
interest to pupils, perhaps concerned with aspects

of school life, can make activities like this much
more engaging. Pupils should think about privacy
and the ethical aspects of such surveys. Good
practice includes principles of informed consent and
anonymity; the latter is particularly important as,
otherwise, data protection legislation would apply
when processing personal data.

 Classroom activity ideas

●● Carry out activities that draw on automatically
generated data, perhaps using sensors (e.g. a
Scratch script to record the level of sound in
class; see Further resources).

●● Organise your pupils to analyse some big datasets
made publicly available on the internet. Help them
to use n-gram viewer to search for the occurrence
of words or phrases in the vast number of books
that Google has digitised, and to see how this
changes over time (see Further resources).
Analyse how search-term popularity has changed
over time, e.g. look at the relative popularity of
searches for ‘Britain’s Got Talent’ and ‘The X
Factor’ over time, in searches performed in the UK,
using Google Trends (see below).

●● Discuss the ethical implications of data
processing (i.e. what others do with our data). Ask
pupils to think about the detailed profile which
internet, email or search engine providers build up
through analysing each user’s activity, as well as
to what uses this information might be put.

 Further resources

●● ‘A picture is worth a thousand words: what we
learned from 5 million books’ lecture, available at:
www.youtube.com/watch?v=5l4cA8zSreQ; see also
n-gram viewer: https://books.google.com/ngrams.

●● Classroom sound monitor on Scratch, available at:
http://scratch.mit.edu/projects/20968943/.

●● Google forms (www.google.co.uk/forms/about) or
Excel Surveys (http://blogs.office.com/2012/11/16/
excel-surveys/) for creating online surveys.

●● Jonassen, D. H. et al., Meaningful Learning with
Technology (Upper Saddle River NJ: Pearson, 2008).

●● Monte Carlo Method, available at: http://
en.wikipedia.org/wiki/Monte_Carlo_method.

●● Robinson, K., Out of Our Minds – Learning to Be
Creative (Capstone, 2011).

●● Using Google searches to predict flu: www.
youtube.com/watch?v=uEt8NuqBvPQ; see also
Google Trends: www.google.com/trends/.

3 Robinson, K., Out of Our Minds – Learning to Be Creative (Capstone, 2011).

What can pupils do with data?

How can creativity be taught?

https://www.youtube.com/watch?v=5l4cA8zSreQ
https://books.google.com/ngrams
http://scratch.mit.edu/projects/20968943/
http://www.google.co.uk/forms/about
http://blogs.office.com/2012/11/16/excel-surveys/
http://blogs.office.com/2012/11/16/excel-surveys/
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.youtube.com/watch?v=uEt8NuqBvPQ
http://www.google.com/trends/

46

QuickStart Computing

Safe and
responsible use

How can we keep
children safe online?

Schools have a responsibility to keep pupils safe. The
Byron Review,1 Ofsted and others have emphasised
that the best way to achieve this is to teach pupils
how to keep themselves safe. Think of pupils cycling
to school: the pupils are exposed to risks which could
otherwise be avoided, but these risks are balanced
by a range of benefits (independence, health,
environment, road congestion, etc.). We do all we can
to outweigh the risks by teaching pupils to cycle well
and safely.

The new computing curriculum goes beyond just
teaching e-safety, and states that pupils at Level 1
should be able to:

demonstrate understanding of their rights
and responsibilities as a digital citizen, of the
potential dangers online, whom to go to for
advice and whom to report a concern to.2

It’s important to recognise that these requirements
are a whole-school responsibility. They should be
taught across the curriculum and become part of
the life of the school – this isn’t just something for
computing lessons.

By moving from a risk mitigation approach to
a values-based approach that promotes the
responsible use of technology, we can help develop
the pupils’ sense of moral responsibility and the
‘grit’ necessary for pupils to stand up for doing the
right thing. Pupils will then be far better at coping
with the challenges of secondary education and

adolescence, and far less likely to fall prey to the
more sinister aspects of the internet and other
technologies.

In The Byron Review Professor Tanya Byron outlined
three broad categories of risk which children are
exposed to through their use of digital technology:
content, contact and conduct.

What are the risks?

1 Byron, T., Safer Children in a Digital World: The Report of the Byron
Review (London: DCSF, 2008).
2 Technologies Benchmarks [Education Scotland 2017].

Commercial Aggressive Sexual Values

Content
(child as
recipient)

Adverts;
Spam;
Sponsorship;
Personal info

Violent/hateful
content

Pornographic
or unwelcome
sexual
content

Bias;
Racism;
Misleading info
or advice

Contact
(child as
participant)

Tracking;
Harvesting
personal info

Being bullied,
harassed or
stalked

Meeting
strangers;
Being
groomed

Self-harm;
Unwelcome
persuasions

Conduct
(child as actor)

Illegal
downloading;
Hacking;
Gambling;
Financial scams;
Terrorism

Bullying or
harassing
another

Creating and
uploading
inappropriate
material

Providing
misleading info/
advice

Table taken from Safer Children in a Digital World: The Report
of the Byron Review, p.16 (www.education.gov.uk/publications/
eOrderingDownload/DCSF-00334-2008.pdf). Contains public sector
information licensed under the Open Government Licence v2.0: see
www.nationalarchives.gov.uk/doc/open-government-licence/version/2/.

http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/

47

Safe and responsible use

Content
Children are naturally curious and, as teachers, we
hope to develop that curiosity – to establish a life-
long love of learning. The web has provided almost
instant access to a wealth of information that pupils
can access to further their learning and satisfy their
curiosity.

Schools have effective filters that minimise exposure
to inappropriate material, but this does not prevent
pupils accessing such material outside of school,
including on tablets or smartphones.

Both Bing and Google have safe-search modes (which
can be locked in place) and these help prevent pupils
from accessing particularly inappropriate content. In
addition, a number of organisations have developed
search engines targeted at children (for example
www.swiggle.org.uk/), often through a combination
of safe-search and custom-search tools in Google
Search.

Encourage parents to use the safe-search filters on
their search engine, and to request filtered internet
access at home and on mobile devices, explaining
how to do this and why it is a good idea.

But, even with filters in place, children may still
encounter content that concerns them. Establish
a ‘no blame’ culture in school so they feel they can
alert you, or their parents, to such content. Many
schools teach children to close the laptop, switch
off the monitor or turn the tablet over if they
find content they know they shouldn’t see or that
concerns them; again, it’s worth explaining this to
parents and suggesting they do the same at home.

Byron identified commercialisation as another risk
associated with exposing pupils to the internet. As
teachers, we must help pupils to become discerning
and critical about commercial aspects of the content
they come across. For example, teach them about
spam in email and how this can be filtered semi-
automatically, as well as asking them to think about
what sort of algorithms might be used in doing so.

Talk to pupils about advertising on the web and
how this can be avoided through the use of browser
plugins such as AdBlock, as well as the difference
between sponsored and other results on search
engines. It’s also important to help pupils become
aware of the difference between altruistically
created content such as Wikipedia and many blogs,
and content created with a perhaps hidden or

implicit commercial purpose, e.g. apparently free
online services that are sustained through using the
user’s data to help target advertising.

Contact
The new curriculum requires that pupils are taught
who they can turn to if they have concerns over
contact online. In most cases, pupils should talk to
their parents or their teachers about such contact:
if pupils report such concerns to you, this is likely to
be covered by your safeguarding policy, so make sure
you follow this carefully. Sometimes pupils might
be too embarrassed to turn to either you or their
parents, so it’s worth introducing them to ChildLine
and, in the case of pupils at Level 2, CEOP (see
Further resources).

Traditionally, e-safety work in schools has included
clear advice to children on not sharing personal
information online. The curriculum includes this
at Level 1. Online privacy is an increasing matter
of concern and there are broader issues here
than ‘stranger danger’. Pupils should be aware of
their ‘digital footprint’, the data about them that
is created by deliberately sharing content and
through the automatic logging of all online activity.
Whilst such logs are kept securely, many people are
concerned about the uses to which such data could
be put.

 Classroom activity ideas

●● Challenge older pupils to consider how algorithms
can be designed to filter search results from a
search engine, to make them safe for children.

●● Ask older pupils to think about the long-term
implications of the data trails they leave behind
them when they search the internet. Ask them
to discuss: ‘Who do you want to keep your data
private from?’ (From internet predators? From
future employers? From the providers of search,
internet and email services? From advertisers?
From the school network manager? From
government agencies?)

Conduct
The Benchmarks at Level 1 require that pupils
develop an understanding of both their rights and
their responsibilities as digital citizens. Supporting
children’s moral development is a vital part of
primary education.

http://www.swiggle.org.uk/

48

QuickStart Computing

Lawrence Kohlberg’s stages of moral development3

offer one model for thinking about this:

1. Obedience and punishment orientation (‘How can I
avoid punishment?’)

2. Self-interest orientation (‘What’s in it for me?’)
3. Interpersonal accord and conformity (the good

boy/girl attitude)
4. Authority and social-order maintaining orientation

(law and order morality)
5. Social contract orientation (‘Do unto others…’)
6. Universal ethical principles (principled conscience)

Under this model, we would hope to see pupils taking
increasing responsibility for their own moral and
ethical decisions and behaviour whilst at primary
school. If schools take moral education seriously,
many aspects of pupils’ inappropriate conduct when
using technology can perhaps be avoided, or their
consequences reduced.

Cyberbullying
Even in primary schools, cyber-bullying is a common
problem. Whilst this is more likely to happen outside
of school, it’s common for both bully and victim to
be members of the same class or school, and the
cause and consequences may often be connected
to school. As with bullying in general, a clear zero
tolerance message is vital, together with a culture
in which this can be reported in the knowledge that
swift and effective action will follow. Alongside this,
it’s worth building up pupils’ resilience to off-hand,
unintentionally hurtful remarks from others, and
recognising that not every online disagreement or
critical comment constitutes bullying.

Copyright
There are generous exemptions from much copyright
legislation for clearly specified educational use, but
it’s still important to teach and show best practice in
the use of copyright material. This includes children
(and teachers!) properly acknowledging the source of
content and respecting any associated licence terms.

Creative Commons (see Further resources) provide
a range of licences that allow those who create work
to license it for re-use under a range of different
conditions. You can teach pupils about this approach to
sharing online, and show them how they can search for,
acknowledge and re-use Creative Commons licensed
content in their own work. Both Google and Bing image
searches allow results to be filtered to show just images
that have been licensed in this way.

Pupils own the copyright in their own work, including
the work they produce in school. As teachers, we
should respect this by seeking permission from
pupils and their parents before publishing pupils’
work online. Asking parents to license this use of
their children’s work might seem over the top, but
it’s important that pupils learn about their rights as
well as their responsibilities.

Terms and conditions
It’s important that pupils and teachers respect the
terms and conditions of any websites or other online
services that they use. The terms and conditions of
most online services run to many pages, but when
signing up for new services, or asking pupils to do so,
it’s well worth checking through the sections on any
age restrictions as well as those on copyright and
data privacy. US-based companies are required to
abide by American COPPA (Children’s Online Privacy
Protection Act) legislation, which prevents their
storing personal data on under-13s without parental
consent. Thus, many US-based internet services
prohibit under-13s from using the service. Primary
school pupils using these services would be doing so
without the operators’ permission, which might be
considered a breach of the UK Computer Misuse Act.
Some services, including Office 365 and Google Apps
for Education, allow schools to create accounts on
behalf of children. Other websites, such as Scratch,
allow teachers to create multiple accounts in their
own name and share these with pupils.

Passwords
As more and more aspects of pupils’ learning and life
are mediated through online systems, it’s important
that they learn to protect their own online identity
and respect the online identity of others. The sooner
pupils can memorise and type in their own password
(even a simple, short one), the better. Later on,
encourage pupils to use long passwords that can’t
easily be guessed (e.g. CorrectBatteryHorseStaple),
to use different passwords for different sites
or services, and to change passwords regularly.
Discourage pupils from sharing passwords with one
another or with their parents; As this is usually their
only way to prove who they are in any online system,
many difficulties could arise through one parent
impersonating their son or daughter in an otherwise
secure ‘walled garden’ environment such as a school
VLE or learning platform.

3 Kohlberg, L., Essays on Moral Development: Vol. 2, The Psychology of
Moral Development (Harper & Row, 1984).

49

Safe and responsible use

Time to turn off
Finally, discuss with your pupils the opportunity
cost associated with screen time. Time spent using
a computer is time not spent doing other things,
such as reading a (paper-based) book, learning a
musical instrument, playing in a team or socialising
face-to-face with family and friends. Whilst digital
technology is seen by many as transformative in so
many aspects of learning and life, many would count
it a great shame if it came to dominate childhood to
a greater extent than it already has. Helping children
to become more discerning users of technology,
knowing when it might be useful, and when it might
be more of a distraction, is perhaps also one of our
responsibilities as teachers.

 Further resources

●● Byron, T., Safer Children in a Digital World: The
Report of the Byron Review (DCFS, 2008), available
at: http://webarchive.nationalarchives.gov.
uk/20130401151715/http://www.education.
gov.uk/publications/eOrderingDownload/DCSF-
00334-2008.pdf.

●● Childnet’s SMART rules: www.kidsmart.org.uk/
beingsmart/.

●● Creative Commons, for information and
free licences to use, available at: http://
creativecommons.org/.

●● ‘Digital Literacy & Citizenship from the South
West Grid for Learning’ teaching resources,
available at: www.digital-literacy.org.uk/Home.
aspx.

●● Ofsted, ‘Inspecting safeguarding in maintained
schools and academies – Briefing for section 5
inspections’, available at: www.ofsted.gov.uk/
resources/inspecting-safeguarding-maintained-
schools-and-academies-briefing-for-section-5-
inspections.

●● Thinkuknow.co.uk (CEOP), information and
teaching resources for keeping children safe
online, available at: www.thinkuknow.co.uk/
Teachers/.

●● UK Safer Internet Centre, for information
and teaching resources, available at: www.
saferinternet.org.uk.

●● UNCRC (United Nations Convention on the Rights
of the Child), for information and training on
children’s rights, available at: www.ohchr.org/en/
professionalinterest/pages/crc.aspx.

http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://webarchive.nationalarchives.gov.uk/20130401151715/http://www.education.gov.uk/publications/eOrderingDownload/DCSF-00334-2008.pdf
http://www.kidsmart.org.uk/beingsmart/
http://www.kidsmart.org.uk/beingsmart/
http://creativecommons.org/
http://creativecommons.org/
http://www.digital-literacy.org.uk/Home.aspx
http://www.digital-literacy.org.uk/Home.aspx
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.ofsted.gov.uk/resources/inspecting-safeguarding-maintained-schools-and-academies-briefing-for-section-5-inspections
http://www.thinkuknow.co.uk/Teachers/
http://www.thinkuknow.co.uk/Teachers/
http://www.saferinternet.org.uk
http://www.saferinternet.org.uk
www.ohchr.org/en/professionalinterest/pages/crc.aspx
www.ohchr.org/en/professionalinterest/pages/crc.aspx

50

QuickStart Computing

Planning learning,
teaching and assessment

The Curriculum Framework in Scotland1 has at
its core the following

The purpose of Curriculum for Excellence is to help
children and young people to become:

●● successful learners
●● confident individuals
●● responsible citizens
●● effective contributors.

The guidance states
Teachers should be empowered to use the
flexibility that CfE provides, to organise learning
for children and young people in ways that best
meet learners’ needs. Schools should be working
in a collegiate way to make key decisions.

PLANNING LEARNING, TEACHING AND
ASSESSMENT USING THE BENCHMARKS

The purpose of the Benchmarks is to set out
very clear statements about what children
and young people need to learn to achieve
each level of the curriculum. The Benchmarks
streamline and embed a wide range of existing
assessment guidance (significant aspects of
learning, progression frameworks and annotated
exemplification) into one key resource to support
teachers’ professional judgement.

……………………………………………………………………
1Education Scotland Curriculum For Excellence
HMIE 2016

WHAT TO DO: KEY MESSAGES

✔✔ Periodically (from time to time) use
assessments to sample and pull together
learning in a joined-up way.

✔✔ Plan an appropriate balance between
ongoing and periodic assessment – this will
vary from stage to stage.

✔✔ Periodically use assessments to sample and
pull together learning in a joined-up way.

✔✔ Plan an appropriate balance between
ongoing and periodic assessment – this will
vary from stage to stage.

✔✔ Moderate assessment judgements by
taking account of a sample of evidence from
different sources, to discuss standards and
the progress of learners.

✔✔ As a school, develop simple and effective
approaches to monitoring and tracking
learners’ progress. Tracking needs to be as
easy to use as possible.

✔✔ Regularly discuss tracking information with
colleagues, to plan additional support and
interventions to help improve learners’
progress.

✔✔ Evaluate learners’ progress on an ongoing
basis and keep short concise notes to help
planning for next steps in learning. This will
include identifying where additional support
and challenge may be needed.

✔✔ Use the benchmarks to help monitor
progress and support overall professional
judgement of when a learner has achieved a
curriculum level.

51

Planning learning, teaching and assessment

WHAT TO AVOID: KEY MESSAGES

✔✘ Avoid spending time on assessment activities
which do not help to identify children’s and
young people’s next steps in learning.

✔✘ Do not over-assess learners or assess the
same content repeatedly in different ways.
Do not create large portfolios of evidence.

✔✘ Avoid duplication and keeping evidence of
every detail within the Benchmark.

✔✘ Avoid waiting until learners have
demonstrated evidence of every aspect
of learning within the Benchmarks before
moving on to the next level.

✔✘ Avoid spending too much time collecting
a wide range of evidence for moderation
purposes.

✔✘ Do not track and record progress against
individual Es and Os.

✔✘ Do not track progress and achievement using
the terms ‘developing, consolidating, secure’.

✔✘ Do not spend time writing long reports for
parents which describe lots of classwork or
use professional jargon.

At this time, remember the guidance:2

There is no need to provide curriculum level
judgements in all curriculum areas
– stick to literacy and numeracy.

……………………………………………………………………
2Guidance on using Benchmarks for Assessment
Education Scotland March 2017

EFFECTIVE PRACTICE

The overarching statements from How Good is our
School3 for schools displaying effective practice,
are as follows:

Digital innovation
Children and young people work individually and
in teams creating both digital and non-digital
solutions. As their digital literacy becomes more
sophisticated, they embed computation to solve
problems. Increasingly they apply the core
principles underpinning digital technologies to
develop their own ideas. Their skills are up-to-date
with technological advances informed by a range
of sources including the expertise of the young
people themselves.

Digital literacy
Children and young people are innovative,
confident and responsible in the use of
technologies and staying safe online. They critically
examine and make informed choices about the use
of digital technology to enhance and personalise
learning in school and, where appropriate, beyond
the school day. They anticipate and respond to new
opportunities and threats caused by developments
now and in the future.

Examples of good practice

Many examples of good practice in the delivery of
Digital Learning and Computing Science exist in
schools at present. Some examples identified by
HMIE4 are given overleaf.

……………………………………………………………………
3How Good is our School
Education Scotland 2015

4Building Society
Young people’s experiences and outcomes in the technologies
Education Scotland 2014

52

QuickStart Computing

‘Children program the wolf to follow a route to the
three pigs’ houses, motivated well to stick to the
task, and enjoy reading the story as it unfolds. A
related activity involves the children in problem
solving, finding their way through a maze displayed
on an interactive whiteboard. The children are skilled
in using colours to record blind alleys, and show
determination in completing the task.’

‘The children clearly benefit from the structured
programme in ICT, and are able to describe out-of-
school activities such as popular computer games
where they are able to recognise and apply the
skills they have learned. The children enjoy creative
opportunities in coding, preparing short animations,
and have a high level of awareness of career
opportunities relating to the digital technologies. The
principal teacher has built considerable expertise in
using Glow, an enthusiasm which is reflected in the
children’s motivation. All classes post Glow blogs –
‘Being creative is a good skill because you can even
use it when you are writing’!’

‘Children use cameras very well to make their
own photograph album. They independently use
computers to play games, watch DVDs and listen to
music.’

‘The school’s programme in technologies has a
substantial impact on children’s overall learning
experience. Staff have prepared a framework
of technologies experiences, including a specific
programme to support progression in ICT. These
experiences provide an important structure,
whilst retaining the capacity to respond to current
technologies themes such as those featuring in
the media. At P1, children extend their skills in
programming toys, often in the context of problem-
solving challenges. Children in P1 are confident in
using tablet computers for activities to enhance
their learning in numeracy.’

‘In P5, children learn vital aspects of personal safety
relating to use of the internet, in the context of
well-structured development of search engine skills.
Provision at P7 includes some very strong aspects,
including a programme specifically in computer
science. Children follow a modular programme over
eight weeks, developing their skills in coding.’

 Further resources

●● Barefoot Computing teaching
resources,available at: http://barefootcas.org.
uk/ (free, but registration required).

●● Computing At School community website
●● resources, available at: http://community.
computingatschool.org.uk/resources.

●● Computing At School (CAS) Include:
ComputingScience for All, available at: http://
casinclude.org.uk/.

●● CS Unplugged, free activities and resources,
available at: http://csunplugged.org/.

●● Code Club network of after-school coding
clubs, available at: www.codeclub.org.uk/.

●● CoderDojo network of free computing
programming clubs, available at: https://
coderdojo.com/.

●● Hattie, J., Visible Learning for Teaching:
Maximising Impact on Learning (Routledge,
2009).

●● Papert, S., Mindstorms: Children, Computers,
and Powerful Ideas (Basic Books, 1980).

●● The Sutton Trust Education Endowment
Foundation Teaching and Learning Toolkit, for
information on research and guidance on using
resources for disadvantaged pupils, available
at: http://educationendowmentfoundation.org.
uk/toolkit/.

●● Young Rewired State community of young
digital makers, available at: www.yrs.io/.

http://barefootcas.org.uk/
http://barefootcas.org.uk/
http://casinclude.org.uk/
http://casinclude.org.uk/
http://csunplugged.org/
http://www.codeclub.org.uk/
https://coderdojo.com/
https://coderdojo.com/
 http://educationendowmentfoundation.org.uk/toolkit/.
 http://educationendowmentfoundation.org.uk/toolkit/.
http://www.yrs.io/

Websites
Computing At School (CAS) hosts a large resource bank of
plans, resources and activities. CAS is free to join:
http://community.computingatschool.org.uk/door.

The BCS Barefoot Computing project is developing concept
guides and exemplar activities. it’s free, but registration is
required: http://barefootcas.org.uk/.

Naace (the ICT association) and CAS have developed
joint guidance on the new computing curriculum: www.
computingatschool.org.uk/index.php?id=primary-national-
curriculum-guidance.

New Zealand-based CS Unplugged produces an excellent
collection of resources exploring computer science
ideas through classroom- rather than computer-based
activities: http://csunplugged.org.

Former CAS CPD Coordinator, Mark Dorling, has made
available a large collection of lesson plans and other
resources through the Digital Schoolhouse project for
London schools: www.digitalschoolhouse.org.uk/.

CAS Primary Master Teacher, Phil Bagge, has shared
detailed lesson plans for many computer science and
digital literacy topics: http://code-it.co.uk/philbagge.html.

A group of teachers and teacher trainers convened by the
NCTL, and chaired by Toshiba’s Bob Harrison, has worked
together to curate resources for initial teacher training
for the computing curriculum: bit.ly/ittcomp.

There is a large collection of resources for teaching
all aspects of computing on the TES website, for
Levels 1 and 2. There’s also a discussion forum
online. Free, but registration is required: https://
community.tes.co.uk/search/?SB=postcount_i%20
desc&tc=1%2Fsubject%2Fictinformationtechnology.

Code Club provides detailed plans and resources for extra-
curricular clubs, which might be adapted for use within the
school curriculum. Free, but registration required: www.
codeclub.org.uk/.

Code Club Pro provides training for teachers on the
computing curriculum: www.codeclubpro.org/.

In the US, code.org make available a range of high-quality
curriculum materials and activities linked to programming
and computational thinking: http://code.org/.

The BBC has an extensive set of resources for pupils,
linked to the new computing curriculum: www.bbc.co.uk/
schools/0/computing/.

BBC Two’s Cracking the Code: www.bbc.co.uk/
programmes/b01r9tww/clips.

The Raspberry Pi foundation has a good collection of high-
quality resources which are relevant to other platforms as
well as the Pi: www.raspberrypi.org/.

Resources for teaching the safe, respectful and
responsible use of technology are widely available.
Childnet International and CEOP’s Thinkuknow are both
good starting points for exploring these topics: www.
childnet.com/ and www.thinkuknow.co.uk/.

SWGfL provides free access to digital-literacy materials:
www.digital-literacy.org.uk/Home.aspx.

Futurelab is an independent charitable organisation
commissioning research into, and providing funding for,
cutting-edge applications of technology in education. Their
archive is also a useful resource: www.futurelab.org.uk/.

Publications
Armoni, M. and Ben-ari, M., Computer Science Concepts in
Scratch (Rehovot: Weizmann Institute of Science, 2013).

Barr, V. and Stephenson, C., ‘Bringing computational
thinking to K-12’, ACM Inroads 2:1 (2011).

Berry, M., Computing in the Primary Curriculum: A Guide for
Primary Teachers (Cambridge: Computing At School, 2013).

Bird, J., Caldwell, H. and Mayne, P., Lessons in Teaching
Computing in Primary Schools (Exeter: Learning Matters,
2014).

Brennan, K. and Resnick, M., ‘New frameworks for studying
and assessing the development of computational thinking’,
AERA 2012 conference paper (2012).

Byron, T., Do We Have Safer Children in a Digital World?
A Review of Progress Since the 2008 Byron Review
(Nottingham: DfE, 2010).

Department for Education, National Curriculum in England,
Key Stages 1 and 2 Framework Document (London: DfE,
2013).

Hammersley, B., Now For Then: How to Face the Digital
Future Without Fear (London: Hodder, 2012).

Hey, T., The Computational Universe, A Journey Through A
Revolution (Cambridge: CUP, 2014).

Mozilla, Why Mozilla Cares About Web Literacy (2014).

Naughton, J., From Gutenberg to Zuckerberg: What You
Really Need to Know About the Internet (Quercus, 2011).

Ofsted, The Safe Use of New Technologies (London: Ofsted,
2010).

Ofsted, ICT in schools 2008–11 (London: Ofsted, 2011).

Papert, S., Mindstorms: Children, Computers, and Powerful
Ideas, 2nd ed. (New York, NY: Basic Books, 1993).

Petzold, C., Code: The Hidden Language of Computer
Hardware and Software (Microsoft Press, 2009).

Wing, J M., ‘Computational thinking and thinking about
computing’, Philosophical transactions of the Royal Society
A, 366, 3717–3725 (2008).

Resources

53

Resources

http://community.computingatschool.org.uk/door
http://barefootcas.org.uk/
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
www.computingatschool.org.uk/index.php?id=primary-national-curriculum-guidance
http://csunplugged.org
http://www.digitalschoolhouse.org.uk/
http://code-it.co.uk/philbagge.html
http://bit.ly/ittcomp
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
https://community.tes.co.uk/search/?SB=postcount_i%20desc&tc=1%2Fsubject%2Fictinformationtechnology
http://www.codeclub.org.uk/
http://www.codeclub.org.uk/
http://www.codeclubpro.org/
http://code.org/
www.bbc.co.uk/schools/0/computing/
www.bbc.co.uk/schools/0/computing/
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.raspberrypi.org/
http://www.childnet.com/
http://www.childnet.com/
https://www.thinkuknow.co.uk/
http://www.digital-literacy.org.uk/Home.aspx
http://www.futurelab.org.uk/

54

QuickStart Computing

Knowledge and skills
audit form
Use this form to audit your computing knowledge and skills.
The statements are taken from Level 2 benchmarks organised by the relevant Experiences and Outcomes.

I am very
confident
I can do
this

I am
confident
I can do
this

I am not
confident
I can do
this

Page
reference

Digital Literacy

Using digital products and services in a variety of contexts to achieve a purposeful outcome
TCH 2-01a

I can save in a range of standard file formats

I can save files using an organized filing system

I can use an online ‘cloud’- based service 42 - 43

I can identify the key features of input, output and storage devices 31

I can select and use applications and software to capture, create and
modify text, images, sound and video

44 - 45

I can select the most appropriate digital software to perform a task 44 - 45

Searching, processing and managing information responsibly
TCH 2-02a

I can use search engines to search the internet for specific or relevant
information

40 - 41

I can access websites and use navigation skills to retrieve information for
a specific task

36 - 38

I can demonstrate an understanding of usage rights and can apply these
within a search

48

Cyber resilience and internet safety
TCH 2-03a

I can demonstrate an understanding of the content I should include in an
online profile.

46 - 48

I can discuss the importance of being a responsible digital citizen 46 - 48

I can identify appropriate ways to report concerns 46 - 48

I can use strong passwords 48

I can understand the law as it relates to inappropriate or illegal online
behaviours

46 - 48

55

I am very
confident
I can do
this

I am
confident
I can do
this

I am not
confident
I can do
this

Page
reference

Computing Science

Understanding the world through computational thinking
TCH 2-13a

I can compare activities consisting of a single sequence of steps with
those consisting of multiple parallel steps

I can identify algorithms that include repeated groups of instructions a
fixed number of times until a condition is met

10 - 12

I can identify when a process is not predictable because it has a random
element

I can use a recognised set of instructions (an algorithm) to sort real-world
objects

10 - 12

I can explain core programming language concepts in appropriate technical language
TCH 2-14a

I can explain the meaning of individual instructions (including variables and
conditional repetition) in a visual programming language

24 - 28

I can predict what a complete program in a visual programming language
will do when it runs,

24 - 28

I can explain and predict how parallel activities interact

I understand how information is stored and how key components of computing technology connect and interact
through networks
TCH 2-14b

I can demonstrate an understanding that all computer data is represented
in binary, for example, numbers, text, black-and-white graphics

30 - 31

I can describe the purpose of a computer’s processor, memory and
storage and the relationship between them

30 - 31

I can demonstrate an understanding of how networks are connected and
used to communicate and share information, for example the internet

32 - 41

I can create, develop and evaluate computing solutions in response to a design challenge
TCH 2-15a

I can create programs in a visual programming language, including
variables and conditional repetition

24-28

I can identify patterns in problem-solving and reuse aspects of previous
solutions appropriately

15 - 16

I can identify any mismatches between the task description and the
programmed solution, and indicate how to fix them

17

Knowledge and skills audit form

56

QuickStart Computing

Glossary
Acceptable Use Policy (AUP): An Acceptable Use Policy
comprises a set of rules, applied by the owner/manager of a
network, website or large computer system, that defines the
ways in which the network, site or system may be used.

Algorithm: An unambiguous set of rules or a precise step-by-
step guide to solve a problem or achieve a particular objective.

Command: An instruction for the computer to execute, written in
a particular programming language.

Computational thinking: Thinking about systems or problems
in a way that allows computer systems to be used to model or
solve these.

Computer networks: The computers and the connecting hardware
(wifi access points, cables, fibres, switches and routers) that make it
possible to transfer data using an agreed method (‘protocol’).

Creative Commons: A licensing scheme where the creator of
an original work allows others to use it without having to seek
further permission, subject to a number of agreed conditions:
www.creativecommons.org.

Data: A structured set of numbers, possibly representing
digitised text, images, sound or video, which can be processed
or transmitted by a computer; also used for numerical
(quantitative) information.

Debug: To fix the errors in a program.

Decomposition: The process through which problems or systems
are broken down into their component parts, each of which may
then be considered separately.

Domain Name Service (DNS): The distributed automatic system
that converts domain names into the IP addresses which are
used for routing packets of data via the internet.

Encrypt: To securely encode information so that it can only
be read by those knowing both the system used and a secret,
private key.

E-safety: Used to describe behaviours and policies intended
to minimise the risks to a user of using digital technology,
particularly the internet.

Generalisation: A computational-thinking process in which
general solutions or models are preferred to, or derived from,
particular cases.

Hardware: The physical systems and components of digital
devices.

Hypertext Mark-up Language (HTML): HTML is the computer
language in which web pages are composed.

Hypertext Transfer Protocol (HTTP): HTTP is the standard
protocol for the request and transmission of HTML web pages
between browser and web server.

Input: Data provided to a computer system, such as via a
keyboard, mouse, microphone, camera or physical sensors.

Interface: The boundary between one system and another –
often used to describe how a person interacts with a computer.

Internet Protocol (IP) addresses: Numeric addresses uniquely
specifying computers directly connected to the internet, also used
on private networks to uniquely identify computers on that network.

Loop: A block of code repeated automatically under the
program’s control.

Network server: A computer connected to a local area network
(LAN) providing services – such as file storage, printing,
authentication, web access or email – automatically to other
computers on the network.

Open-source software: Software in which the source code is
made available for others to study, and typically adapt, usually
with few (if any) restrictions.

Operating system: The set of programs on a computer which
deal with the internal management of memory, input/output,
security and so on, such as Windows 8 or iOS.

Output: The information produced by a computer system for its
user, typically on a screen, through speakers or on a printer, but
possibly through the control of motors in physical systems.

Packet of data: A small set of numbers that get transmitted
together via the internet, typically enough for 1000 or 1500 text
characters.

Programmable toys: Robots designed for children to use,
accepting input, storing short sequences of simple instructions,
and moving according to this stored program.

Program: A stored set of instructions, encoded in a language
understood by the computer, that performs some form of
computation, processing input and/or stored data to generate
output.

Repetition: The execution of a section of computer code over a
number of times, as part of a program.

Router: Network hardware which forwards packets of data
onwards to the most appropriate hardware to which it is
connected.

Screencast: A recording of on-screen action that is often
accompanied by an audio narration.

Script: A computer program typically executed one line at a time
through an interpreter, such as the instructions for a Scratch
character.

Selection: A programming construct in which one section of
code or another is executed, depending on whether a particular
condition is met.

Sequence: To place program instructions in order, with each
executed one after the other.

Simulation: Using a computer to model the state and behaviour
of real-world (or imaginary) systems, including physical or social
systems – an integral aspect of most computer games.

Sprite: A computer-graphics object that can be controlled
(programmed) independently of other objects or the background.

Uniform Resource Locator (URL): A standard for specifying the
location on the internet of certain files.

Variable: A way in which computer programs can store, retrieve
or change data, such as a score, the time left, or the user’s name.

Web server: A service running on a computer (or sometimes
for the computer itself) that returns HTML data for a web page
when it receives an HTTP request via the local network or the
internet.

World Wide Web: A service provided by computers connected
to the internet (web servers), in which pages of hypertext (web
pages) are transmitted to users.

http://www.creativecommons.org

Subject Knowledge
for Primary teachers

Inside and online you will find all the support you and your colleagues
need to plan, teach and assess your computing curriculum with

confidence and success. This toolkit includes:

All this guidance is also available online at:
http://computingatschool.org.uk/scotland/quickstart

• Computing subject knowledge information and videos

• Guidelines and PowerPoint presentations to help you run tailored
CPD sessions in your school or cluster

• Support for planning a scheme of work

• Tried and tested ideas for successful computing lessons

• Assessment and progression support

ISBN 978-1-78017-440-2

9 781780 174402

SUPPORTED BY

Computing Scotland

