
Computing at school

Miles Berry

October 2016

2014 saw some radical changes to the content of England's national curriculum. Perhaps
one of the most significant changes was the replacement of the subject "Information and
communication technology", with a focus on end-user skills using a range of office and
media applications, with a new subject, "Computing", where the emphasis was rather on
the conceptual understanding and knowledge of the principles of computer science, the
applications of computational thinking and the craft of computer programming. There has
been much international interest in these changes, with many countries following
England's lead in making changes to their own curricula to incorporate programming and
other aspects of computer science. Here, I discuss a number of the rationales offered for
such a radical change, offer a brief narrative of the process of moving from one curriculum
to another, survey some of the content of the new curriculum and conclude with an outline
of the role of the Computing At School community in implementing this curriculum.

Some rationales

Whilst many would argue that elementary, or indeed secondary, education affords no place
for a discipline as specialised as computer science, there are a number of convincing
rationales for including this subject, alongside music, poetry and physics, as part of the
educational entitlement for all children. Such rationales might include one or more of the
following.

• Children's inherent curiosity in the world around them. It is hard to deny that
digital technology is now almost ubiquitous. A typical infant is likely to encounter
touch screen devices such as smartphones or tablet computers on her mother's lap,
before she even learns to speak. Children are naturally curious about the world in
which they grow up, and thus are curious about the technology which is, for them, an
inherent part of that world. The child grows up, yes, using digital technology, but also
wonder how it is made and how it works. Part of the school's role is to nurture this
curiosity and help the child learn for herself the answer to such questions:

 “One of the main educational tasks of the primary school is to build on and
strengthen children's intrinsic interest in learning and lead them to learn for
themselves” 1

• Computer science as part of scientific understanding. There is more to computer
science as a discipline than 'merely' understanding how technological artefacts

1 Plowden, B., 1967. Children and their primary schools: A report of the Central Advisory
Council for Education (England). London: HM Stationery Office.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Roehampton University Research Repository

https://core.ac.uk/display/394996547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

function and are developed. Computer science, like the other, older, sciences seeks to
provide insight into the nature of reality itself. Computability is one example of this: it
seems in the nature of our universe that problems fall into three categories: those
which are easy to solve, those that are hard to solve and those which can never be
solved. Theoretical computer science considers ideas such as these, and provides a
means to build useful systems using them. 2

• Economic benefits. For ministers, the need to sustain England's vibrant software
industries must undoubtedly have been a priority. In order to maintain successful
games, visual effects, fintech and cybersecurity sectors, a steady stream of high calibre
computer science graduates is needed, and the decline in the number of students
studying such disciplines was thought best addressed through ensuring exposure to
computer science for all as part of school education. In addition to this, computing is a
largely meritocratic field with much potential for social mobility - home background
and educational privilege are less important than the quality of the code a candidate
can write.

• Preparation for an uncertain future. Few would doubt that computers are likely to
play a more significant role in our lives, and the life of our society, in our future than in
our past or present. It can be argued that the best way to prepare for such a future is to
through acquiring an understanding of how computers work and of how they are
programmed: this seems more likely to be useful in the long term than skills of current
relevance such as centering text on presentation slides. In a society in which
computers will play an increasingly significant role, our duty as educators is to
empower our pupils to take charge of the machines: as Douglas Rushkoff memorably
puts it:

"Program or be programmed." 3

• As part of a rounded, liberal education. Much of what is included in school curricula
is less about vocational training for the world of work and more about providing a
broad and balanced education, in which pupils develop an understanding of their
world and are empowered to make positive changes to that world through expressing
themselves creatively. Froebel's gifts4 allow young children to learn such
fundamentals as the conservation of number, the conservation of volume, the
conservation of shape and the direction of gravity, but they also allow kindergarteners
to problem solve and build something of their own choosing. The same is true of
programming languages: they are a means to understanding technology and reality,

2 Bentley, P.J., (2012) Digitized: The Science of Computers and How it Shapes our World.
Oxford: Oxford University Press.

3 Rushkoff, D., 2010. Program or be programmed: Ten commands for a digital age. Or
Books.

4 See, e.g, Resnick, M., 1998. Technologies for lifelong kindergarten. Educational technology
research and development, 46(4), pp.43-55.

and a medium for creative expression. Just as Frank Lloyd-Wright's later work as an
architect was coloured by his kindergarten experience of playing with Froebel's gifts 5,
so too will the software engineers and computer scientists of the future draw on their
early experience of thinking computationally and coding with blocks and floor turtles.

From ICT to computing

Much of the inspiration for computing, particularly computer programming, in school
education comes from Seymour Papert's work in the 70s, 80s and 90s, particularly in
relation to the educationally focussed programming language Logo, its implementation of
turtle graphics, and the constructionist theory of learning. Back in 1980, Papert wrote:

In many schools today, the phrase “computer-aided instruction” means making the
computer teach the child. One might say the computer is being used to program the
child. In my vision, the child programs the computer and, in doing so, both acquires
a sense of mastery over a piece of the most modern and powerful technology and
establishes an intimate contact with some of the deepest ideas from science, from
mathematics, and from the art of intellectual model building. 6

Little seems to have changed in the intervening time. Much of the educational use of
computers offers little more than drill-and-practice behaviourist learning, which
undoubtedly has its place but seems a poor alternative to children taking charge of the
computer and using it as a tool for a far more creative, exploratory mode of learning.
Crucially for Papert, programming was never an end in itself, but the means through which
children connect to deep ideas in mathematics, science and philosophy. The same vision
motivates much of what has been included in England's computing curriculum.

For many of those involved in drafting and then implementing this curriculum, there was a
feeling of needing to move children on, beyond what they had already achieved, or might
achieve for themselves without instruction from teachers. By and large, children moving
from primary to secondary education in England (i.e. at the age of eleven), were already:

• effective users of technology;

• good at communicating digitally, even if they would not always observe the terms and
conditions of the services they used;

• able to do the equivalents of reading and writing in the digital domain;

• able to keep themselves reasonably safe when using online technologies; and

• able to demonstrate a sound portfolio of digital skills.

5 Lloyd-Wright, F., 2005. Frank Lloyd Wright: An Autobiography. Pomegranate.

6 Papert, S., (1980) Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic
Books

However, there was some sense that, for all they knew, the technologies they were using
might as well be based on magic7.

The ambition was to move children's learning on, beyond this level, so that they would also
be:

• able to make technological artefacts, and potentially new technologies;

• able to collaborate productively online;

• critical of content, tools and assumptions when working online;

• responsible in their own use of technology, with some sense of the consequences for
others of their actions; and

• empowered by some degree of understanding of how technologies worked and were
made.

Thus replacing the sense of technology being almost magical with some concrete
knowledge of the principles on which it depends.

Despite the reference to technology above, the new curriculum concerns itself far less with
technology than it does with the fundamental principles and concepts of computer science.
In the introduction to the earlier, non-statutory CAS Computer Science Curriculum 8, it was
stated:

Computer science encompasses foundational principles and widely applicable ideas
and concepts. It incorporates techniques and methods for solving problems and
advancing knowledge, and a distinct way of thinking and working that sets it apart
from other disciplines. It has longevity (most of the ideas and concepts that were
current 20 or more years ago are still applicable today), and every core principle
can be taught or illustrated without relying on the use of a specific technology.

This concept of computer science as a foundational discipline like physics or history
undoubtedly coloured the development of the curriculum.

In August 2012, the British Computer Society and the Royal Academy of Engineering were
approached by the government Department for Education to draft a new programme of
study for computer (or ICT as it was still called at the time), as expert advice to ministers.
Under the chairmanship of Simon Peyton Jones, a diverse group of stakeholder
representatives were assembled, drawing on sector representative bodies, multinational
technology companies, subject associations, universities and schools.

7 qv Clarke, A. C. (1973). Profiles of the Future: An Inquiry into the Limits of the Possible.
Popular Library.

8 CAS (2012). Computer science: a curriculum for schools. Available at:
https://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf

The drafting panel took inspiration from the Royal Society's report on computing in schools
9, which recommended that ICT as a subject be replaced with a new subject, computing,
recognised as having three distinct but inter-related components: computer science,
information technology and digital literacy. These can be thought of as the foundations,
applications and implications of the discipline.

In the context of Google search, we might ask at the foundation, computer science level,
how does the Page Rank algorithm determine the relevance of a page and how are search
queries served so quickly irrespective of geographic location; at the application, IT level,
how might results be filtered more effectively to show those only in my language or from a
particular range of dates; and at the implication or digital literacy level, what data does
Google store on me so that it can better target advertising for me, and is this a price worth
paying to use their search engine for free?

The first sentence of the new curriculum sets out it's vision, and how computing forms part
of a liberal education designed to provide children with an understanding of their world
and the tools needed to contribute creatively to it:

A high-quality computing education equips pupils to use computational thinking
and creativity to understand and change the world. 10

Whilst creativity has long been an element of elementary and secondary education, the
'computational thinking' referred to here is relative new. Although Seymour Papert
mentioned the term in Mindstorms11, computer scientist Jeanette Wing is widely credited
with popularising the idea and has been instrumental in the emphasis that this concept has
received in computing curricula worldwide. For Wing, computational thinking is:

“… the thought processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively carried out by an
information processing agent” 12

9 Furber, S. (2012) Shut down or restart. London: The Royal Society

10 Department for Education (2013) The national curriculum in England Framework
document. London: DfE.

11 Papert, S., (1980) Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books

12 Wing, J. 2011. Research Notebook: Computational Thinking - What and Why? The Link.
Pittsburgh, PA: Carneige Mellon. Available at:
http://www.cs.cmu.edu/sites/default/files/11-399_The_Link_Newsletter-3.pdf

In helping teachers understand what this might mean in practice, the Computing At School
Barefoot Computing project13 outlined six concepts of computational thinking and five
approaches. The concepts are:

• Logical reasoning - computers are deterministic machines and we can reason
logically about how they will behave. Pupils learn to predict confidently the output
from a program, to detect and correct errors in their own and others' programs, and
the basics of Boolean logic.

• Algorithms - computer programming requires that the programmer has a clear idea
of how to achieve a particular objective before she begins coding, and that some
approaches to solving a problem are inherently more efficient than others.

• Decomposition - when faced with large problems, engineers break these up into
smaller parts, and address each of these separately.

• Generalisation - engineers will often look for solutions to more general problems,
borrowing liberally on the work and ideas of others who have been successful in
solving equivalent or related problems.

• Abstraction - programs and computers are complex systems, and a multilayered
model of abstraction has been necessary to manage the complexity of these systems, in
which the detail of implementation can be effectively hidden. In tackling complex
problems, a similar approach is helpful, in which the solver's focus rests on the
necessary detail.

• Evaluation - it is necessary to review whether potential solutions are correct, suitable,
reliable, efficient and elegant.

Whilst all these can be effectively learnt in the context of computer programming, they also
have wide applications across and beyond the school curriculum, and might provide a set
of core competencies in any problem solving work, particularly when this involves using
computers.

Alongside these concepts are a number of approaches, which might describe how software
engineers and others tackle problems, and provide a foundational model for pedagogic
practice in computing education:

• Tinkering - a certain playfulness, or willingness to explore and experiment seems to
characterise the work of many leading software engineers, and links closely with play
as a powerful pedagogic approach in early years education.

• Creating - computing is an inherently creative discipline, and Papert's constructionist
insights suggest that a learner's conceptual understanding might best be developed
through the conscious construction of knowledge artefacts designed to be shared with
others.

13 Barefoot Computing (2014) Computational Thinking. Available at
http://barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/computational-thinking/

• Persevering - programming is undeniably hard, but for many this is where its joy lies;
encouraging pupils to develop a 'growth mindset'14 and an associated willingness to
persevere in the face of challenges is important, not just for success in computing15.

• Debugging - One particularly powerful way to help pupils develop such a growth
mindset is through the repeated experience of detecting and correcting the mistakes
(or 'bugs') in their own algorithms and programs.

• Collaborating - Large computer programs are written by large, well-coordinated
teams of people, often widely distributed. There's evidence that pair-programming is
an effective methodology for agile software development16, and having pupils work
with a partner on programming tasks seems to be motivating and pedagogical
effective.

Curriculum content

The revised national curriculum includes relatively brief requirements for what should be
taught to 5-16 year olds - the content itself fits comfortably on three sides of A4 paper. For
younger pupils, provision is governed by the 'Early Years Foundation Stage Framework'17.

Before the age of five

For the youngest pupils in nursery schools and school reception classes, there's, not
surprisingly, no requirement that pupils be taught to use digital technology or learn to
program. However, the framework for these children's education does list a number of
'characteristics of effective learning', including 'creating and thinking critically'. The non-
statutory Development Matters guidance18 lists a number of aspects of this, such as 'finding
ways to solve problems', 'making links and noticing patterns in their experience' and
'planning, making decisions about how to approach a task, solve a problem and reach a
goal'. There are strong parallels here with the concepts and approaches of computational
thinking.

14 Dweck, C (2012) Mindset. New York NY, Random House.

15 Cutts, Q., Cutts, E., Draper, S., O'Donnell, P., and Saffrey, P. (2010) Manipulating mindset
to positively influence introductory programming performance. In: SIGCSE '10 Proceedings
of the 41st ACM Technical Symposium on Computer Science education, Milwaukee, USA,
10-13 Mar 2010, pp. 431-435.

16 Williams, L. A., & Kessler, R. R. (2000). All I really need to know about pair programming
I learned in kindergarten. Communications of the ACM, 43(5), 108-114.

17 DfE (2014) Statutory framework for the early years foundation stage. London: DfE

18 The British Association for Early Childhood Education (2012) Development Matters in
the Early Years Foundation Stage (EYFS). London: Early Education

It seems more appropriate in early years education to encourage young children to plan
systematically, develop resilience and to make predictions, thus laying the foundations of
computational thinking, than to introduce them to programming per se, although products
such as Bee-Bots and Scratch Jr have done much to make this accessible.

Ages five to seven

The curriculum requirements for ages five to seven include that pupils be taught to
understand what algorithms are. Pupils will learn about algorithms as sequences of steps
or sets of rules. They'll typically do this away from computers, through activities which
involve them following a teacher's instructions, giving instructions to their peers or
working out their own instructions for practical activities such as sharing a pile of sweets19.

Pupils are also taught how algorithms are implemented as programs on 'digital devices'.
The phrasing here is deliberate, so as to encourage teachers to use floor turtles and other
robots with young learners rather than going directly to on screen coding. It seems easier
for pupils to put themselves in the place of a floor turtle to step through programs
themselves (cf Papert's 'body syntonic' reasoning20), thus making it easier for them to
reason about their programs. Reasoning logically about programs and algorithms is a
recurring theme in the curriculum - it's considered crucial for pupils to be able to think
about their code rather than just code.

Ages seven to eleven

Between the ages of seven and eleven, pupils' programming becomes more formal, as they
learn to use a greater variety of structures in their code, beyond simple sequences of steps.
They're taught about selection and repetition, as well as the use of input and output and are
introduced to variables as a data structure. Typically their programs will be written in
MIT's block-based toolkit Scratch21, although this is not explicitly specified in the
programme of study.

Logical reasoning is again emphasised, with pupils expected to explain how simple
algorithms work, as well as detecting and correcting errors in algorithms and programs.

Other elements of computer science are covered too: pupils are taught how computer
networks including the internet work, and how they can provide services such as the World
Wide Web. Typically, this will draw on 'unplugged' approaches involving classroom based

19 Barefoot Computing (2014). Sharing sweets activity. Available at:
http://barefootcas.org.uk/programme-of-study/understand-algorithms/ks1-sharing-
sweets-activity/ (free registration required)

20 Papert, S., (1980) Mindstorms: Children, Computers, and Powerful Ideas. New York:
Basic Books

21 Available at http://scratch.mit.edu

simulations, although adventurous schools might introduce pupils to command line
networking tools such as ping, nslookup and traceroute.

Ages 11-14

In the first years of secondary education, pupils are introduced to the idea of a
computational abstraction which models the state and behaviour of a system. This might be
a simple game, although computational models for the spread of epidemics or the growth
of a culture of cells are interesting alternatives.

Pupils' knowledge of algorithms is now extended to include 'key algorithms that reflect
computational thinking'. Typically schools interpret this as algorithms for search and sort,
but it might also include some mathematical algorithms like Euclid's algorithm for highest
common factors and the Sieve of Erastothenes. Pupils learn that some algorithms provide
more efficient solutions to the same problem.

Pupils extend their knowledge of how computers work, learning about the hardware and
software components of computer systems and how these interoperate. Teachers have
found that simpler systems, such as the BBC micro:bit22 make it easier to scaffold this
understanding.

Ages 14-16

There are minimal statutory requirements for computing in the national curriculum
beyond the age of 14, but computing does remain a compulsory subject for pupils at this
age. The requirements can be satisfied through embedding computer science, information
technology and digital literacy across the rest of the curriculum, or through providing a
number of focus days or independent project work over the course of these two school
years.

In addition to this, there's a requirement that pupils "must have the opportunity to study"
IT and computer science in greater depth - this is interpreted as meaning that schools
should offer courses leading to public exams in IT or computing at 16+, but not require
pupils to enter such exams.

Detailed specifications have been developed by English exam boards for General Certificate
of Secondary Education (GCSE) qualifications in computer science23. These include aspects
of computational thinking including algorithm design, knowledge of Boolean logic and
binary representation and an extended practical programming project, most typically
undertaken in Python.

22 See http://microbit.org

23 See, for example, OCR (2016) Specification (Accredited) - GCSE Computer Science - J276.
Available at http://ocr.org.uk/qualifications/gcse-computer-science-j276-from-2016/

Ages 16-18

Between the ages of 16 and 18 computer science becomes an elective subject, with relative
small, but growing, numbers of pupils continuing to study the subject at this age.

Again, English exam boards have developed detailed specifications for qualifications at this
level24. These include some deliberately ambitious material, such as an introduction to
functional programming, often taught in Haskell, graphs and algorithms for graph
traversals and shortest paths and big-O notation. They also include a significant, more
extensive project which might include the development of a computer game or simulation
with a graphical user interface or an investigation of topics such as machine learning or 3-d
graphics.

Whilst such qualifications naturally lead on to undergraduate degrees in computer science,
they are increasingly recognised as useful preparation for degrees in many other
disciplines which make use of computing, such as engineering, natural and social sciences,
teaching and medicine.

Computing At School

This significant change in curriculum content and the associated assessment framework
has taken place at a time when government has deliberately stepped back from the
implementation of such changes. Currently in the UK, the view is that:

Government should only do what only government can do.25

Much of the implementation of computing as a curriculum subject in England had been
achieved through the Computing At School (CAS) group26, the UK subject association for
computer science, formally part of BCS, the Chartered Institute for IT.

CAS has seen rapid growth in its membership since its beginnings as a small working group
of computing teachers and academics. Membership currently stands at 25,653 with some
223 local hubs.

The main challenge for implementing the computing curriculum has been the need to
ensure sufficient numbers of teachers in schools with sufficient confidence to make the
new subject a success:

24 See, for example, AQA (2015) AS and A-level Computer Science. Available at
http://www.aqa.org.uk/subjects/computer-science-and-it/as-and-a-level/computer-
science-7516-7517

25 GDS (n.d.) Government Digital Service Design Principles. Available at
https://www.gov.uk/design-principles

26 See http://computingatschool.org.uk

The hardest part of getting great computer science in every school is getting a great
computer science teacher in every school.27

Providing great computer science teachers for every school can be done through two
routes: initial teacher training and continuous professional development. The former is
now addressed through the development of subject knowledge entry requirements for
specialist computer science teachers28 and through the provision of generous tax-free
training bursaries and scholarships for those with good degrees in computer science who
choose to train to become teachers29.

Great computer science teaching demands three things: great teaching skills, great
technology skills and great computer science subject knowledge30. The lattermost is a
particularly challenge: in primary schools very few teachers have any background in
computer science or software development; even in secondary a minority of those who
were teaching the former ICT curriculum had a degree in computer science31.

In developing continuing professional development programmes for computing,
Computing At School has prioritised addressing teachers' subject knowledge. The most
significant programme in this area has been the Network of Excellence in Computer Science
Teaching, comprising around 400 'Master Teachers', serving classroom teachers supported,
and partly funded, to provide continuing professional development training and peer-
support to those teaching computer science in their area. More recently, the Network of
Excellence has been re-configured on a regional basis, with ten universities acting as
regional centres, typically drawing on the combined expertise of their computer science
and education faculties.

CAS has also developed a range of resources to support teachers, including introductory
guides to the curriculum, QuickStart handbooks with associated CPD resources32, the

27 Quote taken CS for All summit, White House, Washington DC, 14/9/16.

28 Teaching Agency (2012) Subject knowledge requirements for entry into computer
science teacher training. Available at
http://www.computingatschool.org.uk/data/uploads/CSSubjectKnowledgeRequirements.
pdf

29 See https://getintoteaching.education.gov.uk/funding-and-salary/overview/funding-by-
subject/funding-for-training-to-teach-computing

30 Mishra, P. and Koehler, M.J., 2006. Technological pedagogical content knowledge: A
framework for teacher knowledge. Teachers college record, 108(6), p.1017.

31 Furber, S. (2012) Shut down or restart. London: The Royal Society

32 See http://www.quickstartcomputing.org/

Barefoot Computing programme for primary computing33, and Tenderfoot Computing for
lower secondary teachers34. CAS members. CAS members have developed further
computing resources themselves, and CAS has an active, gift economy culture of members
sharing their resources under liberal licences with the rest of the community: at present,
3,863 resources have been shared in this way.

Concluding remarks

It is still too early to judge whether the changes to England's curriculum have been a
success. There is undoubtedly much interest in programming and coding amongst pupils in
English schools, and some surveys suggest that implementation has, given that there has
been little involvement in this process from central government, been really quite
successful: BT commissioned an Ipsos MORI survey of 400 primary teachers reporting that
81% are now confident in teaching computing35. Britain's Royal Society are currently
conducting wider ranging research and their report is eagerly anticipated36.

Exam entries at GCSE for computing have significantly increased in the period since the
introduction of this qualification, from 4,253 in 2013 to 62,454 in 2016. At A Level, there
has been a more modest increase, from 3,758 to 6,242 in the same period37. There's also
evidence of an increase in recruitment to university computer science courses over this
time frame38, and many are optimistic that these trends will continue.

Perhaps the most significant outcome of England's decision to include computer science in
its curriculum is that this subject now becomes an entitlement for all, which, it is hoped,
will go a long way to address inclusion and equity in this domain.

33 Barefoot Computing (2014) Computational Thinking. Available at
http://barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/computational-thinking/

34 See https://www.computingatschool.org.uk/custom_pages/56-tenderfoot

35 BT and Ipsos MORI (2016). A new cornerstone of modern primary school education.
Available at https://techliteracy.co.uk/IPSOS-full.pdf

36 See https://royalsociety.org/topics-policy/projects/computing-education/

37 Data from http://www.jcq.org.uk/examination-results

38 Shadbolt, N. (2016) Shadbolt Review of Computer Sciences Degree Accreditation and
Graduate Employability. Available at
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/518575
/ind-16-5-shadbolt-review-computer-science-graduate-employability.pdf

	Some rationales
	From ICT to computing
	Curriculum content
	Before the age of five
	Ages five to seven
	Ages seven to eleven
	Ages 11-14
	Ages 14-16
	Ages 16-18

	Computing At School
	Concluding remarks

