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Abstract—As the digital version of a continuous-time delay,
the concept of fractional delay (FD) is exploited to approximate
a desired delay that is not a multiple of the sampling interval.
However, in FD filters, there is always a severe distortion at
the beginning of delayed signals, referred to as head distortion.
This letter identifies the cause of head distortion and proposes a
solution to this problem for reducing the overall distortion in FD
filters. For the purpose of performance evaluation, relative root-
mean-square (RMS) error is formulated as a metric to quantify
the overall difference between the frequency-domain response of
an FD filter and the ideal one. Moreover, illustrative numerical
results on the proposed scheme applied in FD filters with classical
sinc, Farrow and Lagrange interpolation substantiate the validity
and feasibility of our solution.

Index Terms—Fractional delay (FD) filters, head distortion,
sinc interpolation, Farrow structure, Lagrange interpolation,
root-mean-square (RMS).

I. INTRODUCTION

To generate the desired delays that are not a multiple of
the sampling interval, fractional delay (FD) techniques have
been exploited and playing an essential role in digital signal
processing for a wide range of applications over the past
decades [1]–[3]. Since the readily feasible delay in uniformly
sampled digital systems is always a multiple of the shortest
possible time, i.e., equal to the sampling interval, the FD
concept is used to remedy the gap between the desired delay
that includes a fraction of the sampling interval and its
closest multiple of the sampling interval, through interpolation.
Several interpolation approaches, e.g., sinc [1], [4], Lagrange
[5], [6], B-spline [7], [8], Farrow structure [9], and Newton
structure [10], [11], are adopted to form FD filters.

However, there is a severe distortion at the beginning of the
FD filter output, referred to as head distortion, mainly owing
to the null input for this part, which leaves a dilemma in the
design of FD filters. To increase the FD filter’s order reduces
the height of ripples and sharpens the drop-off in the Gibbs
phenomenon [12]. On the other hand, the higher order of FD
filter results in more null input at the beginning of its output
and, hence, leading to worse distortion.

Specifically, FD filters of high order are designed to guar-
antee the construction accuracy of delayed signals in wireless
communication systems [13]. For a co-frequency co-time
full-duplex (CCFD) transceiver, FD filters are exploited to
reconstruct a delayed version of transmitted signals at the
receiver port for cancelling the self-interference (SI) [14], [15],
where the entire waveform of a delayed signal is expected to
be exactly the same as that of the transmitted signal [16].
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However, the head part of a delayed signal has to suffer from
the distortion caused by a large section of null input in the
reconstruction, even if the SI channel state information is
perfectly known at the transceiver. The head distortion leads
to high residue SI and badly degrades the CCFD commu-
nications, especially for the delivery of short-burst signals
[17], [18]. Motivated by this, we propose a solution to the
head distortion problem for improving the performance of FD
filters. To the best of our knowledge, this problem has not yet
been considered before. In particular, our main contributions
in this work are threefold:
• The head distortion problem in FD filters is studied and

its cause is analyzed, using sinc and Lagrange interpola-
tion FD filters as two examples.

• A solution to the head distortion problem is proposed
for reducing the overall difference between the FD filter
output and the desired version.

• Relative root-mean-square (RMS) error is formulated to
quantify the overall difference between the frequency-
domain response of an FD filter and the ideal one, which
verifies the validity and feasibility of our solution.

The remainder of this letter is organized as follows. Sec-
tion II presents the head distortion problem and Section III
proposes the solution to this problem. The performance of the
proposed scheme is evaluated in Section IV, and this work is
concluded in Section V.

The following mathematical notations are used: Boldface
uppercase and lowercase letters denote matrices and vectors,
respectively. The transpose operator is denoted by (·)T, and
the root-mean-square (RMS) calculator is denoted by ‖·‖. The
greatest and least integer functions are represented by b·c and
d·e, respectively.

II. HEAD DISTORTION

A. System Model

Consider a continuous-time signal xc(t) is bandlimited in
the range of [0, f0] and expressed by its L + 1 samples
x(lTs), where l = 0, 1, · · · , L is the sample index and Ts
is the sampling interval, i.e., the inverse of the sampling rate
fs > 2f0. For convenience of notation, we omit Ts and use
x(l) to denote the samples of the discrete-time signal.

The discrete-time version of the FD operation for a sampled
bandlimited signal can be written as

ỹ(l) = x(l −D), (1)

where ỹ(l) is the desired discrete-time output, l = 0, 1, · · · , L.
The desired delay D = bDc + α, where bDc is the integer
part and α ∈ [0, 1] is the FD.

The sample values of ỹ(l) are then obtained via interpolation
from the sequence x(l). This interpolation is accomplished
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Fig. 1. A direct form discrete-time FIR filter of order N .

by utilizing a direct-form finite impulse response (FIR) FD
filter of order N < L, as shown in Fig. 1, where h(n), n =
0, 1, · · · , N , are the real coefficients that shape the impulse
response of the FD filter. The output samples of the FD filter
are expressed by

y(l) =

N∑
n=0

x(l − n)h(n), l = 0, 1, · · · , L. (2)

Although (2) holds for L = ∞, the sequence x(l) is of
finite length in practical applications. Therefore, (2) is readily
written in a vector form as

y = Xh, (3)

where the (L+1)×1 vector y = [y(0), y(1), · · · , y(L)]T, and
the (N + 1)× 1 vector h = [h(0), h(1), · · · , h(N)]T. As the
samples x(l) = 0 for l < 0, the (L+ 1)× (N + 1) matrix X
is given by

x(0) 0 · · · 0 0
x(1) x(0) · · · 0 0

...
...

. . .
...

...
x(N − 1) x(N − 2) · · · x(0) 0
x(N) x(N − 1) · · · x(1) x(0)

...
...

. . .
...

...
x(L) x(L− 1) · · · x(L−N + 1) x(L−N)


.

As a consequence of the null input for the output y(ν)
when ν ∈ [0, N − 1], the filter of order N is truncated
in (3) to a filter of order ν, i.e., the filter’s coefficients
are truncated from N + 1 taps to ν + 1 taps. In this case,
the output is calculated using y(ν) = xTr,νhTr,ν , where
the 1 × (ν + 1) vector xTr,ν = [x(ν), x(ν − 1), · · · , x(0)]
contains the first ν+1 samples in the input sequence, and the
(ν + 1) × 1 vector hTr,ν = [h(0), h(1), · · · , h(ν)]T contains
the coefficients within a truncated FD filter of order ν.

Hence, there is a serious distortion for the first N output
samples y(l), 0 6 l 6 N − 1, which is referred to as head
distortion. As a result, the FD filter’s impulse response vector
h in (3) varies from a truncated version hTr,l for l ∈ [0, N−1]
to a normal one without truncation for l ∈ [N,L], in obtaining
the output y(l).

B. Problem Statement

So far, the FD filters without truncation have been well
studied in the literature, but the truncated part that results
in the head distortion has been disregarded. Herein, we will
investigate the effect of the head distortion on the overall
difference between an FD filter and the ideal one.

xc(t)
x(l)
ỹ(l) = x(l − 5.4)
ysinc(l)
yaim(l)

5.4Ts

Ts

Filter’s Order N = 11

t

Fig. 2. Time-domain samples of the desired output ỹ(l) = x(l − 5.4), the
order N = 11 sinc interpolation FD filter output ysinc(l), and our proposed
solution’s aimed output yaim(l).

Since the time-domain distortion caused by truncated FD
filters can be mirrored from their frequency-domain responses,
the frequency-domain error is used to measure the overall
difference between the frequency-domain response of an FD
filter and the ideal one, which is defined as

ε(f) =
∣∣H(f)− e−j2πDf

∣∣2, (4)

where H(f) is the frequency-domain response of the con-
sidered FD filter, and e−j2πDf is the ideal frequency-domain
response of an FD filter for the desired delay D.

In addition, the group delay is another metric to measure the
time delay of an input signal’s amplitude envelopes on various
sinusoidal components through the FD filter, calculated using

τ(f) = −d∠H(f)

df
. (5)

Next, we use two classical interpolation paradigms to illus-
trate the head distortion problem in FD filters.

1) Sinc Interpolation: For the desired delay D, the FD filter
coefficients with sinc interpolation are given in the form of sinc
function as

hsinc(n,D) = sinc(n−D) =
sin[π(n−D)]

π(n−D)
,

n = 0, 1, · · · , N.
(6)

To illustrate the head distortion in time domain, we compare
the desired delay signal ỹ(l) and the sinc interpolation FD filter
output ysinc(l) in Fig. 2, where the desired delay D = 5.4, i.e.,
ỹ(l) = x(l − 5.4), and the FD filter is of order N = 11. Our
proposed solution aims at the output yaim(l), i.e., to reduce the
head distortion suffered by FD filters for l < 11.

2) Lagrange Interpolation: For the desired delay D, the
FD filter coefficients with Lagrange interpolation are given in
the form of Lagrange polynomial as

hLag(n,D) =

N∏
k=0,k 6=n

D − k
n− k

, n = 0, 1, · · · , N. (7)

In Fig. 3, the frequency-domain error and the group delay
are compared for the sinc and Lagrange interpolation FD
filters of order N = 11 and their truncated versions of order
ν = 3, 6, 9, where the desired delay D = 5.4, and the
frequency is normalized by the sampling rate fs, i.e., the
normalized frequency 0.5 pertains to the Nyquist limit. From
this figure, we may find that as the truncated FD filter order ν
decreases, the frequency-domain error increases, and the group
delay deviates from the desired delay gradually.

As is shown in both paradigms, the head distortion is a
serious problem specifically for the FD filters of a high order
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Fig. 3. Performance comparisons between classical sinc/Lagrange interpo-
lation FD filters of order N = 11 and their truncated versions of order
ν = 3, 6, 9, for the desired delay D = 5.4.

and the input sequence of short length.
Mathematically, the head distortion can be bypassed if the

first N (or at least dN/2e) output samples are removed, i.e.,
by simply setting them to zero. However, in practice, these
samples cannot be removed, because they carry important
information and the removal is also a type of distortion. As
shown in Fig. 2, if the desired output ỹ(l) is obtained by a
CCFD transceiver, the SI caused by the input x(l) will be
effectively cancelled. If the head part of the output ysinc(l)
is removed, the SI cancellation capability will be very likely
worse than that without the removal.

III. DISTORTION REDUCTION

To reduce the head distortion of FD filters, we propose an
interpolation scheme by varying the filter’s impulse response
with the output sample index. The first N output samples of
the varied-response FD filter can be written as

y(l) =

N∑
n=0

x(N−n)hV(n, l̂+D), l = 0, 1, · · · , N−1, (8)

where x(N − n) is an input sample, and hV(n, l̂ + D) with
l̂ = N − l is the nth coefficient of the varied-response FD
filter for the lth output sample with a desired delay D.

The proposed FD filter design for a desired delay D is
expressed as

ĥ(n, l̂ +D) =

{
hV(n, l̂ +D), 0 6 l 6 N − 1,

h(n,D), N 6 l 6 L,
(9)

where ĥ(n, l̂+D) denotes the nth coefficient of the proposed
FD filter for the lth output sample with a desired delay D,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-100

-80

-60

-40

-20

0

(a) Frequency-domain error ε(f)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

5

6

7

8

9

10

11

(b) Group delay τ(f)

Fig. 4. Performance of the proposed FD filter with coefficients hV(n, l̂ +
D) = hLag(n, l̂ + D) for the filter’s order N = 11 and the desired delay
D = 5.4.

and h(n,D) denotes the nth coefficient of the original non-
truncated FD filter for the desired delay D = bDc + α with
an arbitrary interpolation method, n = 0, 1, · · · , N . Note
that, the varied-response FD filter’s coefficients hV(n, l̂+D),
n = 0, 1, · · · , N , can be formed with an arbitrary interpolation
method as well. Moreover, hV(n, l̂ + D) and h(n,D) are
unnecessarily formed with the same interpolation method.

Then, the output of the proposed FD filter can be written
in a vector form as

ŷ = diag
(
X̂Ĥ

)
, (10)

where the function diag(·) returns a column vector of the main
diagonal elements in a square matrix, and the (L + 1) × 1
column vector ŷ = [ŷ(0), ŷ(1), · · · , ŷ(L)]T contains the
improved output samples. The (L + 1) × (N + 1) matrix X̂
contains the input samples and its lth row is given by

x̂l· =

{
[x(N), x(N − 1), · · · , x(0)], 0 6 l 6 N − 1,

[x(l), x(l − 1), · · · , x(l −N)], N 6 l 6 L.
(11)

The (N + 1) × (L + 1) matrix Ĥ contains the FD filter
coefficients given in (9), and its lth column is

ĥ·l = [ĥ(0, l̂ +D), ĥ(1, l̂ +D), · · · , ĥ(N, l̂ +D)]T. (12)

As the calculation of our FD filter coefficients is varied with
the input sample index l, we compare the frequency-domain
error and the group delay of the proposed filter ĥ(n, l̂ + D)
in Fig. 4 for l̂ = 0, 1, · · · , 5, i.e., l = 11, 10, · · · , 6, where
the filter’s order N = 11 and the desired delay D = 5.4.
Both the varied-response FD filter and the original non-
truncated FD filter are formed by the Lagrange interpolation,



4

i.e., hV(n, l̂+D) = hLag(n, l̂+D) and h(n,D) = hLag(n,D),
with hLag(n, ·) given in (7). In contrast to the performance of
truncated FD filters in Fig. 3, we may find that the frequency-
domain error is dramatically reduced by our solution, es-
pecially in the low-frequency region. In addition, Fig. 4(b)
implies that the minimization of head distortion is equivalent
to the varied-response FD filter design for the desired delay
l̂ +D, l̂ = 1, 2, · · · , N .

IV. PERFORMANCE EVALUATION

As discussed above, the head distortion increases as the
FD filter order gets higher. In this section, we evaluate the
performance gain obtained by our solution over traditional
FD filters for a practical scenario of CCFD communications,
where high-order FD filters are needed for the SI cancellation.

The time-domain samples of an SI signal at the receiver
port of a CCFD transceiver are expressed as

ySI(l) = As(l − τ), l = 0, 1, . . . , L, (13)

where A and τ are the attenuation and the delay, respectively,
in the channel from the transmitter port to the receiver port of
the CCFD transceiver. The transmitted signal s(t) is bandlim-
ited in the range of [0, f0] and sampled at the rate fs to form
the samples s(l), with the oversampling ratio R = fs/(2f0).

To cancel the SI, the transceiver reconstructs a delayed
version of the transmitted signal at its receiver port as yRE(l) =
Âŝ(l), where Â is the estimated SI channel attenuation, and
the FD filter output ŝ(l) = s(l−τ̂) with the delay τ̂ = bτ̂c+α.
Assuming the SI channel state information is perfectly known
by the transceiver, we have Â = A and τ̂ = τ .

For quantifying the performance of different FD filters in
the reconstruction of delayed signals, the relative RMS error
of a reconstructed signal in comparison to the received signal
is defined as

εr =
‖yRE − ySI‖
‖ySI‖

, (14)

where yRE and ySI are the vector forms of yC(l) and ySI(l),
respectively, l = bDc− 1, bDc , · · · , L. Moreover, the relative
RMS error achieved by traditional FD filters given in (3) is
denoted by εTr and that achieve by our proposed solution given
in (10) is denoted by εPr . For a thorough inspection, the relative
RMS error in the case of ideal FD filters without truncation,
denoted by εNT

r , is investigated as well.
Next, three types of traditional FD filters, i.e., sinc, Farrow

[19] and Lagrange, are applied in the SI signal reconstruction
with a desired FD α = 0.5. Our proposed solution with the
coefficient hV(n, l̂ + D) = hLag(n, l̂ + D) is used to reduce
the head distortion.

In Fig. 5, the relative RMS error versus the FD filter’s order
N is investigated, where the oversampling ratio R = 4 and the
input length L = 70R, i.e, composed of 70 symbols. As shown
in this figure, the performance of our solution approaches that
of the ideal case without truncation, i.e., εPr ≈ εNT

r . Besides,
both the performance gain of our solution, i.e., εTr − εPr , and
the impact of head distortion, i.e., εTr − εNT

r , are improved
with the increase in N . More specifically, the performance
gains achieved by our solution are 0.2dB, 6.2dB and 7.3dB
over traditional sinc, Farrow and Lagrange FD filters.
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Furthermore, the impact of the oversampling ratio R on
the relative RMS error achieved by Lagrange FD filters of
order N = 11 is investigated in Fig. 6, where the desired FD
α = 0.5. As expected, the shorter the input sequence is, the
more the head distortion impacts on the overall output. This
figure also reveals that the reduction of oversampling ratio will
further improve the performance of our solution and decrease
the head distortion in traditional FD filters.

V. CONCLUSION AND DISCUSSION

In this paper, the problem of head distortion and its causes
were identified in FD filters, inspired by which a novel
FD filter design was proposed to solve this problem and
eventually reduce the overall distortion. Illustrative numerical
results substantiated the validity and feasibility of the proposed
design, specifically when the input sequence is short.

The proposed scheme has two limits, though it solves the
head distortion problem efficiently. Firstly, its performance
gain in the high-frequency region is lower than that in the
low-frequency region. Secondly, its computational complex-
ity is a bit higher than that of conventional FD filters. In
detail, our solution needs N2 multiplications and N2 − N
additions to deal with the distortion in the first N output
samples, whilst the convolution operation in conventional
design needs (N2 +N)/2 multiplications and (N2 −N)/2
additions. Hence, better performance gain in high-frequency
bands and further lower computational complexity are to be
pursued in our future works. Moreover, the generalisation of
our solution to any type of FIR filters, i.e., not limited to FD
filters, will also be investigated in our future work.
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