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Abstract We present a high‐resolution three‐dimensional (3‐D) anisotropic P wave velocity (Vp) model
in the northern Hikurangi margin offshore Gisborne, New Zealand, constructed by tomographic
inversion of over 430,000 first arrivals recorded by a dense grid of ocean bottom seismometers. Since the
study area covers a region where shallow slow slip events (SSEs) occur repeatedly and the subduction
of a seamount is proposed, it offers an ideal location to link our understanding of structural and
hydrogeologic properties at megathrust faults to slip behavior. The Vp model reveals an ~30‐km‐wide,
low‐velocity accretionary wedge at the toe of the overriding plate, where previous seismic reflection studies
show a series of active thrust faults branching from the plate interface. We find some locations with
significant Vp azimuthal anisotropy >5% near the branching faults and the deformation front. This finding
suggests that the anisotropy is not ubiquitous and homogeneous within the overriding plate, but more
localized in the vicinity of active thrust faults. The fast axes of Vp within the accretionary wedge are mostly
oriented to the plate convergence direction, which is interpreted as preferentially oriented cracks in a
compressional stress regime associated with plate subduction. We find that the magnitudes of anisotropy are
roughly equivalent to values found at oceanic spreading centers, where the extensional stress regime is
dominant and the crack density is expected to be higher than subduction zones. This consideration may
indicate that additional effects such as fault foliation and clay mineral alignment also contribute to upper
plate anisotropy along subduction margins.

Plain Language Summary We use man‐made sound waves (controlled‐source seismic data) to
reveal in three dimensions the speed of sound within rocks and sediments that make up the northern
Hikurangi margin off the east coast of North Island, New Zealand. We find that the sediments lying on top of
subducting plate (accretionary wedge) have low velocities and host several branching faults. We also
find that the speed of sound is faster when measured in the direction that the plates are colliding and slower
when measured parallel to the faults (this phenomenon is called seismic anisotropy). This difference in
speed suggests that the faults contain cracks that are aligned parallel to the direction of the plate subduction.

1. Introduction

The Hikurangi subduction margin, New Zealand (Figure 1), has not experienced any major (Mw > 7.2) sub-
duction interface earthquakes since historical record keeping began ~160 years ago (Webb &
Anderson, 1998). The overriding Australian plate, by contrast, has produced 10 large (Mw > 7.0), damaging
earthquakes over the same period (Webb & Anderson, 1998). Paleoseismic interpretations reveal that up to
10 subduction earthquakes may have occurred in the past 7,000 years, with the strongest evidence for a full
Hikurangi margin rupture occurring 870–815 years before present, potentially with Mw > 9.0 (Clark
et al., 2019). However, a diverse array of aseismic creep and slow slip event (SSE) behavior has also been
documented along the Hikurangi subduction interface (Wallace, 2020). In the northern part of the margin,
offshore Gisborne, frequent (18‐ to 24‐months recurrence intervals), small (moment releases of Mw = 6.3–

©2020. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RESEARCH ARTICLE
10.1029/2020JB020433

Key Points:
• We present a three‐dimensional

anisotropic P wave velocity model in
northern Hikurangi from
traveltime tomography using NZ3D
OBS data

• We find evidence for fault‐bound
anisotropy that azimuthal
anisotropy is larger in the vicinity of
the splay faults and deformation
front

• Anisotropy magnitude >5% may
indicate preferentially
oriented cracks and along‐fault
clay‐rich layers contribute to upper
plate anisotropy

Supporting Information:
• Supporting Information S1

Correspondence to:
R. Arai,
ryuta@jamstec.go.jp

Citation:
Arai, R., Kodaira, S., Henrys, S., Bangs,
N., Obana, K., Fujie, G., et al. (2020).
Three‐dimensional P wave velocity
structure of the northern Hikurangi
margin from the NZ3D experiment:
Evidence for fault‐bound anisotropy.
Journal of Geophysical Research: Solid
Earth, 125, e2020JB020433. https://doi.
org/10.1029/2020JB020433

Received 19 JUN 2020
Accepted 11 NOV 2020
Accepted article online 17 NOV 2020

ARAI ET AL. 1 of 20

https://orcid.org/0000-0002-0030-0754
https://orcid.org/0000-0002-5774-2561
https://orcid.org/0000-0002-7164-5274
https://orcid.org/0000-0002-4377-3463
https://orcid.org/0000-0002-6292-7034
https://orcid.org/0000-0003-3682-280X
https://orcid.org/0000-0001-6126-135X
https://orcid.org/0000-0001-6215-8610
https://orcid.org/0000-0003-4059-5275
https://doi.org/10.1029/2020JB020433
https://doi.org/10.1029/2020JB020433
http://dx.doi.org/10.1029/2020JB020433
http://dx.doi.org/10.1029/2020JB020433
http://dx.doi.org/10.1029/2020JB020433
mailto:ryuta@jamstec.go.jp
https://doi.org/10.1029/2020JB020433
https://doi.org/10.1029/2020JB020433
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020JB020433&domain=pdf&date_stamp=2020-11-26


6.8) SSEs occur at <10‐ to 15‐km depths (Wallace & Beavan, 2010; Wallace et al., 2016). This area is also
known to have hosted two large tsunami earthquakes in 1947 (Bell et al., 2014; Doser & Webb, 2003).
Despite the importance for assessing seismogenic and tsunami potentials, the physical properties of the
shallow megathrust faults and splay faults and their three‐dimensional variation are poorly documented
and underlying mechanisms controlling the spatial variability in megathrust slip behavior remain largely
unknown.

Figure 1. (a) Regional tectonic map of New Zealand. The black solid line is the plate boundary between the Pacific plate and Australian plate from Bird (2003).
The black box indicates the location of 1b and 1c. (b) Seismic activity in the study area. Black dashed contours indicate the slip amount (in millimeter) of
the SSE in 2014 (Wallace et al., 2016). Yellow dots, red stars, and a green triangle are the locations of tremor (Todd et al., 2018), burst‐type repeating earthquakes
(Shaddox & Schwartz, 2019) and the tsunami earthquake in 1947 (Doser & Webb, 2003), respectively. The location of inferred subducting seamount
(orange shade delineated by the red line) is from Barker et al. (2018). The black arrow shows the convergence direction of the Pacific Plate relative to the North
Island at the Hikurangi Trough (Wallace et al., 2004). (c) Layout of the NZ3D OBS experiment. White circles indicate the locations of OBSs. Numbered
locations correspond with OBSs indicated in Figure 2. White circles with a colored circumference (red, purple, and blue) correspond to three groups on the
difference geological units (incoming plate, accretionary wedge, and forearc basin) that are used to show the spatial variation in traveltime residual in Figure 6.
Dark green lines are locations of air gun sources. Yellow squares are the locations of four IODP Exp372/375 drill sites (Wallace et al., 2019). Brown line
shows the multichannel seismic reflection profile of 05CM‐04 (Bell et al., 2010; Barker et al., 2018; Gray et al., 2019; Figure 1d). The red dashed line marks the
outline of location of the inferred subducting seamount (Barker et al., 2018). (d) The 05CM‐04 seismic reflection image (Barker et al., 2018; Wallace et al., 2019).
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In 2017–2018, an intensive seismic imaging project NZ3D was carried out in the northern Hikurangi margin
(Figure 1c). This project consisted of three components; a 3‐Dmultichannel seismic (MCS) reflection profil-
ing (MGL1801 participants, 2018), a 3‐D high‐resolution ocean bottom seismograph (OBS) experiment
(Kellett et al., 2018), and a 3‐D onshore seismic observation (Bell et al., 2019). The NZ3D aims to comprehen-
sively understand the 3‐D structural, stratigraphic, and hydrogeologic properties along the subductionmega-
thrust faults where a range of slip behavior is observed. The offshore NZ3D survey area overlaps the
previously acquired 2‐D MCS reflection profile of 05CM‐04 (Barker et al., 2018; Bell et al., 2010; Figure 1),
ongoing passive seismic and geodetic monitoring studies (Shaddox & Schwartz, 2019; Todd et al., 2018;
Wallace et al., 2016) and International Ocean Discovery Program (IODP) Drilling Expeditions 372 and
375 (Pecher et al., 2019; Wallace et al., 2019). The offshore Gisborne area thus provides one of the most com-
prehensive geophysical/geological datasets across a subduction zone and enables understanding of proper-
ties and behaviors of shallow subduction faults. In this paper, we present a detailed P wave velocity (Vp)
model derived from the NZ3D OBS experiment. We determine compressional wave azimuthal anisotropy,
which contributes to understanding crustal stress heterogeneity at lateral scales of a few kilometers. Our
results are compared with logging data, borehole breakouts, shear wave splitting anisotropy, and mapped
faults. This comparison is important since this may constrain possible variations in structure, stress, and
their interpretation with depth at subduction zones.

2. Geological Setting

Along the ~500‐km‐long Hikurangi subduction zone, the oceanic Hikurangi Plateau, a large igneous pro-
vince of Cretaceous age, is subducting beneath the North Island of New Zealand (e.g., Wood &
Davy, 1994). The Hikurangi Plateau includes numerous seamounts and other volcanic features and is
composed of basaltic basement thickly overlain by sedimentary layers of Mesozoic to Cenozoic ages
(Barnes et al., 2020; Davy et al., 2008). Recent seismic surveys confirmed that the crust is over 10 km
thick, and its thickness gradually increases from north to south in accordance with the latitudinal
variation in seafloor depth (Kodaira et al., 2018; Mochizuki et al., 2019). In the northern part of the
plateau where the seafloor is deeper (>3,000 m), more seamounts emerge on the seafloor, but the
southern part of the plateau also hosts a number of basement highs that are buried by thick sediments
(Kodaira et al., 2018; Mochizuki et al., 2019). Correspondingly, the thickness of the trench‐fill sediments
varies significantly along the trench from approximately 1 km in the north to >5 km in the south, which
drives a progressive increase in the magnitude and extent of frontal accretion along the margin (Barnes
et al., 2010).

The subduction of the Hikurangi Plateau at the Hikurangi margin is thought to have been initiated in the
late Oligocene to early Miocene (Ballance, 1976; Lamb & Bibby, 1989; Rait et al., 1991). The current conver-
gence rate progressively decreases from 58 mm/year in the north to 19 mm/year in the south (Wallace et
al., 2004). The direction of the convergence is almost perpendicular to the trench in the north, but it is highly
oblique to the trench strike in the south. The present interplate coupling rate also changes latitudinally with
a sudden transition at ~40°S: To the north, the margin is characterized by low interplate coupling and shal-
low (<10 km) SSEs. To the south, a zone of strong coupling extends to depths of >40 km and is flanked
downdip by regions hosting SSEs (Wallace, 2020). Seismic reflection studies recognized several subducting
seamounts and high reflectivity zones in the source regions of the SSEs (Barker et al., 2009; Bell et al., 2010).
The reflective zones are typically interpreted to be fluid‐rich sediments entrained deep into the subduction
zone by the subducting seamounts.

In the northern margin where the plate interface experiences SSEs at shallow depth, the forearc is character-
ized by a narrow‐imbricated structure consisting of late Cenozoic accretionary prism at the toe of the over-
riding plate and landward Cretaceous to Paleogene rocks, both of which are variably covered by Miocene to
recent sedimentary units (Barnes et al., 2010). The study area of our 3‐D seismic experiment covers the
Tuaheni ridge and the northern Tuaheni landslide complex on the upper continental slope. Within the
accretionary prism, active landward‐dipping thrust faults that splay off the plate interface are recognized
(Bell et al., 2010; Barker et al., 2018; Figure 1d). Multichannel seismic (MCS) reflection and seafloor mag-
netic studies by Bell et al. (2010) and Barker et al. (2018) suggest that a large (30 × 10 km) seamount is sub-
ducting in this region and shallow tectonic tremors detected by Todd et al. (2018) are mostly located just
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above and landward of the suspected seamount (Figure 1c). Using the same reflection data as Barker
et al. (2018), Gray et al. (2019) derived a fine‐scale velocity structure of the uppermost 1.5–2 km below the
seafloor by applying a full‐waveform inversion (FWI) technique and revealed sudden velocity changes
within the frontal accretionary wedge indicating low‐velocity zones along the splay faults, which may be
related to fluid flow.

3. Seismic Anisotropy in the Crust of the Northern Hikurangi Margin

Stress field parameters can be measured using borehole breakouts, focal mechanisms of local earth-
quakes, shear wave splitting, and compressional wave azimuthal anisotropy. In the crust, anisotropy is
mainly caused by either preexisting structural features, such as fault zones, or by the preferential closure
of fluid filled fractures in response to the direction of horizontal compressive stress (Crampin, 1981).
Differential horizontal stresses preferentially open the cracks that are oriented parallel to the maximum
horizontal compressive stress (SHmax). Consequently, the magnitude of crack‐controlled seismic aniso-
tropy can be directly related to the magnitude of SHmax (e.g., Zatsepin & Crampin, 1997). It is also
known that seismologically measurable anisotropy can be caused by the orientation of minerals in the
rocks even in the absence of cracks. For example, Okaya et al. (1995) used rock samples from the
Alpine Fault Zone in New Zealand to show that Haast schists and Torlesse greywackes exhibit several
percent of anisotropy in Vp even in the plane of the foliation. Sedimentary rocks that are enriched in clay
minerals and form a fine layering are another major source of seismic anisotropy at shallow depths
(Wang, 2002).

The northern Hikurangi margin also provides an opportunity to examine the present‐day variation in stress
state in the upper and downgoing plates, knowledge of which is critical for understanding the storing and
release of seismic energy (Townend et al., 2012; Zoback, 1992). Regional shear wave splitting analyses along
the northern Hikurangi margin using local earthquakes show mainly NE‐SW trench‐parallel fast azimuths
on the North Island (Audoine et al., 2004; Townend et al., 2012; Unglert, 2011). The NE‐SW orientation of
SHmax is also observed in the subducting plate beneath the North Island byWarren‐Smith et al. (2019), using
earthquake focal mechanisms, which is consistent with a normal faulting stress regime in the slab. By con-
trast, a comprehensive catalogue of anisotropymeasurements based on passive seismic data along themargin
(Illsley‐Kemp et al., 2019), sampling the upper plate forearc, observe predominantly plate‐motion parallel (E‐
W) fast orientations in the northern Hikurangi margin. Eberhart‐Phillips and Reyners (2009) found that the
Hikurangi margin forearc is characterized by heterogeneous anisotropy (both in magnitude and azimuth)
using earthquake arrival time data. Shear wave splitting for event‐station pairs on HOBITSS ocean bottom
seismometers and onshore GeoNet seismic stations yields E‐W fast azimuths in the accretionary wedge close
to the trench and variable directions further landward, whichmay be explained by fracture and fault patterns
created by subducting seamounts (Zal et al., 2020). Borehole breakouts at drill sites support that SHmax at
shallow depths in the accretionary wedge is orthogonal to the deformation front (Wallace et al., 2019).

Shear wave splitting suffers poor spatial resolution in the depth direction since splitting properties are cumu-
lative along the path for delay time. Shear waves may be re‐split if they encounter a later and differing ani-
sotropic layer, then a shallow secondary polarization instead of a deeper primary may be measured.
Although a 3‐D seismic refraction survey typically can sample only upper several kilometers crust, this
method can overcome the issue of depth resolution by quantifying the variation in Vp as a function of the
azimuth and depth of seismic raypaths throughout the 3‐D volume. This approach can provide an accurate
estimate of compressional wave azimuthal anisotropy at shallow depths (e.g., Dunn, 2015).

4. Seismic Data Acquisition and Description

The NZ3D OBS experiment acquired 3‐D seismic refraction/wide‐angle reflection data with multiazimuth
ray coverage using the largest number of OBSs and densest air gun shooting in subduction zones to date.
The seismic data were collected via a series of three marine expeditions. In December 2017, 100 OBSs of
JAMSTEC were deployed by R/V Tangaroa with an average spacing of 2 km on four parallel lines across
the Hikurangi Trough (Figure 1c). Each OBS contained hydrophone and three‐component geophone sen-
sors with natural frequency of 4.5 Hz. The sampling rate for recording was 200 Hz. In January–February
2018, the 3‐D seismic reflection experiment was conducted by the U.S. R/V Marcus G. Langseth along 58
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seismic lines with an average spacing of 300 m in the same area of the OBS network (MGL1801 partici-
pants, 2018). For this survey, over 140,000 air gun signals were triggered every 25 m in flip‐flop mode and
covered a 60‐km× 14‐km area extending from the northern Tuaheni landslide complex and the easterly fore-
arc slope to the subduction trench (Figure 1c). The Langseth 36‐element air gun array system was used as the
seismic source. The air volume of each shot was 3,300 cubic inches and the towing depth was 7 m.
Ninety‐seven OBSs were successfully recovered by R/V Tangaroa in March–April 2018 (Kellett et
al., 2018), all of which recorded the air gun signals generated from the Langseth.

After the recovery of the OBSs, the seafloor position of OBSs were determined using traveltimes of direct
water waves. For locating OBSs, we used the method of Oshida et al. (2008) that comprises two steps of ana-
lysis. In the first step, a global search was performed at a grid interval of 0.0001° to find the node on the sea-
floor that best explains the observed arrival times of water waves. In the second step, the location determined
by the first step was used as an initial point and a nonlinear inversion was carried out to improve the location
estimation. The average 1σ location uncertainty calculated from traveltime misfits are ~3 m. We then picked
first arrivals manually. For picking, we used either hydrophone or vertical component data—whichever
showed better data quality—and applied 3‐ to 12‐Hz band‐pass filter to improve the signal to noise ratio.
The dense air gun shooting with 25‐m interval designed for the 3‐D reflection survey was not optimal for
the OBS refraction study. Water waves from previous shots have high amplitude and overlap primary refrac-
tion phases from the next shot at horizontal distances between shot and receiver of ~25 and ~45 km, making
it difficult to pick first arrivals at these offsets (Figure 2). Otherwise, the OBS data are of good quality and P
wave first arrivals can be traced up to 20‐ to 50‐km distance for most OBSs. Since the air gun shooting was
much denser than typical refraction studies and produced significantly redundancy in the data, we picked
first arrivals from every fifth shot line for all stations. To improve the ray coverage at deeper parts, we addi-
tionally picked other shot lines for some stations that have a good signal to noise ratio and clearly recorded
long‐offset first arrivals (Figures 2 and S1 in the supporting information). We assigned picking uncertainty of
0.030 s to traces in the offset range of 0–15 km. This value of uncertainty was chosen by examining the wave-
length of first arrivals observed in the offset range. Thereafter, we increased the uncertainty to 0.040 s
between an offset of 15–20 km because many OBS records show a significant amplitude reduction in this off-
set range. The uncertainty was further increased to 0.050 s at 20–30 km offset because the apparent velocity
of first arrivals increases to ~6.0 km/s at this offset and the waveforms become more enriched in lower fre-
quency compared to near‐offset traces. Finally, the largest uncertainty of 0.060 s was assigned to traces
>30 km offset where the first arrivals are possible to pick but contaminated by previous shot noise. For
the tomography analysis, we used over 430,000 first arrivals.

In the seismic record sections, P waves with offset of <10 km arrive with apparent velocities less than
4.0 km/s, which indicates that the survey area is entirely covered by thick low‐velocity sediments
(Figure 2). OBSs on the landward side of the trench show a significant reduction in amplitude of refraction
phases at 10‐ to 20‐km distances. This feature is commonly observed at the forearc region of subduction
zones and may suggest that there are shadow zones due to velocity reversals and/or highly attenuative zones
caused by complex forearc structure. At farther offsets, first arrivals are refractions with apparent velocities
of ~6.0 km/s for all the OBSs.

5. Tomography Analysis

We use 3‐D azimuthal anisotropic inversion (Dunn et al., 2005) where the Vp model is parameterized with
an isotropic component and two azimuthal anisotropy parameters. For each model grid, the anisotropic
slowness, uani, is defined as

uani ¼ uiso
1þ Acos2θþ Bsin2θ

; (1)

where uiso is the isotropic slowness and θ is the raypath azimuth. The terms A and B are anisotropy para-
meters. The magnitude of anisotropy, M, is expressed as

M ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2ð Þ

q
; (2)

or the percentage of anisotropy, α,
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α ¼ Vfast − Vslow

Viso
¼ M

uiso −
M2

4uiso

:

The fast direction, ψ, is

Figure 2. Examples of OBS record sections. Blue solid lines show picked arrival times. A 3‐ to 12‐Hz band‐pass filter and 3‐s automatic gain control were applied.
The reduction velocity is 6.0 km/s. Although strong water arrivals from previous shots overlap the primary refraction phases, first arrivals are clearly
observed in the horizontal distance of 0–20, 25–45, and greater than 50 km.
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ψ ¼ 1
2
atan

B
A

� �
: (3)

Theoretically, higher‐order terms of even multiples of θ are also included in the formula (Backus, 1965).
While previous studies show that 4θ variation is recognizable in traveltime data, it is difficult to constrain
its spatial variation since it is roughly equivalent to or smaller than the traveltime pick uncertainty
(Dunn, 2015). We also found a 4θ variation too small to model with our data, and we only examine the
2θ variation as described by the equation above.

We defined a model space of 70 km in the trench‐normal direction (x axis), 16 km in the trench‐parallel
direction (y axis), and 18 km in the depth direction (z axis). The x axis in the trench‐normal direction was
oriented on seismic profile 05CM‐04 (Barker et al., 2018). This model was discretized 0.2 km horizontally
and 0.15 km vertically for forward calculation of traveltimes and raypaths. The upper surface of the model
corresponds to the seafloor and was overlain by the water layer whose velocity was fixed at a constant value
of 1.495 km/s.

Since the anisotropic velocity tomography is highly nonlinear and involves more parameters than isotro-
pic analysis, the inverse calculation can be unstable even when a large quantity of data are available. To
overcome this instability, we carefully constructed our starting model from existing, well‐constrained
velocity models and took multiple steps to sequentially develop toward anisotropic inversion. First, to
obtain a stable starting model, a 2‐D velocity model was created by taking the 1‐D velocity profiles from
two OBS refraction studies close to our study area, one from the forearc region and the other from the
seaward side of the deformation front (Bassett et al., 2018; Kodaira et al., 2018) and linearly interpolat-
ing between them along the regional plate boundary model (Williams et al., 2013). The 2‐D velocity
model was then extended in the trench‐parallel direction to create an initial 3‐D model (Figure 3a).
No anisotropy was assumed in the initial model. Despite this careful preparation, the initial model
has large data misfits (the root‐mean‐squared, RMS, residual of 558 ms and normalized chi‐square mis-
fit of 242.72), which may end up in a local minimum after inversions especially for the anisotropic para-
meters. To stabilize the calculation, we took the average of the resultant Vp model after three iterations
and the Vp values of the starting model (“first” initial model) to make a smooth “second” initial isotro-
pic model (Figure 3b). We repeated this process two more times (resulting in “third” and “fourth” initial
isotropic models; Figures 3c and 3d) until the changes in the Vp values became insignificant. Although
the inversion for the initial model preparation is anisotropic, the Vp results are similar to those from an
isotropic inversion since we assigned weaker damping for Vp and stronger damping for anisotropy in
these inversions.

At each round of inversion steps, we employed different node spacing for the inverse problem. For the first
round, 2–3 times larger spacing were used than those used for the final round to first solve for larger‐scale
velocity variations. The node spacings used in the final round for the isotropic slowness was 0.5 km in the
x axis and 0.6 km in the y axis. Vertically, the node spacing was 0.5 km at 0‐ to 8‐km depths, 1.0 km at 8‐
to 12‐km depths, and 2.0 km from 12‐km depth to the bottom of the model. The node spacing for anisotropic
parameters were 1.5 km in the x and y axes and 0.5–2.0 km in the z axis. The inversion was regularized by
smoothing and damping constraints that control the overall smoothness and stability of the final solution.
In this tomography code, the user needs to assign the strength of horizontal and vertical smoothness and
the damping term on the magnitude of model changes for both isotropic slowness and anisotropy. We deter-
mined the values of all these inversion parameters by referring to our past experiences using the same code
(Dunn et al., 2017) and by assessing the results for different inversion parameter tests (see supporting
information).

6. Results
6.1. Vp Structure

The final, preferred anisotropic model obtained after two iterations in the final round of inversion starting
from the “fourth” initial model has the mean traveltime residual of 35 ms and the chi‐square value of
0.86. Figures 4 and 5 show vertical cross sections and map view slices of the Vp values from this preferred
model, respectively. One of the most important results is a low‐velocity zone (Vp = 1.6–4.0 km/s)
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observed at the frontal part of the upper plate (Figure 4). This zone forms an ~30‐km‐wide and ~5‐km‐thick
accretionary wedge that is adjacent to a higher‐velocity body (Vp = 2.0–4.5 km/s) on the landward side and
corresponds to an area where multiple splay faults are developed (Barker et al., 2018; Figure 1d). By contrast,
no active faults are imaged in the higher‐velocity region marking the seaward edge of the north Tuaheni
basin. In map view, the high‐velocity body is oblique to the trench, rapidly narrowing the width of the
accretionary wedge from ~30 km in the south to ~20 km at the northern end of the 3‐D box (Figure 5).

Subducting along the Hikurangi Trough is the Hikurangi Plateau, a large igneous province of Cretaceous age
with a crustal thickness over 10 km (Davy et al., 2008; Mochizuki et al., 2019). The structure of the incoming
Hikurangi Plateau is different from typical oceanic crust and is characterized by thick low‐velocity layers
that shows a gradual increase in Vp with depth from ~1.6 km/s at the seafloor to ~5.0 km/s at 4‐km depth
below seafloor. This layer includes pelagic rocks of Paleogene to Miocene age and the Hikurangi basement
mainly consisting of volcaniclastic rocks (Barnes et al., 2020). The lower volcaniclastic layer with Vp of
4.0–5.0 km/s extends in the downdip direction to beneath the accretionary wedge (Figure 4).

6.2. Anisotropy Structure

Figure 6a shows plots of traveltime residuals calculated from the “first” initial model (Figure 3a), the final
preferred model, and an isotropic model that was constructed in the same way as the preferred anisotro-
pic model expect that only isotropic slowness parameters were inverted. This figure shows the best data fit
for the preferred anisotropic model. Figure 6b indicates that many OBSs (those on the accretionary wedge
and the north Tuaheni forearc basin in particular) exhibit clear variations in traveltime residuals that can
be approximated by a sine function of 2θ in the isotropic model (green ticks in Figure 6b). These travel-
time variations can be explained well by incorporating the anisotropic effect (red ticks in Figure 6b). The
azimuthal variation in traveltime residuals becomes smaller on the seaward side of the trench (Figure 6b).

Figure 3. (a) Initial models used at different steps of the tomographic inversion. The vertical cross section for y = 0 km that coincides with the profile 05CM‐04 is
shown. The contour interval is 0.5 km/s. (a) The “first” initial model was created by taking velocity profiles from Bassett et al. (2018) and Kodaira et al.
(2018) and smoothly connecting them by referring to the regional plate boundary model of Williams et al. (2013) (thick black curve). After three iterations of
inversion using this initial model, we took the average of the resultant model and the initial model to make a smooth “second” initial model (b). This process was
repeated two more times, resulting in “third” and “fourth” initial models (c and d), and then the final preferred model (Figures 4 and 5) was obtained after
two iterations of inversion. (e) The inset map shows the model coordinate. A black arrow in the map indicates the convergence direction of the Pacific
Plate relative to the North Island forearc at the Hikurangi Trough (Wallace et al., 2004).
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Figure 4. Vertical sections of Vp values from the preferred model. Three sections at y = 3 km (a), 0 km (b), and −3 km (c) are shown. The RMS traveltime residual
and normalized chi‐square misfit of this model are 35 ms and 0.86, respectively. The contour interval is 0.5 km/s. Masked regions indicate areas with low
resolution based on ray density and checkerboard tests. The coordinate system of the model (x and y axes) is shown
in Figure 3.
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Figure 5. Subseafloor depth slices of Vp (a–c) and anisotropy magnitude (d–f) from the preferred model. The locations of these slices (rectangular box) and the
coordinate system of the model (x and y axes) are shown in Figure 3. Black dashed line is the deformation front inferred from seafloor bathymetry. Blue ticks
indicate the orientation of fast axes. Masked regions indicate areas with low resolution based on ray density and checkerboard tests (Figures S3 and S4).

Figure 6. (a) Histograms of traveltime residuals relative to the “first” initial model (blue), the final preferred model with anisotropy (red) and the isotropic model
(green). (b) Mean traveltime residual of the preferred anisotropic model (red bar) and the isotropic model (green bar) as a function of source‐receiver
azimuth. Shown here are the average values from OBSs on the incoming plate (indicated by white circles with a red circumference in Figure 1c), on the
accretionary wedge (indicated by white circles with a purple circumference in Figure 1c) and on the north Tuaheni forearc basin (indicated by white circles with a
blue circumference in Figure 1c). The mean residuals and standard deviations were calculated for azimuth bins of every 20° and using the rays whose
maximum depths are less than 6 km. The shot‐receiver azimuth is measured from north. The X axis is oriented to the southeast‐northwest direction (121°/−59°) as
indicated by black arrows. While the isotropic model shows clear variations in traveltime residuals especially in the accretionary wedge and the forearc
basin that can be expressed by a sine function of 2θ (green line), the preferred anisotropic model has better data fits independently of the azimuth direction.
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Correspondingly, the 1‐D depth profile of anisotropy shows that the
accretionary wedge tends to show larger azimuthal anisotropy in the
upper 2.0 km below the seafloor than the landward forearc basin and
the seaward incoming plate (Figures 7 and S2). The map view slices
reveal that areas with >5% anisotropy are found mostly in the accretion-
ary wedge (Figure 5). This 5% value is the average over the scale length
our model can resolve (2–4 km); we cannot exclude the possibility that a
much higher magnitude of anisotropy than 5% exists along the faults
beyond our resolution. The cross section shows that the anisotropic fea-
tures are not ubiquitous and homogeneous within the overriding
plate and tend to become larger in the vicinity of the fault locations
(Figure 8).

The fast axes of Vp exhibit a clear spatial pattern: While they are
mostly oriented in the trench‐normal (i.e., plate convergence) direction
in the accretionary wedge, they are rotated to the trench‐parallel direc-
tion on the seaward side of the trench and in the landward north
Tuaheni basin (Figures 5 and 9a). This regional variation is consistent
with the results of shear wave splitting analysis (Zal et al., 2020;
Figure 9b) and the regional stress field estimated by focal mechanism
solutions (Townend et al., 2012). Occurrence of fast axes in the accre-
tionary wedge agrees well with the directions of maximum horizontal
stress inferred from borehole breakouts at Drilling Sites U1518 and
U1519 (Figure 9a). These correlations demonstrate that our estimation
of Vp anisotropy is consistent with other similar analyses and
observations.

6.3. Model Resolution and Reliability

The reliability of obtained structural heterogeneities was evaluated by sev-
eral different methods. Checkerboard tests using the same raypaths,
matrix of partial derivatives, and smoothing/damping constraints as for
the preferred model demonstrate that the anomaly pattern of 4 km hori-
zontally and 3 km vertically is well recovered down to the depth of 6 km

below seafloor (Figure S3). Although slightly distorted and weaker at depths greater than 6 km, the checker-
board is recovered down to 9 km depth and we consider this to be the maximum depth of resolution in our
velocity model. Smaller horizontal anomalies of 2 km are successfully reconstructed in the upper 4 km and
partially recovered down to 6 km. These tests constrain theminimum size of velocity variations we can inter-
pret. The checkerboard tests for anisotropy magnitude indicate that anisotropy is well resolved down to the
depth of 4 km below seafloor and partially resolved down to 6 km beneath the accretionary wedge
(Figure S4). Because anisotropy is calculated from rays of different azimuths, our maximum resolution depth
is limited by the maximum offsets recorded in the margin‐parallel direction.

The robustness of our velocity model was also examined by checking the dependency on the choice of inver-
sion parameters (see Figures S5–S10). The alternative smoothing parameters for isotropic slowness yield
models that have only small velocity differences with respect to the preferredmodel (<0.1 km/s inmost parts
of the model) (Figure S7). Different choices of smoothing parameters for anisotropy resulted in similar spa-
tial pattern and magnitude in anisotropy (within 2% difference in most parts of the model), which strongly
supports the validity of our anisotropy estimation (Figure S8). We also performed similar tests for the damp-
ing strength of Vp and anisotropy and confirmed that the range of acceptable solutions is relatively small
(Figures S9 and S10).

Finally, we compared our Vp model with the detailed Vp structure obtained by the FWI analysis of the
05CM‐04 reflection profile (Gray et al., 2019) and logging data at two drill sites within the 3‐D box
(Wallace et al., 2019) (Figure 10). Our velocity model has a spatial resolution of a few kilometers and thus
is not sensitive to the abrupt velocity reductions in the upper ~200 m of the model that are suggested by
the FWI analysis and logging data, which have their vertical resolution of < ~100 m. In addition, the

Figure 7. One‐dimensional depth profiles of anisotropy magnitude from
the preferred model. The colored curves show the mean values at each
depth below the seafloor in the forearc basin (green; x = −25 to −15 km and
y = −4 to 3 km), the accretionary wedge with flat seafloor (black; x = −10 to
0 km and y = −4 to 3 km), the trench slope (red; x = 2 to 15 km and y = −4
to 3 km), and the incoming plate (blue; x = 19 to 25 km and y = −3.6 to
3 km). The standard deviation of the 1‐D profiles is about 1% for all
locations.
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shallowest part of our velocity model may be poorly constrained due to the lack of very near‐offset first
arrivals. Otherwise, our Vp model generally shows difference less than 0.2 km/s from the FWI and
logging data at depths greater than 200 m, suggesting that the velocity variations in our Vp model are real
within the range of overlap and likely good approximations deeper within the section.

7. Discussion
7.1. Anisotropy Associated With Subduction Faults

Seismic anisotropy at shallow depths in subduction zones is an important indicator of the stress state and is
commonly interpreted to be caused by preferentially oriented cracks in a compressional stress regime asso-
ciated with plate subduction (Tonegawa et al., 2017; Zal et al., 2020). Our findings that (i) significant

Figure 8. Vertical sections of anisotropy magnitude from the preferred model. Three sections at y = 3 km (a), 0 km (b),
and −3 km (c) are shown. The contour interval is 2%. Masked regions indicate areas with low resolution based on ray
density and checkerboard tests (Figures S3 and S4). The coordinate system of the model (x and y axes) is shown in
Figure 3.
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anisotropy occurs associated with the active splay faults and the deformation front and (ii) the fast axes in the
accretionary wedge lie parallel to the plate convergence direction suggest that the regional stress field and
preferentially oriented cracks in the fault‐bound blocks primarily control the seismic anisotropy. It is
interesting that locations with large anisotropy tend to extend in the trench‐parallel direction and some
coincide with the steep slopes in seafloor bathymetry (Figure 9). Figure 7 compares the depth profile of
anisotropy magnitude beneath the trench slope (that exhibits dip angles >20°) with that below the
accretionary wedge with flat seafloor and shows that the former has slightly larger anisotropy in the
upper 1 km. This difference may reflect a gravitational effect pointed out by Araragi et al. (2015) that a
gravitational stress caused by topographic slopes influences the principal stress direction and thus the
seismic anisotropy at shallow depths. Our results indicate that this effect may also play a role in trench
slopes in subduction zones.

Themaximummagnitude of anisotropy we have observed (>5%) is roughly equivalent to the values reported
in oceanic spreading centers where the ridge‐perpendicular tensile stress is dominant and thus likely to pro-
duce more cracks than at subduction zones (e.g., Dunn, 2015). The high‐resolution velocity images produced
by FWI revealed that some splay faults (but not all) were associated with low‐velocity zones, suggesting that

Figure 9. Map view slice of (a) anisotropy magnitude at 1‐km depth below seafloor and comparison with (b) shear wave splitting anisotropy (Zal et al., 2020) and
(c) seafloor depth. The fast axes of Vp agree well with the orientation of maximum horizontal stress (SHmax) inferred from borehole breakouts at Drilling
Sites U1518 and U1519 (Wallace et al., 2019; green ticks) and shear wave anisotropy. At U1519, borehole breakouts with an approximate northeast‐southwest
(054°/234°) direction was observed between 600 and 650 m below seafloor (Wallace et al., 2019). At U1518, borehole breakouts have an azimuth of 173°/353° from
which a SHmax orientation of east‐is estimated. Blue ticks in (b) indicate the orientation of fast axes based on shear wave splitting (Zal et al., 2020). The
seafloor bathymetry data in (c) was obtained during the 3‐D seismic reflection cruise (Edwards et al., 2018). The study area includes the northern Tuaheni
landslide complex (TLC north) and Tuaheni Ridge. A gray shade indicates the area of extension where normal faults across the upper slope of the north Tuaheni
basin are distributed (Böttner et al., 2018). A black arrow in (c) shows the convergence direction at the Hikurangi trough between the Pacific Plate relative
to the North Island forearc (Wallace et al., 2004).
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these faults may have high porosity and could act as fluid conduits (Gray et al., 2019). In the study area, it is
expected from local seismicity that fluids released from the downgoing slab migrate into the overlying plate
interface and upper plate (Shaddox & Schwartz, 2019; Todd et al., 2018; Warren‐Smith et al., 2019). Such
fluids contribute to increasing the crack density around the faults by keeping the cracks open at greater
depths (e.g., Zatsepin & Crampin, 1997). However, not all splay faults are characterized by an across‐fault
velocity reduction and associated porosity increase. For example, while our Vp model indicates a high
anisotropy area corresponding to the Pāpaku fault that is located in the trench slope (Figure 11), a
low‐velocity volume is not associated with this particular fault in the FWI analysis of Gray et al. (2019). In
addition, core samples from U1518 that crosscut the Pāpaku fault at ~300‐m depth suggest that there is
not a significant increase in porosity at the fault zone (Fagereng et al., 2019). These considerations
indicate that a factor other than preferentially oriented cracks may contribute to seismic anisotropy.

Although clay fabric is not observed in the core samples from the Pāpaku fault at U1518 (Fagereng
et al., 2019), clay‐rich sediments with evidence of ductile flow deformation are often observed at fault zones
in subduction zones (Kinoshita et al., 2009; Tobin et al., 2001). In the northern Hikurangi margin, IODP dril-
ling has confirmed that input sediments on the Hikurangi Plateau contain abundant clay minerals (Barnes
et al., 2020). The sedimentary sequences are likely to stack and form coherent strata with a total thickness of
up to several hundred meters in the vicinity of the fault zones during the process of accretion and/or subse-
quent deformation (Rowe et al., 2013). If the clay minerals in such thick sedimentary layers are preferentially
aligned by the compressional stress by plate convergence, they may also result in significant upper plate ani-
sotropy that can be detected by seismological methods.

7.2. Regional Stress Field Associated With Plate Subduction

Our velocity model revealed two other areas with different spatial orientation of anisotropy from the accre-
tionary wedge which reflect variable stress field associated with plate subduction (Figure 5). First is the

Figure 10. Comparison of our preferred velocity model with the logging‐while‐drilling (LWD) data (Wallace et al., 2019;
red line) and the results from seismic full‐waveform inversion analysis (FWI) (Gray et al., 2019; blue line) at drill
sites of (a) U1519 and (b) U1518.
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seaward side of the deformation front, where the fast axes of Vp are parallel to the strike of the trench at 2‐ to
3‐km depths (Figures 5e and 5f). This feature is consistent with previous observation of anisotropy for the
subducted Pacific Plate (Eberhart‐Phillips & Reyners, 2009) and suggests that the maximum horizontal
stress is oriented parallel to the trench. This stress regime is explained by the flexural bending of the
incoming plate (e.g., Bodine et al., 1981). Although the overall magnitude is smaller (mostly less than 2%)
compared to the magnitude of anisotropy in the accretionary wedge, this stress field may be active as
implied by normal faults within the Hikurangi Plateau basement observed in seismic reflection data
(Figure 1d). On the other hand, the fast axes at 1‐km depth is more variable. The drill core data at U1520
suggests that this depth corresponds to the uppermost part of the Cretaceous volcaniclastic layer
consisting of the Hikurangi Plateau (Barnes et al., 2020) and seismic studies suggest that its top surface
exhibits significant relief with horizontal scales of <10 km (Barker et al., 2018; Barnes et al., 2020; Gray
et al., 2019). We thus suggest that the scattered pattern of anisotropy in the shallowest part of the
incoming plate may be a consequence of the stress field disturbed by structural heterogeneities at that depth.

The other area is the most landward part of the 3‐D box where the fast axes of Vp rapidly change to the
trench‐parallel direction (Figures 5, 9, and 12). This change may be related to the Tuaheni Ridge and the
edge of the North Tuaheni basin, in an area where forearc extension has been previously mapped
(Böttner et al., 2018; Figures 9c and 12a). The variation in seismic anisotropy is consistent with the results
of shear wave splitting analysis (Zal et al., 2020; Figure 9b). While the depth variation in anisotropy was
not well constrained by Zal et al. (2020), our results demonstrate that the upper few kilometers in the over-
riding plate is the region which determines this spatial pattern.

It is also intriguing that the spatial variation in anisotropy correlates well with the structural heterogeneities
within the overriding plate. Figure 12 shows that in the north Tuaheni forearc basin significant anisotropy
exists just above two features consisting of high‐velocity material with 4.0–5.0 km/s. These bodies are likely
to be the lowest part of the overriding plate and probably associated with the Mesozoic and Paleogene imbri-
cated wedge backstop. Forearc normal faulting has been identified in the Nankai accretionary margins and
suggested to result from decoupling of shallow strata from the underlying compressional wedge (Gulick
et al., 2010; Moore et al., 2013; Sacks et al., 2013). Böttner et al. (2018) were unable to identify the cause of
extension, but we find that spatial orientation in anisotropy correlates well with the structural heterogene-
ities within the upper plate and supports the suggestion of local uplift giving rise to the extensional strain.

Figure 10. Comparison of (a) Vp and (b) anisotropy magnitude at y = 0 km from our preferred model with fault
distribution (black lines) by Barker et al. (2018).
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7.3. Implications on Seamount Subduction

On the basis of the seismic reflection and magnetic data, it has been suggested that an ~20‐km‐wide sea-
mount is subducting just beneath the central part of our 3‐D survey area (Barker et al., 2018;
Bell et al., 2010; Figure 1). The location and characteristics of the seamount are important because many pre-
vious studies have discussed seismic activity in relation to the seamount (e.g., Todd et al., 2018). In addition,
a subducting seamount may have a strong control on seismogenic behavior, hydrological processes and the
structural evolution of the plate interface and the overriding plate (Sun et al., 2020). At the proposed location
of the seamount, our velocity model imaged a low‐velocity (Vp = 4.0–5.0 km/s) volume and did not detect
any rapid velocity increase with depth (Figure 11). This feature is consistent with the low seismic reflectivity
at the top of the seamount while still accounting for the location of a high‐relief magnetic source on the sub-
ducting plate (Barker et al., 2018).

Figure 12. Spatial correlation of subsurface heterogeneities with the northern Tuaheni landslide complex (TLC north)
and the Tuaheni Ridge. (a) Map of slope gradient highlighting the TLC north and the Tuaheni Ridge and (red
dashed lines) where a rapid rotation of Vp fast directions occurs at shallow depths (as indicated by double‐headed
arrows). The location of trench‐parallel anisotropy agrees well with the area of extension where normal faults across the
upper slope of the north Tuaheni basin are distributed (Böttner et al., 2018; a gray shade). We calculated the slope
gradient from the bathymetric grid data using GMT (Wessel & Smith, 1998). (b) The cross section of Vp at y = −6 km
showing the deep high‐velocity features just beneath the TLC north and the Tuaheni Ridge. (c) The cross section of
Vp anisotropy at y = −6 km. Large anisotropy is observed beneath the TLC north and the Tuaheni Ridge (black and blue
dashed lines).
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Based on the currently available information, we propose two structural models focusing on the potential
subducting seamount (Figure 13). First, if the location of the seamount by Barker et al. (2018) is correct,
our Vp model suggests that the internal structure of the seamount may be heterogeneous containing sub-
stantial regions with low seismic velocities (Figure 13a). Although this explanation seems apparently coun-
terintuitive, because seamounts are usually topographic manifestations of igneous intrusions and thus
exhibit higher velocities than the surrounding areas, subducting seamounts may be able to exhibit lower
velocities in the upper few kilometers due to significant fracturing and/or comprising extrusive volcaniclas-
tic lithologies (Hammer et al., 1994). Indeed, low‐velocity seamounts with a similar size are reported in the
Ryukyu subduction zone, southwest Japan, where the Amami Plateau subducts beneath the Eurasian plate
(Arai et al., 2017) and along the Kermadec arc where the Louisville Ridge intersects the Tonga‐Kermadec
subduction zone (Bassett & Watts, 2015).

The alternative model is that the seamount is a higher‐velocity body, located ~10 km further downdip than
previously thought (Figure 13b). This is the location where our velocity model shows high‐velocity
(Vp > 5.0 km/s) topography just below the plate interface. Correspondingly, the previous reflection studies
revealed high‐amplitude seismic reflectivity at the same place (Bell et al., 2010). The high reflectivity has
been previously interpreted as low‐velocity fluid‐rich layers. Our velocity model may provide another inter-
pretation for this reflectivity where top of the high‐velocity seamount forms a thick reflective zone. This sub-
duction model in Figure 13b suggests the seamount forms a low‐velocity (Vp = 4.0–5.0 km/s) subducting
channel in its wake that consists of sedimentary and volcaniclastic rocks in the process of subduction.
However, this scenario would require a different interpretation of the magnetic data and the positive anom-
aly that is characteristic of nearby unsubducted seamounts (Barker et al., 2018). Future studies of subduction
structure based on 3‐DMCS reflection and OBS wide‐angle reflection data, coupled with better constrained
magnetic modeling, will provide more rigorous constraints of the subducting seamount.

Figure 13. Two potential interpretations on subduction structure in the northern Hikurangi margin. (a) If the location of
the subducting seamount by Barker et al. (2018) is correct, our Vp model suggests that the seamount exhibits low
velocities which would imply the seamount is fractured. (b) Alternatively, the seamount is a high‐velocity body, located
further downdip.
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8. Conclusions

We quantitatively constrained the 3‐D Vp values and azimuthal anisotropy in the northern Hikurangi mar-
gin using seismic refraction data obtained by the NZ3D OBS experiment. We found evidence for fault‐bound
anisotropy and discovered that large anisotropy is associated with active thrust faults along the plate inter-
face and within the upper plate. The localized pattern and anisotropy of >5% may suggest that not only pre-
ferentially oriented cracks but also fault‐bound clay‐rich sedimentary layers contribute to producing the
significant upper plate anisotropy. The fast direction of the Vp is consistent with the plate convergence direc-
tion in the accretionary wedge and rotates to a trench‐parallel direction beneath the Tuaheni basin and sea-
ward incoming plate. We also found velocity variations associated with the subduction of the Hikurangi
Plateau. We suggest that the subducting seamount, proposed by previous studies, shows low velocities due
to fracturing and/or extrusive volcaniclastic rocks. Alternatively, it is possible the seamount is located
~10 km further downdip than previously thought.

Data Availability Statement

OBS data supporting the conclusions can be requested through JAMSTEC Seismic Survey Database (http://
www.jamstec.go.jp/obsmcs_db/e/survey/data_area.html?cruise=TAN1803).
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