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Estimation, forecasting and anomaly detection for
nonstationary streams using adaptive estimation

Henrique Hoeltgebaum, Niall Adams, Cristiano Fernandes

Abstract—Streaming data provides substantial challenges for
data analysis. From a computational standpoint, these challenges
arise from constraints related to computer memory and pro-
cessing speed. Statistically, the challenges relate to constructing
procedures that can handle so-called concept drift – the ten-
dency of future data to have different underlying properties
to current and historic data. The issue of handling structure,
such as trend and periodicity, remains a difficult problem for
streaming estimation. We propose RAC (Real-Time Adaptive
Component), a penalized-regression modelling framework which
satisfies the computational constraints of streaming data, and
provides capability for dealing with concept drift. At the core of
the estimation process are techniques from adaptive filtering. The
RAC procedure adopts a specified basis to handle local structure,
along with a LASSO-like penalty procedure to handle over-fitting.
We enhance the RAC estimation procedure with a streaming
anomaly detection capability. Experiments with simulated data
suggest the procedure can be considered as a competitive tool for
a variety of scenarios, and an illustration with real cyber-security
data further demonstrates the promise of the method.

Index Terms—Adaptive filtering, data stream, time-varying
sparsity, anomaly detection, forgetting factor.

I. INTRODUCTION

STREAMING data – an unending sequence of data values
arriving at high frequency – is becoming ubiquitous due

to advances in data acquisition technology [1], [2]. There is
a clear demand for the development of streaming statistical
methods, considering applications in diverse areas such as
cyber-security [3], predictive maintenance systems [4], [5],
finance [6], fraud detection [7] and structural health monitoring
[8]. Such data brings significant challenges, related to both
demands arising from sequential computation and the design
of suitable estimators [9]–[11].

An outstanding, open, problem relates to handling structure,
such as trend or seasonality, in the data stream. For the
batch case, there is a large arsenal of time series and related
tools available to address such issues, e.g., the Kalman Filter
[12]. However, in the streaming case the data is revealed
sequentially, with the risk that statistical properties of the
data may vary over time. This is known as concept drift [1],
[13], which invalidates the use of methods that assume various
modes of stationarity.

For example, [14] considered the objective of characterizing
and forecasting an arbitrary streaming data sequence. These
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authors made use of a partially observed Markov process,
where the evolution of the latent state is governed by a
continuous-time Markov process, which allows modelling of
irregularly spaced observations. The justification for irregular
spacing arises from the sampling frequency of sensors which
are constantly interrupted and re-started. To capture the dy-
namics of all possible latent state variables that constitute the
underlying structure of the stream, [14, Sec. 3] described a
very elegant way to combine models. As an example, they used
a composition of a negative binomial model with two seasonal
components, considering daily and weekly seasonality effects
respectively, to fit vehicle traffic monitoring data. However,
a potential shortcoming of their approach, is that the analyst
must use prior knowledge, for instance to specify seasonal
components (daily and weekly). This means that any behaviour
outside such specification cannot be accommodated. This
potentially limits the application of the method for tracking an
infinite data stream subject to random fluctuations and concept
drift.

One approach which can, in principle, cope with arbitrary
structure in the data stream is based on estimation with
Adaptive Forgetting Factors (AFF) e.g. [15]–[19]. The use of
stochastic gradient descent [16] to update a Forgetting Factor
(FF) enables models to handle arbitrary changes in the data
generating process. The FF is intended to down weight historic
data in the estimation process. To cope with concept drift, we
will utilise adaptive estimation methods in a number of ways,
with the intention of constructing a streaming regression model
for a univariate response, where the explanatory variables can
be regarded as local auto-regressive terms. This model is well
suited to the streaming context, in terms of data storage and
computational requirements, and offers a choice of basis for
the auto-regressive regression.

The proposed method, which we refer to as Real-time
Adaptive Component (RAC), relies on a penalised streaming
regression-based framework. A simple form of the streaming
setting, described in [20], for a linear regression model is

yt = x
′

tβt + εt,

where εt ∼ N(0, σ2) are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with known vari-
ance σ2. Data processing typically proceeds as follows: Con-
sider the tick t, acquire basis vector xt ∈ Rd and use it
to forecast ŷt ∈ R, the one step ahead forecast, using the
sequentially estimated weight vector β̂t ∈ Rd. Later, with the
acquisition of the true value yt, β̂t is updated to β̂t+1. In our
case, the basis vector represents lagged and transformed values
of the response.
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In the batch case, extracting information from time series
is receiving much recent attention [21]–[24]. In the streaming
context however, the choice of basis for the regression, or
equivalently, the set of transformations and lagged variables is
critical for successful forecasting, and hence anomaly detec-
tion. However, since streaming data is subject to unpredictable
temporal variation, the construction of a suitable basis is
challenging. There is the usual problem of ensuring the model
has sufficient complexity to capture underlying structure, while
not affording the opportunity for over-fitting [20], [25].

This work proposes the use of a relatively large basis (the
maximum dimension defined by computational constraints),
and then appeals to sparsity inducing approaches to manage
over-fitting. We use a scheme based on the Least Absolute
Shrinkage Operator (LASSO) technique, proposed by [26]
and further detailed in [27]. A vast literature showing that
the LASSO attains good performance under various assump-
tions on the basis is available (see [28], [29] and references
therein). In our context, the appealing aspect of the LASSO
is that it induces sparsity, which will provide a means for
managing over-fitting. To achieve this, we require a method for
sequentially determining the LASSO penalisation parameter.
This issue was addressed in [30], which proposed an adaptive
extension of a LASSO Vector Autoregressive (VAR) model to
perform hourly wind power forecasts for wind farms. Similar
to AFF, the authors also used FF to handle the nonstationary
of the signal, albeit in their version it is a fixed quantity.
Unfortunately, despite the autoregressive coefficients of the
VAR being updated sequentially, the penalty term is not.
By default, these models are fitted using a grid of penalty
parameters which are computationally unfeasible in streaming
data context. Similarly, [31] proposed an updating rule to the
penalty term designed to estimate the parameters as soon as
new data arrives and assuming the underlying distribution
is nonstationary. Similar to AFF, the framework of [31]
also adopts adaptive filtering estimation based on stochastic
gradient descent.

The need for conditional models that can cope with concept
drift is well recognised by the streaming data community
(see [9], [32], [33] and references therein). The contribution
of this paper is the development of a forecasting procedure
and associated local anomaly detector, capable of dealing
with the many challenges of streaming data. This is achieved
by extending the results of [31]. First, proposing two new
adaptive estimators for a penalized-regression model. Second,
adopting a basis construction strategy to track the evolution of
signals’ underlying structure. Third, developing a new method
to sequentially perform anomaly detection in streaming data
that can be used with any conditional model, using a streaming
method based on the results of [34].

The rest of this paper is organised as follows. In Section II,
the main features of RAC along with the proposed anomaly
detection procedure are introduced. In Section III, a simulation
study is provided to evaluate both estimation and detection
performance of the RAC method. In Section IV a case study
using real cyber-security data from Los Alamos National
Laboratory is conducted.

II. METHODOLOGY

In this section the basic components of RAC are introduced.
Specifically the LASSO, adaptive estimation, optimization
procedures, basis construction and extension to anomaly de-
tection are discussed.

A. The LASSO procedure

The batch LASSO estimator [26] was initially proposed as
a variable selection procedure. Considering the pair (X, y),
where y denotes a T -dimensional response vector and X be
a T × d basis, with rows composed by the vectors xt ∈ Rd,
define the simple linear regression model

y = X
′
β + ε, (1)

with weight vector β ∈ Rd and ε being i.i.d. Gaussian random
variables with known variance σ2. Then the LASSO estimator
is defined as

β̂(γ) = arg min
β

T∑
t=1

(yt − x
′

tβ)2 + γ||β||1, (2)

where γ ≥ 0 is the penalty parameter and || · ||1 denotes the `1
norm. Note that we write β̂(γ) to emphasise the dependence
on γ in the estimation of β. Denote the set of variables as
J = {1, ..., d}, define the active set of variables, i.e., which
variables are selected, as A(γ) = {j ∈ J : β̂(j)(γ) 6= 0},
where β̂(j)(γ) makes reference to the jth element of the vector.
In practice the solutions β̂(γ) are estimated on a grid of γ
values, ranging from 0, where no shrinkage is applied, to

γ(max) = max
j∈J

∣∣∣∣ 1

T
X(·,j)

′

y

∣∣∣∣ , (3)

where X(·,j) denotes the jth column of X , and for which all
values of β̂(γ) will be exactly zero, except the intercept. Selec-
tion of the penalty parameter is often made through data reuse
methods, for example cross-validation (CV), however this is
not feasible for streaming data analysis due to computational
speed requirements.

Typically, prior to estimation, it is convenient to standardise
the data such that each transformed basis vector has zero mean
and unit variance. This is done to prevent the LASSO solution
from depending on the predictor’s units of measurement. In
addition, the response variable is centred to have zero mean.
These centering operations allows one to omit the intercept
term β(0) when optimizing (2). Given the optimal LASSO
solution β̂(γ) on the centred data, it is possible to recover the
optimal solutions for the uncentred data, where β̂(γ) remains
the same and the intercept is

β̂(0) = ȳ −
d∑
j=1

X̄(j)β̂(j)(γ), (4)

where ȳ is the mean of the untransformed response variable
and X̄(j) denotes the mean of the jth transformed basis
variables. In the context of streaming data, computing these
values are challenging. Despite having useful properties, the
batch LASSO estimator is not feasible in streaming data envi-
ronment. In the next section we introduce adaptive estimation
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[16], which can be used to adapt the results of batch LASSO to
a streaming data environment, respecting memory and speed
constraints.

B. Adaptive estimation

The task of filtering corresponds to controlling the rate at
which past information is discarded while avoiding storing
all the data in memory. The most common filtering strategy
discards information at a constant rate, fixing the value of
the FF – denoted here by λ. Adaptive filtering methods do
not require the data to be stationary [16]. As an alternative
to a fixed value of λ, which may be difficult to set, much
interest has focused on sequentially selecting an AFF – λt,
using an updating mechanism based on stochastic gradient
descent [15]–[17]. Such methods are called adaptive because
the quantity of data discarded is not constant over time.
Particularly, the benefits of using such a strategy are highly
relevant in nonstationary environment.

With a univariate stream, y1, y2, ..., yT−1, yT , ...,, our goal is
to accurately estimate the mean, E[yT ], at tick T . An estimator
will be used to detect anomalous behaviour in the stream. For
example, the arithmetic mean,

ȳT =
1

T

T∑
t=1

yt. (5)

This estimator makes sense only if E[Yt] = µ, a constant
for all time points. However, denoting τ∗ as the change point
instant, if there was a change at τ∗ < T such that

E[Yt] =

{
µ
′
, t = 1, 2, ..., τ∗

µ, t = τ∗ + 1, τ∗ + 2, ..., T, ...
, µ
′
6= µ

the arithmetic mean µ̂ = ȳT cannot estimate µ accurately if
there is a big difference between µ

′
and µ. In order to improve

the estimation, one could take the mean of those observations
that occur only after the change point τ∗,

µ̂ =
1

T − τ∗
[yτ∗+1 + yτ∗+2 + ...+ yτ∗+T ] .

However, the point τ∗ is unknown, which makes this estima-
tion unfeasible in sequential settings.

Such drawback, motivates the use of adaptive estimation
to calculate the current mean process at tick t, in which
more weight is placed on more recent observations, and do
not store all data in memory. Using such methods results
in better/improved estimation of the data stream after the
change point τ∗ [15]. This is achieved by introducing an FF,
λ ∈ (0, 1), in (5) and using a normalizing constant (wt,λ) to
weight the estimation process,

ȳt,λ =
1

wt,λ

t∑
i=1

λt−iyi, wt,λ =

t∑
i=1

λt−i.

The advantage of this formulation is that it leads to a sequential
formulation for streaming contexts by defining the following
updating mechanism for t ≥ 1,

mt,λ = λmt−1,λ + yt (6)
wt,λ = λwt−1,λ + 1 (7)

ȳt,λ =
mt,λ

wt,λ
, (8)

with m0,λ = w0,λ = 0. Note that setting λ = 0 corresponds to
forgetting all previous observations, and only using the most
recent observation, i.e. ȳt,λ = yt. On the other hand, λ = 1
corresponds to no forgetting, and then the FF mean, ȳt,λ, is
simply the usual arithmetic mean given in (5). Note that prac-
tical algorithms restrict the range of λ to prevent it becoming
too small, see for example [15]. The updating mechanism of
(6)-(8) is asymptotically related to the Exponential Weighted
Moving Average equations, as proved in [15].

The previous updating mechanism extends readily to the
linear regression framework of (1). The streaming framework
assumes yt arrives immediately following xt and preceeding
xt+1 ([1], [2]). This framework is only relevant to application
domains satisfying this data arrival order, such as finance [6]
and energy [17]. Other domains exhibit data with more compli-
cated, or random arrival order, leading to the delayed labelling
problem [35]. To achieve this, we require FF estimates of both
mean and covariance of response yt and basis vector xt at each
tick t. In [15], [17], [31], an adaptive estimation framework
was used for both sample mean vector, and sample covariance

matrix. Define Πt =
(
yt, x

(1)
t , x

(2)
t , ..., x

(d)
t

)′
∈ Rd+1 as the

sample mean vector and Σt,λ ∈ R(d+1)×(d+1) the sample
covariance matrix. Considering a fixed FF λ, the mean vector
is updated as

Π̄t,λ =

(
1− 1

wt,λ

)
Π̄t−1,λ +

1

wt,λ
Πt, (9)

with wt,λ a normalizing constant defined in (7) and Π0,λ =
(0, 0, ..., 0)

′
a vector of zeros. Note that this is equivalent

to applying recursions (6)-(8) to yt and each element of the
d-dimensional vector xt individually. Further, the covariance
matrix Σt,λ is updated as

Σt,λ =

(
1− 1

wt,λ

)
Σt−1,λ +

1

wt,λ
(Πt − Π̄t,λ)

′
(Πt − Π̄t,λ),

(10)
taking Σ0,λ as the identity matrix. The effect of these initial
values will vanish when adopting a burn-in period of B
observations. Similar to the sequential algorithms proposed
in [15], [17], [31], assuming that observations y1, ...yB will
not face any change in the underlying structure, this set of
observations will be used to estimate the initial values.

C. Streaming LASSO

RAC relies on a penalised streaming regression-based
framework. However, as noted earlier, should the stream
manifest concept drift then weighted estimation procedures,
described in Section II-B, are clearly appropriate.
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The formulation of linear regression in this context would
feature coefficients analogous to autoregressive weights in a
time series model, called tap weights in adaptive filtering [16].
Restricting to linear forms for the regression is restrictive
and cannot readily handle trend or seasonality. Thus, we
will design bases for streaming regression with the poten-
tial to capture these phenomena. These bases are potentially
overparametrized and hence streaming penalization methods,
adapted from procedures such as LASSO, are required. In
this case, the choice of an optimal regularization parameter
may itself be time-varying [31]. In order to sequentially fit the
underlying structure of yt, a time-varying penalty parameter
γt ∈ R+ is introduced (c.f. (2)).

The regularization parameter is iteratively updated as

γt+1 = γt − ηγ
∂Ct+1

∂γt
, (11)

where Ct+1 = ||yt+1 − x
′

t+1β̂t(γt)||22 is the designated cost
function to update the stochastic gradient associated with γt,
while ηγ > 0 is the step size. The intuition behind this update
is that the gradient will point the regularization parameter γt
to move in a direction to minimize the prediction error. If
the error increases, the parameter will increase such that the
weights β̂t(γt) will adapt to the new underlying structure of
the signal. Here – also in [31] – a quadratic cost function
is adopted since the future mean behaviour of yt is currently
being tracked. Nevertheless, other cost functions could also be
used, conditionally to the quantity being tracked. For example,
[17] define efficient update equations, based on maximum
likelihood, for the exponential family of distributions.

To calculate the derivative ∂Ct+1

∂γt
from (11) using implicit

differentiation,

∂Ct+1

∂γt
=

∂Ct+1

∂β̂t(γt)

∂β̂t(γt)

∂γt
. (12)

While the first term of the right hand side of (12) is straight-
forward to obtain by direct differentiation, the second is more
involving. Under a squared error loss function and `1-norm of
β, [36] showed that for the LASSO, the optimal coefficient
path is piecewise linear, which implies that ∂β̂t(γt)/∂γt is
piecewise constant. A closed-form solution for this derivative,
adapted from [37], is presented in [31, Proposition 1] as

∂β̂t(γt)

∂γt
= −(x

′

txt)
−1sign(β̂t(γt)) (13)

= −(Σt,λ)−1sign(β̂t(γt)). (14)

This result is equivalent to calculating the gradient of the
LASSO solution as suggested by the Least Angle Regression
(LARS) formulae in [36, Eqs. (2.4)-(2.6)].

In addition, one should note that similar to the LARS
gradient update, (14) is only nonzero over the active set
At(γt) = {j ∈ J : β̂

(j)
t (γt) 6= 0} of regression weights,

and zero elsewhere. Note that the subscript t was added to
emphasize that this is a time-varying active set. Therefore,
at each update of ∂β̂t(γt)/∂γt, one should consider the two
scenarios described in [31] regarding non-empty active set,
At(γt) 6= ∅ and empty one, At(γt) = ∅):

• Non-empty active set, At(γt) 6= ∅, which in this case, as
proved in [31], equation (14) is well-defined;

• The active set is empty, At(γt) = ∅, then both al-
gorithms, LARS and the one of [31], take a step in
the direction of the most correlated predictor ĵ =

arg max
j∈J

{
|
∑T
t=1 ytx

(j)
t |
}

. Hence define the gradient as

(
∂β̂t(γt)

∂γt

)(l)

= δ
(l)

ĵ
sign

(
T∑
t=1

ytx
(l)
t

)
,

where δ is the Kronecker delta function. All entries of
∂β̂t(γt)/∂γt will be zero with exception of the corre-
sponding to the most correlated predictor.

Note that one could also include an AFF for the parameter
estimates, Πt and Σt, which can be concurrently updated with
γt just by calculating

λt+1 = λt − ηλ
∂Lt+1

∂λt
,

where Lt+1 can be the squared loss as assumed in [15]. How-
ever, non reported experiments suggests that the forecasting
performance is dramatically degraded when compared to the
fixed FF approach. This is related to the fact that λt and γt
interact, as described in [30]. The penalization parameter may
increase to adapt the regression to, for example, a new regime
while the AFF value will be reduced to give weight to only
recent observations. Both parameters updates are attempting
to adapt the model to the new regime. Therefore, we opt to
keep λ fixed and update only γt as a time-varying quantity in
RAC framework.

Adopting the concepts of adaptive filtering discussed in
Section II-B, both (9) and (10) are suitable for streaming data
as they require storing only a few parameters and data points
in computer memory, instead of all historical values. These
concepts of adaptive filtering provide grounds to propose
sequential updates for (3) and (4). The maximum value of
the penalty can be defined as

γ
(max)
t = max

{∣∣∣Π̄(1)
t,λΠ̄

(2)
t,λ

∣∣∣ , ∣∣∣Π̄(1)
t,λΠ̄

(3)
t,λ

∣∣∣ , ..., ∣∣∣Π̄(1)
t,λΠ̄

(d+1)
t,λ

∣∣∣} ,
(15)

with | · | denoting the absolute value. Note that equation
(15) rescales the weighted means by the response variable,
i.e., Π̄

(1)
t,λ, avoiding a biased solution due to the units of

measurements of the response variable. Moreover, to sequen-
tially ensure that γt ∈ [0, γ

(max)
t ], the following rule must be

adopted after the update of both γt and γ(max)
t ,

γt = max{min{γt, γ(max)
t }, 0}.

Regarding the intercept, (4) is rewritten in terms of the
elements in Π̄t,λ,

β̂
(0)
t (γt) = Π̄

(1)
t,λ − (Π̄

(2)
t,λ, ..., Π̄

(d+1)
t,λ )

′
β̂t(γt), (16)

where, different from (2), the subscript t denotes that the
updating of β̂t(γt) is sequential and Π̄

(j)
t,λ makes reference to

the jth element of the vector.
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D. Cyclic coordinate descent

Having defined the update of the penalty parameter, the next
step is to calculate the values of β̂t(γt) sequentially conditional
to γt. Unfortunately, there is no analytical solution to find the
minimum in (2). Several approaches are already available to
optimise such problems, as pointed out in [27], [30], [31],
when updating multiple regression weights sequentially, how-
ever the most appropriate is the Cyclical Coordinate Descent
(CCD) algorithm [38], [39]. The main advantage of CCD
is computational efficiency, exploring an analytic expression
for (2) taking into account a partial optimum conditional to
one specific weight, while the others remain fixed. Hence the
name cycles, because the analytical expression is considered
to update all the weights successively until convergence.

As described by [27, Sec. 2.4.2], the algorithm will propose
an arbitrary order for the predictors and cycle trough them.
In RAC, CCD is adopted to update the regression weights
using the columns of Σt,λ. The derived formula (17) is a
straightforward adaption of the estimation procedure when
CCD is used to estimate the coefficients of the batch LASSO.
In streaming data we receive only one data point at a time,
hence we estimate the coefficients using the adaptive estimate
of the covariance matrix Σt,λ.

At each step j the weights β̂(j)
t (γt) are updated by min-

imizing the analytic expression for (2) in this coordinate,
maintaining the values of remaining variables β(l)

t (γt), l 6= j
fixed. To remove the effect of the other variables, CCD makes
use of a partial residual r(·,j)

t = Σ
(·,1)
t,λ −

∑
l 6=j Σ

(·,l)
t,λ β̂

(l)
t (γt).

Hence, the update is given by

β̂
(j)
t (γt)← S

(
β̂

(j)
t (γt) +

〈
Σ

(·,j)
t,λ , r

(·,j)
t

〉
, γt

)
, (17)

where 〈·, ·〉 denotes the inner product and S(·) makes reference
to the soft threshold operator defined by

S(z, γ) = sign(z)(|z| − γ)+

=


z − γ, if z > 0 and γ < |z|
z + γ, if z < 0 and γ < |z|
0, if γ > |z|,

with (·)+ denoting the positive part.
Similar to the update proposed in [30] for the VAR coeffi-

cients, the calculations of β̂t(γt) in RAC also involves a FF
λ, used in (9) and (10).

E. Basis construction

At the core of our method is an autoregressive regression
with basis designed to capture local structure, overlayed with
LASSO-inspired complexity control to prevent overfitting. Of
course, there are many approaches to constructing a suitable
basis which embodies such features. The features of particu-
larly interest relates to trend and simple curvature.

The two proposed specifications of basis X in this section
are designed to capture the streaming local structure. Such
bases try to mimic several well known time series unobserved
components, namely trend and seasonality.

1) Trig basis: Consider the basis based on a Fourier coef-
ficient expansion for X = [ψsin ψcos], with

ψcos =


| | . . . |

co
s
ω

1
t

co
s
ω

2
t

co
s
ω
j
t

| | . . . |

 ψsin =


| | . . . |

si
n
ω

1
t

si
n
ω

2
t

si
n
ω
j
t

| | . . . |

 ,
where the frequencies ω1, ..., ωj are defined by the user. This
is closely related to the so called `1 trend filtering from [40]
which proposed a variation on the Hodrick-Prescott filter.

This basis is strongly recommended when the local structure
of the stream has smooth curvatures, typical of a stationary
periodic signal. For both simulations and real data application,
the fixed quantities were defined as ωj = e−2π + 0.2(j − 1)
∀j ∈ J as an attempt to mimic a Fourier transform. These
choices were made based on the performance analysis in
Section III.

2) Cycle basis: Define the vector

Λ(n,i) := ((1/n)i, (2/n)i, ..., (n/n)i)
′
,

and for some υ ∈ Rn, denote the indefinite concatenation
operator of the elements of υ by

υR = (υ1, υ2, ..., υn, υ1, υ2, ..., υn, υ1, υ2...)
′
.

Let Ξmin and Ξmax denote the minimum and maximum
sequence lengths, respectively. The basis can be defined as
the concatenation of the vectors

X = [ΛR(Ξmin,1) ΛR(Ξmin,2) . . . ΛR(Ξmax,1) ΛR(Ξmax,2)]

where the number of columns in X is a function of the
quantities Ξmin and Ξmax. The user needs to specify Ξmin
and Ξmax, the minimum and maximum sequence lengths in
the columns of X . To avoid scaling problems, the jth column
X(·,j) is scaled by its maximum value. After this scaling, the
X matrix contains in the first column the sequence from 1 to
Ξmin, the second column is the square of the first, and so on
until the last sequence from 1 to Ξmax and its square. In the
following sections, we set the hyperparameters as Ξmin = 6
and Ξmax = 40. Such choices were also based on performance
in simulation from Section III. In practice we may set the latter
to a large value based on available processing resources.

F. Anomaly detection using a weighted sum of chi-squared
random variables

To perform anomaly detection with a conditional model
such as the RAC, the most straightforward approach is to look
for anomalous values in the residuals ε̂1, ε̂2, ... at each tick t.
Intuitively, if the stream is well behaved, the model should be
able to fit the local structure of y1, y2, ..., which will result
in residuals close to zero. On the other hand, if the stream is
poorly behaved, the residuals will exhibit anomalous values.

After estimation of β̂t(γt) and the actual value yt+1 is
observed, the residual one-step ahead forecasting error is

ε̂t+1 = yt+1 − ŷt+1
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where ŷt+1 = x
′

t+1β̂t(γt) denotes the one-step ahead forecast.
In the streaming context this generates an unending sequence
of residuals, upon which we will make inference on

ξt+1 =

(
yt+1 − ŷt+1√

φt+1

)2

,

where φt is a scalar value associated with the variance of yt,
i.e., φt+1 = Σ

(1,1)
t+1,λ matrix updated by (10). Assuming i.i.d.

data, this standardised quantity behaves as(
yt+1 − ŷt+1√

φt

)
∼ N(0, 1) =⇒ ξt+1 ∼ χ2

1.

This follows by assumption of i.i.d. normally distributed
error. This is a strong parametric assumption typical of much
of the change-point detection literature. Of course, if the
assumption is invalid the results of the algorithm will be
questionable. We prefer this approach because of the com-
putational demands of streaming data, which often preclude
non-parametric approaches.

Since we are tracking a moving target it is convenient to
estimate the squared residual sequence using the forgetting
mechanism. This also provides a better means for calibration
of the residuals, by computing

κt,θ = θκt−1,θ + ξt (18)
νt,θ = θνt−1,θ + 1 (19)

ξ̄t,θ =
κt,θ
νt,θ

, (20)

fixing κ0,θ = κ1,θ = ν0,θ = ν1,θ = 0 and using the quantity
ξ̄t,θ as the object for inference. Of course, this is the same
recursive formulation as (6) - (8). The random formulation of
this quantity is a weighted mixture of chi-square distributions,
described by [34], which does not have closed form but can be
well approximated in streaming contexts by the Hall-Buckley-
Eagleson method (HBE) [41]. Using such result, a sequential
anomaly detector is constructed using the HBE method. The
user here needs to control the value of θ, which states how
many observations will be averaged to detect a change at
each tick t. This is essentially a second stage of smoothing,
using a fixed FF in (18)-(20). Our experiments suggest that
performance is robust for 0.9 < θ < 1.

To evaluate if there is an anomaly at each tick t, the p-value
is computed as

pt = FHBE(ξ̄t,θ, ξt)

where FHBE(·) is the cumulative distribution function (cdf)
of a positively-weighted sum of chi-squared random variables
using the HBE method with coefficient vector ξ̄t,θ evaluated
at quantile ξt. Considering a significance level α, a change at
tick t is flagged if pt ≤ α.

G. Algorithm

An illustration on how RAC is sequentially performed is
presented in Algorithm 1.

Algorithm 1 Real-Time Adaptive Component

Require: λ ∈ (0.6, 1], ηγ , θ, Π0,λ, Σ0,λ, w0,λ, β̂0(γt), γ0,
κ0,θ, ν0,θ, B

1: for t← 1, 2, . . . do
2: Receive (yt, x

(1)
t , . . . , x

(d)
t )

3: Update wt,λ, Π̄t,λ, Σt,λ, β̂(0)
t (γt), γ(max)

t , ξ̄t,θ
4: Estimate β̂t(γt) using Σt,λ and γt
5: Update γt with γt = max{min{γt, γ(max)

t }, 0}
6: if t ≥ B then
7: pt = FHBE(ξ̄t,θ, ξt)

H. Computational considerations

As noted in [31], the biggest cost of this method is the cal-
culation of the derivative in (14), which involves the inversion
of the sample covariance matrix. In the same work, the authors
proved that an approximation to the derivative (14) is given
by

∂β̂t(γt)

∂γt
≈ −(diag(Σt))

−1sign(β̂t(γt))

where diag(Σt) represents the diagonal elements of the
matrix. This approximation has time and memory demand
proportional to the cardinality of At(γt). The compute time
of RAC was evaluated using 100 Monte Carlo replicates of
N(0, 1) of size 50000. Table I illustrates computational times
when varying the number of variables. Results were evaluated
using a personal computer with Intel Core i5, 1.8 GHz, 8 GB.

TABLE I
AVERAGE COMPUTE TIME WHEN RUNNING RAC.

Number of variables 5 10 50 100

Time (seconds) 99.2 163.5 1148.1 2463.9

III. SIMULATION STUDY

In this section we assess the performance of RAC in two
respects, estimation and detection. The first is concerned
with the method’s forecasting ability to track an arbitrary
signal with underlying structure varying over time. The second
is concerned with the detection capabilities of the method
when facing a change in the signal’s underlying proprieties.
RAC will be compared to other methods discussed in the
literature, such as AFF [15], online VAR1 [30], CUSUM [42],
EWMA [43], probabilistic EWMA (PEWMA) [44], covariate
shift detection with EWMA (SD-EWMA) [45], two-stage
covariate shift detection with EWMA (TSSD-EWMA)[45],
conformal prediction with k-nearest neighbours (KNN-CAD)
[46] and Seasonal Hybrid ESD (S-H-ESD) [47] which uses
the Generalized Extreme Studentized Deviate test to detect
anomalies [48]. A simple benchmark, which we will refer to
as the NAIVE benchmark is based on using yt as the forecast
ŷt+1 is also included. Since online VAR and NAIVE do not

1Note that here, as we are only considering one stream at a time, the VAR
model is actually an univariate autoregressive model.
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have a proper detection method, they are not included when
evaluating detection performance.

Our experiments are based on the data generated by the
following process

yt =

{
2 cos

(
2π 1

100 t+ 0.1
)

+ εt, if t ≤ 5000

10 cos
(
2π 1

200 t+ 0.1
)

+ εt, if 5001 ≤ t ≤ 10000
(21)

where εt ∼ N(0, 1). The results obtained in Sections III-A
and III-B are based on adopting B = 1000 observations, ηγ
∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and λ ∈ {0.6, 0.7,
0.8, 0.9, 0.95, 0.995}.

A. Estimation performance

A straightforward way to evaluate prediction performance
is averaging forecasting error metrics, such as Mean Square
Error (MSE) and Mean Absolute Error (MAE), over the 100
replicates for all methods. These metrics are defined as

MSE =

T∑
t=B+1

1

T − B
(ŷt+1 − yt+1)2, (22)

MAE =

T∑
t=B+1

1

T − B
|ŷt+1 − yt+1|, (23)

where T is the total length of the stream.
The averaged forecasting metrics are displayed in Table II.

It is clear that RAC can provide good forecasting performance
provided the control parameters are selected appropriately.
Notably, both NAIVE benchmark and AFF have reasonably
good performances. However, their performance for anomaly
detection is low, pointing to the dichotomy between forecast-
ing accuracy and anomaly detection capability. Note that for
the online VAR model of [30], computation became infeasible
for λ < 0.7. Also, MSE and MAE for AFF and NAIVE are
displayed in only one column. Regarding AFF, the analyst
just chooses ηλ, the step of gradient descent, to update the
FF λt, while NAIVE no choices are needed. Figures 1 and
2 show the averages of penalty term γt, p-value and number
of non zero coefficients for β̂(γt) using Cycle and Trig basis
respectively. These plots illustrates the combination of ηγ and
λ that minimises the mean square error (MSE) of one step
ahead forecasting error.

Some observations about Figures 1 and 2. First, RAC is
able to continuously track an arbitrary target after its latent un-
derlying structure faces a change. Second, around the change
point, τ∗ = 5000, the average penalty parameter, γt, increases
as the average number of non zero weights decreases. This is
expected, because after the change point, RAC will re-estimate
new weights to filter the new underlying structure of the signal.
This is consistent with the findings of [31] that the optimal
regularization parameter is time-varying when the underlying
distribution is nonstationary. Also, we note in Figures 1 and
2 the average behaviour of the p-values around the change
point. Considering a 5% significance level, on average RAC
rejects the null hypothesis that the stream is not experiencing
anomalous behaviour around t = τ∗. Finally, regarding the
average non zero weights plots, a LOESS-curve [49] is fitted

to provide additional intuition. For both bases, on average,
the number of non zero weights in each segment appears
reasonably stable, though subject to substantial variability. The
Trig basis, on average, seems better suited to this specific
signal. A possible explanation is that with the Cycle basis,
RAC selects quadratic terms to fit local curvatures. This is
evident after t = 5000, when the amplitude of the curve is
higher, fewer quadratic terms are selected – implying the slight
decay in the LOESS curve.
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Fig. 1. Average quantities of the penalty term γt, p-value with a dashed
horizontal line at the 5% significance level and number of non zero weights
β̂(γt) with a smoothed LOESS curve over 100 Monte Carlo simulations using
Cycle basis. The title of the figures shows the parameters ηγ and λ that
produces the minimum Mean Square Error.

B. Detection performance

The AFF [15] method has its own detection method while
RAC will use the method proposed in Section II-F. Other
methods in the comparative study use the detection method
as described in the corresponding papers (see the introduction
of Section III). Allowing ϑ observations after a change is a
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TABLE II
AVERAGE FORECASTING ACCURACY MEASURES, OVER 100 REPLICATES OF (21). NOTE THAT THE RESULTS OF AFF ARE THE SAME ACROSS COLUMNS

BECAUSE THE FORGETTING FACTORS ARE ADAPTIVE. ALSO, THE ONLINE VAR MODEL FOR VALUES OF λ < 0.7 WERE NOT FEASIBLE TO COMPUTE.

MSE MAE

Basis Method (ηγ , λ) 0.6 0.7 0.8 0.9 0.95 0.995 - 0.6 0.7 0.8 0.9 0.95 0.995 -

- AFF

10−1 - - - - - - 1.62 - - - - - - 1.01
10−2 - - - - - - 1.45 - - - - - - 0.96
10−3 - - - - - - 1.44 - - - - - - 0.95
10−4 - - - - - - 1.46 - - - - - - 0.96
10−5 - - - - - - 1.89 - - - - - - 1.10
10−6 - - - - - - 3.47 - - - - - - 1.44

NAIVE - - - - - - - 2.03 - - - - - - 1.13

Cycle RAC

10−1 0.75 1.20 3.29 6.31 14.81 33.88 - 0.61 0.75 1.01 1.60 2.65 4.45 -
10−2 0.73 1.12 2.68 5.97 14.39 33.35 - 0.61 0.74 0.98 1.58 2.62 4.41 -
10−3 0.76 1.11 2.29 5.65 13.86 31.02 - 0.63 0.75 0.98 1.56 2.60 4.27 -
10−4 0.79 1.11 2.23 7.31 14.82 30.74 - 0.67 0.80 1.05 1.68 2.67 4.26 -
10−5 0.97 1.38 2.69 8.64 21.77 31.04 - 0.75 0.90 1.19 1.87 3.10 4.28 -
10−6 1.21 1.82 3.37 12.52 32.76 35.15 - 0.84 1.03 1.32 2.24 3.74 4.56 -

VAR - - 11.54 9.21 8.29 8.27 8.23 - - 1.88 1.89 1.78 1.97 1.80 -

Trig RAC

10−1 0.65 1.08 1.86 3.23 7.25 8.05 - 0.61 0.75 0.97 1.43 2.14 2.16 -
10−2 0.63 0.96 1.53 3.10 7.21 8.02 - 0.61 0.74 0.92 1.41 2.13 2.15 -
10−3 0.64 0.91 1.30 2.74 6.56 8.12 - 0.63 0.75 0.90 1.32 2.01 2.17 -
10−4 0.68 0.98 1.34 1.89 3.74 8.74 - 0.66 0.79 0.92 1.08 1.45 2.24 -
10−5 0.75 1.08 1.51 2.00 2.28 7.94 - 0.69 0.83 0.97 1.11 1.17 2.11 -
10−6 0.83 1.19 1.78 2.49 2.14 6.26 - 0.72 0.87 1.05 1.24 1.15 1.87 -

VAR - - 11.67 9.02 8.78 8.30 8.02 - - 1.84 1.86 2.23 1.79 1.74 -

common practice [50], and also adopted in this work, since
there may be a slight delay after a change occurs. Considering
100 replicates of (21), detection performance is evaluated as:

• For each replicate, false detection is calculated as the
average number of events that are defined as anomalous
when yt /∈ (τ∗, τ∗ + ϑ);

• For each replicate, correct detection is a indicator function
that assumes 1 if an anomaly is detected when yt ∈
(τ∗, τ∗ + ϑ) and zero otherwise.

Table III show the average number of False Detection (FD) and
average Correct Detection (CD) rate over 100 when adopting
ϑ = 20 for both basis Cycle and Trig. Parameters for RAC
were fixed at α = 0.01 and θ = 0.95 and only those results
for parameter configurations rendering CD equal to 1 and
FD less than 20 were displayed. Although only α = 0.01
is reported here, more simulations are available upon request.
Regarding parameter setting of competing methods, Table III
depicts the parameter values with the corresponding notation
of the R packages (otsda, AnomalyDetection and ffstream).
For PEWMA, SD-EWMA, TSSD-EWMA and KNN-CAD the
training set is fixed to 1000 data points. In general we have
selected the default parameters.

The main points from Table III; first, RAC appears accurate
at detecting anomalies due to its high CD rates, and corre-
sponding low FD rates; second the performance of RAC is
somehow dependent on the choice of control parameters; third
in this simulation both choices of basis perform comparably.
Finally, the effect of λ has a different impact regarding estima-
tion and detection performance, where larger λ is associated
with better detection performance.

The poor CD performance of AFF is due to the fact that
it cannot cope with underlying structure in the data. It was
designed to calculate a dynamic average under the assumption
of i.i.d. Gaussian observations. If seasonality is present in
the data, filtering the unconditional mean in this case will
end up resulting in p-values oscillating with the stream’s
unconditional mean.

TABLE III
AVERAGE OF CORRECT (CD) AND FALSE DETECTION (FD) OVER 100

REPLICATES OF THE PROCESS (21). STANDARD DEVIATIONS ARE IN
PARENTHESIS.

RAC (Basis, λ, ηγ ) CD FD

RAC (Cycle, 0.995, 10−1) 1.00 (0.00) 2.03 (1.41)
RAC (Cycle, 0.995, 10−2) 1.00 (0.00) 1.62 (1.30)
RAC (Cycle, 0.995, 10−3) 1.00 (0.00) 1.57 (1.40)
RAC (Cycle, 0.995, 10−4) 1.00 (0.00) 1.72 (1.23)
RAC (Cycle, 0.995, 10−5) 1.00 (0.00) 1.65 (1.14)
RAC (Cycle, 0.995, 10−6) 1.00 (0.00) 1.96 (1.23)
RAC (Trig, 0.995, 10−1) 1.00 (0.00) 9.63 (3.06)
RAC (Trig, 0.995, 10−2) 1.00 (0.00) 10.31 (2.64)
RAC (Trig, 0.995, 10−3) 1.00 (0.00) 11.73 (3.04)
RAC (Trig, 0.995, 10−4) 1.00 (0.00) 12.25 (3.23)
RAC (Trig, 0.995, 10−5) 1.00 (0.00) 12.08 (3.53)
RAC (Trig, 0.995, 10−6) 1.00 (0.00) 11.92 (3.24)

Model CD FD

PEWMA (alpha0 = 0.8, beta = 0.1, l = 3) 1.00 (0.00) 63.37 (7.70)
SD-EWMA (threshold = 0.01, l = 3) 1.00 (0.00) 22.83 (4.27)
TSSD-EWMA (threshold = 0.01, l = 3, m = 5) 0.11 (0.31) 0.02 (0.14)
KNN-CAD (threshold = 1, l = 19, k = 27) 0.82 (0.38) 3.13 (1.23)
S-H-ESD (max anoms = 0.1, period = 100) 0.05 (0.22) 880.26 (30.39)
AFF (eta = 10−6, BL = 1000) 0.42 (0.49) 9.82 (0.73)
CUSUM (k = 0.55, h = 0.5) 0.99 (0.04) 18.00 (0.04)
EWMA (r = 1, L = 3.09) 0.95 (0.20) 0.56 (0.75)

C. Detection performance on real data

In order to provide more insight concerning multiple change
point detection performance, five time series from Twitter
were used. RAC is compared with the state-of-the art methods
discussed above. For comparison, as a scoring function, we
adopt the Numenta Anomaly Benchmark (NAB) [51], which
is an anomaly detector scoring function designed to compare
different algorithms on streaming data.

The NAB scoring method operates on windows and pe-
nalizes false detections outside the anomaly window. Weights
are given to True Positives (TP), False Positives (FP), True
Negative (TN) and False Negative (FN). These windows are
centered around the ground truth anomalies and the scoring
function uses weights for TP, FP, TN and FN chosen by the
user. In case of multiple detections within the same window,
more credit is given to the earliest and counted as true positive,
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Fig. 2. Average quantities of the penalty term γt, p-value with a dashed
horizontal line at the 5% significance level and number of non zero weights
β̂(γt) with a smoothed LOESS curve over 100 Monte Carlo simulations using
Trig basis. The title of the figures shows the parameters ηγ and λ that produces
the minimum Mean Square Error.

while others are ignored. Details are given in [51] and results
obtained here followed the code available in the otsad R
package.

The analysed time series are collections of Twitter ‘men-
tions’ of traded tech companies namely, Apple, Amazon,
Facebook, Google and IBM. Data sets are available at the
NAB repository2 and in the otsad R package. Each time series
value reflects the number of mentions of each company every
five minutes. Average normalized NAB scores (normalized by
the perfect and null detectors’ performance) are presented in
Table IV. For illustration purposes only results with average
normalized scores higher than 30 and positive scores of FP
and FN are presented for RAC. Apart from the S-H-ESD
parameters that followed the implementation available in the

2https://github.com/numenta/NAB

NAB repository, parameters for the competing methods were
set as depicted in III.

TABLE IV
AVERAGE OF NAB NORMALIZED FUNCTIONS OVER 5 TIME SERIES FROM

TWITTER. THE MAXIMUM AND BEST SCORE IS 100.

Model (Basis, λ, ηγ ) NAB Reward FP Reward FN

RAC (Cycle, 0.7, 10−6) 49.88 37.04 56.03
RAC (Cycle, 0.9, 10−1) 31.45 16.75 37.08
RAC (Cycle, 0.9, 10−4) 40.75 28.29 46.05
RAC (Cycle, 0.9, 10−5) 40.88 29.26 46.14
RAC (Cycle, 0.9, 10−6) 51.96 37.08 58.53
RAC (Trig, 0.7, 10−6) 49.88 37.04 56.03
RAC (Trig, 0.8, 10−6) 33.92 24.34 38.17
RAC (Trig, 0.9, 10−1) 32.29 11.97 40.97
RAC (Trig, 0.9, 10−2) 43.42 24.52 51.17

Model NAB Reward FP Reward FN

PEWMA -570.77 -1241.19 -347.18
SD-EWMA -297.04 -693.43 -164.69
TSSD-EWMA 20.54 11.31 24.25
KNN-CAD 62.33 33.73 73.22
S-H-ESD 49.09 14.24 62.17
AFF 8.70 -16.36 18.02
CUSUM 30.21 4.37 40.69
EWMA 25.90 8.91 32.82

The key finding from Table IV is that the performance
achieved by RAC, although slightly better than S-H-ESD
under suitable choice of parameters and worse than KNN-
CAD, is a competitive detector regarding detection score, FP
and FN. Although RAC generates a substantial amount of FP
and FN (see second and third column of Table IV), this can
be controlled by varying the significance level α. The poor
performance of PEWMA and SD-EWMA on this experiment
is due to the fact these two methods are made for stationary
streams.

IV. REAL DATA: CYBER-SECURITY

Cyber-crime is an increasing burden to society, costing
around $600 billion per annum [52]. Operational anomaly
detection methods in this area predominantly rely on signature-
based methods, which seek to identify events and behaviour
of known form [53]. Such methods are incapable of dealing
with so-called “zero-day” attacks – activities that have not
previously been reported [54]. Moreover, the increasing inten-
sity and consequences of cyber-attacks suggest that existing
signature-based methods are insufficient. There is a burgeoning
research area using automatically collected computer and
network data in conjunction with statistical and machine
learning methods which is focused on anomaly detection.
Specifically, detecting departures from “normal” behaviour
[55], [56]. These data-driven methods are intended to com-
plement existing signature-based tools.

There are a number of challenges in developing statistical
methods for cyber-security. Some relate to the volume and
velocity of the data – typical data sources can be vast in a large
enterprise, and as demonstrated later, data can arrive at very
high rates. Another type of challenge relates to practical usage.
Any data-driven anomaly detection method will suffer from
false positives, and these create a misleading and potentially
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costly false signal. In this section we deploy RAC against
cyber-security data sets provided by Los Alamos National
Laboratory (LANL). The data set is described in detail in [53]
and is available online3.

We focus on the host Log data, which comprises a subset of
computer event logs collected from all computers running the
Microsoft Windows operating system on LANL’s enterprise
network. Events from the host log included in the data set
are all related to authentication and process activity on each
machine. We focus on this data source, rather than the more
widely studied Network Flow data because, as noted in [53],
remote attackers and malicious insiders increasingly use en-
cryption, hence reducing the effectiveness of communication-
based detection mechanisms.

There are several kinds of events and log on-types described
by [53]. We only consider those which are driven only by
human behaviour, i.e., which do not run any automated process
periodically. The selected events were
• 4624: An account was successfully logged on;
• 4625: An account failed to logon;
• 4634: An account was logged off;
• 4800: The workstation was locked;
• 4801: The workstation was unlocked;
• 4802: The screensaver was invoked;
• 4803: The screensaver was dismissed.
For each of these event types, we construct a data stream,

y1, y2, ...yt, yt+1, ..., that counts the number of events per
minute. For the LANL data, this yields seven time series,
each consisting of 129600 data points. A one-minute window
is a plausible size in this context, given constraints on data
collection and the requirement for timely detection. We then
want to assess RAC’s performance, in terms of estimation and
detection, compared to AFF, online VAR and NAIVE. For
forecasting accuracy, similar to the simulations in Section III,
MSE and MAE are adopted.

The streams are formed from count data, and hence strictly
non-negative. RAC was not designed to specifically deal with
this case – modifications are possible, though challenging and
hence left to future work. Here, we use a simple rule whereby
negative predictions from RAC are set to zero. While this is
perhaps the crudest possible fix, it can be applied consistently
without computational overhead.

To explore the capabilities of RAC, the results are consid-
ered in three different contexts:
• W: The whole data set for each event will be used, i.e.,
t = 1, ..., 129600;

• At(γt) 6= ∅: Only predictions from those points where at
least one weight of β̂t(γt) is non zero will be considered;

• At(γt) = ∅: Only predictions from those points where
all the weights of β̂t(γt) are equals to zero will be
considered.

The results for estimation metrics considering one step
ahead forecasting error over the sets W , At(γt) 6= ∅ and
At(γt) = ∅ are depicted in Tables V, VI and VII. The initial
values were fixed as follows. For burn-in, we use B = 1440

3https://csr.lanl.gov/data/2017.html

observations, i.e., one day of data. The remaining control
parameters are selected as γ0 = 10, ηγ = 0.01, and λ = 0.6.
The choices of ηγ and λ are the values that produce minimum
MSE in the simulations of Section III, while γ0 was fixed
based on empirical evidence while running the simulations.
Regarding online VAR, we fixed λ = 0.995 which gave the
best result regarding MSE performance in simulations.

Considering the forecasting errors when yt ∈ W , displayed
in Table V, RAC is able to accurately track a complicated
target with underlying structure varying over time. Considering
MSE and MAE, RAC outperform the other methods in all
of the 7 cyber-security examples, regardless of the selected
basis. The complex structure of RAC allows for different
combination of basis functions, and notably allows for all
regression weights to be forced to zero. This provides some
modelling advantage, as the results in Table VI clearly illus-
trate. Such advantage takes into account, for the calculation
of both forecasting metrics, only events where At(γt) 6= ∅,
i.e., ticks of yt where RAC estimates weights β̂t(γt) 6= 0. In
comparing bases, on average, the Trig basis tends to select
more coefficients than the Cycle basis, producing smaller
errors in At(γt) 6= ∅. This can be verified in the last two
columns of Table VI, the total number of points in which
the weights β̂t(γt) are different from zero and the proportion
compared to the total number of observations T = 129000.

Finally, consider At(γt) = ∅, the case in which all RAC
weights β̂t(γt) equal zero. In this case, RAC outperformed the
benchmarks in terms of forecasting performance. This suggests
that RAC is capable of handling periods that are locally
constant, in addition to periods exhibiting high non-linearity.
This also provides evidence about the proposed updates given
by (15) and (16), since the forecast is produced only by the
dynamic intercept β̂(0)

t (γt) in this set.

TABLE V
ONE STEP AHEAD ESTIMATION ACCURACY IN CYBER-SECURITY EVENTS

BY ID USING THE WHOLE SET yt ∈ W .

Basis Error Metric Event AFF VAR NAIVE RAC

Cycle

MSE

4624 103.38 113.58 249.88 62.65
4625 2.12 1.84 4.65 1.13
4634 102.92 113.22 249.13 62.49
4800 15.75 19.73 40.77 10.67
4801 15.24 17.06 37.81 9.77
4802 5.54 5.90 12.83 3.47
4803 22.97 21.84 46.71 14.57

MAE

4624 4.81 5.13 7.60 3.76
4625 0.69 0.65 1.00 0.50
4634 4.80 5.13 7.60 3.76
4800 1.96 2.23 3.15 1.59
4801 1.93 2.09 3.05 1.52
4802 1.31 1.34 1.96 1.00
4803 1.39 1.36 2.01 1.02

Trig

MSE

4624 103.38 113.17 249.88 61.59
4625 2.12 3.17 4.65 1.10
4634 102.92 112.86 249.13 61.99
4800 15.75 20.30 40.77 10.84
4801 15.24 17.53 37.81 9.19
4802 5.54 8.05 12.83 3.26
4803 22.97 25.84 46.71 13.92

MAE

4624 4.81 5.22 7.60 3.75
4625 0.69 0.85 1.00 0.50
4634 4.80 5.22 7.60 3.75
4800 1.96 2.31 3.15 1.59
4801 1.93 2.16 3.05 1.51
4802 1.31 1.60 1.96 0.99
4803 1.39 1.63 2.01 1.01

It is nearly impossible to evaluate detection performance
on real cyber-security data because of the paucity of labels,
i.e., there is no information regarding when, or if, an anomaly
happened [57]. We perform anomaly detection using the
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TABLE VI
ONE STEP AHEAD ESTIMATION ACCURACY IN CYBER-SECURITY EVENTS

BY ID ADOPTING At(γt) 6= ∅.

Basis Error Metric Event AFF VAR NAIVE RAC Size Prop

Cycle

MSE

4624 149.68 172.08 238.24 101.11 26251 20.26%
4625 6.00 5.30 8.53 3.65 12408 9.57%
4634 147.04 170.03 235.85 100.47 26108 20.15%
4800 19.38 25.15 34.90 16.28 26111 20.15%
4801 18.89 21.94 30.67 14.44 26249 20.25%
4802 8.95 10.16 14.13 6.89 28277 21.82%
4803 61.49 51.56 135.17 44.42 27721 21.39%

MAE

4624 4.22 4.43 5.11 3.58 26251 20.26%
4625 1.44 1.39 1.60 1.19 12408 9.57%
4634 4.14 4.35 5.03 3.53 26108 20.15%
4800 1.66 1.87 2.05 1.47 26111 20.15%
4801 1.68 1.83 2.04 1.45 26249 20.25%
4802 1.38 1.41 1.59 1.14 28277 21.82%
4803 1.50 1.50 1.78 1.23 27721 21.39%

Trig

MSE

4624 57.68 66.80 99.75 39.49 51842 40.00%
4625 0.91 1.18 1.59 0.53 70446 54.36%
4634 57.06 66.41 101.59 40.71 51798 39.97%
4800 7.38 10.31 17.04 7.09 51580 39.80%
4801 6.51 8.12 13.05 4.64 51966 40.10%
4802 3.84 4.93 6.83 2.55 56723 43.77%
4803 30.30 30.07 38.37 14.58 54464 42.02%

MAE

4624 2.03 2.33 2.83 1.74 51842 40.00%
4625 0.29 0.34 0.38 0.23 70446 54.36%
4634 2.08 2.37 2.89 1.79 51798 39.97%
4800 0.93 1.12 1.32 0.83 51580 39.80%
4801 0.87 1.00 1.21 0.75 51966 40.10%
4802 0.84 0.93 1.08 0.66 56723 43.77%
4803 0.90 0.98 1.15 0.70 54464 42.02%

TABLE VII
ONE STEP AHEAD ESTIMATION ACCURACY IN CYBERSECURITY EVENTS

BY ID ADOPTING At(γt) = ∅.

Basis Error Metric Event AFF VAR NAIVE RAC

Cycle

MSE

4624 91.04 98.51 251.99 52.63
4625 1.71 1.47 4.23 0.87
4634 91.24 98.69 251.67 52.75
4800 14.72 18.35 42.06 9.21
4801 14.22 15.80 39.48 8.55
4802 4.56 4.69 12.41 2.49
4803 12.21 13.63 22.09 6.27

4624 4.95 5.31 8.23 3.80
4625 0.61 0.57 0.93 0.43
4634 4.96 5.32 8.24 3.82

MAE

4800 2.03 2.33 3.42 1.62
4801 1.99 2.16 3.31 1.54
4802 1.29 1.33 2.06 0.96
4803 1.35 1.32 2.06 0.96

Trig

MSE

4624 133.09 144.66 348.84 75.99
4625 3.55 5.60 8.29 1.78
4634 132.72 144.36 346.28 75.82
4800 21.14 27.03 56.21 13.24
4801 20.96 23.95 54.20 12.19
4802 6.82 10.53 17.42 3.78
4803 17.27 22.72 52.01 13.21

MAE

4624 6.64 7.18 10.77 5.07
4625 1.16 1.47 1.73 0.82
4634 6.61 7.16 10.72 5.04
4800 2.63 3.11 4.34 2.09
4801 2.63 2.95 4.28 2.02
4802 1.68 2.13 2.63 1.24
4803 1.73 2.10 2.63 1.24

approach described in Section II-F, fixing a FF θ = 0.95
and α = 1/B, i.e., we intend to capture 1 anomaly per day.
Figure 3 show six days of the first week of LANL’s host log
data set for one of the described events (4803), excluding
the first day, which was used as burn-in. The vertical lines
make reference to detected anomalies. Some of them seem to
capture unusual patterns, but as argued we cannot prove these
are actual anomalies due to the absence of labelled data.

V. CONCLUSION

This paper propose RAC, a framework to estimate, forecast
and perform anomaly detection in streaming data environ-
ments. Empirical results regarding estimation and detection
performance, both for simulated and real data sets, provides
evidence that our proposed framework is able to track a
moving target, and identify changes in local structure.
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Fig. 3. RAC detection performance using Cycle basis (top) and Trig basis
(bottom) on the event 4803. Vertical dashed lines are flagged change points,
i.e., pt < 1/B.

In the cyber-security example, the forecasting accuracy of
RAC was better than existing methods for almost all of the ID
events. Additionally, both bases proposed to sequentially fit the
underlying structure of the signal, namely Trig and Cycle had
excellent performance. Regarding the detection performance,
we could only evaluate it in simulation studies, due to the fact
that LANL’s cyber-security data set is unlabelled. Still, RAC
performed well when comparing correct and false detection
rates against the benchmarks.

For future work, we mention a few possible extensions of
this framework. Firstly, sequential prediction intervals might
be calculated adapting the results of [58] to a time-varying
penalty term γt. Secondly, extensions respecting the range of
response, essentially extending the framework to the coverage
of GLMs.
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