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Abstract

Modal analysis is a well-established method for analysis of linear systems, but its extension to non-linear
structures has proven to be much more problematic. Several competitive definitions of non-linear modes and
a variety of experimental methods have been introduced. In this paper, the definition of complex non-linear
modes (CNMs) of mechanical systems is adopted and the possibility of their identification from experimental
free decay responses using the Hilbert-Huang transform (HHT) is explored. It is firstly discussed that since
there are similarities in the definition of intrinsic mode functions obtained using the HHT and reduced order
model of slow-flow dynamics based on the CNMs, there is a reason to believe that the HHT can indeed
extract the CNMs. This paper, however, presents a new insight into the use of the Hilbert-Huang transform
by showing that the amplitude-dependent frequency and damping extracted from a free decay response are
only suitable for detection and characterisation of non-linearities, but they cannot be used to quantify the
non-linear behaviour by fitting the CNMs even if a model of the system is known. The analytical proof of the
HHT cannot be currently formulated due to a limited understanding of its empirical nature. Instead, this
unconventional conclusion is supported by a series of numerical studies of conservative and non-conservative
non-linear systems with a wide range of parameters. In all cases, a special care is taken to apply the basic
HHT only on such signals for which mode separation is possible (no mode-mixing occurs). This eliminates
the need for more sophisticated HHT versions and clearly demonstrates the inability of the HHT to extract
CNMs even for the simplest cases. In addition to numerical studies, the identification of several non-linear
modes is demonstrated experimentally using the free decay responses obtained from the ECL benchmark. It
is shown that the HHT is able to successfully extract several non-linear modes whose character correspond
to the numerical reference, but which cannot be used to quantify the system parameters due to conclusions
made in this paper. The findings highlight that the ability of the HHT to quantify non-linear behaviour using
non-linear modes extracted from free decay responses is severely limited, while detection and characterisation
of non-linear behaviour in a non-parametric manner is feasible.

Keywords: Hilbert-Huang transform, Complex non-linear modes, Reduced order model, Slow-flow
dynamics, Non-linear system identification

Highlights

• Identification of complex non-linear modes using the Hilbert-Huang transform (HHT) is presented

• The ability of the HHT to identify the complex non-linear modes is numerically investigated

• The findings highlight that the HHT can detect and characterise, but not quantify, non-linear behaviour
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• The estimation of complex non-linear modes is also demonstrated experimentally

Nomenclature

Symbol Description
a(t) Instantaneous amplitude
cnl Non-linear damping coefficient
c(t) Intrinsic mode function

C
(k)
m Correlation coefficient for the k-th mass and m-th mode

d(t) Logarithm of the instantaneous amplitude
emin, emax Upper and lower envelope
E Young’s modulus
f(t) Instantaneous frequency
f Vector of non-linear forces
h(t) Proto-mode function
knl Non-linear stiffness coefficient
L, W Length of a beam and width of its cross section
m, c, k Mass, damping and stiffness coefficient
M, C, K Mass, damping and stiffness matrix
Nh Number of harmonics
NIMF Number of intrinsic mode functions
q Modal amplitude
r(t) Residuum
t Time
t Complex vector for phase normalisation
x(t) Displacement
x(t), ẋ(t), ẍ(t) Vectors of displacement, velocity and acceleration
z(t) Analytic signal
α, β Coefficients of viscous proportional damping
δ Damping rate
ζ Damping ratio
θ(t) Phase
Θ(t) Slow phase
λ Complex fundamental eigenfrequency
ννν Manifold
ρ Density
φ(t) Fast phase
φφφ Estimated non-linear mode
ΨΨΨ Complex eigenvector
ω Angular frequency
Ω Excitation frequency
pv Cauchy principal value of the integral
〈 , 〉 Operator of generalised Fourier coefficients
•̃ Hilbert transform
AFT Alternating frequency-time procedure
CNM Complex non-linear mode
CxA Complexification-averaging

ECL École Centrale de Lyon
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
FE Finite element
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FFT Fast Fourier transform
FRF Frequency response function
HHT Hilbert-Huang transform
HHSA Holo-Hilbert spectral analysis
HT Hilbert transform
IA Instantaneous amplitude
IF Instantaneous frequency
IMF Intrinsic mode function
MDOF Multi-degree-of-freedom
NNM Non-linear normal mode
ROM Reduced order model of slow-flow dynamics based on CNMs
SDOF Single-degree-of-freedom
WBEMD Wavelet-bounded empirical mode decomposition
ZC Zero-crossing

1. Introduction

Modal analysis is a well-established method for the analysis of linear dynamic structures [1], but its
extension to non-linear structures has proven to be much more problematic. Some might even question the
philosophy of non-linear modal analysis as pointed out in [2, 3]. Nonetheless, a number of viewpoints on
non-linear modal analysis exists, each of which tries to preserve a subset of properties of the original linear
modal analysis. The non-linear modes have been actively studied for several decades so a range of methods
for their numerical computation [4] as well as experimental investigation [5, 6] have been developed, and a
number of reviews have been written [7–12].

Non-linear normal modes (NNMs) were originally defined as motions in unison of a conservative sys-
tem [13]. Such definition requires all points of the system to reach their extreme values and pass through
zero simultaneously. However, this definition could not capture modal interactions during which the peri-
odic motion consists of at least two interacting modes of different frequencies, and the system can no longer
vibrate in unison. To account for modal iterations, the original definition must have been later extended,
defining an NNM as a non-necessarily synchronous periodic motion of a conservative mechanical system.
This definition has been adopted in a number of studies [7, 14–17], partly because it enables an effective
numerical computation of NNMs [4]. The NNMs can generally undergo bifurcations and stability changes,
and experience internal resonances. However, they are not defined in the presence of damping (although
the dynamics of lightly damped non-linear systems may be sometimes still interpreted using NNMs of un-
derlying conservative systems [7]). At the same time, however, complex damping mechanisms can occur
in engineering assemblies, for instance in form of joints and interfaces, and even linear viscous damping
of components may sometimes significantly alter the dynamics of a structure. Therefore, an alternative
definition of NNMs for damped systems was proposed in [18]. In this approach, an NNM is defined as a
two-dimensional surface, termed invariant manifold, in the phase space. Trajectories of motions that started
on this manifold remain on it for all time so the system effectively behaves as a non-linear SDOF system.

More recently, complex non-linear modes (CNMs) have been proposed in [19] and their use has been
extended for non-linear modal synthesis, harmonically forced and self-excited systems in [20]. A complex
non-linear mode of motion is defined as an oscillation of the autonomous system with (potentially) a phase
difference between its degrees of freedom. The CNMs allow direct computation of amplitude-dependent
frequency, damping and mode shape at the resonance in a timely-fashion. Moreover, the numerical imple-
mentation of the CNMs does not require significant modifications to conventional harmonic balance solvers.
The ability of CNMs to deal with large non-conservative systems and general types of non-linearities led to
their application to bladed disks coupled by mechanical joints with friction interfaces [19, 21, 22]. In [23],
the CNMs were used for the derivation of reduced order models (ROM) of slow-flow dynamics of the system.
The concepts of CNMs and ROM are adopted throughout this study.

There is a great number of methods for non-linear system identification available in literature. They
can be divided into a number of groups as in [24], including time-domain (e.g. restoring force surface [25],
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NARMAX [26]) and frequency-domain methods (e.g. Volterra series [2]), time-frequency analysis (e.g. Short-
time Fourier transform [27], Wavelet transform [28]) and structural model updating. Each group of methods
is suitable for a different application and provides different information. Some of them also require a special
type of excitation. Therefore, not all of them can be used to identify the non-linear modes. Non-linear modes
are often investigated using phase resonance testing (also known as force appropriation) [14, 15, 17, 29],
which eliminates the need to decompose measured signals. However, multi-modal non-linear identification
through the direct decomposition of experimental measurements by the Hilbert-Huang transform into a set
of oscillatory functions has also been presented in a number of papers [30–35]. It is said that such functions
do not generally correspond to non-linear modes because of the absence of the superposition principle in non-
linear dynamics although they may constitute some approximations of them. The strength of the approaches
based on the direct decomposition of measured time series is that they require no a priori characterisation
of the observed non-linearities, and are generally applicable to non-stationary signals.

The Hilbert-Huang transform (HHT) [36] is potentially better than any time-frequency analysis method
as it does not use a priori chosen basis for decomposition. It is therefore fully adaptive so it requires no a pri-
ori knowledge of the system or non-linearity. The HHT maps a time series into a time-frequency-amplitude
distribution by a two-step procedure. In the first step, a complicated (potentially) multi-component, non-
linear and non-stationary time series is decomposed into oscillatory functions, termed intrinsic mode func-
tions (IMFs), by the empirical mode decomposition (EMD). Consequently, the instantaneous frequency and
amplitude are estimated from IMFs by the Hilbert transform (HT) or other methods [27, 32, 37]. The
HHT is a versatile tool which has attracted a widespread interest in many fields, including structure dy-
namics where it has been used for experimental and operational modal analysis [38–40], structural health
monitoring [41], and parametric and non-parametric identification [42–47]. Despite not having a rigorous
mathematical background, the method has a solid logical justification as evidenced by a number of suc-
cessful studies. In addition, physics-based foundations of the EMD were derived in [33, 48]. Specifically,
it was shown how IMFs relate to the slow-flow dynamics models derived by the complexification-averaging
technique (CxA).

The objective of this paper is to show how the Hilbert-Huang transform can be used to identify the
complex non-linear modes from free decay responses and to assess the accuracy of the identified modes.
The possibility of identifying the CNMs by the HHT and the assessment of their accuracy have not been
previously published. Firstly, it is discussed that there is a reason to believe that complex non-linear
modes can be indeed identified by the HHT due to a number of similarities between the intrinsic mode
functions extracted by the HHT and reduced order model of slow-flow dynamics obtained by the CNMs.
This assertion is investigated numerically using a wide range of non-linear MDOF systems with different
types of non-linearities. The focus of the paper is solely on free decay responses i.e. the responses of MDOF
system in which several modes are excited at the same time, because it was already shown in [20] that
the resonant decay response and slow-sweep responses exactly correspond to reduced order modes based on
complex non-linear modes. Since the HHT does not have to be applied in those case, they are not interested
from the point of view of presented topic and are not therefore described hereafter.

The paper is organised as follows: Section 2 gives a brief introduction to the theory of the Hilbert-Huang
transform, complex non-linear modes, reduced order model and complexification-averaging technique. In
section 2.5 the reasons supporting the existence of the relation between the HHT, CNMs and CxA are given.
Then, the ability of Hilbert-Huang transform to identify complex non-linear modes is numerically assessed
in section 3 using a number of MDOF non-linear systems. The experimental demonstration is also presented
in section 4 where it is shown how the HHT can recover several complex non-linear modes from a single free
decay response. Section 5 discusses a range of validity and implications of the obtained results and finally,
the conclusions are drawn in section 6.

2. A brief theoretical background of the used methods, techniques and concepts

In this section a brief description of used methods, techniques and concepts is given, namely the Hilbert-
Huang transform is described in section 2.1, complex non-linear modes in section 2.2, reduced order model
in section 2.3 and complexification-averaging in section 2.4. Although similar description can be found
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elsewhere, it was deemed appropriate to present it in this paper in order to provide enough details that are
needed to discuss why the Hilbert-Huang transform should be able to identify complex non-linear modes.

2.1. The Hilbert-Huang transform

The Hilbert-Huang transform (HHT) consists of two steps - the empirical mode decomposition which al-
lows a multi-scale decomposition of a signal in terms of oscillatory functions, and a method for instantaneous
frequency and amplitude estimation.

2.1.1. The empirical mode decomposition

The basic idea of the empirical mode decomposition (EMD) is to decompose a (potentially) non-
stationary and non-linear time series into a set of intrinsic mode functions (IMFs), each evolving at a
different characteristic time scale, in an ad hoc manner requiring no a priori system information.

The basic algorithm of the EMD can be described in the following steps [36].:

1. Identify maxima and minima of the multi-component signal x(t)

2. Interpolate these maxima and minima to create the upper emax(t) and lower emin(t) envelope

3. Compute the mean of the signal m(t) = (emin(t) + emax(t))/2

4. Construct the first proto-mode function h1(t) = x(t)−m(t)

5. The component h1(t) is considered as the first IMF c1(t) if it satisfies two basic properties: (i) the
number of extrema and zero-crossing differs by no more than one, and (ii) it has zero local mean. In
practice, the latter conditions means that the mean m(t) is globally smaller than a defined tolerance

6. If h1(t) is not an IMF, repeat the previous steps (referred to as a sifting process) while treating h1(t)
as the signal instead of x(t)

7. Once the first IMF c1(t) is found, the following IMFs can be extracted from the residue r(t) =
x(t)− c1(t) by repeating the process

8. The iterative process ends when the residue rNIMF(t) (after NIMF IMFs have been extracted) becomes
a monotonic trend or smaller than a defined tolerance

The original response x(t) can be reconstructed by summarising all the IMFs ci(t) and the residue r(t)

x(t) = c1(t) + c2(t) + · · ·+ cNIMF
(t) + r(t). (1)

Because the EMD explores sequentially the different time scales in the data, the components are estimated
from the highest-frequency to the lowest-frequency components. That means that the lowest-frequency
components may be influenced by numerical imperfections in the sifting process.

The mode mixing is of a particular concern in non-linear system identification, where is usually attempted
to separate all structural modes (whose number must be known beforehand). The mode mixing refers to the
fact that two or more mono-component functions with different time scales are combined or that a part of a
mono-component function is estimated in a different IMF. The latter issue, also referred to as a frequency
resolution of the EMD [49], can be a key limitation while using the HHT in structural dynamics where
vibration modes are typically investigated. Some modes might be closer to each other than others, so care
should be taken to extract all mode correctly.

The frequency resolution of the EMD was numerically and analytically studied in [49, 50]. Based on this
analysis, the following criteria were established

1. Modes are separable by the EMD if

af ≥ 1 and f2 > 1.67f1 (2)

2. Modes cannot be separated by the EMD if

af2 ≤ 1 (3)
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3. The EMD does something else and the result depends on the phase between the modes if

af < 1 and af2 > 1 (4)

where f = f2/f1 is the ratio of two adjacent modes (f2 ≥ f1) and a = a2/a1 is the ratio of their am-
plitudes (a2 ≤ a1). These criteria are valid for the basic algorithm of the EMD where the spline fitting
is used to estimate the upper and lower envelopes, and can be used as a measure of close spaced modes.
Consequently, the following discussion is only meaningful for well spaced modes (as defined by Eq. (2)),
because only under this condition the modes can be extracted using the HHT.

To overcome the frequency resolution problem, several alternatives of the EMD have been developed, for
instance, the application of a masking signal [48, 51], ensemble empirical mode decomposition (EEMD) [52],
empirical mode decomposition using unconstrained optimisation [53] or wavelet-bounded empirical mode
decomposition (WBEMD) [54]. Although the frequency resolution of the EMD can be improved, all the
above mentioned advanced EMD schemes require addition insight into data, and might sometimes be difficult
to use. Furthermore, for signals which can be separated by the EMD as defined by Eq. (2), the IMFs
extracted by the basic EMD and by any of the advanced EMD schemes should be the same. Therefore,
it is emphasised that the basic EMD used in this paper does not present a limitation with regards to the
assessment of the accuracy of the estimated complex non-linear modes presented in section 3. All findings
would be the same if another version of the EMD was used.

2.1.2. Instantaneous frequency and amplitude estimation

Having applied the EMD to a multi-component signal, the IMFs are obtained. The IMFs c(t) (excluding
the residuum) are single (narrow-band) frequency components, so the instantaneous frequency (IF) and
amplitude (IA) can be estimated.

Traditionally, the Hilbert transform (HT) is used for this task [32, 36, 55, 56]. Once the HT c̃(t) has
been found, the analytic signal z(t) can be derived as

z(t) = c(t) + ic̃(t) = a(t)eiθ(t) (5)

and the instantaneous amplitude a(t) and instantaneous phase θ(t) can be calculated as

a(t) = |z(t)| =
√
c2(t) + c̃2(t), θ(t) = arg(z(t)) = arctan

(
c̃(t)

c(t)

)
, (6)

respectively. The instantaneous frequency is then defined as the time derivative of the instantaneous phase

f(t) = 2π
dθ(t)

dt
. (7)

There are several issues whist evaluating the IF using the HT as discussed in [27, 32, 37, 57]. Therefore,
a zero-crossing (ZC) method [58], which is particularly appealing for its effectiveness and simplicity, is used
instead. The method is particularly useful for non-parameter identification, because it usually does not
require any smoothing, thereby avoiding unnecessary truncation of results. The IF is determined from the
inverse of the period over one complete vibration cycle and is assigned to the zero-crossing time at the centre
of this cycle

f(ti) = 2π(ti+1 − ti−1)−1. (8)

The IA is found using the first-order polynomial interpolation of the absolute maxima of the signal. The
values of these polynomials are evaluated at the zero-crossing times ti. Thus, a set of discrete values
(f(ti), a(ti)) is obtained. This set does not characterise the IF and IA locally (for all time), but with one
cycle accuracy. On the other hand, this method removes the need to average the intra-wave modulation
frequency.

6



2.1.3. Non-linear modes extraction

To comply with the CNMs definition in section 2.2, the IF and IA should be as smooth as possible so
the ZC method is preferable and additional smoothing can be also recommended for experimental data. It
is also necessary to note that the IF and IA should be known for all sampled time points of the original
signal. Therefore, if the ZC method, which estimates the IF and IA in the discrete zero-crossing times, has
been used, the IF and IA must be fitted either by polynomials or splines.

The instantaneous frequency ω(t) = ωkm(t) = 2πfkm(t) and amplitude a(t) = akm(t) of the m-th vibration
mode measured in k-th location, are used to compute the natural frequency using the Freevib algorithm [59,
60] as

ω0(t)2 = ω(t)2 − ä(t)

a(t)
+

2ȧ(t)2

a(t)2
+
ȧ(t)ω̇(t)

a(t)ω(t)
. (9)

Often, it is possible to neglect the second-order terms and higher derivatives [32], so the natural frequency
is well approximated by the measured IF, i.e. ω0(t) ≈ ω(t).

The viscous damping rate δ(t) = δkm(t) of the m-th mode measured in k-th location can be also evaluated
based on the Freevib algorithm as

δ(t) = − ȧ(t)

a(t)
− ω̇(t)

2ω(t)
. (10)

However, it is known that the damping estimation in this way can be sometimes quite inaccurate even for the
Duffing oscillator [27] due to the need to evaluate the derivatives of the amplitude and frequency. Therefore,
it can be sometimes better to assess the linear viscous damping by examining the logarithmic value of the
amplitude

dkm(t) = log(akm(t)). (11)

It is well known that dkm(t) is a straight line when the system is linear so the factor dkm(t) indicates the
deviation from the linear damping.

The fundamental amplitude of the m-th mode shape |φkm(t)| measured in k-th location can be determined
from the instantaneous amplitude as

|φkm(t)| = akm(t)

ak0m (t)
(12)

where k0 is the index of a selected (normalisation) location. The difference between the phase angle of two
modal elements φkm(t) and φk+1

m (t) can be determined from

∠φkm(t) = θkm(t)− θk+1
m (t), (13)

where θ(t) is the instantaneous phase defined by Eq. (6).
Absolute values and phase angles of all modal elements relative to the selected element can be determined

and the mode shapes vector φφφm = [φ1
m, φ

2
m, . . . , φ

k
m]T assembled. Eventually, for m-th mode and k-th

measured location, the frequency ωkm, damping δkm and mode shape φφφm are identified. This set of modal
properties can be used for detection and characterisation of structural non-linearities as detailed in [50], but
not for their quantification as evidenced by the numerical studies performed in this paper.

2.2. Complex non-linear modes of mechanical systems

Consider an autonomous general dynamic system governed by

Mẍ(t) + Cẋ(t) + Kx(t) + f(x(t), ẋ(t)) = 0, x(0) = x0, ẋ(0) = ẋ0 (14)

where M is a mass matrix, C is a linear damping matrix, K is a linear stiffness matrix, and x(t) is a
vector of generalised coordinates. The operator f(x, ẋ) comprises all non-linear effects, which depend on the
displacement and velocity. In line with the definition of the complex non-linear mode, the motion is sought
in the form [19]

x(t) = q<

{
Nh∑
n=0

ΨΨΨnenλt

}
, (15)
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where q is a modal amplitude, λ is a complex fundamental eigenfrequency, n is the index of harmonics, and
ΨΨΨn is a multi-harmonic complex eigenvector. Unlike in the linear modal analysis, the complex eigenvector
is approximated by a truncated Fourier series, thereby having Nh components. The complex fundamental
eigenfrequency λ relates to an undamped natural angular frequency ω0 and a damping ratio ζ as

λ = −ζω0 + iω0

√
1− ζ2. (16)

A set of unknown parameters λ, ΨΨΨ0, ΨΨΨ1, . . . ,ΨΨΨNh
can be then regarded as amplitude-dependent modal

properties.
Equation (15) is submitted to Eq. (14) and subsequent Fourier-Galerkin projection yields the following

non-linear system of algebraic equations [19, 23][
(nλ)2M + nλC + K

]
ΨΨΨnq + 〈f(xp, ẋp), einω0t〉 = 0, for n = 0, . . . , Nh. (17)

For the computation of the generalised Fourier coefficients 〈f(xp, ẋp), einω0t〉 of non-linear effects, a periodic
formulation of displacement xp(t) and velocity ẋp(t) are used (instead of the pseudo-periodic formulation
defined by Eq. (15)), i.e.

xp(t) = q<

{
Nh∑
n=0

ΨΨΨneinω0t

}
, ẋp(t) = q<

{
Nh∑
n=0

inω0ΨΨΨneinω0t

}
. (18)

Although this periodic formulation is an approximation, it is justified [19, 22] by realising that the decrease
of amplitude due to damping is relatively small within one period of motion. The periodic definition
allows an effective numerical evaluation (analytical is rarely possible) of the generalised Fourier coefficients
〈f(xp, ẋp), einω0t〉. The same Fourier coefficients are used in a conventional harmonic balance method so all
the approaches developed therein can be used here too, including the alternating frequency/time-domain
(AFT) procedure [19, 22, 61, 62] and condensation of the problem into the non-linear degrees of freedom [20].

Equation (17) cannot be solved directly because the number of unknowns is greater than the number
of equations. Therefore, similarly to the linear modal analysis, normalisation conditions must be added.
Several normalisation schemes have been proposed, for instance using the modal amplitude [19, 22] or
kinetic energy [20]. However, the normalisation with respect to the mass matrix [23] is the most beneficial
for the computation of the ROM and is also consistent with the normalisation in the linear modal analysis.
Two normalisation conditions must be enforced

ΨΨΨH
1 MΨΨΨ1 = 1, <{tHΨΨΨ1} = 0, (19)

where t is a complex vector. The first condition represents an amplitude constrain while the second serves
as a phase normalisation.

The frequency-domain solution of the non-linear eigenproblem given by Eq. (17) subjected to normal-
isation conditions given by Eq. (19) can be found using a Newton-Raphson method in conjunction with
numerical continuation on modal amplitude such that q ∈ (qmin, qmax). The linear modal properties may be
used as a suitable starting guess.

2.3. Reduced order model of slow-flow dynamics

Having obtained the amplitude-dependent modal properties, the reduced order model of slow-flow dy-
namics can be derived. The slow-flow dynamics relies on the partition of the motion to fast (the frequency
of oscillation) and slow dynamics (slowly varying amplitudes and phases). The ROM of slow-flow dynamics
represents the system by slowly-varying variables and it is restricted to a regime where no modal interaction
occurs.

The ROM based on CNMs can be derived by a modified complexification-averaging (CxA) technique [23].
The displacement and velocity are firstly transformed using complex variables as

x(t) = q
ννν(q, ϑ) + ννν(q, ϑ)∗

2
, ẋ(t) = iΩq

ννν(q, ϑ)− ννν(q, ϑ)∗

2
, (20)
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where the asterisk marks a complex conjugate, the manifold ννν(q, ϑ) is generally equal to

ννν(q, ϑ) =

Nh∑
n=0

ΨΨΨneinϑ, ϑ = ϑ(t) = φ(t) + Θ(t), q = q(t), (21)

and the angular frequency Ω is the time derivation of the fast phase φ(t). The angular frequency relates to
the excitation force (the right-hand side of Eq. (14)). For an autonomous system, no excitation is present, so
Ω = ω0. Non-autonomous systems are not treated in this study so the corresponding theory is not presented
and can be found in [23, 50].

An important aspect of the formulation in Eq. (21) is that the total phase ϑ(t) combines fast φ(t) and
slowly Θ(t) varying components. The fast varying phase can be removed by an averaging process (detailed
in [23]), and the amplitude q(t) and slow phase Θ(t) can be computed from an averaged system

q̇ = −2ζω0q and Θ = Θ0. (22)

This system of non-linear differential equations can be numerically solved, provided that the initial conditions
q0,Θ0 are given.

2.4. Complexification-averaging technique

The complexification-averaging (CxA) is an analytical technique that derives a slow-flow model of a
system by partitioning its response into slow and fast components [30, 33, 48]. Such decomposition is possible
when the response is composed by a number of well-separated dominant fast-frequency (ω1, ω2, . . . , ωN )
components, so the response x(t) can be expressed as the sum of these components

x(t) = y1(t) + y2(t) + · · ·+ yN (t). (23)

For each component, a new complex variable is introduced

ψm(t) = ẏm(t) + iωym(t) = ϕmeiωmt, m = 1, 2, . . . , N (24)

where eiωmt represents the fast component and ϕm is the slow complex component. The latter can be
expressed in the polar coordinates as

ϕm = a(t)eiΘ(t), (25)

where a(t) is the amplitude and Θ(t) is the slowly varying phase. By submitting Eq. (24) into the equation
of motion (Eq. (14)) and applying the method of multiphase averaging, the fast-frequency components can
be removed, and an averaged system governing the slow-flow dynamics obtained

Φ̇ΦΦ = F(Φ), Φ = [ϕ1, ϕ2, . . . , ϕN ]T. (26)

The operator F can become quite cumbersome even for small systems. For example, for the two-degree-
of-freedom system studied in section 3.1 the operator can be found in [33]. The slowly varying amplitude
and phase are then obtained by solving this averaged system. In some cases, the system can be even solved
analytically and this is often the reason why the CxA is used to study non-linear systems. The application
of the method is limited to small academic systems with simple polynomial non-linearities.

2.5. Can complex non-linear modes be estimated using the Hilbert-Huang transform?

The previous section introduced the theoretical background of the used methods, techniques and con-
cepts. In this section, several arguments which aim to support why the Hilbert-Huang transform should
be able to estimate the complex non-linear modes will be given. The argumentation is similar to [33, 48]
where it was shown that the slow-flow dynamics derived by the CxA relates to the IMFs. The relation was
not proven mathematically, but rather supported by a number of similarities in the formal definitions of
equations governing the CxA and HHT.

Based on the previous research it can be hypothesised that the reduced order model of slow-flow dynamics
creates the link between the HHT and CNMs in the same way as between the HHT and CxA. The hypothesis
is supported by the following arguments:
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• The representation of the total response is consistent in all three methods (HHT, CxA and ROM
based on CNMs). The HHT and CxA assume that the total response can be expressed as the sum
of well separated mono-components (Eq. (1) and Eq. (23), respectively). Although the ROM is only
exact in a close proximity of the mode, it has been already suggested in [23] that by superimposing
the responses of different modes (which are always mono-component functions), the approximation of
the total response can be obtained. Moreover, [63] presented that the concept of invariant manifold
also leads approximately to the total response. Since CNMs trace trajectories on this manifold, their
superposition should also lead to the approximation of the total response.

• All the methods share a common representation of dynamics. The methods partition the dynamics
into slow and fast components. Although this partition is not a priori enforced in the HHT, the HHT
always leads to it as evidenced by analytic signal analysis [48]. The slow-fast partition is also a key
concept of the CxA and ROM based on CNMs given by Eq. (24) and Eq. (21), respectively.

• All three methods represent the signal in the complex domain, and these representations are compara-
ble. Each method transforms a real-valued response into the complex domain. This complexification
is carried out by the Hilbert transform (see Eq. (5)) in the Hilbert-Huang transform and by Eq. (24)
in the CxA. It might be argued that the complexification is merely a cosmetic choice, but it was shown
that these two complexifications are closely related [48]. The complexification used in the ROM based
on CNMs given by Eq. (20) is essentially the same as the one used in the CxA. The difference is that
the scalar complex variable in the CxA is replaced by the multi-component complex manifold in the
ROM based on CNMs.

• The relation between the HHT and CxA was numerically demonstrated in [30, 33, 48] and the numerical
investigation is also carried out in section 3 to assess the accuracy of the complex non-linear modes
identified by the Hilbert-Huang transform. It will be also shown in section 4 that the HHT can extract
several non-linear modes from an experimentally measured free decay response.

Based on these similarities, it can be hypothesised that the response of the ROM of slow-flow dynamics
derived from CNMs corresponds to the IMFs obtained by the EMD. By extension, this means that the
HHT can be used to identify the CNMs of mechanical systems. If the hypothesis is proven to be true, the
HHT can be used as a means of non-linear modal analysis, i.e. to extract the CNMs from experimental
data which would be used to quantify the system’s parameters. It is not possible to mathematically prove
this hypothesis due to the empirical (the HHT does not possess a rigorous mathematical background) and
numerical (analytical solution for CNM and ROM cannot be obtained even for simple cases) nature of
involved methods. Therefore, it is investigated using a range of numerical examples and parametric studies.

3. Numerical studies

In the previous section, it was argued that there are several reasons to believe that the HHT can recover
CNMs from free decay responses. However, since this assertion cannot be proven mathematically, a range
of numerical studies is carried out in this section.

Resonant decay responses and slow-sweep responses are not studied in this paper since it has been already
shown [23, 50] that such responses matched the reduced order model exactly. On the other hand, free decay
responses computed for general initial conditions are studied extensively, because they cannot be directly
compared to the ROM, the EMD must be applied. A free decay is the most relevant type of data with
regards to the presented topic. Free decays can be easily experimentally obtained from the hammer impact
test [1] which excites several modes over a large frequency range simultaneously. Because the impulse is
still finite, only the first few modes are usually excited. Numerically, similar free decays can be obtained
by the numerical integration of an autonomous system subjected to the general initial conditions. The
difference between the measured and computed free decay is that the computed one consists of all modes of
the structure.
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3.1. A system with cubic hardening stiffness

A simple two-degree-of-freedom system with a cubic hardening stiffness is considered. The same system,
sometimes with the same parameters, has been studied in many publications, including [7, 15, 20, 23, 33, 64].
Since it is so often used, it is studied here in more detail than other systems. The system consists of two
masses connected by three linear springs as depicted in Fig. 1. The non-linear (cubic hardening) stiffness is

m1

k2

x2(t)x1(t)

k12

knl

k1

m2

Figure 1: A two-degree-of-freedom system with a cubic hardening stiffness

located between the left mass and the ground and the system is allowed to vibrate only in the horizontal
direction.

This system can be described by Eq. (14), in which

M =

[
m1 0
0 m2

]
, K =

[
k1 + k12 −k12

−k12 k2 + k12

]
, f(x, ẋ) =

[
knlx

3
1

0

]
, (27)

where the parameters chosen in this part of the study are the same as in [7, 23], i.e. m1 = m2 = 1 kg,
k1 = k2 = k12 = 1 N m−1, knl = 0.5 N m−3 and modal damping ratio of 1% is also introduced.

Many more parameters variations (namely non-linear stiffness coefficients, modal damping ratios, and
initial conditions) will be used in section 3.1.1 and section 3.1.2 to assess how accurate the estimated CNMs
are.

The computed backbones, normalised mode shapes and a set of frequency response functions (computed
using the harmonic balance method) can be seen in Fig. 2. It is clear that both modes are non-linear
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Figure 2: The computed backbones (black) and normalised mode shapes (blue) of the system with cubic hardening stiffness.
The frequency response functions (grey) from both masses were added to highlight their relation to the non-linear modes.

and exhibit the hardening behaviour. The relation between the non-linear modes and FRFs is also seen,
i.e. all backbones pass the maximum amplitudes of the FRFs. The computed damping (not shown) is
not amplitude-depended and it is equal to the selected modal damping. The small insets in Fig. 2 depict
the normalised mode shapes to emphasise the difference between the dynamics for the first and second
mode. At the first mode, where both masses vibrate in phase, the amplitude of mass 1 is lower than the
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amplitude of the mass 1 at high amplitudes. Whereas at the second mode, the response of the first mass
becomes dominant at high amplitudes. These results are consistent with the non-linear modes presented,
for example, in [7, 23]. The backbones are used to compute the ROM of slow-flow dynamics which is then
compared with the extracted IMFs. It should be noted that the ratio of the natural frequencies of the
system, f1 = 0.1591 Hz and f2 = 0.2757 Hz, is equal to 1.73. It is therefore close to the theoretical mode
mixing limit set by Eq. (2) so it is possible that some mode mixing may occur, but it should not significantly
impact the resulting IMFs.

Here, a detailed comparison (including the comparison with the CxA from [33, 48]) is made for the
parameters of the nominal system listed above. To compute the free decay response, the initial displacement
x0 = [1 m, 0]T and zero velocity are used. The computed data are shown in Fig. 3. It can be seen that
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Figure 3: Computed free decay response of the system with cubic hardening stiffness: (a) mass 1 and (b) mass 2

both responses consist of two modes of different frequencies, so the EMD is necessary to separate the modes
from each other. The basic algorithm of the EMD described in section 2.1.1 was used and the resulting
IMFs (there were no spurious IMFs extracted) are shown in Fig. 4. Unlike the original signal, the IMFs
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Figure 4: Comparison of the IMFs and ROM for the system with cubic hardening stiffness: (a) first mode, mass 1, (b) first
mode, mass 2, (c) second mode, mass 1, and (d) second mode, mass 2

are single frequency components. Therefore, they look very similar to resonant decay responses. Despite
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the use of the basic algorithm of the EMD, no numerical problems can be observed, i.e. there are no end
effects and modes are clearly separated and therefore it can be safely assumed that the use of advanced
EMD schemes for mode mixing problem resolving (masking signal, EEMA, WBEMD or any other method)
would not change the IMFs.

For the same initial conditions, the ROM of slow-flow dynamics derived from the CNMs and by the CxA
are also shown in Fig. 4. Overall, all three responses match for both masses and both modes. However, there
are a few small differences that are worth noting. Firstly, the first mode response of the ROM is slightly
different than the response of the CxA and the IMFs. The amplitude (envelope) is captured correctly, but
the frequency appears to be slightly lower at the beginning which cumulatively causes an apparent shift of the
ROM response (see the inset in Fig. 4(a) and Fig. 4(b)). Secondly, despite the fact that the amplitude of the
CxA responses corresponds well to the maxima of the IMFs, the amplitude appears to fluctuate in between
extrema. Similar, but not so severe, fluctuation of the amplitude can also be seen in [33]. Nevertheless, the
final CxA response, seen in the insets in Fig. 4, appears to match the IMFs very well, with no shift in the
frequency or mismatch in the amplitude.

The Hilbert spectrum of the IMFs together with the ROM frequency is shown in Fig. 5. It can be seen
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Figure 5: The Hilbert spectrum of the two-degree-of-freedom system with the cubic hardening non-linearity: (a) the first mode
and (b) the second mode

that the ROM indeed predicted the frequency lower than the frequency which is estimated by the HHT.
The differences in frequency are less than 5 % for both modes.

Based on the presented cases, it appears that the Hilbert-Huang transform is indeed able to recover
the complex non-linear modes from the free decay responses. However, it is also obvious that the match
between theoretical and identified natural frequency is not exact. It appears that the match of the IMFs
and ROM is less accurate for the first mode due to the slightly lower frequency of the ROM response. This
suggests that the identification results can be only successfully used for detection and characterisation of
non-linearities, but would fail to lead to correct quantification. However, since a single set of parameters and
initial conditions has been studied so far this conclusion is not well supported. In order to further support
the conclusions and improve the understanding of the difference observed between the IMFs and ROM, two
parametric studies are conducted.

3.1.1. Parametric study 1 - The influence of non-linear stiffness and modal damping ratio

It would be ideal to vary all parameters of the system and observe how accurate the estimated complex
non-linear modes or extracted reduced order models are. However, it would be practically impossible to
visualise and evaluate the results in a systematic manner. Therefore, the focus in this section is on the
influence of the modal damping ratio in a range ζ ∈ [0, 3] % and non-linear stiffness coefficient knl ∈
[0, 2] N m−3. These two parameters have been previously observed to have a significant influence on the
ROM of a single mode of vibration [23]. The parameters of the under-lying conservative system and the
initial conditions have not been changed. The parametric study is conducted in an automatic manner so the
performance of the EMD is not explicitly verified for each case. However, the correspondence of the ROM
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and IMFs is evaluated in such a way that possible end effects, which may be caused by spline fitting during
EMD, will not influence the results.

In order to evaluate the correspondence of the ROM and IMFs, the correlation coefficient C
(k)
m between

the IMF and the response of the ROM of the k-th mass and m-th vibration mode has been calculated. The

correlation coefficient C
(k)
m is equal to one if there is no difference between the IMFs and ROM and zero if

the IMF and ROM are not correlated. The correlation coefficient takes into account the whole response so
it captures the information about the amplitude and frequency at the same time.

Comparing whole responses would not be practical, due to significant changes in the frequency and decay
rate caused by the different stiffness and damping. Moreover, the end effects of the EMD could influence
the resulting correlation coefficient too. Therefore, in order to perform a meaningful comparison, first two

periods of the response were removed and the next five periods were used for the computation of C
(k)
m .

In total, 77 systems for different values of non-linear stiffness coefficient and damping ratio have been
investigated. In each case, four correlation coefficients, corresponding to two modes and two masses, were
obtained. To evaluate an overall match between the estimated IMFs and computed ROM, these four
coefficients were averaged. The results of the first parametric study are shown in Fig. 6. This surface covers

Figure 6: Parametric study 1: the influence of the non-linear stiffness and modal damping ratio on the comparison between the
IMFs and ROM visualised using the correlation coefficient. The blue square represents the configuration of the system studied
in detail in section 3.1.

a number of systems, ranging from linear to strongly non-linear (knl ∈ [0, 2] N m−3) with no to high modal
damping (ζ ∈ [0, 3] %). The insets contain the direct comparison of the IMFs and ROM of the first mode
and first mass (similarly to Fig. 4(a)). This comparison in the insets is made for the five periods that have
been used to evaluate the correlation coefficient. It should be noted that the insets represent the worst
observed cases since the match for the second mode is usually much better (similarly to Fig. 4).

It is clear from Fig. 6 that for linear systems the match between the IMFs and ROM is perfect and
independent of the damping. On the other hand, for non-linear systems, the correlation coefficient is not
equal to one and the damping, albeit linear, also influences its value. A trend can be observed - the
correlation decreases with the increasing stiffness and decreasing damping. This means that the overall
correspondence between the IMFs and ROM (and by extension the IF and IA, and CNMs) is not so good
for lightly damped, strongly non-linear systems. This is despite the fact that the CMNs is better suited for
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lightly damped system due to periodic formulation in Eq. (18). The reason for higher correlation between
the IMF and ROM for highly damped system is not known. The insets in Fig. 6 show that in a majority
of cases, the discrepancies between the IMFs and ROM originate in the difference between the frequencies,
whereas the amplitudes match reasonably well. This is not true for the largest values of non-linear stiffness
and lowest damping. In that case, even the amplitudes do not match very well as visualised for knl = 2 N m−3

and ζ = 0 % (the upper right inset in Fig. 6).
To summarise the first parametric study, it can be stated that there is no exact correspondence between

the IMFs and ROM. Despite this the IMFs and ROM exhibit the same qualitative features (shift in the
frequency, decrease in amplitude) while the quantitative error may be significant in some cases. This finding
suggests that the HHT is not able to estimate the CNMs accurately, only approximately.

3.1.2. Parametric study 2 - The influence of initial conditions

The free decay response of a system is significantly influenced not only by the system parameters, but
also by the initial conditions. For this reason, the influence of the initial displacements on the relation
between the IMFs and ROM is investigated in a range x1(0) ∈ [0, 1.5] m and x2(0) ∈ [0, 1.5] m. The other
parameters of the system were the same as in the original configuration and the initial velocity was set to
zero. The analysis has been conducted in the same manner to the previous parametric study, i.e. the time
response was calculated, the EMD applied and the IMFs compared to the ROM by means of the correlation
coefficient.

Because both initial conditions varied, it was not always possible to decompose the response into two
IMFs for each mass. Sometimes, only a resonant decay response is excited whereas in some cases, the
contribution of one of the modes is so weak that the EMD cannot extract both modes property. Therefore,
for the evaluation using the correlation coefficient, only the first mode from the first mass is considered, i.e.

only the coefficient C
(1)
1 is determined. Furthermore, before attempting the EMD, it was evaluated whether

it can obtain the proper IMFs. This was achieved by applying the following process - the FFT was applied,
the fundamental frequency and corresponding amplitude of both modes found, and the criteria given by
Eqs. (2)-(4) evaluated. When it was found that the EMD can separate the modes clearly, the ROM of the
first mass was compared with the last IMF, which corresponds to the first mode. On the other hand, when
it was determined that the EMD cannot separate the modes, the response of the system, which is very close
to a resonant decay response, was directly compared with the ROM of the first mode. The cases where the
EMD cannot clearly separate the modes, but changes the original signal were not considered.

In total, 10200 systems for different values of the initial displacements have been investigated. The
parametric study yielded the surface shown in Fig. 7 which covers the area around the first mode. Three
well separated regions can be recognised, specifically, in region (1) the EMD returns 2 correct modes, in
region (2) the EMD changes the signal, but cannot give correct modes, and in region (3) the EMD cannot
decompose the signal at all without using the masking signal or EEMD as discussed in section 2.1.1. The
theoretical lines corresponding to the criteria from Eqs. (2)-(4) are also shown. In addition, the dashed line,
passing roughly through the centre of the graph in region (3), indicates the initial conditions which lead to
the excitation of a resonant decay response of the first mode only.

In region (1), the correlation coefficient monotonically decreases with increasing initial conditions, indi-
cating that the match between the IMFs and ROM is not so good for high initial displacements. This is in
line with the previous observation, since the increase of initial conditions essentially leads to stronger non-
linear behaviour for higher amplitude at the beginning of the signal. It therefore indicates that the match
between the IMFs and ROM is less accurate for strong non-linearity. Most of the discrepancies between the
IMFs and ROM originate in the frequency, whereas the amplitude appears to match well. This can be nicely
observed in the insets in Fig. 7 for x0 = [0.4, 1.5]m (upper left) and x0 = [1.5, 0.6]m (bottom right). In both
cases, the amplitude match very well while the frequency causes an apparent shift of the ROM response. As
expected, the correlation coefficient approaches one for very low initial conditions. This is due to the fact,
that for such a low initial displacement, the system basically behaves as a linear one. The blue square in
Fig. 7 marks the configuration of the system studied previously in Fig. 4. Similar conclusions can be drawn
for a number of systems in this parametric study too. It can be again argued that the insets represent the
worst possible cases of the correspondence between the IMFs and ROM.
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Figure 7: Parametric study 2: the influence of the initial displacement on the relation between the IMFs and ROM visualised
using correlation coefficient. The thick black lines represent the criteria for the frequency resolution of the EMD described
in section 2.1.1 and divide the graph into three regions: (1) the EMD separated the vibration modes, (2) the EMD was not
applied since its effect to the signal is uncertain, and (3) the EMD cannot separate the modes so the simulated signals were
directly compared to the ROM computed from the complex non-linear modes. The blue square represents the configuration of
the system studied in section 3.1 in detail. The resonant decay response which would be computed from the initial conditions
marked by the blue dot was presented in [23, 50] as an example of the exact match between the time-domain response and
reduced order model.

In region (3), in which the EMD neither separates the modes, nor changes the original signal, the first
observation is that for the low initial displacements (< 0.5 m), the match of the response of the system and
the ROM is very good, despite the fact that no EMD was needed. For higher initial conditions, the match
is extremely good when the system is released with the initial conditions corresponding to the first mode
(dashed line in Fig. 7), or in a close proximity of these conditions. The example of the exact match for the
initial conditions that are indicated by the blue dot in Fig. 7 was given in [23]. Region (3) suggests that
even if the initial conditions are not adjusted perfectly for resonant decay measurements in an experimental
setting, it may still be possible to capture a resonant decay response of a considered mode exactly. However,
it must be noted that for the higher initial conditions, the ROM ceases to exist due to modal interactions [23]
so the comparison with the IMF is no longer possible. In the rest of region (3), the correlation coefficient

C
(1)
1 decreases with the distance from the resonant decay response. This is in line with the fact that the

accuracy of the HHT-estimated CNMs is violated when the IMF is not extracted or measured appropriately
as well as the fact that the ROM can capture only non-linear modal responses accurately. Most of the
discrepancies seen between the IMFs and ROM are caused by mismatch in the frequency, whereas the total
amplitude seems to be captured correctly. For example, the insets in Fig. 7 for x0 = [1.5, 1.5]m (upper
right corner) and x0 = [1.5, 1.1]m (under the legend) show that the overall amplitude is correctly captured,
whereas the frequency seems to have a significant modulated component that causes the mismatch of the
responses. Based on these findings, it can be concluded that the response of the first mode can still be
approximated by the ROM of slow-flow dynamics, even if it has not been measured with the exact initial
conditions of a considered mode.

In region (2), no correlation coefficient has been evaluated, because the EMD may lead to spurious IMFs
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and directly measured responses are far from the resonant decay response. It can be seen in the insets for
x0 = [0.4, 1.4]m (right) and x0 = [1.4, 0.8]m (above) that the time domain signal is composed of two modes,
but these cannot be separated by the EMD due to a lack of local extrema. When showing the ROM in the
same inserts, it is revealed that the qualitative difference between two signals is quite significant, thereby
making any comparison meaningless.

3.2. A system with quadratic damping

A simple two-degree-of-freedom system with non-linear quadratic damping is considered in this section.
The system has the same spatial layout as the system in Fig. 1, but the cubic spring has been replaced by
a non-linear dashpot. Such system can be therefore described by Eq. (14) with mass and stiffness matrix
given by Eq. (27), but the non-linear restoring force now reads

f(x, ẋ) =

[
cnlẋ1|ẋ1|

0

]
, (28)

where cnl is the coefficient of the quadratic damping. The parameters of the system chosen in this study
were m1 = m2 = 1 kg, k1 = 0.1 N m−1, k2 = k12 = 1 N m−1, cnl = 0.5 N s m−1 and linear modal damping
of 1 % was introduced as well. Due to the presence of the non-linear damping, this case cannot be studied
by the classical definition of non-linear normal modes (NNMs), which are applicable only to conservative
systems.

The computed backbones, damping curves, normalised mode shapes and a set of frequency response
functions can be seen in Fig. 8. Despite the fact that no stiffness non-linearity has been added to the
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Figure 8: The system with quadratic damping: (a) backbones, normalised mode shapes and frequency response functions, and
(b) the modal damping

system, the backbones lean slightly to the left. This amplitude-dependent nature of the resonance frequency
due to the quadratic damping has also been reported in [65]. Unlike in Fig. 2, the backbones do not pass
through the peak of the FRFs exactly. The validity of the FRFs and backbones have been verified by
convergence studies for different number of harmonics, but the results remained unchanged. The difference
between the peaks of FRFs and backbones is less than 8 % in all cases and it is most likely caused by the
used periodic formulation in Eq. (17). This formulation assumes that the decrease in the amplitude due to
damping is relatively small. However, it will be seen in this section that this assumption is not well satisfied
for this system, thereby probably causing a slight mismatch between the FRFs and the backbones.

Unlike in the previous system with cubic hardening non-linearity, the damping curves are strongly depen-
dent on the amplitude as seen in Fig. 8(b). The damping increases non-proportionally with the increasing

17



amplitude, which is in line with [65] in which a similar linearity plot of an SDOF system with quadratic
damping was presented. The non-linear behaviour of the frequency and damping can be also observed from
the FRFs in Fig. 8(a). The FRFs are flat due to damping and their peaks are slightly shifted to the left.
As can be seen in the insets in Fig. 8, the non-linear mode shapes exhibit the same behaviour as for the
previous system (Fig. 2), i.e. at the first mode, the motion of mass 1 becomes prominent at high amplitudes,
whereas at the second mode, mass 2 has larger displacements.

The free decays shown in Fig. 9 were computed for the initial displacement x0 = [1, 0]T and zero initial
velocities. It can be seen that both responses consist of both modes. The overall character of the response
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Figure 9: Computed free decay response of the system with quadratic damping: (a) mass 1 and (b) mass 2

is significantly different compared to Fig. 3 for the system with cubic hardening stiffness. The presence
of strong damping effects is prominent at the beginning of the signal where a dramatic decrease in the
amplitude can be clearly seen. Despite the fact that mass 1 was released from 1 m, its amplitude was less
than 0.4 m in the second period of vibration. The damping is much stronger at the beginning, but becomes
weaker toward the end of the signal as can be seen from the gradual decay rate after first 20 s.

Because the signals consist of both vibration modes, they must be decomposed into the IMFs by the
EMD. The IMFs are shown in Fig. 10. Unlike the original signal, the IMFs seemingly look as responses of
an SDOF system or resonant decay responses. There are several numerical imperfections which originated
in the EMD that can be observed in the IMFs. The unwanted end-effects caused by the spline fitting in the
EMD at the beginning of the signal can be seen in Fig. 10(c). This end effect is not significant and does not
influence the rest of the IMFs as seen in the inset.

For the same initial conditions, the ROM has been computed and the results are shown in Fig. 10 as
well. As can be seen, the match of the ROM and IMFs is very good, apart from the beginning, for the
second mode (Fig. 10(c) and Fig. 10(d)) where both amplitude and frequency match to each other. On the
other hand, the match of amplitudes is not so good for the first mode (Fig. 10(a) and Fig. 10(b)) where
the amplitude of the IMFs seems to be decreasing more rapidly at the beginning of the time interval. In
spite of the difference in the amplitude, the frequency of the ROM matches the IMF very well. As in the
previous example, the match between the IMFs and ROM is not perfect, but both of them still display a
certain level of similarities. This again means that the CNMs estimated from these IMFs cannot match to
the theoretical ones accurately.

3.3. A cantilever beam with geometric non-linearity

For the last demonstration, a numerical model of a cantilever beam is used. This model is based on the
École Centrale de Lyon (ECL) benchmark, which was originally designed for the comparison of non-linear
system identification methods [24, 66] and has been intensively used ever since, e.g. for numerical [14] and
experimental demonstration of NNMs [15]. The ECL benchmark consists of a long cantilever beam with a
geometric non-linearity introduced by a much thinner beam at one end.

The finite element (FE) model of the beam is graphically represented in Fig. 11. The main beam was
discretised by 10 Euler-Bernoulli beam elements and the effect of the thin beam was introduced by the cubic
hardening spring at the tip of the main beam. The geometrical and mechanical properties of the beam were
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Figure 10: Comparison of the IMFs and ROM for the system with quadratic damping: (a) first mode, mass 1, (b) first mode,
mass 2, (c) second mode, mass 1, and (d) second mode, mass 2
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Figure 11: A model of the cantilever beam with geometric non-linearity

L = 0.7 m, W = 0.014 m, E = 2.1× 1011 Pa, ρ = 7800 kg m−3 and the system was allowed to vibrate only
in the vertical direction.

The system can be modelled based on the FE model using Eq. (14), in which the mass M and stiffness
K were assembled by a standard FE procedure using beam elements (the vector x consists of displacements
and rotations). Unlike in the previous cases, the linear viscous damping was introduced using Rayleigh’s
proportional damping model, i.e. C = αM + βK, with α = 2 and β = 1× 10−8. The vector of non-linear
restoring forces consisted of a single non-zero element corresponding to the displacement DOF of node 10
with the chosen cubic hardening stiffness coefficient knl = 1× 108 N m−3.

The computed backbones, normalised mode shapes and a set of frequency response functions can be
seen in Fig. 12. Three harmonics were again used in both non-linear modal analysis and harmonic balance
method since the convergence analysis indicated that this number was sufficient. It can be seen that both
displayed modes are non-linear, exhibiting the hardening behaviour. The backbones pass correctly the peaks
of the FRFs and the computed damping (not shown) is not amplitude-dependent. The first and second mode
shapes, which are normalised so that the amplitude of node 10 is equal to 1 and -1, respectively, are depicted
in Fig. 12(c) and Fig. 12(d). It can be seen that both mode shapes change with the increasing amplitude.
However, the change is not so dramatic as in the simpler systems that were previously studied. These results
are consistent with the computational studies of the ECL benchmark using NNMs in [14, 16, 67] and will
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Figure 12: The cantilever beam with geometric non-linearity: (a) computed backbones and frequency response functions of the
first mode, (b) computed backbones and frequency response functions of the second mode, (c) the first mode shape, and (d)
the second mode shape

be also obtained experimentally in section 4.
The response of the system was simulated for the initial displacement of the tip of the beam x10(0) = 0.1 m

and the free decays obtained can be seen in Fig. 13. The results are herein presented for the vertical
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Figure 13: Free decay responses of the cantilever beam with geometric non-linearity: (a) node 4, (b) node 10

displacements of two nodes - node no. 4, which is close to the middle of the beam, and node no. 10, which
is at the tip of the beam and to which the non-linear spring is attached. As can be seen, both responses
exhibit multiple modes, thereby preventing direct estimation of the IF and IA.

After the application of the EMD, several IMFs have been obtained. In Fig. 14, only the last two IMFs,
which correspond to the first and second mode, are shown. Because these two IMFs are the last ones
that were extracted using the EMD (excluding the final trend), the quality of them is not so high as in the
previous cases. A noisy appearance is caused by the imperfections in the shifting process. It will be observed
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Figure 14: Comparison of the IMFs and ROM for the cantilever beam with geometric non-linearity: (a) first mode, node 4,
(b) first mode, node 10, (c) second mode, node 4, and (d) second mode, node 10

in section 4 that the EMD performs much better for experimental data. The reason is that when computing
free decay by setting initial conditions instead of applying a short time impact, all structural modes are
excited and must therefore be separated from the data. On the other hand, if real impulse excitation is
applied, only a first few modes are excited, allowing the EMD to perform better. Nevertheless, it is clear
that the IMFs in Fig. 14 are not multi-component signals any more and that they vibrate with different
time scales.

For the same initial conditions, the ROM has been computed and is shown in Fig. 14 as well. Although
the match of IMFs and ROM is not so good as in the previous cases, the amplitudes seem to match quite
well. The local discrepancies in the amplitudes are believed to be mainly caused by the imperfections of the
EMD. The match in terms of frequency is acceptable as well. However, some small differences can still be
observed, indicating slightly higher frequency of the IMFs.

To further investigate the difference between the ROM and IMFs in this case, the IF and IA are estimated
using the ZC method. The results are shown in the Hilbert spectrum (time-frequency-amplitude map [68])
in Fig. 15. The Hilbert spectrum of the first mode (Fig. 15(a)) shows that the estimated IF is indeed higher
than the frequency predicted by the ROM at the beginning of the signal. The difference is approximately
10 %. On the other hand, the frequency of the second mode predicted by the ROM fits the IF very well. It
can be seen that the second mode does not display such strong non-linear behaviour. The Hilbert spectrum is
not so clear, especially for the lower amplitudes. This is believed to be caused by the numerical imperfections
in the EMD.

A reasonably good match between the response of the ROM and IMFs in Fig. 14, and the frequency
predicted by the ROM and the estimated IF in Fig. 15 further supports the assertion that the HHT can
be used to estimate the CNMs. However, due to the quantitative difference in the frequency, the identified
CNMs cannot be accurately used for quantification of system’s parameters.

Summary of numerical studies

The numerical studies performed in this section yielded an important conclusion - the intrinsic mode
function relate to the reduced order model of slow-flow dynamics obtained from complex non-linear modes
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Figure 15: The Hilbert spectrum of the cantilever beam with geometric non-linearity: (a) the first mode (b) the second mode

only approximately. This finding means that the ability of the HHT with regards to quantification of
structural non-linearities using the CNMs is very limited although detection and characterisation in a non-
parametric manner is possible.

4. Experimental demonstration

The previous section showed that the CNMs estimated by the HHT should be used only for detection
and characterisation of non-linearities, not for their quantification. This was shown using the comparison
of the IMFs and ROM for a number of numerical systems. In this section, it will be shown that the CNMs
can be also estimated from an experimentally acquired free decay response of the ECL benchmark.

The ECL benchmark was designed to compare non-linear system identification methods [66] and has
been extensively used in the past 15 years for both numerical and experimental studies. Many non-linear
system identification methods have been applied to this benchmark, including conditioned reverse path
method [69], proper orthogonal decomposition [70], wavelet transform [71], normal non-linear modes [15, 67]
and model updating [72].

The ECL benchmark consists of a main long cantilever beam with a thin short beam attached to its end.
The thin beam is also clamped and introduces a strong geometric non-linearity. The nominal dimensions of
the beams are the same as in [15, 67]. The main beam is 0.7 m long, 0.014 m wide and 0.014 m thick while
the thin beam is only 0.04 m long, 0.014 m wide and 0.0005 m thick. Both beams are made of steel with
nominal Young’s modulus E = 2.1× 1011 Pa and density ρ = 7800 kg m−3.

The experimental set-up is shown in Fig. 16. The connection of the thin and main beam is realised
through a simple bolted joint. The care was taken to manufacture this connection as accurately as possible
in order to minimise any friction effects. The dynamic response to impact excitation is measured by three
accelerometers placed at node 4, 7 and 10. The shaker seen in Fig. 16 was not attached to the beam during
the measurement.

Prior to extraction of the non-liner modes, the linear modal analysis was conducted to find natural
frequencies and damping ratios. The linear modal analysis was performed on the main beam only, i.e.
without the thin beam attached. The accelerometer on the tip of the beam (in node 10) was used and the
impact hammer excitation was applied to measure the frequency response functions (FRFs). The FRFs
were processed the least-square complex frequency (LSCF) estimator [73] which estimated three natural
frequencies and damping ratios in the frequency band 0 − 500 Hz: (1) f1 = 23.8 Hz, ζ1 = 0.33 %, (2)
f2 = 148.1 Hz, ζ2 = 0.052 %, and (3) f3 = 414.4 Hz, ζ3 = 0.024 %. The natural frequencies are not close to
each other so no significant mode mixing in the EMD should occur unless there is a prominent difference
in amplitudes. The damping ratios are relatively small, being less than 0.1 % for higher modes. This fact
justified the use of the ECL benchmark in the studies about NNMs [15, 67] in which the damping is not
considered but the conservative system can be still adequately studied.

The estimation of the complex non-linear modes is demonstrated on the free decay responses which
were measured by applying a short impact to node 9. All three accelerometers simultaneously acquired the
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Subsequently, the focus is on non-linear system identification, where several groups of
methods are distinguished and the relevant categories are described in more detail to
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Firstly, the field of non-linear structural dynamics is briefly introduced and current
analytical and numerical developments reviewed. Subsequently, the focus is on non-
linear system identification, where several groups of methods are distinguished and the
relevant categories are described in more detail to build a background for the rest of the
thesis.
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Figure 16: Experimental set-up of the ECL benchmark used for the demonstration of non-linear modes estimation from a free
decay. The shaker shown in the figure was not attached during the measurement.

response in nodes 4,7 and 10. The processing will be shown in detail for the responses of node 4 and 10
shown in Fig. 17. These responses have a multi-component character so the IF and IA cannot be directly
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Figure 17: The measured free decay acceleration of the ECL benchmark: (a) node 4 and (b) node 10

estimated. Therefore, the EMD must be applied to obtain the IMFs. Since the acceleration was measured,
the responses have been integrated twice to obtain the required form of data. It should be noted that a
trend in the data usually appears after the integration. This trend can be removed by standard de-trending
algorithms or it can be left in the data, because the EMD will remove it automatically as well.

The EMD was not initially able to estimate clear modes that would be close to nominal linear modes
due to mode mixing problems which occurred due to the prominent difference in amplitudes. However, by
applying the masking signal approach repeatedly (for each IMFs a different masking signal was used), it was
possible to separate the three intrinsic mode functions shown in Fig. 18. These IMFs correspond to the first
three non-linear modes of the structure. It can be seen that the IMFs look like individual resonant decay
responses. Compared to the IMFs of a cantilever beam in Fig. 14 they are not so noisy. This is caused by
the fact that not so many modes were excited in this experiment. In fact, there were only a few spurious
IMFs which did not seem to have any relation to the non-linear modes and which had an order of magnitude
lower amplitude. Most of them seemed to be a consequence of the data processing so they were not shown
here. Although the IMFs appear to be sufficiently smooth, some end-effects can be seen at the beginning
and the end of the signals. These regions are therefore excluded from the subsequent analyses.

The IF and IA have been estimated by the ZC method. Consequently, the backbones were calculated
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Figure 18: Intrinsic mode functions extracted from free decays of the ECL benchmark: (a) 3rd mode, node 4, (b) 3rd mode,
node 10, (c) 2nd mode, node 4, (d) 2nd mode, node 4, (e) 1st mode, node 4, and (f) 1st mode, node 10

and the damping assessed by the logarithm of the amplitude as described in section 2.1.3. The results
are shown in Fig. 19. From the backbones, it is immediately obvious that the system is non-linear and
that it exhibits the hardening type of non-linearity. The hardening behaviour can be observed in all three
investigated modes. The frequency shift is dominant for the first mode (over 10 Hz) and smaller for the
second and third mode. It can be also noticed that the frequencies for very low amplitudes (presumably
linear natural frequencies) are not identical to the frequency of the main beam without the non-linearity. The
first frequency is slightly higher whereas the other two are slightly lower. It was found that this phenomenon
is caused by the thin beam which, besides introducing the non-linearity, adds the linear stiffness that causes
the shift of the frequencies.

No significant non-linearity in damping can be observed from the logarithm of the amplitude in Fig. 19.
Therefore, the linear damping ratios can be estimated by the line fitting which yields ζ1 = 0.3415 %,
ζ2 = 0.0539 % and ζ3 = 0.0396 %. The estimated values are slightly higher than the values obtained by the
linear modal analysis. The small discrepancies do not have to be solely caused by the presence of the thin
beam. They can also be a consequence of different estimation methods.

It should be also mentioned that the backbone in Fig. 19(b) for node 7 is not estimated for the frequency
higher than 150 Hz. Likewise, the factor d7

2(t) in Fig. 19(e) is not available for the time lower than 0.7 s.
These missing parts of the results are a consequence of the end effects that occurred in the EMD. It is
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Figure 19: Estimated non-linear modes of the ECL benchmark: (a)-(c) the backbones of the first three modes and (d)-(f) the
logarithms of the vibration amplitude of the first three modes

possible that the second mode in node 7 is influenced by the end-effects more than the other results, because
node 7 lies close to the node of vibration (zero value of mode shape) of the second mode. Therefore, the
data acquired are more likely to be corrupted by measured noise and processing errors.

The mode shapes estimated according to section 2.1.3 as a function of time are shown in Fig. 20. It is
clear that the character of the mode shapes estimated for the non-linear system is the same as the well-known
linear mode shapes of a cantilever beam. This was expected because the estimated non-linear modes are
the continuation of their linear companions.

In order to illustrate the change of the mode shapes due to the non-linearity, the first two modes shapes
are shown in Fig. 21 again. The third mode is not included because it did not show any significant change.
It can be seen that the mode shapes change with the frequency (and therefore amplitude) of vibration.
The normalised values of the first mode increase for the higher frequency whereas the normalised amplitude
of the second mode decreases. This is consistent with the simulated CNMs of the beam with a geometric
non-linearity seen in Fig. 12(c) and Fig. 12(d). The estimated modes shown not only confirm the presence
of the cubic hardening but also demonstrate the ability of the HHT to obtain multiple non-linear modes
from a single measurement.

Summary of the application to experimental data

The estimation of several non-linear modes has been demonstrated using experimental free decay re-
sponses obtained from the ECL benchmark. It was possible to recover three non-linear modes, two of which
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Figure 20: The estimated mode shapes of the ECL benchmark as a function of time: (a) 1st mode, (b) 2nd mode, and (c) 3rd
mode
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Figure 21: Estimated modes shapes of the ECL benchmark: (a) 1st mode and (b) 2nd mode. These estimated mode shapes
are very similar to the mode shapes of the simulated cantilever beam shown in Fig. 12.

show a noticeable change of the mode shape with vibration amplitude. The first two modes shapes qualita-
tively correspond to the modes of simulated cantilever beam with stiffness non-linearity and also correspond
to available literature. It should be emphasised that all these modes have been estimated from a single data
set which was measured using a simple impact excitation. Based on this experimental demonstration it can
be concluded that the non-linear modes can be successfully estimated from an experimentally measured free
decay response and can be used for detection and characterisation. Due to the findings in section 3 it cannot
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be expected that these modes correspond accurately to the correct complex non-linear modes which could
be used to quantify the system’s parameters.

5. Discussion

The objective of this paper was to show how the Hilbert-Huang transform can be used to estimate the
complex non-linear modes of mechanical systems and assess their accuracy. It was hypothesised that the
HHT should be able to estimate the CNMs due to a number of similarities between the IMFs and ROM.
The link among these methods has been established by the slow-flow dynamics and supported by a variety
of numerical cases and parametric studies in section 3. Unfortunately, it was found that this link holds only
approximately, i.e. the HHT can recover qualitatively correct CNMs which are suitable for detection and
characterisation of non-linearities, but they cannot be used to quantify the system’s parameters.

A similar relation was already utilised in a number of papers [31, 54, 74, 75] where the HHT was used
for non-linear system identification in a non-linear normal mode (NNM) framework. In these studies, it
was intuitively assumed that the IMFs should compose some approximation of the responses of individual
NNMs. Subsequently, the estimated IF and IA should correspond to the computed backbones. However,
the NNMs are not defined for non-conservative system, so their use for non-linear system identification of
dissipative systems might be sometimes complicated, at least ideologically. The use of CNMs appears to be
preferable since the applicability to non-conservative systems can be guaranteed.

The HHT does not have a rigid mathematical background and therefore no exact mathematical proof
of the concepts discussed in this paper can be given, but the physics-based foundation was already estab-
lished [33, 48]. This was achieved by showing the correspondence of the IMFs and slow-flow dynamics
derived by the CxA. This relation has been used throughout this study to investigate the accuracy of the
CNMs obtained by the HHT. The CxA is an analytical method and its applicability is therefore limited to
small academic systems with simple non-linearities. In contrast, the CNMs can be numerically computed
for large industrial structures with complex non-linearities [19–22] while no analytical solution is possible.
Therefore, effectively replacing the CxA with the ROM may extend the applicability to a broader range of
non-linear systems with complex non-linearities. This means that the gap in using non-linear modal analysis
between the academic studies and industrial application has been slightly reduced.

In full accordance with the fundamental restriction of the ROM, i.e. it does not take into account more
than one mode which automatically excludes any modal interactions, the response is predicted accurately in
the close proximity of a non-linear mode. This accuracy was shown for the resonant decay responses in [23].
In addition, the accuracy was demonstrated for near resonance forcing, provided by a slow sweep excitation,
in [23, 50]. These cases are trivial from the point of view of the presented topic, because the EMD, a key
and unique concept of the HHT, does not have to be applied so they were not presented in the paper.

In [30, 33, 48], it was concluded that the CxA led to the satisfactory approximation of the response.
A similar degree of approximation has been observed for the ROM derived by the CNMs in this paper.
The approximation of the total response was already theorised in [23] where it was stated that by simply
superimposing the ROM responses of several modes, the total response could be obtained. Although this
paper did not target this in particular detail, it partly addressed this issue too. It has been found that
the response of the ROM approximates the IMFs and since the superposition of the IMFs always gives the
total response (guaranteed by Eq. (1)), it follows that also the superposition of the ROM responses leads to
the total response. Therefore, the theoretical claim from [23] seems validated, but the total response is not
obtained exactly, but only approximately. This is also in line with [63] which showed that the concept of
invariant manifold also approximatively leads to the total response. Since CNMs trace trajectories on the
manifolds, their superposition should also lead to the approximation of the total response.

It was shown that even for noise-free free decay responses, the match of the ROM response and IMFs is
not exact. Furthermore, since the HHT is primarily used for the processing of experimental data, the errors
originating in experimental setting imperfections, measured noise, and data processing uncertainty might
further increase the margin of this approximation. Therefore, it cannot be concluded that the CNMs and
related ROM provide mathematical framework for the empirical HHT. This means that the HHT cannot be
used for quantification the quantification of system’s parameters using CNMs.

27



The range of validity and applicability of the identification of CNMs using the HHT is given by the
limitations of the methods involved. Several important limitations are introduced by the HHT, especially
by the EMD. The most concerning one is the mode mixing problem. However, it was described in section 2.1.1
that by applying a simple procedure, the frequency splitting capabilities can be investigated before applying
the EMD. This has been demonstrated in the second parametric study where the region in which the EMD
can accidentally extract spurious IMFs was not considered. The mode mixing may also be overcome by
increasing the number of shifting iterations [36] or by applying some of the advanced EMD schemes, such as a
masking signal [48, 51], ensemble empirical mode decomposition (EEMD) [52], empirical mode decomposition
using unconstrained optimisation [53] or wavelet-bounded empirical mode decomposition (WBEMD) [54]. It
must be however emphasised that using one of the advanced EMD schemes does not mean that the relation
between the IMFs and ROM would be improved, and therefore more accurate CNMs could be estimated.
In the region where the EMD does not suffer from the mode mixing problem (as described in section 2.1.1),
any of the advanced EMD schemes should give the same IMFs. Therefore, the basic EMD used in this
paper does not present a limitation with regards to the assessment of the accuracy of the estimated complex
non-linear modes presented in section 3.

One more problem associated with the HHT can be troublesome in practical situations. The EMD
yields, by definition, symmetric IMFs so when applied to systems with asymmetric restoring forces it can
lead to physically incorrect conclusions. Moreover, even if the resonant decay response of a system with
asymmetric non-linearity is measured, the Hilbert transform or any of its alternatives cannot estimate the
forces correctly (the Freevib algorithm cannot be used in a presence of asymmetric restoring forces [59]).
The analysis of the systems with asymmetric non-linearities, including gaps, pre-stress effects and piece-wise
linear stiffness, has just recently been allowed by the Hilbert vibration decomposition (HVD) [76]. However,
the HVD is difficult to used due to a number of sophisticated signal processing techniques needed. A new
method which is based on the zero-crossing, has been recently proposed in [77]. The developed method as
well as the HVD provide equivalent results which characterise the non-linear behaviour in terms of congruent
functions. Whether or not the congruent functions relate, at least approximately, to the CNMs is not clear
because the congruent functions, which are a direct consequence of the selected signal processing [44], cannot
be analytically or numerically computed.

A key limitation given by the ROM derived from the CNMs is its incapability to deal with internal
resonances. Therefore, internal resonances have been excluded from the consideration in this paper. It can
be, however, stated that the identification of the CNMs using the HHT is not guaranteed in the presence
of internal resonances, because the key link cannot be found. It is quite possible, that this limitation of the
ROM will be removed in the future. The concepts of the CNMs and associated ROM have just recently
been developed and are still establishing their place in the field of non-linear dynamics. It has been already
suggested that the future development of the ROM should address the cases where modal interactions do
exist [23]. When and if such extended ROM is developed, it is possible that the accuracy and a range of
applicability of the argued relation between the IMFs and ROM will extend too. It can be only hypothesised
that the ROM which includes several non-linear modes would lead to the IMFs exactly.

However, even if the ROM could describe the internal resonances, it is unclear how the HHT should be
used to study them. Due to its definition, the HHT cannot extract dependencies between the IMFs (the
IMFs are practically orthogonal to each other). Therefore, while the traditional HHT can be used to detect
internal resonances [34, 35, 54, 75], it may not be able to provide any further details about them. However,
an extension of the HHT, called the Holo-Hilbert spectral analysis (HHSA) method [78], has been recently
proposed. Theoretically, it should allow to recover cross-scale coupling between the IMFs so it may perhaps
be possible to study internal resonances using this method. It has never been applied in structural dynamics
so its practical feasibility is yet to be determined.

It should be also noted that the relation between the IMFs and ROM is exact for linear systems (as
shown, for example, in Fig. 6) so the HHT can be also used for linear modal analysis as in [38, 39]. However,
since the system is linear, it is better to use other techniques for linear modal analysis, thereby avoiding
potential numerical imperfections of the HHT. For non-linear systems, the relation between the IMFs and
ROM theoretically provides a base for non-linear experimental modal analysis as proposed in [79]. However,
the quantification of non-linear behaviour would work well only for the cases where the relation of the HHT
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estimated the CNMs accurately, i.e. for resonant free decays and nearly resonant forcing. The accuracy of
the method proposed in [79] is limited for general initial conditions, because the relation between the IMFs
and ROM found in this paper is only approximative.

From the findings presented in this paper, it would seem that the Hilbert-Huang transform loses its
importance with regards to non-linear system identification in a non-linear modal analysis framework. How-
ever, it should be emphasised that the presented approach is a straightforward evaluation of the possible
relation using the methods that are available in the literature at the moment. It is believed that further
research, such as a development of a mode participation factor that would account for the presence of mul-
tiple modes in section 2.1.3, could be conducted to allow the use of the HHT as a universal, non-parametric
means of non-linear modal analysis.

6. Conclusion

The objective of this paper has been to present the identification of the complex non-linear modes using
the Hilbert-Huang transform from free decay responses and to systematically assess their accuracy. The
conducted numerical studies led to an important conclusion - the Hilbert-Huang transform is able to estimate
the complex non-linear modes that are suitable for detection and characterisation of non-linear behaviour,
but not for its quantification. The estimation of several non-linear modes has also been demonstrated using
experimental data obtained from the ECL benchmark. It was possible to extract three non-linear modes, two
of which showed a noticeable change of the mode shape with vibration amplitude. The first two mode shapes
qualitatively corresponded to the modes of the simulated cantilever beam with stiffness non-linearity and
also to available literature. The findings presented in this paper mean that the ability of the Hilbert-Huang
transform to quantify a structural non-linearity using non-linear modes is very limited although detection
and characterisation in a non-parametric manner are possible.
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