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Abstract

This thesis explores various computational aspects of solving nonlinear, continuous-time dy-

namic optimization problems (DOPs) numerically. Firstly, a direct transcription method for

solving DOPs is proposed, named the integrated residual method (IRM). Instead of forcing

the dynamic constraints to be satisfied only at a selected number of points as in direct colloca-

tion, this new approach alternates between minimizing and constraining the squared norm of

the dynamic constraint residuals integrated along the whole solution trajectories. The method

is capable of obtaining solutions of higher accuracy for the same mesh compared to direct

collocation methods, enabling a flexible trade-off between solution accuracy and optimality,

and providing reliable solutions for challenging problems, including those with singular arcs

and high-index differential-algebraic equations.

A number of techniques have also been proposed in this work for efficient numerical solution

of large scale and challenging DOPs. A general approach for direct implementation of rate

constraints on the discretization mesh is proposed. Unlike conventional approaches that may

lead to singular control arcs, the solution of this on-mesh implementation has better numerical

properties, while achieving computational speedups. Another development is related to the

handling of inactive constraints, which do not contribute to the solution of DOPs, but increase

the problem size and burden the numerical computations. A strategy to systematically remove

the inactive and redundant constraints under a mesh refinement framework is proposed.

The last part of this work focuses on the use of DOPs in aerospace applications, with a

number of topics studied. Using example scenarios of intercontinental flights, the benefits of

formulating DOPs directly according to problem specifications are demonstrated, with notable

savings in fuel usage. The numerical challenges with direct collocation are also identified, with

the IRM obtaining solutions of higher accuracy, and at the same time suppressing the singular

arc fluctuations.
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Chapter 1

Introduction

An optimization problem describes the problem of searching for the best solution from all

feasible ones. A feasible solution is a set of values of the decision variables that satisfies all

of the constraints in the problem formulation, with constraints being a set of conditions that

the solutions must fulfil. The solution, according to a certain objective (also known as cost)

reaching its minimum or maximum value, is known as an optimal solution.

In the last decades, the search for the optimal solution has been integral to many aspects

of science, engineering and economics, and profoundly changed the way how challenges are

approached and addressed in related fields. Generally speaking, the optimization problems

can be categorized as static optimization problems (SOPs) and dynamic optimization problems

(DOPs), depending on the nature of the decision variables.

With discrete decision variables, the finite-dimensional optimization problem is an SOP with

the objective being a function of these decision variables. In DOPs, some of the decision vari-

ables can be continuous trajectories expressed in the form of functions, hence the objective and

constraints become functionals and the optimization problems become infinite-dimensional.

Often, the dynamic decision variables in DOPs are functions of time, leading to variants of

DOPs such as optimal control problems (OCPs), parameter estimation problems, as well as

design synthesis problems where dynamic models are employed.

Continuous-time DOPs are typically expressed in the Bolza form, with,

min
x,u,p,t0,tf

Φ(x(t0), t0, x(tf ), tf , p) +
∫ tf

t0

L(x(t), u(t), t, p) dt (1-1a)
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subject to

ẋ(t) = f(x(t), u(t), t, p), ∀t ∈ [t0, tf ] a.e. (1-1b)

g(x(t), ẋ(t), u(t), t, p) = 0, ∀t ∈ [t0, tf ] a.e. (1-1c)

c(x(t), ẋ(t), u(t), t, p) ≤ 0, ∀t ∈ [t0, tf ] a.e. (1-1d)

φ(x(t0), t0, x(tf ), tf , p) = 0, (1-1e)

where x : R → Rn is the continuous state trajectory of the system, u : R → Rm is the

trajectory of free variables (typically the control inputs, disturbances and noise), p ∈ Rnp are

some static parameters, t0 ∈ R and tf ∈ R are the initial and final time. Φ is the Mayer

cost functional Φ: Rn × R × Rn × R × Rnp → R, and L is the Lagrange cost functional

L : Rn × Rm × R × Rnp → R. The objective functional (1-1a) is often denoted by a single

variable J with optimal solution denoted as J∗. The superscript ∗ will be consistently used

in this work to refer to a variable corresponding to the optimal solution.

The system dynamics are enforced as equality constraints, in the form of ordinary differential

equations (ODEs) with f : Rn × Rm × R × Rnp → Rn and differential-algebraic equations

(DAEs) with g : Rn ×Rn ×Rm ×R×Rnp → Rng . Equations (1-1b) and (1-1c) can be referred

together as the dynamic equations. c is the inequality path constraint (c : Rn × Rn × Rm ×

R × Rnp → Rnc), and φ is the boundary condition (φ : Rn × R × Rn × R × Rnp → Rnq ).

For the numerical solution of DOPs, transcription methods are often employed. The process

takes the vast solution space of DOPs (infinite-dimensional) and defines low dimensional

manifolds where approximated problems can be expressed as discretized dynamic optimization

problems (DDOPs) and solved efficiently. This is the main focus of this thesis; however, in

this introductory chapter, the role of DOPs in control systems design will be first discussed

in Section 1-1 to help motivate this research, highlighting the importance to formulate DOPs

according to problem specifications. The research objectives are presented in Section 1-2.

Section 1-3 details on the organization of the thesis and Section 1-4 explains the computation

environments and the notation conventions for the example problems demonstrated in this

work.

1-1 DOPs in control systems design

1-1-1 Conventional implementation: optimal guidance, navigation and control

The diagram in Figure 1-1 is commonly regarded as the overall architecture of control system

design. Conventional optimal control and estimation methods follow this system structure,

leading to the fields of optimal guidance, optimal control (in a narrow sense of regulation) and
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Figure 1-1: Overview of a control system, with y the output variable, x̂ the estimated state,
xr the state reference, ur the input reference, ∆u the input increment, T the trigger for the
regeneration of reference trajectory

optimal estimation. It is possible to design each of these components as a DOP, i.e. solving

three DOPs for their respective purposes, or use a combination of different methods (e.g.

use optimal guidance together with other schemes for navigation and control). This section

focuses on the role of optimal guidance and optimal control in such a closed-loop setup.

Optimal control

The terminology of ‘control’ has the narrow sense of regulation, hence is often (inadvertently)

used to infer stabilization or set-point tracking tasks. As a result, in traditional optimal con-

trol studies, people often associate optimal control with the classical formulation of quadratic

regularization. For example, in linear quadratic regulator (LQR) design with state-feedback

for stabilization and disturbance rejection, the following infinite horizon quadratic cost is

minimized:

J =
∫ ∞

t0

x(t)⊤Q̄x(t) + u(t)⊤R̄u(t) + 2x(t)⊤S̄u(t) dt.

Q̄ � 0 ∈ Rn×n, R̄ ≻ 0 ∈ Rm×m and S̄ ∈ Rm×n are weighting matrices addressing the relative

trade-offs between different variables and different terms. Another example would be in model

predictive control (MPC) where set-point tracking tasks require the minimization of a finite

horizon quadratic cost (with an optional terminal cost on x(tf ))

J =
∫ tf

t0

(x(t) − xr(t))⊤Q̄(x(t) − xr(t)) + u(t)⊤R̄u(t) dt+ x(tf )⊤Q̄fx(tf ),

with xr ∈ Rn a reference trajectory to be tracked, and Q̄f � 0 ∈ Rn×n the weighting matrix

for the terminal state cost.
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Optimal guidance

Dynamic optimization for non-regulation type tasks has existed for decades under the frame-

work of optimal guidance or trajectory optimization. Examples include the design of spacecraft

orbit transfer, swingby and reentry trajectories, as well as minimum time or energy flight pro-

files for various types of aircraft. A good collection of optimal guidance problems in available

in [19], and for certain examples, additional insights [17] are provided.

Partially due to computational limitations, the optimal guidance solutions are mostly calcu-

lated offline. Often the solutions to the DOPs are implemented as suitable reference signals,

xr or ur, for lower-level controllers to track. For many applications, an open-loop imple-

mentation of this guidance sequence would be sufficient. However, there also exist many

applications requiring frequent updates to the guidance solutions due to uncertainties in the

form of unmodelled dynamics and external disturbances.

Another option to handle uncertainty is to implement optimal guidance solutions as feedback

policies. For sufficiently simplified problems, it is possible to analytically derive the optimality

conditions (e.g. the turning and coasting flight trajectories [200]), and thereafter, feedback

policies in the form of guidance laws can be designed and implemented with minimal online

computation overhead. However, for more complicated problems, numerical schemes may be

needed to find the DOP solutions. In these cases, based on the characteristics of the obtained

solutions, usually simplified guidance laws that can mimic similar solution behaviours are

designed for online implementation.

One example would be the supersonic aircraft minimum-time-to climb problem [131, 145], with

the optimal climb profile indicated in Figure 1-2 simplified into the dashed lines representing

the following five segments, which are suitable to design simplified guidance laws accordingly:

1. an acceleration reaching high-subsonic speeds,

2. a constant airspeed or Mach number (depending on flight regime) climb,

3. a zoom dive: exchange altitude for speed, accelerating along the constant specific energy

line until reaching maximum specific excess power,

4. a climb along the maximum specific excess power line,

5. a zoom climb: exchange speed for altitude, decelerating along the constant specific

energy line until reaching the final target flight conditions.

The simplifications would lead to trajectories that no longer coincide with the obtained DOP

solution. For example, the 5-segment approximation of the minimum-time-to-climb problem

has resulted in about 36% increase in the time needed to climb to a target altitude of 65600 ft



1-1 DOPs in control systems design 33

 

1 

2 

3 4 

5 

Figure 1-2: Comparison of exact and energy-state minimum time-to-climb paths, adapted from
[33]

[33]. Therefore, degraded strategies of this type should strictly be called efficient guidance

instead of optimal guidance.

With additional information from the solution process, the numerical DOP solutions can

also be implemented as feedback policies by solving a simplified companion optimal control

problem of lower complexity. Commonly used methods are the extremal field approach,

dynamic programming, and the neighbouring extremals approach with perturbation feedback

control [32].

1-1-2 Issues with the conventional approach

When control systems are designed and implemented for real-world applications, there are

always the ultimate mission objective and design specifications to fulfil: passenger airlines

should bring the passenger from the origin to destination on time using minimum fuel, and

racing cars should complete all the laps in minimum time. When the regulation type of con-

troller designs are included in the loop, the way these controllers handle deviations to the

trajectory (e.g. due to disturbances) will lead to an inherent loss of optimality. In addition, in

spite of the name “optimal control”, methods that use the classical quadratic regulation for-

mulation can rarely achieve the optimal performance according to specifications of a tracking

task.
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Figure 1-3: Illustration for a racing car at a turn

Loss of optimality with set-point tracking of a pre-computed reference

With regulation control, all deviations from the target are treated equally; however, their

contribution to the overall task completion (objective) may be different. This can be demon-

strated with a simple example of a racing car going through the turns, in Figure 1-3. Suppose

that the vehicle uses a set-point tracking controller to track the reference trajectory, generated

beforehand using optimal guidance. Upon entry at one of the corners, some debris blocks the

way, so the car has to enter the turn wider. Upon passing the obstacle, a set-point based

strategy would be to aggressively return to the originally planned path, in the effort to reduce

deviations from the reference.

If a DOP is formulated directly corresponding to the mission specifications and solved online,

the solution may take advantage of the fact that the car is at a wider position and likely

slower condition, hence can generate the optimal exit strategy accordingly. In short, even if

the reference profile is optimal at the time of computation, due to uncertainties, the real-time

execution of it with regulation controllers will not necessarily be.

Issues of quadratic cost formulation

For regulation tasks such as disturbance rejection and set-point tracking, an optimal control

method using classical quadratic regulation cost formulations will not necessarily result in

better control efficiency or performance in comparison to other control strategies that are not

optimization-based. The problem lies fundamentally in the objective formulation.

Firstly, the square of the input variable u2(t) does not represent energy in the majority of

applications, and there are two aspects of this argument:
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• The idea that u2(t) needs to be penalized for efficiency may be more valid for some

applications than others. For example, in chemical engineering, u(t) may represent the

use of expensive chemical products. However, in aerospace flight controls applications,

the intention is not really to penalize flight control surface movements, as long as they

are inside the specified allowances.

• A solution that minimizes the integral of u2(t) is not the same as a solution that min-

imizes energy consumption. Consider another aerospace example, the study in Sec-

tion 14-2-1 demonstrates that the solutions which minimize the integral of the square of

instantaneous fuel flow, thrust and throttle settings all have led to higher fuel usage, as

much as 4.5% (more than 5000 kg, sufficient for a Boeing 737 to complete a 1.5 hr flight)

for a single transcontinental flight in comparison to the solution that directly minimizes

the reduction in aircraft weight due to fuel consumption.

Therefore, if the objective formulation needs to embed a trade-off between the performance

metric and the energy usage, the actual formulation of energy consumption should be used

instead of u2(t).

Some may argue that u2(t) represents control effort hence it has virtue in avoiding control

saturation and suppressing undesirable fast oscillations in the input signal. The counter-

argument to this claim would be that, instead of achieving these items through a vaguely

designed trade-off process, one should formally formulate the actuator saturation limits and

enforce rate constraints for variations in input trajectory. Progresses made in suppressing

singular arc fluctuations will also help to eliminate the need of adding u2(t) terms purely to

avoid singular arcs. Generally speaking, a singular arc is an interval in the DOP solution

where the optimality conditions yield no information about the optimal control trajectory.

Further details are provided in Section 2-3-5 and Chapter 11.

Next, the focus can be shifted to the trade-off process embedded in the classical quadratic cost

formulation. Firstly, J can be considered as the scalarization of a multi-objective optimization

problem using the weighting method: the objectives are combined into a weighted sum.

Secondly, for individual terms, the weights (Q̄, R̄, S̄, etc.) are all tuning parameters reflecting

the preferences of the decision-maker. Therefore, although this formulation has the numerical

advantage that single objective optimization techniques can be used for the solution of the

corresponding DOPs, the drawback is also remarkable: at both levels of trade-offs, the final

solution is heavily influenced by the vaguely designed weight allocation, posing the risk of

yielding unpredictable and unacceptable results [194].

In terms of the overall task, the solution to an optimization problem can be only as good as

the formulation of the objective function. This can be seen in results presented in Example

2 of [117], for a combined change of altitude and airspeed of an F16 aircraft. The nonlinear
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MPC controller achieves lower cost value for the quadratic objective function by “trading off

altitude errors for better velocity tracking and uses large control values”. However, this low

value of cost is only with respect to the set of weights that were tuned heuristically, thus do

not necessarily reflect the optimality with regard to the task to be completed. In fact, the

linear MPC reached the target altitude faster with smaller control inputs.

In a similar scenario, climbing from 2000 ft to 10000 ft or to 35000 ft should ideally lead to

the same response for the expedition of the initial climb. But in the quadratic regulation

cost function, the trade-off of this altitude tracking error with respect to the tracking of

other states (e.g. velocity deviation), input suppression and input rate suppression will all be

different for the two cases. These are all potential sources for unexpected results in a very

dynamic but safety-critical operating environment. Designing and checking the weights for

the entire flight envelope and all possible scenarios can be an expensive and time-consuming

task.

1-1-3 Formulating DOPs based on problem specifications and solving directly

To ensure the mission targets can be reached while fully respecting all limits, the formulation

of DOPs must be based on the ultimate design specifications of the problem. In other words,

it is important to formulate and solve the right problem.

First and foremost, it is important to identify the objectives and constraints in the prob-

lem. Most real-world problems have the ultimate goal in certain forms of minimum-time

or minimum-energy. If the problem has multiple objectives, they must be prioritized based

on the requirement of problem specifications. All conditions that would invalidate a DOP

solution must be included as constraints to ensure their satisfaction. Hence for properly for-

mulated DOPs, any local optimum (to a certain extent, even any feasible solution) should be

considered as suitable for implementation.

For example, the aircraft climb problem mentioned earlier can be defined as a minimum-

time or minimum-fuel problem, subject to constraints regarding flight dynamics, the terminal

states (e.g. cruise altitude and velocity), flight envelope (incl. aerodynamics, structures)

limits, passenger/crew comfort limits, airspace restrictions, and maximum duration and fuel

usage limits.

Despite the benefits, formulating the DOPs directly based on problem specification can some-

times lead to optimization problems that are difficult to solve, making the solution process

more challenging. Although reformulation of the problem and some ad hoc fixes can be help-

ful in overcoming many of the difficulties, these posterior measures can become increasingly

difficult to implement for the solution of DOPs online in a closed-loop.
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1-2 Research objectives

The main objective of this research is determined to be

To efficiently obtain reliable and highly accurate solutions to dynamic optimization problems

that are formulated directly based on specifications of real-world problems, with minimum

usage of reformulations and ad hoc fixes to the problem.

The detailed research goals to be accomplished are as follows:

• To develop of a comprehensive toolbox for the solution of DOPs, where different ex-

isting methods can be tested for their respective advantages and disadvantages, and

developments on new methods can be supported.

• To identify possible improvements to existing numerical methods for solution of DOPs.

These include better addressing of challenging problems such as the ones with singular

control, high-index DAEs, as well as large-scale problems with high number of inequality

constraints implemented based on the problem specifications.

• To understand the reasons behind existing direct transcription methods’ shortcomings

in dealing with these challenging problems, and explore the possibility to develop new

types of direct transcription methods than can address the issues directly.

• To demonstrate the benefits of new developments with established benchmarking ex-

ample problems as well as challenging problems arising from aerospace applications.

1-3 Organization of the thesis

In Part I of this thesis, Chapter 1 presents the motivation and objective of this work. This

is followed by Chapter 2, providing a quick introduction of dynamic optimization and an

overview of existing numerical methods for the solution of DOPs, to introduce the terminolo-

gies and to provide background information that can support the discussions in later part of

this thesis. At the end of this introduction part, Chapter 3 highlights the main contributions

of this work.

Part II details on the numerical methods for direct transcription of DOPs, starting with

Chapter 4 demonstrating the discretization process of transcribing the infinite-dimensional

continuous-time DOPs into finite-dimensional DDOPs, with trajectories being approximated

by continues or piecewise continues functions. Chapter 5 highlights the general inevitability

of approximation errors and its implications on the way how dynamic constraints can be

enforced in the formulations of DDOPs. Through a simple example, the error characteristics

of different weighted residual methods are compared focusing on the shortcomings of the
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collocation approach. Following this, the direct collocation method is introduced in Chapter 6

explaining the necessity of a mesh refinement (MR) framework. This is followed by Chapter 7,

where the concept of integrated residual method (IRM) is first introduced with insights on its

connection to the direct collocation approach. Then the motivations for the development of

the direct alternating integrated residuals (DAIR) scheme are given, together with discussions

on the formulations and implementation strategies.

Part III discusses various aspects of solving large-scale problems efficiently. In Chapter 8, the

sparsity pattern for different direct transcriptions methods are presented. This is followed by

a discussion on the computation of derivative information, demonstrating why sparse finite

difference would not be efficient for IRM-type of direct transcriptions methods. Chapter 9

presents a way rate constraints can be implemented in DDOPs that avoids the introduction

of singular arc, and obtains faster computations at the same time. Then in Chapter 10, an

external constraint handling scheme is demonstrated that can systematically exclude inactive

constraints in DDOP formulations, reducing the problem size and computational time under

mesh refinement frameworks. Next, Chapter 11 compares different methods for the suppres-

sion of singular arc fluctuations. Lastly, an overview of DOP toolbox ICLOCS2 is provided

in Chapter 12, together with a number of software highlights and example problems.

The last part of this thesis focuses on the use of DOPs for aerospace applications. Chapter 13

includes a quick review of the history of solving DOPs for flight and orbital trajectory opti-

mization, as well as for flight control applications in the form of MPC. Then in Chapter 14,

high fidelity modelling of system dynamics for flight trajectory optimization of commercial

airliners are presented, followed by discussions on different formulations of the objective, sup-

pression of singular arcs in the solutions, and different multi-phase setups. Next, a formation

flight problem is demonstrated in Chapter 15, based on a simulated scenario of joint trans-

continental flights. The thesis closes with conclusions, discussions and suggestions for future

work in Chapter 16.

1-4 Example problems in this thesis

Unless mentioned otherwise, all problems are transcribed using the toolbox ICLOCS2 [159]

developed in this project, and solved with the interior point NLP solver IPOPT [206] with the

sparse linear solver MA57 [52] to a relative convergence tolerance (tol) of 10−9. In ICLOCS2,

both state and input trajectories are continuous trajectories if the problem is formulated using

a single phase, but allowed to be discontinuous with a multi-phase setup at phase interfaces.

All computational results, except ones in Chapter 9 and 10, are obtained with ICLOCS2

version 2.5 on an AMD Ryzen 5-3600 computer with 32 GB of RAM, running 64-bit Windows

10 with Matlab version 2019a. Computational results in Chapter 9 and 10 are obtained
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with ICLOCS2 version 2 on an Intel i7-6700 computer with 16 GB of RAM, running 64-bit

Windows 10 with Matlab version 2017a.

To avoid confusions and excessive definition of symbols, the symbols from the original refer-

ence or the convention of the respective application fields will be used for variables in different

example problems. Their definition is contained in the respective (sub)sections or chapters

(for Chapter 14 and 15) where they are presented. Except for these cases, all definition of

symbols for variables are consistent and valid throughout this thesis.
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Chapter 2

Overview of Dynamic Optimization

Problems

This chapter aims to provide the necessary background information for supporting the discus-

sions in later part of this thesis. The characteristics of DOPs in terms of optimality conditions

will be first presented and addressed in Section 2-1. This is followed by Section 2-2 with an

overview on MPC, and Section 2-3 reviewing existing numerical methods and software tool-

boxes for the solution of DOPs.

2-1 Optimality conditions

Provided that a solution is found corresponding to an optimum point of the DOP, it is possible

to analyze the properties of the solution at that point. Optimality conditions describe the

necessary conditions that the solution must satisfy at the optimum point. In most contexts,

the phrase optimality condition does not necessarily refer to a sufficient condition. Points

that satisfy the necessary optimality conditions are often named as candidate optimum points,

requiring additional tests to identify the actual optimality.

If the optimal solution is better than all other feasible solutions, then it is said to be a global

optimum, otherwise it is a local optimum. When the term optimality condition is used in this

thesis, unless stated otherwise, it is specifically referring to a set of necessary conditions that

are sufficient to only guarantee a local optimum. For properly formulated DOPs directly ac-

cording to specifications of a mission, a local optimum is sufficient for improving performance

and guaranteeing constraint compliance.
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Figure 2-1: Overview of the solution approach for DOPs

2-1-1 Overview

Figure 2-1 demonstrates the two main branches of methods for solving the DOPs. The indi-

rect methods are often known as ‘optimise then discretise’, by first deriving the corresponding

optimality conditions to the continuous DOP and then discretising the problem containing

these optimality conditions. In contrast, the direct methods employ the philosophy of ‘discre-

tise then optimise’, by first discretising the DOP into a finite-dimensional DDOP and then

formulating the optimality conditions to the DDOP.

Details regarding direct methods will be treated later. Here the focus will be on the optimality

conditions employed in indirect methods, as they directly relate to the original DOP (1-1). As

shown in Figure 2-1, two commonly used optimality conditions for DOPs are the Hamilton-

Jacobi-Bellman (HJB) equation and the Pontryagin’s maximum principle (PMP).

The HJB equation is a nonlinear first order partial differential equation defined with the

introduction of an optimal-cost-to-go. Solved backwards in time, the entirety of the state

space is traversed using dynamic programming before arriving at an optimal solution. Hence,

the HJB equation is a necessary and sufficient condition for the control to be optimal globally.

On the flip side, solving the HJB equation numerically using dynamic programming leads to

long computation times and suffers from the notorious curse of dimensionality [14]. Another

frequently used optimality condition is the PMP, a necessary condition for the solution to be at

optimum; hence can only yield local optimal points. However, relatively simple computations

make it possible to solve many challenging problems that would be otherwise intractable.

2-1-2 Pontryagin’s maximum principle

The PMP has its root in the calculus of variations but may also be derived from the HJB by

introducing costate (or adjoint) variables as the partial derivative of the optimal-cost-to-go

function with respect to state variables, provided that the HJB equation admits a smooth

optimal-cost-to-go solution [201].
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Without loss of generality, consider the following ODE-constrained DOP

min
x,u,p,t0,tf

Φ(x(t0), t0, x(tf ), tf , p) +
∫ tf

t0

L(x(t), u(t), t, p) dt (2-1a)

subject to

ẋ(t) − f(x(t), u(t), t, p) = 0, ∀t ∈ [t0, tf ] a.e. (2-1b)

φ(x(t0), t0, x(tf ), tf , p) = 0, (2-1c)

To yield the PMP, first define the Hamiltonian for the DOP (1-1) as

H(x(t), u(t), p, t, λ(t)) = L(x(t), u(t), t, p) + λ(t)⊤f(x(t), u(t), t, p) (2-2)

with λ(t) ∈ Rn the costate corresponding to ODE dynamic constraints (2-1b). The PMP says

that if the state and costate are optimal, the optimal control u∗ minimizes the Hamiltonian,

i.e.

u∗(t) ∈ arg min
u

H(x∗(t), u(t), p∗, t, λ∗(t)), ∀t ∈ [t∗0, t
∗
f ] a.e. (2-3)

which leads to the first order necessary condition for obtaining the minimum of the Hamilto-

nian (2-2)

Hu =
∂H

∂u
= 0. (2-4)

It is important to note that in the presence of inequality constraints, the solution for u∗(t)

changes whenever active constraints change, resulting in state dependent switches.

2-1-3 Boundary value problem

Additionally, it is possible to derive the co-state dynamics

λ̇(t) = −Hx = −
∂H

∂x
, (2-5)

as well as the transversality conditions:

either fixed x0 and t0, or λ(t0) = −
∂Φ

∂x(t0)
− ν⊤ ∂φ

∂x(t0)
, (2-6a)

either fixed xf and tf , or λ(tf ) =
∂Φ

∂x(tf )
+ ν⊤ ∂φ

∂x(tf )
, (2-6b)

either fixed t0, or H(t0) =
∂Φ
∂t0

+ ν⊤ ∂φ

∂t0
, (2-6c)

either fixed tf , or H(tf ) = −
∂Φ
∂tf

− ν⊤ ∂φ

∂tf
, (2-6d)
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with ν ∈ Rnq the multiplier corresponding to boundary constraints. Then (2-1b), (2-1c), (2-4),

(2-5) and (2-6b) form a two-point boundary value problem (BVP) together, characterised by

partial information available at both the initial and terminal conditions. Finding solutions to

the two-point BVP is key in solving DOPs.

2-1-4 Karush-Kuhn-Tucker conditions

Now the optimality conditions for the original DOP (1-1) can be derived. Without loss of

generality, the formulation of the Bolza problem can be simplified by considering all ODEs in

the DAE form, and all Lagrange costs in Mayer form with the total cost J , leading to

min
x,u,p,t0,tf

J(x(t), u(t), t, p) (2-7a)

subject to

g(x(t), ẋ(t), u(t), t, p) = 0, ∀t ∈ [t0, tf ] a.e. (2-7b)

c(x(t), ẋ(t), u(t), t, p) ≤ 0, ∀t ∈ [t0, tf ] a.e. (2-7c)

φ(x(t0), t0, x(tf ), tf , p) = 0, (2-7d)

(2-7e)

The Lagrangian, or Lagrange function, is defined as

L(x(t), u(t), λ(t), µ(t), t, p) = J(x(t), u(t), t, p) + λ(t)⊤g(x(t), ẋ(t), u(t), t, p)

+ µ(t)⊤c(x(t), ẋ(t), u(t), t, p) + ν⊤φ(x(t0), t0, x(tf ), tf , p) (2-8)

with λ(t) ∈ Rn+ng the costate corresponding to dynamic constraints (2-7b), µ(t) ∈ Rnc the

Lagrange multiplier corresponding to inequality path constraints (2-7c), and ν ∈ Rnq again

the multiplier corresponding to boundary constraints (2-7d).

Define z as the solution tuple consisting all decision variables for the continuous-time DOP,

i.e. z := (x, u, p, t0, tf ), then the necessary condition for optimality consists of stationary

conditions

∇zL(x∗(t), u∗(t), λ∗(t), µ∗(t), t, p∗) = 0, ∀t ∈ [t∗0, t
∗
f ] a.e. (2-9a)

primal feasibility

g(x∗(t), ẋ∗(t), u∗(t), t, p∗) = 0, ∀t ∈ [t∗0, t
∗
f ] a.e. (2-9b)

c(x∗(t), ẋ∗(t), u∗(t), t, p∗) ≤ 0, ∀t ∈ [t∗0, t
∗
f ] a.e. (2-9c)

φ(x∗(t0), t∗0, x
∗(tf ), t∗f , p

∗) = 0, (2-9d)
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dual feasibility

µ∗(t) ≥ 0, ∀t ∈ [t∗0, t
∗
f ] a.e. (2-9e)

and complementary slackness conditions

µ∗(t)⊤c(x∗(t), ẋ∗(t), u∗(t), t, p∗) = 0, ∀t ∈ [t∗0, t
∗
f ] a.e. (2-9f)

The system of equations (2-9) is commonly known as the Karush-Kuhn-Tucker (KKT) con-

ditions [113, 121]. Similar to PMP and different from the HJB, the KKT conditions are only

necessary optimality conditions. Hence, even if solution z is a KKT point and also satisfy the

second order sufficient conditions [142] (SOSC), it can only guarantee to be a local optimum.

Additional requirements includes for g(x∗(t), ẋ∗(t), u∗(t), t, p∗) and c(x∗(t), ẋ∗(t), u∗(t), t, p∗)

to be continuously differentiable, as well as for the problem to fulfil some regularity conditions,

for example, the linear independence constraint qualification (LICQ), requiring the gradients

of the equality constraints and active inequality constraints to be linearly independent at the

KKT point.

2-2 Model predictive control

MPC is a modern control design method that requires the formulation and solution of a

sequence of constrained DOPs, which arise from system identification, estimation and optimal

control problems. Although in conventional literature, MPC has frequently been associated

with receding horizon control, quadratic regulation and discrete-time models, none of these

implementation choices should be considered as the characteristics of MPC. In this work, the

term MPC simply refers to a closed-loop implementation of DOP solutions.

When the DOP solutions are computed offline and implemented online via a look-up table of

parameters, the method is known as explicit MPC. Explicit MPC is especially attractive for

embedded applications of small-sized problems. Research in explicit MPC mainly focuses on

methods that can reduce the memory footprint and the table look-up times [103].

In contrast, when the solutions of the DOPs are computed online as in Figure 2-2, the approach

is called implicit MPC. Implicit MPC may be required for more complex problems, and the

main challenges are related to the computational complexity for solving DOPs online.

Linear MPC describes the setup where the DDOP after transcription has a linear/quadratic

objective function in terms of the decision variables, subject to linear equality and inequality

constraints. As a result, the finite-dimensional DDOP is in the form of linear programming

(LP) or quadratic programming (QP). In these cases, the underlying derivative information

of cost gradient (first derivative of the objective with respect to decision variables), constraint

Jacobian (first derivative of the constraint equations with respect to decision variables) and
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Figure 2-2: Online implementation of dynamic optimization problems as implicit MPC

Lagrange Hessian (second derivative of the Lagrangian with respect to decision variables) will

only need to be provided to the numerical solvers once at the beginning, allowing for more

efficient solution of the problems.

For nonlinear MPC (NMPC), both the objective and the constraints can be nonlinear func-

tions. Therefore, the DDOPs will end up to be nonlinear programming (NLP) problems.

Typical methods for solving NLPs includes sequential quadratic programming (SQP) [30],

interior point method (IPM) [70] and derivative-free optimization (DFO) [177].

When the objectives are formulated directly according to mission specifications in MPC, the

method is commonly referred to as economic MPC (EMPC). The stability theory for EMPC

and nonlinear EMPC (NEMPC) is progressing [6, 51, 81, 148] but a guarantee is not yet

generally attainable. For instance, for EMPC with receding horizon control in general, no

guarantee can be made in terms of stability and performance, unless sufficiently long pre-

diction horizon is used with other assumptions on controllability and turnpike conditions

satisfied [81]. Therefore, demonstrations and evaluations of stability and performance prop-

erties rely heavily on simulation results.

While the experts are focusing on necessary theoretical developments, the use of NMPC

and EMPC in practice were not hindered. In contrast, the methods have gained increasing

popularity in many fields of applications. A key contributor is the availability of efficient

numerical methods and software tools for the solution of DOPs in the last two decades.
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2-3 Overview of existing numerical methods for solving DOPs

Most practical DOPs are intractable analytically and need to be solved with numerical meth-

ods. This section provides a high-level overview of the most commonly used numerical meth-

ods for the transcription and discretization process. Also, a collection of the existing optimal

control software is provided, highlighting the choice of NLP solvers and transcription methods.

2-3-1 Numerical solution of DOPs

For some nicely formulated DOPs, it is possible to follow the indirect approach to analytically

construct the necessary and sufficient conditions of optimality, which may then be numerically

solved. Despite advantages in solution accuracy, indirect methods require analytic expressions

for the optimality conditions. The non-triviality of determining these conditions, combined

with a lack of robustness w.r.t initialization of state and costate variables means that the

counterpart, direct method, has instead become the de facto standard for solving practi-

cal DOPs. A detailed survey comparing various variants of direct and indirect methods is

available in [168].

In direct methods, the continuous-time DOP is first transcribed into a DDOP using a dis-

cretization scheme of choice. The classical categorization of explicit and implicit schemes for

solving ODEs also applies to DOP numerical solution methods. However, in DOP literature,

these schemes are respectively termed as sequential and simultaneous approaches.

Time marching describes the approach where the solution at a later time-step is integrated

from available solutions of the system dynamics at one or more previous time steps. Direct

methods exhibiting these characteristics are referred to as sequential. In the solution process,

the initial conditions, parameters and input variables are adjusted repeatedly with the help of

sensitivity information until all path constraints and boundary conditions are satisfied. When

the method is applied to a single global interval, it is known as the single shooting method.

More details can be found in [17, 173].

Practical use of single shooting methods generally requires the system dynamics to be stable.

Furthermore, the method can be very sensitive to numerical inaccuracies and initial guesses,

leading to unstable and ill-conditioned BVPs. Consequently, the solution process tends to

have a high chance of failure. A way to mitigate these shortcomings is to subdivide the

global interval into multiples sub-intervals that are interconnected with appropriate continuity

conditions. This method is consequently called multiple shooting. Since the problem now has

to be solved altogether as a whole to yield a valid solution, multiple shooting is generally

considered to be a hybrid between sequential and simultaneous methods.

In native simultaneous methods, both state and input variables are parameterized, and the

continuous-time problem is translated into a single DDOP, instead of explicitly solving the
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time marching problem within each interval. This class of methods is also known as direct

transcription methods. Direct collocation is a popular variant of direct transcription methods,

with the dynamic equations implemented as equality constraints at some selected points in

the time domain known as collocation points, and solved altogether with other inequality

constraints and boundary conditions.

Direct multiple shooting and direct transcription have their respective advantages and disad-

vantages, and the choice between the two depends on the nature of the problem to be solved.

Generally speaking, multiple shooting only parameterizes input variables, leading to smaller

DDOPs. Also, when programming, it is easier to make the resultant code modular. These

characteristics make multiple shooting favourable, particularly in implementations where the

DDOP solvers are problem-size restricted.

Conversely, direct transcription often results in larger DDOPs, but with much sparser under-

lying system structures. The majority of DOP software developed in the past two decades

were built upon direct collocation approaches. This choice over multiple shooting can be

attributed to the fact that:

• with modern structure exploiting sparse solvers, a large sparse problem can have lower

computational complexity than a smaller but denser one,

• direct transcription avoids the dependency on differential equation solvers as in shooting-

based methods, leading to simple and stand-alone schemes,

• for dynamic models for which open-loop simulations are unsuitable (e.g. systems with

unstable dynamics), multiple shooting may need a sufficiently refined grid if the time

march schemes employed are sensitive to numerical inaccuracies, whereas typical direct

transcription methods can often work with a coarser mesh.

These characteristics, however, are based on common implementations of the methods in

different software packages. If one have full control of all aspects of the implementation, it is

possible to establish mathematical equivalencies between the two methods [167].

2-3-2 Discretization methods

Numerical discretization schemes are often used in the numerical methods for the solution of

DOPs. Generally speaking, they can be categorized into fixed-order h methods and variable

higher-order p/hp methods.

In h methods, such as Euler, Trapezoidal, Hermite-Simpson (HS) and the Runge-Kutta (RK)

family, a fixed degree polynomial is used in each mesh interval for state approximations.

Improving the accuracy of an h method is achieved by placing additional mesh points during
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Figure 2-3: Geometric comparison of the LGL, LGR and LG collocation points

the mesh refinement process [17]. Consequently, the size of the resulting DDOP can rapidly

increase.

The class of p methods, also known as pseudo-spectral methods, provides another alternative

[58]. The fundamental idea is to use orthogonal polynomials (Legendre or Chebyshev) to

approximate state and input trajectories in the discretization process. For smooth and well-

behaved solutions, the method exhibits exponential convergence [40]. As a result, better

approximations can be achieved with a relatively low degree polynomial, significantly reducing

the size of the resulting DDOP.

Legendre polynomials are solutions to the Legendre differential equation defined on the in-

terval [−1, 1], with the special property that the N th degree Legendre polynomial PN ( · ) is

always orthogonal to any Legendre polynomials of lower degrees. As illustrated in Figure 2-3,

there are three main choices for determining polynomial data points:

• Legendre-Gauss (LG) points, being the roots of a N th degree Legendre polynomial

PN ( · ), excludes both boundary points.

• Legendre-Gauss-Radau (LGR) points include −1 but do not include the end point at 1;

they are the roots of the polynomial PN ( · ) + PN−1( · ).

• Legendre-Gauss-Lobatto (LGL) points include both boundary points −1 and 1; they

are the roots of ṖN−1( · ).

Efficient ways to compute LGR points and weights are provided in Appendix A, and the

computation of the other two sets of points is analogous.

Depending on the nature of the DOP, choices of these collocation point locations may be

particularly suitable or unsuitable. A view from [73] is that the collocation system using

Gauss-Lobatto points are over-determined and should be avoided. Also, collocation at Gauss

points would need one extra equation to implement the initial conditions at the endpoint
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−1. However, because −1 is not a collocation point, the information for control input at the

current time instance would need to be obtained via data extrapolation, potentially having

an impact on the accuracy of the solution. Collocation using Gauss-Radau points avoids the

above-mentioned drawback and has become the preferred choice for pseudo-spectral methods

used in solving DOPs. For most problems, the need to extrapolate the values for control

inputs for the last point in the interval does not pose a practical concern. On the other

hand, for some finite-horizon problems [58], LGR and LG collocation methods reveal a lack

of convergence as the mesh becomes finer, where LGL collocation becomes preferable.

Nevertheless, approximating discontinuities and rapid changes in the solution with a global

spectral method is difficult due to Gibbs’s phenomenon [165]. When the issue arises, both

the convergence rate and solution accuracy can deteriorate. The development of hp-adaptive

methods try to have the best of both worlds: the degree of the polynomial is increased in

regions where the solution is expected to be smooth (hereby benefiting from exponential

convergence), and mesh refinement is only conducted by adding intervals near potential dis-

continuities or regions of rapid solution changes [162]. As a result, the same accuracy can

be obtained with much smaller DDOP sizes than the h method counterpart, resulting in

potential computational advantages.

2-3-3 Solving the DDOP

The choice of the appropriate solver for the DDOP depends on the characteristics of the DOP

and available computation resources. One may choose between LP, QP and NLP solvers that

are derivative-free, solvers which use first-order derivative information, solvers which use first-

and second-order information, and finally solvers based on first derivatives and a quasi-Newton

approximation of the second derivative information (e.g. Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithms).

Generally speaking, when the solution is smooth and well behaved, solvers which use higher-

order derivative information will converge in fewer iterations. However, this derivative in-

formation may need to be obtained through sparse finite differences, analytical derivatives

or algorithmic differentiation packages. These can be tedious or computationally expensive.

Conversely, solvers that only use first- or zeroth-order derivative information may need a

larger number of iterations to converge, but the computation cost per iteration is typically

significantly lower. In principle, and in practice, there is no class of DDOP algorithm that is

best suited for all problem types. A proper choice should be made on a case to case basis.
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2-3-4 Software for transcription and solution of DOPs

The non-trivial nature of numerically solving DOPs has prompted the creation of different

software packages employing different numerical schemes. The most commonly used ones

listed in Table 2-1.

It can be observed that a number of the software includes built-in NLP solvers, tailor-made for

the specific transcription methods that they support. This can often lead to higher efficiency

in the solution process and making the software able to handle problems of large dimensions.

For example, the built-in sparse solver of SOCS is said to be capable of efficiently handling

over 10000 parameters [7]. This capability is further enhanced with SOS as its limitation is

said to be increased to 500000 variables together with 500000 constraints.

Nevertheless, the majority of the software directly uses off-the-shelf NLP solvers. Popular

candidates include the interior point method IPOPT [205] and SNOPT [76] (an SQP solver

using an active-set QP solver). In general, these third party NLP solvers tend to be less

capable of handling large scale problems.

Relating the availability of solvers to the choice of discretization methods in Table 2-1, it can

be seen that software that uses integrated NLP solvers are more likely to use h methods. With

improved handling of large sparse systems, increasing the mesh size for temporal discretization

is the preferable way to improve accuracy. In contrast, software that makes use of third party

solvers tends to favour p/hp methods, benefiting a smaller problem dimension than typical h

method for obtaining a solution of a similar accuracy level.

Many of these tools require immediate commitments to specific programming languages, NLP

solvers and transcription schemes. In practice, however, appropriate choices would depend

on the required level of accuracy, available computational time/resources and characteristic

of the problem formulation (function smoothness, continuity, differentiability, etc.). Hence, it

is generally difficult to know beforehand which tool will work best, but subsequent changes

in the choice of DOP software increase the engineering expense and design time.

2-3-5 Numerical solution of singular control problems

When solving DOPs, a difficult situation can arise when the second partial derivative of

Hamiltonian (2-2) with respect to a input u(t) is singular, i.e. when Huu = ∂2H
∂u2 = 0. Hence,

the optimal input trajectory can not be directly obtained from the optimality conditions.

Although these cases of singular control is commonly perceived as a mathematical curiosity,

it is, in fact, frequently encountered in many engineering problems: Huu can be singular

whenever H is a linear function of u, which can occur even for linear ODEs with no path

constraints. An example problem is presented in Chapter 11.
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Also as mentioned earlier, the solution structure for u∗(t) changes whenever constraint ac-

tivation status change, hence singular control may occur only at certain intervals of DOP

solution, and these intervals are commonly referred to as the singular arc. Precise mathemat-

ical definitions and analysis of singular arc can be found in various literature [95, 189].

When DOPs with singular arcs are solved directly with existing numerical methods such

as direct collocation, solutions trajectories with large fluctuations, also known as ringing

phenomena, can occur on the singular arcs. This behavior can be attributed to a combination

of factors, including:

• the time instances and conditions for the transitions towards singular arcs often can not

be captured exactly by a discretization mesh, and

• to compensate for the mismatch in switch time, the solutions on the singular arc may

need to be adjusted accordingly, and

• on the singular arc, solutions with negligible differences in the objective values can have

drastically different characteristics, ranging from ones with no or small fluctuations

that closely resembles the original continuous-time DOP solution, to ones with large

fluctuations that are seemly “ugly”.

As a result, the large fluctuations seen on the singular arcs of DDOP solutions can, in fact,

be well-defined. However, due to larger residual errors associated with trajectories of high-

frequency fluctuations, and due to actuator operational limits, solutions with large fluctua-

tions are generally considered undesirable from an implementation point of view.

If the structures of the optimal DOP solutions are known, then higher-order time derivatives

of Hu = ∂H
∂u

can be computed for the singular arc to yield information regarding the optimal

control input u∗(t). This extra information is commonly known as singular arc conditions,

typically in the form of extra equality constraints or boundary conditions applied specifically

for that segment. Using a multi-phase problem formulation to accurately capture the switch

time, and with the help of singular arc conditions, numerical solutions of DOPs without sin-

gular arc fluctuations can be obtained thereafter. However, this way of dealing with singular

control requires detailed analytical derivations and can quickly become intractable for practi-

cal problems. Hence, numerical approaches that can automatically alleviate singular control

issues are very attractive, and therefore are a key area of focus of this work.
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Table 2-1: Various optimal control software compared

Software Solver
Programming Discretization License

Language and Transcription Type

SOCS Integrated dense/sparse
FORTRAN 90

h methods
commercial

[16] NLP solver (direct collocation)

SOS Integrated NLP solver Graphical user h methods
commercial

[18] SNLPMN, SBRNLP interface (GUI) (direct collocation)

GESOP SNOPT, SLSQP GUI with h methods
commercial

[8] SOCS Simulink interface (direct collocation)

DIRCOL
SNOPT, NPSOL

FORTRAN 77 unknown type
on request

[204] ANSI C (direct collocation)

OTIS4
SNOPT FORTRAN 95

h or p methods
on request

[203] (direct collocation)

PSOPT
IPOPT, SNOPT C++

h or p methods open
[12] (direct collocation) source

GPOPS
SNOPT Matlab

p method open
[170] (direct collocation) source

GPOPS-II SNOPT, IPOPT
Matlab

hp method
commercial

[162] KNITRO (direct collocation)

JModelica Open interface Python h or p method open
[2] (e.g. IPOPT) Modelica (direct collocation) source

ACADO Integrated NLP C++ with h method open
[99] (SQP with qpOASES) Matlab interface (multiple shooting) source

ACADOS Integrated NLP Low level language h method open
[196] (SQP type) with interfaces (multiple shooting) source

BOCOP
IPOPT GUI

h or p method open
[180] (direct collocation) source

FALCON.m
IPOPT, SNOPT Matlab

h/p method
on request

[176] (direct collocation)

APMonitor APOPT, BPOPT Matlab, Python hp method free through
[93] IPOPT Julia, Web (direct collocation) server

FORCES Pro Built-in Matlab h method
commercial

[57] Interior-Point Python (direct collocation)

pyomo.DAE
IPOPT Python

hp method open
[86] (direct collocation) source

ADRL IPOPT, SNOPT
C++

h method open
[75] HPIPM, Riccati-solver (multiple shooting) source

MUSCOD-II Built-in C++ with h method
commercial

[120] SQP solver various interfaces (multiple shooting)

DIDO Built-in
Matlab

hp method
commercial

[56] solver (direct collocation)

Trajectory- iLQR, AL-iLQR
Julia

h method
Optimization.jl ALTRO,IPOPT (indirect methods open

[175] SNOPT /direct collocation) source

NLOptControl.jl IPOPT,
Julia

h or hp method open
[100] KNITRO (direct collocation) source

pNMPC Derivative free C++ with h method not publicly
[172] solver Matlab interface (single shooting) available

ICLOCS IPOPT with CVODES
Matlab

h method (collocation open
[59] for sensitivity analysis /multiple shooting) source
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Chapter 3

Main Contributions of the Thesis

3-1 Main contributions

As discussed in Chapter 1, to maximize the benefits dynamic optimization can bring to

various science and engineering fields, the corresponding DOPs should ideally be formulated

directly in accordance to the specification of the original problem, i.e. to “solve a problem

that needs to be solved”. However in reality, current numerical methods have their limitations

in dealing with challenging problems. As a result, when solving directly using existing direct

transcription methods and software toolboxes, the original DOP often have to be reformulated

and ad hoc fixes have to be added, such as the inclusion of additional regularization terms in

the DOP objective.

For complex engineering problems, this current practice to “solve a problem which can to be

solved” can lead to significant drawbacks especially considering online implementations. For

example, the DAE indexes and the existence of singular control can both change depending

on constraint activation status. For a large problem with possibly hundreds or thousands of

constraint equations, it is difficult to identify all challenging scenarios in the offline design

phase and apply reformulations and ad hoc fixes. As a result, the development of numerical

methods that are reliable and efficient for solving DOPs of different difficulty nature will be

crucial; hence it is the main focus of this work.

3-1-1 New type of direct transcription method

The main contributions of this research begin with the development of a new type of direct

transcription method: the integrated residual method (IRM). This work is presented
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in Chapter 7, supported by Chapter 4, 5 and 6. By extending the least-squares methods for

solving differential equations to the solution of DOPs, the new approach allows one to obtain

a number of benefits over direct collocation:

• Instead of forcing the residual errors to be zero only at collocation points, IRM-type

methods minimize or constrain the residual error integrated over the whole trajectory,

allowing solutions of a much higher accuracy to be achieved for the same discretization

mesh, compared to a collation method. The definition of accuracy for a DOP solution

is discussed in Section 4-6.

• Through a detailed analysis of error characteristics, a connection between IRM-type

methods and direct collocation can be established: enforcement of dynamic constraints

in direct collocation can be viewed as a special case of IRM methods where the quadra-

ture points for the numerical integration of the residual errors are selected to be the

same as the collocation points. This choice, however, is insufficient to correctly reflect

the actual accuracy level of the solution.

• By allowing arbitrarily small residuals to exist during the solution process, IRM-based

methods have shown to have better convergence properties for dynamic constraints con-

sists of high-index DAEs or DAEs that force the optimal solution to lay on a manifold.

Direct collocation is known to struggle in both cases.

• Due to the existence of approximation error, and the multi-objective nature of IRM-

type methods for the solution of DOPs, different singular arc solutions with negligible

differences from the objective point-of-view can now be ranked by their error levels.

Larger fluctuations in the solution generally lead to bigger errors along the trajectory

when approximated by parameterized functions; therefore, a solution with the lowest

singular arc fluctuations is often the most accurate solution in the IRM residual error

metrics. This provides a unique opportunity for IRM-type transcription methods to au-

tomatically suppress potential singular arc fluctuations, without the need for additional

treatments.

• Development of direct alternating integrated residual (DAIR) transcription method en-

ables a flexible trade-off between solution accuracy and optimality, by formally treating

the process of numerically solving DOPs on a given mesh as a multi-objective optimiza-

tion problem.

3-1-2 Efficient solution of DOPs

In this work, a number of new methods for efficient solution of DOPs have also been proposed,

suitable for different transcription methods:
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• A general approach to directly implement rate constraints on the discretiza-

tion mesh for all discretization methods, and for both state and input vari-

ables. Unlike conventional approaches that may lead to singular arcs, the solution of

this on-mesh implementation has better properties. Moreover, computational speedups

can be achieved by exploiting the properties of the resulting linear constraint equations.

This work is presented in Chapter 9.

• A strategy for handling inactive constraints efficiently by systematically re-

moving the inactive and redundant constraints. Inactive constraints do not con-

tribute to the solution of DOPs, but increase the problem size and burden the numerical

computations. The proposed method is designed to be used under a mesh refinement

framework, with mild assumptions that the original problem has feasible solutions, and

the initial solve of the problem is successful. The method can be tailored for numerical

solvers that are sensitive to the choice of initial points in terms of feasibility. The details

are presented in Chapter 10.

3-1-3 Development of a comprehensive MATLAB toolbox for fast prototyping

of optimization-based control

In the course of this PhD research, ICLOCS2∗, a comprehensive Matlab toolbox for fast

prototyping of optimization-based control has been developed, presented in Chapter 12. The

toolbox aims to provide the community with a freely available software that is capable of

seamlessly changing between wide choice of methods at any point in the design process. The

software is also accompanied with unique tools to allow the efficient and accurate solution of

large problems. For example, ICLOCS2 incorporates mesh refinement schemes that also con-

siders the reduction of constraint violation errors in-between mesh points, assuring accuracy

and constraint compliance of the solution trajectories. The result is a versatile DOP package

that has been seen to work on a wide array of challenging real-life and academic problems.

In a collaboration work, ICLOCS2 has successfully resolved an image quality challenge in

magnetic resonance imaging (MRI), efficiently solving problems with PDE governing equa-

tions that are approximated with several thousands of ODEs, and resulting in DDOPs with

more than 500000 decision variables. Additionally, ICLOCS2 has appeared in publications

successfully helping researches in different fields [71, 179, 211] to address their respective

challenges.

∗available from http://www.ee.ic.ac.uk/ICLOCS/

http://www.ee.ic.ac.uk/ICLOCS/
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3-1-4 Dynamic optimization for aerospace applications

With regards to aerospace applications, a number of explorations were also made in the

duration of this PhD program to demonstrate the benefits of solving challenging DOPs that

are formulated directly according to mission specifications. Examples include but not limited

to:

• Aircraft upset recovery: the method have shown great potentials in yielding non-

intuitive solutions to bring the aircraft from an out-of-flight-envelope status (e.g. aero-

dynamic stall) back to nominal flight.

• Multiple unmanned aerial vehicle (UAV) in-range tracking: Unlike conven-

tional tracking formulations that aim to eliminate the deviations between the target and

the chaser, tracking in-range problems only require the target to be the field-of-view of

UAV’s on-board camera, hence can lead to substantial savings in energy consumption

and greatly increases the mission duration.

• Joint Optimization of Transmission and Propulsion in UAV-Assisted Com-

munication Networks: For UAVs to off-load a fixed amount of data to a ground node

at a distance, there are both the possibility to move closer to the ground station and

to send a stronger signal. The energy-optimal profile would be a non-intuitive solution

in-between these two extreme tactics, which can be achieved automatically using a DOP

framework.

Selected to be included in this thesis are demonstrations of trajectory optimization problems

for commercial flight of the future, based on concepts of continues climb and continues descend

in Chapter 14, and formation flight in Chapter 15. Also, a brief review of the history of solving

DOPs in aerospace applications is made in Chapter 13 to help envision the future.

3-2 List of publications

The following list of publications represent research work during the PhD. For collaborative

work with authors other than the supervisor, additional details on the contributions are also

provided.

Journals

1. Y. Nie and E. C. Kerrigan. Efficient implementation of rate constraints for nonlinear

optimal control. IEEE Transactions on Automatic Control, pages 1–1, 2020. In press
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2. Y. Nie and E. C. Kerrigan. Efficient and more accurate representation of solution

trajectories in numerical optimal control. IEEE Control Systems Letters, 4(1):61–66,

Jan 2020. ISSN 2475-1456. doi: 10.1109/LCSYS.2019.2921704. The contents of this

paper were also selected by CDC 2019 Program Committee for presentation at the 58th

Conference on Decision and Control, Nice, France, Dec 2019

3. Y. Nie and E. C. Kerrigan. External constraint handling for solving optimal control

problems with simultaneous approaches and interior point methods. IEEE Control

Systems Letters, 4(1):7–12, 2020. doi: 10.1109/LCSYS.2019.2921700. The contents of

this paper were also selected by CDC 2019 Program Committee for presentation at the

58th Conference on Decision and Control, Nice, France, Dec 2019

Conference proceedings

1. Y. Nie and E. C. Kerrigan. Capturing discontinuities in optimal control problems.

In 2018 UKACC 12th International Conference on Control (CONTROL), 2018. doi:

10.1109/CONTROL.2018.8516770

2. Y. Nie and E. C. Kerrigan. Efficient implementation of rate constraints for nonlinear op-

timal control. In 2018 UKACC 12th International Conference on Control (CONTROL),

2018. doi: 10.1109/CONTROL.2018.8516847

3. Y. Nie and E. C. Kerrigan. How should rate constraints be implemented in nonlinear

optimal control solvers? IFAC-PapersOnLine, 51(20):362 – 367, 2018. ISSN 2405-8963.

doi: 10.1016/j.ifacol.2018.11.060. 6th IFAC Conference on Nonlinear Model Predictive

Control NMPC 2018

4. E. C. Kerrigan, Y. Nie, O. J. Faqir, C. Kennedy, S. A. Niederer, J. A. Solis-Lemus,

P. Vincent, and S. E. Williams. Direct transcription for dynamic optimization: A tutorial

and case study on dual-patient ventilation during the COVID-19 pandemic, Dec 2020.

Accepted to 59th IEEE Conference on Decision and Control (CDC)

Contributions: finalizing technical details, performing numerical computations of DOPs,

interpretation of the results, writing parts of manuscript.

5. Y. Nie, O. J. Faqir, and E. C. Kerrigan. ICLOCS2: Try this optimal control problem

solver before you try the rest. In 2018 UKACC 12th International Conference on Control

(CONTROL), 2018. doi: 10.1109/CONTROL.2018.8516795

Contributions: software development, writing of the manuscript.

6. O. J. Faqir, Y. Nie, E. C. Kerrigan, and D. Gündüz. Energy-efficient communication

in mobile aerial relay-assisted networks using predictive control. IFAC-PapersOnLine,
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51(20):197 – 202, 2018. ISSN 2405-8963. doi: 10.1016/j.ifacol.2018.11.013. 6th IFAC

Conference on Nonlinear Model Predictive Control NMPC 2018

Contributions: performing numerical computations of DOPs, interpretation of the re-

sults, finalizing the manuscript.

Poster presentation with abstract submission

1. Y. Nie and E. C. Kerrigan. ICLOCS2: Solve your optimal control problems with less

pain, Aug 2018. presented at 6th IFAC Conference on Nonlinear Model Predictive

Control NMPC 2018

Paper under review

1. Y. Nie and E. C. Kerrigan. Solving Dynamic Optimization Problems to a Specified

Accuracy: An Alternating Approach using Integrated Residuals. Submitted to IEEE

Transactions on Automatic Control.

Working paper

1. Y. Nie, O. J. Faqir and E. C. Kerrigan. ICLOCS2: A Comprehensive MATLAB Tool-

box for Fast Prototyping of Optimization Based Control.

Contributions: software development, perform numerical computations of DOPs, inter-

pretation of the results, writing of the manuscript.

2. O. J. Faqir, D. Gündüz, E. C. Kerrigan, and Y. Nie. Joint Optimization of Transmission

and Propulsion in UAV-Assisted Communication Networks.

Contributions: development of UAV model, perform numerical computations of DOPs,

interpretation of the results, finalize the manuscript.
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Chapter 4

Discretization and Parameterization of

Dynamic Optimization Problems†

The original continuous-time DOP (1-1) is an infinite-dimensional problem that innately em-

beds the concepts of time, space and causality. In practice, finding approximate solutions to

the DOP using numerical methods requires the definition and solution a DDOP or a sequence

of DDOPs through a so-called transcription process. Central to the transcription process are

the discretization schemes that take the vast solution space of the infinite-dimensional (other-

wise intractable) problem and define low dimensional manifolds which the system behaviour

lies on.

In this chapter, typical temporal discretization approaches are discussed in Section 4-1 which

could be further extended for spatial discretizations analogously. Then commonly used meth-

ods for parameterization of solution trajectories are introduced in Section 4-3 followed by

a discussion on solution representation methods in Section 4-5. Lastly, error metrics for

posterior error analysis are presented in Section 4-6.

4-1 Temporal discretization

For a finite horizon problem defined from t0 to tf , we may define accordingly K intervals

Tk := [tk, tk+1] for all k ∈ IK := {1, . . . ,K} locations with t0 = t1 < · · · < tK+1 = tf , so

This chapter contains materials from the following papers:
Y. Nie and E. C. Kerrigan. Solving Dynamic Optimization Problems to a Specified Accuracy: An Alternating
Approach using Integrated Residuals. Under review.
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that T =
⋃

k∈IK
Tk. These locations tk for all k ∈ IK+1 are named the major nodes, also

commonly known as mesh nodes. The mesh design is critically important for the solution

efficiency and accuracy. Inside each interval k, additional minor nodes may be defined. The

inclusion of these minor nodes inside each mesh interval may due to different reasons and will

be discussed later.

To efficiently handle variable horizon problems, the time domain can be normalized with

intervals Sk := [sk, sk+1] where s1 = 0 and sK+1 = 1, and the relationship tk = t0 +(tf −t0)sk.

As the result, t0 and tf can be included as optimization decision variables. Using S =
⋃

k∈IK
Sk, t0 and tf together, T can be uniquely represented. In this way, even with fixed

designs of S, i.e. the distribution and location of mesh points inside the domain is determined

a priori, the time instances corresponding to these locations can vary since t0 and tf can be

free.

In order to simplify the notation, the explicit dependence of each time instant tk on a given

sk, t0 and tf will be omitted. It should be understood throughout that the time instances, tk,

and the time differences between them, ∆t(k) := tk+1 − tk, are actually functions of t0 and tf .

4-2 Approximating the DOP solution with parameterized functions

The key concept employed in the transcription process is the approximation of state, state

derivatives and input trajectories with parameterized continuous or piecewise-continuous func-

tions. The approximated trajectories will be denoted by x̃, ˙̃x and ũ respectively, and can be

characterized by a number of discrete variables.

This process often leads to the misconception that a continuous-time DOP solution is ap-

proximated using point values. In fact, the solution trajectories are approximated with a

combination of pre-specified basis functions. For example, the state trajectories x in can be

approximated as

x(t) ≈ x̃(t) :=
N
∑

i=1

aiβi(t), (4-1)

with some coefficients ai, also known as amplitudes of the basis functions βi. The key to

solving the solution approximation problem is to determine the discrete unknowns ai, for all

i ∈ IN . For practical problem, the unknowns are typically solved with numerical schemes

hence also often called degrees of freedom of the problem.

The basis functions βi( · ) can either be global functions, which span the entire domain, or

local functions that only have non-zero values inside specific regions. If global functions basis

are used, the resulting methods are usually referred to as spectral methods, whereas local

functions lead to finite-element methods. Both cases are illustrated in Figure 4-1.
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(a) using global basis functions (b) using local basis functions

Figure 4-1: Illustration for the formation of approximation function x̃ using basis functions

It is also possible to map global basis functions into local ones through a coordinate trans-

formation. An interval [tk, tk+1] in the global domain can be normalized and mapped to

local coordinates which take value, for example, on [−1, 1]. Hence one could view this im-

plementation like that, in each interval k ∈ IK , state trajectories x(k) are approximated as

x̃(k) with continuity conditions specified at mesh nodes when necessary. Methods with such

characteristics also belong to the class of finite-element methods.

4-3 Parameterization of state and input variables

Taking the finite element approach, the state trajectories x in each interval k ∈ IK can be

approximated as

x(k)(t) ≈ x̃(k)(t) :=
N(k)
∑

i=1

a
(k)
i β

(k)
i (t).

One common choice of such approximating functions would be polynomials, with the contin-

uous function characterized by some polynomial coefficients. With t 7→ x̃(k)(t) a polynomial,

the parameterized state trajectory t 7→ x̃(t) is therefore a piecewise polynomial. Polyno-

mial methods often use Lagrange interpolating polynomials as basis functions, because they

tend to have a number of advantages from a numerical and implementation point of view,

compared to using monomials or other basis functions [15]. For example, warm starting of

the NLP solver is significantly faster and simpler to implement with Lagrange interpolating
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polynomials.

The idea is to choose parameterization methods that require a(k) to consist of samples of

x̃(k)( · ), i.e. the trajectory t 7→ x̃(k)(t) should interpolate through the components of a(k) =:

(a(k)
1 , . . . , a

(k)

N(k)) at a given set of minor nodes τi for all i ∈ IN(k) . In this case, these minor

nodes are named data points, and the corresponding coefficients are named parameterized

states denoted by χ
(k)
i , i.e. χ(k)

i = x̃(k)
(

τ
(k)
i

)

∈ Rn for all i ∈ IN(k) , to distinguish this from

the more general case above. Additionally, χ(k) := [χ(k)
1 , . . . , χ

(k)

N(K) ]
⊤ ∈ RN(k)×n and χ :=

[χ(1), . . . , χ(K)]⊤ ∈ RN×n, with N :=
∑K

k=1N
(k), are defined for brevity in later discussions.

The major nodes together with the data points are often referred to as the grid points.

It is also possible to define a quadrature of different order for each interval, in order to

numerically integrate a functional. The quadrature points are defined as a different choice

of minor nodes inside each interval k according to the quadrature scheme, i.e. q(k)
i , for all

i ∈ IQ(k) , where Q(k) is the number of quadrature points inside the interval. In this way,

accurate numerical integration with higher-order quadrature rules is made possible.

For most single-phase DOPs, continuity of state trajectory is required. Continuity of the

trajectories between interval k and k + 1 can be enforced either

• implicitly by using the same decision variable for the last node of interval k and the first

node of interval k+ 1, reducing the number of unknowns points from N (k) to N (k) − 1,

or

• explicitly by additional continuity constraints:

x̃(k) (tk+1) = x̃(k+1) (tk+1) , (4-2)

which will also effectively reduce the number of degree of freedom by 1.

The parameterization of the input using the data point values υ(k)
i can be done similarly for

the approximation function ũ(k), where each function ũ(k) is continuous and differentiable.

Since u can be discontinuous, therefore for methods that evaluate functions at the endpoint of

the intervals (implicit Runge-Kutta, Radau or Lobatto schemes, such as the trapezoidal and

Hermite-Simpson methods), ũ(k)(tk+1) will not be the same as ũ(k+1)(tk+1). Suitable choices

for the functions ũ(k) are application-dependent. Popular choices are for each t 7→ ũ(k) to be

a constant or polynomial, so that the parameterized trajectory t 7→ ũ(t) is piecewise constant

or (discontinuous) piecewise polynomial. The discretization and parameterization for x and

u is illustrated in Figure 4-2.

In practice, some systems might require the input to be a zero-order or other hold signal.

However, early on in the mesh refinement process (see Section 4-6-3 and 12-2-2), when the in-

tervals defined by the mesh are relatively large compared to the time between control updates,
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Figure 4-2: Temporal discretization and trajectory parameterization. The number and distri-
bution of interpolation points need not be the uniform or the same in each interval. The state
trajectory x̃ is continuous, but that the trajectory ũ can be discontinuous.

Table 4-1: Order of the approximating polynomial functions (a.m.: at most)

Method State derivatives ( ˙̃x) States (x̃) Inputs (ũ)

Euler piecewise constant a.m. piecewise linear
same

as state
derivatives

Trapezoidal a.m. piecewise linear a.m. piecewise quadratic
H-S a.m. piecewise quadratic a.m. piecewise cubic
LGR a.m. order N (k)-1 a.m. order N (k)

it might be computationally more efficient to use a (non-constant) polynomial parameteriza-

tion for υi, even if u is implemented in a piecewise constant manner. In these cases where

both state and input trajectories inside an interval are parameterized by polynomials, the

degrees of the polynomials are typically in accordance with the discretization scheme as listed

in Table 4-1. Without loss of generality, the rest of this work follows this convention.

4-4 Discretized dynamic optimization problem

With the above-mentioned temporal discretization and state and input trajectory parame-

terization, solutions to the discretized problem, i.e. the full set of nz optimization variables,

can be denoted as Z := (χ, υ, p, t0, tf ). Now the direct discretization of DOP (1-1) can be

expressed as the following DDOP:

min
χ,υ,p,t0,tf

Φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

+
K
∑

k=1

Q(k)
∑

i=1

w
(k)
i L

(

x̃(k)
(

q
(k)
i

)

, ũ(k)
(

q
(k)
i

)

, t0, tf , p
)

(4-3a)
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subject to, for all k ∈ IK ,

ψ(k)
(

χ(k), υ(k), t0, tf , p
)

=0, (4-3b)

γ(k)
(

χ(k), υ(k), t0, tf , p
)

≤0, (4-3c)

φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

=0. (4-3d)

as well as any necessary continuity constraints in the form of (4-2). χ(K)
f is the value of the

state variables at terminal time tf , and for schemes with the last node being a data point,

χ
(K)
f = χ

(K)

N(K) holds. Otherwise χ(K)
f can be transcription method depended, e.g. in LGR

collocation it is χ(K)
f = χ

(K)

N(K+1) , with χ(K)

N(K+1) additionally added as a decision variable. The

expressions for the functions ψ(k) and γ(k) depend on the details of the transcription method.

The scalars w(k)
i ,∀i ∈ IQ(k) are the interval-dependent quadrature weights (i.e. including the

corresponding time interval ∆t(k) contributions) for the numerical integration of the Lagrange

cost inside the interval.

4-5 Representation of the continuous DOP solution trajectories

The discretized problem can be solved with off-the-shelf DDOP (LP/QP/NLP) solvers, out-

putting the discretized solution Z := (χ, υ, p, t0, tf ). The approximate solution to the con-

tinuous DOP z̃(t) := (x̃(t), ũ(t), t, p) can then be directly evaluated everywhere along the

trajectory by substituting the values of the decision variables into the approximation func-

tions. However, if it is challenging to evaluate the original approximation functions with good

numerical accuracy at locations other than the data points, a different interpolating scheme

can be used to construct an approximation of the continuous-time optimal trajectory. For

example in p/hp methods, Lagrange interpolating polynomials in the barycentric form are of-

ten used to construct x̃(k), which has superior numerical stability than the standard Lagrange

interpolating polynomials.

4-5-1 Representation through direct interpolation

The most straightforward choice is to interpolate the solution in correspondence with the

discretization scheme used in the transcription process. For most commonly-used numerical

schemes, the numerical differentiation formulation has an equivalent integration form, as

presented in Table 4-2, where

̥
(k)
i := f(χ(k)

i , υ
(k)
i , t0, tf , p), for all i ∈ IN(k) .

Based on these integration schemes, direct interpolation of the sampled point solution is
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Table 4-2: Typical numerical integration schemes

Method
Numerical Integration Scheme

(degree N (k))

Euler (1) χ
(k)
2 = χ

(k)
1 + ∆t(k)̥

(k)
1

Trapezoidal (2) χ
(k)
2 = χ

(k)
1 + ∆t(k)

2 (̥(k)
1 + ̥

(k)
2 )

Hermite χ
(k)
2 = 1

2 (χ(k)
2 + χ

(k)
1 ) + ∆t(k)

8 (̥(k)
1 − ̥

(k)
3 )

Simpson (3) χ
(k)
3 = χ

(k)
1 + ∆t(k)

6 (̥(k)
1 + 4̥(k)

2 + ̥
(k)
3 )

LGR (N (k))
I(k) = [A(k)

2:N(k)+1
]−1

χ
(k)

2:N(k)+1
= χ1 + ∆t(k)

2 I(k)̥
(k)

1:N(k)

possible using splines with the type and order in accordance with Table 4-1. For example, with

Hermite-Simpson transcription, the trajectory of system dynamics/state derivatives inside

mesh interval k using quadratic splines will be

˙̃x(k)(t) =̥
(k)
1 +

(

− 3̥(k)
1 + 4̥(k)

2 − ̥
(k)
3

)

t− tk

∆t(k)

+
(

2̥(k)
1 − 4̥(k)

2 + 2̥(k)
3

)(

t− tk

∆t(k)

)2

.

Integrate this polynomial yields the cubic spline state trajectory,

x̃(k)(t) =χ(k)
1 + ̥

(k)
1 (t− tk) +

1
2

(

− 3̥(k)
1 + 4̥(k)

2 − ̥
(k)
3

)

(t− tk)2

∆t(k)

+
2
3

(

̥
(k)
1 − 2̥(k)

2 + ̥
(k)
3

)

(t− tk)3

(

∆t(k)
)2 .

(4-4)

The control trajectory with quadratic splines is expressed as,

ũ(k)(t) =
2

(

∆t(k)
)2 (t−

1
2
tk −

1
2
tk+1)(t− tk+1)υ(k)

1 −
4

(

∆t(k)
)2 (t− tk)(t− tk+1)υ(k)

2

+
2

(

∆t(k)
)2 (t− tk)(t−

1
2
tk −

1
2
tk+1)υ(k)

3 ,

for all t ∈ [tk, tk+1]. The full trajectory x̃, ˙̃x and ũ will therefore be expressed as a piecewise

cubic and two piecewise quadratic polynomials respectively.

4-5-2 Representation through polynomial fitting

For constructing the continuous-time trajectory, one may also consider the use of other types

of function approximation or polynomial fitting techniques, for example, the Matlab built-
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in pchip (piecewise cubic Hermite interpolating polynomial) function. The choice of spline

types and orders depends on the continuity of the trajectory and the required accuracy.

Generally speaking, piecewise polynomials are, again, preferred to global methods for this

purpose, especially considering the regions with extremely dense mesh and rapidly varying

solutions. Note that pchip is fundamentally different from (4-4), and it uses smaller sized

splines and interpolate between each grid points. For example, with HS discretization, direct

interpolation would result in a single cubic function for state trajectory inside an interval,

whereas pchip would generate two cubic functions for each of the sub-interval divided by the

mid-point.

Although various options are possible, it is always a good practice to have the state derivative
˙̃x and input ũ directly fitted or interpolated, and integrate the polynomial equation to obtain

a trajectory for x̃. This way it ensures a correct relationship between ˙̃x and x̃ throughout

the trajectory. With any polynomial fitting method, one must pay special attention to avoid

situations where the fitting is badly conditioned. The conditioning can be improved by making

use of techniques such as scaling.

4-6 Error metrics for DOP solutions

4-6-1 Errors related to dynamic constraints

Any valid solution trajectory (t 7→ x̃, ũ, p, t) must satisfy the system dynamics (1-1b)-(1-1c)

with a good level of accuracy. To measure the accuracy of the solution, one would like

to compare x̃ with x, and ˙̃x with ẋ; however such exact solutions are not obtainable for

the majority of the practical problems, hence can only be used for benchmarking purposes.

Therefore, we need appropriate error metrics that can indicate the accuracy of a solution,

without knowing the accurate solution itself.

Regarding the dynamic equations, it is often regarded as a good idea in practice to compute

the residuals ε(t) ∈ Rn+ng defined as

ε(t) :=

[

˙̃x(t) − f(x̃(t), ũ(t), t, p)

g(x̃(t), ˙̃x(t), ũ(t), t, p)

]

, (4-5)

which is straightforward to compute for any DOP solution. However, as further demonstrated

later in Chapter 5, the residual evaluated at a selected location of the domain is not represen-

tative of the actual accuracy of the solution. Instead, the absolute value (for a single dynamic

constraint) or the norm (for multiple dynamic constraints) of the residuals integrated along

certain intervals of the domain are often found to be a suitable metrics for measure of solution

accuracy.
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Following this idea, the most popular choices for error analysis are to integrate the absolute

value of ε(t) for in each interval Tk and for each dynamic equation ξ = 1, . . . , n+ ng . With

ε
(k)
ξ (t) ∈ R the ξth element in ε(t) ∈ Rn+ng in interval k, the corresponding error can be

computed as

ζ
(k)
ξ :=

∫

Tk

|ε
(k)
ξ (t)| dt, (4-6)

for all dynamic equations to obtain ζ(k) ∈ Rn+ng . Alternatively, a single metric can be used

as

η(k) :=
∫

Tk

‖ε(k)(t)‖2 dt, (4-7)

with ‖ · ‖2 the vector 2-norm. The integrals can be practically estimated by high-order

quadrature. The metrics ζ ∈ R(n+ng)×N or η ∈ RN are typically referred to as the absolute

local error. When this error is normalized with the largest magnitudes of state and state

derivatives, the error is known as the relative local error [17]. Other variants are also possible

such as the mean local error, with normalization by the interval size, and squared absolute

local error, using the square of the norm instead. For schemes using such error measures based

on the evaluation of the residuals locally, a solution will be considered sufficiently accurate

when the values of the error are below pre-specified tolerances for all mesh intervals.

Analogously, the integration of residual errors can be computed along the whole trajectory.

For instance, the integrated residual norm squared (IRNS) error can be computed as

r(x̃, ũ, t0, tf , p) :=
∫ tf

t0

‖ε(t)‖2
2 dt. (4-8)

which is equivalent to the sum of absolute local errors η(k) for all intervals k ∈ IK . Other

variations in the definition are also possible, e.g. the integrated residual squared (IRS) er-

ror computed for each individual dynamic equation, and the mean integrated residual norm

squared (MIRNS) error defined as r
∆t

with ∆t := tf − t0.

4-6-2 Errors due to constraint violations

Numerical discretization also inevitably leads to possible constraint violations of the trajecto-

ries in between the grid points. For path and box constraints that are expressed semi-explicitly

as (1-1d), the absolute local constraint violation ǫ(t) ∈ Rnc may be estimated as

ǫl(t) :=







0 if cl(x̃(t), ˙̃x(t), ũ(t), p, t) ≤ 0

cl(x̃(t), ˙̃x(t), ũ(t), p, t) if cl(x̃(t), ˙̃x(t), ũ(t), p, t) > 0
, for l = 1, . . . , nc. (4-9)

with cl the lth element in the equality constraints c.
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4-6-3 Mesh refinement

Once the locations of errors on the mesh are obtained, appropriate modifications can be made

to the discretization mesh. The DDOP can be updated and solved iteratively until a solution

which fulfils all predefined error tolerances is obtained. This process is called mesh refinement,

generally requiring mesh intervals, i.e. mesh points, to be added for h or hp methods, and the

polynomial degree of an interval to be adjusted for p or hp methods (details can be found in

[17, 129] and Section 12-2-2). The NLP problem based on the new mesh can be warm-started

using the solution from the previous mesh, leading to significantly faster convergence, thus

reducing the overall computation time.

Mesh refinement is an indispensable part of any direct transcription scheme that do not embed

any measures to ensure solution accuracy between data points, such as direct collocation. One

implementation of mesh refinement logic used in the toolbox ICLOCS2 is explained in further

details in Section 12-2-2.



Chapter 5

Enforcement of Dynamic Constraints

in Discretized Dynamic Optimization

Problems

The key concept employed in the transcription process in Chapter 4 is the approximation of

state, dynamics and input trajectories with continuous functions. It is important to realize

that solutions of (1-1) can rarely be represented exactly by the approximating functions.

For example, with a polynomial basis, even in the simple case where f(x(t), u(t), p, t) =

ẋ(t) = αx(t) + u(t) and u(t) = 1 are both polynomials, the corresponding state trajectory

x(t) = x(0)eαt +
∫ t

0 e
α(t−ς)u(ς) dς is clearly not a polynomial for all α 6= 0 and approximation

errors should be expected.

The general inevitability of approximation errors leads to an important implication: it is not

possible for (1-1b)–(1-1c) to be satisfied everywhere along the domain for any arbitrary choice

of the minor nodes. To gain better insight on how these constraints should be dealt with, a

broader class of numerical methods commonly used to solve ODEs, DAEs and PDEs can be

referred to, namely the Rayleigh-Ritz approach [171, Sect. 5.2–5.7] and the weighted residual

methods [171, Sect. 5.8].

For the weighted residual methods, different choices of weighting functions lead to differ-

ent methods, including the famous Galerkin, collocation, and least-squares methods. In this

chapter, a numerical study is provided highlighting the error characteristics of each method,

providing the foundations for later chapters regarding the underlying issues with direct col-

location method and the motivation for the development of the integrated residual type of

methods for solving DOPs.
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5-1 The Rayleigh-Ritz approach

One way to solve the solution approximation problem is to define an equivalent optimization

problem which minimises some measure of the solution. For instance, in finding the solution

of ODEs in the strong form of ẋ(t) = f(x(t)), one could solve the following minimization

problem

min
a

∫

T

‖ε(x̃(t))‖2
2 dt, (5-1)

with a := [a1, . . . , aN ]⊤ and ε the ODE residuals of the approximating function x̃(t) :=
∑N

i=1 aiβi(t), i.e.

ε(x̃(t)) = ˙̃x(t) − f(x̃(t)).

To find the extreme value (maximum or minimum) of the objective, by definition, one could

require the derivatives with respect to the unknowns ai to be zero, i.e.

∂
∫

T
‖ε(x̃(t))‖2

2 dt

∂ai
= 0, for i ∈ IN . (5-2)

The method known as the Rayleigh-Ritz approach.

5-2 Weighted residual methods

With the Rayleigh-Ritz approach, one often need to refer to calculus of variations for comput-

ing the extremal of functionals. For numerical solution of differential equations, the method

of weighted residuals is more generally applicable approach than Rayleigh-Ritz method.

Instead of the strong form, with the weighted residual methods, it is also possible to define

the boundary value problem of differential equations using the weak form. This approach

requires that
∫

T

̟(t)ε(x̃(t))dt = 0 (5-3)

to be hold for the entire domain T and for all suitable weighting functions ̟(t). By suitable,

a basic requirement is that the weak form must remain integrable. Other requires may

be necessary on a case to case basis, for instance, depending on the discretization scheme

employed.

Since both spectral and finite-element method problems are now solved under the weak form

using weighted residual methods rather than the strong form, one must show their equivalence

to each other. It is straightforward to show that the residual of the exact solution to the

strong form will also satisfy the weak form, with (5-3) guarantee to hold when ε(x̃(t)) =
˙̃x(t) − f(x̃(t)) = 0. The other way around requires a bit more details.
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Proposition 1. Besides the solution to the strong form of a differential equation, there does

not exist other solutions for the weak form to be satisfied.

Proof. For a solution to not satisfy the strong form, a non-zero residual ε(x̃(t)) 6= 0 must exist

for some region of the domain T. Since (5-3) must hold for all suitable weighting functions

̟(t), it must hold for a selection of weighting function such that it is positive over this

region of ε(x̃(t)) 6= 0 and zero elsewhere. Computing the integral (5-3) using such a weighting

function would lead to non-zero results, indicating that such a solution could not be a solution

of the weak form. Hence, the solution to the weak form must be equivalent to the solution of

the strong form.

A detailed proof of the above proposition can be found in [101]. This use of such weighting

functions ̟(t) (as in the proof) essentially provides a way to test the value of residuals locally.

Thus, ̟(t) are also commonly referred to as test functions or trial function in the literature,

with space containing the test functions known as the test space or trial space.

Using an infinite-dimensional set of weighting functions ̟i and a similar infinite-dimensional

set of basis functions βi, both with i ∈ IN and N = ∞, the weak form (5-3) produces the

exact solution to the continuous problem. In practice, a finite N will be used to yield a finite-

dimensional approximation for the state trajectory x; hence one can use no more than N

weighting functions ̟i to form a system of N equations to solve for the unknown coefficients

ai.

Different choice of test functions can lead to different variants of weighted residual methods,

for instance:

• The Bubnov-Galerkin method: with test functions chosen to be the same as the

approximations basis functions, i.e.

̟i = βi =
∂x̃

∂ai
, for i ∈ IN .

The method is commonly referred as the Galerkin method with Bubnov omitted.

• The collocation method: with test functions chosen to be Dirac delta functions

centered at a set of discrete points ti, i.e.

̟i = δ(t− ti), with
∫

Ti

δ(t− ti) dt =







1 when ti ∈ Ti

0 otherwise
, for i ∈ IN .

• The least-squares method: with test functions chosen to be the partial derivatives
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of the residual with respect to the unknown coefficients, i.e.

̟i =
∂ε

∂ai
, for i ∈ IN . (5-4)

• The method of moments: with test functions chosen from the family of polynomials,

i.e.

̟i = ti, for i ∈ IN .

Remark 1. When the basis functions βi are chosen to be polynomial functions, the method

of moments is identical to the Galerkin method.

Remark 2. The sub-domain method is often discussed in the same context, however, it is

not strictly a weighted residual method as the weighting is not explicitly used. The method

can be regraded as an extension to the collocation method (hence also known as sub-domain

collocation method), by also forcing the residuals to be zero over various sub-domains, with

weight ̟(t) set to unity, i.e.

∫

T

̟(t)ε(x̃(t)) dt =
N
∑

i=1

(
∫

Ti

ε(x̃(t)) dt
)

= 0.

The resultant set of equations can be implemented as the equality constraints (4-3b) so that

the dynamic equations (1-1b)–(1-1c) in the DOP can be approximately satisfied. However, in

practice, where a finite-dimensional approximation is made, the choice of test functions will

have important implications on the error characteristics of the solution. Hence, this aspect

will be explored further with the following numerical study.

5-3 Comparison between different weighted residual methods – a

numerical study

Comparisons between different variants of weighted residual methods has been extensively

studied in the literature, both in theoretical work on numerical finite element methods [27,

28, 54, 96, 97], in practical work on computational fluid dynamics [66, 112, 166], and in

structural dynamics [74], focusing on solution accuracy and computational efficiency. Here,

we focus to use a numerical example to demonstrate the characteristics of these methods.

Consider the following simple problem

ẋ1(t) =acx1(t),

x1(0) =x1,0.
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The analytical solution is x1(t) = x1,0e
act. The approximate solution x̃1 is obtained by the

above mentioned methods using polynomial basis functions with both N = 1 (i.e. piecewise

linear) and N = 3 (i.e. piecewise cubic). For N = 1 case with collocation method, we use

the standard explicit Euler rule that the collocation point is at the start-point. Comparisons

were made for the absolute errors |x1 − x̃1| and the residual errors | ˙̃x1 − acx̃1| for an interval

[0, h], which is representative for a mesh interval [tk, tk+1] in Chapter 4, with the following

metrics

• Errors inside an interval with fixed h = 1 (Figure 5-1),

• Errors the end of the interval with different values of h (Figure 5-2),

• Square of the residual errors integrated along the interval with different values of h

(Figure 5-3).

From Figure 5-1, large differences can be observed for the collocation scheme in comparison

to the others. Firstly, the behavior of collocation scheme to force the residual error to be zero

(or machine precision) can be clearly observed at t = 0 for the N = 1 case and t = (0, 0.5, 1)

in the case of N = 3. This characteristic, however, results in a larger absolute error in the

approximation of x1 with collocation. Starting with zero absolute error x1(0) = x1,0 at the

start of the interval, the collocation scheme yields the highest absolute error at the end of the

interval, in both cases of N = 1 and N = 3.

The results shown in the figure also support Remark 1, showing identical results for the

Galerkin method and the method of moments when polynomial basis functions are used.

Moreover, the numerical results further evidenced that the Rayleigh-Ritz method with the

objective functional formulated as the integral of the residual squared (5-1) is identical to as

the least-squares weighted residual method, both providing the most accurate solution at the

end of the interval.

Continuing the comparison between different weighted residual methods, Figure 5-2 compared

the errors at the end of the interval with different sizes of h. First focusing on the absolute

error: it can be observed that the least-squares type of methods not only have the smallest

error (expect for large values of h), the slope at which the absolute error reduces is also the

steepest as the mesh becomes finer with decreasing h. Having such a small absolute error at

the end of the interval is crucially beneficial for controlling the propagation of error in the

solution trajectory.

In contrast, the residual error at a given point provides little indication of the accuracy of

a solution. For N = 3 with the end-point being a collocation point, the residual error for

collocation has shown to be negligibly small whereas the absolute error is, in fact, one of

the highest. However, in the case of N = 1 with explicit Euler, collocation has the highest
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(a) N = 1

(b) N = 3

Figure 5-1: Comparison of absolute and residual errors inside an interval [0, 1] for various function
approximation methods
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magnitude for both the absolute and the residual errors at the end-point. This observation

demonstrated that evaluating the residual error only at certain points is not sufficient to

correctly reflect the level of accuracy.

Figure 5-3 illustrates the IRNS error, i.e.
∫ h

0 ε(x̃1(t))2 dt. Here, a consistent result can be

observed in both cases of N = 1 and N = 3, with the collocation method having the highest

IRNS error and the least-squares class of methods (least squares and Rayleigh-Ritz with

IRNS formulation) having the lowest error. It also shows that the use of residual error in

the integral form is a much more suitable error metrics than only at certain points. For this

simple example, increasing the basis function order to N = 3 would be sufficient to close

the gap between the methods; however, with complex problems, the deficiency in solution

accuracy for the collocation approach and the advantages in the least-squares approach may

become more pronounced. This property can be consistently observed in later chapters when

these methods are used for the numerical solution of DOPs.

Order of Convergence Using this opportunity, further explorations can be made regarding

the order of convergence for different schemes, focusing on the order which integration er-

ror reduces with decreasing time step h. Based on available literature [83, Section II.7][82,

Theorem 5.2], as h tends to zero, the error is eventually dominated by the order of the finite

element polynomial, hence different methods should have equal rate.

This analysis is in correspondence to the results obtained by this numerical example shown

in Table 5-1, for the order of convergence in terms of the IRNS error. After removing the

influence of the square operation for the integrand in (5-1), the actual rate of convergence for

the integrated residual norm error is around 1 for case of N = 1 and 3 for case of N = 3,

the same as the order of the finite element polynomial. Table 5-1 also shows that the rate of

convergence for a different error metric can also be different. For the least-squares approach,

the rate of convergence for the absolute error measured at the end of the interval is, in fact,

significantly higher than the other two alternatives. Such benefit, however, can be problem

dependent in practice.
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Table 5-1: Approximate order of convergence for different weighted residual schemes with the
example problem

N Method
IRNS error Absolute Error
∫ h

0 ε(x̃1(t))2 dt |x1(t = h) − x̃1(t = h)|

1
Collocation 3 2

Least-squares 3 4
Bubnov-Galerkin 3 2

3
Collocation 6 to 7 4 to 5

Least-squares 6 to 7 7 to 8
Bubnov-Galerkin 6 to 7 4
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(a) N = 1

(b) N = 3

Figure 5-2: Comparison of absolute and residual errors at the end of an interval [0, h] for different
values of h and various function approximation methods. The residual error for collocation have
gaps when the value is below machine precision.
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(a) N = 1

(b) N = 3

Figure 5-3: Comparison of the square of the residual error integrated along the interval [0, h] for
different sizes of h and various function approximation methods



Chapter 6

Direct Collocation Method†

Direct transcription method of direct collocation is arguably the most widely used numerical

method for the solution of DOPs. Details of the method are available in various literatures [17,

58, 162] hence this chapter will only provide a brief overview, with special focus on the

characteristics of the direct collocation solutions.

6-1 Direct collocation transcription

For the collocation weighted residual method, the test functions are selected to be Dirac

delta functions, leading to n+ ng equality constraints to be applied to each of the N (k) data

points. The Dirac delta functions possess the isolation property, namely that the integral of

the function on an interval is zero, except the intervals that contain the center of the function,

where the integral equals to 1. Therefore information needed to evaluate a constraint equation

at a data point will be fully independent from information corresponding to other data points,

contributing to the computational efficiency of the direct collocation method.

The other simplification commonly made in direct collocation is to also use the same data

point definition for both the quadrature points in the numerical integration of the Lagrange

cost and the points where path constraints (1-1d) are forced to be satisfied. As a result, the

data points would be sufficient for the transcription of the problem to an DDOP, hence they

are also known as the collocation points.

This chapter contains materials directly from the following paper:
Y. Nie and E. C. Kerrigan. Solving Dynamic Optimization Problems to a Specified Accuracy: An Alternating
Approach using Integrated Residuals. Under review.
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With the collocation weighted residual method, the resultant equality constraints from (5-3)

with a finite-dimensional approximation is

N(k)
∑

j=1

A
(k)
ij χ

(k)
j + D

(k)
ij f

(

χ
(k)
j , υ

(k)
j , t0, tf , p

)

=0, (6-1a)

g
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

=0, (6-1b)

with χ̇
(k)
i := ˙̃x(k)

(

τ
(k)
i

)

∈ Rn. A(k) ∈ RN(k)×N(k)
is a discretization-dependent constant

matrix, where A
(k)
ij is element (i, j) of the matrix, and D(k) ∈ RN(k)×N(k)

is a matrix containing

time variables. Structures of both A(k) and D(k) depends on the chosen discretization scheme.

In the DDOP(4-3), (4-3b) needs to contain (6-1a)–(6-1b) for the dynamic equations to be ap-

proximately fulfilled. Also, (4-3c) is chosen such that the inequality constraints are equivalent

to

c
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

≤ 0.

To sum up, the DDOP arising from direct collocation transcription of DOP (1-1) is

min
Z

Φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

+
K
∑

k=1

N(k)
∑

i=1

w
(k)
i L

(

χ
(k)
i , υ

(k)
i , t0, tf , p

)

(6-2a)

subject to, for i ∈ IN(k) and k ∈ IK ,

N(k)
∑

j=1

A
(k)
ij χ

(k)
j + D

(k)
ij f

(

χ
(k)
j , υ

(k)
j , t0, tf , p

)

=0, (6-2b)

g
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

=0, (6-2c)

c
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

≤0, (6-2d)

φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

=0, (6-2e)

as well as any necessary continuity constraints.

The discretized problem (6-2) can be solved with off-the-shelf NLP solvers. In special cases

where the objective (6-2a) is linear or quadratic, and all constraints (6-2b)–(6-2d) are linear, a

QP solver can be used to handle the numerical solution process more efficiently. Note that for

defect constraint (6-2b) to be linear for a linear function f , D should only contain constants

thus the problem formulation must have a fixed mesh design with fixed initial and final time,

i.e. t0 and tf are excluded from the decision variables.
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6-2 Characteristics of the direct collocation solutions

In essence, direct collocation forces the residuals ε(k) to be zero at all collocation points. It

is well-known in the field of approximation theory that if a function cannot be represented

exactly by a polynomial, forcing the approximating polynomial to exactly go through some

sampled data points generally results in larger errors for the function values between the data

points than other methods, such as least-squares fitting. Similarly, direct collocation will

generally result in large residuals in-between collocation points, regardless of the distribution

and spacing of these points.

Since most direct collocation methods employ absolute or relative local error as the error

metric, a mismatch arises between the error measures in the problem formulation and the

error criteria for a solution to be sufficiently accurate in posterior error analysis:

• when formulating the DDOP, satisfaction of dynamic constraints are based on residuals

at collocation points, whereas

• during the error analysis of the solution, satisfaction of dynamic constraints are based

on the norm of residuals integrated along intervals in-between collocation points.

As direct consequences,

• regardless of how small the solver tolerance is, solving the DDOP once on a single

given discretization mesh will provide no guarantee in terms of solution accuracy and

constraint satisfaction, hence

• posterior procedures such as error analysis and mesh refinement must be considered as

an indispensable part of a direct collocation method in order to ensure convergence and

solution accuracy.

This is a point of caution often not realized by non-experts. The development of the integrated

residual class of methods fundamentally addresses the problems arising from this error metric

mismatch, by working with the residuals in integrated form also in the solution process.
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Chapter 7

Direct Integrated Residual Methods†

In this chapter, a novel direct transcription and solution method for solving nonlinear,

continuous-time DOPs is proposed. Instead of forcing the dynamic constraints to fulfill only

at a selected number of points as in direct collocation, this approach minimises or constraints

the squared norm of the dynamic constraint residuals integrated along the whole solution

trajectories. As a result, the method can 1) obtain solutions of higher accuracy for the same

mesh compared to direct collocation methods, 2) enables a flexible trade-off between solution

accuracy and optimality, 3) provides reliable solutions for challenging problems, including

those with singular arcs and high-index differential algebraic equations.

In this chapter, the concept of IRM is first introduced in Section 7-1, with insights on its

connection to the direct collocation approach. Subsequently, in Section 7-2, the motivations

for the development of the DAIR scheme is given, together with discussions on its formulation

and implementation strategies. This is followed by a number of classical examples in Section 7-

3, where different aspects of the method are demonstrated.

7-1 Key concepts of integrated residual methods

In the field of approximation theory, the least squares criterion is often considered as a more

suitable choice than forcing the fitting error to be exactly zero only at some selected points [23].

This chapter contains materials directly from the following papers:
Y. Nie and E. C. Kerrigan. Solving Dynamic Optimization Problems to a Specified Accuracy: An Alternating
Approach using Integrated Residuals. Under review.
Y. Nie and E. C. Kerrigan. Efficient and more accurate representation of solution trajectories in numerical
optimal control. IEEE Control Systems Letters, 4(1):61–66, Jan 2020 ©2019 IEEE
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Before exploring the implementation of the least-squares approach for the solution of DOPs,

it is worthwhile to first look at the use of such a method in solving dynamic equations in

the form of ODEs and DAEs. For the reminder of this work, the MIRNS error introduced

in Section 4-6 will be used as the error metric, however other variants of IRNS error may be

selected also.

Following the Rayleigh-Ritz approach, finding an approximate solution of the dynamic equa-

tions is equivalent to the following optimization problem that minimizes the MIRNS error:

min
χ,υ,p,t0,tf

1
∆t

r(x̃, ũ, t0, tf , p) (7-1a)

subject to any continuity and boundary constraints, for example,

x̃(k) (tk+1) = x̃(k+1) (tk+1), (7-1b)

φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

= 0. (7-1c)

The least squares approach as defined in the class of weighted residual methods with (5-4)

is equivalent to applying the optimality condition (5-2) and obtaining a number of equality

constraints to be satisfied. However, this condition is only a first order necessary condition and

thus theoretically can only guarantee that the trajectory is a stationary solution in general,

i.e. the trajectory could be a local maximum for the MIRNS error. In addition, using only the

optimality conditions will not be able to provide indications on the magnitudes of the errors.

Hence, this work focuses on the development of methods that directly solve the optimization

problem (7-1a) instead. Although the solutions obtained this way will still be local and

depended on the initial guess (as the optimization problem is typically nonlinear and non-

convex), it is however now possible to evaluate the error magnitudes during the solution

process instead of a posteriori. Therefore, when designing numerical schemes, mechanisms can

be put in place to ensure the integrated residual errors are below some specified requirements.

For example, the schemes proposed in Section 7-2 make use of inequality constraints to bound

the error.

In error metrics, such as r (4-8) used here, the calculation of the norm effectively introduces

relative trade-offs for the accuracy between the dynamic equations. Although the original

expression works well when all variables are scaled to the same numerical range, there ex-

ist situations where it may be beneficial to specify additional weighting terms with diagonal

matrix W ∈ R(n+ng)×(n+ng) for the corresponding dynamic equations. In practice, one of-

ten knows beforehand that the modeling of some relationship (e.g. between acceleration and

velocity) will have a higher confidence level than the modeling of some other dynamics (e.g.

relationship between gas peddle position and acceleration). In these cases, it would be prefer-

able to formally specify what would be the desired trade-off in terms of accuracy for different
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dynamic equations.

7-1-1 Numerical integration with quadrature rules

For certain simple problems, r may be expressed analytically for precise computation. How-

ever, for the majority of practical problems, numerical integration with quadrature rules of

sufficiently high order can be used, i.e. (7-1a) can be replaced by

min
χ,υ,p,t0,tf

1
∆t

K
∑

k=1

R
(

χ(k), υ(k), t0, tf , p
)

(7-2a)

with

R
(

χ(k), υ(k), t0, tf , p
)

:=
Q(k)
∑

i=1

w
(k)
i

∥

∥

∥Wε(q(k)
i )

∥

∥

∥

2

2
. (7-2b)

7-1-2 Least squares method for solving the DOP

When solving the DOP using the least squares approach, instead of just solving the differential

equations, it is important to address the relationship between the requirement to minimize

the integrated residual (7-2a) and the desire to minimize the original objective (1-1a). With

an indirect approach, the optimality system for the DOP can be formulated and subsequently

solved using least-squares finite element methods [25, 26].

For direct transcription, recently proposed penalty-barrier finite element method (PBF) [149]

formulates an augmented objective consisting of the original objective, the MIRNS error as a

penalty term and inequality constraint violations as an integrated logarithmic barrier term.

The authors were able to prove convergence of their method provided that the functions that

define the problem satisfies appropriate boundedness and Lipschitz conditions.

Based on the same concept of minimizing the integrated residual, a solution representation

method [156] is proposed, able to obtain solutions of much higher accuracy than collocation

methods, while maintaining non-increasing objective values. This approach effectively treats

computing an approximate solution of the DOP as a multi-objective optimization problem.

This approach is further extended into a stand-alone scheme for the solution of DOPs, and

the new method will be addressed in detail in Section 7-2. Here, the method’s relationship

to direct collocation and the characteristics of this class of methods will be discussed first.

7-1-3 Relationship to direct collocation

In general, IRM-type methods are considered as a different approach to collocation. Here,

a different perspective can be shown, namely that direct collocation can be considered as a
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special case of IRM.

Proposition 2. In the direct collocation formulation, the enforcement of dynamic constraints

with (6-1a)–(6-1b) is equivalent to the solution of a special case of problem (7-2), with the

quadrature points q
(k)
i ,∀i ∈ IQ(k) in each interval selected to be the same as the data points

τ
(k)
i ,∀i ∈ IN(k) of that interval.

Proof. For equality constraints (6-1a)–(6-1b) to be fulfilled, the residuals ε(t) evaluated at

collocation points τ (k)
i for all i ∈ IN(k) and k ∈ IK will all be zero. When the quadrature

points chosen for the IRM problem (7-2) match the data points, the IRM problem will have

the optimal solution with R∗ = 0, since the corresponding residuals ε(t) at these data points

can be forced to zero altogether. This is equivalent to enforcing (6-1a)–(6-1b).

Hence, the enforcement of dynamic constraints in direct collocation can be interpreted as an

IRM method where in (7-2) the quadrature points are chosen to be the same as the data

points. The quadrature order with this choice is not sufficiently high, in general. Hence,

large errors may occur between the collocation points, which will not be reflected in any

convergence and error measure of the underlying NLP. In other words, successfully solving

the direct collocation NLP to very small tolerances does not guarantee an accurate solution.

A graphical illustration of the differences in error characteristics with sufficiently high order

quadrature for IRM method is shown in Figure 7-1.

7-1-4 Improved DAE handling

For direct collocation, if DAE equations exist as part of the dynamics, in addition to fulfilling

all other constraints, there may not always be sufficient remaining degrees of freedom to

additionally satisfy equation (6-2c) for all i ∈ IN(k) , causing convergence issues for the NLP

solver. The opposite could happen as well, with degree of freedoms not uniquely defined by

the constraints, leading to multiple or even an infinite number of solutions. In this case,

significant fluctuations will occur in the obtained solution. If the original continuous-time

DOP is consistent, inconsistencies as described above would be attributed to the constraint

discretization process, leading to either an over-constrained or under-constrained NLP.

Direct collocation methods are known to struggle for high-index DAE systems [17], and

systems with consistently over-determined constraints. In fact, without implementing the

scheme with special considerations, direct collocation could also lead to undesirable numerical

solution with low-index DAE systems, e.g. as demonstrated in the second example of [130,

Section 6.2].

Consistently over-determined constraints describe the situation where redundant constraints

are present the continuous DOP formulation, to force the solution to lie on a manifold. A
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Figure 7-1: Illustration for the differences in error characteristics between a collocation scheme
and a minimized integrated residual method inside a mesh interval. Collocation methods force
the residual errors to zero at collocation points, but the errors between collocation points can
be large. IRM-type methods minimizes some variations of the residual error integrated along the
whole trajectory.

commonly encountered situation would be when the ODE equations already implicitly en-

forces the preservation of relevant quantities, however another DAE constraint of conservation

equation is enforced at the same time but at a different integration level. For instance, in

three-dimensional mechanical systems with quaternions: in addition to implicitly determined

forces, an additional equation may be enforced to constraint the solutions of the quaternion

states to lie on a unit sphere.

While the infinite-dimensional formulation remains consistent, the discretized problem will

not necessarily be, due to differences in discretization and integration errors. With these

types of problems, convergence of the NLP solver may significantly deteriorate or become
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unachievable. In these situations, modification to the dynamics are often made to avoid

over-constrained NLPs, either by relaxing the redundant constraints or by making use of

techniques such as symplectic integrators [43] and Baumgarte stabilisation [11] to ensure the

preservation of the relevant quantity.

IRM-type of schemes can address these challenging cases out-of-the-box, i.e. without the need

of additional care in the transcription process as in the case of direct collocation. This is be-

cause the fundamental ideas of these ad hoc fixes proposed for direct collocation are embedded

in the key concepts of IRM. For instance, the proposed solution for the second example of [130,

Section 6.2] with direct collocation is to control the residual error between mesh nodes by

enforcing additional residual constraints, which are inequality constraints that use ‘an error

norm to control the overall error within the element for all the differential equations’. This

solution resembles many similarity to IRM, which minimizes and/or constrains the residuals

integrated based on high order quadrature rules. Similarly, for cases of high-index DAEs

and systems with consistently over-determined constraints, IRM based methods allows small

residuals for the constraints to exist during the solution process similar to integrated penalty

methods [64], hence able to automatically relax the redundant constraints and yielding better

convergence properties.

7-1-5 Suppression of singular arc fluctuations

As explained in Section 4-6, in the parameterisation of DOPs, the representation of the state

and input trajectories can rarely be made exact, hence approximation errors are generally

unavoidable. This provides a unique opportunity for IRM-type transcription methods to

automatically suppress potential singular arc fluctuations, without the need for additional

treatments.

Due to the existence of approximation errors, and the multi-objective nature of IRM meth-

ods for solution of DOPs, different solution candidates on the singular arc with negligible

differences from the objective point of view can now be ranked by the error. Larger fluctua-

tions in the solution generally lead to bigger errors along the trajectory when approximated

by a parameterised function, therefore a solution with the smallest fluctuations is often the

most accurate solution in the IRM residual error metrics. This is the key reason behind the

suppression of singular arc fluctuation with IRM-type transcriptions.

A special case would be when the choice of basis functions is capable of representing the

solution trajectories exactly. Typical examples would be when system dynamics are purely

integrators. In this case, it is possible for a singular arc trajectory with large fluctuations to

possess no residual errors, making the IRM theoretically unable to suppress the singular arc

directly.
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However, the issue with fluctuating solutions being exact is only of concern for a converged

optimal solution. It is unlikely that the solve of DOP will be initialized with such solution as

an initial guess, hence in practice, errors in solution trajectory presented in the intermediate

iterations will help IRM methods to converge to a solution with singular arc fluctuations sup-

pressed. Therefore, in cases where trajectories being represented exactly by the parameterized

function, although IRM can not guarantee the suppression of singular arc theoretically, the

method can still leads to a good results in practice.

7-2 Direct alternating integrated residual method

Though PBF has a number of advantages over direct collocation in terms of solution accuracy

and robust handling of some difficult problems, PBF is still a method developed focusing on

off-line solution of dynamic optimization problems. Illustrated in Figure 7-2a, these types of

problems often have one target solution that the DOP algorithm is searching for, namely the

solution with the smallest objective value among the ones that contain the lowest possible

error. In other words, one wants the convergence of the objective (J → J∗) and constraint

satisfaction (r, η, ǫ → 0) at the same time, as the discretization mesh becomes denser (K

increases).

The picture is different when considering a single solve of the DOP on a given discretization

mesh, especially considering on-line NMPC applications. Firstly, the nature of solving the

DOP numerically will become a multi-objective problem in this case, leading to an inevitable

trade-off between minimizing the objective and reducing the residual error. This often indi-

cates that, in practice, the target solutions will not be the ones that lie on the far ends of the

Pareto front.

Evaluating preferences among various solutions on the Pareto front depends on other criteria,

e.g. the closed-loop performance of the NMPC controller. Details on how such a trade-off

can be made are available in other work, e.g. [118]. Here we directly take the outcome of this

decision-making process: an error level under which the solution accuracy can be considered

acceptable. The original multi-objective optimization problem can then be translated into

a single objective one, with the target solution being the one that minimizes the objective

value, while satisfying the constraints concerning the acceptable error level.

Figure 7-2b illustrates the solution process of direct collocation and the PBF method for a

given mesh size and discretization method. As long as the initial point and mesh design do not

change, the solution obtained with direct collocation methods will not change. From earlier

discussions, it can be seen that, regardless of whether this solution satisfies the acceptable

error level, it is very unlikely in practice to be a solution that resides on the Pareto front. In

other words, one aspect of a direct collocation solution can be improved without deteriorating
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(a) Trajectory optimization

 

(b) Single solve on fixed mesh (e.g. for NMPC)

Figure 7-2: Illustration for the differences in solving trajectory optimization problems offline and
solving DOPs on a single fixed mesh
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the other aspect.

In contrast, PBF is capable of finding solutions on the Pareto front; however, controlling which

solution it will terminate at would require careful selection of parameters for the penalty and

barrier terms. Therefore, even if the sub-iterations can be computed efficiently, additional

challenges are associated with the PBF method to converge easily to the target solution, given

a specified acceptable accuracy level. The proposed direct alternating integrated residual

(DAIR) method aims to address these challenges and provide a reliable and efficient approach.

7-2-1 Elementary formulations

The elementary formulations of the DAIR method consist of two problems: minimizing

the MIRNS error and minimizing the objective subject to integrated residual error con-

straints, denoted as the DAIR residual minimization problem and DAIR cost minimization

problem, respectively. The method retains the same decision variables as in (4-3), namely

Z := (χ, υ, p, t0, tf ), and uses the interpolation polynomial formula x̃( · ), ˙̃x( · ) and ũ( · )

for the computation and integration of various elements of the discretized DOP.

The DAIR residual minimization problem has the formulation

min
χ,υ,p,t0,tf

1
∆t

K
∑

k=1

R
(

χ(k), υ(k), t0, tf , p
)

(7-3a)

subject to, for all i ∈ IN(k) and k ∈ IK ,

c
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

≤0, (7-3b)

φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

=0, (7-3c)

and optionally any continuity constraints in the form of (7-1b), as well as optionally one

or more constraints from the following constraints regarding upper limits for the objective

Jc ∈ R:

K
∑

k=1

Q(k)
∑

i=1

w
(k)
i L

(

x̃(k)
(

q
(k)
i

)

, ũ(k)
(

q
(k)
i

)

, t0, tf , p
)

+ Φ
(

χ
(1)
1 , t0, χ

(K)
f , tf , p

)

≤ Jc, (7-3d)

and the mean integrated residual squared (MIRS) error for individual dynamic equations

̺ ∈ R
(n+ng)
≥0 :

K
∑

k=1

Q(k)
∑

i=1

w
(k)
i

∆t
(ε(k)

ξ (q(k)
i ))2 ≤ ̺ξ, for ξ = 1, . . . , n+ ng, (7-3e)

with ̺ξ the ξth element in ̺.
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The counterpart, the DAIR cost minimization problem, is

min
χ,υ,p,t0,tf

Φ(χ(1)
1 , t0, χ

(K)
f , tf , p) +

K
∑

k=1

Q(k)
∑

i=1

w
(k)
i L

(

x̃(k)
(

q
(k)
i

)

, ũ(k)
(

q
(k)
i

)

, t0, tf , p
)

(7-4)

subject to (7-3b), (7-3c), (7-3e) and optionally (7-1b), for all i ∈ IN(k) and k ∈ IK .

In terms of the accuracy of the solution, the above two problems can be considered as a prac-

tically balanced approach: DAIR is more reliable than direct collocation because it minimizes

the MIRNS error for the dynamic equations. DAIR is easier to implement and solve than the

PBF method, because DAIR avoids the need to introduce a sequence of weights for penalty

and barrier terms and choosing an appropriate, tailored NLP solver; the NLPs in DAIR can

be solved using most off-the-shelf solvers.

Note that inequality constraints are chosen to be enforced at polynomial data points only (sim-

ilar to direct collocation), and existing constraint tightening techniques (e.g. those discussed

in [68]) may be applied when necessary. This is an efficient choice for numerical computa-

tions, but is without loss of generality; the DAIR framework allows discretized inequality

constraints to be enforced anywhere along the trajectory.

7-2-2 Implementation strategies

Standalone direct transcription method

Based on the elementary formulations, the DAIR framework can be implemented as a stan-

dalone method for solving the DOP numerically on a fixed discretization mesh, with one

example illustrated in Figure 7-3.

The first step is to select a discretization method, design the mesh and (optionally) determine

the weighting parameter for the residual norm computation. Also, the required accuracy level

for each dynamic equation needs to be specified in the form of a MIRS error. The idea is to

first solve the DAIR residual minimization problem to yield a solution that would determine

the MIRS error upper bound for the DAIR cost minimization problem formulation.

For the DAIR residual minimization, a set of criteria can be specified in the NLP solver to

terminate early once all MIRS errors are within requirement and all other constraints satisfied.

This would indicate the existence of solutions for this discretization mesh that would fulfill all

accuracy requirements, and the DAIR cost minimization problem can be solved subsequently

with ̺ configured accordingly.

On the other hand, if the required MIRS errors are not achievable for this mesh design,

early termination will not be triggered and the DAIR residual minimization problem will

be fully solved. From the solution, one can extract the smallest MIRS error achievable for
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Figure 7-3: Overview of DAIR scheme as a standalone method for solving DOP numerically on
a given discretization mesh

any corresponding dynamic equation for which the original requirement cannot be met, and

implement this achievable MIRS error to ensure the existence of feasible solutions for the

DAIR cost minimization problem. In other words, the DAIR cost minimization problem is

guaranteed to have at least one feasible solution, namely the solution at which the DAIR

residual minimization problem terminates.

Solution representation method

In early work [156], an optimization formulation for representing continuous DOP trajectories

with higher accuracy from discretized direct collocation NLP solutions is proposed. The DAIR

residual minimization problem would be a more suitable candidate for the purpose of solution
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representation, with the following benefits:

• there is a flexible trade-off between the level of accuracy for different dynamic equations.

• DAIR allows an upper limit for both the objective and MIRS errors for individual

dynamics to be set. This guarantees that the obtained trajectory will be no worse than

the collocation solution in terms of optimality and accuracy.

All results shown in Section 7-3 use the DAIR formulation.

Other implementation potentials

The flexibility of the DAIR scheme could enable the formulation of various implementation

procedures that are based on it, for a wide range of applications. For example, the scheme

can be designed for efficient and accurate solution of dynamic optimization problems, both

on-line and off-line, when used together with a suitable mesh refinement/adaptation scheme.

For implementation, it is possible to either

• first solve a sequence of DAIR residual minimization problems on a sequence of refined

meshes until all convergence tolerances are met regarding feasibility and accuracy, and

then solve a single DAIR cost minimization problem for optimality, or

• solve the DAIR residual minimization problem and DAIR cost minimization problem in

an alternating manner, converging to the target solution as the mesh becomes denser.

The DAIR scheme can potentially lead to more efficient mesh refinement procedures than

that for direct collocation. This is especially beneficial for on-line NMPC implementations,

where the solution accuracy cannot be ensured with a single mesh that has been designed off-

line; state-of-the-art NMPC software adopt mesh refinement schemes or adaptive differential

equation solvers in order to ensure that the parameterized solution trajectories are sufficiently

accurate.

7-3 Example problems

To demonstrate the advantages of the IRM and DAIR transcription over direct collocation,

a number of example problems are prepared focusing on different aspects. In transcription

with ICLOCS2, both state and input trajectories are continuous trajectories inside a single

phase. All examples and all methods are demonstrated under this configuration.
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7-3-1 Goddard rocket

In the first example, different implementations of the Goddard rocket problem [17, Ex. 4.9]

are compared. The DOP has the following formulation

min
h,v,m,T,t0,tf

−h(tf )

subject to

ḣ(t) = v(t),

v̇(t) =
1

m(t)

(

T (t) − σv2(t) exp
(

−
h

h0

))

− g,

ṁ(t) = −
T (t)
c
,

0 ≤ T (t) ≤ Tmax,

with state variables h the altitude, v the velocity, m the mass, and input variable T the

thrust of the rocket engine. The initial and terminal conditions, as well as values of static

parameters, are available in the reference hence will not be reproduced here.

The optimal solution is in the form of bang-singular-bang and, on the singular arc, it is known

for the solution to be oscillatory when solved directly with a single phase numerical solver.

Such fluctuations can be clearly seen in Figure 7-4. The conventional way of dealing with

singular control problems is to introduce additional conditions once the solution structure is

known. Despite yielding an accurate solution, this method, however, would normally require a

multi-phase formulation support and analytical derivations of the singular arc conditions [17].

By taking care of the errors in solution trajectories between polynomial data points, both

the proposed DAIR scheme and IRM solution representation method derived from the DAIR

residual minimization problem are capable of reproducing this multi-phase solution using the

original single phase formulation. This is illustrated in Figure 7-4 with two small oscillations

due to approximating the discontinuous optimal input trajectory with a continuous trajectory,

whereas the multi-phase setup allows for a discontinuous input.

7-3-2 High-index DAE system

To demonstrate the advantages of DAIR in dealing with high-index DAE systems, the example

from [39, equation system 3] with a DOP derived from a pendulum system containing a index-

3 DAE is used. The problem formulation is

min
x1,x2,x3,x4,x5,u1

∫ tf

t0

cu1(t)2 + d (x1(t) − L sin(t+ α))2 + d (x3(t) − L cos(t+ α))2 dt
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Figure 7-4: Comparison of the solutions for the Goddard rocket problem (HS/piecewise cubic
parameterization with 100 major nodes)

subject to

ẋ1(t) = x2(t),

ẋ2(t) = −x5(t)x1(t) − ax2(t) + u1(t)x3(t),

ẋ3(t) = x4(t),

ẋ4(t) = −x5(t)x3(t) − ax4(t) − g − u1(t)x1(t),

0 = x2
1(t) + x2

3(t) − L2,

x1(t0) = 0, x3(t0) = L, x2(t0) = 0, x4(t0) = 0,

with state variables x1,x2,x3,x4,x5 and input u1. c > 0 and d > 0 are weighting parameters,

L > 0 is the radius, g is the gravitational acceleration, a > 0 is a friction coefficient and α > 0

control the head start of the target.

The authors of [39] found that existing direct collocation solvers, such as GPOPS-II [162], all

failed to solve the problem directly in this formulation. For these solvers to yield a solution,

problem reformulation and DAE index reduction procedures are necessary.

The same behaviour with the direct collocation method can be found with ICLOCS2, shown

in Figure 7-5. However, the DAIR method is able to solve the problem directly without

difficulties, by minimizing the integrated residuals of the DAE system, instead of forcing the

residuals to be zero at collocation points.
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Figure 7-5: Comparison of the solutions for the high-index DAE system (with 50 major nodes)

7-3-3 Two-link robot arm

The two-link robot arm problem presented here was adapted from [132, Ex. 2, Sect. 12.4.2].

Consider a system consisting of two identical beams with the same property (mass: m = 1 kg,

length: l = 1 m, and moment of inertia), connected at two actuated joints. The objective is to

re-position a payload of mass M = 1 kg in minimum time, with the addition of a regularization

term:

min
x,u,tf

tf + 0.01
∫ tf

0
u1(t)2 + u2(t)2 dt.

The system dynamics can be expressed as

ω̇φ(t) =
1

31
36 + 9

4 sin2(χ(t))

(

sin(χ(t))(
9
4

cos(χ(t))ω2
φ(t))

+2ω2
̺(t) +

4
3

(u1(t) − u2(t)) −
3
2

cos(χ(t))u2(t)

)

,

ω̺̇(t) =
−1

31
36 + 9

4 sin2(χ(t))

(

sin(χ(t))
9
4

cos(χ(t))ω2
̺(t))

+
7
2
ω2

φ(t) −
7
3
u2(t) +

3
2

cos(χ(t))(u1(t) − u2(t))

)

,
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χ̇(t) =ωφ(t) − ω̺(t),

φ̇(t) =ωφ(t).

The system has angular rates ωφ, ω̺, and angles φ, χ = φ − ̺ as state variables, and

nondimensionalized torque u1 and u2 as inputs. Furthermore, the variable simple bounds and

boundary conditions are imposed in accordance to the reference, except that χ(tf ) = 0.5 rad,

and φ(tf ) = 0.522 rad.

Figures 7-6 and 7-7 illustrate the solutions to the two-link robot arm problem problem gen-

erated with the two different solution representation methods. Presented alongside are the

outcomes from the actual implementation of the resultant input trajectory on the same dy-

namic model, solved with a non-stiff variable-order ODE solver (Matlab ode113) with a time

step 100 times smaller than the discretization grid of the optimization problem. Observe that:

• Despite a very small tolerance (1×10−9) and successful termination of the NLP solver,

the collocation solution and interpolation of the solution exhibit large errors, leading to

significant deviations to the state trajectories when the inputs are directly applied. I

would like to emphasis this could be a special situation, as adding or removing one major

point can actually yield better results; however, the problem is still ideal to demonstrate

that for direct collocation, it is very difficult to guarantee accuracy without posterior

error assessments and mesh design iterations. In contrast, only minor discrepancies

can be observed for the solutions represented with IRM, on the same coarse grid with

relatively low-order discretization.

• Although the constraints are implemented in the exact same way, the proposed method,

to a greater extent, alleviates the issues of constraint violations inside the mesh inter-

vals. This is because these constraint violations are often related to the large ODE

defect errors in-between collocation points, which are directly dealt with by the residual

minimization scheme.

7-3-4 Cart pole swing-up

Consider the cart pole swing-up problem from [114]. The problem requires movement of the

cart to a specific location while making sure the pendulum attached to it achieves a vertically-

up orientation at the terminal time. The problem has the position of the cart y1 and the angle

of the pendulum arm θ1; these are state variables together with their time derivatives ẏ1 and

θ̇1. The control input is u ∈ [−20, 20] (force in Newtons). The following terminal conditions

are imposed at tf = 2 s: y1(tf ) = 1 m, ẏ1(tf ) = 0 m/s, θ1(tf ) = π rad, and θ̇1(tf ) = 0 rad/s.
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Figure 7-6: Solution to the two-link robot arm problem, direct collocation with Hermite-Simpson
discretization, 10 major nodes. ©2020 IEEE
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Figure 7-7: Solution to the two-link robot arm problem, solution representation with IRM, direct
collocation with Hermite-Simpson discretization, 10 major nodes. ©2020 IEEE
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Figure 7-8: Solutions to the cart pole swing-up problem (HS/piecewise cubic parameterization
with 7 mesh intervals, solid lines represent trajectories as solver output, dashed lines represent
the resultant trajectory by implementing the input trajectory)

In the definition of R, a weighting ωξ of 2 is selected for the dynamic equation corresponding

to θ1 while the weight for all other states remains at 1, to emphasise that the most important

target for this problem is to have the pendulum up and vertical at the final time.

Figure 7-8 illustrates the comparison between various solutions solved using different methods,

but on the same given and coarse discretization mesh. As seen from the figure, although the

NLP problem transcribed via the direct collocation method successfully terminated with

negligibly small tolerances, it becomes apparent that if the corresponding input trajectory is

to be applied, the actual evolution of the system states will be very different than what was

predicted by the DOP solution. Subsequently, at the final time, the state variables are at a

distance far away from the terminal conditions. The last graph of Figure 7-8 illustrates the

absolute local error η for each mesh interval. The discrepancies in the solution trajectories

can be attributed to the large residual errors arising from trajectories between collocation

points using direct interpolation.

Based on the direct collocation solution, the IRM solution representation method results
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Figure 7-9: Trade-off between solution accuracy and optimality for the cart pole swing-up problem
(HS/piecewise cubic parameterization with 7 mesh intervals, size of a circle is proportional to the
constraint violation at t = tf )

in improvements in solution accuracy (with regards to absolute local error and terminal

condition violation) while maintaining the level of optimality. Nevertheless, the final position

of the pendulum in both cases are at angles nowhere near the requirement to be up and

vertical. In contrast, the situation can be significantly improved with the DAIR method

without any early termination criteria, yielding a solution of very high accuracy considering

the very coarse mesh employed. This, however, comes at a cost with a much higher objective

value (indication of control effort), further emphasising the multi-objective nature of solving

a dynamic optimization problem on a single discretization grid.

For further exploration, Figure 7-9 highlights the trade-off between solution accuracy and

optimality. The figure shows a distinctive Pareto front formed by multiple DAIR solutions

with different termination conditions depending on the requested error magnitudes. Direct

collocation, on the other hand, is only capable of generating a single solution that is clearly

dominated by DAIR solutions. This demonstrates the advantage of the DAIR scheme over

direct collocation in terms of flexibility and Pareto optimality.

It is also important to note that due the system being open-loop unstable, a closed-loop

implementation of the DOP solution will be necessary in practice. When implemented on-

line as in NMPC, there will be another trade-off process between the DOP solution accuracy

and closed-loop performance — the most accurate open-loop DOP solution may not always

be preferred [118]. Therefore the flexibility of the DAIR scheme to reliably solve a DOP to
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Figure 7-10: Reduction of MIRNS error as the number of mesh nodes increases (HS/piecewise
cubic parameterization with equal-spaced intervals)

a specific accuracy level while ensuring Pareto optimality makes it a highly desirable method

against other alternatives.

Although the MIRNS error is a good measure for solution accuracy, the MIRNS error has

limitations due to the weighted norm computation, and because a practical metric for solution

accuracy can be problem- and designer-dependent. For this example in particular, what

really matters would be the differences between the target state values at terminal time

and the ones achieved, especially concerning the up-vertical orientation of the pendulum.

Figure 7-9 illustrates this aspect by making the sizes of the circles proportional to ‖y1(tf ) −

1, 2(θ1(tf ) −π), ẏ1(tf ), θ̇1(tf )‖2, a measure of terminal constraint violation. With this metric,

the value corresponding to the smallest and largest circles shown in the figure is 0.46 and

11.05, respectively. By observing that the sizes of the circles are generally in correspondence

with the values of the MIRNS error, it can be concluded that, for this example, the MIRNS

error is a suitable metric both theoretically and practically.

Figure 7-10 illustrates the trends in the reduction of the MIRNS error as the mesh becomes

denser, for some of the methods in the earlier comparisons. It can be seen that, although the

gradient of the lines are similar (limited to the order of the discretization type), IRM-based

approaches show a clear advantage in obtaining solutions with higher accuracy than direct

collocation for the same discretization mesh.
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7-4 Concluding remarks

When conventional direct transcription methods, such as direct collocation, are employed

to solve nonlinear dynamic optimization problems, assurance in accuracy can only be made

a posteriori through error analysis and mesh design iterations. When a given coarse mesh

is used, the validity of the solution may become questionable with errors arising inside the

intervals between collocation points, despite solving the nonlinear programming problem to

negligibly small tolerances. Integrated residual minimization methods fundamentally address

this challenge by minimizing the dynamic equation residual error integrated along the whole

trajectory, with the added benefit of being capable of handling difficult problems, such as

those with singular arcs and high-index DAEs.

Solving DOPs numerically is essentially a multi-objective optimization problem: for a given

discretization mesh, one will inevitably face a trade-off between minimizing the objective (for

optimality) and minimizing the discretization errors (for accuracy), forming a Pareto front.

As demonstrated with the example problems, solutions from direct collocation with a given

coarse mesh will be dominated by other solutions. In contrast, the DAIR scheme has been

shown to be capable of directly obtaining a solution on the Pareto front based on the requested

accuracy level.

Admittedly, the DAIR method, as well as other IRM-type direct transcription methods such

as the PBF, are still in an early stage of development. Continued research will be required for

them to reach the same level of maturity as direct collocation, to realise their full potentials.
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Part III

Efficient and Accurate Solution of

Large-scale and Challenging Problems





Chapter 8

Quick Generation of Nonlinear

Programming Derivatives

The derivative-based NLP solvers require frequent computation of first and second-order

derivative information. The most computationally demanding parts of derivative computation

are for the constraint Jacobian and Lagrange Hessian, defined respectively as
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with C containing all nC := N × (ng + nc) discretized constraint equations, and L = J + Ω⊤C

the Lagrangian of the NLP. Ω ∈ RnC are the Lagrange multipliers corresponding to the

discretized constraints. Z: ∈ Rnz is the decision variable vector (i.e. Z assembled in a vector)

with Zi the ith element in Z:.

Fast and accurate computation of the derivative information is a crucial aspect of solving the

problem efficiently. Even for linear quadratic regulator control problems, it was realized early
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on [210] that different grouping of variables will lead to a different structures in the resulting

matrices. The same concept holds when solving NLPs: exploiting the sparsity patterns of

these matrices can lead to a substantial reduction in computational complexity and storage

usage. This applies both to obtaining the derivative information and for solving the NLP. In

fact, sparse linear algebra has become one of the most important aspects of numerical methods

for dynamic optimization, allowing efficient solution of large-scale practical problems.

In this chapter, the general sparsity patterns for various direct transcription methods will first

be presented in Section 8-1. This will include the sparsity patterns for the newly proposed

IRM-type methods and the sparsity patterns arising from an alternative ordering of variables

for LGR collocation. Next in Section 8-2, an overview of different methods for obtaining

derivative information is provided, focusing on the differences in sparse finite difference com-

putations between direct collocation methods and IRM-type transcription methods.

8-1 Sparsity pattern for the NLP

8-1-1 Conventional h method

Literature on conventional h methods (e.g. [17]) often have the NLP decision variables ar-

ranged in an order by stage, or order by time format, i.e. having a decision vector in the form

of

Z: =
[

t0 tf p1 . . . pnp χ
(1)
1 υ

(1)
1 . . . χ

(1)

N(1) υ
(1)

N(1) . . . χ
(K)

N(K) υ
(K)

N(K)

]⊤
.

The resulting sparse constraint Jacobian and Lagrange Hessian with direct collocation tran-

scription have the structure shown in Figure 8-1, largely characterized by block structures

along the diagonal, with each block representing a single mesh interval.

For (most) h methods the blocks shown in Figure 8-1 are also sparse which further increases

the level of sparsity for the matrix systems. Decoupling variables may be introduced for

the constraint Jacobian to transform it into a banded diagonal structure, at the cost of

increasing the dimension of the NLP. This particular double-bordered band diagonal Hessian

structure can be reformatted into a bordered block-diagonal matrix, also known as a block

“arrowhead” matrix [150]. These special matrix system structures can be exploited by efficient

linear algebra solvers, to ensure that the computational complexity for solving the system of

equations scales linearly with the number of stages.

In IRM-type transcriptions, the constraint Jacobian will generally be of smaller dimensions.

Depending on the respective IRM schemes, the original block structures of size (n+ng)N×nz

corresponding the dynamic constraints, will either vanish or be replaced by residual con-

straints. These residual constraints have a densely populated structure of only (n+ ng) × nz
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as shown in Figure 8-1b. The corresponding Lagrange Hessian structure, shown in Figure 8-2,

is still valid with IRM methods; however, each block will likely to become denser.

Improving the solution accuracy for h-type discretizations through mesh refinement results

in an increase in the number of discretization nodes. Therefore it will not lead to an increase

in the sizes of these diagonal blocks. Instead, the number of blocks will increase. As a result,

the dimension of the matrices, as well as the sparsity level, will grow quickly as the mesh

becomes increasingly dense.

8-1-2 Psuedo spectral p/hp method

Psuedo spectral p or hp collocation does not typically use the above order by stage variable

ordering. Rather, an order by variables rule is used whereby the collocation points of each

state and each input variable are grouped together in an NLP decision vector. For LGR

collocation with continuity enforced implicitly, the decision variables are formed as

Z: =
[

χ
(1)
1 . . . χ

(1)

N(1) . . . χ
(K)

N(K)+1
υ

(1)
1 . . . υ

(K)

N(K) p1 . . . pnp t0 . . . tf

]⊤
.

In this way, the differentiation matrix can be formulated and implemented in a natural way.

The state variables at the end-point χ(K)

N(K)+1
are also included as the decision variables,

despite not being a collocation point for LGR collocation. Additional time variables are also

added if the dynamically refined hp-adaptive mesh (see Section 12-2-3) is employed.

The differentiation matrix resulting from Radau collocation is of size N × (N + 1), and is

fully populated when global p methods are used (i.e. a single polynomial segment). For hp

methods, multiple segments are introduced, and the structure of the differentiation matrix is

as illustrated in Figure 8-3a. The domain is divided into K mesh intervals, each shown in

a different colour. Each interval is represented as a block of size N (k) × (N (k) + 1) on the

diagonal of the differentiation matrix, where N (k) is determined by the polynomial degree

of kth segment. The overlapping of the last columns of the preceding blocks and the first

columns of the succeeding blocks ensures the implicit satisfaction continuity conditions. The

structure of the constraint Jacobian is now composed of multiple smaller (diagonal, fully

populated or empty) blocks as seen in Figure 8-3b. A similar structure is observed for the

Lagrange Hessian matrix, shown in Figure 8-5a.

It is notable that these structures are significantly different from that of the order by stage

arrangement, which can be exploited by modern linear algebra solvers. Therefore, an alter-

native ordering of variables by time for the hp method can be made possible. The Jacobian

structure now consists of K blocks on the diagonal with an offset, with the sparsity pattern

shown in Figure 8-4b. The size of each diagonal block (Figure 8-4a) is determined by the

number of state (n) and control (m) variables, number of path constraints (nc) and the or-
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(a) Jacobian with direct collocation

 

 
 

(b) Jacobian with direct IRM

Figure 8-1: Sparsity pattern of the problem when using h methods (Jacobian)

(Block Type 1: from ODE dynamics, not fully populated; Block Type 2: from equality (DAE)
and inequality path constraints, not fully populated; Block Type 3: from boundary conditions,
either zeros or endpoints); Block Type 4: from inequality path constraints, not fully populated;)
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Figure 8-2: Sparsity pattern of the problem when using h methods (Hessian)

Block Type 1: with size 2(n+m)×2(n+m) for Euler and trapezoidal and 3(n+m)×3(n+m)
for Hermite-Simpson discretization, not fully populated)

der of the polynomial (through N (k)). The Hessian mainly consists of N sub-blocks on the

diagonal, each with size (m + n) × (m + n). Time variables are populated at the right and

bottom of the matrix, leading to a distinctive “arrowhead” structure.

For IRM-type transcriptions with order by variables, the structure of the constraint Jacobian

for the hp method undergoes a similar transformation as for the h method with a significant

reduction in the number of rows, as shown in Figure 8-6a. The Lagrange Hessian illustrated

in Figure 8-6b, generally retains the overall structure of that for direct collocation, despite

denser populated sparsity patterns inside each elementary block.

By determining and providing the above sparsity patterns, sparsity exploiting NLP solvers

can be employed with linear algebra packages (e.g. IPOPT with MA57 solver) to exploit

the structure of the Jacobian and Hessian. The strategy of the linear algebra solver may be

different depending on whether the order by stage or order by variable formulation is used.
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○1  

○2  

○3  

○K  

(a) Radau differentiation matrix

 

 

3 

(b) Jacobian structure

Figure 8-3: Sparsity pattern for the constraint Jacobian using LGR collocation when grouped by
variables

(Block Type 1: Radau differentiation matrix plus either zeros or diagonal; Block Type 2: from
dynamic equations and path constraints, either zeros or diagonal; Block Type 3: from boundary
conditions, either zeros or endpoints)
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(a) Block element for LGR collocation when
grouped by time

 

  

(b) Jacobian structure

Figure 8-4: Sparsity pattern for the constraint Jacobian using LGR collocation when grouped by
time

(Block Type 3: from boundary conditions, either zeros or endpoints; Block Type 4: block
structure as shown in figure 8-4a; blue points: entries from radau differentiation matrix; red
points: entries from the dynamics and path constraints)
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(a) Hessian structure when grouped by variables

 

     

 

 

 
 

   

(b) Hessian structure when grouped by time

Figure 8-5: Sparsity pattern for the Lagrangian Hessian using LGR collocation

(Block Type 1: either zeros, or diagonal block of size (N + 1) × (N + 1) with corners; Block
Type 2: either zeros, or block of N × (N + 1) or (N + 1) × N with corners and a diagonal of
N ×N ; Block Type 3: either zeros, or diagonal block of size N ×N with corners; Block Type
4: block of size (n+m)×(n+m); Block Type 5: diagonal block of size n× n)
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(a) Jacobian structure

 

𝒑𝒏𝒑

 
 

 
 

(b) Hessian structure

Figure 8-6: Sparsity pattern of the problem when using IRM-type methods with LGR and order
by variables

(Block Type 1: either zeros or diagonal; Block Type 2: either zeros or endpoints; Block Type
3: of size (N + 1) × (N + 1) with corners, with K overlapping blocks on the diagonal, each with
size (N (k) + 1) × (N (k) + 1); Block Type 4: of size (N + 1) ×N or N × (N + 1) with corners,
with K overlapping blocks on the diagonal, each with size (N (k) +1)× (N (k) +1) except the last
one with N (k) × (N (k) + 1) or (N (k) + 1) ×N (k); Block Type 5: of size N ×N with corners,
with K overlapping blocks on the diagonal, each with size (N (k) + 1) × (N (k) + 1) except the
last one with N (k) ×N (k))
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8-2 Computation of NLP derivatives

The computation time and accuracy associated with the evaluation of derivative information

can have a major impact on the computational efficiency of the NLP solver. Inaccurate

derivative data often leads to slower convergence (or even non-convergence) of the NLP solver

with higher iteration counts. On the other hand, accurate evaluation of derivative information

would require more computational resources and time, making each NLP iteration more

expensive. Obtaining fast and accurate solutions to the NLPs hinges on the right balance

between the two criteria. A number of possible options are discussed in this section; however,

the most appropriate choice is often problem dependent.

8-2-1 Supplied analytical expressions

For problems of medium to low complexity where closed-form analytical expressions of func-

tion derivatives are obtainable, directly supplying the mathematical formula can often result

in fast computation and high accuracy. To avoid derivation by hand (expensive and error

prone), use of symbolic differentiation toolboxes (e.g. Matlab or Maple) is recommended.

8-2-2 Sparse finite differences

For many practical problems, the use of data-driven modelling and/or look-up table inter-

polation for certain parameters can lead to challenges in obtaining the analytical derivative

information. A universally valid way to calculate the derivative information is to apply finite

difference approximations, similar to the form

∂h

∂Zi

∣

∣

∣

∣

Zi

=
h(Zi + d) − h(Zi)

d
+O(d), (8-1a)

∂2h

∂Z2
i

∣

∣

∣

∣

Zi

=
h(Zi + d) − 2h(Zi) + h(Zi − d)

d2
+O(d2), (8-1b)

where d is a small perturbation. The computation is easy and relatively fast, but the level

of accuracy depends on the choice of perturbation parameters. The approximation of the

derivative information will have large round-off errors due to machine precision limits if d is

too small. Conversely, large d can lead to higher truncation or linearization errors.

Computing the finite differences with (8-1) requires perturbations of all decision variables.

However, if one individually perturbed each element of Z:, the process would be lengthy

and expensive. Fortunately, using the sparsity patterns identified earlier can ensure that

computations are only conducted for entries that are known to have non-zero values. Also,

in many cases, multiple perturbations can be made simultaneously, without affecting the

capability to independently identify the derivative information.
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Figure 8-7: Comparison of numerical finite difference computations in terms of perturbations.
Orange grid points represent the position of the perturbed variables at each perturbation instance.

Direct collocation methods benefit from these simultaneous perturbations. Thanks to the

isolation property, a change in the discretized state or input variable at any grid point will

only affect the discretized Lagrange cost and constraint equation residuals corresponding

to that particular grid point. Hence, for each state and input variable, finite difference

computations can be carried out simultaneously for the full discretization grid and assembled

accordingly based on the sparsity pattern of the derivative information. This approach makes

the computation of sparse finite differences very efficient for direct collocation methods.

The case is different when IRM-type transcription schemes are employed. Any changes in a

parameterized state or input variable at a grid point can now lead to changes in the discretized

Lagrange cost and constraint equation residuals at all grid points of that mesh interval. As

a result, decision variables correspond to different grid points have to be categorized into

multiple groups (as demonstrated in Figure 8-7), and the computation of numerical finite

differences must be carried out for each group separately. For a grid of K intervals (i.e. K+1

mesh nodes) and N (k) grid points for each interval k ∈ IK , the number of groups necessary

would be maxK
i=1N

(k) + 1. Consequently, when using sparse finite differences, computational

overhead associated with IRM-type of methods can be significantly higher than that of direct

collocation. Thus other options such as algorithmic differentiation would be preferred for the

supply of derivative information.

8-2-3 Algorithmic differentiation

In algorithmic differentiation, the complex nonlinear equations are decomposed into several

elementary operations. The derivative information of the nonlinear function can thus be
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obtained by differentiating each elementary operation separately, and subsequently recon-

structed using the chain rule. For example, the DOP toolbox ICLOCS2 supports the use of

the forward mode algorithmic differentiation toolbox Adigator [209] which is marginally more

computationally expensive than finite differences, but accurate up to machine precision.

8-2-4 Fast Hessian approximations

Most NLP solvers support some form of fast Hessian update method, normally under the

umbrella of Broyden-Fletcher-Goldfarb-Shanno (BFGS) or limited memory BFGS (LM-BFGS

or L-BFGS) algorithms (see [38]). This fast and inaccurate approximation of the Hessian may

significantly reduce the NLP computation time per iteration but can result in a larger iteration

count. In practice, BFGS is found to be more efficient for regulation (stabilization/set-point

tracking) type problems with short-horizon. Having accurate Hessian information can be

much more beneficial for long-horizon minimum-time and minimum-energy type of problems.



Chapter 9

Efficient Implementation of Rate

Constraints†

For many engineering problems, constraints may need to be imposed on the rate of changes for

the state and input variables, to account for physical actuation limitations (e.g. the maximum

rotation rate of flight control surfaces on aircraft) or to fulfill certain ride comfort requirements

(e.g. the maximum longitudinal and lateral accelerations experienced by passengers).

In dynamic optimization, the underlying problem can often be formulated and implemented

in a number of different ways. Under a linear framework, many implementations are computa-

tionally comparable, thus straightforward approaches are often used. For example, rate con-

straints on input variables are generally implemented through additional dynamic equations

[135, 207], and rate constraints on state variables are commonly addressed with additional

path constraints [49]. However, under a nonlinear framework, this way of implementing input

rate constraints are known to result in numerical difficulties and introducing fluctuations and

ringing phenomena in the solution due to singular control [17]. To improve the solution qual-

ity, additional regularization terms may be added to the DOP formulation [31]; however, this

practice often leads to computational challenges by needing to solve the problem repetitively

with appropriate weightings.

This chapter proposes a general approach to directly implement rate constraints on the dis-

cretization mesh. First, different approaches for implementing rate constraints are introduced

and analysed in Section 9-1. This is followed by two classical examples of different complexity

Most of the material presented in this chapter has been published in the following work:
Y. Nie, E.C. Kerrigan, Efficient implementation of rate constraints for nonlinear optimal control. IEEE

Transactions on Automatic Control. 2020. In press. ©2020 IEEE



124 Efficient Implementation of Rate Constraints

in Section 9-2, where the pros and cons of each implementation are demonstrated. Unlike

conventional approaches that may lead to singular control arcs, the proposed method will

not introduce singular arcs to the problem, resulting in solutions of higher accuracy. More-

over, significant computational speedups can be achieved by exploiting the properties of the

resulting linear constraint equations.

9-1 Implementations of rate constraints

In many problems, constraints of the form

u̇L ≤
du

dt
(t) ≤ u̇U , ∀t ∈ [t0, tf ] a.e.

ẋL ≤
dx

dt
(t) ≤ ẋU , ∀t ∈ [t0, tf ] a.e.

may need to be implemented to restrict the rate of change for the state and/or input variables.

Subscript L represent lower bounds and U represent the upper bounds.

9-1-1 Conventional implementation

For input variables, a common approach is to introduce u as an additional state variable, and

v as the new input with a simple bound through the dynamic equation

u̇(t) = v(t) with u̇L ≤ v(t) ≤ u̇U , ∀t ∈ [t0, tf ] a.e. (9-1)

For rate constraints on the state variable x, additional path constraints are needed:

ẋL ≤ f(x(t), u(t), t, p) ≤ ẋU , ∀t ∈ [t0, tf ] a.e. (9-2)

For simplicity, (9-1) is named the add-state implementation, and (9-2) is named the add-path

constraint implementation.

Unfortunately these conventional implementations exhibit many shortcomings. These are

mainly:

1. The number of state variables and constraint equations are increased, resulting in a

larger DDOP. In addition, the index of the DAE of the transcribed problem may also

increase, leading to a problem that is often more difficult to solve numerically.

2. When (9-1) is used, singular arcs may occur and affect the solution quality. This can

occur if the original control input u appears nonlinearly in the Lagrange cost or other

dynamic equations, whereas the new control v appears linearly instead.
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In fact, the two items are connected and demonstrated in further details in Chapter 11.

For ease of demonstration, consider the following DOP, which is simplified but still sufficiently

general, with x1 ∈ R the state variable, and u1 ∈ R the control input. As per the conventional

approach, the rate constraint on the original control input is implemented with a new control

input v1 ∈ R:

min
x1,u,v

∫ tf

0
g1(x1(t)) + g2(x1(t), u1(t))dt (9-3a)

subject to

ẋ1(t) = g3(x1(t), u1(t)), ∀t ∈ [t0, tf ] a.e. (9-3b)

u̇1(t) = v1(t), ∀t ∈ [t0, tf ] a.e. (9-3c)

u̇1L
≤ v1(t) ≤ u̇1U

, ∀t ∈ [t0, tf ] a.e. (9-3d)

Here the same hypotheses as in [202] is followed: g1, g2 and g3 are continuous, continuously

differentiable for all u1 ∈ U , and Lipschitz in x1. Also, the admissible control set U is assumed

to be a bounded set in some Euclidean space.

Proposition 3. If the DOP (9-3) has a linear objective and dynamics with respect to the

original control input u1, i.e. if g2 and g3 are both functions that only have strictly linear input

(i.e. in the form of gι(x1(t), u1(t)) = g̃ι(x1(t)) + cstu1(t), with cst a constant), the resulting

optimal control v∗
1 will not contain a singular arc. However, if u1 appears nonlinearly in the

objective and/or dynamics, i.e. if g2 and/or g3 are arbitrary nonlinear functions, there exists

problems where singular arcs will occur for some intervals of the solution.

Proof. First, the Hamiltonian of the system can be formulated, with λ(t) the costate of the

dynamics

H(x1(t), u1(t), λx1(t), λu1(t), v1(t)) := g1(x1(t))

+ g2(x1(t), u1(t)) + λx1(t)g3(x1(t), u1(t)) + λu1(t)v1(t).
(9-4)

From Pontryagin’s minimum principle, if the state and costate are optimal, the optimal control

v∗
1 minimizes the Hamiltonian, i.e.

v∗
1(t) ∈ arg min

v
H(x∗

1(t), u∗
1(t), λ∗

x1
(t), λ∗

u1
(t), v). (9-5)
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Substituting the Hamiltonian (9-4) in (9-5) yields the optimal control

v∗
1(t) =























u̇1U
if λ∗

u1
(t) < 0

? if λ∗
u1

(t) = 0

u̇1L
if λ∗

u1
(t) > 0

(9-6)

We first show that this implementation yields a singular arc free solutions with linear DOPs.

From the first order necessary conditions for optimality we have λ̇u1(t) = − ∂H
∂u1

. Thus, if both

g2 and g3 only contain input terms in the form of cstu1(t), λ̇u1(t) will then be constant and

λu1(t) will be a linear straight line. Relating this to (9-6) we can see that the optimal control

will exhibit bang-bang behaviour with at most one switch depending on the crossing of λu1(t)

with the x axis. Therefore, the solution is free of singular arcs if the objective and dynamics

with respect to the original control input u1 are all linear. This is the reason why in linear

optimal control problems, the conventional implementation can be used without issues.

To show that this implementation will suffer from singular arc problems when nonlinear DOPs

are considered, we assume that g2 and/or g3 are now arbitrary nonlinear functions. Thus,

λu1(t) can be a function of any shape and the optimal control will not be uniquely defined

on intervals where λu1(t) = 0, a.k.a. the singular arc. The problem in Section 9-2-1 is an

example where such an issue arises.

For a direct collocation method to yield the correct solution for singular control problems,

one might have to use a multi-phase formulation and additionally impose the singular arc

condition specifically on the phases with singular control. For example, if one takes the same

approach (as in the proof) for the example problem in Section 9-2-1, the condition for singular

control to occur is when λx2 = 0. Repetitively taking time derivatives of this equation would

yield the singular arc condition u(t) = x1(t). This approach requires analytical derivations

and would become increasingly challenging for complex real-world problems.

An ad-hoc method sometimes used in practice for dealing with the singular arc is to augment

the original objective with an additional regularization term (e.g. in [31]), often in the form

of ρ||v||1 or ρ||v||22. With relatively large values of the penalty weight ρ, the fluctuations on

the singular arc can be suppressed, but at the cost of obtaining sub-optimal trajectories. To

get closer to the optimal from this point, the problem may need to be repetitively solved with

the penalty weight gradually reduced.

9-1-2 On-mesh implementation

To mitigate the above-mentioned shortcomings, a method is proposed to directly impose

algebraic rate constraints for input variables on the discretization grid. Based on previous
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Table 9-1: Numerical differentiation schemes

Method
No. of Data

Numerical Differentiation
Points

Trapezoidal 2
κ′

i,k = κi+1,k−κi,k

∆t(k)(h) (equal spaced)

κ′
i,k = −3κi,k+4κi+1,k−κi+2,k

∆t(k)

Hermite 3
κ′

i+1,k = κi+2,k−κi,k

∆t(k)Simpson (h) (equal spaced)

κ′
i+2,k = κi,k−4κi+1,k+3κi+2,k

∆t(k)

LGR N (k) + 1
κ′

1:N(k)+1,k
= 2

∆t(k) A
(k)
LGRκ1:N(k)+1,k(p/hp) (LGR bases)

work [17], this on-mesh approach is generalized for all discretization methods (h, p and hp

type), as well as for state variables.

Since the treatment for state variables x and input variables u are similar, for simplicity the

variable x will be used to represent the variable on which the rate constraints are imposed.

If κi represents the discretized version of x at time instance i, then the numerical differ-

entiation of x at that grid point (κ′
i,k) can be calculated using N (k)-point finite difference

approximations, with N (k) the number of data points in the interval k. See Table 9-1 for

the formulations of some of the most commonly used discretization methods, with A
(k)
LGR the

LGR differentiation matrix. Details on the determination of the numerical differentiation

equations are available in [69].

Note that for p/hp methods, the numerical differentiation for all grid points on the polynomial

are obtained altogether. It is also worth mentioning that if LGR collocation is used, the end-

point value for the control (υ(K)
N+1) may need to be approximated.

It is then straightforward to implement the rate constraints as linear constraints

ẋL − κ
′
i,k ≤ 0 (9-7a)

κ
′
i,k − ẋU ≤ 0 (9-7b)

for all possible values of i. This approach will be referred to as the on-mesh implementation.

The on-mesh implementation of rate constraints has several benefits in comparison to the

conventional add-state and add-path constraint approaches. Firstly, the solution quality in

terms of singular arcs are compared. A challenge arises here, since the singular arc problem is

commonly analyzed with the original DOP (1-1), but (9-7) is a discretized formulation that

does not have the continuous form. Therefore, a mathematically rigorous proof that the on-
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Table 9-2: Contribution to the DDOP dimensions with a K-interval mesh for different rate
constraint implementations on input variables

add-state on-mesh

2 point, K + 1 linear 2K linear
collocated equality constraints inequality constraints

(Trapezoidal) (dynamic constraints) (pre-computed)
3 point, 2K + 1 linear 4K linear

collocated equality constraints inequality constraints
(H-S) (dynamic constraints) (pre-computed)

N (k) point, N (k)K linear 2N (k)K linear
collocated equality constraints inequality constraints

(LGR) (dynamic constraints) (pre-computed)

mesh implementation will be singular-arc free using Pontryagin’s minimum principle is not yet

available. However, one would observe that, without introducing a dynamic constraint in the

form of u̇(t) = v(t), the singular control situation as described in Proposition 3 will not occur,

at least not in the same way. In addition, in our computational experience, there hasn’t been

a single case where the on-mesh implementation causes a singular-arc free problem to become

singular. In contrast, the on-mesh rate constraint method was able to convert many well-

known singular control problems to be singular arc free ones, with one example demonstrated

in Section 9-2-1.

Another major advantage in comparison to the conventional implementation is regarding the

computational cost. For systems with nonlinear dynamics, rate constraints on state variables

implemented through (9-2) will be nonlinear path constraints relating different state variables

at the same time instance. Thus their Jacobian and Hessian contributions can make the

solution of the DOP computationally demanding. In contrast, on-mesh implementation of

rate constraints with (9-7) are linear constraints, with no contribution to the Hessian.

In addition, note that the rate constraints (9-7) only depend on the numerical differentia-

tion schemes. Thus, once a discretization scheme for the DOP has been chosen, and the

corresponding discretization mesh has been determined, the Jacobian contributions of the

rate constraint equations can be pre-computed during the transcription process. Therefore,

although the DDOP dimension increases more rapidly with the on-mesh implementation as

shown in Table 9-2 and 9-3, the computational complexity for obtaining the derivative infor-

mation with respect to the rate constraint equations is actually lower than the conventional

approach. Altogether, the computational advantages can be rather significant, as demon-

strated with the example problem.

A remark is appropriate when comparing the on-mesh implementation in Table 9-3 to Table 9-

2: For Hermite-Simpson discretization, specifically, the increase in the size of the DDOP for



9-2 Example problems 129

Table 9-3: Contribution to the DDOP dimensions with a K-interval mesh for different rate
constraint implementations on state variables

add-path constraint on-mesh

2 point, 2(K + 1) nonlinear 2K linear
collocated inequality constraints inequality constraints

(Trapezoidal) (path constraints) (pre-computed)
3 point, 2(2K + 1) nonlinear 6K linear

collocated inequality constraints inequality constraints
(H-S) (path constraints) (pre-computed)

N (k) point, 2N (k)K nonlinear 2N (k)K linear
collocated inequality constraints inequality constraints

(LGR) (path constraints) (pre-computed)

implementation on input variables is less than that on state variables. This is because, when

the control u is discretized as a quadratic function of time, the rate of change w.r.t. time (u̇)

is linear, thus extreme values only occur at the end-points of each interval (υ(k)
i and υ

(k)
i+2).

In this special case only, the rate constraints relating to the middle points (υ(k)
i+1) can be

neglected.

9-2 Example problems

The problem of singular arcs is often demonstrated with toy problems in the literature (e.g.

the first example), as they are much more illustrative and free from influence of other fac-

tors. However, this common practice often results in it being neglected by engineers working

on complex problems. To show that it really matters, a second real-world example is also

presented here to demonstrate the acclaimed benefits of the on-mesh rate constraint imple-

mentation in terms of solution quality and computational efficiency.

9-2-1 Second order singular regulator

First, consider a simple regulator problem originally presented in [3], which is essentially the

regulation control of a double integrator system, with a constraint on the acceleration.

min
x1,x2,u

∫ 5

0
x2

1(t) + x2
2(t)dt

subject to

ẋ1(t) = x2(t), ẋ2(t) = u(t) ∈ [−1, 1] ∀t ∈ [0, 5].

In this original DOP formulation, the optimal control is in the form of bang-singular. Figure

9-1 shows that a numerical implementation of this DOP using direct collocation would yield
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Figure 9-1: Comparison of obtained input trajectories for the second order singular regulator
problem (HS with 80 mesh nodes, crosses represent the 159 collocation points)

fluctuations and ringing phenomena for solutions at collocation points, as well as for the

trajectories in-between.

However, upon noticing that the second differential equation is equivalent to the add-state

implementation of a rate constraint −1 ≤ ẋ2(t) ≤ 1, that differential equation can be removed

from the DOP and the on-mesh rate constraint method can be used instead. As illustrated in

the figure, this approach successfully yields a stable and accurate solution in correspondence

to the reference (analytical) optimal input trajectory. In other words, the proposed on-mesh

rate constraint implementation has successfully converted the classical second order singular

regulator problem into a singular-arc-free formulation.

This benefit does come with a price, however. Recall Table 4-1 regarding the order of the

approximating polynomial for commonly used direct collocation schemes. By treating the

state variable x2 as an input variable instead, its approximation sees an order reduction from

piece-wise cubic to piece-wise quadratic. Consequently, the trajectory of ẋ2 will be piece-wise

linear instead of piece-wise quadratic. Therefore, if solutions trajectories of higher orders are

required for ẋ2, one may have to consider increasing the order of approximating polynomials

used in the direct collocation transcription and discretization process.
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Figure 9-2: Illustration of the aircraft go-around in windshear problem.

9-2-2 Aircraft go-around in the presence of windshear

Based on the developments by [34, 35, 146], a problem is presented in [17] where the aircraft

needs to stay as high above the ground as possible after encountering a severe windshear

during landing. See the illustration in Figure 9-2. The implementation used here contains

slight modifications to the windshear modelling, with the exponential functions approximated

by piecewise polynomial functions. Note that the presence of singular arc fluctuations in this

problem can also be suppressed with IRM-type of methods, see [156] for details.

The simplified dynamics of the aircraft can be described by

ẋ(t) =V (t) cos(γ(t)) + wd(t), (9-9a)

ḣ(t) =V (t) sin(γ(t)) + wh(t), (9-9b)

V̇ (t) =
1
m

[T (t) cos(α(t) + δ) −D(t)] − g sin(γ(t))

− ẇd(t) cos(γ(t)) sin(γ(t)) − ẇh(t) sin(γ(t)),
(9-9c)

γ̇(t) =
1

mv(t)
[T (t) sin(α(t) + δ) + L(t)] −

g cos(γ(t))
V (t)

+
1

V (t)
ẇd(t) sin(γ(t)) −

1
V (t)

ẇh(t) cos(γ(t)),
(9-9d)

with state variables being the horizontal distance x, the altitude h, the true airspeed V , the

flight path angle γ, and the input variable being the angle of attack α. Simple polynomial

models are used for the maximum thrust (Tmax), lift coefficient (CL) and drag coefficient

(CD),

Tmax(t) = a0 + a1v(t) + a2v(t)2,

CL(t) =







c0 + c1α(t), for α ≤ α∗,

c0 + c1α(t) + c2(α(t) − α∗), for α∗ ≤ α ≤ αmax,

CD(t) = b0 + b1α(t) + b2α(t)2,
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leading to the definition for thrust, lift and drag forces

T (t) =











(β0 + β̇0t)Tmax(t), for 0 ≤ t ≤ 1−β0

β̇0
,

Tmax(t), for 1−β0

β̇0
≤ t ≤ tf ,

L(t) =
1
2
CL(t)ρ(t)Sv(t)2,

D(t) =
1
2
CD(t)ρ(t)Sv(t)2.

When comparing to classical flight mechanics equations, (9-9) clearly see the contributions of

horizontal and vertical components of the wind. A simplified windshear model is used as

wx(t) =



































−50 + ax(t)3 + bx(t)4, for 0 ≤ x(t) ≤ 500,
1
40(x− 2300), for 500 ≤ x(t) ≤ 4100,

50 − a(4600 − x(t))3 − b(4600 − x(t))4, for 4100 ≤ x(t) ≤ 4600,

50, for 4600 ≤ x(t),

wh(t) =
h(t)
h∗



































dx(t)3 + ex(t)4, for 0 ≤ x(t) ≤ 500,

−51e−c(x(t)−2300)4
, for 500 ≤ x(t) ≤ 4100,

d(4600 − x(t))3 − e(4600 − x(t))4, for 4100 ≤ x(t) ≤ 4600,

0, for 4600 ≤ x(t).

Details about the aerodynamic modeling, as well as parameter values of all relevant variables

including constants a, b, c, d, e, a0, a1, a2, b0, b1, b2, c0, c1, c2 and δ are available in the

references above, thus will not be reproduced here. The following simple bounds on some of

the state variables

0 ≤ x(t) ≤ 10000 ft, 0 ≤ h(t) ≤ 1000 ft,

0 ≤ V (t) ≤ ∞ ft/s, − ∞ ≤ γ(t) ≤ ∞ deg,

−17 ≤ α(t) ≤ 17 deg, − 3 ≤ α̇(t) ≤ 3 deg/s,

are imposed together with the boundary conditions

x(0) = 0 ft, h(0) = 600 ft, V (0) = 239.7 ft/s,

γ(0) = −2.25 deg, α(0) = 7.35 deg,

tf = 40 s, x(tf ) = free, h(tf ) = free,

V (tf ) = free, γ(tf ) =7.43 deg, α(tf ) = free.

To avoid discontinuities and to assist convergence, a static optimization parameter hmin
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Figure 9-3: Solution to the aircraft go-around in the windshear problem, with input rate con-
straints

is introduced to represent the minimum altitude. The objective can then be expressed as

Φ(x(t0), t0, x(tf ), tf , p) := −hmin together with a new path constraint h(t) ≥ hmin.

Figure 9-3 illustrates the solution to the problem using Hermite-Simpson discretization. All

figures presented in this paper are the outcome of a mesh refinement scheme that minimizes

errors to the tolerance as specified in Table 9-4.

Implementation of rate constraints for input variables

Constraint |α̇(t)| ≤ 3 applies directly on the rate of change for the control input α. Using the

conventional approach, α can be treated as an additional state variable, and v introduced as

the new control input with the dynamics

α̇(t) = v(t), ∀t ∈ [t0, tf ] a.e.

Table 9-4: Mesh refinement criteria for the aircraft go-around in the presence of windshear
problem ©2020 IEEE

x h v γ α Path Constraint
[ft] [ft] [ft/s] [deg] [deg] [m]

ηtol 1 0.5 0.1 0.5 0.5 -
εgtol

1 0.5 0.1 0.5 0.5 1 × 10−5
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(b) direct implementation on the mesh

Figure 9-4: Control input for the solution to the aircraft go-around in the windshear problem,
with different implementations for input rate constraints (H-S discretization, circles represent
mesh points) ©2020 IEEE

Thus the rate constraints for α can be implemented as simple bounds on v: −3 ≤ v(t) ≤ 3

deg/s.

As mentioned earlier, due to the fact that the original control input α appears nonlinearly

in the system, whereas the new input v appears linearly, singular arc behaviour can occur,

which is shown in Figure 9-4a, with large fluctuations in the solution. In contrast, when the

rate constraints are directly implemented on the discretization mesh instead (Figure 9-4b),

the optimal control input trajectory can be obtained with little ambiguity.

Comparing the solutions from the two implementations, it is interesting to observe that,

although the integrated values (i.e. angle of attack) along the singular arc solution at the

collocation points are generally the same, the interpolated trajectory from the add-state

method is actually distorted by the fluctuations of its rate values.
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Figure 9-5: Control input for the solution to the aircraft go-around in the windshear problem,
with different implementations for input rate constraints (LGR discretization, circles represent
collocation points) ©2020 IEEE

With the LGR orthogonal collocation method, improvements are relatively minor. Because

the end-point value for the control input is only approximated (not a collocation point), the

errors have distortion effects on all previous points of the polynomial (Figure 9-5b). On the

other hand, thanks to this extra level of continuity imposed by higher order polynomials,

the problem of singular arc behaviour is far less pronounced with the conventional add-states

implementation (Figure 9-5a), when compared to h type discretization methods.

From Figure 9-6 it can be seen that, for the computation time per iteration, the on-mesh

implementation saw a slight advantage in comparison to the conventional approach. This is

because the on-mesh implementation explicitly exploits the fact that the linear rate constraints

have no contribution to the Hessian, and the contributions to the Jacobian are constants and

can be pre-computed. The scale of the benefit also grows with the size of the mesh, from

about 5% for a coarse mesh to around 10% for the dense mesh.

Figure 9-7 presents the computation performance of the problem when regularized with an

additional ρ||v||22 term. It can be seen that a relative large penalty weight is required to

suppress the singular arc fluctuations, but with a larger ρ the result diverges quickly from

the optimal. Also note that for a single solve with regularization, the norm of angle of attack

rate (||α̇∗ − α̇||2) never reaches the accuracy level obtained by the on-mesh implementation

with the same discretization mesh. Thus, to obtain a good solution, ρ needs to be gradually

reduced, making the process complicated and computationally inefficient — it is also difficult

to guarantee solution quality.



136 Efficient Implementation of Rate Constraints

102 103
0

2

4

6

8

102 103

0.05

0.1

0.15

0.2

0.25

h (H-S) conventional (add state)

h (H-S) on mesh

hp (LGR,p=8) conventional (add state)

hp (LGR,p=8) on mesh

Figure 9-6: Comparison of computational performance, with input rate constraints ©2020 IEEE

Figure 9-7: Solution of the regularized problem with different penalty weights. (H-S collocation
with 79 collocation points (40 mesh nodes); reference solution α̇∗ obtained using a very dense
mesh) ©2020 IEEE

Implementation of rate constraints for state variables

Additionally, a rate constraint for the velocity state is imposed as −5 ≤ v̇(t) ≤ 5 ft/s2. With

this new formulation, the minimum altitude achievable is slightly lower.
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Figure 9-8: Comparison of computational performance, with state and input rate constraints
©2020 IEEE

From Figure 9-8, it is obvious that the two methods are not computationally comparable. Due

to the reasons explained in the end of Section 9-1-2, although the increase in DDOP dimension

is higher for the on-mesh implementation, the resulting (larger) DDOP problems with linear

rate constraints are actually much easier to solve. Consequently, regardless of the discretiza-

tion method, the computation time per iteration recorded for the on-mesh implementations

are all significantly (more than 30%) lower than the conventional method.
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Chapter 10

External Constraint Handling for

Solving Dynamic Optimization

Problems†

When formulating DOPs, it is common practice to impose a large number of constraints to

ensure all mission specifications are fulfilled. However, for the solution obtained, it is often

the case that only a small subset of the imposed inequality constraints will actually be active.

Furthermore, even for the ones in this small subset, the duration for which each constraint

is active is generally much shorter than the time dimension of the DOP. One example would

be for the design of flight control systems: although all limits of the flight envelope need

to be specified in the problem formulation for safety requirements, only in rare (abnormal)

situations is it the case that some limits will be reached.

In numerical dynamic optimization, the DOPs are transcribed into DDOPs. The main com-

putational overheads for solving the DDOPs are directly related to the number of decision

variables and constraints. Thus there exist significant computational benefits to exclude inac-

tive constraints in the problem formulation. One possibility is to only include the constraints

that are determined to be active. Based on this, an external strategy for the handling of path

constraints has been proposed in [42]. The idea is to first solve the unconstrained problem

and determine which constraints are likely to be active based on constraint violations. These

constraints are then added in the DOP, and the problem is repetitively solved until all original

Material presented in this chapter has been published in the following work:
Y. Nie, E.C. Kerrigan, External Constraint Handling for Solving Optimal Control Problems With Simultaneous
Approaches and Interior Point Methods. IEEE Control Systems Letters. 2019 Jun 7;4(1):7-12. ©2019 IEEE
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constraints are satisfied. However, an issue arises when implementing the same idea on IPM

based solvers together with mesh refinement, since good performance hinges on the initial

point to be feasible, or at least close to feasible [78].

Another option is to remove constraints that are inactive. Removal of constraints for MPC has

been studied to accelerate computations for linear MPC [108], tube-based robust linear MPC

[107] and recently nonlinear MPC [55], with computational benefits clearly demonstrated.

However, all of these implementations are based on a quadratic regulation cost, making their

application specifically aimed at receding horizon control of regulation tasks.

In this chapter, an external constraint handling (ECH) strategy is introduced, tailored to

IPM-based NLP solvers for solving a variety of DOPs. Implemented together with mesh

refinement schemes, constraints that do not contribute to the solution are systematically

removed in the problem formulation. Special attention is paid to ensure feasibility of the

initial point. As a result, significant computational savings can be achieved.

Due to limitations in time and space, the proposed external constraint handling method will

only be illustrated with direct collocation method. Similar benefits should be obtainable,

after some adaptations, with other simultaneous methods. This might also be possible for

sequential methods, such as direct single shooting.

Section 10-1 focuses on the identification of active and inactive constraints in DOP as well

as in DDOP solutions. This is followed by a discussion in Section 10-2 on the criteria of

ideal initial points for interior point methods. Then the proposed ECH strategy is introduced

in Section 10-3. Lastly, a flight trajectory optimization example problem is presented in

Section 10-4 to demonstrate the computational benefits.

10-1 Active and inactive constraints

10-1-1 Identifying active constraints in DOP

The inequality constraint (1-1d) is considered active if its presence influences the solution

Z∗ :=
(

χ∗, υ∗, p∗, t∗0, t
∗
f

)

. A constraint is inactive if it can be removed without affecting the

solution. To clarify, consider a simplified problem:

y∗ ∈ arg min
y

Φ(y) subject to c(y) ≤ 0,

where conditions such that constraints can be determined to be active need to be identified.

The most obvious criteria is when the solution y∗ is at the boundary of c(y) ≤ 0, i.e. c(y∗) =

0. Additionally, consider the Lagrangian L := Φ(y) + µT c(y) and the necessary optimality
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conditions (KKT conditions, see Section 2-1-4):

∂Φ(y)
∂y

|y=y∗ + µ
∂c(y)
∂y

|y=y∗ = 0,

c(y∗) ≤ 0, µ ≥ 0, µ ◦ c(y∗) = 0,

with ◦ the Hadamard product. For the last equation (the complementary slackness condition)

to hold for strictly positive Lagrange multipliers (µ > 0), the corresponding solution must

have c(y∗) = 0, i.e. the constraint is active.

10-1-2 Identifying active constraints from DDOP solutions

Theoretically, the above-mentioned analysis applies only to the continuous DOP formulation

(1-1). Additional challenges will arise in practice when solving the discretized problem (6-2)

numerically: the NLP solver will only return the values of the discretized state χ, input υ,

and Lagrange multipliers µ at grid points.

To estimate the constraint activation status in-between grid points, a criteria can be intro-

duced based on the interpolated continuous trajectory z̃. By definition, inequality constraints

are active if the magnitude of the differences between the actual constraint cl(x̃, ˙̃x, ũ, t0, tf , p)

and the user-defined constraint bounds are zero, with cl the lth constraint in c. Due to numer-

ical inaccuracies, however, there will always be a remainder. Thus, a constraint is considered

to be potentially active if this difference is smaller than the constraint violation tolerance ǫtol.

Note that the word potentially is used to emphasise that, for numerical schemes under limited

machine precision, no concrete determination of constraint active status can be made. On

the other hand, only if the identified inactive constraints are truly inactive, then can they

be removed from the DOP without affecting the solutions. Thus, it would be much more

preferable to erroneously identify inactive constraints as active, than the opposite situation.

For this reason, the multiplier information is also used to enforce a larger (more conservative)

selection of potentially active constraints. Here, a similar numerical challenge arises: with

limited machine precision, even when the corresponding constraints are inactive, the multiplier

values are rarely truly equal to zero. To identify the regions where the constraints are likely

to be active, the numerical multiplier data µ is first normalized between 0 and 1 for each

constraint cl(χi, χ̇i, υi, t0, tf , p) ≤ 0. Signal processing algorithms can be used to identify

different intervals where the behaviour of Lagrange multipliers have significant changes, for

example using the Matlab findchangepts function.

For each identified interval Tj ,∀j ∈ IE , the mean value of the normalized multipliers (µ̄Tj
) is
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calculated and compared based on the following criteria:

if µ̄Tj
≥ Θ constraint potentially active in interval Tj

otherwise constraint potentially inactive in interval Tj

with Θ a threshold parameter.

To sum up, the following definition is used to determine whether the constraints are potentially

active or potentially inactive at different grid points.

Definition 1. A constraint cl(χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) ≤ 0 is potentially active at time τ

(k)
i ,∀i ∈

IN(k) if one of the following criteria is met:

• Between adjacent grid points, i.e. t ∈ [τ (k)
i−1, τ

(k)
i+1], cl(x̃(t), ˙̃x(t), ũ(t), t0, tf , p) ≥ −ǫtol

holds, with ǫtol > 0.

• µ̄Tj
≥ Θ, with τi ∈ Tj.

Otherwise, a constraint is potentially inactive at time τ
(k)
i .

In addition to identifying the time instances at which certain constraints may be potentially

inactive, it is also preferable to determine the sets of constraints that never become active at

all times.

Definition 2. A set of constraints cl(χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) ≤ 0 is potentially redundant

if for all τ
(k)
i ,∀i ∈ IN(k) and ∀k ∈ IK , the constraints cl(χ

(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) ≤ 0 are

potentially inactive. Otherwise, this set of constraints is said to be potentially enforced.

10-2 Initialization for interior point methods

IPM for solving NLPs were introduced in the early 1960s [61–63] and have became very

popular in numerical dynamic optimization. The idea is to augment the objective function

with barrier functions of constraints in order to enforce their satisfaction. Potential solutions

will iterate only in the feasible region following the so-called central path, resulting in a very

efficient algorithm.

Standard interior point methods are sensitive to the choice of a starting point. To ensure

that the initial guess is strictly feasible with respect to constraints, various initialization

methods [17, 144] have been developed and implemented in modern solvers.

To ensure reliable and efficient computation of the initialization algorithm, as well as the

subsequent NLP iterations, several criteria [78] can be formulated regarding ideal initial points

for IPMs. The ideal initial point should:
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• satisfy or be close to primal and dual feasibility, and

• be close to the central path, and

• be as close to optimality as possible.

Because of these characteristics, external constraint handling schemes based on constraint

inclusions [42], are not very suitable for IPM-based solvers theoretically. By first solving the

unconstrained problem and gradually adding constraints based on the constraint violation

error, the solution of previous solves will all be infeasible for the new DOP formulation, and

the solution may undergo drastic changes as well.

For IPM-based NLP solvers of IPOPT, the work [42] also demonstrated with some example

problems that the constraint handling scheme can lead to significant savings in computation

time when using a fixed mesh design. However, our experience has shown that when used to-

gether with mesh refinement, the combination of increased problem dimensions and constraint

violations often leads to a higher computational overhead for initialization, as well as higher

chances for the iterations to frequently enter the slow and unreliable feasibility restoration

phase.

10-3 Proposed scheme for constraint handling

Based on the criteria presented in Section 10-1-2 and the characteristics of IPMs as discussed

in Section 10-2, a strategy for efficiently handling constraints in DOPs solved with IPM-based

NLP solvers is proposed, with the work-flow presented in Figure 10-1. The approach is called

external, since the modifications to the DOP are made at the mesh refinement iteration level,

instead of during the NLP iterations.

The unmodified DOP is first solved on the initial coarse mesh. Even with all constraint

equations included, the computation time will still be quite low at this stage due to the small

problem size. Once the solution is obtained, potentially inactive constraints and potentially

redundant constraint sets can be identified, based on Definitions 1 and 2, with potentially

redundant constraints directly excluded from the DOP formulation. Furthermore, if the

problem has a fixed terminal time, i.e. the time instance corresponding to a mesh point will

not change, then potentially inactive constraints in the potentially enforced constraint sets

may also be removed.

Recall that it is preferable to erroneously identify an inactive constraint as potentially active,

rather than the opposite. It is therefore often a good idea in practice to enlarge the intervals

with potential constraint activation by an interval of length Π in each direction, with Π either

fixed or adapting during the mesh refinement process. This adaptation also guarantees the
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Figure 10-1: Overview of the proposed external constraint handling scheme ©2019 IEEE
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convergence of the overall scheme, i.e. in the worst case, Π can be sufficiently large to impose

the constraints for the whole trajectory, with the original problem recovered.

In-between mesh refinement iterations, special attention must be made to constraints and

constraint sets that were determined to be potentially inactive or redundant in the previous

solves. If they never become active or enforced again, the constraint removal process may

continue until mesh refinement is converged. But there will be the chance, after refining the

mesh, the constraint violation error analysis dictates that certain constraints and constraint

sets that have been removed earlier may become potentially active or enforced again. If this

happens, they need to be included again to ensure that the solution of the modified DOP is

equivalent to the unmodified problem.

Note that the previous solution will no longer be a feasible initial guess for the new problem

formulation. To assist the subsequent solve of NLPs, the following auxiliary feasibility problem

(AFP) can be solved before proceeding:

J∗ := min
χ,υ,p,t0,tf

nc
∑

l=1

Ξl (10-1a)

subject to, i ∈ IN(k) , k ∈ IK and l ∈ Inc ,

N(k)
∑

j=1

A
(k)
ij χ

(k)
j + D

(k)
ij f

(

χ
(k)
j , υ

(k)
j , t0, tf , p

)

=0, (10-1b)

g
(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

=0, (10-1c)

cl

(

χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p

)

≤Ξl, (10-1d)

φ(χ(1)
1 , t0, χ

(K)
f , tf , p) =0, (10-1e)

Ξl ≥0, (10-1f)

with Ξ ∈ Rnc slack variables and Ξl the lth element of it. The initial guess for the AFP will

be Ẑ := (χ̂, υ̂, t0, tf , p), i.e. the values of the interpolated solution z̃ at N̂ grid points of the

refined mesh, with N̂ (k) data points in interval k and in total K̂ intervals. Additionally, ˙̂χ

can be obtained from ˙̃x(t) at the grid points of the refined mesh.

10-3-1 Properties of the external constraint handling strategy

It is possible to derive proofs of feasibility and optimality invariance for the removal of con-

straints on a given discretization mesh. However, with the size of the mesh changing through-

out the refinement process, the analysis of errors, and identification of constraint activation

status (Section 10-1-2) are all subject to considerable uncertainties. When a constraint or

constraint set must be included again in the problem, it will be challenging to ensure that
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the subsequent DOP solve can be supplied with a feasible initial guess. The introduction of

the AFP is the answer to this challenge, with its solution guaranteed to be a feasible point

for the corresponding original DOP.

Proposition 4. If the original discretized DOP (6-2) has feasible points, then a solution to the

auxiliary feasibility problem (10-1) will be a feasible point of (6-2) on the same discretization

mesh, and (10-1) will have corresponding objective value J∗ = 0.

Proof. If Z := (χ, υ, t0, tf , p) is a feasible point of (6-2), then (6-2d) must hold. With Ξ ≥ 0,

the solution for the AFP (10-1) will be the situation where
∑

Ξl = 0, and (6-2d) guarantees

the existence of such a solution.

Now, for the very same reason, a suitable initial guess is needed for the slack variables Ξ in

the AFP. One possible way is by calculating the constraint violation errors of the interpolated

solutions on the refined mesh.

Proposition 5. Define Ξ̂ ∈ RN̂×nc as the absolute local constraint violation error ǫ(t) calcu-

lated at N̂ grid points of the refined mesh, with the updated initial guess Ẑ := (χ̂, υ̂, p, t0, tf ).

For any set {Ξ̄ ∈ Rnc | Ξ̄l ≥ maxi∈I
N̂(k) ,k∈I

K̂
(Ξ̂(k)

i,l ), l ∈ Inc} implemented as the initial guess

for Ξ, the AFP (10-1) will have a strictly feasible initial point with respect to the constraints

(10-1d).

Proof. Ξ̂(k)
i,l := | min(−cl(χ̂

(k)
i , ˙̂χ(k)

i , υ̂
(k)
i , t0, tf , p), 0)| by definition, for all i ∈ I

N̂(k) , k ∈ I
K̂

and

l ∈ Inc ,

• If cl(χ̂
(k)
i , ˙̂χ(k)

i , υ̂
(k)
i , t0, tf , p) < 0, i.e. the constraint is satisfied and the solution is not

on the boundary, then Ξ̂(k)
i,l = 0, thus cl(χ

(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) < Ξ̂(k)

i,l holds.

• If cl(χ̂
(k)
i , ˙̂χ(k)

i , υ̂
(k)
i , t0, tf , p) = 0 (constraint satisfied and solution is on the boundary) or

cl(χ̂
(k)
i , ˙̂χ(k)

i , υ̂
(k)
i , t0, tf , p) > 0 (constraint violations), then cl(χ

(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) =

Ξ̂(k)
i,l holds.

Therefore, cl(χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) ≤ Ξ̂(k)

i,l will always be true. From the defination that

Ξ̄l ≥ maxi∈I
N̂(k) ,k∈I

K̂
(Ξ̂(k)

i,l ), it can be concluded that cl(χ
(k)
i , χ̇

(k)
i , υ

(k)
i , t0, tf , p) ≤ Ξ̄l holds.

Now it can be shown that, except for the initial solve, all subsequent solves will have feasible

initial guesses.

Proposition 6. If the unmodified DOP has feasible points, and the initial solve of the dis-

cretized DOP has been successful, then all subsequent solves of DOPs and AFPs with mesh

refinement schemes and the proposed external constraint handling method will have a feasible

initial point with respect to the constraints (6-2d) or (10-1d).
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Proof. For any interpolated solution Ẑ := (χ̂, υ̂, p, t0, tf ) on the new mesh, if (6-2d) is not

satisfied, then the corresponding AFP will be solved and Proposition 5 ensures that AFP will

have a feasible initial guess. From Proposition 4 the solution of the AFP will be a feasible

initial guess for the subsequent DOP solve.

10-3-2 A practically more efficient alternative implementation

The proposed external constraint handling scheme can guarantee feasible initial points under

conditions stated in Proposition 6. Nevertheless, it may not always be efficient in practice.

The frequent solve of AFPs are not only time consuming, but are often not necessary.

Recall the conditions regarding ideal initial guesses for IPM methods. It is not necessary

to satisfy primal and dual feasibility — rather, one only needs to be close to fulfillment.

In practice, the computational performance of a modern IPM that uses near-feasible initial

guesses is very much comparable to using feasible initial points. In addition, constraint

satisfaction for simple bounds can be computationally much easier to achieve by the NLP

solver, thus there is no need to enforce those through the solve of an AFP.

Thus, a practically more efficient version of the external handling scheme can be formulated,

by restricting the conditions for solving the AFP to the mesh refinement iteration when a

potentially redundant constraint set turns into a potentially enforced constraint set.

10-4 Example problem: flight path of a commercial aircraft

To demonstrate the computational benefits of the proposed ECH scheme, a problem that is

relatively large in the horizon length is shown. The task involves finding a fuel-optimal flight

path of a commercial aircraft where authorities have identified five non-flight zones (NFZ) for

the aircraft to avoid.

From simple flight mechanics with a flat earth assumption, both the longitudinal and lateral

motion of the aircraft can be described by the dynamic equations

ḣ(t) =vT (t) sin(γ(t)),

˙POSN (t) =vT (t) cos(γ(t)) cos(χ(t)),

˙POSE(t) =vT (t) cos(γ(t)) sin(χ(t)),

v̇T (t) =
1

m(t)
(T (t) −D(t) −m(t)g sin(γ(t))),

ċ(t) =
1

m(t)vT (t)
(L(t) cos(φ(t)) −m(t)g cos(γ(t))),

χ̇(t) =
L(t) sin(φ(t))

cos(γ(t))m(t)vT (t)
,
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ṁ(t) =FF (t),

with h the altitude, POSN and POSE the north and east position, vT the true airspeed, γ

the flight path angle, χ the tracking angle, and m the mass. T is the thrust force as a function

of vC , h and Γ. L and D are lift and drag force respectively, both as a function of vT , h and

α. FF is the fuel flow model, as a function of vC , h and Γ as well.

vC is the calibrated airspeed, which can be related to the true airspeed vT via a conversion

as follows

vT (t) =

√

√

√

√2ξ
p(t)
ρ(t)

[

[

1 +
p0

p(t)

[

(1 +
1
2ξ
ρ0

p0
vC(t)2)ξ − 1

]

]

1
ξ

− 1

]

,

with ξ = κ
κ−1 , and κ = 1.4 the heat capacity ratio of the air, p and ρ the pressure and air

density at flight altitude, and p0 and ρ0 the pressure and air density at sea level.

Additionally, g = 9.81 m/s2 is gravitational acceleration. There are three control inputs, the

roll angle φ in rad, the throttle settings Γ normalized between 0 and 1, and the angle of attack

α in rad. Further details of the modelling of a Fokker 50 aircraft can be obtained from [48].

The avoidance of NFZs can be implemented with the following path constraints

(POSN (t) − POSNN
)2 + (POSE(t) − POSEN

)2 ≥ r2
N ,

with POSNN
and POSEN

the north and east position of the center of the non-flight zones,

and rN the radius.

The problem will have the boundary cost Φ = −m(tf ) (maximize the mass at the end of the

flight, with fixed tf = 7475 s), subject to the dynamics and path constraints. Furthermore,

variable simple bounds

487.68 ≤ h(t) ≤ 7620 m, 0 ≤ POSN (t) ≤1.2 × 106 m, 0 ≤ POSE(t) ≤ 1.2 × 106 m,

100 ≤ vT (t) ≤ 170.5 m/s, − 1.0472 ≤γ(t) ≤ 1.0472 rad, − π ≤ χ(t) ≤ π rad,

14000 ≤ m(t) ≤ 18000 kg, − 0.1745 ≤ α(t) ≤ 0.1745 rad, − 0.7854 ≤ φ(t) ≤ 0.7854 rad,

0 ≤ Γ(t) ≤ 1, − 0.0349 ≤ α̇(t) ≤ 0.0349 rad/s, − 0.1745 ≤ φ̇(t) ≤ 0.1745 rad/s,

are imposed together with the boundary conditions,

h(0) = 487.68 m, POSN (0) = 0 m, POSE(0) = 0 m, vT (0) = 100 m/s,

c(0) = 0.1396 rad, χ(0) = 0 rad, m(0) = 18000 kg, φ(tf ) = 0 rad,

h(tf ) = 609.60 m, POSN (tf ) = 8×105 m, POSE(tf ) = 9 × 105 m,

vT (tf ) = 100.6 m/s, c(tf ) = −0.0524 rad, χ(tf ) = −2.3562 rad.
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Figure 10-2: The fuel-optimal flight profile for the example problem ©2019 IEEE

Table 10-1: User-Defined Tolerances: Aircraft Flight Profile ©2019 IEEE

ηtol εgtol
ηtol εgtol

h [m] 5 5 m [kg] 0.1 0.1
POSN [m] 1 1 α [rad] - 0.0087
POSE [m] 1 1 φ [rad] - 0.0087
VT [m/s] 0.5 0.5 Γ [-] - 0.1
γ [rad] 0.0087 0.0087

NFZ violations [m] - 1
χ [rad] 0.0087 0.0087

Figure 10-2 illustrates the results solved to a user-defined tolerance listed in Table 10-1. Using

the proposed external constraint handling scheme, the problem is first solved with a worst-case

buffer interval setting of Π = 0 s. The history for constraint activation intervals implemented

in the DOP are demonstrated in Table 10-2. It can be seen that in the initial solve (mesh

refinement iteration 1), all constraint sets are enforced and all constraints are treated as

potentially active. Based only on the solution from this coarse grid, the ECH method correctly

identified that the constraint sets related to NFZ 2, 3 and 5 are all potentially redundant. It

also determined that constraints related to NFZ 1 are only potentially active near the end of

the flight, whereas for NFZ 4 they are at the beginning of the mission.

In later iterations of the mesh refinement, these intervals had only some minor adjustments. It

can be seen that without implementing any buffer interval, there do exist occasions where ac-

tive constraints got erroneously identified as inactive for finer meshes. However, the constraint

violation error analysis in the mesh refinement process correctly identified these situations

and made corrections accordingly.

Table 10-3 compares the computational performance of the standard solve, as well as solves
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Table 10-2: External constraint handling history for the aircraft flight path example (t0 =0 s,
tf = 7475 s, Π = 0 s) ©2019 IEEE

Constraint Activation Intervals Implemented in the DOP [s]
NFZ MR Iter. 1 MR Iter. 2 MR Iter. 3 MR Iter. 4 MR Iter. 5 MR Iter. 6

(K = 40) (K = 81) (K = 136) (K = 176) (K = 207) (K = 256)

1 [t0, tf ] [6900 7092] [6996 7114] [7056 7162] [7071 7140] [7074 7150]

2/3/5 [t0, tf ] ∅ ∅ ∅ ∅ ∅

4 [t0, tf ] [671 863] [743 942] [767 875] [774 880] [774 878]

Table 10-3: Computational performance for the aircraft flight path example ©2019 IEEE

Standard With ECH With ECH
Solve (Π = 0 s) (Π = 747.5 s)

Total Comp.
130.54

92.14 78.27
Time [s] (29% lower) (40% lower)

mesh refinement Iterations 6 6 6
Re-comp.

21.82
13.50 10.78

Time [s] (38% lower) (50% lower)
Fuel Used [kg] 1787.6 1787.6 1787.6

with external constraint handling using the alternative ECH implementation (allowing near-

feasible initial guesses) described in Section 10-3-2, with two different buffer interval settings.

With the worst-case setting of Π = 0, the total computation time saw a 29% reduction,

while the number of mesh refinement iterations remained the same. Choosing a much more

conservative buffer interval setting of Π = 0.1(tf − t0) = 747.5 s further improved this time

reduction to 40%, with initial guesses being feasible for all later mesh refinement iterations.

For real-time applications, it is useful to consider the re-computation time for solving the

DOP problem again with the final (refined) discretization mesh, using the obtained solutions

as initial guesses. For the ECH method with Π = 747.5 s, the time taken was only half

compared to the standard solve. Therefore, the benefits of the proposed scheme can be seen

for both off-line and online applications.



Chapter 11

Suppression of Singular Arc

Fluctuations

As illustrated in previous chapters, singular arcs can be present in the solution of DOPs.

On the singular arc, the numerical solutions may have large fluctuations in the solution

trajectories, leading to large residuals and constraint violation errors in-between grid points.

In addition, a fluctuating input trajectory can be more prone to implementation errors when

is applied. Therefore, methods that can suppress the singular arc fluctuations are particularly

attractive for practical applications.

In this chapter, with the help of a simple singular control example problem, different singular

arc ringing suppression approaches are demonstrated and compared, ranging from problem

reformulations and different choices of transcription methods, to posterior fixes after a fluc-

tuating solution has been obtained. Section 11-4 lists the advantages and disadvantages of

each approach and provides guidelines on making the appropriate choices.

11-1 Double integrator minimum-time repositioning

To demonstrate the occurrence of singular arcs using one of the simplest problems possible,

the double-integrator minimum-time repositioning example is selected. The problem has the

same problem formulation as [17, Ex. 4.1], but with different initial and terminal conditions,

and variable bounds. A double integrator plant can be physically interpreted as the system

in figure 11-1.
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F m 

Figure 11-1: A physical interpretation of double integrator plant

by neglecting viscous friction and assuming unit mass (m = 1). Then the corresponding

state-space formulation of the dynamics is:

[

ẋ

v̇

]

=

[

0 1

0 0

] [

x

v

]

+

[

0

1

]

F. (11-1)

Then the DOP to find a solution such that the object is re-positioned from x = 0 m to

x = 300 m in minimum time will be

min
x,v,F,tf

tf ,

subject to dynamic constraints (11-1), variable simple bounds

−10 ≤ x(t) ≤ 300 m, − 10 ≤ v(t) ≤ 10 m/s,

−2 ≤ F (t) ≤ 1 N, 0 ≤ tf ≤ 50 s,

and boundary conditions

x(0) = 0 m, v(0) = 0 m/s,

x(tf ) = 300 m, v(tf ) = 0 m/s.

Without the simple bounds on velocity v, the problem is often known as the bang-bang control

problem, with the optimal input trajectory contains a single switch from the largest positive

force for maximum acceleration to the greatest negative force for maximum braking. However,

with a tight bound in place for v, the structure of optimal input can become bang-singular-

bang. In this case, the solution obtained directly from a direct collocation transcription will

show large fluctuations on the singular arc, as demonstrated in Figure 11-2.
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(a) States

(b) Input

(c) Costates

Figure 11-2: Time-optimal solution for double integrator repositioning problem (single phase
direct collocation, HS discretization, 100 major nodes, circles represent collocation points)
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11-2 Analysis of the problem

11-2-1 In framework of singular control

The large fluctuations in the solution trajectories can be analyzed under the framework of

singular control. First, formulate the Hamiltonian of the system:

H = λx(t)v(t) + λv(t)F (t). (11-2)

It can be seen that the expression is not an explicit function of time, hence H will be a constant.

Additionally, from the transversality condition (2-6d), the terminal value for Hamiltonian is

known:

H(tf ) = −
∂Φ
∂tf

= −
∂tf

∂tf
= −1.

Hence, combining both information, the Hamiltonian of the problem is known to be H = −1.

From the PMP (2-3), the optimal control input will be

F ∗(t) =























1 if λ∗
v(t) < 0

? if λ∗
v(t) = 0

−2 if λ∗
v(t) > 0

,

which corresponds to the observation in Figure 11-2 that as soon as λv equals zero, the input

F starts to exhibit large fluctuations in the solution. On the singular arc with λv(t) = 0, the

costate corresponding to x can be computed from the Hamiltonian (11-2) with

λx(t) =
H − λv(t)F (t)

v(t)
= −

1
v(t)

.

substitute in v(t) = 10 in the equation would yield λx(t) = −0.1, which is in correspondence

with the costate solution shown in Figure 11-2c.

Since ∂2H
∂u2 is singular on the singular arc and provides no information regarding the control

input, the Hamiltonian has to be differentiated respect to time:

Ḣ = λ̇x(t)v(t) + λx(t)v̇(t) + λ̇v(t)F (t) + λv(t)Ḟ (t). (11-3)

From costate dynamics:

λ̇x(t) = −
∂H

∂x
= 0,

and from H = −1 and λv(t) = 0, it is trivial to also deduce that Ḣ = 0 and λ̇v(t) = 0.
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Subsitituing all known information in (11-3) yield

λx(t)v̇(t) = 0.

Since λx(t) = −0.1, the condition for the above equation to hold is therefore

v̇(t) = 0,

which is the singular arc condition for this double integrator repositioning problem.

11-2-2 In framework of DAE constraints

Another approach to analyze the issue, inspired by [130], is to view the problem as a semi-

explicit DAE system during the period of constraint activation. In other words, the original

formulation with inequality constraint v(t) ≤ 10 m/s specified for the whole trajectory is

equivalent to a problem with an equality constraint v(t) = 10 m/s added in the dynamic

equations only for the arc where the inequality constraint becomes active, which also effec-

tively increases the DAE index of the system by 1.

In direct collocation transcription, when constraint v(t) ≤ 10 m/s is enforced for the pa-

rameterized decision variables, it is equivalent as enforcing it through a DAE dynamic con-

straint on the intervals where the inequality constraint becomes active, forcing fulfilment of

v(t) = 10 m/s at collocation points only.

In addition, since v(t) is the only state variable in the ODE equations (11-1), when v(t)

becomes a constant with v(t) = 10 m/s, the ODE dynamic equations effectively becomes pure

integrators. If the problem is transcribed using HS collocation, for example, then any solution

with:

• cubic state trajectory that can ensure v(t) = 10 m/s at the collocation point, and

• corresponding quadratic input trajectory with integral equate to zero for a mesh interval,

will be valid solutions to the DDOP. In other words, the DDOP will have an infinite number

of solutions for the intervals with v(t) = 10 m/s, and all these solution candidates are with

the same value for the objective. A graphical illustration of this behaviour is provided in

Figure 11-3.

According to the requirements of the original DOP, only one solution would fully respect

the constraint v(t) ≤ 10 m/s everywhere along the trajectory; hence the original DOP is

consistent. This means that it is the transcription method of direct collocation that resulted

in an under-constrained DDOP for this problem, because the constraints are only enforced

at the collocation points.
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Figure 11-3: Illustration of the fluctuating solution trajectory details for the double integrator
repositioning problem. The area of the green region equals to that of the purple region.

In order to address this degree of freedom mismatch, one can perform the DAE index reduction

procedure and differentiate the equivalent DAE equation and yield an ODE equation v̇(t) = 0.

Additionally, there will be the consistency condition for v = 10 m/s to be applied at any point

of the singular arc. When the additional ODE equation and the consistency condition are

implemented together on the segment for which the constraint is active, a direct collocation

transcription will then yield the correct unique solution to the DOP.

11-3 Implementations to suppress the singular arc fluctuations

11-3-1 Multi-phase direct collocation

With the singular arc conditions (or equivalently the ODE equation after DAE index re-

duction), the problem can be solved with direct collocation out of the box. However, it is

important to ensure that these conditions are only enforced on the singular arc, but not

elsewhere, hence a multi-phase implementation would be necessary after determining the

structure of the solution trajectories.

With this example problem, the solution structure is ‘bang-singular-bang’, hence requiring

a three-phase formulation with the input variable fixed at the upper bound for the first

phase, and the lower bound for the third phase. For the second phase, the extra condition

v̇(t) = 0 need to be imposed, which effectively forces the input F to be zero everywhere along

the singular arc. The numerical solutions are illustrated in Figure 11-4, showing accurate

solution for both state trajectory of v(t) and input trajectory of F (t).

11-3-2 Simultaneous regularization

To avoid the use of a multi-phase setup, a common way to deal with with singular control is

to augment the original cost functional with an additional regularization term for the input

variables u, e.g.

min
x,u,p,t0,tf

J(x(t), u(t), t, p) + ρ‖u(t)‖2
2,
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Another option is to introduce additional sets of dynamic equation u̇(t) = ν(t) and regularize

the new input ν(t) with

min
x,u,p,t0,tf

J(x(t), u(t), t, p) + ρ‖ν(t)‖2
2.

With relatively large values of the penalty weight ρ ∈ R, the fluctuations on the singular

arc can be suppressed, but at the cost of obtaining sub-optimal trajectories. Therefore, it is

recommended that ρ is chosen such that

ρ‖u(t)‖2

|J(x(t), u(t), t, p)|
≤ ϑ,

or
ρ‖ν(t)‖2

|J(x(t), u(t), t, p)|
≤ ϑ,

can be ensured throughout the solution process, with ϑ ∈ R a small number (e.g. 0.01). In

this way, the degradation in solution optimality can be controlled.

However, depending on the values for the constraint bounds, initial guess and the optimal

input trajectory, it may be just impossible to identify a single suitable value for ρ. As a result,

a sequence of ρ may need to be designed, so that the problem can be repetitively solved using

warm-starting.

For the double integrator repositioning problem, the value for objective is about J = 37 and

the highest magnitude for the square of input, F 2, is 4. Therefore, a choice of ρ = 0.01 is

sufficient with the ratio ϑ being around 0.001 in the worst-case scenario. At the optimal

solution, this ratio is further reduced to around 8×10−5.

The obtained solution is shown in Figure 11-5. It is a sub-optimal solution with the terminal

time increases from 37.5004 s to 37.5019 s, a noticeable but yet practically negligible difference.

However, with this simultaneous regularization, the undesirable fluctuations can no longer be

seen in the input and state trajectories. In addition, the trajectory of v(t) obtained from

the actual implementation of the new input trajectory corresponds much better to the DOP

solution than the singular ringing case (Figure 11-2a).

11-3-3 Posterior regularization

With simultaneous regularization, it is still difficult to precisely adjust the increase in objective

for the obtained solution. For this purpose, another approach based on posterior regulariza-

tion is possible. The idea is to first solve the original DOP (2-7), and then use the obtained
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solution and corresponding nominal cost J∗ to warm-start the following regularization DOP

min
x,u,p,t0,tf

‖u(t)‖2
2 (11-4a)

subject to

J(x(t), u(t), t, p) ≤J∗ + εJ , ∀t ∈ [t0, tf ] a.e. (11-4b)

g(x(t), ẋ(t), u(t), t, p) =0, ∀t ∈ [t0, tf ] a.e. (11-4c)

c(x(t), ẋ(t), u(t), t, p) ≤0, ∀t ∈ [t0, tf ] a.e. (11-4d)

φ(x(t0), t0, x(tf ), tf , p) =0, (11-4e)

with εJ ∈ R a small positive number prescribing the acceptable increase in objective value.

Theoretically, εJ can be forced to zero; however, limitations of numerical computations often

require a small positive εJ for (11-4) to be solved successfully in practice.

For the double integrator repositioning problem, a εJ can be chosen such that J∗ + εJ will

have a similar value of 37.502 as in the demonstration of simultaneous regularization. The

solution obtained using posterior regularization is almost identical to that of simultaneous

regularization, as shown in Figure 11-6.

11-3-4 Solution post-processing with the area rule

When singular arc fluctuations are caused by pure integrator dynamics, the behaviour illus-

trated in Figure 11-3 and discussed in Section 11-2-2 will occur. All possible input trajectory

solutions to the under-constrained DDOP share a common characteristic: the integral values

are the same inside each mesh interval for different non-unique solutions. Therefore, it is

possible to simply integrate this approximated input trajectory, and construct a piece-wise

constant profile that has the same integrated value. With this method, one effectively com-

putes the area under a curve and then compute the height of a rectangle that has the same

area and width; therefore, this post-processing method is named the area rule.

A point of caution for the area rule is that the modification should only be applied on the

singular arc but nowhere else. Figure 11-7 shows the post-processing of the input trajectory

of the double integrator repositioning problem using the area rule, and the simulation results

of such a modified input trajectory.

It can be seen that the obtained velocity trajectory v(t) from implementation contains larger

deviations than the regularization formulations. This is because the regularization formula-

tions also regularise the input at the point of discontinuity, leading to a solution with smaller

errors at the very beginning of the singular arc intervals. Nevertheless, the modified input

profile using the area rule does lead to the correct behaviour of constant velocity on the
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singular arc, and the implementation errors are noticeably smaller than that of the original

singular problem (Figure 11-2).

11-3-5 Solving with ADIR transcription

The mechanism for the IRM-type of methods to suppress singular arc fluctuations are dis-

cussed in Section 7-1-5, hence will not be repeated. The DAIR solution to the double inte-

grator repositioning problem is presented in Figure 11-8. Since for this problem, the system

effectively becomes pure integrator dynamics on the singular arc. Therefore it belongs to

the special case where the approximating functions are capable of representing the solution

trajectory exactly; hence IRM-type of methods are theoretically unable to suppress the sin-

gular arc directly. Nevertheless, thanks to the reasons discussed in Section 7-1-5, the DAIR

transcription method is still rather successful in suppressing the ringings on the singular arc,

despite some fluctuations present at the location of discontinuities.

11-4 Comparison of different methods

With the help from this example problem and based on past experiences, the advantages

(+) and disadvantages (−) of different methods for the suppression of singular arcs can be

summarized as follows:

• Multi-phase direct collocation

+ solutions of high accuracy, generally corresponds well to the analytical solution,

− need to know the structure of the solution beforehand, i.e. the multi-phase setup

may need to change accordingly when problem formulation slightly changes,

− need to derive analytically and implement the singular arc conditions for every

occurrence of singular control.

• Simultaneous regularization

+ only need to solve a single DOP once, and without any post-processing of the

solution trajectory,

− difficult to manage the eventual trade-off between the original objective and the

regularization terms, especially in large problems with many input variables,

− difficult to ensure the ratio between the regularization terms and the original objec-

tive is always small throughout the intermediate iterations of the solution process.

If this ratio not respected, it is possible that the solver may converge to a signifi-

cantly sub-optimal solution.
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• Posterior regularization

+ solution of high accuracy,

+ designer have full control for the sub-optimality of the solution,

− need to setup and solve one additional DOP,

− due to limitations of numerical solvers in constraint handling, convergence may be

affected if a small εJ is used.

• Post-processing with area rule

+ simple modification made to direct collocation solution,

+ low computation cost,

− only suitable for singular arc fluctuations corresponding to pure integrator dynam-

ics,

− unless solution is of ‘bang-singular’ type, one needs to identify the intervals of

singular control and make sure the area rule is only applied on these intervals.

• Using IRM type of transcriptions

+ only need to solve a single DOP once, and without any post-processing of the

solution trajectory,

+ solution of high accuracy,

− when trajectories are represented accurately by the approximating functions (e.g

in case of pure integrator dynamics), suppression of singular arc fluctuations may

not be achieved from a theoretical point of view.
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(a) States

(b) Input

Figure 11-4: Time-optimal solution for double integrator repositioning problem (multi-phase
direct collocation with additional singular arc conditions, HS discretization, 30 major nodes for
phase 1 and 3, 40 major nodes for phase 2, circles represent collocation points)
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(a) States

(b) Input

Figure 11-5: Time-optimal solution for double integrator repositioning problem (single phase
direct collocation with simultaneous regularization, HS discretization, 100 major nodes, circles
represent collocation points)
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(a) States

(b) Input

Figure 11-6: Time-optimal solution for double integrator repositioning problem (single phase di-
rect collocation with posterior regularization, HS discretization, 100 major nodes, circles represent
collocation points)
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(a) States

(b) Input

Figure 11-7: Time-optimal solution for double integrator repositioning problem (single phase
direct collocation with modification of singular input trajectory using area rule, HS discretization,
100 major nodes)
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(a) States
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(b) Input

Figure 11-8: Time-optimal solution for double integrator repositioning problem (single phase
DAIR, piece-wise cubic state parameterization and piece-wise quadratic input parameterization,
100 major nodes, circles represent collocation points)
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Chapter 12

ICLOCS2: A Comprehensive MATLAB

Toolbox for Fast Prototyping of

Optimization Based Control

ICLOCS2 is the new version of ICLOCS (pronounced ‘eye-clocks’) and is a comprehensive

software suite for solving DOPs in Matlab and Simulink. The toolbox builds on a wide

selection of numerical transcription and discretization methods, and automated tools to assist

the design and implementation of DOPs. The aim is to provide the first port of call for

solving DOPs of various challenging natures. The suite of solution techniques implemented

in ICLOCS2 significantly increases the chance of successfully solving difficult problems to

a high accuracy. On the other hand, unlike most existing DOP software that is targeting

on obtaining the most accurate optimal trajectory offline, ICLOCS2 is designed with online

implementation prototyping in-mind. It offers the user great flexibility in trading off the

solution quality with the computational complexity. The result is a comprehensive toolbox

that is capable of efficiently solving and implementing a wide variety of challenging DOPs.

Consequently, users may implement the DOPs in a rather intuitive manner, making nonlinear

optimal control available to a broader range of application fields.

In this chapter, the development motivation of ICLOCS2 is first presented in Section 12-1,

followed by some selected software highlights in Sections 12-2 regarding multi-phase problems,

mesh refinement, dynamically refined hp-adaptive mesh, and closed-loop simulations.
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Table 12-1: ICLOCS2’s solution to a list of singular control problems

Singular Arc Ringing Mitigated
with On-mesh Rate with DAIR

Constraint Implementation Transcription
Van der Pol

No Yes
Oscillator [141]

Aly-Chan
No Yes

Problem [5]
Second Order Singular

Yes Yes
Regulator [4]

Goddard
No Yes

Rocket [140]
Aircraft Go-around

Yes Yes
in Windshear [146]

12-1 Development motivation and overview of ICLOCS2

ICLOCS2 bridges the gap between classical offline trajectory optimization and online opti-

mization based control methods, such as NMPC. Instead of solely pursuing the most accurate

open-loop result (as is done for most software in Table 2-1), ICLOCS2 has been designed to

enable flexible trading-off of the solution accuracy and computational complexity. By imple-

menting the closed-loop optimization-based control, as shown in Figure 2-2, ICLOCS2 users

may also utilize the merits of feedback to resolve problems arising from external disturbances,

model mismatches, as well as DOP solution errors related to discretization and round-offs.

Hence, ICLOCS2 is well suited for prototyping of online implementation in the Matlab and

Simulink environments.

To enable the required level of flexibility, ICLOCS2 implements state-of-the-art transcription

and discretization methods, efficient solvers and derivative information calculations. By pro-

viding access to an array of methods for solving a wider variety of optimal control problems,

ICLOCS2 reduces the experience required by the software from the user. For example, when

dealing of one of the most difficult classes of problems in optimal control: singular control

problems, ICLOCS2 has much a higher chance to yield a solution of sufficiently good accuracy

without needing an analytical expression for singular arc conditions from the user, as shown

in Table 12-1. Another example is when the formulated problem belongs to simpler classes of

optimization problems such as QPs and LPs. ICLOCS2 supports dedicated numerical solvers

that are specialized in handling these problems efficiently, thus capable of yielding solutions

faster and more reliably than generic NLP solvers.

ICLOCS2 also provides various tools which improve the algorithmic efficiency and ease of

implementation, with a summary of the available methods and features shown in Appendix B.
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12-2 Additional software highlights

12-2-1 Multi-phase optimal control for continuous and hybrid systems

Implementing and solving a single-phase problem can be challenging if the problem formula-

tion contains distinctive changes at certain time instances. In these situations, one may use

the multi-phase DOP implementation in ICLOCS2 to prescribe the problem before and after

these discrete changes. All phases are solved together with the inclusion of linkage constraints

to enforce continuity or certain jump conditions.

There are several different cases where this implementation can be useful:

• For problems with continuous state trajectories, multi-phase implementation can be

useful when system dynamics undergo distinctive changes. In this regard, an epidemic

control problem is shown, where the spreading of virus is different at different stages of

the epidemic control phases.

• Another commonly encountered case is the optimal control of hybrid systems, where

certain state trajectories are discontinuous and contain jumps. The reusable rocket

launch example demonstrates this situation where the mass of the rocket during launch

sees a discrete drop when the first stage is separated.

• Formulating the problem as multi-phase can be beneficial if the structure of the solution

is known beforehand. As a result, one may not need to worry about capturing the

discontinuity in the bang-bang control example in Section 12-2-3, and the bang-singular-

bang control example in Section 11-1 can have the singular control mitigated by imposing

additional singular arc conditions specifically for the second phase.

• Multi-phase formulation can also be useful in closed-loop implementations in the form

of MPC, when distinctively different mission requirements are specified. For example,

in a mission requiring a pendulum to move to the inverted position in minimum time,

and then maintain that position with given error bounds using minimum energy.

Example: Epidemic control with the SEIR model

The COVID-19 epidemic has raised question on how best to control the spread of such diseases

in an effective and efficient manner. Extending the classic SIR model, the SEIR model [41]

is claimed to have higher fidelity for the modeling of the spreading of the virus among the

susceptible population. The model can be expressed as

Ṡ(t) = −αS(t) − β
S(t)I(t)
Npop

, Ė(t) = −γE(t) + β
S(t)I(t)
Npop

,
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İ(t) = γE(t) − δI(t), Q̇(t) = δI(t) − λ(t)Q(t) − κ(t)Q(t),

Ṙ(t) = λ(t)Q(t), Ḋ(t) =κ(t)Q(t), Ṗ (t) = α(t)S(t),

with S(t) are the susceptible cases, E(t) the exposed cases, I(t) the infectious cases, Q(t) the

quarantined cases, R(t) the recovered cases, D(t) the dead cases and P (t) the insusceptible

cases. Regarding the parameters, Npop is the population, α is the protection rate, β is the

infection rate, γ is the inverse of the average latent time, δ is the rate at which infectious people

enter in quarantine, λ(t) = λ0(1 − exp(−λ1t) is the time-dependant cure rate, and κ(t) =

κ0 exp(−κ1t) is the time-dependant mortality rate. It is assumed that 30 % of quarantined

patients will require hospital treatment.

The problem is formulated and solved as a four-phase DOP in ICLOCS2, each with different

modelling parameters for the dynamics equations. The first phase is characterized as un-

controlled growth, with few cases but no measures to limit the virus spread. In the second

stage, drastic measures are taken, such as social distancing and significant reductions in social

activities, aiming to slow down the spread. At this stage, mass testing will also allow quick

identification of infected cases; thus, the rate at which infectious people enter in quarantine

is also high. This is followed by a relaxing phase where economic activities are allowed to

gradually restore for a certain period until a point where pre-pandemic policy can be rein-

stated in phase four. A terminal constraint is in place to guarantee that at the end of phase

four, there will be no more exposed and infectious cases (i.e. all remaining virus carrier are

quarantined), marking the end of the epidemic. The objective of this example problem is

to maximize the necessary social activity during the containment phase while ensuring the

hospital bed usage are within the availability limit, commonly known as ’flattening the curve’.

Figure 12-1 presents a numerical solution.

Example: Reusable rocket launch and recovery

The successful flight of SpaceX Falcon series of rocket launchers mark a new era of commercial

space flight with partially or fully reusable launcher components. Ma et al. [133] presented a

case study where trajectory optimization is used to generate flight trajectories for the launch

and recovery of a two-stage rocket, with the first stage returning for a vertical landing at the

original launch site. The objective is to maximize the remaining fuel in the second stage and

the payload when they successfully enter into orbit.

Here the solution to this case study is demonstrated using ICLOCS2, but using the corrected

system dynamics presented in Betts [17, Ex. 6.19], leading to different solution trajectories.

In the corrected formulation, a distinction is made between the velocity in the Earth-centered

inertial frame (as v in dynamic equations) and the earth relative velocity (as vr in aerodynamic

force computations). The relationship between the two is vr = v−ω×r, with ω = (0, 0, ωE)T
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Figure 12-1: Solution to the multi-phase epidemic control example (nodes represent phase
boundaries)
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the angular velocity of the earth relative to inertial space, and r the position vector.

In the original work [133], the authors reported that conventional initialization methods

would fail and designed an internal–external-growth strategy. In this strategy, several sub-

problems of the original trajectory optimization are first solved to obtain a good initial guess.

We are happy to report that for certain discretization schemes (e.g. trapezoidal and Hermite-

Simpson) with customized scaling and mesh refinement, a rudimentary two-point initial guess

in ICLOCS2 is sufficient to successfully solve the problem.

Figure 12-2 presents the solution to the problem using a three-phase problem formulation. At

the first phase interface at the end of the initial launch, continuity constraints are enforced

for the position and velocity states. A jump condition is implemented for the mass of the

first stage, and a fixed initial condition is used for the mass of the second stage and payload.

After this time instance, the second stage continues to propel the payload towards its target

orbit, and the first stage starts its return journey back to the launch site.

12-2-2 Mesh refinement to ensure solution accuracy and constraint compliance

Mesh refinement is essential in ensuring the accuracy of the solution and satisfaction of con-

straints, particularly for methods such as direct collocation that do not have error measures

for the whole trajectory during the solution process. Here, the mesh refinement procedures

designed for direct collocation methods in ICLOCS2 are briefly introduced.

Existing DOP software with mesh refinement capabilities generally only updates the mesh

based on absolute/relative local errors, but not constraint violation errors. To certain extent,

the latter is, in fact, more important as it directly affects the feasibility of the solution; thus,

a higher priority is given in ICLOCS2 for the reduction of the constraint violation errors.

Common approaches for mesh refinement include adding intervals and changing the polyno-

mial degree. To date, most refinement policies in the literature employ certain form of heuris-

tics, configured to efficiently handle a wide range of problems. This is because although a high

solution accuracy is eventually required, one may also want to minimize both the accumu-

lated computational cost of the refinement process, as well as the stand-alone computational

cost associated with the final mesh. These two criteria are often seen as conflicting objec-

tives, consequently imposing the following design requirements for a good mesh-refinement

algorithm.

• The initial mesh should be coarse and discretized with a low order transcription method.

If the problem is initialized with a high order dense grid instead, there will be an unnec-

essarily high number of grid points in some regions, adding unnecessary computations.

This detrimental effect will be amplified if the scheme does not allow merging of mesh
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Figure 12-2: Solution to the reusable rocket launch and recovery problem
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while not all user defined error tolerance satisfied do
Transcribe and solve the corresponding DOP with current mesh;
Obtain the solution (χ, υ, p, t0, tf );
Obtain the continuous solution (x̃(t), ũ(t)) with user’s choice of representation method;
for all states and input variables do

Estimate the absolute local error error based on (4-6);
Identify M intervals with maximum errors not within tolerance, with M ≤ Mmax;

end
Subdivide the identified interval;
for all inequality constraints do

Estimate the constraint violation error based on (4-9);
Identify peak points for constraint violations not within tolerance;

end
Add mesh point at identified peak locations;
Update current mesh;

end
Algorithm 1: Mesh Refinement Algorithm for h methods in ICLOCS2

intervals and polynomial degree reduction, consequently carrying the dense initial mesh

into new mesh design iterations, making both the accumulated and per-iteration com-

putation cost very high.

• Since error estimation based on (4-5) and (4-9) are also mesh dependent, they can

be very crude early in the mesh refinement process. Based on these error measures,

refinement strategies that are overly aggressive may lead to high computational cost

due to excessively-refined mesh. Therefore the number of refinements allowed in each

iteration should be restricted, e.g. by configuring the maximum number of grid points

allowed to be added (Mmax).

Most DOP software calculates η as in (4-7), and use it as the error measure for the mesh-

refinement procedure. However, in practical problems, not all dynamic equations must be

resolved to the same level of accuracy. Therefore in ICLOCS2, the user can specify ζtol ∈

Rn+ng and ǫtol ∈ Rnc , containing the required error threshold for each state variable and

constraint. Then ICLOCS2 uses absolute local error ζ and absolute local constraint violation

error ǫ as part of the termination criteria for mesh refinement iterations.

With the above-mentioned considerations, and based on ideas in Betts [17], Liu et al. [128]

and Lei et al. [123], the mesh refinement procedures are designed for h and hp methods

respectively, and presented in Algorithm 1 and 2.

Example: automatic car parking in minimum time

With the introduction of autonomous road vehicles, the systematic treatment of autonomous

parking is a hot topic. Optimization-based control provides a framework where the vehicle
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while not all user defined error tolerance satisfied do
Transcribe and solve the corresponding DOP with current mesh;
Obtain the solution (χ, υ, p, t0, tf );
Obtain the continuous solution (x̃(t), ũ(t)) with user’s choice of representation method;
for all states and input variables do

Estimate the absolute local error based on (4-6);
Identify M peaks with maximum errors not within tolerance, with M ≤ Mmax;
For other intervals (not containing the identified peaks), compare the error ζ(k) with
tolerance ζtol.

end
Subdivide the intervals containing the peak;
for other identified intervals do

if tolerance not satisfied then
if polynomial degree within maximum allowed degree then

Increase the polynomial degree at most by ceil(log10( ζ(k)

ζtol

)) ;
else

Subdivide the interval;
end

else
if polynomial degree within minimum allowed degree then

Decrease the polynomial degree at most by ceil(log10

√

ζ(k)

ζtol

) ;

end

end

end
for all inequality constraints do

Estimate the constraint violation error based on (4-9);
Identify peak points for constraint violations not within tolerance;

end
Add mesh point at identified peak locations;
Update current mesh;

end
Algorithm 2: Mesh Refinement Algorithm for hp methods in ICLOCS2

dynamics, physical constraints, collision-avoidance restrictions and the optimization objective

can be treated altogether. In this example, the latest work by Li et al. [125] is adapted, with

a few modifications to improve convergence, to demonstrate the benefit of mesh refinement

w.r.t. constraint violation errors.

The rigid body dynamics of a front-wheel steering car can be described by the following

kinematic equations,

˙POSx(t) =v(t) cos(θ(t)),

˙POSy(t) =v(t) sin(θ(t)),

v̇(t) =a(t),

ȧ(t) =u1(t),
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θ̇(t) =
v(t) tan(φ(t))

la
,

φ̇(t) =u2(t),

with (POSx, POSy) the mid-point of the rear wheel axis of the car, v the velocity, θ the

orientation angle, a the acceleration and φ the steering angle of the front wheels. Two control

inputs, u1 and u2, represents the jerk and the steering rate respectively. Regarding the di-

mension of the car, la =2.5 m is the wheelbase, lf =0.8 m the front overhang length, lr =0.7 m

the rear overhang length, and 2b =1.771 m the vehicle width (see Figure 12-3b).

The system is subject to simple bounds

−0.75 ≤ a ≤ 0.75 m/s2, − 2 ≤ v ≤ 2 m/s,

−33 ≤ φ ≤ 33 deg, − 0.5 ≤ u1 ≤ 0.5 m/s3,

and a path constraint on the curvature derivative

−0.6 ≤
u2(t)

la cos2(φ(t))
≤ 0.6.

The geometry of the parking slot is shown in Figure 12-3a, with lsl =5 m its length, lsw =2 m

its width, and lcl =3.5 m the width of the road. Condition for the vehicle not to collide with

the barriers can be approximated by the requirements for the four corners of the car to fulfil

the following inequality constraints


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
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Ay ≤ fslot(Ax)

By ≤ fslot(Bx)

Cy ≤ fslot(Cx)

Dy ≤ fslot(Dx)

with

(Ax, Ay) = (POSx(t) + (la + lf ) cos(θ(t)) − b sin(θ(t)),

POSy(t) + (la + lf ) sin(θ(t)) + b cos(θ(t))),

(Bx, By) = (POSx(t) + (la + lf ) cos(θ(t)) + b sin(θ(t)),

POSy(t) + (la + lf ) sin(θ(t)) − b cos(θ(t))),

(Cx, Cy) = (POSx(t) − lr cos(θ(t)) + b sin(θ(t)),

POSy(t) − lr sin(θ(t)) − b cos(θ(t))),

(Dx, Dy) = (POSx(t) − lr cos(θ(t)) − b sin(θ(t)),

POSy(t) − lr sin(θ(t)) + b cos(θ(t))),
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(a) Parking Slot

 

(b) Vehicle Geometry

 

(c) Vehicle Body Coordinate

Figure 12-3: Graphical illustration of the automatic car parking in minimum time problem

fslot(POSx) = (−H(POSx(t)) +H(POSx(t) − lSL))lSW ,

and H( · ) the Heaviside step function. In this example, to avoid the discontinuities intro-

duced, tanh functions are implemented to approximate the parking slot geometry.

With all the formulated constraints satisfied, there is still one exception that the vehicle can

hit the barrier: at two corners (point O and E, illustrate in Figure 12-3c). In order to specify

additional constraints to avoid this, the expression of the corner points O and E in vehicle’s

body frame (x′Gy′) are derived as:

(O′
x, O

′
y) =(−POSx(t) cos(θ(t)) − POSy(t) sin(θ(t)) −

la + lf − lr

2
,

POSx(t) sin(θ(t)) − POSy(t) cos(θ(t))),
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(E′
x, E

′
y) =(−POSx(t) cos(θ(t)) − POSy(t) sin(θ(t)) −

la + lf − lr

2
+ lSL cos(θ(t)),

POSx(t) sin(θ(t)) − POSy(t) cos(θ(t)) − lSL sin(θ(t))).

Intuitively, as derived by Li et al. [125], the path constraints arising from this formulation are

|O′
x| ≥

lf + la + lr

2
, when |O′

y| ≤ b,

|E′
x| ≥

lf + la + lr

2
, when |E′

y| ≤ b.

Unfortunately, this conditional constraint formulation will introduce convergence challenges

for the optimization solver. To have a continuous function expression, the sum of the area of

the triangles formed by the corner point and four corners of the car are computed. Requiring

this area to be larger than the rectangular planform area of the car will ensure the constraints

are satisfied. Thus,

Area(AEB) +Area(BEC) +Area(CED) +Area(DEA) ≥ Area(ABCD),

Area(AOB) +Area(BOC) +Area(COD) +Area(DOA) ≥ Area(ABCD),

are implemented instead to ensure that collisions not to occur. For this example problem,

the initial and terminating conditions are specified as

POSx(0) = lsl + lr, y(0) = 1.5 m, v(0) = 0 m/s, a(0) = 0 m/s2,

θ(0) = 0 deg, φ(0) = 0 deg, v(tf ) = 0 m/s, a(tf ) = 0 m/s,2

Ay(tf ) ≤ 0 m, By(tf ) ≤ 0 m, Cy(tf ) ≤ 0 m, Dy(tf ) ≤ 0 m.

Figure 12-4 presents the solution obtained by ICLOCS2. Generally speaking, it was because

a relatively dense mesh is chosen and by chance the location of mesh point is ideal, that the

path of the vehicle did not lead to a collision near corner E. Figure 12-5a illustrates another

potential outcome with a different configuration to the problem. It can be seen that, despite

satisfying all discretized constraint equations at discretization points, the vehicle trajectory

near the right corner of the parking slot is obviously not feasible due to collision.

A possible way to reduce or eliminate constraint violation is via constraint tightening tech-

niques (e.g. [67]); however, they could potentially lead to over-conservative solutions. By

including the constraint violation errors in the mesh refinement procedures in ICLOCS2, ad-

ditional mesh points can be added until the represented continuous trajectory satisfies all

user-defined constraint violation tolerances. Figure 12-5b demonstrates that mesh refinement

schemes in ICLOCS2 ensure the vehicle to successfully pass the corner.
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Figure 12-4: Solution to the automatic car parking in minimum time problem
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Figure 12-5: Illustration of possible constraint violations and effect of mesh refinement based on
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12-2-3 Dynamically refined hp-adaptive mesh

ICLOCS2 provides the user with an experimental implementation of dynamically refined hp-

adaptive mesh, for which the initial and final time (tk, tk+1) of each mesh segment are also

included as decision variables in the optimization problem.

This implementation followed from the observation that, in many practical problems, time-

optimal solutions exhibit a discontinuity nature, often in the form of a bang-bang input.

Therefore, the optimality is directly influenced by the approximation quality of the switching

mechanism. Hence, the objective to minimize the cost and the preference to have a finer

mesh at the discontinuity are aligned. As a result, the placement (location and length) of

mesh intervals can be automatically adjusted during the optimization process. Example 11-1

demonstrates the benefits of the dynamically refined hp-adaptive mesh.

One point of caution is the influence of discretization errors. If the discretization error is

allowed to be very large, the solver may be misled to a physically infeasible solution that

yields a lower objective value. In the current version of ICLOCS2 with direct collocation, the

user needs to configure additional constraints regarding the minimum and maximum size of

each interval to ensure a good solution quality. Later, with IRM-type of direct transcription

methods which can have the measure of the errors embedded in the solution process, the

influence of errors can then be handled automatically for the dynamically refined hp-adaptive

mesh.

Example: Double Integrator Minimum-time Repositioning

To demonstrate the benefits of the dynamically refined hp mesh, the same double-integrator

minimum-time control problem as in Section 11-1 is used, but now with the box constraint

on the velocity removed.

The solution to the problem calculated by ICLOCS2 are collected in Figure 12-6, with control

switching at 20 s. It can be seen that initially with a coarse mesh, both the h (with 8 mesh

nodes and 7 intervals) and hp (with 4 intervals, each polynomial degree of 4) method yield

results with obvious discrepancies.

By adding additional mesh points at locations of errors, mesh refinement successfully bring

the h method solution very close to the analytical result. The dynamically refined hp-adaptive

mesh has a similar effect: enhancing the capturing of discontinuities in the optimal solution,

however without the need to change the dimension of the underlying NLP problem and

iteratively solve with updated mesh designs.
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12-2-4 Closed-loop simulations

ICLOCS2 supports various types of closed-loop simulations within Matlab/Simulink envi-

ronment. Based on the nature of the closed-loop framework, the user may select the most

suitable strategy for the problem formulation:

• Receding horizon control (RHC): Fixed (and often short) prediction and control

horizon typically seen in classical MPC literature. Mostly applicable for regulation type

of problems: stabilization and set-point tracking.

• Variable horizon control (VHC): Typically seen is the shrinking horizon control

(SHC) strategy, used mainly for non-regulation type of problems (minimum-time and

minimum-energy) for better stability, feasibility and optimality properties.

The user may also select betweeen different meshing techniques and control update policies:

• Uniform mesh: The discretization mesh where DOP solutions are solved on is designed

according to sampling rate or control update rate. In this way, there is an exact matching

of the data on the grid points.

– Fixed interval update: Based on the assumption that the computation of the

DOP is shorter than each time interval, a fixed interval strategy can be used. This

is similar to classical MPC, where re-computations occur at all time instances.

– Multi-step MPC: With nonlinear problems, completing the computation may

take longer than the sampling time. Also, for many practical problems, solving at

all time instances may not be necessary. This motivates the use of multi-step MPC

to resolve the DOP only at some points, based on the measurements of these time

instances.

– Advanced multi-step MPC: Similar to multi-step MPC, but the initial condi-

tion of the current solve is at a future time instant, estimated based on previous

predictions.

• Non-uniform mesh with interpolation For VHC problems with minimum-time or

minimum-energy objectives, the required time dimension of the problem is often large,

making the use of a dense uniform mesh computationally inefficient and in some cases,

prohibitive. In ICLOCS2, the user also has the possibility to use interpolated results

from non-uniform mesh grids, with the accuracy and constraint satisfaction guaranteed

by the mesh refinement scheme. Figure 12-7a illustrates the block diagram of such

strategies.
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Figure 12-7: Closed-loop NMPC simulation with non-uniform mesh
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– Fixed interval update: The DOP will be re-computed at a fixed interval of

topt, providing updates for the input interpolation with a control rate of every

tstep seconds. To have a better matching between the meshing points and control

implementation instances, it is also possible to adapt the meshing strategy as

shown in Figure 12-7b, with an equally spaced interval of length tstep for the first

topt seconds, while the mesh for [topt,tf ] is determined by a mesh refinement scheme

with minimum interval length equal to tstep.

– Continuous update: For an online strategy to update at fixed intervals, it be-

comes extremely difficult to anticipate the time at which the new solutions become

available (indicated by the yellow nodes in Figure 12-7c). If the re-optimization

takes too long, then the next update will be missed. On the other hand, if the

solution is available much sooner than expected, there can be large duration of

open-loop control. To overcome these difficulties, ICLOCS2 allows closed-loop

implementations that the optimization solution is updated as soon as it becomes

available (Figure 12-7d).

– Event- and self- triggered update: For many practical problems, neither of the

above-mentioned options is preferred, as they failed to flexibly adapt to the prob-

lem nature and operational environment to efficiently utilize computing resources.

ICLOCS2 allows the designer to have full control to the answer of the classical

question: “How often do one need to re-compute the control law?”, by allowing

users to specify customized events for the triggering of the re-optimizations and

solution updates. For example, the events could be when

∗ one of the constraints is potentially active,

∗ current solution exceeds a validity period (forced re-optimization),

∗ measured states deviated from the original trajectory by certain percentage.

Example: Supersonic Aircraft Minimum Time-to-climb

This example demonstrates the climbing flight path of a supersonic aircraft using minimum

time. It is based on the minimum time-to-climb problem originally presented by Bryson et al.

[33] and Betts [17, Ex. 6.4]. The system dynamics, as well as the propulsion and aerodynamic

data, were directly taken from an equivalent implementation in metric units [163, Sec. 6.4].

From simple flight mechanics, the planar motion of the aircraft can be described by the

following dynamic equations

ḣ(t) = v(t) sin(γ(t))

v̇(t) =
T (t) cos(α(t)) −D(t)

m(t)
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γ̇ =
T (t) sin(α(t)) + L(t)

m(t)v(t)
+
(

v(t)
h(t) +RE

−
µ

v(t)(h(t) +RE)2

)

cos(γ)

ṁ(t) = −
T (t)
g0Isp

with h the altitude, v the velocity, γ the flight path angle, and m the mass. T is the thrust

force as a function of M and h. L and D are lift and drag force respectively, both as a

function of M , h and α. M is the Mach number, the variable which the aerodynamic and

propulsion tabular data is based on. In terms of constants, there are g = 9.81 m/s2 the gravity

acceleration, RE = 6378 km the radius of the Earth, µ = 3.986 × 1014 m3/s2 the gravitational

constant, and Isp = 1600 s the specific impulse. α is the angle of attack serving as the control

input in this problem. Please refer to the aforementioned references for more details regarding

choice of aerodynamic modeling and parameter valuation.

The problem will only have a Mayer cost Φ = −m(tf ) (maximize the mass at the end of the

climb), subject to the dynamics constraints. Furthermore, the simple bounds

0 ≤ h ≤ 19995 m, 5 ≤ v ≤ 1000 m/s, 40 ≤ γ ≤ 40 deg,

22 ≤ m ≤ 20410 kg, − 20 ≤ α ≤ 20 deg,

are imposed together with the boundary conditions

h(0) = 0 m, v(0) = 129 m/s, γ(0) = 0 deg, m(0) = 19050 kg,

h(tf ) = 19995 m, v(tf ) = 295 m/s, γ(tf ) = 0 deg.

Figure 12-8 illustrates the DOP solution of the minimum time-to-climb problem, together with

results from a closed-loop simulation subject to uncertainties of wind gusts (with Dryden wind

turbulence model), solved to a user-defined solution accuracy requirement. It can be observed

that the minimum-time climb profile for this supersonic aircraft to reach the terminal altitude

of h(tf ) = 19994.88 m has a highly non-trivial solution requiring the exchange of potential

energy with kinetic energy to overcome the sonic barrier efficiently. It has been verified

that by focusing on a short term goal, receding horizon control (RHC) strategy with short

horizons will attempt to climb continuously, thus failed to reach the final altitude due to

power deficiencies. In contrast, closed-loop simulation with a shrinking horizon control (SHC)

strategy and non-uniform mesh can successfully yield this non-trivial trajectory.

For the closed-loop simulation, the control update rate is assumed to be 0.1 s. Here three

different re-optimization strategies are presented: update in a fixed time-step of every 1 s,

continuous update as soon as each re-computation finishes, and event-triggered updates.

Conditions for event-triggered updates are based on the first two criteria listed previously

in Section 12-2-4, with forced re-optimization at every 15 s. Table 12-2 compares the compu-

tational performance and obtained solutions of these three closed-loop simulations.
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Due to the SHC strategy, the closed-loop simulations are terminated when aircraft reaches an

altitude of hf −10 m. It can be seen that for all three closed-loop simulations, the time needed

to reach this attitude is lower than the DOP solution have anticipated, however at the cost of

a larger γ and possible constraint violation of γ(tf ) = 0◦ at h = h(tf ). A fixed-step update of
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Figure 12-8: Solution to the minimum energy-to-climb problem
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Table 12-2: Closed-loop simulation results compared: minimum time-to-climb

No. of Re- Average At hf − 10 [m]
computations comp. time [s] t[s] γ[◦]

DOP
- - 316.71 3.51

Trajectory
NMPC fixed-step (1 s)

315 6.21 315.60 5.65
update, with gust
NMPC continuous

38 8.28 316.00 4.91
update, with gust

NMPC Event-
20 7.17 316.20 3.94

Triggered, with gust

every 1 s results in the highest computation cost, making the simulation running shower than

real-time. In contrast, the continuous update and event-triggered closed-loop implementation

are simulating in real-time, being much more efficient thanks to a significantly lower number

of re-computations.
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Part IV

Aerospace Applications





Chapter 13

Dynamic Optimization for Aerospace

Applications

Reviewing more than a century of aviation and space activities, the design and optimization

of flight and orbital trajectories have played crucial roles in the success of history-making

missions such as supersonic flights and landing on the moon. Looking into the future, these

capabilities will also be of ever-increasing importance in the transformation towards green

aviation and commercial space flights.

This chapter aims to provide a review of past developments in aerospace sciences involving the

solution of DOPs, either in the form of flight and orbital trajectory optimization in Section 13-

1 or flight control designs using MPC in Section 13-2. With the underlying methods and

related mathematics so diverse and the fields of applications really broad, the focuses will

be on a number of representative problems which reflect the progress in technology. By

highlighting the efforts and contributions made by the pioneers in tacking various challenges,

reflections on the current technical developments can be made regarding the potentials of new

methods which are seemingly overambitious and premature today.

13-1 Flight and orbital trajectory optimization

From the early days of aviation history, engineers are in search of “best” trajectories for the

motion of a vehicle in a three-dimensional space. Depending on the objective selected for the

mission, the focuses of the problem can be either capability based, e.g. maximum altitude

or maximum range, or based on economy and environmental impacts, e.g. minimum fuel or
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minimum noise footprint. Regardless of the problem design, a distinction can also be made

depending on the way how DOPs are solved, either analytically or numerically.

13-1-1 Analytical approach

For simplified point-mass flight mechanics models in particular phases of the flight, the optimal

flight strategies can be obtained by analytically deriving the optimality conditions in the

framework of the calculus of variations. Among the developments is the famous Goddard

rocket problem [77], with the aim to maximize the highest altitude reachable by a rocket using

a fixed amount of propellant. Throughout history, depending on the fidelity of the modelling of

the atmospheric drag, different solution structures have been identified for the optimal control

input. When neglecting or considering a linear-drag (w.r.t. velocity) only [191], the solution

is shown to be in the form of bang-bang, i.e. to exhaust all propellant with maximum thrust

setting at launch and initial ascend, and then coasting to the highest point. With a quadratic

drag model commonly used in subsonic flights [17, 191], the optimal solution structure changes

to bang-singular-bang with an intermediate low thrust profile. This is also the formulation

used in the demonstration in Section 7-3-1. Later, after taking into consideration the effects

of wave drag encountered mainly in high subsonic and supersonic regimes, it was found that

the solution structure have now changes to bang-singular-bang-singular-bang [192].

The evolvements in the understanding of the Goddard rocket problem highlights the pros and

cons of the analytical approach: although it is capable of yielding optimal control strategies

and guidance laws that are computationally trivial to implement, the analytical derivation

process can be tedious, requiring substantial simplifications to be made resulting in large

discrepancies between the problem formulations and the actual tasks in practice.

Even if one accepted the challenge and completes the analytical derivation without signifi-

cant simplifications (i.e. the DOPs formulated directly based on the mission specifications),

the solutions obtained will still become increasingly hard to straight-forwardly interpret and

implement, as the fidelity and complexity of the models inside the DOPs rise. This is often a

bigger concern for atmospheric flights in comparison to spacecraft orbits due to the presence

of larger uncertainties in operational conditions. For example, for launch vehicle ascend prob-

lems at large, the optimal control solution is approximately piecewise linear, hence in practice

implemented as a sequence of constant pitch rate commands. Another example would be the

iconic supersonic aircraft minimum-time to climb problem discussed in Section 1-1, where the

optimal flight profile is often approximated with several segments of guidance strategies in

practice.

Other well-known aerospace problems that have been solved under the analytical approach

include aircraft go-around in the presence of windshear [34, 146], minimum fuel turns at

constant altitudes [199], maximum endurance and range for cruising or gliding flights [199],
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optimal pull-up or loop maneuvers [199], as well as spacecraft reentry [199], orbit trans-

fer [32, 138, 199], and lunar landing [143] problems. However, with missions become more

challenging and computation capabilities rapidly increasing, numerical solution of DOPs grad-

ually becoming the mainstream of solving trajectory optimization problems.

13-1-2 Numerical solutions

In the development of numerical methods for solving DOPs, the above-mentioned problems

with known analytical solutions have played important roles as benchmarking examples: air-

craft go-around in the presence of windshear [35, 204], maximum endurance gliding flights [36],

minimum fuel cruise [72], aircraft climb flight [17, 44], spacecraft orbit transfer [161, 213], and

lunar landing [9, 92] problems.

As the numerical methods get mature, they become the backbone in the design and optimiza-

tion of flight strategies. For civil aviation, frameworks were proposed to integrate the solution

of DOPs into the flight management systems (FMS) for economic climb and descent [197] as

well as for cruise [198]. For aerobatic flights, aggressive turn-around manoeuvres with a fixed-

wing unmanned aerial vehicle (UAV) was studied [124]. For helicopters, the optimal control

approach was used to design noise abatement trajectories [87]. In recent years, there has

also been a growing interest to use UAVs or kites to form a so-called airborne wind energy

(AWE) system, for the generation of energy from high-altitude winds. The problems were

formulated as DOPs and solved numerically [98, 119] to obtain the optimal flight trajectories

for maximum energy extraction.

As the inverse problem of optimal control, many estimation problems in aerospace engineering

also employ the solution of DOPs, for example, for the identification of aerodynamic model

parameters of UAVs in AWE systems [126, 127]. Similarly for a Boeing 777-200 commercial

airliner, DOP solution are used for the inflight identification of aerodynamic coefficients to

determine the drag-optimal deflection angle for wing trailing edge control surfaces [17].

In space applications, multi-phase DOP setups are used for the trajectory optimization of

launch vehicles, with the capability to handle discontinues in state trajectories (e.g. mass

change during separation of different rocket stages). Examples include the Delta III launch

vehicle [170] and a reusable rocket launch and recovery case [133]. Strategies for attitude

control and reorientation of spacecraft in orbit have been studied as well, for the NASA X-

ray Timing Explorer (XTE) spacecraft [65] as well as the international space station (ISS) [13,

164]. For reentry, a numerical study for the space shuttle reentry trajectories using different

criteria is made available [212].

DOP solutions have been used extensively for orbit transfers of spacecraft. Low-thrust or-

bit transfers to the moon [147], as well as to geosynchronous and Molniya orbits [20], have
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been demonstrated, with many problems characterized by very long time horizons. Addi-

tionally, the optimal transfers can be assisted by gravity, e.g. with lunar swingby [17], or the

atmospheric drag with multiple passes [169].

13-2 Flight control using predictive control

Given sufficient computational resources, numerical schemes are capable of solving the ma-

jority of DOPs formulated to address certain challenges in aerospace design and engineering.

Nevertheless, solving DOPs offline has its limitations and an increasing number of applica-

tions now desire the solution and implementation of DOPs online, to drastically improve the

level of autonomy in mission executions. As of today, many are still skeptical regarding the

reliability and real-time performance of solving nonlinear non-regulation DOPs online using

NLP solvers. Admittedly, there are still many technical challenges to be resolved. However, it

may be beneficial to look back into history when solving linear flight controls MPC problems

in real-time was still considered to be an unachievable task, to vision what future can possibly

bring.

13-2-1 Attractiveness and challenges

The popularity of MPC in process industry is largely due to its enhanced ability to control

multivariable systems subject to various constraints, with a straightforward implementation.

The same analogy indisputably holds for aerospace applications. Take flight control designs

for example, aerodynamic limits of the angle of attack and structural integrity limits of load

factors are all crucial aspects of safe flight operations that can be naturally handled by MPC

with constraints. Also, the rate and saturation limits of control surface deflections can also

be fully accounted for. Arguably MPC is the only control architecture that is able to handle

these issues in a systematic way, while solutions of other types are mainly tackling these issues

in an ad-hoc heuristic manner (e.g. pseudo control hedging for nonlinear dynamic inversion

(NDI), a form of feedback linearization (FBL)).

Although it is difficult to trace back in time when exactly the research in MPC and the flight

control system design have come together, many attributes it to [94], and subsequently [181].

The sabbatical visit of Jan Maciejowski to the Faculty of Aerospace Engineering of TU Delft

had further accelerated this process. The lecture notes [134] has later became the foundation

for his famous book Predictive Control: with Constraints [135]. The book has abundant

aerospace examples using the linearized model of the Cessna Citation II aircraft (of TU Delft),

hence shown to the world the great potential for applications of MPC in aerospace sectors.

More importantly, the inherent online reconfiguration capability of MPC made its debut
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for aerospace applications through an example scenario of a jammed rudder, making MPC

subsequently became a very popular candidate for research in fault-tolerant flight controls.

13-2-2 Fault tolerant flight control with MPC

Reconfigurable flight control has been considered as a field of application where the capabilities

and flexibility of optimization-based control methods can be fully utilized and exploited [111],

hence becoming a major motivation for the development of MPC for flight control applications.

Main challenges for reconfigurable flight control system (RFCS) design have been identified

[29, 160], and summarised [111] as :

• Strong cross couplings between modes usually appear after failure. The symmetry of

the aircraft may be lost after damage to the airframe. Thus conventional simplification

of decoupling longitudinal and lateral direction control might not be applicable.

• The dynamics of an aircraft can change significantly after failure. Hence, if linear control

techniques are used, trim values and Jacobian linearized dynamic models used by the

controller are also changing. Thus, the continuous use of a nonlinear or adaptive control

algorithm is preferred.

• The system may be highly unstable, leaving very little time for control reconfigura-

tion. This demands extremely efficient online identification and controller redesign

algorithms. Pre-stabilization may be required for unstable systems to avoid numerical

ill-conditioning of the prediction model.

• After an aircraft has sustained damage to a surface, its ability to produce the required

control forces and moments degrades. Hence, the demands on healthy and available

actuators (i.e. deflection and deflection rates) will increase. This also aggravates the

control saturation problem.

The main purpose of early work on MPC for fault-tolerant flight control focuses on demon-

strating the capability of MPC to naturally handle actuator failures, as well as faults that

can lead to a structural change of the aircraft (e.g. damage to airframe). For example, in the

safe recovery of the crashed El Al Flight 1862 with reference model following MPC control

together with the availability of a fault detection and isolation (FDI) scheme [136]. Although

such a scheme may not always be necessarily [195], the FDI and online system identification

components are beneficial in dealing with sensor faults and improve the robustness towards

model uncertainty after failure [110].

When severe damages and failures occur, the reference model following MPC alone may not be

capable of guaranteeing the stability and robustness required. Thus adapting the parameters
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used in the MPC algorithm, such as prediction and control horizons and/or state and input

weighting may be necessary. Another alternative is to change the unachievable targets with

target recalculations [111], an idea similar to pseudo control hedging.

For unanticipated fault scenarios, the data-driven subspace approach for predictive control

design [109] can be applied to fault-tolerant flight control [84]. A subspace predictor for

prediction of future output is recursively updated online based on new input-output data, so

that the algorithm is quick in adapting changes in system conditions, implicitly addressing

the issue of robustness with respect to model uncertainties [195].

Flight test of MPC based fault tolerant flight control has been successfully accomplished on

the German Aerospace Center’s (DLR) ATTAS aircraft using an implicit model following

technique with a simulated aileron fault [47]. For this purpose, two single-input single-output

(SISO) MPC controllers for the decoupled longitudinal and lateral dynamics has been im-

plemented, together with an online FDI system. Due to the computational complexity, the

flight test was conducted with a pre-defined trajectory with the invariant set for the terminal

constraints calculated offline.

13-2-3 Towards real-time implementation of MPC flight control

In order to perform the required optimization problem online at each time step, considerable

computational efforts are associated with finding the optimal input trajectory or sequence.

To materialize the above-mentioned benefits MPC can bring, the issues associated with real-

time performance must be addressed. With the rapid development of modern computing

hardware as well as efficient algorithms, the computation times required for MPC are getting

more tractable for systems that require faster control updates, quickly making it a viable

alternative for flight control applications.

At the very early stage, researches are aware of the issues associated with ensuring stability as

well as the real-time performance, and made extensive studies in these aspects. In an in-lab

thrust-vectored flight experiment at Caltech, set-point tracking has been achieved by an MPC

controller with computational speeds 2.5 times faster than that of the actuator dynamics [53].

In order to achieve this, a hybrid MPC and control Lyapunov function (CLF) based design

was used so the controller can be stabilized without terminal constraints. As for timing,

the “compute as fast as possible" strategy was adopted such that computations are running

continuously and the control solution is applied as soon as it is available. This has lead to

uneven time intervals typically in the range of 0.05 to 0.25 seconds.

The large operational domain of aircraft makes the traditional use of a single linearized

model impossible. In order to have a scheme similar to gain scheduling for PID based flight

control design, a quasi-LPV (linear parameter varying) approach can be used to schedule the
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parameters of a high-fidelity missile model based on actual flight conditions [102]. Later, this

approach has been adapted to control a simulated nonlinear model of an F16 aircraft [116],

achieving good performance while retaining modest computational complexity.

Using the same F16 setup, a comparative study was completed subsequently [117] bench-

marking the performance and computational complexity of linear MPC, scheduled quasi-LPV

MPC and nonlinear MPC. Linear MPC designed for a different flight condition indeed leads to

steady-state errors for the disturbance rejection task, and large tracking errors appear when

excursions are made in the flight envelope (demonstrated with a climb). Nonlinear MPC

achieves the fastest disturbance rejection; however, due to numerical problems, peak altitude

error is greater with a larger and more oscillatory control input. As for the climb task, it

prioritizes velocity tracking over altitude errors and achieves the lowest cost of the objective

function. In both cases, even in comparison with nonlinear technique, the scheduled MPC

achieves acceptable performance. Therefore, a third scenario was tested with the scheduled

MPC and demonstrated promising performance even in aggressive manoeuvres.

As for the computational time at each sampling period in the Matlab environment, a dis-

tinction was made between run-time of the optimization algorithm and other calculations.

Although the average and maximum time in optimization were indistinguishable between

linear and scheduled MPC, the additional computational overhead for scheduled MPC due

to data interpolation results in a total execution time approximately 30 times higher. The

average time spent on optimization for nonlinear MPC saw a rise of over 1000 times (for

maximum value: more than 2000 times) in comparison to the linear case, making the total

time needed per solve more than half a minute long on average (peak value 102.55 seconds),

completely prohibiting any real-time implementations.

The idea of combining MPC and FBL to have a nonlinear flight control method that only

requires the solution of linear MPC problems is not new. However already in the early

work [174, 185, 193], researches found that although FBL can turn nonlinear dynamic equa-

tions into linear ones, nonlinear mappings are necessary for the simple bounds that are en-

forced on the original state and input variables. Since these early work is mainly focusing on

improving the robustness of FBL methods, simple and intuitive approximations to the con-

straints were applied (e.g. methods based on [122]) to retain the form of a linear MPC. Later,

more systematic and efficient treatments of this constraint mapping start to emerge, and the

computational aspect of the method start to get exploited. For example, the algorithm in

[106] provides an efficient way to map the input constraint for over-actuated systems (m>n)

and to handle the control allocation. Another alternative to handle the nonlinear constraints

is by using a set of dynamically generated local inner polytopic approximations [184]. In this

way, the convexification of nonlinear constraints is achieved. Although the MPC problem still

needs to be solved as nonlinear optimization problems, recursive feasibility and convergence

can now be guaranteed for any online re-computation.
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With rapid evolvement in computing hardware, and more importantly, development of new

structure exploiting algorithms for the numerical solution of DOPs, the days when real-time

implementation of linear flight controls MPCs are considered impossible have become the

past. Computation time in the order of 10 ms per sampling interval of 0.2 s was achieved

for linear MPC flight control of a Boeing 747-200 aircraft [90, 91], for both simulations on

desktop computers and embedded optimization on field programmable gate arrays (FPGAs).

A similar computation time has been reported for a fast MPC implementation of aircraft stall

recovery guidance [182], using linearized system dynamics. Control of very flexible aircraft

using successive linearized MPC has been studied [208], and have reported a computation

time in the order of 0.1 s for a sampling interval requirement of 0.2 s, just by using Matlab’s

built-in solver of fmincon. In addition to simulations, successful flight tests were achieved on

a small quad-rotor UAV [10], where a low complexity algorithm was computed in real-time

on an embedded hardware with the MPC controller running at 16Hz. In space applications,

an article [24] revealed that the recent success in the autonomous landing of the Falcon series

rockets by SpaceX was achieved through high-speed onboard convex optimization, with flight

code generated by CVXGEN [139].

With the progress on advanced algorithms for nonlinear programming, especially the devel-

opment of real-time iterations (RTI) [50, 80], which only requires the solution of one QP

per instant of control update, the computational overheads of NMPC are also no longer in-

tractable for flight control applications. As of today, many NMPC implementations for flight

control have reported computational performances faster than real-time requirements, with

the majority of them solving DOPs with the quadratic regulation cost on a relatively short

horizon. For example, real-time implementation of a non-hierarchical NMPC formulation is

demonstrated [79], with an execution time in the order of 30 ms, about 15 times faster than

required. Simulated scenarios such as extreme manoeuvres, actuator failure and emergency

obstacle avoidance have all been tested and handled well by the MPC controller.

Flight controls using NMPC with non-regulation formulations still remains computationally

challenging. For example, an economic NMPC framework for aircraft deep-stall recovery [45]

reported an average DOP solution time of around 2 s for a sampling time of only 50 ms. A

major part of the challenge arises from the use of a much longer horizon, generally required

for non-regulation formulations to demonstrate stability and good performance.



Chapter 14

Optimization of Flight Trajectory For

Commercial Airliners

As discussed in Chapter 13, trajectory optimization of aerospace vehicles has played very

important roles in the discovery of many non-intuitive flying strategies, often for military

fighters. In civil aviation, active use of trajectory optimization is less common. This is mainly

due to the fact that the most dominating phase of the flight, cruise, is considered generally as

a steady phase without many manoeuvres needed. Therefore regarding the mission objective

of civil airliners, i.e reaching the destination on time in the most fuel-efficient manner, the

optimal trajectory is not going to differ much from the heuristic methods that are currently

in use. From the point of view of a single flight, the fuel-saving potential is often neglected

in favour of simplicity in flying strategies.

With passenger number in air transportation almost doubling in the past ten years [104], and

with the environmental impact of the aviation industry now under the spotlight, achieving

sustainable flight [85] is now considered as a system-wide challenge. Under this context, a

merely 0.1% of fuel-saving which used to be considered negligible for each individual flight is

now viewed as a significant figure, considering the number of flights around the world every

year. As a result, attentions have been made to all technologies that can lead to potential

fuel savings, with an increasing number of trajectory optimization studies for civil aircraft.

In this chapter, a relatively high fidelity model tailored for solving trajectory optimization of

civil aircraft will be first presented in Section 14-1, based on various work in the literature [21,

88, 89, 188, 190]. This is followed by Section 14-2 with a continuous cruise climb problem,

demonstrating the differences in the solutions obtained from different objective formulations,
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and discretization and transcription methods. A typical multi-phase formulation for real-

world flight operations is shown in Section 14-3, which is followed by the introduction of a

simplified 3-phase formulation in Section 14-4, demonstrating computational and flexibility

advantages.

14-1 System dynamics modelling

Using a point mass flight mechanics model with a spherical Earth, the system dynamics for

the trajectory of a flight can be described using

ḣ(t) =vT AS(t) sin(γ(t)), (14-1a)

ϑ̇(t) =
vT AS(t) cos (γ(t)) cos (χ(t))

RE + h(t)
, (14-1b)

˙̟ (t) =
vT AS(t) cos(γ(t)) sin(χ(t))

(RE + h(t))ϑ(t)
, (14-1c)

v̇T AS(t) =
1

m(t)
(T (vCAS(t), h(t),Γ(t)) −D(vT AS(t), h(t), CL(t))) − g sin(γ(t)), (14-1d)

γ̇(t) =
1

m(t)vT AS(t)
(L(vT AS(t), h(t), CL(t)) −m(t)g cos(γ(t))), (14-1e)

ṁ(t) =FF (h(t), T (vCAS(t),M(t), h(t),Γ(t))), (14-1f)

with h the altitude, ϑ the latitude, ̟ the longitude, vT AS the true airspeed, γ the flight path

angle and m the mass of the aircraft, all serving as state variables. There are three input

variables with CL the lift coefficient, χ the tracking angle and Γ the throttle settings. Other

parameters and variables including

• the earth radius Re = 6.371 × 106 km,

• the calibrated airspeed vCAS . The conversion between vT AS and vCAS is as follows

vT AS(t) =

√

√

√

√

√

2κ
κ− 1

ph(t)
ρh(t)





[

1 +
psl

ph(t)

[

(

1 +
κ− 1

2κ
ρsl

psl

vCAS(t)2

)
κ

κ−1

− 1

]]
κ−1

κ

− 1



,

with ph and ρh the pressure and density at current altitude h. psl = 101325 Pa and

ρsl = 1.225 kg/m3 are the air pressure and density at sea level, and κ = 1.4 is the heat

capacity ratio.

• the Mach number M as a function of h and vT AS ,

• the thrust force T as a function of h, vCAS and Γ,
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• the drag force D as a function of h, vT AS and CL,

• the lift force L as a function of h, vT AS and CL,

• the fuel flow model FF as a function of h and T .

In this work, the fast dynamics, such as pitch and roll attitude, are assumed to lead to

negligible differences in the solutions of flight time and fuel consumption. Thus they are

neglected to improve the computational efficiency by 1) reducing the number of state and input

variables and 2) alleviates the resolution required to accurately solve differential equations of

fast dynamics, allowing the use of a coarser mesh.

14-1-1 Lift and drag modelling

The lift force of the aircraft can be expressed as

L(t) = 0.5ρh(t)CL(t)v2
T AS(t)Sw,ac

with Sw,ac the reference wing area of the aircraft. Similarly, the drag force is modelled as

D(t) = 0.5ρh(t)CD(t)v2
T AS(t)Sw,ac (14-2)

with the drag coefficient consisting the zero-lift drag coefficient CD0, the induced drag coef-

ficient kclC
2
L and an additional wave drag coefficient contribution ∆CD,wave due to transonic

effects at high Mach numbers, expressed as

CD(t) =CD0 + kclC
2
L(t) + ∆CD,wave(M(t)),

∆CD,wave(t) =







0 if M ≤ Mcrit

cos(Λsw)

20(M(t) −Mcrit)4 if M > Mcrit

cos(Λsw) ,

with Mcrit the critical Mach number at which the airfoil will have regions reaching the speed

of sound locally, and Λsw is the sweep angle of the aircraft.

14-1-2 Thrust modelling

Regarding the modeling of thrust available, a linear relationship between the thrust produced

by each engine Teg and the throttle setting Γ(t) representing the percentile of the maximum

thrust Tmax is assumed, with

Teg(t) = Tmax(t)Γ(t).
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The total thrust is simply Teg times the number of engines Neg for the aircraft type:

T (t) = Teg(t)Neg.

The maximum thrust available from the engines will vary depending on the altitude and

airspeed. Here, the expressions for high, medium and low altitudes [190] are presented as

Tmax(t) =























Tcr,30

[

ceg,5(t)ph(t)
p30

+
(

T10(t)
Tcr,30

− ceg,5(t)ph(t)
p30

)]

if h ≤ 10000 ft,

Tcr,30ceg,3(t)
(

ph(t)
p30

)ceg,4(t)
if 10000 < h ≤ 30000 ft,

Tcr,30ceg,1(t) ln
(

ph(t)
p30

)

+ Tcr,30ceg,2(t) if h > 30000 ft.

Using the static maximum thrust at sea level, Tsl, the maximum thrust at a cruise level of

30000 ft, Tcr,30 can be estimated to be

Tcr,30 = Tsl

p30Υsl

pslΥ30

with p30 the pressure at 30000 ft, and Υsl and Υ30 the temperature in Kelvin at sea level and

30000 ft respectively. Using this cruise thrust, the thrust at 10000 ft can be modelled as

T10(t) = ceg,3(t)Tcr,30

(

p10

p30

)ceg,4(t)

.

Other ingredients necessary for the computations are the coefficients ceg,1 to ceg,5, formulated

based on the following empirical relationships:

ceg,1(t) = − 0.4204
(

M(t)
Mcr

)

+ 1.0824,

ceg,2(t) =
(

M(t)
Mcr

)−0.11

,

ceg,3(t) =

(

vCAS(t)
vCAS,cr

)−0.1

,

ceg,4(t) = − 0.335

(

vCAS(t)
vCAS,cr

)

+ 0.9166,

ceg,5(t) = − 0.12043

(

vCAS(t)
vCAS,cr

)

+ 0.4871,

representing the variation of available thrust due to changes in airspeed, either expressed in

terms of calibrated airspeed vCAS or Mach number M(t). Mcr is the typical cruise Mach

number for the aircraft type, and vCAS,cr is the typical calibrated airspeed at cruise.
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14-1-3 Fuel flow modelling

For computation of fuel consumption of the whole aircraft FF in kg/s, it is important to

model the necessary fuel flow at different altitude and thrust levels. The modeling of fuel flow

for each engine FFeg(t) is

FFeg(t) = cff3φ
3
T R(t) + cff2φ

2
T R(t) + cff1φT R(t) + cffchTeg(t)h(t). (14-3)

The equation consists of two parts, with the first three terms representing the fuel flow at

sea level. The sea level consumption is based on a 3rd-degree polynomial fitting of the ICAO

engine emission data-bank [105] with coefficients cff1, cff2, cff3 and the thrust ratio φT R,

defined as

φT R(t) =
Teg(t)
T0

.

The last term in (14-3) accounts for the increase in fuel consumption in high altitudes, with

cffch = 5 × 10−7 kg/s/kN/m.

14-2 Cruise flight with continuous climb

First consider the cruise phase of the flight: as the aircraft’s weight reduces during the cruise,

it is beneficial for reduction of fuel usage to fly at a higher altitude in order to take advantage

of the lower air density. Although this is often simplified to a number of step climbs in practice

and therefore replicated in flight trajectory optimization studies [21, 186], the optimal strategy

in terms of fuel consumption is to consider a continuous cruise climb profile [178].

14-2-1 Formulation of the objective

With this opportunity, different objective formulations can be compared. One possibility is

to design based on mission specifications: i.e to directly minimize fuel consumption. For

simplicity and for this demonstration only, the aircraft’s initial weight and fuel onboard are

fixed; hence the problem is equivalent to maximize the final weight of the aircraft, with a

Mayer cost J = −m(tf ).

Solution for this formulation will be compared with typical ‘control effort’ formulations of La-

grange cost J =
∫

T
FF 2(t)dt, J =

∫

T
T 2(t)dt and J =

∫

T
Γ2(t)dt, i.e. to minimize the integral

of the square of fuel flow, thrust and throttle settings, respectively. For a transcontinental

flight from London to Shanghai using aircraft Type 1 (see Appendix C) with an initial mass

of 345840 kg, the comparison results are illustrated in Figure 14-1 and Table 14-1.

It can be observed that these different formulations have led to drastically different flight

profiles, and more importantly, differences in fuel consumption. Directly minimizing the
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Table 14-1: Comparison of the fuel consumption of different continuous cruise climb solutions
using different objective formulations, with HS discretization using 30 major nodes

Objective Formulation Fuel Consumption

J = −m(tf ) 123714.78 kg
J =

∫

T
FF (t) dt 123735.77 kg (+0.017%)

J =
∫

T
FF 2(t) dt 124295,77 kg (+0.47%)

J =
∫

T
T 2(t) dt 125223,37 kg (+1.22%)

J =
∫

T
Γ2(t) dt 129365.93 kg (+4.57%)

fuel usage (i.e. reduction in weight due to fuel burn) results in the most fuel-efficient flight,

whereas minimizing J =
∫

T
Γ2(t) dt has led to the highest fuel consumption, with an increase

of 5651.15 kg or equivalently 4.57%. This experiment highlights the issues that are associated

with the classical quadratic regulation cost formulation penalizing control effort in the form

of u2(t).

The solution trajectories in Figure 14-1, however, also unveils that directly minimizing the

reduction in weight has resulted in the most pronounced singular arc fluctuations. The results

also show that reformulating the Mayer cost into an equivalent Lagrange term J =
∫

T
FF (t)dt

will not help. Therefore, in order to benefit from the advantages of formulating and solving

the DOPs directly according to problem specifications, the issue of singular arc must be

addressed.

14-2-2 Improve solution accuracy and suppress singular arc with IRM-type meth-

ods

When constant altitude and constant Mach cruise flights are considered, the system dynamics

can be simplified, and in extreme cases as in [21], only the state variable of aircraft weight is

used. This reduction has not only lead to lower computation complexities but also avoids the

singular arc fluctuations in the minimum fuel solution, even if the the objective J = −m(tf )

is directly used.

With the full dynamics considered in a continuous cruise climb setup, singular arc fluctuations

occurred for all three discretization methods tested with direct collocation transcription,

as shown in Figure 14-2. For the HS discretization, additional information is presented in

Figure 14-3 for the implementation of the resultant input trajectory on the same model, solved

with a non-stiff variable-order ODE solver (Matlab ode113) with a time step of 0.1 s. Due to

large errors between collocation points, significant deviations between the DOP solution and

the implementation result can be observed in Figure 14-3. This result is further evidenced by

the evaluation of the integrated residual squared (IRS) errors in Table 14-2.
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Figure 14-1: Comparison of solutions to the continuous cruise climb flight problem, with different
objective formulations, direct collocation with HS discretization using 30 major nodes



206 Optimization of Flight Trajectory For Commercial Airliners

Table 14-2: Comparison of the continuous cruise climb solutions with different discretization
methods for direct collocation (30 major nodes)

Trapezoidal Hermite-Simpson hp-LGR, degree 5

IRS h 3.35×104 2.04×10−1 1.19×10−2

Error ϑ 4.51×10−2 5.67×10−13 1.10×10−16

of ̟ 1.28×10−1 3.93×10−12 1.15×10−15

ODE vT AS 3.92×103 1.09×10−2 2.67×10−5

Dynamic γ 1.77×102 7.22×10−6 1.02×10−9

Equations m 1.04×103 2.85×10−4 1.08×10−5

Table 14-3: Continuous cruise climb problem with IRM solution representation method, with HS
discretization / piecewise cubic parameterization using 30 major nodes

Direct Direct Collocation
Collocation with Solution Representation by IRM

IRS h 2.04×10−1 5.93×10−11 (-99.99%)
Error ϑ 5.67×10−13 1.36×10−13 (-79.06%)

of ̟ 3.93×10−12 1.22×10−15 (-99.97%)
ODE vT AS 1.09×10−2 1.08×10−11 (-99.99%)

Dynamic γ 7.22×10−6 2.05×10−14 (-99.99%)
Equations m 2.85×10−4 9.45×10−07 (-99.67%)

Fuel Consumption 123714.78 kg 123714.72 kg (-0.00005.47%)

In contrast, solutions represented using IRM all have the singular arc fluctuations drastically

suppressed, and more importantly, only minor discrepancies can be observed between the

DOP solution and the implementation result. This observation is supported by the data in

Figure 14-3, showing a negligible reduction in objective value but a substantial reduction in

the IRS error for all ODE dynamic equations.

Unfortunately, due to the development of IRM-type methods being at their early stages, there

is not yet a multi-phase implementation that would allow the problems in later part of this

chapter as well as those in Chapter 15 to benefit from this drastic improvement in accuracy.

Hence, a (potentially sub-optimal) alternative of simultaneous regularization still has to be

used in later examples.



14-2 Cruise flight with continuous climb 207

Figure 14-2: Comparison of direct collocation solutions with different discretization methods,
for a continuous cruise climb flight
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Figure 14-3: Comparison between collocation solution with solution representation by IRM, for
a continuous cruise climb flight, transcribed using HS discretization with 30 major nodes. Dashed
lines represent the results of an open-loop implementation of the obtained input trajectories with
a simulation
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14-3 Typical multi-phase formulation representing real-world flight

operations

Due to restrictions in air traffic management, the flight profiles of commercial airliners follow

a number of protocols. Based on these rules, optimization of commercial flight are often

subdivided into a number of operation phases. For example, the Boeing 767-200ER flight from

Seattle to Copenhagen [21] uses a 9-phase problem setup and the Airbus A320 flight [186] have

7 phases. Combining all different formulations in literature, and incorporating the continuous

cruise climb concept, a typical real-world flight consists of the following 7 phases:

• Phase 1: Initial climb from acceleration altitude of 1517 ft, until reaching 10000 ft.

This phase is characterized by a constant throttle setting Ts and climbing at a constant

calibrated airspeed VCAS = 250 kts. The aircraft will maintain this airspeed by adjusting

its rate of climb, and for passenger comfort, the the vertical speed is constrained to be

1000 ≤ ḣ ≤ 5000 ft/min.

• Phase 2: Acceleration from 10000 ft. After passing 10000 ft, the aircraft will reduce its

rate of climb to ḣ = 1000 ft/min and allowing the calibrated airspeed to increase from

VCAS,0 = 250 kts to VCAS,f = 314 kts. In this short duration, the throttle setting Ts will

remain to be a constant value.

• Phase 3: High-speed constant CAS climb. Once reaching the target calibrated airspeed

VCAS = 314 kts, the aircraft will maintain this airspeed with constant throttle setting

Ts and by changing the rate of climb 1000 ≤ ḣ ≤ 5000 ft/min. With constant CAS

and the aircraft climbing, the Mach number will gradually increase. This phase finishes

when the Mach number of aircraft reaches Mf = 0.78.

• Phase 4: High Mach climb, until reaching cruise. Once reaching M0 = 0.78, the CAS

is disregarded and the aircraft follows certain Mach number profile towards the cruise

level at h > 30000 ft, again at a constant Ts and climb rate of 1000 ≤ ḣ ≤ 5000 ft/min.

In this formulation, we leave the options open, allowing any trajectory for the finial

Mach number Mf to be between 0.78 and the maximum cruise Mach number Mcr.

• Phase 5: Cruise with continuous climb. The aircraft will cruise with Mach number

0.78 < M < Mcr. Any climbs are restricted with a climb rate of 0 ≤ ḣ ≤ 1000. In the

cruise phase, the throttle setting is allowed to vary between idle and full throttle, i.e.

0.07 ≤ Ts ≤ 1.

• Phase 6: Descend towards 10000 ft. Although conventionally the initial descend was

divided into a number of segments, modern flight management systems now treat this

part of flight as an integrated open descend phase where M < Mcr, 250 ≤ VCAS ≤
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314 kts and −1000 ≤ ḣ ≤ −5000 ft/min. At the end of this phase with an altitude of

hf = 10000 ft, the calibrated airspeed must be reduced to VCAS,f = 250 kts. This phase

also employs variable throttle setting with 0.07 ≤ Ts ≤ 1.

• Phase 7: Approaching the airport. Below 10000 ft, the aircraft will maintain an air-

speed and descend further towards hf = 2000 ft at a vertical speed of −1000 ≤ ḣ ≤

−5000 ft/min and a throttle setting of 0.07 ≤ Ts ≤ 1.

In-between different phases, continuity constraints are imposed for h, ϑ, ̟, vT AS and m.

14-4 A simplified 3-phase formulation for commercial flights

Although the 7-phase formulation correctly represents the flight protocols under current air

traffic control (ATC) rubric, a relatively large number of phases related to the climb and

landing phase of the flight unnecessarily complicates the setup and solution process of the

problem. To improve the efficiency in solving large scale problems with multiple aircraft, in

this work, the use of a simplified 3-phase formulation is proposed. Regarding the flight time

and fuel usage, this solution only results in minor differences when compared to that of the

7-phase formulation. In addition, the 3-phase formulation is also in direct correspondence to

the continuous climb operations (CCO) and continuous descend operations (CDO) initiatives

that are currently under extensive studies by aviation authorities. Details of the 3-phase

formulation are as follows:

• Phase 1: Climb

h0 = 1517 ft, hf > 30000 ft, 250 ≤ VCAS ≤ 314 kts, M0 ≤ M ≤ Mcr,

0.78 < Mf < Mcr, 1000 ≤ ḣ ≤ 5000 ft/min, 0.07 ≤ Ts ≤ 1,

• Phase 2: Cruise with gradual climb

h > 30000 ft, 0.78 < M < Mcr, 0 ≤ ḣ ≤ 1000 ft/min, 0.07 ≤ Ts ≤ 1,

• Phase 3: Descend

hf = 2000 ft, 250 ≤ VCAS ≤ 314 kts, VCAS,f = 250 kts, M0 ≤ M ≤ Mcr,

−1000 ≤ ḣ ≤ −5000 ft/min, 0.07 ≤ Ts ≤ 1.

It can be shown that for any feasible solution that fulfils the constraints of the 7-phase

formulation, it is also a solution to the 3-phase problem. In other words, the set of feasible

solution of the 7-phase problem is a subset of the feasible solution set of the 3-phase problem.

The main source of differences would be for trajectories under 10000 ft, with the 7-phase

formulation strictly follows the ATC limit of vCAS = 250 kts.
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Table 14-4: Comparison of obtained solutions between the problem formulations

Problem Formulation Type Flight Time Fuel Consumption

7-Phase

Climb 17 min 4.8853×103 kg
Cruise 10 h 02 min 1.1348×105 kg

Descend 20 min 7.3800×102 kg
Full Flight 10 h 39 min 1.1910×105 kg

3-Phase

Climb 30 min 7.7870×103 kg
Cruise 9 h 46 min 1.1044×105 kg

Descend 21 min 8.0944×102 kg
Full Flight 10 h 37 min 1.1904×105 kg

Differences Full Flight -93 s (-0.2%) -64.6 kg (-0.05%)

For a transcontinental flight from London to Shanghai listed as FLT1 in Table 15-1, the

solutions obtained from both problem formulations are compared. The dynamic optimization

problem minimizes the initial weight of the aircraft subject to all above-mentioned constraints

plus a terminal constraint that at the end of the mission, the aircraft must be at its minimum

allowed weight mMIN defined as

mMIN = mOEW +mP LD + 0.05mMF C ,

with mOEW the operational empty weight (in kg), mP LD the payload mass and mMF C

the maximum fuel capacity (in kg). The fuel-minimum solutions for the flight with both

formulation are compared graphically in Figure 14-4 with details collected in Table 14-4.

It can be seen that for a flight of more than 10 hours and fuel consumption of about 119 tons,

the simplified 3-phase formulation has only lead to a minor difference of 93 s in flight time

and 64.5 kg in fuel usage. The main differences in state variable trajectories are related to

the climb phase: while the 3-phase formulation ends up with higher airspeed below 10000 ft,

the latter part of the climb is with a lower airspeed increase, ending up with a longer climb.

The increased flight time and fuel usage for the climb phase are compensated with a shorter

cruise phase. Eventually, the differences between these two aspects for the complete flight

can be considered as negligible. On the other hand, the computation time to reach a solution

with accuracy fulfilling requirements listed in Table 14-5 is drastically different. Table 14-6

shows that the total computation time till the end of mesh refinement is 96.6% lower for the

3-phase problem formulation, comparing to its 7-phase counterpart.
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(a) Flight trajectories

(b) Flight states

Figure 14-4: Comparison of different problem formulations for optimization of a commercial
flight
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Table 14-5: Required solution accuracy – flight of commercial airliner

h [m] ϑ [rad] ̟ [rad] vT AS [m/s] γ [rad] m [kg]

Max. Abs.
10 0.0175 0.0175 1 0.0175 1

Local Error (ηtol)

Max. Local Const-
10 0.0175 0.0175 1 0.0175 1

raint Violation (εgtol
)

CL [-] χ [rad] Γ [-] vCAS [m/s] M [-] ḣ [m/s]

Max. Local Const-
0.1 0.0175 0.01 1 0.01 0.5

raint Violation (εgtol
)

Table 14-6: Comparison of computation time between the problem formulations

Problem Mesh Refinement Computation Time Total Computation
Formulation Iterations of Each Iteration [s] Time [s]

7-Phase 4 [98.6, 302.7, 586.9, 252.9] 1241
3-Phase 2 [23.5, 18.4] 41.9

Computation Time Reduction: 96.6%
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Chapter 15

Formation Flight of Aircraft

During the flight, circular patterns of rotating air will form behind the wing trailing from

the tip, a phenomenon commonly known as wingtip vortices. As shown in Figure 15-1a,

the main consequence of tip vortices are the generation of a downwash region, reducing the

effective angle of attack and hence responsible for induced drag. Accompanying the downwash

region, there will also be two upwash regions that are formed on each side of the aircraft, and

travelling downstream together. A wing placed inside the upwash region of the lead aircraft

will experience an increase in the effective angle of attack, hence reducing the magnitude of

its own induced drag.

When birds embark on long-distance migration flight, they fly in a V-shaped formation to

reduce the overall effort. This observation inspires aviation pioneers to explore the possibility

for commercial airliners to fly in formation, to benefit from the reduction in drag and hence

lower fuel consumption. The latest development is the fello’fly project within Airbus UpNext

initiative, aiming to ‘prove the technical, operational and economic viability of wake-energy

retrieval for commercial aircraft’ [1]. In recent tests [22], two Airbus A350s were tested in

formation flight on the transatlantic route, with a separation of just 1.5 nautical miles (around

2.8 km).

Once the concept is proven and technical challenges are resolved, schemes and tools must be

developed to assist the integration of formation flying into the operational norm of commercial

airlines and air traffic control management system. Recent development using multi-phase

trajectory optimization [88, 89, 188] have shown to obtain promising results. Here use of

ICLOCS2 in solving such a complex real-world problem is demonstrated.
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(a) Tip vortices [46]

 

Upwash 

Downwash 

Upwash 

(b) Formation flight illustration

Figure 15-1: Illustration of upwash and downwash generation by aircraft tip vortices and relative
positioning of aircraft in formation flight

15-1 Problem formulation

In comparison to the 3-phase flight formulation, additional phases will need to be added to

accommodate the formation flight. The phase structure for each flight will become climb,

individual cruise, formation flight, individual cruise, descend, with the formation flight phase

shared with all flights. All flights have free initial and final time, with the objective to

minimize the total fuel usage for all of the Nac aircraft, i.e.

min
Z

Nac
∑

iac=1

miac(t0) −miac(tf ).

with Z the tuple of decision variables, and subscript iac representing the aircraft index. When

cruising together, the aircraft will need to fly with the same value for state variables and well

as their rate of change, except the mass. Hence, only the mass of any additional aircraft miac

need to be added as state variables in the formation flight phase and no extra input variables

needed. The inputs (CL and Γ) of the trailing aircraft will be computed based on the flight
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information of the leading aircraft as follows.

First, the system dynamics for the leading aircraft can be computed based on (14-1). Then

for each of the trailing aircraft, the lift force can be obtained as

Liac(t) = γ̇(t)miac(t)vT AS(t) +miac(t)g cos(γ(t)),

from which the lift coefficient can be obtained by

CLiac
(t) =

2Liac(t)
ρh(t)v2

T AS(t)Sw,iac

.

The drag coefficient is therefore

CDiac
(t) = CD0iac

+ (1 − κ)kcliac
C2

Liac
(t) + ∆CD,waveiac

(t),

with κ a reduction factor for induced drag by flying in the upwash region of the trailing

vortices. In this work, a conservative reduction of κ = 0.25 is assumed for all aircraft. In

reality, aircraft behind multiple leaders are predicted to enjoy a much higher induced drag

reduction, estimated to be around 50% for the third aircraft down the formation sequence

[89, 188].

Next, the drag force can be computed using (14-2) for each trailing aircraft, which would lead

to an expression for the require thrust

T (t) = v̇T AS(t)miac(t) +D(t) +miac(t)g sin(γ(t)).

With the thrust known, the corresponding fuel flow can be computed for each aircraft and

implemented as the dynamic equation for the additional state variables of miac . Moreover,

constraints regarding the maximum thrust available Tmax at different altitude–airspeed com-

binations and regarding the maximum lift coefficient need to be implemented for compliance

with flight performance limits.

15-2 DOP solution of a simulated scenario

To demonstrate the dynamic optimization of an aircraft formation flight problem, a scenario

with three transcontinental flights with different origins and destinations is designed, with

details collected in Table 15-1. Information regarding the aircraft performance parameters of

each aircraft type is presented in Table C-1 in Appendix C. From the nominal direct flight,

the most efficient flight in terms of fuel usage is identified to be FLT3 with aircraft Type 3.

Hence this flight is selected to be the leading aircraft in the formation flight.
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Table 15-1: Details of the three flights in the simulated scenario

Flight ID FLT1 FLT2 FLT3

Aircraft Type 1 Type 2 Type 3

Origin London (LHR) Paris (CDG) Amsterdam (AMS)
Destination Shanghai (PVG) Wuhan (WUH) Beijing (PKX)

Nominal Flight Time 11 h 20 min 11 h 10 min 9 h 35 min

Payload mP LD [kg] 33000 20000 28000

Minimum Mass mMIN [kg] 209865 147150 175926.15

The main challenges associated with solving the problem numerically are related to

• very long horizon more than 11 hours, while system dynamics specified in seconds, and

• large number of phases: 13 phases are needed for the 3 aircraft formation flight problem,

and

• large differences in variables numerical range, from altitudes of several thousands meters,

to angles of a few radius.

The problem is transcribed using direct collocation and Hermite-Simpson discretization, with

a total number of 290 node points for the initial mesh. The solution obtained at the end of

the mesh refinement process are illustrated in Table 15-2 and Figure 15-2—15-5.

After taking off from respective origin airports, the formation of aircraft is formed near

the northern Germany–Netherlands border and ends near the Mongolia-China border. The

formation flight duration is about 8 h and 13 min, consists of a gradual climb and a constant

altitude cruise at the maximum service ceiling of aircraft Type 2 used in FLT2. After the

formation flight phase, FLT1 and FLT3 climb to higher altitudes before arriving at their

respective destinations.

Due to longer flight routes, slight increases in the flying time for all three flights are reported,

around 10 to 20 minutes. Despite a 2% penalty in fuel consumption for the leading aircraft

FLT2, the total fuel consumption combining all three flights have seen a 4.31% reduction

which equates to 11402 kg of jet fuel.

Considering the relatively conservative fuel-saving parameters used, and the number of flights

around the world each year, the total savings in fuel consumption and reduction in carbon

footprint could be enormous numbers for the aviation industry as a whole.

In practice, the aircraft in the group could take the lead position in turns so that the maximum

range for each one of them can be boosted. This would enable ultra-long-haul flights that
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Table 15-2: Comparison of flight time and fuel usage between individual direct flights and
formation flight

Flight ID Route Type Flight Time Fuel Consumption

FLT1
Direct 10 h 37 min 1.1904×105 kg

Formation 10 h 58 min (+3%) 1.1072×105 kg (-7%)

FLT2
Direct 10 h 34 min 7.5126×104 kg

Formation 10 h 47 min (+4%) 7.0877×104 kg (-6%)

FLT3
Direct 9 h 13 min 7.0099×104 kg

Formation 9 h 25 min (+2%) 7.1266×104 kg (+2%)

Total Fuel Savings: 1.1402×104 kg (-4.31%)

are currently unachievable economically by today’s aircraft, such as the London to Sydney

direct route. In short, many trendy and challenging problems in aerospace engineering can

be naturally formulated and solved as DOPs, providing non-trivial and efficient solutions to

help shape aviation of the future.
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(a) Direct flight

(b) Formation flight

Figure 15-2: Comparison of flight trajectories between individual direct flights and formation
flight
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(a) Direct flight

(b) Formation flight

Figure 15-3: Comparison of altitude between individual direct flights and formation flight
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(a) Direct flight

(b) Formation flight

Figure 15-4: Comparison of true airspeed between individual direct flights and formation flight

Figure 15-5: Comparison of aircraft mass between individual direct flights and formation flight
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Chapter 16

Conclusions and Recommendations

In this work, a number of explorations have been made aiming to numerically solve dynamic

optimization problems (DOPs) of different challenging nature with improved accuracy, relia-

bility and efficiency. In the following sections, detailed concluding remarks will be given for

the main findings, accompanied by recommendations and suggestions for future work.

16-1 Direct transcription methods based on integrated residuals

Detailed analyses of the direct collocation error characteristics have lead to the investigation

of a wider range of numerical methods that are traditionally used in the solution of differ-

ential equations. The developments have resulted in a new class of direct methods based on

integrated residual minimization (IRM), as well as a new direct transcription method named

direct alternating integrated residual (DAIR) for the solution of DOPs.

16-1-1 Concluding remarks

• Direct collocation transcription using a given discretization mesh provides

no guarantee in solution accuracy and constraint satisfaction.

For direct collocation, accuracy can only be ensured a posteriori through error analysis

and mesh design iterations. When a given coarse mesh is used, for example as com-

monly found in nonlinear model predictive control (NMPC), the validity of the solution

may become questionable with errors arising inside the intervals in-between collocation

points, despite solving the nonlinear programming problem (NLP) to negligibly small
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tolerances. Therefore, a mesh refinement framework must be considered as an indis-

pensable part of a direct collocation method in order to ensure convergence and solution

accuracy.

• In numerical solution of DOPs, approximation errors are generally inevitable

hence least-squares criteria may be more suitable.

Solutions of the continuous-time DOPs can rarely be represented exactly by the ap-

proximating function employed in numerical schemes. According to established theories

on function approximations, the least-squares criterion is often considered as a more

suitable choice than forcing the fitting error to be exactly zero only at some selected

points. Hence, for a given mesh, the least-squares approach of IRM can yield solutions

of higher accuracy than direct collocation.

• Solving the residual minimization problem directly may bring benefits in

comparison to the use of necessary optimality conditions.

The least-squares approach, as defined in the class of weighted residual methods, is

equivalent to applying the optimality conditions and obtaining a number of equality

constraints to be satisfied. However, this condition is only necessary and thus theoreti-

cally can only guarantee that the trajectory is a stationary solution in general, i.e. the

trajectory could be a local maximum for the respective error metric used. In addition,

using only the optimality conditions will not be able to provide indications on the mag-

nitudes of the errors. Methods that directly solve the integrated residual minimization

problem would have the additional benefit that the evaluation of error magnitudes can

be integrated into the solution process instead of a posteriori.

• Solving DOPs numerically on a given mesh can be considered as a multi-

objective optimization problem.

For a given discretization mesh, one will inevitably face a trade-off between minimizing

the objective for optimality and minimizing the discretization errors for accuracy, form-

ing a Pareto front. Solutions from direct collocation with a given coarse mesh will likely

be dominated by other solutions. In contrast, schemes based on IRM have been shown

to be capable of directly obtaining a solution on the Pareto front. Moreover, for a given

mesh, the proposed direct alternating integrated residuals (DAIR) transcription method

is able to directly solve problems to a specified accuracy level, by taking advantage of

the multi-objective nature of the optimization problem.

• IRM-type of methods are more reliable in solving challenging problems, in-

cluding those with singular arcs and high-index differential algebraic equa-

tions.
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For direct collocation, if differential-algebraic equations (DAEs) exist as part of the sys-

tem dynamics, without special considerations to ensure consistency, the transcription

process can lead to over-constrained or under-constrained NLP. This issue could lead

to convergence difficulties or singular-arc type of fluctuations in the obtained solution.

By allowing arbitrarily small residuals for the constraints to exist during the solution

process similar to penalty methods, IRM-based transcriptions can have better conver-

gence properties in cases of high-index DAEs and DAEs that force the solution to lie on

a manifold. Also, since the errors can now be ranked for different solution candidates

on the singular arc that are indistinguishable from the objective point of view, IRM

type of methods are capable of suppressing singular arc fluctuations without the need

for additional treatments.

16-1-2 Suggestions for future work

• Continued efforts required for the IRM-type of methods to mature.

Admittedly, the method is still at its very early stage of development. For instance,

a detailed exploration of the problem structure and sparsity patterns are needed to

improve the computational efficiency of such a scheme. In this work, through elementary

analyses of problem structures and derivative information computations, an observation

was made that classical finite difference computations required by IRM-type of methods

may not be as efficient as that for direct collocation. Hence, efficient implementations

of other derivative computation methods such as algorithmic differentiation may be

necessary. Continued research on the IRM methods as well as associated tools will be

required in order to realise its full potential and to reach the same level of maturity as

direct collocation methods.

• Numerical solutions of DOPs can be further exploited beyond direct collo-

cation and direct multiple shooting.

With decades of development, direct methods of direct collocation and direct multiple

shooting have almost become the norm for solving practical DOPs, shadowing the in-

direct approach. However, out in the academic field, especially in relation to numerical

solutions of differential equations, many alternatives exist that can be utilized for the en-

forcement of dynamic equations. Exploiting these methods may lead to developments of

new numerical methods for the solution of DOPs with different solution characteristics

and computational efficiency.
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16-2 Methods to allow efficient computation of large problems

Besides focusing on developments that could become popular approaches for the solution

of DOPs in the future, this work also proposes a number of methods that would allow ef-

ficient and accurate computation of large and challenging problems, valid also for current

transcription methods.

16-2-1 Concluding remarks

• Directly implement rate constraints on the discretization mesh appears to

be an attractive alternative to the conventional intuitive approach.

In contrast to conventional approaches, the proposed method is numerically verified not

to introduce singular control arcs. Additionally, this on-mesh implementation replaces

the additional dynamic equations and nonlinear path constraints in conventional imple-

mentations with linear rate equations. Thus, there is no contribution to the Hessian and

the contribution to the Jacobian can be pre-computed, enabling faster iterations. Based

on observations in Section 9-2-1, the scale of reduction in computation time seems to

grow quite quickly with the increase in mesh size (number of collocation points), mak-

ing the method especially suitable for the solution of large scale problems. A possible

downside of the proposed scheme is that the method cannot be directly implemented in

most of the existing DOP packages through their current interfaces.

• Inactive constraints burden the computations but do not contribute to the

solution, hence excluding them can lead to benefits.

A strategy has been developed to systematically identify and handle inactive constraints

and redundant constraint sets for numerically solving DOPs together with mesh refine-

ment schemes. Unlike previous work that would always result in infeasible initial guesses

for intermediate steps, the proposed scheme is capable of providing guarantees on the

feasibility of initial points in mesh refinement iterations. The method only requires some

mild conditions — the original DOP to have feasible points, and the initial solve of the

discretized DOP to be successful, making it particularly suitable for DOP toolboxes that

utilize interior point method (IPM)-based NLP solvers in lowering the computational

cost.

• Suppression of singular arc fluctuations is crucial for practical engineering

problems.

The issues of singular arcs are often demonstrated with toy problems in the litera-

ture, resulting in them being neglected by engineers working on complex problems.

In fact, singular control can easily arise from a wide range of problems ranging from
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the re-positioning of a double-integrator system, to the cruise flight of an aircraft as

demonstrated in this thesis. Since singular arc often only occurs on some parts of the

DOP solution trajectories and can be affected by many factors such as the activation

status of some constraints, it may not always be possible to address the singular arc

fluctuations a posteriori as an afterthought. In this work, different methods that are

capable of suppressing the singular arc fluctuations are studied and compared. More

importantly, implementations that would avoid the introduction of singular control in

certain scenarios are identified to prevent the issue in the first place.

• For DOP software toolboxes, it is beneficial to provide a wide range of meth-

ods under a unified interface.

For the solution of DOPs in practice, appropriate choices of transcription scheme, dis-

cretization method and the numerical solver all depend on the required level of accuracy,

available computational time and resources, and characteristic of the problem formu-

lation (e.g. function smoothness, continuity, differentiability). To date, there is not a

single method that would work well for all challenges of different natures. Also, among

the ones that are available, it is difficult to know beforehand which choice will work

best.

Many of existing DOP solution software packages require immediate commitments to

specific programming languages and numerical schemes. If considered unsuitable later,

subsequent changes can lead to an increase in the engineering expense and design time.

By providing toolboxes that have access to an array of methods for solving a wider

variety of DOPs under a unified interface, the experience required by the user can be

reduced making the method available to a wider range of applications.

16-3 DOPs for aerospace applications

By revisiting the history when the solution of DOPs made crucial contributions to flight

and orbital trajectory optimizations and mission designs, as well as by reviewing the progress

made in model predictive control (MPC) for flight control applications, the future potential for

online real-time implementation of nonlinear and non-regulation MPC can be visioned. In this

work, a brief study into flight trajectory optimization with continuous climb and descend is

provided, followed by a quick investigation into future formation flight of commercial airliners.

16-3-1 Concluding remarks

• Solution of DOPs directly based on mission specifications can result in

unique capabilities and potentials in shaping aviation of the future.
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Solving nonlinear DOPs formulated directly based on mission specifications can yield

nontrivial and non-intuitive solutions subject to operational and safety constraints, mak-

ing it an ideal candidate addressing many aerospace-related challenges. Besides the for-

mation flight problem demonstrated in this thesis, many other challenges were identified

and investigated in the course of this research project, including aircraft upset recov-

ery, multiple unmanned aerial vehicles (UAVs) in-range tracking, joint optimization of

transmission and propulsion in UAV-assisted communication networks. By formulating

and solving the problems as DOPs, solutions that significantly outperform heuristic

methods can be obtained to help shape the future of aerospace engineering.

• Methods that can provide efficient and reliable solve of DOPs of different

challenging nature would be required to address aerospace challenges.

Shown with a relatively simple continuous cruise climb problem, when solved directly

according to mission specifications, the current method of direct collocation is not capa-

ble of yielding a solution of high accuracy without singular arc fluctuations. Therefore,

alternative methods that can provide efficient and reliable solutions of DOPs of different

challenging nature would be required. IRM-methods have shown to be an option with

great potentials.

16-3-2 Suggestions for future work

• In future developments, successfully demonstrating the capabilities and the

benefits of solving nonlinear DOPs is as important as finding proves for

stability and convergence.

Admittedly, the aviation sector at the current moment still maintains a skeptical view

for solving and implementing nonlinear and non-regulation (i.e. minimum energy or

minimum time) DOP solutions online, largely due to the associated computational

complexity and lack of sufficiently general proofs regarding the convergence of numerical

solvers and stability in closed-loop implementations.

It is crucially important to first able to successfully demonstrate the capabilities and

the benefits such new technology can bring, which is still at its very early stage of

development. If such benefits do not exist, or it is only marginal compared to currently

used proven technology, the development may not yield sufficient impact. This is also the

reason why the decision was made early for this work to focus on the non-regulation type

of problems, as experiences have shown nonlinear MPC for the regulation type of tasks

(stabilization and set-point tracking) often only offer marginal benefits in comparison

to the linear MPC, while at the same time losing many of the theoretical proofs on

properties such as stability.
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Once the technical challenges have been dealt with, and a good performance is seen for

the most majority of problems tested, then it would be easier to address the concerns

and develop formal proofs on conditions of stability. This is not only thanks to the

insights gained by analyzing the implementations that were successful, but also because

methods that have shown to work well in practice will attract more experts to join in

to tackle the challenges with stronger motivations.

The unique advantages of MPC in fault-tolerant flight controls attracted lots of atten-

tions very early on in the development process. These attentions are helpful later in

bring the technology to a mature state, allowing real-time computations on embedded

platforms. Similarly, the popularity of artificial intelligence and machine learning are

also greatly due to the substantial benefits that are obtainable for a wide range of

applications, using intuitive implementations. Therefore, demonstrating unique capa-

bilities and the benefits of solving nonlinear DOPs formulated directly based on mission

specifications will be crucial for the future popularity and success of this technology.
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Appendix A

Legendre Polynomials and

Legendre-Gauss-Radau Points

The Legendre polynomials are the solutions to the Legendre’s differential equation

d

dt

[

(1 − t2)
d

dt
PN (t)

]

+N(N + 1)PN (t) = 0, (A-1)

with PN (t) the Legendre polynomials of N th degree. The solutions are given as

P0(t) = 1,

P1(t) = t,

and subsequently following the recurrence relationship

(N + 1)PN+1(t) = (2N + 1)tPN (t) −NPN−1(t). (A-2)

A-1 Computation of LGR points

The Legendre-Gauss-Radau (LGR) points are the roots of the polynomial (PN (t)+PN−1(t) =

0), defined only on the interval [-1,1), excluding the end point at 1. Directly solving for the

LGR points as a root finding problem is computationally intensive especially for polynomials

of higher orders.
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To demonstrate the procedures for a numerically more efficient calculation, first reorder the

recurrence relationship in the descending order for N, and note the following trend:

tPN (t) =
N + 1
2N + 1

PN+1(t) +
N

2N + 1
PN−1(t), (A-3)

tPN−1(t) =
N

2N − 1
PN (t) +

N − 1
2N − 1

PN−2(t), (A-4)

tPN−2(t) =
N − 1
2N − 3

PN−1(t) +
N − 2
2N − 3

PN−3(t), (A-5)

tPN−3(t) =
N − 2
2N − 5

PN−2(t) +
N − 3
2N − 5

PN−4(t), (A-6)

Thus we can rewrite the recurrence in matrix format

t








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




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
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



,

(A-7)

or

tP = TP + dN−2(PN + PN−1)eN−2, (A-8)

with for example

dN−2 =
N

2N − 1
, aN−2 =

1
(2N − 3)(2N − 1)

, bN−2 =
N − 2
2N − 3

,

cN−3 =
N − 1
2N − 3

, aN−3 =
1

(2N − 5)(2N − 3)
, bN−3 =

N − 3
2N − 5

.

(A-9)

Since LGR points are the roots of PN (t) +PN−1(t) = 0, the last vector becomes zero and the

matrix system becomes effectively tP = TP , meaning t is equal to the eigenvalues of matrix

T . With numerical computation of eigenvalues for symmetric matrices being more efficient,

and the eigenvalues are always preserved by a similarity transformation, it is possible to
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symmetrize the matrix T as

J = DTD−1 =





















a0 b̄1 0 . . . 0

b̄1 a1 b̄2 . . . 0
...

...
. . .

...

0 . . . b̄N−3 aN−3 b̄N−2

0 0 . . . b̄N−2 aN−2





















, (A-10)

with, for example,

b̄N−2 =

√

(N − 2)(N − 1)
2N − 3

. (A-11)

The LGR points t can therefore be obtained by the eigenvalue computation of J , avoiding

the complication of root finding.

A-2 Computation of LGR weights

For estimation of integrals using Radau quadrature in the form of

∫ 1

−1
f(t)dt ≈

N
∑

k=1

wkf(tk), (A-12)

the LGR weights are calculated as

w1 =
2
N2

,

wi =
1

(1 − ti)Ṗ 2
N−1(ti)

, for i = 2, . . . , N,
(A-13)

or equivalently [183] by

wi =
1
N2

1 − ti

P 2
N−1(ti)

, for i = 1, . . . , N. (A-14)
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List of Methods Available in ICLOCS2
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Appendix C

Aircraft Performance Parameters in

Formation Flight Example Problem

Table C-1: Aircraft performance parameters

Parameters
Aircraft Aircraft Aircraft
Type 1 Type 2 Type 3

Sw,ac [m2] 436.8 361.6 442
CD0 [-] 0.037 0.029 0.029

Aerodynamics kcl [-] 0.046 0.044 0.041
& Mcr [-] 0.84 0.82 0.85

Flight VCAS,cr [m/s] 148 129 131
Parameters Mcrit [-] 0.646 0.642 0.646

Λsw [◦] 31.6 30 31.9
hceil [m] 13100 12500 13100

mMT OW [kg] 351500 230000 280000
Mass mOEW [kg] 167800 120200 142400

Parameters mMLW [kg] 251300 182000 205000
MMF C [kg] 181300 139000 110523

T0 [N] 513900 230000 379000
Engine cff1 [-] 4.38063 2.77093 3.20896

Parameters cff2 [-] -2.47085 -1.04299 -1.87934
cff3 [-] 2.79032 1.26557 1.49836
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