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Modelling and Inference of Spatio-Temporal Processes
in Single Molecule Localisation Microscopy

Abstract

Recent advancements in super-resolution microscopy have enabled cellular

structures to be imaged beyond sub-diffraction limits. In order to do so, a

widely used class of super resolution methods called single molecule localisa-

tion microscopy (SMLM) exploit the stochastic nature of fluorescent probes,

or fluorophores, that move between bright and dark states until they perma-

nently cease to transition. When observing a large number of fluorophores,

this behaviour enables only a sparse subset of them to be detected at any one

time, resulting in the ability to accurately record and accumulate their spa-

tial measurements to produce a super-resolved image. While this stochastic

behaviour has been heavily exploited, it induces multiple localisations per

molecule which gives rise to misleading representations of the true structures

of interest. Accurate quantification of the underlying photo-kinetic behaviour

is therefore required before any spatial analysis can be conducted.

In this thesis, we model the photo-kinetic behaviour of a molecule as a con-

tinuous time Markov process that can transition between a photo-emitting

On state, several (unknown) non-photon emitting dark states and an perma-

nently dark state. From this, we develop the Photo-Switching Hidden Markov

Model (PSHMM) which relates this underlying behaviour to an observed sig-

nal indicating whether or not a molecule is detected in a given frame. Under

this model, we derive a maximum likelihood estimator which is used to esti-

mate the unknown transition rates and photo-kinetic model. Under different

experimental conditions, the statistical properties of this estimator are also

investigated. When an unknown number of fluorescing molecules is filmed,

the PSHMM set-up subsequently allows us to derive the distribution of the
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total number of observed localisations in an experiment, from which an accu-

rate molecular counting tool can be constructed. Finally, we formulate true

molecular positions as a spatio-temporal hidden point process and describe

the observation process it generates at each time step. The full Bayes filter

is then derived, from which the point process and static parameters of the

model can be inferred using Markov Chain Monte Carlo (MCMC).
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0
Introduction

0.1 Motivation

Fluorescence microscopy is a collection of techniques that utilise the photon

emitting properties of fluorescing molecules called fluorophores, to perform

optical imaging, and has seen numerous applications in cell and medical bi-

ology. Recent years have seen the advent of a number of super-resolution

microscopy techniques that have bypassed the classical resolution limits of

fluorescence microscopy (Huang et al., 2009). Major contributions in this

field include the successes of two main types of single molecule localisation

microscopy (SMLM) approaches: photo-activated localisation microscopy

(PALM) (Betzig et al., 2006, Hess et al., 2006) and stochastic optical recon-

struction microscopy (STORM) (Rust et al., 2006, Heilemann et al., 2008).

Each of these methods rely on the ability exhibited by some fluorophores

to stochastically photo-switch between a photon emitting On state and non-

photon emitting dark states (Van de Linde and Sauer, 2014, Ha and Tin-

nefeld, 2012). This results in the observation of fluorescent intermittency or

blinking under a range of photo-kinetic scenarios.

Specifically, STORM (Rust et al., 2006, Heilemann et al., 2008) utilises con-
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Figure 1: (Patel et al., 2019) (a) Illustration of the SMLM imaging process. When all flu-
orophores simultaneously stay in a photon emitting On state, diffraction renders structures
unresolvable. Stochastically photo-switching fluorophores imaged over time across several
frames give rise to a sequence of sparsely populated images, where each fluorophore can be
isolated and localised with high precision. Aggregating these frames gives rise to a super-
resolved image. Data from Sage et al. (2015). (b) Isolated fluorophores are localised by
fitting the point spread function (PSF) to the diffraction limited spot.

ventional immuno-staining strategies to label proteins of interest with fluo-

rescent chemicals; these are known as fluorophores. Molecules are placed in a

STORM buffer which usually contains reducing and oxygen scavenging com-

ponents, and are subject to an initial excitation from a high intensity laser.

This excitation renders all fluorophores to initially be in the photon-emitting

state, from which the STORM buffer subsequently allows transitions into a

dark state, which is typically longer lived than the emissive state. In some

experiments, fluorescent molecules can additionally be made to reach further

dark states, for example, radical or very long triplet states, which are char-

acterised by even longer lifetimes. The fluorophores then cycle between dark

and On states until all are permanently unable to fluoresce. This is known

as photo-bleaching. In the original implementation of STORM (Rust et al.,

2006), proteins are labelled with a pair of activator-reporter fluorophores,

whereby the activator is subject to the photo-switching and the reporter

emits the detected signal. However, the requirement of dual labelling, and

therefore the close proximity of the pairs of fluorophores, has subsequently

motivated the development of direct STORM (dSTORM) (Heilemann et al.,

2008). Since dSTORM experiments do not require the activator fluorophore,

and can therefore be conducted using single labelling, this technique currently

constitutes as the most widely used type of STORM imaging.

On the other hand, PALM (Betzig et al., 2006, Hess et al., 2006) uses a low

2



laser intensity to illuminate a small sample of sparse photo-activatable fluo-

rophores that are initially in an inactive (dark) state. Once activated, each

type of fluorophore is excited by a different wavelength of light, typically

through higher intensity lasers, and thereby releases a continuous emission

burst of photons. Immediately after this excitation, fluorophores are most

likely to photo-bleach, but can also be converted back to a dark state. This

cycle of photo-activation and photo-bleaching therefore limits the photo-

switching lifetime of each fluorophore, and is typically much shorter than

from those imaged in STORM. Furthermore, since it is during an emission

burst that fluorophores can be detected, the success of PALM imaging lies

both in the random activation of smaller sets of fluorophores, and the low

probability of photo-reactivation.

Under normal imaging conditions, a specimen that is decorated with a spa-

tially dense number of molecules prevents accurate identification of individual

fluorophores and resolution of structures smaller than the diffraction limit, as

is depicted in Figure 1(a). Nevertheless, using a fluorophore with stochastic

photo-switching properties provide an imaging environment where the vast

majority of molecules are in a dark state, leaving only a sparse number to be

in the photon-emitting On state, resulting in the visible fluorophores being

sparse and well separated in space. Subsequently, with the use of a high-

performance camera, the individual fluorophores occupying the On state can

be identified by first utilising segmentations algorithms (Olivo-Marin, 2002,

Henriques et al., 2010, Ovesný et al., 2014) to locate high intensity photon

regions of isolated fluorophores. Secondly, by fitting point spread functions

(PSFs) (Sage et al., 2015, Ober et al., 2015) to these areas, these molecules

can then be localised in continuous space with nanometre scale precision;

this is depicted in Figure 1(b). Through the acquisition of a video contain-

ing thousands of images, shown in Figure 1(a), numerous fluorophores can be

localised in space and isolated in time. When aggregated and plotted, these

localisations provide a detailed map of fluorophore positions, giving rise to

its super-resolved image.

The utilisation of SMLM methods does not come without drawbacks, how-

ever. Firstly, the successes of STORM and PALM imaging rely on the fact

3



that photon emission bursts from two or more fluorophores separated within

a diffraction limit region, are not likely to overlap at any one time. When

imaging tens of thousands of molecules, however, this occurrence becomes

more likely (Cohen et al., 2019), enabling some of the obtained localisations

to be poorly representative of the underlying molecular configuration. Nev-

ertheless, the ever improving precision of localisations outputted by more

advanced localisation algorithms, most recently from those relying on deep

learning (Boyd et al., 2018), indicates the dissipation of such image resolution

limitations. Secondly, the stochastic photo-switching behaviour induced by

these methods leads to fluorophores blinking multiple times during an exper-

iment, and therefore gives rise to multiple localisations of the same molecule

in the super-resolved image. This has motivated the development of image

reconstruction algorithms (Cox et al., 2011, Marsh et al., 2018) that account

for these unwanted artefacts to yield more enhanced super-resolution images.

While reconstructed images provide us with a more accurate representation of

cellular structures, poor understanding of the underlying stochastic nature of

the fluorophores renders problems such as molecular counting, and therefore

the extraction of true molecular positions, difficult. Depending on the imag-

ing technique used, this issue may further be heightened by the uncertainty of

the exact photo-kinetic scheme driving the On-dark cycle a fluorophore un-

dergoes before photo-bleaching. To address these questions, accurate quan-

tification of the photo-switching behaviour of imaged fluorophores (Dempsey

et al., 2011, Lehmann et al., 2016) across different SMLM schemes is vital,

and still remains a very active area of research in this field.

0.2 Thesis overview

In this thesis, we provide three important contributions, that are based upon

the statistical modelling of fluorophores imaged in STORM and dSTORM

experiments. However, for future applicability to other microscopy tech-

niques such as PALM, in this work we endeavour (where possible) to keep

all mathematical formulations general.

In Chapter 1, we formulate the underlying and unobserved photo-kinetic

4



behaviour of a fluorophore as a continuous time Markov process, which tran-

sitions between its photon emitting On state, an unknown number of dark

states and the photo-bleached state. We subsequently define the discrete

time observed process, which, subject to the inherent noise limitations of the

imaging procedure, indicates whether or not a fluorophore is detected in any

given frame. From this, we formulate the photo-switching hidden Markov

model (PSHMM) and develop novel methodology that is used to compute

the log-likelihood of imaging observations. Maximum likelihood estimation is

subsequently applied to recover photo-switching rates and predict (through

a model selection criterion) the unknown number of dark states a molecule

transitions between during an experiment. Both simulation studies and an

application to a real dataset will be presented to demonstrate the validity of

this method.

In Chapter 2, we thoroughly investigate the statistical properties of the

PSHMM estimator over a wide range of different experimental set-ups. In

particular, we address potential parameter identification issues that may arise

in some experimental situations. We do so by analysing the observed fisher

information matrices and correlation structures between parameters. The

log-likelihood surfaces resulting from the PSHMM are also explored. We

then investigate the large sample properties, with particular reference to

consistency, of the PSHMM parameter estimates. Simulation studies form

the basis of the analyses presented in this chapter.

In Chapter 3, we use the PSHMM to derive the exact distribution of the

number of localisations a single fluorophore makes during an experiment,

and observe that this distribution is parametrised by the unknown photo-

switching rates. Here, we also derive its probability generating function (pgf)

and first two moments. Using this, the distribution of the total number of

localisations Nl made from an unknown number of M independent fluoresc-

ing molecules can be (computationally) recovered by an application of the

fast Fourier transform (FFT). Subsequently, given any prior knowledge of

M , the (posterior) distribution of M given Nl can be easily obtained. We

show through both simulated and real data, that the mode of the resulting

distribution can be used as an accurate molecular counting tool.
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In Chapter 4, we describe a pure birth spatio-temporal point process that

characterises fluorescing molecules that appear and blink in an experiment.

Here, we construct a state-space model relating the underlying and unknown

set of molecular positions with observation sets collected across time, from

which it is observed that the birth and detection probabilities of individual

fluorophores in any one frame, can be calculated as deterministic functions

of the underlying photo-switching parameters. We subsequently derive the

full Bayes filter for this model which is necessary for inference. From this,

we utilise a suitable MCMC algorithm which is used to recover the unknown

number of molecules, their true positions and the photo-kinetic model that

best represents their intrinsic photo-switching properties. The utility of this

method will be presented through simulation studies and an application to

a real dataset.

In Chapter 5, we conclude by discussing directions for future work and the ap-

plicability of the material presented in this thesis to fluorescence microscopy

experiments that first give rise to much larger datasets than those considered

here and, second, are conducted via other microscopy techniques.

0.3 Publications

This thesis contains work that has been published or submitted for publi-

cation. Specifically, the material in Chapters 1 and 2 have been published

as a paper entitled “A hidden Markov model approach to characterizing

the photo-switching behavior of fluorophores” Patel et al. (2019). Permis-

sion has been given to use the article in this thesis, as described in the

copyright statement in Section A.1 of Appendix A. The material in Chap-

ter 3, cited as Patel et al. (2019), is available as a preprint at https:

//www.biorxiv.org/content/10.1101/834572v1, and has been submitted
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1
Photo-Switching Models

1.1 Introduction

Recent advances in Single Molecule Localisation Microscopy (SMLM) have

enabled accurate resolvement of numerous biological samples’ structures,

many of which being imaged at lateral resolutions of between ten and thirty

nanometres. The quality of the resolved images, however, is strongly de-

pendent on the photo-switching properties of the fluorophore used. While

longer On states provide a greater number of photons being recorded by the

camera, which in turn leads to greater precision in localising spatially iso-

lated fluorophores (Ober et al., 2004, Ram et al., 2012, Thompson et al.,

2002, Rieger and Stallinga, 2014), the increased random occurrence of fluo-

rophores simultaneously occupying the (photon emission) On state within a

diffraction limited spot can lead to significant imprecision, missed events and

unwanted artefacts (Van de Linde et al., 2010, Nieuwenhuizen et al., 2015).

Thus, a careful choice of fluorophore and the environment used to promote

photo-switching, which is controlled by the buffer solution and illumination

intensity, must be made for the intended application. This is particularly

important in live-cell applications, when considerations must be made for
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temporal resolution and reduced laser intensities.

To inform the choice of fluorophore with its environment, and aid the devel-

opment of novel fluorophores, accurate characterisation of the photo-kinetic

model of the fluorophore, together with estimation of photo-switching rates

(the rate at which fluorophores transition between On and dark states) is

required (Dempsey et al., 2011, Lehmann et al., 2016). Further, accurate

knowledge of the photo-switching characteristics could be employed to max-

imise resolutions achieved using advanced analytical methods (for example

in 3B analysis (Cox et al., 2011) and DeconSTORM (Mukamel et al., 2012)),

and improve the performance of molecular counting techniques (Rollins et al.,

2014, Lee et al., 2012).

Modelling photo-switching
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(a) Photo-kinetic model and corresponding state transition diagram.
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Figure 1.1: Common models used to describe the continuous time photo-switching dynam-
ics of a fluorophore with homogeneous transition rates.

Several attempts have been made to model the kinetic schemes of fluo-

rophore photo-switching and estimate the corresponding photo-switching
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rates. These kinetic schemes, as is common across single molecule biophysics,

are characterised by Markovian transitions between a finite set of discrete

states and are therefore ideally suited to being modelled as continuous time

Markov processes. In Figure 1.1 are four models for photo-switching fluo-

rophores. The first, 1.1a, depicts a typical kinetic model, accompanied by

the state-space diagram we will adopt in this chapter. This model contains a

photon emitting On state 1 (involving rapid transitions between the excited

state S1 and ground state S0 via the emission of a photon), two temporary

dark states 0 and 01 (the triplet state, T1 and the redox states, F+ and

F−) and an absorption state 2 (BF/BT0/BS0) which in this application is

known as the photo-bleached state. Then in Figures 1.1b-1.1d are three fur-

ther common state space models. Figure 1.1b portrays a photo-switching

model with a simple two state {On(1) Dark(0)} structure. Models of this

type are suitable for super-resolution methods including point accumulation

for imaging in nano-scale topography (PAINT) and DNA-PAINT (Sharonov

and Hochstrasser, 2006, Jungmann et al., 2010). Figure 1.1c depicts a model

that incorporates an absorbing state 2. This form of photo-switching fol-

lowed by photo-bleaching describes a first approximation to the behaviour

that occurs spontaneously in a number of organic fluorophores and post-

activation of photo-activatable proteins (Van de Linde and Sauer, 2014, Ha

and Tinnefeld, 2012, Vogelsang et al., 2010). Figure 1.1d considers a model

in which three distinct dark states are hypothesised, which in some cases is

a necessary extension to the single dark state model (c), for instance when

very rapid imaging is used (Lin et al., 2015).

The challenge comes in selecting the correct model and estimating the tran-

sition rates of the continuous time Markov process {X(t) : t ∈ R≥0} from

an observed discrete-time random process {Yn : n ∈ Z>0}. Here, R≥0 and

Z>0 denote the non-negative real numbers and positive integers, respectively.

Typically, {Yn} is derived from a sequence of images (frames) with Yn cor-

responding to the observed state of the molecule in the nth frame. This

is formed by an exposure of the continuous time process {X(t)} over the

time-interval [(n − 1)∆, n∆), where ∆ is the frame length. Process {Yn}
can either be a sequence of photon fluxes associated with that molecule for
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each frame (Figure 1.2a), or a simple sequence of 1s and 0s indicating if the

molecule was detected in the frame or not (Figure 1.2b). In all cases, the

observations are subject to the effects of noise and instrument limitations.

Essential to the subsequent analysis, therefore, is the ability to account for

missed state transition events due to noise and the temporal resolution of

the data acquisition, as well as the detection threshold used to determine

the state of the system (Figure 1.2c). Similar problems occur in other areas

of biophysics, where estimating transition rates of an underlying continuous

time Markov process must be inferred from an observed discrete time signal.

In particular, ion-channels have formed the focus of much work (Colquhoun

and Hawkes, 1981, Qin and Li, 2004, Rief et al., 2000), including methods

that attempt to account for missed events (Qin et al., 1996, Colquhoun et al.,

1996, Hawkes et al., 1990, 1992, Epstein et al., 2016). However, the mecha-

nism by which the observed signal is obtained and processed from the raw

signal is fundamentally different to that of fluorescence microscopy imaging.

Up until now, methods for estimating photo-switching transition rates in

fluorescence microscopy are limited. The method in Lin et al. (2015) in-

volves defining {Yn} to be the sequence of 1s and 0s and extracting the dwell

times, namely the durations when Yn is in the On state and when it is in its

dark states. Assuming these dwell times to be exponentially distributed (or

equal in distribution to a sum of exponentially distributed random variables

in the case of multiple dark states), maximum likelihood estimates of the

transition times are then computed. This method, termed here as exponen-

tial fitting and given a detailed discussion in Section 1.E of Appendix 1, has

two limitations. Firstly, it does not correctly account for the effect of the

imaging procedure on the stochastic structure of the discrete time process.

Secondly, it does not allow for the photo-bleached (absorbing) state, which

must be identified and accounted for by truncation of the data to the last

observed On state. This is especially troublesome as, to an observer, it is

indistinguishable from a temporary dark state. This method therefore results

in the absence of estimates for the photo-bleaching rate(s) and can lead to

significantly biased estimates of the transition rates between On and dark

states.
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Figure 1.2: (a) A simulated intensity signal of a fluorophore across time. Each measure-
ment corresponds to the intensity in a frame. 7500 frames were recorded over 250 seconds
at a rate of 30 frames per second. (b) Close up of the signal over the time window of 35s to
55s. In red is the observed signal {Yn} indicating if the fluorophore was detected in a partic-
ular frame. (c) A further close up of the signal showing intensity read-outs for independent
frames. The true, hidden photon emitting On state of the molecule is also indicated, demon-
strating how sub-frame length photon emitting events (such as the event at 38.37s) can be
missed due to noise or the temporal resolution of the data acquisition.

Hidden Markov models (HMMs) are used widely across scientific and engi-

neering disciplines to relate a sequence of observations, called emissions, to

the states of an unobserved (hidden) Markov process, the target of inference.

Their use is particularly prevalent in image processing, where the observa-

tions are a sequence of images in time and it is commonly assumed that each

image is dependent only on the state of the hidden process at the time at

which it is observed. Such an approach has been proposed for this problem

in Greenfeld et al. (2015), where the hidden process is a discretised version of

{X(t)}. Here, they let {Yn} be the sequence of photon-fluxes such that it is

a standard (first-order) HMM with Poisson emissions. They then implement

the Baum-Welch algorithm (Baum and Petrie, 1966, Baum and Eagon, 1967,

Baum and Sell, 1968, Baum et al., 1970) to estimate the transition proba-
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bilities of the discretised process and use an approximation to obtain the

transition rates of the continuous time process {X(t)}. In doing so, they ac-

knowledge that missed events will heavily bias rate estimates. Furthermore,

their model is also unable to deal with the photo-bleached state.

1.1.1 Chapter summary

In this chapter, we provide two important contributions. Firstly, in Section

1.2, by considering a general model for {X(t)} that includes d + 1 (with

d ∈ Z≥0) dark states and a photo-bleached state, we rigorously formulate

the discrete time stochastic process {Yn} that indicates whether a molecule

is detected in each frame. A crucial part of this formulation is recognising

that an image is not formed from an instantaneous sampling of the true

state, as is usually assumed in image processing, but is instead formed by

exposing a camera sensor over a time interval of length ∆. That is to say,

Yn is not dependent on just X(n∆), but instead on the integral (i.e. all

values) of {X(t)} over the interval [(n − 1)∆, n∆). Taking consideration of

noise and instrument sensitivity, we fully account for missed events and give

important results on the stochastic structure of {Yn}, including showing it

is non-Markovian. In Section 1.2.3, we develop the Photo-switching HMM

(PSHMM) for {Yn}, where we first implement a time discretisation scheme

on the hidden Markov process {X(t)}. Crucially, as discussed above, correct

understanding of the imaging procedure dictates two key properties. Firstly,

Yn depends on both the current (end of frame) and previous (beginning of

frame) hidden states, X((n− 1)∆) and X(n∆), respectively. Secondly, this

HMM possesses emission probabilities that are dependent on the static pa-

rameters of the hidden process state transition rates that we ultimately wish

to estimate. This coupled behaviour renders traditional expectation maximi-

sation (EM)-type methods designed for parameter estimation in decoupled

HMMs (e.g. Baum et al. (1970)) inappropriate. We therefore make the novel

step of introducing what we call transmission (transition-emission) matrices

that incorporate this coupling between transition and emission probabilities

by capturing all the dependencies in the model.
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In Section 1.3, we take time to carefully derive the form of the transmission

matrices that are required for the PSHMM, under any model d ∈ Z≥0. This

section begins with a brief overview outlining the key mathematical con-

cepts, with special reference to multivariate counting processes, which will

be used in the derivation. We then describe the methodology to compute

transmission probabilities when the hidden signal X(∆) 6= 1 and X(∆) = 1,

respectively, with subsequent unification of these two cases to provide ex-

pressions for the transmission matrices. An algorithm to computationally

recover these matrices is also provided. Although it is shown that in general,

the form of these matrices cannot be provided in closed form, in Section

1.C of Appendix 1, we derive and provide explicit forms for the transmission

matrices under the special case of a single dark state d = 0.

The second contribution of this chapter is to propose novel methodology for

estimating the state transition rates of {X(t)} under this correct treatment

of the imaging procedure. In Section 1.4, for a given photo-switching kinetic

model, we adapt the well known forward-backward algorithm Levinson et al.

(1983) to compute the likelihood of observations of the PSHMM, which relies

on the transmission matrices previously constructed. Through numerical op-

timisation procedures, we are able to compute maximum likelihood estimates

of the transition rate parameters for the continuous time process {X(t)} that

we wish to draw inference on. In the case of an unknown kinetic model, we

propose the use of the Bayesian information criterion (BIC) for selecting the

best suited model from a set of proposals, thus also providing a powerful

tool for chemists wishing to infer the number of quantum states a particular

fluorophore can exist in. In this section, we also provide extensive empir-

ical analysis of the proposed method. In Section 1.5.1, simulation studies

that compare this new estimation scheme to the exponential fitting method

on a range of photo-switching models demonstrate significant improvements

in both the bias and the variance of the rate estimates. We further show

the BIC performs accurate model selection when presented with a range of

model proposals. Finally, in Section 1.6, the estimation scheme presented in

this chapter is applied to the Alexa Fluor 647 data originally analysed by

the exponential fitting method in Lin et al. (2015), consistently selecting the
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hypothesised three temporary off-state model (Figure 1.1d) and revealing a

clear dependence between laser intensity and key transition rate parameters.

1.2 The Photo-Switching Hidden Markov Model

The true photo-switching behaviour of the fluorophore is a continuous time

stochastic phenomenon. However, an experimenter can only ever observe a

discretised manifestation of this by imaging the fluorophore in a sequence

of frames. These frames are regarded as a set of sequential exposures of

the fluorophore and the observed discrete time signal indicates whether the

fluorophore has been observed in a particular frame. It is the continuous time

process on which we wish to draw inference, based on the observed discrete-

time process indicating whether the fluorophore was observed in a frame. In

this section we first present the continuous time Markov model of the true

(hidden) photo-switching behaviour, and then derive the observed discrete

time signal, together with key results on its statistical properties. Using a

state-space representation relating observations with this hidden signal, we

then formulate the PSHMM.

Hidden Markov models, first presented in Baum and Petrie (1966), relate a

sequence of observations to the states of an unobserved or hidden Markov

chain. The aim of building a hidden Markov model (HMM) is to allow

inference on the hidden process using these observations. In its simplest

form, an HMM assumes the propagation of both state and observed se-

quences to be in discrete time, and a general first order HMM assumes

that the observation process {Yn : n ∈ Z>0} is related to a hidden first

order Markov Chain {Xn : n ∈ Z>0} via an emission probability distribu-

tion B := (B)i,j = P(Yn = j|Xn = i), considered to be fully independent of

the static parameters that characterise the probability distribution of state

transitions P := (P )i,j = P(Xn = j|Xn−1 = i). In this setting we say B and

P are decoupled. For a sequence y1, . . . , yN of observations from this model,

the Baum-Welch re-estimation algorithm (Baum and Petrie, 1966, Baum and

Eagon, 1967, Baum and Sell, 1968, Baum et al., 1970) is an Expectation Max-

imisation (EM) type method that utilises the forward-backward algorithm
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(see Levinson et al., 1983, for details) to optimise the likelihood function and

compute maximum likelihood estimates of νX (the probability mass of X0),

B and P . This in turn can be used to estimate parameters of the emission

and state transition probabilities. When the hidden Markov process and/or

the observation process are of higher order, the HMM can be transformed

to a general first order process (Du Preez, 1998, Lee and Lee, 2006, Ching

et al., 2003) and Baum-Welch can be applied in the usual way. Readers are

directed to MacDonald and Zucchini (1997) for a comprehensive review.

Whilst standard HMMs have been extensively studied and are most fre-

quently used in applications, the rigid framework of being in discrete time

with emission probabilities decoupled from state transition probabilities is

not always suitable, as we will now show is the case for images formed by

exposures over a time interval. Here, we take time to carefully formulate

the HMM suitable for this application, presenting what we call transmission

(transition-emission) matrices to capture the dependencies in the model.

1.2.1 Continuous time signal

We model the true photo-switching effect of the fluorophore as a continuous

time Markov process, {X(t) : t ∈ [−T ∗,∞)} with discrete state space SX .

This is a stochastic process which satisfies the Markov property

P(X(tn) = in|X(tn−1) = in−1, . . . , X(t0) = i0) = P(X(tn) = in|X(tn−1) = in−1),

for any sequence of times −T ∗ ≤ t0 < t1 < · · · < tn < ∞ and any sequence

of states ij ∈ SX for j = 0, . . . , n.

Remark 1. In (d)STORM, the experiment begins at time −T ∗. At this

time, all fluorophores are in the photon-emitting state 1 and a buffer period

of time T ∗ is needed to allow the majority of these molecules to photo-switch

to a metastable dark state. While images are collected within the period

[−T ∗, 0), these are subject to wide-field image diffraction limitations due to

extensively high signals produced by molecules occupying the On state. For

this reason, all experiments conducted under these techniques discard the first
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images taken within this buffer period.

In this thesis, we consider a general model for {X(t)} that can accommo-

date the numerous mechanisms of photo-switching utilised in (d)STORM.

Specifically, this model consists of a photon emitting (On) state 1, d+ 1 non

photon emitting (dark/temporary off) states 00, 01, . . . , 0d, where d ∈ Z≥0,

and a photo-bleached (absorbing) state 2. We denote the state 00 ≡ 0 for the

d = 0 case of a single dark state. The model, illustrated in Figure 1.3, allows

for transitions from state 1 to the multiple dark states (from a photochemi-

cal perspective, these can include triplet, redox and quenched states). These

dark states are typically accessed via the first dark state 0 (reached as a re-

sult of inter-system crossing of the excited S1 electron to the triplet T1 state;

see Figure 1.1a). Further dark states 0i+1, i = 0, . . . , d− 1, are accessible by

previous dark states 0i (by, for example, the successive additions of electrons

forming radical anions (Van de Linde et al., 2010)). We allow the On state

1 to be accessible by any dark state and we consider the most general model

in which the photo-bleaching state 2 is accessible from any combination of

other states (Vogelsang et al., 2010, Van de Linde and Sauer, 2014, Ha and

Tinnefeld, 2012).

The state space of {X(t)} is SX = {0, 01, . . . , 0d, 1, 2} and is of cardinality

d+ 3. We denote λij to be the transition rate between states i and j and µi

to be the photo-bleaching rate from state i to 2, where i, j ∈ S̄X := SX \{2}.

The generator matrix for {X(t)} is therefore given as

G =



−σ0 λ001 0 0 0 0 . . . λ01 µ0

0 −σ01 λ0102 0 0 0 . . . λ011 µ01

0 0 −σ02 λ0203 0 0 . . . λ021 µ02

...
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . −σ0d λ0d1 µ0d

λ10 0 0 0 0 0 . . . −σ1 µ1

0 0 0 0 0 0 . . . 0 0


, (1.1)

where σ0d = λ0d1+µ0d , σ1 = λ10+µ1 and when d > 0, σ0i = λ0i0i+1
+λ0i1+µ0i ,

for i = 0, . . . , d − 1. For brevity, we will specifically refer to the positive
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elements of G as λG, the vector of photo-switching and photo-bleaching rates.

For full characterisation, we define the initial probability mass of {X(t)} at

the beginning of imaging (this is the probability mass over the states of X(0))

as νX :=
(
ν0 ν01 . . . ν0d ν1 ν2

)>
with

∑
j∈SX νj = 1, and is in general

unknown.

Remark 2. It is important here to clarify that νX is different from the

initial probability mass of {X(t)} at the beginning of the experiment (this is

the probability mass over the states of X(−T ∗)), which is denoted as

ν∗X :=
(
ν∗0 ν∗01

. . . ν∗0d ν∗1 ν∗2

)>
,

with
∑

j∈SX ν
∗
j = 1. By Remark 1, all fluorophores imaged via (d)STORM

receive an initial excitation to the On state 1, enabling the most commonly

occurring probability mass vector ν∗X in practice to be such that ν∗1 = 1.

Remark 3. The formulation of {X(t)} in (1.1) is also suitable for modelling

the photo-switching behaviour of molecules imaged in PALM. In these experi-

ments, all fluorophores initially occupy the inactive state 01 before transition-

ing into the On-dark cycle between states 1 and 0, and finally photo-bleaching

into state 2. In this situation, the d = 1 model can be applied, with ν∗01
= 1

and the rate λ001 set to zero.

In this thesis, we will refer to specific sub-models (e.g. those presented in

Figure 1.1b - 1.1d), of the full model shown in Figure 1.3 in the form Md
A.

Here, d is the number of multiple dark states beyond the 00 state that is

present in all models, and A ⊆ S̄X (with cardinality |A|) denotes the set of

states from which the photo-bleaching state 2 is accessible. For the three

classical models presented in Figure 1.1: model (b) is M0
∅: the d = 0 case

where µ0 = µ1 = 0, model (c) is M0
{0,1}: the d = 0 case where µ0, µ1 > 0,

and model (d) is M2
∅: the d = 2 case where µ0 = µ01 = µ1 = 0.
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Figure 1.3: General d+ 3 state (d ∈ Z≥0) model of a fluorophore.

1.2.2 Discrete time observations

Having presented the continuous time model for the true photo-switching

behaviour, we will now introduce the model for the observed discrete time

process and show how the transition rates given in (1.1) are not amenable to

direct estimation.

The imaging procedure requires taking a series of successive frames. Frame

n is formed by an exposure over the time interval [(n − 1)∆, n∆), where

n ∈ Z>0. The constant ∆ corresponds to the exposure time for a single frame,

also known as the frame length. We define the discrete time observed process

{Yn : n ∈ Z>0}, with state space SY = {0, 1}, as Yn = 1 if the fluorophore

(characterised by {X(t)}) is observed in frame n and equal to 0 otherwise.

For the fluorophore to be observed in the time interval [(n − 1)∆, n∆) it

must be in the On state 1 for a time greater than δ ∈ [0,∆). The value of

δ is unknown and is a result of background noise and the imaging system’s

limited sensitivity. We note that if {X(t)} exhibits multiple jumps to state

1 within a frame, then a sufficient condition for observing the fluorophore is

that the total time spent in the On state exceeds δ. The δ = 0 case is the

idealistic scenario of a noiseless system and perfect sensitivity such that the

fluorophore is detected if it enters the On state for any non-zero amount of

time during the exposure time ∆.
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Figure 1.4: Illustration of how the states for Yn derive from the process X(t)

We formally define the (deterministic) observed process as

Yn = 1[δ,∆)

(∫ n∆

(n−1)∆

1{1}(X(t)) dt

)
, (1.2)

where 1A(·) is the indicator function such that 1A(x) = 1 if x ∈ A and is

zero otherwise. Figure 1.4 illustrates the manifestation of the discrete time

signal {Yn} from the continuous time signal {X(t)}.

Importantly, Theorem 1 shows that the observation process {Yn} does not

exhibit the Markov property (of any order) for any d ∈ Z≥0, and for any

∆ and δ such that ∆ > δ ≥ 0. The non-Markovianity excludes classical

inference methods and motivates the use of a Hidden Markov Model (HMM),

with a likelihood based approach for estimating the unknown parameters of

the model.

Theorem 1. Consider the set of processes {X(t) : t ∈ R≥0} defined from all

models Md
A, where d, the number of multiple dark states, takes any value in

Z≥0 and A is any subset of S̄X := SX \ {2} = {0, 01, . . . , 0d, 1}, denoting the

set of states the photo-bleaching state 2 is accessible from.

Then fixing ∆ > 0 and any δ ∈ [0,∆), the process {Yn : n ∈ Z>0} generated

by {X(t) : t ∈ R≥0} as defined in (1.2) from all modelsMd
A, is not a Markov

Chain of any order.

Proof. See Section 1.A of Appendix 1.
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The inference problem

The inference problem is two-fold. Firstly for a given model (with a fixed

number of multiple dark states d) that yields a finite length realisation of

{Yn}, the aim is to estimate the vector of unknown parameters

θ(d) =
(
λG νX δ

)>
. (1.3)

Here, under model Md
A, θ(d) takes values in the parameter space

Θ(d) = R2(d+1)+|A|
>0 × Sd+3 × [0,∆),

where Sd+3 denotes the d+ 3-dimensional simplex of probability vectors.

Beyond this, it may be the case that the true model (characterised by its

number of dark states) is unknown and may need to be selected in addition

to estimating the unknown parameters. In order to tackle these problems, we

formulate the likelihood function of imaging observations given θ(d), which

can be derived from a HMM construction that we now present.

1.2.3 Characterising photo-switching behaviour

Here we build an HMM for our observation process {Yn}, which we call

the Photo-switching hidden Markov model (PSHMM). The first immediate

reason as to why the standard set-up outlined above is inappropriate for

this application is because the hidden Markov process {X(t)} evolves in

continuous time. To deal with this, we need to adopt a time-discretisation

scheme for the hidden process. Analogously to Liu et al. (2015), we state

that {X(t)} propagates in ∆-separated discrete time steps according to the

transition probability matrix P∆ = eG∆, where G is given in (1.1). Our

hidden process is therefore now represented by the discrete time Markov

chain {X(n∆) : n ∈ Z≥0}.

When Yn depends solely on X(n∆) (see Figure 1.5a) and the corresponding

emission matrix B := (B)i,j = P(Yn = j|Xn = i) is decoupled from P , a con-
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X(t)

t0

1

∆ 2∆ 3∆

X(0) X(∆) X(2∆) X(3∆)

Y0 Y1 Y2 Y3

(a)

X(t)

t0

1

∆ 2∆ 3∆

X(0) X(∆) X(2∆) X(3∆)

Y1 Y2 Y3

(b)

Figure 1.5: Illustration of the HMM set-up. (a): Traditional HMM where the observed
state is dependent on the current hidden. (b): Our HMM where the observed state depends
on both the current and past hidden states.

tinuous time EM algorithm (Liu et al., 2015) analogous to the Baum-Welch

can be used to estimate νX , B and P . However, this will be inappropriate

in our setting for two related reasons. Firstly, we have shown in Section

1.2, specifically Equation (1.2), that exposing images over a non-zero length

of time means Yn depends on the full path of {X(t)} within the interval

[(n − 1)∆, n∆). To correctly deal with this it is necessary to construct the

HMM to consider dependence between Yn and both X((n−1)∆) and X(n∆)

(see Figure 1.5b). Secondly, this construction of {Yn} in (1.2) means the emis-

sion probabilities are clearly dependent on the static parameters θ(d) of the

hidden process and are therefore coupled with P . The EM procedure high-

lighted in Liu et al. (2015) requires decoupled B and P so that at each step

the quasi-likelihood can be optimised separately. To the best of our knowl-

edge, methods for dealing with coupled systems have not been dealt with in

the literature. While an EM algorithm could be used for a coupled system,

analytic forms for the update steps would in general be intractable, leading

to numerical maximisation procedures at each iteration, thereby increasing

computational complexity. We will now formally characterise the PSHMM

and provide a novel method for estimating the unknown static parameters

in the case of a coupled system.
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Formal characterisation of the PSHMM

Formally, we characterise our PSHMM with

1. an initial probability vector νX =
(
ν0 ν01 . . . ν0d ν1 ν2

)>
where

νi := P(X(0) = i) for i ∈ SX ;

2. Transmission matrices

B
(l)
∆ =



b
(l)
00,∆ b

(l)
001,∆

. . . b
(l)
00d,∆

b
(l)
01,∆ b

(l)
02,∆

b
(l)
010,∆ b

(l)
0101,∆

. . . b
(l)
010d,∆

b
(l)
011,∆ b

(l)
012,∆

...
...

...
...

. . .
...

b
(l)
0d0,∆ b

(l)
0d01,∆

. . . b
(l)
0d0d,∆

b
(l)
0d1,∆ b

(l)
0d2,∆

b
(l)
10,∆ b

(l)
101,∆

. . . b
(l)
10d,∆

b
(l)
11,∆ b

(l)
12,∆

0 0 0 0 . . . b
(l)
22,∆


, (1.4)

where

b
(l)
ij,∆ : = Pθ(d)(Yn = l, X((n+ 1)∆) = j|X(n∆) = i)

= Pθ(d)(Y1 = l, X(∆) = j|X(0) = i) i, j ∈ SX , l ∈ SY ,
(1.5)

b
(l)
22,∆ = 1{0}(l).

These transmission matrices combine the transition and emission probabili-

ties, thereby allowing us to account for a coupled system. The full mathe-

matical formulation for deriving their forms is discussed in Section 1.3 and

involves conditioning on the number of jumps from all d+1 dark states within

the interval [0,∆). From this, we use Laplace transforms and the distribu-

tions of state holding times to iteratively compute matrices that converge to

our set of transmission matrices. It should be noted here, that the forms of

these matrices are not easily tractable with respect to the parameter vector

θ(d), therefore requiring numerical approximations. However, a detailed al-

gorithm that can be implemented to recover these matrices is also presented

in Section 1.3.
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Accounting for false positive observations

Occasionally, random peaks in the background noise may exceed the thresh-

old value used to determine a fluorophore in the On state, resulting in a

false positive identification of the fluorophore. For experiments conducted

over a large enough number of frames, this false positive rate may become

significant in the observed process {Yn}.

Specifically, if ω ∈ [0, 1] denotes the probability of falsely observing a fluo-

rophore, assumed independent of the general observation process, then we

may use the updated transmission matrices

B
∗(0)
∆ = (1− ω)B

(0)
∆ (1.6)

B
∗(1)
∆ = B

(1)
∆ + ωB

(0)
∆ , (1.7)

in the PSHMM characterisation. The new parameter vector to estimate then

becomes θ(d)
ω =

(
(θ(d))> ω

)>
∈ Θ

(d)
ω := Θ(d) × [0, 1].

1.3 Derivation of transmission probabilities

In this section, we will derive the forms of the transmission probabilities that

are used as entries of the emission matrices {B(l)
∆ }1

l=0 in (1.4) needed in the

computation of the PSHMM likelihood. We will firstly provide an extensive

overview outlining all the necessary mathematical tools, namely the use of

Laplace transforms and the distributions of state holding times, that are

needed to compute these matrices for all d ∈ Z≥0.

In particular, when {Yn} is recorded over exposure times ∆ for each frame,

we will consider deriving the transmission probability function in (1.5), hold-

ing for any i, j ∈ SX = {0, 01, . . . , 0d, 1, 2} and l ∈ SY = {0, 1}. By further

describing how the state of X(∆) will change the structure of these compu-

tations, we will then delve into its technicalities on a case by case basis. In

doing so, a derivation to Algorithm 2 (provided in Section 1.B of Appendix

1) that computes the elements of the updated transmission matrices in (1.6
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- 1.7) will be provided. Finally, we will discuss that the form of transmission

probabilities when d = 0 can be derived exactly. This is an experimentally

useful and mathematically complete exercise, and is presented in Section 1.C

of Appendix 1.

On the notation we will use in this section, we will make extensive use of

the following: Firstly, SX = {0, 01, . . . , 0d, 1, 2} is maintained to be the state

space of the process {X(t)} and S̄X := SX \ {2} the state space of the

process without the photo-bleaching state 2. We let 0n and 1n denote the

(n × 1) column vectors of zeros and ones, respectively, and In to be the

n × n identity matrix, holding for any n ∈ N. To introduce sub-matrices of

matrices, we denote (A)(i1:i2),(j1:j2) to be the matrix filled with rows i1 to i2

and columns j1 to j2 of any matrix A, and (A)i1,j1 to be the (i1, j1)th entry

of A.

Secondly, we will continually refer to i ∈ S̄X as the state of X(0), j ∈ SX as

the state of X(∆) and l ∈ SY as the state of Y1, unless stated otherwise.

1.3.1 Overview

In the following, we will describe key mathematical concepts, with particular

reference to multivariate counting processes and the idea of labelling sets that

are needed to compute (1.5).

In the most general setting when d ∈ Z≥0, we compute (1.5) by conditioning

on the number of transitions made by {X(t)} between states in a labelling

set R, as stated in Definition 1, before time ∆.

Definition 1 (Labelling set (Minin and Suchard, 2007)). Let {X(t)} be a

continuous time Markov process taking values in a discrete state space SX . A

labelling set R is a set which contains tuples of ordered index pairs of the

form (p, q) ∈ R, that label transitions from state p to state q, with p, q ∈ SX .

Using an arbitrary labelling set, we now define {NR(t) : t ∈ R≥0} to be the

(univariate) counting process, which counts the number of transitions in the

labelling set R that have occurred by {X(t)} before time t. This process
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has state space Z≥0. A concrete example detailing a labelling set and its

resulting counting process is described in Example 1.

Example 1. Consider the photo-switching process {X(t)} under modelM1
SX .

We wish to define the labelling set that considers all transitions from the first

dark state 0. Using the representation in (1.3) for d = 1, when {X(t)} is in

0, it can subsequently transition to any one of the states 01, 1, 2. Therefore,

labelling all transitions from state 0 would imply (using Definition 1) that

R = {(0, 01), (0, 1), (0, 2)}.

Now consider the following path of {X(t)} over some arbitrary time t > 0:

X(t)

0

01

1

2

t

During this time, {X(t)} transitions from state 0 to state 01 twice and to

state 1 twice, with transitions indicated in black. It does not transition to

state 2 from 0 within this interval. Counting all of the transitions made

within the labelling set R before time t therefore enables NR(t) = 4.

We further define {NRn(t) : t ∈ R≥0} to be the random vector comprised of

the n ∈ Z>0 univariate counting processes NRn(t) = [NR1(t) NR2(t) . . . NRn(t)]>,

so that NRn(t) is a multivariate counting process. Here Rn := {R1,R2, . . . ,Rn}
is the set of n labelling setsR1,R2, . . . ,Rn. This process has state space Zn≥0.

For some n ∈ N, let Rij
n denote the set of labelling sets needed to compute

b
(l)
ij (discussion on choosing Rij

n will follow). We define the probabilities

qij(k,∆) = Pθ(d)(NRij
n

(∆) = k, X(∆) = j|X(0) = i)

ξij(l,k,∆) = Pθ(d)(Y1 = l|NRij
n

(∆) = k, X(0) = i,X(∆) = j),
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and write (by conditioning n times) the transmission probabilities in the form

b
(l)
ij,∆ =

∑
k∈Zn≥0

qij(k,∆)ξij(l,k,∆). (1.8)

Although we are free to choose any Rij
n , poor choices may lead to intractabil-

ity of the above probabilities. An example of a poor choice is described in

Example 2.

Example 2. Consider {X(t)} under model M1
SX . Let R1 = {(01, 1)} be

the set labelling transitions from state 01 to 1, and R2 = {(01, 2)} be the set

labelling transitions from state 01 to 2. During a path of which X(0) = 0 and

X(t) = 2, now define the set R012
2 to be comprised of these two labelling sets

so that R012
2 = {R1,R2}.

Consider the following path of {X(t)} over some arbitrary time t > 0:

X(t)

0

01

1

2

t

During this path, there are two transitions from 01 to 1 enabling NR1(t) = 2

(indicated in black) and there is one transition from 01 to 2 enabling NR2(t) =

1 (indicated in cyan). Hence, NR012
2

(t) = (2 1)>.

In the path above, we also see that there is a transition from state 0 to 1. By

definition, an observation of a fluorophore within this period is dependent on

all time pieces occupying the photon-emitting state 1 (indicated in blue). By

using R012
2 , we observe that there are two transitions from state 01 to 1 and

so there are at least two time pieces in the On state. However, the transition

from state 0 to 1 is ignored using this choice of labelling set. This means that

we cannot fully characterise an observation of a molecule using R012
2 .

We will thus now describe a method as to how one can choose Rij
n for effective

computation of (1.8).
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The first term qij(k,∆) over any Rij
n can be computed using Laplace trans-

forms. However, identifying which Rij
n is needed to compute (1.8) requires

attention to ξij(l,k,∆). When l = 1, this term describes the probability of

observing a fluorophore given the number of transitions made in Rij
n . An

observation of a fluorophore (as defined in (1.2)) is dependent on the total

time spent in the On state 1 and as such we endeavour to characterise this

time using the transitions that have occurred within the interval [0,∆).

X(t)

t0
01

02

0d

1
2

∆

(a) A path of {X(t)} when i, j 6= 1.

X(t)

t0
01

02

0d

1
2

∆

(b) A path of {X(t)} when i = 1, j 6= 1.

X(t)

t0
01

02

0d

1
2

∆

(c) A path of {X(t)} when i 6= 1, j = 1.

X(t)

t0
01

02

0d

1
2

∆

(d) A path of {X(t)} when i, j = 1.

Figure 1.6: Figures 1.6a and 1.6b consider two possible paths of {X(t)} when j 6= 1 and
show that all individual time pieces in state 1 (blue) are distinctly exponentially distributed.
Figures 1.6c and 1.6d consider two paths of {X(t)} when j = 1 and show that all but the
last individual time pieces in state 1 (blue) are exponential. The final time piece suffers from
right-censoring.

Figures 1.6a - 1.6d show four possible paths of {X(t)} within this time in-

terval. Firstly, Figures 1.6a and 1.6b highlight two paths when X(∆) 6= 1.

In Figure 1.6a when X(0) 6= 1, each of the three time pieces in state 1 are

exponentially independently and identically distributed (iid) (with scale pa-

rameter σ1), and thus the total time spent in this state is characterised by

an Erlang(3, σ1) density (truncated over the interval [0,∆)). This is also

true for the path shown in Figure 1.6b when X(0) = 1, since the memory-
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less property ensures that the first time piece still remains exponential. It

is easy to see that this property will hold for any i, j ∈ SX with j 6= 1.

Computing b
(l)
ij,∆ in this case would thus require knowledge of the number

of time pieces in the On state, or equivalently, of the number of transitions

made to state 1. This can be done by considering the sole (n = 1) la-

belling set R0 = {(0, 1), (01, 1), . . . , (0d, 1)} and setting Rij
1 = R0, for all

i ∈ S̄X , j ∈ SX \ {1}. In this case, which from herein we will refer to as Case

j 6= 1, we condition on the univariate counting process {NR0(t)} and write

(1.8) as

b
(l)
ij,∆ =

∑
k∈Z≥0

qij(k,∆)ξij(l, k,∆). (1.9)

Figures 1.6c and 1.6d highlight two paths when X(∆) = 1. In Figure 1.6c

when X(0) 6= 1, there are three time pieces in the On state, the first two of

which are iid exponentially distributed. However, since X(∆) = 1, the final

time piece, suffers from right-censoring. This is owed to the fact that {X(t)}
will still remain in the On state for an unknown time after the observation

has ceased at time t = ∆. This is also true for the path shown in Figure 1.6d

when X(0) = 1, whereby exploiting the lack of memory property ensures

that although the first three time pieces are iid exponential, the final piece is

not. In both cases, the total time spent in the On state cannot be determined

using its holding times. Nevertheless, since X(∆) = 1 (photo-bleaching has

almost surely not occurred), we can consider the holding times in each of the

dark states 00, . . . , 0d. Using similar arguments to before, the holding time

in each dark state 0p (p = 0, . . . , d) is exponentially distributed (with scale

parameter σ0p), and the sum of all times spent in state 0p is characterised

by a truncated Erlang(kp, σ0p) density, with kp ∈ Z≥0 denoting the number

of transitions made from state 0p, i.e. the number of 0p → 1 and 0p → 0p+1

(for all p 6= d) transitions over the interval [0,∆). Subtracting the sum of all

times spent in any dark state (characterised by the truncated sum of d + 1

independent but non-identical Erlang(kp, σ0p) densities) from ∆, recovers the

total time spent in the On state, as depicted in Figure 1.7.

The utilisation of d + 1 Erlang densities in this setting thus invokes con-

ditioning on a multivariate (n = d + 1) counting process Ri1
d+1. We can
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determine kp by considering the labelling sets R1
p = {(0p, 1), (0p, 0p+1)} for

p = 0, . . . , d− 1 and R1
d = {(0d, 0d+1)}. By defining the vector

k =
(
k0 k1 . . . kd−1

)>
, (1.10)

we thus consider conditioning on {NRi1
d+1

(t) = k}, using R1
d+1 := {R1

0,R1
1, . . . ,R1

d},
where we set Ri1

d+1 = R1
d+1 for each i ∈ S̄X .

This case, which we refer to as Case j = 1 allows (1.8) to be written as

b
(l)
i1,∆ =

∑
k∈Zd+1

≥0

qi1(k,∆)ξi1(l,k,∆). (1.11)

X(t)

t0

01

02

03

1
2

∆

Figure 1.7: Highlighted holding times in each dark state: 0 (red), 01 (orange), 02 (brown)
and 03 (purple) from a possible path when X(∆) = 1 and d = 3. All individual time pieces
in each dark state are distinctly exponentially distributed. Subtracting the sum of all these
(highlighted) time pieces from ∆ gives the total time spent in state 1.

We will now formally discuss the mathematical framework needed to compute

qij(k,∆) and ξij(l,k,∆) in both cases j 6= 1 and j = 1.

1.3.2 Case j 6= 1

For the j 6= 1 case, we will derive the forms of qij(k,∆) using Laplace trans-

forms and ξij(l, k,∆) using the distributions of state holding times as outlined

in Section 1.3.1.
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Computation of qij(k,∆)

In this section, we will consider using Laplace transforms to derive the form

of

qij(k,∆) = Pθ(d)(NR0(∆) = k,X(∆) = j|X(0) = i),

utilising the labelling setR0 = {(0, 1), (01, 1), . . . , (0d, 1)}. Using the infinites-

imal definition of a Markov Process, for small h > 0 so that o(h) is a function

such that limh↓0
o(h)
h

= 0, we have for any t ≥ 0 and i ∈ S̄X

qi0(k, t+ h) = (1− σ0h)qi0(k, t) + λ10qi1(k, t)h+ o(h)

qi0p(k, t+ h) = (1− σ0ph)qi0p(k, t) + λ0p−10pqi0p−1(k, t)h+ o(h) p = 1 . . . d

qi1(k, t+ h) = (1− σ1h)qi1(k, t) +
d∑
p=0

λ0p1qi0p(k − 1, t)h+ o(h)

qi2(k, t+ h) = qi2(k, t) +
d∑
p=0

µ0pqi0p(k, t)h+ µ1qi1(k, t)h+ o(h). (1.12)

The above equations can be succinctly written in matrix form. Specifically,

we consider Qt(k) to denote the (d + 2) × (d + 2) matrix such that for any

t ≥ 0,

Qt(k) =


q00(k, t) q001(k, t) . . . q01(k, t)

q010(k, t) q0101(k, t) . . . q011(k, t)

. . .
...

. . . . . .

q10(k, t) q101(k, t) . . . q11(k, t)

 . (1.13)

Moreover, we define the end-absorbed state vector as

Q̄t(k) =
(
q02(k, t) q012(k, t) . . . q0d2(k, t) q12(k, t)

)>
.

From (1.12), we have that

Q̄t(k) =

(∫ t

0

Qs(k)ds

)
µ, (1.14)
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with µ =
(
µ0 . . . µ0d µ1

)>
≡ (G)(1:d+2),d+3 as the (d + 2) vector of

photo-bleaching rates. Recovering Q̄t(k) will therefore require an expression

for Qt(k).

Lemma 2. Let {X(t) : t ∈ R≥0} be an irreducible Markov Chain over a state

space SX with cardinality n and let its generator G be such that its (i, j)th

entry is λij. Letting Qt(k) denote the matrix with (i, j)th entry qij(k, t) =

Pθ(d)(NR(t) = k,X(t) = j|X(0) = i), which counts transitions in the labelling

set R in the time interval [0, t). Then the Laplace transformed matrix (for

all k ∈ Z≥0) Fs(k) =
∫∞

0
e−stQt(k)dt takes the form

Fs(k) = (sIn −GR̄)−1
(
GR(sIn −GR̄)−1

)k
. (1.15)

Here GR ∈ Rn×n is the matrix with (i, j)th entry λij1R((i, j)) and GR̄ =

G−GR.

Proof. See Minin and Suchard (2007).

A matrix differential Equation for Qt(k) and its Laplace transformed matrix

Fs(k) =
∫∞

0
e−stQt(k)dt can be obtained by leveraging the result from Minin

and Suchard (2007) given in Lemma 2. In particular, the result on Fs(k) in

(1.15) requires {X(t)} to be irreducible on its state space. Although this is

not true for our process, it is not difficult to see that {X(t)} is irreducible

on S̄X . Therefore, in order to use (1.15), we can use the sub-Markovian

generator of {X(t)}: GS ≡ (G)(1:d+2),(1:d+2) which is a (d+2)×(d+2) matrix

gained by deleting the (d + 3)th row and column from the generator G in

(1.1)∗. We define GS,R0 to be the (d + 2) × (d + 2) matrix filled with the

transition rates only in the labelling set of interestR0. GS,R0 thus has (i, j)th

entry

(GS,R0)i,j :=

λ0i−11 for i = 1, . . . , d+ 1, j = d+ 2

0 otherwise.

∗To avoid division by zero, in the case where σp = σq for some or all p 6= q ∈ S̄X , we
must replace all such σp with σq in the diagonal entries of G.
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Letting GS,R̄0 = GS−GS,R0 , we use Lemma 2 to obtain that for any k ∈ Z≥0,

Fs(k) = (sId+2 −GS,R̄0)−1
(
GS,R0(sId+2 −GS,R̄0)−1

)k
. (1.16)

Recovering Qt(k) now follows from the inverse Laplace transform Qt(k) =

L−1
s [Fs(k)](t). Minin and Suchard (2007) explains that a sufficient condi-

tion for obtaining a closed form expression is that GS,R0 and GS commute.

Nonetheless, the non-commutative properties of GS,R0 and GS, coupled with

the difficulties in attempting to gain Qt(k) by brute-force, leave its form to

be obtained computationally. Obtaining qij(k,∆) for all k ≥ 1 thus requires

evaluating a numerical approximation of Q∆(k).

Remark 4. When k = 0, Q∆(0) = eGS,R̄0∆. To compute, Q̄∆(0), we note

from Van Loan (1978) that Q̄∆(0) =
(∫ ∆

0
eGS,R̄0sds

)
µ = (eA∆)(i1:i2),(i2+1,i3)µ

with i1 = 2d+5, i2 = 3(d+2), i3 = 4(d+2); A =

[
A1 02(d+2)0

>
2(d+2)

02(d+2)0
>
2(d+2) A2

]
,

A1 =

[
−G>

S,R̄ Id+2

0d+20
>
d+2 −G>S,R̄

]
and A2 =

[
GS,R̄ Id+2

0d+20
>
d+2 0d+20

>
d+2

]
.

Computation of ξij(l, k,∆)

In this section, we will relate {X(t)} to a renewal sequence. This allows us to

characterise the distribution of waiting times for computation of ξij(l, k,∆).

This construction, which we define as the photo-switching alternating renewal

process (PSARP) is described in Definition 2.

Definition 2. Let U = (U0, U1, . . .) denote the successive lengths of time

{X(t)} is in the On state 1 and let D = (D0, D1, . . .) denote the successive

lengths of time that the process is not in state 1 before photo-bleaching. We

define the photo-switching alternating renewal process (PSARP) as

being characterised by the sequence of iid random vectors Γ, where

Γ =

((U0, D0), (U1, D1), . . .) if X(0) = 1

((D0, U0), (D1, U1), . . .) if X(0) /∈ {1, 2}.
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A “renewal” can thus be thought of as returns to the On state if X(0) = 1

or to a dark state if X(0) /∈ {1, 2}. In particular, for n ∈ Z≥0, defining

Rn = Un+Dn, describes a renewal process with inter-arrival times R0, R1, . . ..

For full characterisation, we need to consider the distributions of {Un} and

{Dn}. Clearly each Un
iid∼ exp(σ1). To deal with {Dn}, we let {Jn : n ∈ Z≥0}

be a discrete valued stochastic process on the state space SJ = {0, 1, . . . , d},
which counts the number of jumps between dark states (0p → 0p+1 p =

0, . . . d− 1) during the nth renewal. We have that

D0|J0
d
=


∑J0

s=0D
s
0 if X(0) = 1∑J0

s=pD
s
0 if X(0) = 0p p = 0, . . . , d,

and for all n ≥ 1 that Dn|Jn
d
=
∑Jn

s=0D
s
n. Here, each Ds

n
iid∼ exp(σ0s) and

d
=

denotes equivalence in distribution.

Once Y1 has been recorded, {X(t)} continues after time ∆ without obser-

vation. Section 1.3.1 explains that while the time taken between the final

jump made by {X(t) : t ∈ [0,∆)} (or from 0 if no transitions have occurred)

and its next transition is not necessarily exponentially distributed, the first

time piece U0 or Dp
0 (as defined in Definition 2) for some p = 0, . . . , d, re-

mains exponential. If X(0) /∈ {1, 2}, X(∆) 6= 1 and NR0(∆) = k, then there

are exactly k time pieces in this state (U0, U1, . . . Uk−1). By construction,

these k pieces are iid exponentially distributed and their sum has an Erlang

distribution with the shape and rate parametrisation Υ(k) =
∑k−1

i=0 Ui ∼
Erlang(k, σ1). Similarly, if X(0) = 1, X(∆) 6= 1 and N0(∆) = k, then there

are k + 1 exponential time pieces in the On state (U0, U1, . . . , Uk−1, Uk) and

the total time spent in state 1 is governed by Υ(k + 1). Since Y1 = 0 if and

only if the total time spent in the On state within the interval [0,∆) is less
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than or equal to δ, for k ∈ N, i ∈ S̄X and j 6= 1 we have

ξij(0, k,∆) = Pθ(d)(Υ(k + 1{1}(i)) ≤ δ|Υ(k + 1{1}(i)) ≤ ∆)

=
1−

∑k+1{1}(i)−1

m=0
(σ1δ)m

m!
e−σ1δ

1−
∑k+1{1}(i)−1

m=0
(σ1∆)m

m!
e−σ1∆

(1.17)

ξ1j(0, 0,∆) =
1− e−σ1δ

1− e−σ1∆
(1.18)

ξij(1, k,∆) = 1− ξij(0, k,∆). (1.19)

For computational purposes†, we form (analogously to Q∆(k)) the (d+ 2)×
(d + 1) matrix Ξl

∆(k) with elements gained from (1.17)-(1.19). For i, j ∈
S̄X , j 6= 1 and l ∈ SY we define

Ξl
∆(k) =


ξ00(l, k,∆) ξ001(l, k,∆) . . . ξ00d(l, k,∆)

ξ010(l, k,∆) ξ0101(l, k,∆) . . . ξ010d(l, k,∆)

. . .
...

. . . . . .

ξ10(l, k,∆) ξ101(l, k,∆) . . . ξ10d(l, k,∆)

 , (1.20)

and Ξ̄l
∆(k) to be the (d+ 2) end state vector

Ξ̄l
∆(k) =

(
ξ02(l, k,∆) . . . ξ12(l, k,∆)

)>
. (1.21)

1.3.3 Case j = 1

Using the same mathematical tools as in the case j 6= 1 (Section 1.3.2),

we derive the forms of qi1(k,∆) using Laplace transforms and ξi1(l,k,∆)

using state holding time distributions. Before doing so, we will describe an

alternative method needed to compute b
(l)
i1,∆.

†The matrix representations Q∆(k) and Ξl∆(k) are used in Algorithm 2 (see Section
1.B of Appendix 1) for computing transmission matrices in the form (1.4).
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Equivalent definition

For computational feasibility, we would like to reduce the number of counts

that can be made in the labelling set. Here, we will therefore seek an alter-

native method for computing the sum in (1.11).

Using the form of k in (1.10), we let k ∈ Z>0 be equal to k>1d+1: the

total number of transitions made from the dark states within the interval

[0,∆). When X(0) = i, we consider the set of feasible transitions made by

{X(t)}. In particular, on the state space S̄X , an On-Dark cycle of the form

1→ 0→ 01 → · · · → 0p for some p = 0, . . . , d is regenerated every time a dark

state transitions back to the On state. When i = 0p for some p, this cyclic

structure implies that kp ≥ kp+1 ≥ · · · ≥ kd since any subsequent dark state

to 0p can make at most the number of transitions made by its preceding state.

Using similar arguments, we also have that k0 ≥ k1 ≥ · · · ≥ kp−1 ≥ kp − 1.

When i = 0p, the set of feasible transitions, which we denote as Cik, is of the

form

Cik = {k ∈ Zd+1
≥0 : k>1d+1 = k, kp > 0, k0 ≥ . . . ≥ kp−1 ≥ kp−1 ≥ . . . ≥ kd−1},

and when i = 1, it is easy to see that C1
k ≡ C0

k .

When X(∆) = 1, we thus endeavour to compute the following form of the

transmission probabilities

b
(l)
i1,∆ =

∞∑
k=0

∑
k∈Cik

qi1(k,∆)ξi1(l,k,∆). (1.22)

Computation of qi1(k,∆)

In this section, in an analogous fashion to the computation of qij(k,∆), we

will invoke the use of Laplace transforms to derive qi1(k,∆), whereby for

k ∈ Zd+1
≥0

qi1(k,∆) = Pθ(d)(NR1
d+1

(∆) = k, X(∆) = 1|X(0) = i),
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and transitions are counted in R1
d+1 = {R1

0,R1
1, . . . ,R1

d} where for p =

0, . . . , d− 1, R1
p = {(0p, 1), (0p, 0p+1)} and R1

d = {(0d, 1)}.

Using the infinitesimal definition of a Markov process, we have for any t ≥ 0

and i ∈ S̄X

qi0(k, t+ h) = (1− σ0h)qi0(k, t) + λ10qi1(k, t)h+ o(h)

qi0p(k, t+ h) = (1− σ0ph)qi0p(k, t) + λ0p−10pqi0p−1(k− epd+1, t)h+ o(h) p = 1 . . . d.

qi1(k, t+ h) = (1− σ1h)qi1(k, t) +
d∑
p=0

λ0p1qi0p(k− ep+1
d+1, t)h+ o(h),

whereby epn denotes the pth canonical (standard) basis vector of Rn. For

s > 0, taking the limit h ↓ 0 and taking Laplace transforms reveals that

(s+ σ0)fi0(k, s) = λ10fi1(k, s) (1.23)

(s+ σ0p)fi0p(k, s) = λ0p−10pfi0p−1(k− epd+1, s) p = 1 . . . d, (1.24)

(s+ σ1)fi1(k, s) =
d∑
p=0

λ0p1fi0p(k− ep+1
d+1, s), (1.25)

with Lt[qij(k, t)](s) =: fij(k, s) =
∫∞

0
e−stqij(k, t)dt.

For k ∈ Zd+1
≥0 , this yields the recursion‡

fi1(k, s) =
λ10

s+ σ1

d∑
p=0

λ0p1

∏p−1
q=0 λ0q0q+1∏p

q=0(s+ σ0q)
fi1

(
k−

p∑
r=0

er+1
d+1, s

)
, (1.26)

where fi1(k, s) = 0 for any k /∈ Cik.

Remark 5. Using Equations (1.23) - (1.25), we can obtain the initialisa-

tions: fi1(0d+1, s) =
1{1}(i)

s+σ1
, f0p1(ep+1

d+1, s) =
λ0p1

(s+σ0p )(s+σ1)
for p = 1, . . . , d and

f11(e1
d+1, s) = λ10λ01

(s+σ0)(s+σ1)2 .

The inverse Laplace transform of (1.26), and its initialisations to recover

qi1(k, t) and thus qi1(k,∆) are left as a computational exercise.

‡To avoid division by zero, when σp = σq for any p 6= q, σp must be replaced with σq
in the Laplace transforms.
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Remark 6. When k = 0, k can only be the vector 0d+1 and hence qi1(0d+1,∆) =

0 for all i 6= 1; it is however easily seen that q11(0d+1,∆) = e−σ1∆.

Computation of ξi1(l,k,∆)

Following on from the analysis presented in sections 1.3.1 and 1.3.2, we will

in this section endeavour to compute ξi1(l,k,∆). In particular, by using the

exponential time pieces in the dark states 0 . . . , 0d, we can recover the total

time spent in state 1 by subtracting the total time spent in the dark states

from ∆.

If X(0) = i for some i ∈ S̄X , X(∆) = 1 and NRi1
d+1

(∆) = k as defined in

(1.10), we study the number of transitions k0, . . . , kd from each dark state

00, . . . , 0d. There are exactly kp exponential time pieces in each dark state

0p for p = 0, . . . , d with a total time υip(kp) characterised by an Erlang dis-

tribution. For any p, we therefore have (using the PSARP construction in

Definition 2) that υip(kp) =
∑kp

s=0D
p
s ∼ Erlang(kp, σ0p).

By defining the event Ai := {Y1 = 0|NRi1
d+1

(∆) = k, X(0) = i,X(∆) = 1},
we equivalently have

Ai =

{
d∑
p=0

υip(kp) ≥ ∆− δ
∣∣∣∣ d∑
p=0

υip(kp) ≤ ∆

}
,

so that ξi1(0,k,∆) = Pθ(d)(Ai).

By further defining σ =
(
σ0 σ01 . . . σ0d

)>
, we let Φ(k,σ) denote the

sum of d+1 independent Erlang distributions, each with shape parameter kp

and rate parameter σ0p for p = 0, . . . , d. For each i, we have
∑d

p=0 υ
i
p(kp) ∼

Φ(k,σ). If FΦ(φ|k,σ) denotes its cumulative distribution function§, we have

§FΦ(·|·, ·) can be computed in a recursive fashion using the algorithm presented in
Moschopoulos (1985).
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for k ∈ Z>0, i ∈ S̄X and k ∈ Cik

ξi1(1,k,∆) =
FΦ(∆− δ|k,σ)

FΦ(∆|k,σ)
(1.27)

ξi1(0,k,∆) = 1− ξi1(1,k,∆) (1.28)

ξ11(1,0,∆) = 1. (1.29)

1.3.4 Transmission probabilities

In this section, we will use all derived forms of qij(k,∆), qi1(k,∆), ξij(l, k,∆)

and ξi1(l,k,∆) to obtain b
(l)
ij,∆. We will describe how these probabilities in

their matrix representations can be used to gain transmissions in the form

of (1.4).

When i ∈ S̄X , j 6= 1 and l ∈ SY we can compute the inverse Laplace trans-

form of (1.16) to obtain Q0
∆(k), and therefore Q̄0

∆(k) from (1.14). Further-

more, using (1.17)-(1.19) as entries in matrices Ξl
∆(k) and Ξ̄l

∆(k) (for l ∈ SY )

as defined in (1.20) and (1.21) enables the computation of transmission proba-

bilities (1.9). Moreover, we use (1.27)-(1.29) with inverse Laplace transforms

qi1(k,∆) from (1.26) in the computation of (1.11).

For full matrix representation, we define for k ∈ Z≥0

B
(0)
∆ (k) =

[
(Q0

∆(k))(1:d+2),(1:d+1) � Ξ0
∆(k) v0

∆(k) Q̄0
∆(k)� Ξ̄0

∆(k)

0>d+1 0 1{0}(k)

]

B
(1)
∆ (k) =

[
(Q0

∆(k))(1:d+2),(1:d+1) � Ξ1
∆(k) v1

∆(k) Q̄0
∆(k)� Ξ̄1

∆(k)

0>d+1 0 0

]
,

with � denoting the Hadamard (element wise) product and where vl∆(k) for

l ∈ SY are the two (d+ 2) vectors such that

vl∆(k) =
(∑

k∈C0
k
q01(k,∆)ξ01(l,k,∆) ...

∑
k∈C

0d
k

q0d1(k,∆)ξ0d1(l,k,∆)
∑

k∈C0
k
q11(k,∆)ξ01(l,k,∆)

)>
.

Then considering the transmission matrix representation in (1.4), we have
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that each

B
(l)
∆ =

∞∑
k=0

B
(l)
∆ (k).

In practice, the above sum, for small rates and ∆, will converge extremely

quickly. At least in this practical application, computations for k ≥ 4 are

unlikely to be needed, enabling the required computational complexity to be

O(4(d+ 3)2). Nevertheless, in the case d = 0, in Section 1.C of Appendix 1,

we provide the forms of the transmission probabilities in closed form. Here,

it is shown that they can be deduced without the need of computational ap-

proximations to the corresponding inverse Laplace transforms. An algorithm

detailing all computational steps to evaluate these matrices suitable for any

d ∈ Z≥0 (any number of multiple dark states) is presented in Algorithm 2

found in Section 1.B of Appendix 1.

1.4 Inference

In this section, we derive the log-likelihood function of imaging observa-

tions using the PSHMM constructed in Section 1.2.3 and discuss a com-

putational implementation that can avoid numerical underflow. Under any

photo-switching model, we then use this log-likelihood to discuss how the

static parameters of the PSHMM can be inferred using maximum likelihood

estimation. Furthermore, we define the Bayesian Information Criterion (BIC)

as a model selection tool to pick the most likely number of multiple dark

states d. When only one experiment is conducted, we additionally describe

a bootstrapping method to gain approximate 95% confidence intervals of the

resulting parameter estimates.

1.4.1 Likelihood function

We now provide an algorithm for estimating the unknown parameters θ(d)
ω of

the PSHMM, which utilises a suitable adaptation of the forward-backward

dynamic programming algorithm (Rabiner, 1989), making use of the trans-

mission matrices in (1.4).
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Let y =
(
y1 y2 . . . yNF

)>
be the sequence of observations across NF

frames for a single photo-switching fluorophore. We define the forward-

backward probabilities as

αn,i = P
θ

(d)
ω

(Y1 = y1, . . . , Yn = yn, X(n∆) = i) n = 1, . . . , NF ,

βn,i = P
θ

(d)
ω

(Yn+1 = yn+1, . . . , YNF = yNF |X(n∆) = i) n = 0, . . . , NF − 1.

For each such n, we define the forward-backward vectors as

αn =
(
αn,0 . . . αn,0d αn,1 αn,2

)>
βn =

(
βn,0 . . . βn,0d βn,1 βn,2

)>
.

Now observe that for any n > 1 and j ∈ SX

αn,i =
∑
j∈SX

P
θ

(d)
ω

(Y1 = y1, . . . , Yn = yn, X(n∆) = i,X((n− 1)∆) = j)

=
∑
j∈SX

P
θ

(d)
ω

(Y1 = y1, . . . , Yn−1 = yn−1, X((n− 1)∆) = j) ×

P
θ

(d)
ω

(Yn = yn, X(n∆) = i|X((n− 1)∆) = j, Y1 = y1, . . . , Yn−1 = yn−1)

=
∑
j∈SX

αn−1,jPθ(d)
ω

(Yn = yn, X(n∆) = i|X((n− 1)∆) = j)

≡
∑
j∈SX

αn−1,jb
∗(yn)
ji,∆ ,

which implies that α>n = α>n−1B
∗(yn)
∆ for n = 2, . . . , NF . Similar arguments

show that α>1 = ν>XB
∗(y1)
∆ when n = 1. Additionally, we have for n < NF
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and j ∈ SX

βn−1,i =
∑
j∈SX

P
θ

(d)
ω

(Yn = yn, . . . , YNF = yNF , X(n∆) = j|X((n− 1)∆) = i)

=
∑
j∈SX

P
θ

(d)
ω

(Yn = yn, X(n∆) = j|X((n− 1)∆) = i) ×

P
θ

(d)
ω

(Yn+1 = yn+1, . . . , YNF = yNF |X(n∆) = j)

=
∑
j∈SX

βn,jPθ(d)
ω

(Yn = yn, X(n∆) = j|X((n− 1)∆) = i)

≡
∑
j∈SX

βn,jb
∗(yn)
ij,∆ ,

which implies that βn−1 = B
∗(yn)
∆ βn for n = 1, . . . , NF , with βNF = 1d+3,

the (d+ 3)× 1 vector of ones. This yields the following recursion formula

α0 = νX α>n = α>n−1B
∗(yn)
∆ n = 1, . . . , NF , (1.30)

βNF = 1d+3 βn = B
∗(yn+1)
∆ βn+1 n = 0, . . . , NF − 1.

It now follows that the likelihood of observation vector y given parameter

vector θ(d) is p
θ

(d)
ω

(y) =: L
θ

(d)
ω

(y) = α>nβn for all n = 0, ..., NF . In particular,

we have L
θ

(d)
ω

(y) = α>NF1d+3, which can be computed using the transmis-

sion matrices together with recursive computation for α>
n as indicated in

(1.30). In the situation where we have M ≥ 1 independent photo-switching

fluorophores, the log-likelihood is given by

log p
θ

(d)
ω

(Y) =: `
θ

(d)
ω

(Y) =
M∑
m=1

log
(
α>NF ,m1d+3

)
=

M∑
m=1

log
(
ν>XB

∗(y1,m)
∆ B

∗(y2,m)
∆ . . . B

∗(yNF ,m)

∆ 1d+3

)
,

(1.31)

where Y =
(
y1 y2 . . . yM

)
, yn,m is the nth observation and αNF ,m is the

forward probability vector for molecule m = 1, . . . ,M .

41



Avoiding numerical underflow

Computing (1.31) over a large number of frames NF is likely to lead to

numerical underflow. In order to circumvent this issue, we can, for each

molecule m = 1, . . . ,M and for n = 2, . . . , NF define

ᾱ>1,m = ν>XB
∗(y1,m)
∆ /c1,m c1,m = ν>XB

∗(y1,m)
∆ 1d+3

ᾱ>n,m = ᾱ>n−1,mB
∗(yn,m)
∆ /cn,m cn,m = ᾱ>n−1,mB

∗(yn,m)
∆ 1d+3,

so that
∏M

m=1

∏NF
n=1 cn,m

=
M∏
m=1

ν>XB
∗(y1,m)
∆ 1d+3

ν>XB
∗(y1,m)
∆ B

∗(y2,m)
∆ 1d+3

ν>XB
∗(y1,m)
∆ 1d+3

. . .
ν>XB

∗(y1,m)
∆ . . . B

∗(yNF ,m)

∆ 1d+3

ν>XB
∗(y1,m)
∆ . . . B

∗(yNF−1,m)

∆ 1d+3

= p
θ

(d)
ω

(Y).

Normalising the above forward-backward vectors at each time step there-

fore allows us to sequentially recover the more numerically stable `
θ

(d)
ω

(Y) =∑M
m=1

∑NF
n=1 log(cn,m). This function has a computational cost of O(NF (d +

3)3), and therefore increases linearly in time for a fixed photo-switching

model. An algorithm to compute the log-likelihood of a dataset Y for given

θ(d)
ω is presented in Algorithm 1.

Inference of θ(d)
ω is now possible through standard maximum likelihood es-

timation. Although analytic differentiation of (1.31) is not easily feasible,

maximising this function with respect to θ(d)
ω can be done either through nu-

merically approximating derivatives (e.g. via quasi-Newton methods) or by

using derivative-free optimisation, for example with the Nelder-Mead algo-

rithm. A discussion on implementing the PSHMM algorithm, with particular

attention given to the convergence of transmission matrices and choosing a

starting point for optimisation is detailed in Section 1.D of Appendix 1. A

discussion on the statistical properties of the PSHMM estimator, with special

reference to identifiability and multi-modality of photo-switching parameters,

can be found in the next chapter.
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1.4.2 Model selection

To determine the unknown number of multiple d dark states, a model se-

lection criterion can be utilised. Commonly used criteria include the Akaike

information criterion (AIC) (Akaike, 1974), which measures a model’s good-

ness of fit, and the Bayesian information criterion (BIC) (Schwarz, 1978),

which measures a model’s posterior probability. For this problem, we choose

the BIC to determine the most likely model given data Y . Although similar

to the AIC, we found that the BIC penalises model complexity more heavily

and therefore offers greater protection against over-fitting when the number

of data-points is large, as is the case when dealing with experimental imaging

data.

Specifically under modelMd
A, the BIC uses an approximation to the posterior

model probability P(Md
A|Y) ∝ P(Y|Md

A)P(Md
A). When all candidate mod-

els of this form are (apriori) equally likely, maximising the posterior model

probability given data Y is equivalent to maximising the marginal likelihood

P(Y|Md
A) =

∫
Θ

(d)
ω

`
θ

(d)
ω

(Y)π(θ(d)
ω ), (1.32)

where π(θ(d)
ω ) denotes the (apriori) distribution of the photo-switching pa-

rameter vector θ(d)
ω under model Md

A. Utilising the Weak Law of Large

Numbers (WLLN) and invoking a flat prior on θ(d)
ω , i.e. that π(θ(d)

ω ) ∝ 1 on

Laplace’s approximation to (1.32) yields (Schwarz, 1978)

− logP(Y|Md
A) ≈ (3(d+ 2) + |A|) log(MNF )− 2`

θ̂
(d)
ω

(Y), (1.33)

where `
θ̂

(d)
ω

(Y) denotes the maximised log-likelihood using the maximum like-

lihood estimates θ̂
(d)

ω . The BIC defined in this context is exactly the right

hand side of (1.33) and can be computed among all suitable models, with the

most preferred modelMd̂
Â

being chosen as that with the smallest BIC value.
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1.4.3 Bootstrapping

When only one experiment is conducted to produce an NF ×M dataset Y ,

a single prediction θ̂
(d̂)

ω is obtained. In this circumstance, a bootstrapping

scheme can be used to gain approximate confidence intervals for each com-

ponent of θ(d̂)
ω .

In the same manner as is presented in Efron and Tibshirani (1993), we gener-

ate R (typically large) bootstrap datasets Y∗1,Y∗2, . . . ,Y∗R each consisting

of re-sampled (with replacement) columns of Y . From each dataset, we

acquire bootstrap replicated parameter estimates θ̂
(d̂)∗1
ω , θ̂

(d̂)∗2
ω , . . . , θ̂

(d̂)∗R
ω us-

ing the same PSHMM maximum likelihood procedure used to obtain θ̂
(d̂)

ω .

For 0.5 < p < 1, letting (θ̂
(d̂)∗
ω )i,(p) and (θ̂

(d̂)∗
ω )i,(1−p) be the 100 · pth and

100 · (1 − p)th empirical percentiles of the ith component of θ(d̂)
ω obtained

from (θ̂
(d̂)∗1
ω )i, (θ̂

(d̂)∗2
ω )i, . . . , (θ̂

(d̂)∗R
ω )i, a percentile bootstrap interval of length

1− 2p is given by (see Efron and Tibshirani, 1993)

[(θ̂(d̂)
ω )

i,%lo, (θ̂
(d̂)
ω )i,%up] ≈ [(θ̂(d̂)∗

ω )i,(p), (θ̂
(d̂)∗
ω )i,(1−p)].

1.5 Simulations

In this section, we provide the results of simulation studies that have been

conducted to assess and analyse the performance of the PSHMM method

as detailed in Section 1.2.3. To make the results applicable, we restrict

ourselves to realistic parameter values that typically occur in an experimental

setting¶. We begin by presenting rate estimates from the PSHMM estimator,

and compare these results to the exponential fitting estimator Lin et al.

(2015). Secondly, we apply the Bayesian Information Criterion to a range of

different datasets in order to assess its ability in selecting the correct number

of multiple dark states d.

¶Further simulation studies addressing the statistical properties of the PSHMM esti-
mator over a broader range of parameter values are presented in the next chapter.
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Algorithm 1 Compute log-likelihood `
θ

(d)
ω

(Y)

function PSHMM log likelihood(Y ,θ(d)
ω ,M,NF ,∆)

B
∗(0)
∆ , B

∗(1)
∆ ← COMPUTE TRANSMISSIONS(θ(d)

ω ,∆) . Using
Algorithm 2

l← 0
for m = 1 to M do
α← 0NF0>d+3

α[1, :]← ν>XB
∗(y1,m)
∆

C ← α[1, :]1d+3

α[1, :]← α[1, :]/C
l← l + log(C)
for n = 2 to NF do
α[n, :]← α[n− 1, :]B

∗(yn,m)
∆

C ← α[n, :]1d+3

α[n, :]← α[n, :]/C
l← l + log(C)

return l . Log-likelihood `
θ

(d)
ω

(Y)

1.5.1 Estimating rate parameters

Firstly, to test the performance of parameter estimation against the expo-

nential fitting method of Lin et al. (2015), synthetic imaging data of photo-

switching fluorophores was simulated. We begin our focus on the model

M0
{1}, since for many practical applications the life-times of further dark

(in particular the triplet (T1)) states is short relative to ∆. As such, this

dark state has been considered as part of the meta-stable On state (Ha and

Tinnefeld, 2012, Vogelsang et al., 2010). Since the predominant pathway to

photo-bleaching is via the triplet state, a simplified model can be used in

which the photo-bleaching state 2 is only accessible from state 1.

Details on the image simulation method and how the discretised state se-

quences were extracted can be found in Section 1.F of Appendix 1. Global

parameter values are also noted. The extracted state sequences were analysed

using an implementation of Algorithms 1 and 2. The resulting parameter

estimates were compared to estimates derived from the exponential fitting

method, which was extended in this study to allow for the calculation of

45



photo-bleaching rates (see Section 1.E of Appendix 1 for further details).

Table 1.3 (see Appendix 1.G) shows estimated parameter statistics over 16

image simulation studies with 100 replicates (datasets) per study under the

M0
{1} model. Rate parameters θ(0), were chosen to cover a range of observed

behaviours of organic fluorophores and fluorescent proteins (Dempsey et al.,

2011) with M = 100 fluorophores per study. The number of frames NF in

each study was adjusted to standardise the average number of transitions

predicted from θ(0). Scatter plots of these rate estimates are presented in

Figure 1.8. It is evident that the PSHHM yields estimates with much lower

bias and root mean squared errors (RMSE) when compared to the exponen-

tial fitting method, although they have a tendency to increase as transition

and photo-bleaching rates are increased. The reported empirical (2.5, 97.5)

percentile intervals contain the true parameter values across all studies for

the PSHMM method and further highlights the bias in estimates obtained

from exponential fitting.

For experimenters, the effect of imaging parameters on the performance of

the estimators is of particular interest and importance. Further simulation

studies carried out under model M0
{1} highlight the consistency in both ac-

curacy and precision of the PSHMM estimator across a range of different

experimental conditions. Figure 1.9 compares the PSHMM with exponential

fitting rate estimates when we vary the emission intensity of the fluorophores

(measured in the mean number of photons each emits when in the On state

for time ∆). Further investigation of other parameters, including the frame

length (∆), the number of frames (NF ) and the detection threshold (propor-

tional to δ) under this model, are provided in Section 1.H of Appendix 1.

Across the full range of relevant parameters tested, the PSHMM estimator

performs significantly better than exponential fitting.

To assess the accuracy of parameter estimates for the extended models d = 1

and d = 2 over fast, medium and slow switching scenarios, additional sim-

ulations were performed by directly sampling the continuous time processes

{X(t)} and extracting the observation sequences Y as in (1.2), using fixed

values of θ(d). Results from the analyses of these simulations are shown in

Tables 1.4 and 1.5 in Section 1.G of Appendix 1. While it is evident that
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Figure 1.8: Estimates of log10(λ01) and log10(λ10) simulated from model M0
{1} using both

exponential fitting (1.8a) and PSHMM fitting (1.8b) are plotted in dark yellow and pink,
respectively. True rates are plotted as black crosses. Measurement unit is per second. Esti-
mates for the photo-bleaching rate µ1, along with means, RMSEs and 2.5 and 97.5 empirical
percentiles are given in Table 1.3 (see Appendix 1.G).

the estimates for λ0d0d+1
and λ0d+11 incur greater bias as d increases, the

empirical (2.5, 97.5) percentile intervals predominantly cover true parameter

values, albeit over a larger area due to the increase in the RMSEs. As is seen

when d = 0, the exponential fitting method performs less well, yielding much

higher bias and RMSEs for particular parameter values.

Varying imaging parameters

Additionally, we analysed simulated image traces based on a range of different

scenarios for theM0
{1} model. In particular, we considered varying the frame

length ∆ (Figure 1.11), threshold (proportional to δ) (Figure 1.12), number

of frames NF (Figure 1.13) and photo-bleaching parameter µ1 (Figure 1.14)

that is presented in Section 1.H of Appendix 1. All datasets have M = 100

with T ∗ = 0, known initial probability ν∗1 = 1 and unknown false positive

rate ω > 0.

Our PSHMM method is seen to perform extremely well across all different

switching and sampling scenarios, especially in comparison to the exponen-

tial fitting method which incurs a consistent bias. It is worth noting that

we see an increase in bias of the PSHMM estimator for low frame rates and

high threshold values. This is expected as its ability to detect multiple tran-
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Figure 1.9: Top Left: Examples of single simulated frames at the indicated number of pho-
tons per frame (Appendix 1). Box-plots showing quantiles from estimates of λ01, λ10 and
µ1 from both exponential fitting (black) and PSHMM fitting (red) are plotted against in-
creasing photons per frame. NF = 9872 for all simulations. True rates given by the blue
line.

sitions within a frame is diminished. Furthermore, it is indicated that the

PSHMM estimator also exhibits a much lower variance than that from the

exponential fitting, a property which also decreases with larger M (data not

shown). Figure 1.14 finally highlights a reduction in bias with µ1, due to a

greater number of transitions between hidden states. While this bias gradu-

ally decreases with the relative number of fluorophore blinks, our method of

prediction also increases in its precision and accuracy. The low bias exhib-

ited by the PSHMM estimator is supported by the fact the true switching

rates predominantly lie within the first and third quantiles from the box plots

in Figures 1.11 - 1.14 of Section 1.H (Appendix 1), a property not wholly

matched by the exponential fitting estimates. These quantiles can be seen

to diverge, representing an increase in the variance of the estimator when ∆

and δ (Figures 1.11 and 1.12) are increased, owed to poor identification of

the true switching times within a frame. Plots from varying NF as shown in

Figure 1.13 further highlight how the bias of the PSHMM estimates is unaf-

fected in comparison to the exponential fitting. Furthermore, it is indicated

that the PSHMM estimator also exhibits a much lower variance than that
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from the exponential fitting, a property which also decreases with larger M

(data not shown). Figure 1.14 finally highlights a reduction in bias with µ1,

due to a greater number of transitions between hidden states.

1.5.2 Model selection

Using three different simulation studies, the BIC was also used to conduct

model selection from the set of proposals {M0
{1},M1

{1},M2
{1}} (i.e. under the

assumption that the photo-bleaching state was known to only be accessible

by the On state). Applying model selection to the M0
{1} dataset used to

estimate parameters in Table 1.3 of Section 1.G (Appendix 1) results in

the true state model being chosen in all (100%) cases. 100 datasets each

for d = 0, 1, 2 were generated for studies 2, 17 and 20 with ∆ = 1
50
s and

M = 300. These results presented in Table 1.1 demonstrate the accuracy of

selecting the correct model using this criterion.

Predicted → M0
{1} M1

{1} M2
{1}

True ↓

M0
{1} 100 0 0

M1
{1} 0 98 2

M2
{1} 0 1 99

Table 1.1: Confusion table showing the empirical percentage of models predicted from
three candidates: M0

{1}, M
1
{1} and M2

{1} under simulation studies 16, 19 and 20 (see Ta-

bles 1.3, 1.4 and 1.5 in Appendix 1.G), with M = 300, δ = 1
100s and ∆ = 1

50s. 100 datasets
from each study were generated and the BIC was used to select the best fitted model.

1.6 Application to Alexa Fluor 647 data

In this section we apply the PSHMM fitting method presented in this chapter

to Alexa Fluor 647 data analysed with the exponential fitting method in

Lin et al. (2015). The BIC will firstly be used to select the most likely

photo-kinetic model of the fluorophores imaged in this data, from which its

resulting rate estimates, together with bootstrapped confidence intervals, will

be presented under both methods.
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In this experiment, antibodies labelled with Alexa Fluor 647 at a ratio of

0.13-0.3 dye molecules per antibody were sparsely absorbed to a cover slip

and imaged by Total Internal Fluorescence microscopy to investigate the ef-

fect of eight different laser intensities on the photo-switching behaviour of the

Alexa Fluor 647 dye. The study contains 27 experiments with differing com-

binations of laser intensities and frame rates‖. These values, together with

the number of molecules detected and the number of frames over which they

were imaged are summarised in Table 1.2. The full details of this experiment

can be found in Lin et al. (2015).

For each photo-switchable molecule detected, the discrete observation trace

indicating if the molecule was observed in each frame, was extracted see (Sec-

tion 1.F of Appendix 1). In all experiments, the true model and its associated

parameters were unknown. Subsequently, we will show comparisons between

estimates from both the PSHMM and modified exponential fitting methods
∗∗.

Cell Laser intensity ∆−1 M NF Cell Laser intensity ∆−1 M NF Cell Laser intensity ∆−1 M NF

1 1.3519 200 275 49796 10 10.8149 800 244 29418 19 43.2597 800 617 29059
2 43.2597 800 515 29179 11 43.2597 800 493 29400 20 135.1867 800 414 29218
3 86.5195 800 425 29551 12 43.2597 800 456 29071 21 10.8149 200 340 39721
4 5.4075 200 335 49815 13 86.5195 800 425 29426 22 43.2597 800 534 29778
5 21.6299 800 437 29467 14 86.5195 800 398 28989 23 135.1867 800 454 29191
6 21.6299 800 305 29074 15 135.1867 800 422 29295 24 21.6299 200 292 39703
7 21.6299 800 290 29145 16 135.1867 800 436 29270 25 86.5195 800 443 29107
8 10.8149 800 230 29438 17 86.5195 800 554 29327 26 2.7037 200 259 49533
9 10.8149 800 230 29257 18 5.4075 200 393 39758 27 135.1867 800 440 29198

Table 1.2: A description of the Alexa Fluor 647 datasets with reference to the laser inten-
sities in kW/cm2 and frames sampled per second (or ∆−1) measured in s−1 used to char-
acterise each of the 27 cell experiments. The NF × M size of each cell’s dataset is also
included.

Initially, the BIC model selection criterion as outlined in Section 1.4.2 was

used to select the most suitable model for the data from the range of models

M0
∅, M0

{0}, M0
{1}, M1

∅, M1
{0}, M1

{01}, M
1
{1}, M2

∅, M2
{0}, M2

{01}, M
2
{02} and

M2
{1}, with the modelM2

{1} being selected on all (100%) occasions. This sup-

ports the analysis of Lin et al. (2015), who hypothesise this, albeit assuming

‖This dataset was acquired and made available for our use by Dr. Yu Lin and Prof.
Joerg Brewersdorf at Yale University.
∗∗We modified the exponential fitting algorithm used by Lin et al. (2015) to allow for

the absorption parameter (see Section 1.E of Appendix 1 for more details).
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theM2
∅ (without bleaching) model for rate estimates gained from exponential

fitting. PSHMM maximum likelihood estimates were then computed for the

estimation of θ(2)
ω =

(
λ001 λ01 λ0102 λ011 λ021 λ10 µ1 νX δ ω

)>
for each of the 27 datasets. Associated with these, 95% bootstrapped in-

tervals were computed using the method in Section 1.4.3 (R = 100 due to

computational intensity). The results are shown in Figure 1.10. Compar-

isons with exponential fitting bootstrapped re-estimates (where νX , δ and ω

are not estimable in this setting) are also shown.

The results indicate that the exponential fitting in general, predicts a much

slower switching scenario for the Alexa Fluor 647 antibodies, with many

estimates shown to be several orders of magnitude below those predicted

by the PSHMM. This resembles the conclusions reached from the results

of the simulation studies as described in Section 1.5.1 and are thought to

occur as a result of the exponential fitting method missing events within

frames. Incidentally, the higher variance of predictions from both methods

are shown to be reported at higher laser intensities, where faster switching of

fluorophores is promoted. This is especially pronounced in some particularly

large simulated confidence sets for the exponential fitting estimates of λ0102

and λ021 (see Figure 1.10).

1.7 Conclusions

In this chapter, we have formulated the most general continuous time photo-

switching model and from it, carefully defined the observation process. We

then linked it to the hidden continuous time photo-switching behaviour that

we wish to infer upon. From this, we have formulated a hidden Markov model

to link the observations to the continuous time photo-switching model. Im-

portantly, images being formed by exposing the camera over a non-zero time

interval violates the traditional assumption placed on HMMs that the emis-

sion and transition probabilities are decoupled. To tackle this, we introduced

transmission matrices that capture all the dependencies present in the model

and provided a detailed scheme for computing them for any continuous time

photo-switching model. A modification of the forward-backward algorithm
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Figure 1.10: Rate predictions and associated 95% bootstrap confidence sets are shown
for λ01, λ10, µ1, λ011, λ0102

, λ011 and λ021, for 8 different values of laser intensity (see
Table 1.2). Intervals in blue correspond to those from exponential fitting and those in red
correspond to those gained from the PSHMM. Point estimates from each of the 27 datasets
are given by diamond (PSHMM) or square (exponential).

tailored for these coupled HMMs was presented and numerical maximisation

of the computed likelihood was performed to generate accurate estimates of

the true photo-switching rates. Through a detailed simulation study, these

were compared to estimates from an existing exponential fitting method. We

found that our proposed method of parameter estimation is highly robust

to a range of simulated experimental parameters, including low signal-to-

noise ratios and fast frame rates, frequently outperforming estimates from

exponential fitting. We further found that by using the BIC, it is possible

to perform accurate model selection from a range of model proposals, thus

providing a powerful new tool for chemists wishing to infer the number of

quantum states a particular fluorophore can exist in. The model selection
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and estimation methods presented in this chapter were then applied to real

data collected from the study of Lin et al. (2015). This provided strong evi-

dence of a relationship between laser intensity and photo-switching rates and

the results support the hypothesis that Alexa Fluor 647 fluorophores have

three off-states in addition to a photo-bleached state.
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Appendix 1

1.A Proof of Theorem 1

In this section, we will prove that the observation process {Yn} as defined by

Equation (1.2) does not exhibit the Markov property (of any order). We will

show that this is true for all observations generated by the set of processes

{X(t)} defined by the number of multiple off states d ∈ Z≥0 and paths to the

photo-bleaching state 2, as is depicted in Figure 1.3. This property provides

the basis of the PSHMM inference we have presented and conducted in this

chapter.

Proof. For all d ∈ Z≥0, any λ =
(
λ01 λ001 λ011 λ0102 . . . λ0d1 λ10

)>
∈ R2d+2

>0 and any µ =
(
µ0 . . . µ0d µ1

)>
∈ Rd+2

≥0 (as characterised by the

model Md
SX ), we define for i, j ∈ SX and n ∈ N

b
(1)
ij,∆ = Pθ(d)(X(n∆) = j, Yn = 1|X((n− 1)∆) = i) (1.34)

b̄
(1)
i,∆ = Pθ(d)(Yn = 1|X((n− 1)∆) = i).

We consider El
n to be the event that l ∈ SY = {0, 1} is observed in the nth

frame, i.e. that El
n = {Yn = l}, and that F j

n is the event that X takes the

value j at time n∆, i.e. that F j
n = {X(n∆) = j}.

Fixing n ∈ Z>0, we will show that the quantity S(n), describing the proba-

bility of observing a 1 in the nth frame given observations of 1s in all previous

n−1 frames is dependent on the full history of the process {Yn} from time n =

1. Using the notation defined above, we have that S(n) = Pθ(d)(E1
n|∩n−1

i=1 E
1
i ),

with S(1) = Pθ(d)(E1
1). To obtain S(n), we condition on the events F k

n where

k ∈ S̄X , since starting a frame in the photo-bleaching state 2 would result

in no observation of the fluorophore. Using the Markov property of {X(t)}
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and Bayes’ theorem, we obtain that

S(n) =
∑
k∈S̄X

Pθ(d)(E1
n|F k

n )Pθ(d)(F k
n | ∩n−1

i=1 E
1
i )

=

(
1∏n−1

i=1 S(i)

)∑
k∈S̄X

b̄
(1)
k,∆

∑
j∈S̄X

b
(1)
jk,∆Pθ(d)(F

j
n−1 ∩ (∩n−2

i=0 E
1
i ))

 .
In the above, we can further compute that for all k ∈ S̄X

Pθ(d)(F k
n ∩ (∩n−1

i=0 E
1
i )) = Pθ(d)(F k

n ∩ E1
n−1| ∩n−2

i=0 E
1
i )Pθ(d)(∩n−2

i=0 E
1
i )

=

∑
j∈S̄X

b
(1)
jk,∆Pθ(d)(F

j
n−1| ∩n−2

i=0 E
1
i )

Pθ(d)(∩n−2
i=0 E

1
i ).

(1.35)

By letting νX be the initial probability mass function for {X(t)} whereby

(νX)i = Pθ(d)(X(0) = i) (i ∈ SX), and considering iterating the conditional

probabilities in (1.35) backwards in time, we obtain the relationship

S(n) =

∑
j b̄

(1)
j,∆

∑
kn−1

b
(1)
kn−1j,∆

∑
kn−2

. . .
∑

k2

(∏n−2
i=2 b

(1)
kn−ikn−i+1,∆

)∑
k1
b

(1)
k1k2,∆

(νX)k1∑
j b̄

(1)
j,∆

∑
kn−2

b
(1)
kn−2j,∆

∑
kn−3

. . .
∑

k2

(∏n−2
i=3 b

(1)
kn−ikn−i+1,∆

)∑
k1
b

(1)
k1k2,∆

(νX)k1

,

which depends on the full history of the process {Yn} from t = 0, since for

all d and 0 ≤ δ < ∆, we clearly have that 0 < b̄
(1)
0p,∆

< 1 for all p = 0, . . . , d

and 0 < b
(1)
ij,∆ < 1, for all i, j ∈ S̄X .
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1.B Algorithm to compute transmission matrices

Algorithm 2 presents the method for computing the updated transmission

matrices B
∗(0)
∆ and B

∗(1)
∆ as detailed in Section 1.3, suitable for any d ≥ 0.

To align notation to that used computationally, we denote A[i1 : i2, j1 : j2]

to be the matrix filled with rows i1 to i2 and columns j1 to j2 of any matrix

A, and A[i1, j1] to be the (i1, j1)th entry of A.
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Algorithm 2 Compute transmission matrices B
∗(0)
∆ and B

∗(1)
∆

1: function Compute transmissions(θ(d)
ω ,∆)

2: Compute G from (1.1) using θ(d)

3: GS,R0 ← 0d+20
>
d+2

4: GS ← G[1 : d+ 2, 1 : d+ 2]a

5: µ← G[1 : d+ 2, d+ 3]
6: σ1 ← −G[d+ 2, d+ 2]
7: σ ← −diag(G[1 : d+ 1, 1 : d+ 1])
8: for i = 1 to d+ 1 do
9: GS,R0 [i, d+ 2]← GS[i, d+ 2]

10: GS,R̄0 ← GS −GS,R0

11: A1 ←
[ −G>

S,R̄0 Id+2

0d+20
>
d+2 −G>S,R̄0

]
12: A2 ←

[
GS,R̄0 Id+2

0d+20
>
d+2 0d+20

>
d+2

]
13: A←

[
A1 02(d+2)0

>
2(d+2)

02(d+2)0
>
2(d+2) A2

]
14: Q0

∆(0)← eGS,R̄0∆

15: Q̄0
∆(0)← eA∆[i1 : i2, i2 + 1 : i3]µ . i1 = 2d+ 5, i2 = 3(d+ 2) and

i3 = 4(d+ 2)

16: c← 1−e−σ1δ

1−e−σ1∆

17: Ξ0
∆(0)←

[
1d+11

>
d+1 c1d+1

]>
18: Ξ1

∆(0)← 1d+21
>
d+1 − Ξ0

∆(0)

19: Ξ̄0
∆(0)←

[
1>d+1 c

]>
20: Ξ̄1

∆(0)← 1d+2 − Ξ̄0
∆(0)

21: B
(0)
∆ ←

[
(Q0

∆(0))(1:d+2),(1:d+1) � Ξ0
∆(0) 0d+2 Q̄0

∆(0)� Ξ̄0
∆(0)

0>d+1 0 1

]
22: B

(1)
∆ ←

[
(Q0

∆(0))(1:d+2),(1:d+1) � Ξ1
∆(0) [0>d+1 e−σ1∆]> Q̄0

∆(0)� Ξ̄1
∆(0)

0>d+1 0 0

]
23: k ← 1 . //Start convergence of transmission matrices

24: while B
(0)
∆ and B

(1)
∆ have not converged do

25: Q0
∆(k)← L−1

s [(sId+2 −GS,R̄0)−1
(
GS,R0(sId+2 −GS,R̄0)−1

)k
](∆) .

Compute inverse Laplace transform matrix

26: Q̄0
∆(k)←

(∫ ∆

0
Q0
s(k)ds

)
µ

27: for i = 1 to d+ 1 do

aTo avoid numerical overflow in the computation of inverse Laplace transforms, one
can (for some small tolerance ε > 0), replace all such (G)p,p with (G)q,q, when |(G)p,p −
(G)q,q| < ε; p 6= q = 1, . . . , d+ 2.
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28: for j = 1 to d+ 1 do
29: . Υ ∼ Erlang(k, σ1) and FΥ(u, k, σ1) = Pθ(d)(Υ ≤ u)

30: Ξ0
∆(k)[i, j], Ξ̄0

∆(k)[i]← FΥ(δ,k,σ1)
FΥ(∆,k,σ1)

31: Ξ1
∆(k)[i, j]← 1− (Ξ0

∆(k))[i, j]
32: Ξ̄1

∆(k)[i]← 1− Ξ̄0
∆(k)[i]

33: Ξ0
∆(k)[d+ 2, j], Ξ̄0

∆(k)[d+ 2]← FΥ(δ,k+1,σ1)
FΥ(∆,k+1,σ1)

34: Ξ1
∆(k)[d+ 2, j]← 1− Ξ0

∆(k)[d+ 2, j]
35: Ξ̄1

∆(k)[d+ 2]← 1− Ξ̄0
∆(k)[d+ 2]

36: B
(0)
∆ ← B

(0)
∆ +

[
Q0

∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ0
∆(k) 0d+2 Q̄0

∆(k)� Ξ̄0
∆(k)

0>d+1 0 0

]
37: B

(1)
∆ ← B

(1)
∆ +

[
Q0

∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ1
∆(k) 0d+1 Q̄0

∆(k)� Ξ̄1
∆(k)

0>d+1 0 0

]
38: for i = 1 to d+ 2 do
39: Find all vectors k =

(
k0 k1 . . . kd

)> ∈ C0i−1

k .

C0i−1

k :=
{
k : k>1d+1 = k, ki−1 > 0, k0 ≥ . . . ≥ ki−1 − 1 ≥ . . . ≥ kd − 1

}
40: C0d+1

k ← C0
k

41: For each k, f0i−11(k, s) ←
λ10

s+σ1

∑d
p=0

λ0p1
∏p−1
q=0 λ0q0q+1∏p

q=0(s+σ0q )
f0i−11

(
k−

∑p
r=0 er+1

d+1, s
)

. Compute

f0i−11(k, s) recursively via the initialisations f0i−11(0d+1, s) =
1{d+2}(i)

s+σ1
,

f0p1(ep+1
d+1, s) =

λ0p1

(s+σ0p )(s+σ1)
for p = 0, . . . , d, and f0d+11(e1

d+1, s) =
λ10λ01

(s+σ0)(s+σ1)2 .

42: For each k, compute q1
0i−11(k,∆) = L−1

s (f0i−11(k, s))(∆)

43: ξ1
0i−11(0,k,∆)← FΦ(∆|k,σ)−FΦ(∆−δ|k,σ)

FΦ(∆|k,σ)
. FΦ(φ|k,σ) =

Pθ(d)(Φ ≤ φ), where Φ =
∑m

p=0Wp, Wp
indep∼ Erlang(kp, σ0p)

44: ξ1
0d+11(0,k,∆)← ξ1

01(0,k,∆)
45:

46: B
(0)
∆ [i, d + 2] ← B

(0)
∆ [i, d + 2] +∑

k∈C
0i−1
k

q1
0i−11(k,∆)ξ1

0i−11(0,k,∆)

47:

48: B
(1)
∆ [i, d + 2] ← B

(1)
∆ [i, d + 2] +

∑
k∈C

0i−1
k

q1
0i−11(k,∆)(1 −

ξ1
0i−11(0,k,∆))

49: k ← k + 1

50: B
∗(0)
∆ ← (1− ω)B

(0)
∆

51: B
∗(1)
∆ ← B

(1)
∆ + ωB

(0)
∆

52: return B
∗(0)
∆ , B

∗(1)
∆ . Output transmission matrices
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1.C Exact solution of transmission probabilities when

there is a single dark state

In this section, we look to find an exact solution of the transmission proba-

bilities in the event of there being a single dark state 0; in this case d = 0.

With no multiple dark states, the counting process which we must consider

conditioning on uses the sole labelling set {(0, 1)}, and is therefore univariate.

Using the same notation as that from Section 1.3.1, this labelling set is

R := R1
1 = R0 = {(0, 1)}. We therefore consider {N(t) : t ∈ R≥0} :=

{NR1
1
(t)} = {NR0(t)} to denote the number of jumps made by the process

{X(t)}, counting the number of transitions in R. We can thus calculate the

transmission probabilities by conditioning on N(∆), so that

b
(l)
ij,∆ =

∞∑
k=0

ξij(l, k,∆)qij(l,∆), (1.36)

with qij(k,∆) = Pθ(d)(N(∆) = k,X(∆) = j|X(0) = i) and ξij(l, k,∆) =

Pθ(d)(Y1 = l|N(∆) = k,X(0) = i,X(∆) = j).

The matrix representation of the transmission matrices B
(0)
∆ and B

(1)
∆ as in

(1.4) holds by setting B
(l)
∆ =

∑∞
k=0Q∆(k)�Ξl

∆(k) for each l ∈ SY , where for

all k ∈ Z≥0, we define the 3× 3 matrices Q∆(k) and Ξl
∆(k) as

Q∆(k) =

q00(k,∆) q01(k,∆) q02(k,∆)

q10(k,∆) q11(k,∆) q12(k,∆)

0 0 1{0}(k)

 (1.37)

Ξl
∆(k) =

ξ00(l, k,∆) ξ01(l, k,∆) ξ02(l, k,∆)

ξ10(l, k,∆) ξ11(l, k,∆) ξ12(l, k,∆)

0 0 1{0}(k + j)

 . (1.38)

Computation of Q∆(k)

Similarly to the general case, we use Laplace transforms to calculate Q∆(k)

for k ∈ Z≥0. Firstly, using the same methodology as in Sections 1.3.2 and
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1.3.3, for any t ≥ 0, it is easy to obtain the following system of differential

Equations

q′i0(k, t) = −σ0qi0(k, t) + λ10qi1(k, t)

q′i1(k, t) = −σ1qi1(k, t) + λ01qi0(k − 1, t)

q′i2(k, t) = µ0qi0(k, t) + µ1qi1(k, t).

Taking Laplace transforms of both sides of the above Equations, yields for

i, j ∈ SX and k ∈ N

fij(k, s) =
λk01λ

k+i−j
10

(s+ σ1)k+i(s+ σ0)k+1−j

fij(0, s) =
(1− j)λi−j10

(σ1 − σ0)i−j(s+ σ0)
+

iλi−j10

(σ0 − σ1)i−j(s+ σ1)
σ0 6= σ1

fij(0, s) =
λi−j10

(s+ σ1)(i−j)+1
1≥0(i− j) σ0 = σ1.

Making use of the fact that for n ∈ Z≥0 and some a ∈ R, L−1
s

[
1

(s+a)n+1

]
(t) =

tne−at

n!
, we obtain that

qij(0, t) =
(1− j)λi−j10

(σ1 − σ0)i−j
e−σ0t +

iλi−j10

(σ0 − σ1)i−j
e−σ1t σ0 6= σ1 (1.39)

qij(0, t) =
λi−j10 t

i−je−σ1t

(i− j)!
1≥0(i− j) σ0 = σ1. (1.40)

When k ∈ N and σ0 = σ1 it is easily seen that qij(k, t) = L−1
s [fij(k, s)](t)

takes the form

qij(k, t) =
λk01λ

k+i−j
10 t2k+i−je−σ1t

(2k + i− j)!
. (1.41)

When σ0 6= σ1, to find qij(k, t) we split the expressions for fij(k, s) into

partial fractions using the method of derivatives in the same manner as in

Minin and Suchard (2007). In particular, we write fij(k, s) as

fij(k, s) =

k+1−j∑
p=1

(ij)A
0
k:(k−p+1−j)

(s+ σ0)p
+

k+i∑
p=1

(ij)A
1
k:(k−p+i)

(s+ σ1)p
,
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where

(ij)A
0
k:p =

1

p!

dp

dsp
{

(s+ σ0)k+1−jfij(k, s)
} ∣∣∣∣

s=−σ0

=

(
k + p+ i− 1

p

)
(−1)pλk01λ

k+i−j
10

(σ1 − σ0)k+p+i

(ij)A
1
k:p =

1

p!

dp

dsp
{

(s+ σ1)kfij(k, s)
} ∣∣∣∣

s=−σ1

=

(
k + p− j

p

)
(−1)pλk01λ

k+i−j
10

(σ0 − σ1)k+p+1−j .

We are thus able to obtain the following closed form expressions

qij(k, t) =

k+1−j∑
p=1

(ij)A
0
k:(k−p+1−j)

(p− 1)!
tp−1e−σ0t +

k+i∑
p=1

(ij)A
1
k:(k−p+i)

(p− 1)!
tp−1e−σ1t. (1.42)

We now consider two cases to compute qi2(k, t) =
∑1

p=0 µp
∫ t

0
qip(k, s)ds.

Firstly, when σ0 = σ1, we have that

qi2(0, t) =
1∑

p1=0

µp1λ
i−p1

10 1≥0(i− p1)

σi−p1+1
1

∞∑
p2=i−p1+1

(σ1t)
p2e−σ1t

p2!

qi2(k, t) =
1∑

p1=0

µp1λ
k
01λ

k+i−p1

10

σ2k+i−p1+1
1

∞∑
p2=2k+i−p1+1

(σ1t)
p2e−σ1t

p2!
. (1.43)

Secondly, when σ0 6= σ1, we have

qi2(0, t) =
µ0λ

i
10

(µ0 + λ01)(σ1 − σ0)i
(1− e−σ0t) +

i

σ1

[
µ0λ10

(σ0 − σ1)
+ µ1

]
(1− e−σ1t)

qi2(k, t) =
1∑

p1=0

µp1

1∑
p2=0

k+1−p2(1−p1)∑
p3=1

(ip2)A
p1

k:(k−p3+ip1+(1−p2)(1−p1))

σp3
p1

∞∑
d=p3

(σp1t)
m

m!
e−σp1 t.

(1.44)

Setting t = ∆ in all Equations (1.39)-(1.44) yields all entries of Q∆(k) as in

(1.37), for k ∈ Z≥0.
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Computation of Ξl
∆(k)

Using the same methodology as presented in sections 1.3.2 and 1.3.3, we will

demonstrate computation of Ξl
∆(k). In particular, since d = 0 we have for

s ∈ N that Rs = Us + Ds is a PSARP (see Definition 2) with inter-arrival

times R = (R1, R2, . . .). Here, Us
iid∼ exp(σ1) and Ds

iid∼ exp(σ0).

Similarly to the general case, if X(0) = 0, X(∆) ∈ {0, 2} and N(∆) = k,

then there are no censored observations from the On state, so that for k ∈
N, i, j ∈ SX with i 6= 2 and j 6= 1

ξij(0, k,∆) =
1−

∑k+i−1
m=0

(σ1δ)m

m!
e−σ1δ

1−
∑k+i−1

m=0
(σ1∆)m

m!
e−σ1∆

(1.45)

ξ00(0, 0,∆) = 1 (1.46)

ξ10(0, 0,∆) =
1− e−σ1δ

1− e−σ1∆
. (1.47)

If X(0) ∈ {0, 1}, X(∆) = 1 and N(∆) = k with k ∈ N, there are exactly

k time pieces in the dark state 0 (D1, D2, . . . , Dk). These k pieces form

iid exponential random variables and their sum υ(k) also has an Erlang

distribution υ(k) =
∑k

i=1 Di ∼ Erlang(k, σ0). Now since the random event

{Y1 = 0|N(∆) = k,X(0) ∈ {0, 1}, X(∆) = 1} = {υ(k) ≥ ∆− δ|υ(k) ≤ ∆},

we have for k ∈ N

ξi1(1, k,∆) =
1−

∑k−1
m=0

(σ0(∆−δ))m
m!

e−σ0(∆−δ)

1−
∑k−1

m=0
(σ0∆)m

m!
e−σ0∆

(1.48)

ξ11(1, 0,∆) = 1. (1.49)

We may fill the matrices Ξ0
∆(k) and Ξ1

∆(k) in (1.38) by using (1.45)-(1.49)

and the fact that for i, j ∈ S̄X , ξij(1, k,∆) = 1− ξij(0, k,∆).
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1.D Discussion on implementing the PSHMM algo-

rithm

In this section, we discuss the implementation of PSHMM algorithm for prac-

tical parameter values. We will firstly discuss convergence of the transmission

matrices defined in (1.3.4) that are needed to compute the log-likelihood

of observations in (1.31). We then highlight key mathematical ideas that

suggest appropriate initial parameters needed to optimise this likelihood, in-

cluding why potential multi-modality effectuates the search for the maximum

likelihood estimates from different starting values of the parameter space.

1.D.1 Convergence of transmission matrices

In most practical aspects, ∆ = O(10−2) and σi∆ < 1 for all i ∈ S̄X . With

these parameter values, convergence of the transmission matrices from Al-

gorithm 2 (from Section 1.B) usually transpires up to and including k = 4,

with k ≥ 6 probabilities seldom needed in practice. For the simulated pa-

rameters in this chapter, our Matlab implementation of this Algorithm thus

approximates the matrices B
(0)
∆ and B

(1)
∆ using only k ≤ 5.

1.D.2 Likelihood optimisation

The log-likelihood function in equation (1.31) is optimised with respect to

θ(d) via the Nelder-Mead simplex to obtain maximum likelihood estimates.

When d = 0, we are able to gain starting parameters for this search using

the method described below. However when d > 0, we deploy a stochastic

search with many starting values to mitigate for multiple modes and find the

global maximum.

Multi-modality

It is seen that as d increases (specifically with higher switching rates), the like-

lihood function can become multi-modal along the direction of λ0i0i+1
where
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i = 0, . . . , d, from both the PSHMM and exponential fitting methods. In

these situations, an approach which searches the parameter space from many

different starting points is useful to implement for a global maximum to be

found. For this reason, we also implemented a function which utilises MAT-

LAB’s MultiStart property, with different start values as those gained from

exponential fitting.

Estimating initial rate parameters

To numerically maximise the log-likelihood function in (1.31), a starting value

θ̂
(d)

ω needs to be determined primarily due to the potential multi-modality of

the likelihood function and further to reduce the computational time given

the size of the parameter space Θ
(d)
ω .

To do so, we consider a crude approximate estimate to start a maximum

likelihood search. In the case d = 0, we have found that optimising the

likelihood function of a first order Markov chain {Ȳn : n ∈ Z∗} (used as a

partial likelihood function for {Yn}) has yielded appropriate initial estimates

for λ01 and λ10 using a truncated dataset Ỹ . Here, we consider each obser-

vation sequence before absorption: ỹj = {yji }o
j−1
i=0 ; where oj ∈ Z≥0 denotes

the last frame a fluorophore is seen in observation sequence j = 1, . . . ,M .

The truncated dataset is then defined as Ỹ =
(
ỹ1 ỹ2 . . . ỹM

)
. The chain

{Ȳn} is now constructed by using one-step transition probabilities from {Yn}
through setting µ0 = µ1 = δ = 0 and νX =

(
λ10

(λ01+λ10)
λ01

(λ01+λ10)

)>
, which is

also the stationary distribution for {X(t)}.

Remark 7. In the case d = 0, we can calculate that the transition probability

matrix PȲ of {Ȳn}, whereby (PȲ )ij = P(Yn = j|Yn−1 = i) takes the form

PȲ =

(
e−λ01∆ 1− e−λ01∆

π0
Xe−λ01∆(1−e−λ01∆)

1−π0
Xe−λ01∆

π1
X+π0

X(1−e−λ01∆)2

1−π0
Xe−λ01∆

)
, (1.50)

where π0
X = λ10

(λ01+λ10)
and π1

X = λ01

(λ01+λ10)
.

Crude estimates for λ01 and λ10 can be obtained by optimising the restricted
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likelihood function for {Ȳn} using the truncated dataset Ỹ ; this takes the

form LȲ (Ỹ ;λ01, λ10) =
∏M

j=1

∏oj−1
i=0 pȲ

yji y
j
i+1

. If njs1s2 denotes the number of

observed transitions from state s1 to s2 (s1, s2 ∈ SY ) over oj observations

in sequence j = 1, . . . ,M , then it is shown in Rajarshi (2013) that the

maximum likelihood estimators of the transition probabilities in PȲ are given

by p̂Ȳ00 =
∑M
j=1 n

j
00∑M

j=1 n
j
00+nj01

and p̂Ȳ10 =
∑M
j=1 n

j
10∑M

j=1 n
j
10+nj11

. By rearranging the expressions

for λ01 and λ10 given in (1.50), we obtain the crude estimates

λ̂01 = − log(p̂Ȳ00)

∆
λ̂10 =

p̂Ȳ10λ̂01

(1− eλ̂01∆)(e−λ̂01∆ − p̂Ȳ10)
. (1.51)

Moreover, gaining initial estimates of the photo-bleaching rates µ̂0 and µ̂1

(when at least one rate is non-zero) can be done by considering approximate

absorption times: tj = oj∆ for j = 1 . . .M . These times can be used to fit

the photo-bleaching time distribution (see Buchholz et al. (2014))

fτ (τ |λ01, λ10, µ0, µ1) = ν>Xe
Tτt,

where

T =

(
−(λ01 + µ0) λ01

λ10 −(λ10 + µ1)

)
, t =

(
µ0

µ1

)
.

Estimates are gained from maximising the log-likelihood

`(µ0, µ1|τ, λ̂01, λ̂10) =
M∑
j=1

log(fτ (t
j|λ̂01, λ̂10, µ0, µ1)),

where λ̂01 and λ̂10 are the crude estimates gained from (1.51). In the case

that d > 0, we may choose to set µ̂0i = µ̂0 for all i = 1, . . . ,m where the

model permits photo-bleaching from other such dark states.

The noise parameters δ and ω are started close to zero, as in general these

will be small. Furthermore, if the initial mass νX is unknown then one can

initialise with ν1 = 1
M

∑M
j=1 y0

j and ν0 = 1 − ν1. When d > 0, we set

(νX)i = 0 for all i /∈ {0, 1}.
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We have found that initial values λ̂10, µ̂0 and µ̂1 gained from the above

analysis are generally superior to estimates gained from exponential fitting

for all d ≥ 0. However, in the presence of multiple dark states, exponential

fitting is used to obtain initial estimates for all other rate parameters as is

required for the PSHMM likelihood optimisation.

66



1.E Exponential fitting estimator

In this section, we provide details of the exponential fitting estimator of Lin

et al. (2015) that is used for comparison with the PSHMM estimator in this

chapter. We begin with an outline of the original method, demonstrating

how maximum likelihood rate estimates of the switching rates under models

of typeMd
∅ (d ∈ Z≥0), are obtained from the photo-switching data. We then

demonstrate how it can be extended to models of type Md
{1} (d ∈ Z≥0) that

include the photo-bleached state 2.

1.E.1 Original method

Consider the irreducible Markov process {X(t) : t ∈ [0,∞)} on the state

space SX = {0, 01, . . . , 0d, 1} equipped with the generator G and initial prob-

ability mass νX as shown in Equation (1.1). We note here that the inclusion

of the photo-bleaching state 2 is not accounted for in this method.

If this Markov chain was completely observable, one would be able to note

the dwell times (times spent) in each of the d + 2 states. In particular, if

Ts denotes a random dwell time in state s ∈ SX , then Ts ∼ exp(σs), where

σ0d = λ0d1, σ1 = λ10 and when d > 0, σ0i = λ0i0i+1
+ λ0i1, for i = 0, . . . , d+ 1.

Maximum likelihood estimation of each σs is subsequently straightforward.

Specifically, if N realisations t1s, t
2
s, . . . , t

N
s from Ts are obtained, then the

maximum likelihood estimator σ̂s of σs is given by

σ̂s =
N∑N
i=1 t

i
s

. (1.52)

Suppose now that {X(t)} is not directly observable but instead the times

spent in the Dark-On cycle φ0 = 0 → 01 → . . . 0d → 1 and the On-Dark

cycle φ1 = 1 → 0 are observed. Firstly, we note that T1 is the dwell time

in an On-Dark cycle φ1. Now let random variable T̄0 be a dwell time in

the Dark-On cycle φ0; that is, T̄0 is the time taken to reach state 1 from

state 0 along the path φ0. One can express T̄0 =
∑d

i=0 T0i , i.e. T̄0 is equal
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in distribution to a sum of exponentially distributed random variables, with

the key example that T̄0 = T0 when d = 0.

Under the d = 2 case, Lin et al. (2015) use an ODE method to derive the

probability density function of T̄0, parameterised by the unknown rates λG

in G (1.1). As required, this method can easily be extended to account for

different values of d ∈ Z≥0. Specifically, the density function of T̄0 takes the

form

fT̄0
(t) =

d∑
j=0

kjσ0je
−σ0j

t t > 0. (1.53)

When d = 1, it can be shown k0 = 1 +
λ001

σ01−σ0
and k1 = 1− k0. When d = 2,

the mixture coefficients are given by

k0 = 1 +
λ001

σ01 − σ0

+
λ001λ0102(σ01 − σ02)

A

k1 =
λ001

σ0 − σ01

+
λ001λ0102(σ02 − σ0)

A

k2 =
λ001λ0102(σ0 − σ01)

A

A = σ01σ02(σ01 − σ02) + σ0σ02(σ02 − σ0) + σ0σ01(σ0 − σ01).

Readers are directed to Lin et al. (2015) for a formal derivation of this result.

Recognising that the each row of G must sum to zero, the density in (1.53)

enables the unknown photo-switching parameters

λ =
(
λ001 . . . λ0d−10d λ01 . . . λ0d1

)>
to be estimated via maximisation of the log-likelihood function

`(t̄10, t̄
2
0, . . . , t̄

N
0 |σ00 , ..., σ0d) =

N∑
i=0

log

(
d∑
j=0

kjσ0je
−σ0j

t̄i0

)
, (1.54)

where t̄10, t̄
2
0, . . . , t̄

N
0 are N realisations from T̄0. Numerical optimisation of

(1.54), together with the maximum likelihood estimator σ̂1 = N/(
∑N

i=1 t
i
1)
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from Equation (1.52) can be used to obtain the maximum likelihood estimate

λ̂ of λ.

In the context of the model that we have formulated in this chapter and that

of Lin et al. (2015), the data that is received does not produce observations

of random variables T1 or T̄0. Instead, one observes a discrete sequence of

zeros and ones indicating whether or not a fluorophore is detected in each

time frame. Specifically, an NF × 1 observation sequence y (from a single

molecule), can be written in block vector form

y =
[
0>
n1

0
1>
n1

1
0>
n2

0
1>
n2

1
. . . 0>

nN0
1>
nN1

]>
, (1.55)

where 0n and 1n are the n×1 vectors of zeros and ones respectively, ni0, n
i
1 ∈

Z≥0 and N is such that
∑N

i=1 n
i
0 + ni1 = NF .

Using the form in (1.55) for each observation vector, we consider the se-

quences of times t̃ij = nij∆ for j = 0, 1 and i = 1, . . . , N . These se-

quences of times are assumed in Lin et al. (2015) to be the dwell times

to obtain the maximum likelihood rate estimates; {t̃i1}Ni=1 is used to obtain

σ̂1 in Equation (1.52) and {t̃i0}Ni=1 is used to obtain λ by maximising the

log-likelihood in Equation (1.54). The likelihood function for dwell times

T = {t̄i0,m, i = 1, ..., Nm,m = 1, ...,M} recorded from M ≥ 1 independent

molecules becomes

`(T |σ00 , ..., σ0d) =
M∑
m=1

Nm∑
i=0

log

(
d∑
j=0

kjσ0je
−σ0j

t̄i0,m

)
, (1.56)

which again can be numerically optimised, e.g. via quasi-Newton methods

or the Nelder-Mead simplex.

Drawbacks

When applied to fluorescence microscopy data, there are a number of prob-

lems associated with this method which effectuate poorer rate estimation

when compared with the PSHMM method.
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Firstly, the observed dwell times can only take a discrete set of values, even

though the true dwell times are continuous random variables. Secondly, ob-

served dwell times for the On-Dark cycle φ1 may be an overestimate of the

true dwell times as short transitions to a dark state may not be detected.

Thirdly, observed dwell times for the Dark-On cycle φ0 may be an overesti-

mate as short transitions to the On state may not be detected. Lastly, the

assumed distribution of the dwell time for the Dark-On cycle is incorrect if

not all dark states on the path are reached. In general, this method therefore

incorrectly estimates a much slower photo-switching model for a fluorophore

via the consistent underestimation of the parameters λ01, λ10 and poorer es-

timation of the remaining rates in λG.

1.E.2 Extension to handling the photo-bleached state

To gain estimates of these switching rates in the presence of the photo-

bleached state 2, we consider each observation sequence before absorption:

ỹj = {yji }o
j−1
i=0 ; where oj ∈ Z≥0 denotes the last frame a fluorophore is seen

in observation sequence j = 1, . . . ,M . Photo-switching estimates are gained

by fitting to the truncated dataset Ỹ =
(
ỹ1 ỹ2 . . . ỹM

)
.

We are able to infer upon the photo-bleaching parameter µ1 (when µj = 0

for all j 6= 1) by using the fact that the random variable N10 denoting the

number of 1 → 0 transitions observed in a single sequence is geometrically

distributed with success probability µ1

σ1
. Maximum likelihood estimation from

the entire dataset Y yields that λ̂10 = n̄10µ̂1, where n̄10 = 1
M

∑M
j=1 n

j
10 and

nj10 denotes the number of observed 1 → 0 transitions in sequence j. Since

the exponentially fitting method, by considering dwell time sequences from

the On state, always yields a maximum likelihood estimate for σ̂1 = λ̂10 + µ̂1,

we obtain that λ̂10 = n̄10σ̂1

1+n̄10
and µ̂1 = σ̂1

1+n̄10
.
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1.F Image simulation methods

In this section we provide the simulation methods for the simulation studies

presented in Section 1.5, specifically Figure 7 and Table 2.

1.F.1 Imaging simulation

Simulated images of a fluorophore are produced from a sequence of contin-

uous time state transitions realised from model M0
{1}, discretised to give a

sequence of fractional On times q0, ..., qNF−1 for each frame. All other state

information (dark-state / bleached-state identity) is discarded. Let λp be the

expected number of photons emitted per second by a fluorophore in the On

state, then the expected number of photons emitted by the fluorophore in

frame i is qi∆λp.

To replicate the microscope point spread function, photon positions are as-

sumed to be distributed according to a 2D Gaussian distribution with stan-

dard deviation σ = 135 nm centred at the stationary position of the flu-

orophore s ∈ R2. The photon positions are binned into a grid of Npix

100×100nm pixels {Ck ⊂ R2; k = 1, ..., Npix} representing the EMCCD cam-

era. The expected number of photons from the fluorophore in pixel k for

frame i is

µi,k = qi∆λp

∫
Ck

N (x; s, σ2I2)dx

where N (·;µ,Σ) denotes the probability density function of the Gaussian

distribution with mean µ and covariance matrix Σ. A constant mean back-

ground photon count of 5 is added to the expected photon count in every

pixel.

A Poisson-Gamma-Normal noise model is used to simulate the EMCCD

readouts. This model is adapted from Hirsch et al. (2013) and constant

parameter values used are typical of commercial EMCCD cameras. The

expected photon count per pixel (µi,k + 5) is converted to an expected elec-

tron count per pixel µei,k by multiplying it by the EMCCD quantum effi-

ciency, 0.9, and adding a spurious electron dark current of 0.005e− s−1, i.e.
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µei,k = 0.9(µi,k + 5) + 0.005. The electron count ei,k for pixel k in frame i is

sampled from a Poisson(µei,k) distribution. The electron count after EMCCD

gain εi,k, is then sampled from a Gamma(ei,k, β) distribution, with β equal to

the EMCCD gain, set to 250 in this simulation (typical experimental ranges

are 100–300). Gaussian distributed EMCCD read noise ri,k ∼ N(0, σ2
rn),

σrn = 6, is added to εi,k to give the final electron count for pixel k in frame

i. This is divided by an analogue to digital conversion sensitivity of 3.2 to

give the digital camera count. As in an EMCCD camera, a base offset of

100 digital camera counts is added to prevent clipping of negative numbers

on digitisation and the final count is discretised and truncated to the range

[0, 65535].

1.F.2 Image analysis and trace idealisation

To generate idealised traces, photon count vs time traces were extracted from

image sequences and thresholded as follows. The position of molecules in the

Alexa Fluor 647 image data were as previously determined by Lin et al.

(2015) and the positions of molecules used in simulated data were known.

The position of each molecule was used to extract 5×5 pixel regions from

the raw data centred (without interpolation) on the molecule to produce

a sequence of ‘trace images’. The background intensity of each frame of

the trace images was calculated as the mean of the 16 boundary pixels and

subtracted from the trace images. The photon number for each frame of the

trace images was calculated by correcting for the photon conversion factor of

the camera and subsequently integrating the convolution of the trace image

with a 5×5 pixel Gaussian kernel. A hard threshold was applied to the

photon number per frame trace at multiples of the standard deviation of the

background, σBG.

1.F.3 Global parameter set for simulations

The global parameter set used in all simulation studies, unless being varied

as part of the study, are as follows:
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Parameter Value

Threshold 5σBG
Expected number of photons per frame length (∆λp) 500
∆ 1/30 s
λ01 0.3162 s−1

λ10 3.1623 s−1

µ10 0.1 s−1

T ∗ 0 s
ν∗1 1
NF 9872 frames

For the Alexa Fluor 647 data, a fixed threshold of 2σBG was applied.
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1.G Rate estimates

In this section, we provide tables to show the photo-switching rates esti-

mated by the PSHMM and exponential fitting method for the simulation

studies conducted in Section 1.5.1. 95% simulation percentile intervals are

also shown.

PSHMM PSHMM PSHMM PSHMM Exp Exp Exp Exp

Study NF θ(d) Mean Bias RMSE (2.5%, 97.5%) Mean Bias RMSE (2.5%, 97.5%)
(×10−2) percentiles (×10−2) percentiles

1 16800 0.32 0.32 0.00 0.97 (0.30, 0.34) 0.29 -0.029 3.29 (0.26, 0.32)
0.32 0.32 -0.001 0.76 (0.30, 0.33) 0.31 -0.007 0.89 (0.30, 0.32)
0.01 0.01 0.001 0.21 (0.01, 0.02) 0.01 0.001 0.11 (0.01, 0.01)

2 11151 0.32 0.32 -0.001 0.66 (0.30, 0.33) 0.30 -0.012 1.47 (0.29, 0.32)
1 1.00 0.003 1.91 (0.96, 1.04) 0.95 -0.053 5.95 (0.89, 0.99)

0.03 0.03 0.001 0.35 (0.03, 0.04) 0.03 0.001 0.33 (0.03, 0.04)

3 9364 0.32 0.31 -0.004 0.68 (0.30, 0.32) 0.30 -0.017 1.90 (0.28, 0.32)
3.16 3.16 0.002 6.56 (3.05, 3.28) 2.45 -0.712 77.85 (1.78, 3.92)
0.11 0.11 0.001 1.02 (0.09, 0.13) 0.09 -0.017 2.12 (0.06, 0.12)

4 8799 0.32 0.30 -0.013 1.40 (0.29, 0.31) 0.28 -0.032 3.35 (0.27, 0.30)
10 9.96 -0.042 23.03 (9.52, 10.42) 3.19 -6.809 690.87 (1.52, 5.91)

0.33 0.35 0.014 3.79 (0.29, 0.42) 0.12 -0.210 21.49 (0.06, 0.25)

5 10 962 1 1.00 -0.002 1.86 (0.96, 1.04) 0.90 -0.104 12.43 (0.74, 1.01)
0.32 0.32 0.000 0.72 (0.30, 0.33) 0.30 -0.013 1.47 (0.29, 0.32)
0.01 0.01 0.000 0.10 (0.01, 0.01) 0.01 0.001 0.11 (0.01, 0.01)

6 5312 1 1.00 -0.004 1.81 (0.96, 1.03) 0.95 -0.054 6.44 (0.87, 1.01)
1 1.00 0.001 1.76 (0.96, 1.04) 0.93 -0.066 6.88 (0.89, 0.97)

0.03 0.03 0.001 0.29 (0.03, 0.04) 0.03 0.001 0.28 (0.03, 0.04)

7 3526 1 0.99 -0.015 2.32 (0.95, 1.02) 0.95 -0.053 5.78 (0.91, 0.99)
3.16 3.17 0.003 7.33 (3.01, 3.30) 2.71 -0.451 46.16 (2.50, 3.89)
0.11 0.11 0.001 1.06 (0.08, 0.13) 0.10 -0.004 0.99 (0.08, 0.12)

8 2961 1 0.97 -0.033 3.91 (0.93, 1.00) 0.91 -0.095 9.75 (0.85, 0.95)
10 9.94 0.003 27.21 (9.46, 10.47) 5.02 0.003 504.34 (3.66, 6.52)

0.33 0.35 0.017 3.94 (0.28, 0.42) 0.20 -0.133 13.77 (0.14, 0.27)

9 9116 3.16 3.15 -0.008 6.88 (3.04, 3.29) 2.31 -0.855 95.19 (1.64, 3.04)
0.32 0.31 -0.002 1.53 (0.28, 0.34) 0.28 -0.037 3.74 (0.27, 0.29)
0.01 0.01 0.000 0.11 (0.01, 0.01) 0.01 0.001 0.13 (0.01, 0.01)

10 3466 3.16 3.13 -0.035 7.47 (3.01, 3.28) 2.83 -0.335 37.76 (2.49, 3.06)
1 1.00 0.004 4.04 (0.90, 1.07) 0.87 -0.129 13.00 (0.84, 0.90)

0.03 0.03 0.001 0.37 (0.03, 0.04) 0.04 0.002 0.36 (0.03, 0.04)

11 1680 3.16 3.11 -0.052 9.49 (2.98, 3.31) 2.92 -0.245 25.63 (2.75, 3.08)
3.16 3.18 0.015 9.12 (2.99, 3.37) 2.60 -0.567 56.96 (2.48, 3.70)
0.11 0.11 0.002 1.21 (0.09, 0.13) 0.11 -0.000 0.98 (0.09, 0.13)

12 1115 3.16 3.03 -0.135 14.73 (2.92, 3.15) 2.79 -0.377 38.19 (2.66, 3.92)
10 9.99 -0.008 24.86 (9.54, 10.48) 6.35 -3.648 365.97 (5.72, 6.93)

0.33 0.35 0.015 3.92 (0.29, 0.44) 0.27 -0.061 6.79 (0.22, 0.33)

13 8532 10 9.93 -0.069 25.64 (9.47, 10.47) 5.33 -4.666 506.70 (1.98, 8.60)
0.32 0.32 0.000 4.42 (0.24, 0.37) 0.22 -0.099 9.95 (0.21, 0.23)
0.01 0.01 0.000 0.09 (0.01, 0.01) 0.01 0.001 0.10 (0.01, 0.01)

14 2882 10 9.86 -0.142 29.52 (9.44, 10.39) 7.75 -2.246 241.85 (5.53, 8.71)
1 1.03 0.026 10.53 (0.78, 1.16) 0.68 -0.323 32.37 (0.64, 0.71)

0.03 0.03 0.001 0.36 (0.03, 0.04) 0.04 0.001 0.37 (0.03, 0.04)

15 1096 10 9.73 -0.266 38.40 (9.22, 10.34) 8.19 -1.814 184.84 (7.38, 8.66)
3.16 3.21 0.049 20.73 (2.45, 3.47) 2.05 -1.108 110.97 (1.97, 3.16)
0.11 0.11 0.004 1.22 (0.09, 0.13) 0.11 0.004 1.04 (0.09, 0.13)

16 531 10 9.50 -0.501 55.72 (9.10, 9.96) 7.93 -2.072 207.90 (7.55, 8.22)
10 9.91 -0.095 54.47 (9.02, 10.88) 5.63 -4.368 436.96 (5.40, 5.89)

0.33 0.34 0.007 4.51 (0.26, 0.43) 0.30 -0.029 4.06 (0.26, 0.36)

Table 1.3: Caption next page.

74



Table 1.3: Simulation results showing mean, bias, root mean squared error (RMSE) and

the 2.5 and 97.5 empirical percentiles of the estimates of θ(0) = (λ01 λ10 µ1)> under
model M0

{1} for both the PSHMM and exponential fitting (Exp) methods across 100 repeat

experiments. ∆ = 1
30 s, δ, ω > 0 (unknown), and M = 100. For both methods, log− log

scatterplots of λ01 and λ10 are shown in Figure 1.8.

PSHMM PSHMM PSHMM PSHMM Exp Exp Exp Exp

Study NF θ(d) Mean Bias RMSE (2.5%, 97.5%) Mean Bias RMSE (2.5%, 97.5%)
(×10−2) percentiles (×10−2) percentiles

17 11 151 0.15 0.15 0.002 1.69 (0.12, 0.19) 0.15 -0.004 1.66 (0.11, 0.19)
0.3 0.30 0.001 0.85 (0.28, 0.32) 0.30 -0.002 0.84 (0.28, 0.31)
0.1 0.10 0.000 0.43 (0.09, 0.11) 0.10 0.002 0.45 (0.10, 0.11)
0.80 0.80 -0.001 1.28 (0.78, 0.82) 0.76 -0.039 4.12 (0.74, 0.79)
0.01 0.01 0.000 0.15 (0.01, 0.01) 0.02 0.010 0.97 (0.02, 0.02)

18 9364 0.35 0.36 0.005 5.44 (0.24, 0.43) 0.33 -0.022 5.32 (0.24, 0.43)
1 1.00 0.003 3.68 (0.94, 1.07) 0.95 -0.049 5.83 (0.90, 1.01)

0.3 0.30 -0.002 2.01 (0.26, 0.34) 0.29 -0.008 2.12 (0.25, 0.33)
2.30 2.30 -0.003 5.01 (2.21, 2.39) 2.04 -0.262 26.48 (1.95, 2.11)
0.10 0.10 0.002 0.98 (0.09, 0.12) 0.10 -0.005 1.03 (0.08, 0.11)

19 7000 2 2.03 0.033 18.14 (1.75, 2.45) 2.16 0.156 21.25 (1.89, 3.50)
10 9.78 -0.218 54.49 (8.55, 10.53) 6.94 -3.061 306.69 (6.59, 7.34)
0.7 0.71 0.011 4.88 (0.64, 0.83) 0.67 -0.031 4.85 (0.60, 0.76)
10 10.00 0.002 63.62 (9.22, 11.65) 4.97 -5.030 503.14 (4.75, 5.17)

0.33 0.34 0.005 7.29 (0.20, 0.56) 0.27 -0.068 7.30 (0.22, 0.32)

Table 1.4: Simulation results showing mean, bias, root mean squared error (RMSE) and the

2.5 and 97.5 empirical percentiles of the estimates of θ(1) = (λ001 λ01 λ011 λ10 µ1)>

under model M1
{1} for both the PSHMM and exponential fitting (Exp) methods across 100

repeat experiments. ∆ = 1
30 s, δ = 0.01s, ω > 0 (unknown), and M = 100.

PSHMM PSHMM PSHMM PSHMM Exp Exp Exp Exp

Study NF θ(d) Mean Bias RMSE (2.5%, 97.5%) Mean Bias RMSE (2.5%, 97.5%)
(×10−2) percentiles (×10−2) percentiles

20 7000 2 2.03 0.032 3.14 (1.75, 2.37) 2.05 0.054 2.12 (1.79, 3.31)
10 9.85 -0.153 13.42 (9.20, 10.49) 7.04 -2.958 878.82 (6.68, 7.48)
0.2 0.21 0.009 0.10 (0.16, 0.27) 0.18 -0.024 0.11 (0.13, 0.21)
0.7 0.69 -0.012 0.37 (0.59, 0.83) 0.66 -0.037 0.35 (0.57, 0.75)
0.01 0.01 -0.001 0.00 (0.01, 0.01) 0.01 0.005 0.02 (0.01, 0.02)
10 9.63 -0.368 35.57 (8.73, 10.53) 4.91 -5.087 2588.85 (4.67, 5.16)

0.33 0.32 -0.009 0.32 (0.24, 0.45) 0.32 -0.013 0.12 (0.26, 0.38)

Table 1.5: Simulation results showing mean, bias, root mean squared error
(RMSE) and the 2.5 and 97.5 empirical percentiles of the estimates of θ(2) =
(λ001 λ01 λ0102 λ011 λ021 λ10 µ1)> under model M2

{1} for both the PSHMM and

exponential fitting (Exp) methods across 100 repeat experiments. ∆ = 1
30 s, δ = 0.01s,

ω > 0 (unknown), and M = 100.
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1.H Further results

In this section, we present further simulation studies that explore the effects

of varying the frame length ∆, threshold (proportional to δ), number of

frames NF and absorption parameter µ1 under the model M0
{1}.

We analysed simulated image traces (see Section 1.F of Appendix A) based

on a range of different scenarios. All datasets were created with M = 100

with T ∗ = 0, known initial probability ν∗X =
(

0 1 0
)>

and unknown false

positive rate ω > 0. In Section 1.5.1, we explored the effect of different photo-

switching rates (λ01, λ10). Here, we consider varying the frame length ∆

(Figure 1.11), threshold (proportional to δ) (Figure 1.12), number of frames

NF (Figure 1.13) and absorption parameter µ1 (Figure 1.14).

Our PSHMM method is seen to perform extremely well across all different

switching and sampling scenarios, especially in comparison to the exponential

fitting method which incurs a consistent bias. It is worth noting that we see

an increase in bias of the PSHMM estimator for low frame rates and high

threshold values. This is expected as its ability to detect multiple transitions

within a frame is diminished. Furthermore, it is indicated that the PSHMM

estimator also exhibits a much lower variance than that from the exponential

fitting, a property which also decreases with larger M (data not shown).

Figure 1.14 finally highlights a reduction in bias with µ1, due to a greater

number of transitions between hidden states.
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Figure 1.11: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both ex-
ponential fitting (black) and PSHMM fitting (red) are plotted against log(∆). True rates
given by the blue line.
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Figure 1.12: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both
exponential fitting (black) and PSHMM fitting (red) are plotted against log(threshold).
NF = 9872 for all simulations. True rates given by the blue line.
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Figure 1.13: Boxplots showing quantiles from estimates of λ01, λ10 and µ1 from both ex-
ponential fitting (black) and PSHMM fitting (red) are plotted against NF . True rates given
by the blue line.
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Figure 1.14: Boxplots showing quantiles from estimates of λ01, λ10 and varying µ1 from
both exponential fitting (black) and PSHMM fitting (red) are plotted against log10(µ1).
True rates given by the blue lines.
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2
Properties of the

Photo-switching Hidden

Markov Model estimator

2.1 Introduction

In Chapter 1, we proposed a kinetic model to describe the photo-switching

behaviour of fluorophores, and derived the PSHMM to estimate the unknown

parameters of the model via maximum likelihood estimation. Although we

showed through a set of simulation studies that this estimator can accurately

determine the unknown photo-switching rates, small biases and variances can

be observed when dealing with data that come from wider classes of models

that stem from different imaging parameters. Therefore, to investigate the

versatility of the PSHMM estimator under a range of different experimental

conditions, it is crucial that its inherent properties are well studied. This

is especially highlighted for the main application of the PSHMM estimator,

since datasets that are likely to be corrupted by noise may cause certain

unknown parameters to be unidentifiable in the corresponding analysis. For
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example, situations whereby fluorophores are observed in high background

noise may enable a limited number of observations to be recorded, resulting in

data containing too few positive detections to properly identify the switching

rates between the On and dark states.

It is well understood that highly noisy data can make parameter estimation

and identification more difficult (Godfrey and DiStefano, 1985, Little et al.,

2010). In the PSHMM, the noise comes in two forms. Firstly, the inclusion

of δ ∈ [0,∆), the maximum time whereby a fluorophore in an On state would

not be detected, results from a noise floor that the fluorophore signal needs to

penetrate. Secondly, the inclusion of ω ∈ [0, 1], the false positive probability

of observing a fluorophore when it is in reality not detected, results from

random spikes of photon intensities due to background noise. On the other

hand, the unknown number of multiple dark states d prevents transitions

between them to be observed, and therefore results in the lack of information

in the data since longer times spent in dark states result in null detections

of a fluorophore.

The inclusion of ω in the PSHMM is generally not seen to be problematic

since advanced imaging abilities and segmentation algorithms (Henriques

et al., 2010, Ovesný et al., 2014, Boyd et al., 2018) ensure that this prob-

ability is extremely low in practice. Nevertheless, as δ → ∆ and as d in-

creases, the sparsity of the observation vector y increases. In this scenario,

we would assume parameter estimation/identification problems due to lack

of high quality informative data on the hidden process {X(t)}, whereby the

accretion of data may not necessarily result in better parameter estimation.

Furthermore, while a set of parameters may be strictly identifiable, proper-

ties such as correlations between their estimates and multi-modality of the

likelihood function may be such as to make numerical estimation troublesome

(Jacquez and Greif, 1985).

Identifiability issues may further have an adverse effect on the large sample

properties of the PSHMM estimator, namely that of consistency. The esti-

mator being consistent would imply that it is possible to (within an arbitrary

precision) recover the true parameters (being estimated) with a sufficiently

large enough dataset. When designing potential imaging experiments to
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recover photo-switching rates, it is therefore also important to understand

what the effect of attaining more data has on the accuracy and validity of

the resulting parameter estimates.

2.1.1 Chapter summary

This chapter will discuss and analyse the quality of the PSHMM estimates.

The fact that it is not easily feasible to analytically tract the PSHMM log-

likelihood function (with respect to the parameter vector θ(d)), poses diffi-

culties in theoretically analysing the inherent properties of this estimator;

therefore, the analyses made in this chapter will be wholly supported by

simulation studies.

In Section 2.2, we begin by giving the formal definition of model identifiabil-

ity and deduce that theoretical justification of parameter identification in the

PSHMM is not feasible. To this end, in Section 2.2.1 we define the notion of

local identifiability, which is characterised by the Hessian or observed Fisher

Information matrix evaluated (locally) on the log-likelihood surface. Using

simulation studies, we then evaluate potential identification issues through

the analyses of these matrices evaluated at maximum likelihood estimates,

including a short study verifying that the Hessian matrices generally appear

non-singular. Since identification issues may arise due to ridges appearing on

the log-likelihood surface, in Section 2.2.2 we first compare theoretical corre-

lation structures between parameters with empirical correlations and identify

pairs of parameters which appear to become unidentifiable/correlated as the

noise parameter δ → ∆. We then explore the log-likelihood surface between

these parameters through contour plots and deduce that this characteristic

does not greatly hinder estimation. In Section 2.2.3, we then discuss the

issue of multi-modality, which although appears problematic when d = 2, is

shown to diminish as the number of data points increases. Finally in Sec-

tion 2.2.4, we explore the effect of the frame length ∆ and demonstrate that

parameter identification issues effectively disappear (even with low signal to

noise ratios) as the sampling rate ∆→ 0.

In Section 2.3, we study consistency of the PSHMM estimator by examining
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the convergence of mean-square errors in further simulation studies which

vary the number of imaged molecules M . Here, we also find that the pairs of

parameters that were previously deemed difficult to identify are also shown

to be inconsistent when the signal to noise ratio decreases.

The results presented have been collected from nine further simulation studies

that were conducted exclusively for this chapter. In particular, we investi-

gate the effects of slow, medium and fast switching parameters on the three

models M0
{1},M1

{1} and M2
{1}. The nine studies, which will be referenced

to throughout this chapter, are driven by their parameter set-ups as is pre-

sented in Table 2.1 and were simulated by directly sampling the continuous

time processes {X(t)} and extracting the observation sequences Y as in (1.2).

All studies were executed with ω (false positive rate) equal to zero, as this

was found to be a good approximation for experimental performance. Unless

stated otherwise, the values shown of θ(d),∆−1, NF and M in this table are

the simulation parameters used for each study. Any change made in one or

more of these values in the subsequent analyses, will be clearly highlighted.

2.2 Identification of model parameters

Formally, identifiability in the PSHMM means that the log-likelihood (1.31)

is an injective function from the parameter space θ(d) to the space of distribu-

tions Θ(d) for the data; this is stated more generally in Definition 3. It should

be clear that since is not feasible to analytically tract the log-likelihood with

respect to θ(d), obtaining such a theoretical result for the PSHMM is highly

non-trivial. This motivates our exploration of the issue through empirical

studies.

Definition 3 (Little et al. (2010)). Let θ(d) ∈ Θ(d) be the parameter vector

of interest in the PSHMM as defined in (1.3). If Y denotes data matrix, then

θ(d) is said to be identifiable if there exists no other θ∗(d) ∈ Θ(d) such that

`θ(d)(Y) = `
θ∗

(d) (Y) almost everywhere.

We will begin by exploring the notion of local identifiability, which can be

quantified by analyses of Fisher information matrices. Through simulation
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studies, we will first show that the correlation between the parameters λ01

and δ increases as δ/∆ → 1. Here, there also becomes a clear mismatch

between the sample correlation matrix and that derived from the Fisher

information matrix. This property is seen to be heightened as the photo-

switching becomes faster, i.e. as the transitions between all states in the state

space SX become more rapid, from which the curvature of the log-likelihood

surface is also seen to decrease. When δ/∆ is low (or when the signal to noise

ratio is high), the correlation between λ01 and δ is low and there is strong

agreement between the empirical correlation matrices and those estimated

by the Hessian matrices, indicating the unknown parameters of the model

are in practically identifiable. Contour plots will be shown to support this

statement.

We will also explore the effects of changing the sampling time ∆. As ∆→ 0,

we would expect greater identification of the photo-switching parameters in

{X(t)} as the observed process {Yn} more closely aligns with the hidden

process. For the same photo-switching parameters, therefore, we should see

better estimation of unknown parameters as ∆ decreases. We will first show

that the previously highlighted correlation structures start to diminish, and

second that estimates from selected simulation studies (especially those with

faster switching parameters) become unbiased as ∆ → 0, for all values of

δ/∆ studied.

2.2.1 Local identifiability

Definition 4 (Rothenberg (1971)). Parameter vector θ(d) of the PSHMM

is said to be locally identifiable if and only if the Fisher information matrix

I(θ(d)) = Eθ(d)

(
∂

∂θ(d) `θ(d)(Y)
)

is non-singular.

The definition of local identifiability as stated in Definition 4 implies that that

θ(d) is locally identifiable when all of the eigenvalues of its Fisher information

matrix I(θ(d)) are non-zero. A singular Fisher information matrix (with at

least one eigenvalue equal to zero) implies there does not exist a unique

maximum to the likelihood function (typically due to a flat ridge) and the

model is locally unidentifiable (Little et al., 2010). Due to the complexity
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Parameter d λ001 λ01 λ0102 λ011 λ021 λ10 µ1 ∆−1 ν∗1 M NF
(s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1)

Study

1 (SLOW) 0 0.3162 1 0.0333 30 1 100 104

2 (MEDIUM) 0 1 3.162 0.1054 30 1 100 104

3 (FAST) 0 3.162 10 0.333 30 1 100 104

4 (SLOW) 1 0.15 0.3 0.1 0.8 0.01 30 1 100 104

5 (MEDIUM) 1 0.35 1 0.3 2.3 0.1 30 1 100 104

6 (FAST) 1 2 10 0.7 10 0.333 30 1 100 104

7 (SLOW) 2 0.15 0.3 0.05 0.1 0.001 0.8 0.05 30 1 100 104

8 (MEDIUM) 2 0.8 4 0.1 0.4 0.005 8 0.1 30 1 100 104

9 (FAST) 2 2 10 0.2 0.7 0.01 10 0.333 30 1 100 104

Table 2.1: Global parameter values for the stimulation studies conducted in this section.
All studies have been conducted with the model format of Md

{1} for d = 0, 1, 2, and with
T ∗ = 0.

of the model, the Fisher information matrix can not be computed, however

we can study local identifiability via the observed Fisher information matrix

(the Hessian matrix of the log-likelihood function)

J (θ̂
(d)

) = −∇∇>`θ(d)(Y)|
θ(d)=θ̂

(d) ,

evaluated at the maximum likelihood estimate θ̂
(d)

of θ(d) (Colquhoun et al.,

2003), which can be computed using the method of finite differences. This is

averaged over several repeated simulations of data set Y .

Singularity analysis

The threshold of Viallefont et al. (1998) states that if the smallest eigenvalue

ξmin of J (θ̂
(d)

) is larger than q · ξmax · 1 × 10−9, where q is the dimension

of θ(d) and ξmax is the largest eigenvalue, then it can be considered to be

non-zero and hence J (θ̂
(d)

) non-singular. Adopting this threshold, 500 inde-

pendent datasets were generated for various values of δ for each study 1− 9

as described in Table 2.1. In all cases the Hessian matrices were determined

to be non-singular, and hence consider the model identifiable, with the ex-

ception of 0.33% of the Hessian matrices for Study 6 (when δ ≥ 0.3), 0.073%
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of the Hessian matrices for Study 7, and 0.018% of the Hessian matrices

computed for Study 9. In all cases the average smallest eigenvalue was con-

siderably larger than the threshold. This provides compelling evidence that

the PSHMM model is locally identifiable for all parameter values studied.

2.2.2 Correlations

In order to test whether parameters are independently identifiable, we anal-

yse the correlation structure between estimates of the model parameters. In

particular, high correlations between particular sets of parameters highlight

dependencies not constructed by the model, indicating that these parameters

are individually unidentifiable and hence troublesome for numerical optimi-

sation procedures. As previously noted, when δ/∆ → 1, we would expect

an increase in the sparsity of the datasets, which may encourage correlation

structures to transpire.

Correlation between parameter estimates can be analysed in two ways. The

first is through the correlation matrix as derived from the observed Fisher

information matrix, namely

R(θ̂
(d)

) = diag(J (θ̂
(d)

)−1)−
1
2J (θ̂

(d)
)−1diag(J (θ̂

(d)
)−1)−

1
2 .

This matrix estimates the theoretical correlation structure between parame-

ter estimates based on curvature of the likelihood surface. The second way is

to look at the sample correlation matrix based on the estimates themselves.

Not only do each individually provide evidence of correlation, or lack-thereof,

between parameter estimates, but if the model parameters are identifiable,

these two matrices should approximately align. Therefore, when the two mis-

match this is evidence that the numerical optimisation procedure we deploy

is struggling to properly identify the parameters (Colquhoun et al., 2003).

For each study listed in Table 2.1, 500 datasets were simulated. The sample

correlation matrix was computed from these 500 sets of estimates and the

values reported for the correlation derived from the Hessian matrix were

averaged over these 500 datasets.
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Tables 2.2, 2.3 and 2.4 in Section 2.A of Appendix 2 show the correlation

estimates for studies 1,2 and 3 (parameters provided in Table 2.1) as δ/∆ in-

creases to 1. The correlations obtained from the Hessians and those obtained

empirically agree quite well even when δ/∆ is large. The parameters, however

which are most affected are λ01 (the transition rate between the first dark

and On states) and δ, whose correlation increases as δ/∆ increases. While

this pattern is seen for all three switching scenarios, the correlation coeffi-

cient ρ(λ01, δ) becomes significantly larger as the switching moves faster; for

example, the empirical correlation reaches 0.9603 when δ/∆ = 0.7, 0.8 under

the fast switching scenario. With this example, larger differences between

the correlation estimates can also be seen. A change in correlation can also

be observed between λ10 and δ, and µ1 and δ, whose correlations becomes

increasingly negative as δ/∆ increases. While these correlations do not be-

come close to −1, the correlation pattern observed with all photo-switching

parameters and δ suggest issues with model identification with large values

of δ/∆.

Tables 2.5-2.7 in Section 2.A of Appendix 2 show the correlation estimates for

studies 4, 5 and 6, as δ/∆ increases to 1. Again, it is observed that the values

obtained from the Hessians and those obtained empirically agree well and the

parameters, which are most affected are λ01 and δ, whose correlation is high-

est, especially under fast switching, when δ/∆ = 0.5, 0.6. This is mimicked

by the poorer agreement between the two sets of values. On the other hand,

one may observe the positive correlations ρ(λ001 , λ01) and ρ(λ001 , λ011) which

are, under all values of δ/∆, consistently around the 0.55 and 0.65 mark

respectively for the slow switching, reducing to around 0.3 − 0.4 under the

fast switching. These correlations are inherent to the photo-switching model,

since estimates for photo-switching parameters λ001 , λ01, λ011 are drawn from

the same sequence of zeros in {Yn}. These correlations inherent to the

PSHMM are not affected by the noise parameter δ and do not appear to

pose issues to identifiability.

Tables 2.8-2.13 in Section 2.A of Appendix 2 show the correlation estimates

for studies 7, 8 and 9. Under the medium and fast switching scenarios, it is

noted that the correlations have a much better agreement than under the
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slow switching scenario. Most parameter pairs have seemingly low correla-

tions with again the greatest affected pair being between λ01 and δ, whose

correlation is highest when δ/∆ = 0.6, 0.7 for the medium switching and

between 0.4 − 0.7 under fast switching. Similar to the d = 1 case, the in-

creased correlations between photo-switching rates from the multiple dark

states (λ001 , λ01, λ0102 , λ011, λ021) is owed to the increased number of zeros in

the datasets.

To look more closely at how the change in δ affects the likelihood surface

between δ and its highest correlated parameters, Figures 2.1 and 2.2 show

the likelihood contour surfaces for 3 different values of δ, δ/∆ = 0.1, 0.4, 0.7,

under studies 4 and 6 respectively. For clearer comparisons, the {X(t)} data

used to generate these surfaces are the same for all three values of δ/∆. These

contours show the change between λ01 and δ about their maximum likelihood

estimates with all other parameters of the model fixed at their maximum

likelihood estimates. Figure 2.1 highlights the smaller correlation between

λ01 and δ with the contours appearing to extend vertically. Moreover, the

maximum likelihood estimate for λ01 appears to be computed around the 0.3

(true value) mark for all ranges of δ/∆.

This is in contrast to the faster switching scenario in Figure 2.2. The greater

correlation and dependence between parameters can be observed through

the contours lying in diagonal direction, which becomes more extreme as

δ/∆ increases. While these closed contours show definitive maxima exist on

the surfaces (it is structurally identifiable), the confidence area as depicted

by the elliptical contours around the maximum likelihood estimates (plotted

in asterisks) is seen to increase as δ/∆ increases. The larger area and flatness

highlight the difficultly in correctly estimating/identifying these parameters.

As previously stated, in the case of slow switching (Figure 2.1), the estimate

of λ01 is not affected too badly by an increase in noise, however, the greater

correlation does indeed affect this estimate in a faster switching scenario

(Figure 2.2), as is depicted by a greater bias in the estimate.
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Figure 2.1: Contour plots showing the log-likelihood surface of λ01 against δ when d =
1 under study 4 (of Table 2.1) with other rate parameters λ001 , λ10 and µ1 fixed at their
maximum likelihood values. The left most plot shows the surface when δ

∆ = 0.1, the middle

shows the surface when δ
∆ = 0.4 and the rightmost when δ

∆ = 0.7. Maximum likelihood
estimates are shown as asterisks (black) with the true values shown as squares (red). The
process {X(t)} generating the data is the same for all three plots.
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Figure 2.2: Contour plots showing the log-likelihood surface of λ01 against δ when d =
1 under study 6 (of Table 2.1) with other rate parameters λ001 , λ10 and µ1 fixed at their
maximum likelihood values. The left most plot shows the surface when δ

∆ = 0.1, the middle

shows the surface when δ
∆ = 0.4 and the rightmost when δ

∆ = 0.7. Maximum likelihood
estimates are shown as asterisks (black) with the true values shown as squares (red). The
process {X(t)} generating the data is the same for all three plots.

2.2.3 Multi-modality

While multi-modality on a likelihood surface does not always necessarily re-

late to local identifiability, it is important to assess whether the existence of

multiple modes can cause the optimisation method to wrongly determine the

global maxima. We refer to this as a global identifiability issue. In Chapter
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1, specifically Section 1.D of Appendix 1, we discussed how a computational

implementation of the PSHMM optimiser should be initialised. For the 3

state case (d = 0), an approximation scheme is used to find a suitable start-

ing point, and for the simulations conducted in this thesis has always located

the correct mode. In the 4 and 5 state cases (d = 1 and d = 2, respectively),

a stochastic search method is deployed that trials multiple starting points.

Unimodal histograms for the parameter estimates would indicate a single

global maximum, whereas a multi-modal histogram would indicate further

dominant modes being located instead. We found a unimodal distribution

for the estimates of all parameters under all simulation studies (figures omit-

ted) with one exception. Figure 2.3 shows histograms of estimates of λ0102

in Study 7 (slow switching) the 5 state (d = 2) model. When the number

of frames NF = 10, 000, it is clear that the optimisation procedure is finding

two dominant modes. It should be noted however, that this global identifi-

ability issue diminishes as NF increases to 50, 000, and the surface becomes

unimodal.
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Figure 2.3: Rate estimates for λ0102
= 0.05 under the slow switching scenario when d = 2,

estimates show multi-modality when NF = 104 (left) and uni-modality when NF = 5× 104.

2.2.4 The effect of frame length

In order to test the effect of decreasing the frame length ∆ (or increasing the

frame rate) on estimates, we simulated 500 datasets for the fast switching
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scenarios (studies 3, 6 and 9 in Table 2.1) under the models d = 0, 1, 2.

The fast switching parameters were used in this analysis due to the fact

that the correlation structures between the noise parameter δ and photo-

switching parameters were the highest, as is explained in Section 2.2.2. In

particular, small values of ∆ should yield less bias within the estimates and

any identifiability issues in parameters should diminish as the hidden process

{X(t)} is more closely seen. To address this issue, we show rate estimates for

three sets of imaging parameters ∆−1 = 30, 65, 100s−1 from datasets imaging

M = 100 molecules over a period of 3× 105 seconds.

Figures 2.4 - 2.8 show box-plots of rate results for all simulations. Under all

models, it is evident that rate estimates become unbiased as ∆ → 0, under

most values of the noise fraction δ/∆. For instance, the bias in estimates

that is highlighted most strongly is when δ/∆ ≈ 0.4 − 0.5, for most cases.

Although the same pattern in bias is seen across all three values of ∆, this

bias is significantly seen to decrease. This intuitively reflects the fact that

∆→ 0 implies that the observed process {Yn} provides greater information of

the process {X(t)}, with the ∆, δ → 0 case becoming completely informative

of the hidden process. When ∆−1 = 30s−1 for the d = 2 case for example,

bias in the parameters λ01 = λ10 = 10 even at low noise floors is observed.

This bias dissipates as the sampling time decreases, implying that there are

identifiability issues for faster switching parameters if the sampling rate ∆−1

is not large enough to capture the transitions between On and dark states.

One may also observe that while the bias in estimates decrease as δ/∆ ranges

from 10−4 − 0.6, that in some cases the estimator begins to improve and

recover the true rates towards δ/∆ = 0.9. This is most notably seen for the

λ01 and λ10 parameters in the d = 0, 1 cases (Figures 2.4-2.6) and λ10 in the

d = 2 case (Figure 2.8). Intuitively, this effect may be due to the fact that

in this situation, {X(t)} is likely to only be occupying the On state within

each frame in which an observation is collected. Here, the PSHMM may

first, be able to learn the distribution of holding times in the On state, and

second, inherently be able to identify the frames in which transitions from a

dark to an On state occur (before a subsequent observation of a fluorophore).

Depending on the amount of data collected, this may therefore enable better
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estimation of the parameters λ01, λ10 for larger values of δ/∆. However, it

should be noted that in these situations, other parameter estimates (as seen

in Figures 2.4 - 2.8) do not improve in the same manner. When considering

the bias for all parameters estimated, we therefore observe and expect better

rate estimation for all parameters for low values of δ/∆.
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Figure 2.4: Box-plots showing rate estimates when d = 0 under study 3 of Table 2.1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the
red dashed line.
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Figure 2.5: Box-plots showing rate estimates when d = 1 under study 4 of Table 2.1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the
red dashed line.

To look more closely at how the change in ∆ affects the likelihood surface

between δ and its highest correlated parameter λ01, Figure 2.9 shows the

likelihood contour surfaces for 3 different values of ∆, ∆−1 = 30, 65, 100s−1,

under study 6, for when δ/∆ = 0.7. Again, for clearer comparisons, the

{X(t)} data used to generate these surfaces are the same for all three values

of δ/∆. These contours show the change between λ01 and δ about their

maximum likelihood estimates with all other parameters of the model fixed

at their maximum likelihood estimates. One can observe that the correlation

between λ01 and δ reduces as ∆ decreases.
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Figure 2.6: Box-plots showing rate estimates when d = 1 under study 4 of Table 2.1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the
red dashed line.
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Figure 2.7: Box-plots showing rate estimates when d = 2 under study 9 of Table 2.1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the
red dashed line.

2.2.5 Experimental impact

The analysis presented in this section indicates potential identification issues

under three scenarios: when δ/∆ is large, when fluorophores are imaged in

faster switching conditions (relative to the frame acquisition time ∆) and

(specifically in the case of multiple dark states), when the data obtained are

insufficiently large for rate estimation.

When designing fluorescence microscopy experiments, these results suggest

that experimenters wishing to utilise a faster switching scenario during imag-

ing should do so at shorter frame times, so as to improve subsequent rate

estimation. On the other hand, while slower switching scenarios may be

conducted across a larger range of frame times, experimenters should re-

main cautious as to the effect of high background noise δ, and endeavour to

conduct imaging under conditions that promote minimal background noise.
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Figure 2.8: Box-plots showing rate estimates when d = 2 under study 9 of Table 2.1 when
∆−1 = 30 (left), ∆−1 = 65 (middle) and ∆−1 = 100 (right). True rates indicated by the
red dashed line.

In general, experiments that involve fluorophores that photo-switch between

multiple dark states (larger values of d) should additionally be imaged for a

longer time than would be necessary for simpler models (i.e. when d = 0).

2.3 Consistency

In this section, we will use the identifiability analysis from the previous sec-

tion to discuss when the PSHMM maximum likelihood estimator is consis-

tent. Under studies 1-9, rate estimates will be computed as M is changed. In

this case, the variance of the PSHMM estimator is shown to decrease as M in-

creases, whilst consistency is shown through the convergence of mean-square

errors only when δ/∆ is small and unknown transition rates are identifiable

given the sampling time ∆.

Definition 5. Let Y =
(
y1 y2 . . . yM

)
be the data matrix, with each

column being an NF × 1 data vector from each independent imaging exper-

iment. The PSHMM estimator θ̂
(d)

:= arg maxθ(d)∈Θ(d) `θ(d) (Y) of the true

parameter vector θ∗(d) of the model is consistent if it converges in probability

to θ∗(d), i.e. that for any ε > 0:

lim
NF ,M→∞

P(|θ̂
(d)
− θ∗(d)| > ε) = 0.

Specifically, the PSHMM estimator is consistent if it converges in probabil-
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Figure 2.9: Contour plots showing the log-likelihood surface of λ01 against δ/∆ when
d = 1 under study 6 (of Table 2.1) with other rate parameters λ001

, λ10 and µ1 fixed at
their maximum likelihood values. The left most plot shows the surface when ∆−1 = 30s−1,
the middle shows the surface when ∆−1 = 65s−1 and the rightmost when ∆−1 = 100s−1.
The true value for δ/∆ is 0.7 for each study. Maximum likelihood estimates are shown as
asterisks (black) with the true values shown as squares (red). The process {X(t)} generat-
ing the data is the same for all three plots.

ity to the true parameter (see Definition 5). Again, consistency is difficult

to show theoretically for the PSHMM estimator given the form of the log-

likelihood function in (1.31). However, since convergence in mean square

implies convergence in probability∗, we can loosely show that convergence in

probability is attained by analysing if the mean-squared errors of parameter

estimates tends to zero as M increases. From other studies, we have found

that modifying the parameter NF does not show any significant changes in

bias/variance of the rate estimates due to the inclusion of the photo-bleaching

state. In this section, we have therefore solely considered the effects of chang-

ing M .

Using the simulation studies 1−9 from the previous section (considered in Ta-

ble 2.1), we were also able to compute the means and mean squared errors of

the estimates, the results of which are shown for different δ/∆ in Tables 2.14

- 2.22 presented in Section 2.B of Appendix 2. To compare the mean squared

∗Let Tn be a sequence of random variables defined on a sample space Ω, then Tn
is convergent in mean square to T (also defined on Ω) if and only if limn→∞ E((Tn −
T )2) = 0. By Markov’s inequality, for any ε > 0 : P((Tn − T )2 ≥ ε2) ≤ E((Tn−T )2)

ε2 =⇒
limn→∞ P((Tn−T ) ≥ ε) ≤ limn→∞

E((Tn−T )2)
ε2 = 0, which shows that convergence in mean

square implies convergence in probability.
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errors as the sample size M grows, we additionally show these errors under

the same simulation studies executed with M = 1000. The mean squared

errors, on the whole, are seen to decrease as the sample size M increases, for

all switching parameters and values of δ/∆. This reduction is highlighted

more when δ/∆ is smaller, especially for faster switching rates. For example,

in Table 2.16 (in Section 2.B of Appendix 2), while the mean squared error

for parameter λ10 reduces for larger δ/∆, it is not seen to reduce at the same

rate as other parameters which would indicate that this bias would persist

even if the sample size is increased more. This is particularly pronounced

when δ/∆ is between 0.4 and 0.8. This pattern is also observed from other

parameters, especially λ01 and λ001 in the faster switching scenarios. The

fast reduction in MSE for parameters under slowing switching scenarios and

with lower noise δ/∆ is reflected by better model identification (as shown in

Section 2.2) and is therefore a good indication of consistency.

To more clearly visualise the effects of an increase in M on maximum like-

lihood estimation, we show rate estimates as δ/∆ increases when M =

100, 1000, 5000 for the fast switching scenario (studies 3, 6 and 9). NF is

fixed at 10, 000 under all simulations. Figures 2.10 - 2.14 show box-plots of

rate results for all simulations. It is evident that while an asymptotic de-

crease in variance is pronounced, asymptotic bias persists for larger values of

δ/∆. Furthermore, stronger correlations between parameter estimates can be

seen as δ/∆ increases, leading to inconsistency. For example, the estimates

for λ01 under all d = 0, 1, 2 models remain biased as M increase, albeit at a

lower variance. This is also true for λ10 under studies 6 and 9.

From Figures 2.10 - 2.14, the pattern in bias that is captured by the majority

of estimates under M = 100 as δ/∆ increases persists as M increases. This is

replicated by the mismatch in correlations that indicates identifiability issues.

However, for low values of δ/∆, the estimator appears to be asymptotically

unbiased with mean squared errors converging to zero; in this case the esti-

mator is seen to be consistent. It should be noted that the faster rates do

affect these properties as is seen in Figure 2.14, whereby estimates for λ10,

although obtaining a smaller variance, remain biased for even the smallest

values of δ/∆. This is related to the identifiability analysis previously pre-

94



sented, as the sampling interval ∆ is too large to informatively detect and

estimate faster switching rates. As ∆→ 0, however, using the analysis from

Section 2.2.4, these faster rates should become identifiable and consistency

appears to hold.
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Figure 2.10: Box-plots showing rate estimates when d = 0 under study 3 of Table 2.1 when
M = 100 (left), M = 1000 (middle) and M = 5000 (right). True rates indicated by the red
dashed line.
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Figure 2.11: Box-plots showing rate estimates when d = 1 under study 6 of Table 2.1 when
M = 100, M = 1000 and M = 5000 (right). True rates indicated by the red dashed line.

2.3.1 Experimental impact

The analysis presented in this section mimics the findings from the identifia-

bility analysis presented in Section 2.2. Specifically, we found that the model

fails to be consistent under two scenarios which also cause model identifica-

tion problems: when δ/∆ is large and when fluorophores are imaged in faster

switching conditions (relative to the frame acquisition time ∆).

Similarly to the experimental impact discussed in Section 2.2, these results

suggest that first, experimenters wishing to utilise a faster switching scenario
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Figure 2.12: Box-plots showing rate estimates when d = 1 under study 6 of Table 2.1 when
M = 100, M = 1000 and M = 5000 (right). True rates indicated by the red dashed line.
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Figure 2.13: Box-plots showing rate estimates when d = 2 under study 9 of Table 2.1 when
M = 100, M = 1000 and M = 5000 (right). True rates indicated by the red dashed line.

during imaging should do so at shorter frame times, and second, that imaging

should be conducted in conditions that minimise the effects of background

noise. In these situations, acquiring more data is likely to lead to lower

variance and unbiased parameter estimates through the PSHMM.

2.4 Conclusions

In this chapter, we have analysed through extensive simulation studies the

situations in which the PSHMM constructed in Chapter 1 can both identify

unknown photo-switching parameters and is consistent.

We initially determined that potential identification issues may arise due to

the noise in the model, which primarily comes in the form of δ: the minimum

time that the hidden signal {X(t)} must be active for within a frame for an

observation of a molecule, and d: the number of multiple dark states. Us-
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Figure 2.14: Box-plots showing rate estimates when d = 2 under study 9 of Table 2.1 when
M = 100, M = 1000 and M = 5000 (right). True rates indicated by the red dashed line.

ing simulations studying slow, medium and fast photo-switching (from the

models d = 0, 1, 2), we found that identifiability issues somewhat arise as

δ/∆ → 1, i.e. the time a fluorophore needs to stay in the On state to be

detected tends towards the frame rate. This was indicated by the observed

correlation matrix, as derived from the observed covariance matrix J (θ̂
(d)

)−1

showing strong correlation between δ̂ and λ̂01, and hence the existence of a

ridge on the likelihood surface, albeit still with curvature. While still tech-

nically identifiable, the correlation between these two parameter estimators

indicated that when δ/∆ is large, they can be difficult to be independently

identified and pose difficulties to numerical optimisation methods. This effect

was more pronounced for faster transition rates due to an increased chance of

transitions into the On state not being observed. However, for low values of

δ/∆ as is typically encountered in practice, correlation between all elements

of the estimator θ̂
(d)

was low, providing clear empirical evidence of locally

identifiability for all parameter values studied. Next, multi-modality of the

parameter estimate λ0102 in the d = 2 model was shown to exist, although

this effect disappeared as more data was used in the estimation procedure.

Finally, studies on consistency of the PSHMM estimator corroborated our

findings on identifiability. A break down in identifiability resulted in the

estimator becoming inconsistent, with evidence suggesting that the mean

squared error tends to zero when δ/∆ is within a suitable range (i.e. < 0.5).

However, as δ/∆ increased towards unity and under faster switching scenar-

ios, consistency of the estimator disappeared with it becoming more biased

(although with a reduction in variance).
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With regards to experimental design, these results suggest that: first, exper-

imenters wishing to utilise a faster switching scenario during imaging should

do so at shorter frame times, second, that imaging should be conducted in

conditions that minimise the effects of background noise δ, and third, that

experiments requiring a PSHMM model with multiple dark states d should

involve acquiring the largest number of images possible.

Appendix 2

2.A Correlation tables

In this section, we present tables to compare the empirical correlation struc-

tures between PSHMM parameter estimates (under studies 1-9) with those

estimated from the Fisher information matrices, as analysed in Section 2.2.2.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.0071 0.0054 0.0030 −0.0055 −0.0208 −0.0363 −0.0413 −0.0330 −0.0080 0.0152 0.0366
−0.0587 0.0091 −0.0624 −0.0043 0.0236 −0.0943 −0.1525 −0.1689 −0.0863 −0.0972 0.0306

ρ(λ01, µ1) 0.0014 0.0011 0.0005 −0.0015 −0.0076 −0.0154 −0.0268 −0.0355 −0.0401 −0.0373 −0.0289
−0.0179 0.0638 0.0194 −0.0436 −0.0230 −0.0239 0.0021 −0.0847 −0.1393 −0.1372 −0.0354

ρ(λ10, µ1) 0.0093 0.0076 0.0067 0.0088 0.0132 0.0165 0.0172 0.0153 0.0085 0.0051 0.0005
0.0406 −0.0090 −0.0096 0.0892 0.0388 0.0368 0.0742 0.0861 0.0569 0.0635 0.0411

ρ(λ01, δ) 0.0327 0.0440 0.0567 0.0885 0.1454 0.2108 0.3098 0.3832 0.4360 0.4386 0.4048
0.0472 0.0357 0.0202 0.1463 0.2580 0.3753 0.5584 0.6469 0.6479 0.5965 0.4922

ρ(λ10, δ) −0.2216 −0.2081 −0.2034 −0.2182 −0.2361 −0.2480 −0.2187 −0.1714 −0.0954 −0.0380 0.0014
−0.2008 −0.1640 −0.2127 −0.2624 −0.2431 −0.2636 −0.3307 −0.3591 −0.1750 −0.1876 −0.0831

ρ(µ1, δ) −0.0382 −0.0369 −0.0374 −0.0444 −0.0568 −0.0692 −0.0824 −0.08593 −0.0886 −0.0802 −0.0674
0.0076 −0.0560 −0.0573 −0.0388 −0.0365 −0.0676 −0.1150 −0.1085 −0.1485 −0.2070 −0.0671

Table 2.2: Simulation results from d = 0 slow switching (study 1 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.0372 0.0258 0.0149 −0.0150 −0.0541 −0.1049 −0.1763 −0.1362 −0.0367 0.0826 0.1500
−0.0030 0.0668 −0.0379 −0.0657 −0.0721 −0.0936 −0.4365 −0.5085 −0.3351 0.1128 0.1405

ρ(λ01, µ1) −0.0017 −0.0038 −0.0060 −0.0133 −0.0252 −0.0448 −0.0957 −0.1488 −0.1544 −0.1250 −0.0906
0.0230 0.0594 −0.0698 0.0478 −0.0185 −0.0449 −0.2387 −0.3571 −0.2991 −0.1341 −0.0530

ρ(λ10, µ1) 0.0180 0.0203 0.0238 0.0327 0.0430 0.0566 0.0779 0.0683 0.0399 0.0051 −0.0105
0.0362 0.0897 −0.0147 −0.0138 −0.0369 0.0824 0.1797 0.1535 0.0563 0.0003 −0.0259

ρ(λ01, δ) 0.0392 0.0698 0.0944 0.1587 0.2391 0.3353 0.5014 0.6816 0.7377 0.7199 0.6447
0.0147 0.0403 0.1103 0.0717 0.2736 0.3533 0.7927 0.9073 0.8907 0.7393 0.6183

ρ(λ10, δ) −0.2886 −0.3132 −0.3375 −0.3779 −0.4082 −0.4366 −0.4456 −0.3017 −0.1455 −0.0024 0.0667
−0.2183 −0.3704 −0.2748 −0.4224 −0.3994 −0.4762 −0.5830 −0.5811 −0.4164 −0.0146 0.0001

ρ(µ1, δ) −0.0504 −0.0582 −0.0662 −0.0834 −0.1021 −0.1255 −0.1722 −0.2071 −0.2009 −0.1661 −0.1290
−0.0541 −0.0269 0.0410 −0.0409 −0.0845 −0.1696 −0.2951 −0.3826 −0.3302 −0.1768 −0.1421

Table 2.3: Simulation results from d = 0 medium switching (study 2 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ01, λ10) 0.1114 0.0740 0.0213 −0.0728 −0.1774 −0.2962 −0.4209 −0.5151 −0.2016 0.1049 0.2962
0.1120 0.0446 0.0515 −0.0529 −0.3221 −0.3005 −0.4783 −0.7272 −0.5883 0.0973 0.2722

ρ(λ01, µ1) 0.0004 −0.0108 −0.0239 −0.0536 −0.0962 −0.1585 −0.2457 −0.4131 −0.4409 −0.3805 −0.3079
0.0041 −0.0285 −0.0050 −0.1103 −0.1199 −0.1078 −0.2672 −0.6345 −0.6690 −0.3813 −0.2918

ρ(λ10, µ1) 0.0374 0.0714 0.0909 0.1180 0.1478 0.1866 0.2413 0.3232 0.1791 0.0268 −0.0521
−0.0232 0.0787 0.0687 0.1526 0.1492 0.2669 0.2172 0.4944 0.5065 0.0598 −0.0299

ρ(λ01, δ) 0.0549 0.1372 0.1997 0.3169 0.4464 0.5870 0.7207 0.8599 0.9173 0.9086 0.8664
0.0606 0.1019 0.1897 0.2986 0.5680 0.6007 0.7456 0.9531 0.9603 0.9186 0.8544

ρ(λ10, δ) −0.2615 −0.4980 −0.5683 −0.6140 −0.6454 −0.6736 −0.7026 −0.6837 −0.3339 −0.0428 0.1172
−0.3324 −0.5800 −0.5959 −0.5643 −0.6925 −0.6900 −0.6598 −0.8279 −0.7023 −0.0835 0.0202

ρ(µ1, δ) −0.0543 −0.1133 −0.1423 −0.1782 −0.2169 −0.2668 −0.3344 −0.4679 −0.4719 −0.4061 −0.3354
−0.0502 −0.1062 −0.1356 −0.2344 −0.2217 −0.2767 −0.2647 −0.6435 −0.7002 −0.4043 −0.3414

Table 2.4: Simulation results from d = 0 fast switching (study 3 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.5926 0.5915 0.5916 0.5896 0.5901 0.5898 0.5857 0.5832 0.5823 0.5828 0.5855
0.5884 0.5734 0.5523 0.5645 0.5193 0.5791 0.5347 0.5674 0.5770 0.5978 0.5820

ρ(λ001 , λ011) 0.6754 0.6761 0.6752 0.6764 0.6769 0.6798 0.6807 0.6807 0.6834 0.6828 0.6844
0.6668 0.6706 0.7146 0.6833 0.6407 0.6643 0.5911 0.6740 0.6488 0.6971 0.6636

ρ(λ01, λ011) 0.2854 0.2856 0.2845 0.2841 0.2868 0.2910 0.2928 0.2953 0.3004 0.2973 0.2958
0.2414 0.2930 0.2821 0.2798 0.2420 0.3352 0.2373 0.3489 0.2777 0.3682 0.3157

ρ(λ001 , λ10) 0.0158 0.0152 0.0145 0.0118 0.0078 0.0033 −0.0013 −0.0041 −0.0057 −0.0044 −0.0024
0.0084 −0.0103 −0.0214 0.0478 0.0254 −0.0038 0.0382 −0.0681 −0.1221 −0.0332 0.0114

ρ(λ01, λ10) 0.0275 0.0259 0.0238 0.0166 0.0046 −0.0083 −0.0193 −0.0163 −0.0098 0.0028 0.0164
−0.0013 0.0515 −0.0358 0.0359 −0.0607 −0.0905 −0.0734 −0.1606 −0.1049 0.0456 −0.0530

ρ(λ011, λ10) 0.0038 0.0032 0.0025 0.0001 −0.0037 −0.0079 −0.0111 −0.0102 −0.0077 −0.0037 0.0012
−0.0295 −0.0067 −0.0331 0.0511 0.0147 −0.0397 0.0191 −0.0667 −0.0750 −0.0068 −0.0099

ρ(λ001 , µ1) 0.0108 0.0112 0.0108 0.0113 0.0105 0.0098 0.0090 0.0082 0.0072 0.0077 0.0079
0.0321 0.0828 0.0191 0.0008 −0.0010 0.0935 0.0375 −0.0906 0.0402 0.0407 0.0007

ρ(λ01, µ1) 0.0097 0.0099 0.0096 0.0093 0.0070 0.0039 −0.0000 −0.0032 −0.0064 −0.0036 −0.0011
−0.0011 0.0755 0.0649 −0.0289 0.0220 0.1154 −0.0762 −0.0721 −0.0061 0.0963 −0.0413

ρ(λ011, µ1) 0.0326 0.0336 0.0328 0.0338 0.0325 0.0313 0.0301 0.0297 0.0283 0.0292 0.0293
0.0539 0.1016 0.0092 −0.0256 −0.0366 0.0745 0.0557 0.0025 0.0154 0.0880 0.0240

ρ(λ10, µ1) −0.0069 −0.0061 −0.0052 −0.0037 −0.0014 0.0007 0.0016 −0.0005 −0.0035 −0.0060 −0.0086
−0.0321 −0.0395 0.0123 −0.0677 −0.0500 −0.0191 −0.0013 −0.0007 0.0720 −0.0001 −0.0310

ρ(λ001 , δ) −0.0089 −0.0092 −0.0084 −0.0045 0.0049 0.0177 0.0365 0.0568 0.0773 0.0748 0.0707
−0.0515 0.0053 0.0697 0.0345 −0.0290 0.0115 0.0218 0.1857 0.0605 0.1193 0.0816

ρ(λ01, δ) −0.0115 −0.0076 −0.0011 0.0196 0.0589 0.1086 0.1792 0.2436 0.3084 0.2958 0.2733
0.0189 0.0246 0.0555 0.0912 0.1491 0.2846 0.3455 0.5210 0.3632 0.4294 0.2540

ρ(λ011, δ) −0.0013 0.0005 0.0031 0.0097 0.0225 0.0389 0.0609 0.0811 0.1017 0.0952 0.0874
−0.0417 0.0392 0.0722 −0.0074 0.0139 0.0545 0.1099 0.1687 0.0769 0.0984 0.0659

ρ(λ10, δ) −0.1354 −0.1663 −0.1876 −0.2165 −0.2343 −0.2425 −0.2265 −0.1626 −0.0920 −0.0420 0.0033
0.0256 −0.1309 −0.1557 −0.1972 −0.2832 −0.3085 −0.2948 −0.3686 −0.3085 −0.1145 −0.0364

ρ(µ1, δ) −0.0124 −0.0159 −0.0190 −0.0241 −0.0307 −0.0376 −0.0439 −0.0456 −0.0462 −0.0393 −0.0322
0.0139 −0.0036 0.0458 −0.0462 0.0043 0.0336 −0.1000 −0.0441 −0.1469 0.0150 −0.0453

Table 2.5: Simulation results from d = 1 slow switching (study 4 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.5729 0.5758 0.5748 0.5717 0.5663 0.5603 0.5570 0.5502 0.5493 0.5529 0.5555
0.5214 0.5593 0.5484 0.5422 0.5174 0.5094 0.4324 0.4277 0.5939 0.5298 0.4957

ρ(λ001 , λ011) 0.6802 0.6824 0.6823 0.6850 0.6839 0.6856 0.6899 0.6918 0.7003 0.7023 0.7008
0.7081 0.6599 0.6531 0.6503 0.7029 0.7018 0.6401 0.6296 0.6645 0.7089 0.6922

ρ(λ01, λ011) 0.2924 0.2947 0.2943 0.2937 0.2903 0.2917 0.3038 0.3105 0.3204 0.3199 0.3094
0.2581 0.2379 0.2772 0.2552 0.2548 0.2888 0.2839 0.2906 0.3816 0.2970 0.2636

ρ(λ001 , λ10) 0.0489 0.0475 0.0439 0.0360 0.0253 0.0100 −0.0072 −0.0157 −0.0152 −0.0069 0.0015
0.0073 0.0871 0.0330 0.0024 −0.0025 0.0689 −0.0672 −0.1155 −0.1029 −0.0185 0.0112

ρ(λ01, λ10) 0.0874 0.0823 0.0735 0.0518 0.0195 −0.0318 −0.0778 −0.0651 −0.0341 0.0167 0.0638
0.0537 0.1334 0.1303 0.0098 0.0352 −0.0818 −0.3192 −0.3792 −0.2396 −0.0334 0.0212

ρ(λ011, λ10) 0.0240 0.0229 0.0205 0.0151 0.0065 −0.0071 −0.0216 −0.0205 −0.0119 0.0019 0.0150
−0.0204 0.0454 −0.0349 0.0126 −0.0303 0.0054 −0.1004 −0.1949 −0.0769 −0.0142 0.0592

ρ(λ001 , µ1) 0.0010 0.0011 0.0011 0.0006 −0.0010 −0.0052 −0.0140 −0.0208 −0.0238 −0.0214 −0.0158
−0.0044 −0.0558 −0.0203 0.0269 −0.0651 0.0270 −0.0735 −0.0301 −0.1018 −0.0145 0.0048

ρ(λ01, µ1) 0.0015 0.0013 0.0004 −0.0028 −0.0109 −0.0300 −0.0602 −0.0828 −0.0918 −0.0807 −0.0581
0.0206 −0.0976 −0.0460 0.0222 −0.0486 −0.0313 −0.1469 −0.1258 −0.1143 −0.1881 −0.0141

ρ(λ011, µ1) 0.0004 0.0004 0.0002 −0.0006 −0.0026 −0.0076 −0.0173 −0.0242 −0.0263 −0.0235 −0.0168
−0.0289 −0.0396 0.0082 0.0505 −0.0552 0.0147 −0.0762 −0.0785 −0.1116 −0.0469 0.0222

ρ(λ10, µ1) 0.0110 0.0167 0.0211 0.0297 0.0402 0.0572 0.0710 0.0526 0.0345 0.0128 −0.0032
0.0153 −0.0353 0.0207 −0.0192 0.0741 −0.0107 0.0750 0.1038 0.0899 0.0152 0.1020

ρ(λ001 , δ) −0.0137 −0.0149 −0.0129 −0.0060 0.0069 0.0292 0.0633 0.1106 0.1342 0.1364 0.1191
0.0136 −0.0547 −0.0208 −0.0296 0.0109 −0.0215 0.0945 0.1694 0.2768 0.0965 0.0551

ρ(λ01, δ) −0.0185 −0.0117 0.0013 0.0371 0.0956 0.1903 0.3050 0.4493 0.5195 0.5192 0.4580
0.0276 −0.0156 −0.0346 0.0512 0.1403 0.3237 0.6120 0.6889 0.6827 0.5565 0.4915

ρ(λ011, δ) −0.0058 −0.0043 −0.0009 0.0078 0.0226 0.0474 0.0828 0.1281 0.1464 0.1470 0.1254
−0.0104 −0.0162 −0.0217 −0.0425 −0.0006 0.0478 0.1873 0.3027 0.2810 0.1391 0.0776

ρ(λ10, δ) −0.2139 −0.2795 −0.3157 −0.3601 −0.3925 −0.4246 −0.4181 −0.2805 −0.1610 −0.0570 0.0222
−0.0514 −0.2808 −0.2899 −0.3803 −0.3834 −0.5160 −0.5869 −0.5994 −0.4065 −0.1904 −0.0170

ρ(µ1, δ) −0.0371 −0.0518 −0.0618 −0.0793 −0.0991 −0.1296 −0.1616 −0.1713 −0.1673 −0.1464 −0.1137
0.0300 −0.0303 −0.0464 −0.0858 −0.1312 −0.1113 −0.2092 −0.2037 −0.1956 −0.2347 −0.1104

Table 2.6: Simulation results from d = 1 medium switching (study 5 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3405 0.3349 0.3459 0.3774 0.4155 0.4888 0.6258 0.6706 0.6555 0.6224 0.5765
0.3628 0.3507 0.4301 0.3108 0.3824 0.5229 0.8100 0.8409 0.6629 0.5735 0.6091

ρ(λ001 , λ011) 0.3386 0.3368 0.3371 0.3358 0.3261 0.3366 0.3980 0.4339 0.4531 0.4611 0.4640
0.3038 0.3429 0.3030 0.2940 0.3251 0.3622 0.4578 0.5063 0.4640 0.4623 0.4496

ρ(λ01, λ011) 0.1793 0.1758 0.1734 0.1687 0.1635 0.1793 0.2466 0.2773 0.2723 0.2553 0.2375
0.2272 0.2038 0.2124 0.0852 0.1339 0.1729 0.3222 0.3821 0.2721 0.2359 0.2230

ρ(λ001 , λ10) 0.0566 −0.0493 −0.1066 −0.1763 −0.2428 −0.3332 −0.4572 −0.4535 −0.3202 −0.1847 −0.0797
0.0602 −0.0620 −0.1243 −0.2787 −0.2494 −0.3709 −0.6973 −0.6761 −0.3627 −0.0915 −0.1371

ρ(λ01, λ10) 0.5471 0.4469 0.3567 0.1720 −0.0583 −0.2968 −0.5318 −0.5674 −0.3987 −0.1932 0.0010
0.4775 0.3501 0.2732 0.1298 −0.1502 −0.3976 −0.7826 −0.7792 −0.4798 −0.1459 −0.0967

ρ(λ011, λ10) 0.0783 0.0583 0.0426 0.0158 −0.0177 −0.0650 −0.1467 −0.1678 −0.1171 −0.0579 −0.0119
0.0802 0.0715 0.0561 −0.0467 0.0820 −0.0290 −0.2728 −0.2393 −0.1500 −0.0298 −0.0373

ρ(λ001 , µ1) −0.0112 −0.0310 −0.0462 −0.0707 −0.1018 −0.1655 −0.2615 −0.2681 −0.2104 −0.1575 −0.1178
0.0160 −0.0869 0.0047 −0.1182 −0.0918 −0.1394 −0.4245 −0.4593 −0.2448 −0.0935 −0.1078

ρ(λ01, µ1) 0.0406 0.0408 0.0282 −0.0127 −0.0801 −0.1876 −0.3309 −0.3646 −0.3174 −0.2661 −0.2224
0.0659 −0.0173 0.0020 −0.0232 −0.0253 −0.2111 −0.5190 −0.5624 −0.4151 −0.2480 −0.2524

ρ(λ011, µ1) 0.0046 0.0036 0.0011 −0.0049 −0.0152 −0.0413 −0.0927 −0.1072 −0.0872 −0.0658 −0.0515
0.0045 0.0090 0.0858 −0.0460 0.0048 −0.1148 −0.1870 −0.1522 −0.1387 −0.0166 0.0270

ρ(λ10, µ1) 0.0922 0.1494 0.1779 0.2144 0.2438 0.3051 0.3727 0.3394 0.2195 0.1180 0.0422
0.0813 0.0900 0.1089 0.2483 0.2469 0.2569 0.5041 0.5874 0.2500 0.1503 0.0054

ρ(λ001 , δ) 0.1052 0.1923 0.2366 0.2874 0.3344 0.4121 0.5496 0.5971 0.5611 0.5027 0.4321
0.0726 0.2080 0.2657 0.3300 0.3623 0.4415 0.7632 0.7753 0.5765 0.4441 0.4436

ρ(λ01, δ) −0.0966 −0.0979 −0.0471 0.0956 0.2808 0.4847 0.7125 0.8244 0.8510 0.8399 0.7972
−0.0648 −0.0544 0.0780 0.1247 0.3901 0.5974 0.9035 0.9103 0.8719 0.8292 0.8121

ρ(λ011, δ) −0.0082 −0.0042 0.0050 0.0237 0.0498 0.0939 0.1867 0.2345 0.2294 0.2082 0.1870
−0.0179 −0.0416 −0.0140 0.0748 −0.0006 0.0760 0.2925 0.3215 0.2336 0.1871 0.1832

ρ(λ10, δ) −0.4631 −0.7184 −0.7860 −0.8158 −0.7972 −0.8155 −0.8300 −0.7621 −0.5873 −0.3941 −0.1998
−0.5135 −0.7308 −0.7868 −0.8493 −0.8411 −0.8743 −0.9301 −0.9184 −0.6647 −0.3895 −0.2742

ρ(µ1, δ) −0.0964 −0.1701 −0.2031 −0.2426 −0.2726 −0.3368 −0.4184 −0.4186 −0.3587 −0.3059 −0.2603
−0.0937 −0.1357 −0.1218 −0.2575 −0.2991 −0.3191 −0.5532 −0.6135 −0.4383 −0.2904 −0.2848

Table 2.7: Simulation results from d = 1 fast switching (study 6 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) −0.1610 −0.1158 −0.1025 −0.1637 −0.0808 −0.1255 −0.0980 −0.0860 −0.1826 −0.1768 −0.0720
0.4636 0.3054 0.3245 0.4173 0.5135 0.3869 0.4449 0.4316 0.3913 0.4898 0.3780

ρ(λ001 , λ0102 ) 0.3396 0.3015 0.2835 0.3388 0.2714 0.3261 0.2891 0.2844 0.3623 0.3685 0.2800
−0.1316 −0.0657 −0.0279 −0.1000 −0.0148 −0.0698 −0.0362 −0.1160 −0.1319 −0.0965 −0.0631

ρ(λ01, λ0102 ) −0.7763 −0.7605 −0.7673 −0.7897 −0.7430 −0.7548 −0.7661 −0.7743 −0.8030 −0.8119 −0.7640
−0.6749 −0.5007 −0.6502 −0.6557 −0.5843 −0.6500 −0.6122 −0.6609 −0.6682 −0.6017 −0.6394

ρ(λ001 , λ011) 0.0027 0.0574 0.0735 0.0146 0.0939 0.0663 0.0995 0.1137 0.0163 0.0198 0.1254
0.5237 0.3805 0.5875 0.5831 0.2380 0.5986 0.5905 0.6323 0.5082 0.6147 0.6844

ρ(λ01, λ011) 0.7683 0.7494 0.7518 0.7716 0.7377 0.7506 0.7473 0.7553 0.7828 0.7884 0.7483
0.7166 0.8141 0.6065 0.6667 0.6780 0.6503 0.6476 0.6628 0.6814 0.6770 0.6096

ρ(λ0102 , λ011) −0.7324 −0.7136 −0.7292 −0.7438 −0.6997 −0.6879 −0.7144 −0.7195 −0.7415 −0.7529 −0.7105
−0.5998 −0.4808 −0.5624 −0.5811 −0.6077 −0.5032 −0.5283 −0.5261 −0.5840 −0.5094 −0.5109

ρ(λ001 , λ021) −0.4348 −0.3985 −0.3920 −0.4337 −0.3760 −0.4084 −0.3922 −0.3824 −0.4514 −0.4481 −0.3744
0.0908 −0.0216 −0.0453 −0.0207 −0.0235 −0.0908 −0.0088 0.0799 0.0372 0.0485 −0.0510

ρ(λ01, λ021) 0.7245 0.7024 0.7040 0.7385 0.6843 0.7144 0.7134 0.7226 0.7601 0.7738 0.7155
0.5706 0.5451 0.4805 0.4705 0.4554 0.4899 0.5016 0.5154 0.5428 0.4880 0.4971

ρ(λ0102 , λ021) −0.8287 −0.8049 −0.8244 −0.8402 −0.7972 −0.8054 −0.8246 −0.8330 −0.8537 −0.8639 −0.8268
−0.7142 −0.7098 −0.7551 −0.7281 −0.7510 −0.6973 −0.7406 −0.7352 −0.7373 −0.6680 −0.7415

ρ(λ011, λ021) 0.7449 0.7287 0.7287 0.7503 0.7140 0.7299 0.7273 0.7299 0.7556 0.7669 0.7302
0.5949 0.5811 0.5247 0.5173 0.5580 0.4431 0.5270 0.5238 0.5570 0.5020 0.4588

ρ(λ001 , λ10) 0.4647 0.4306 0.4233 0.4575 0.4072 0.4354 0.4158 0.4101 0.4715 0.4679 0.4006
−0.0491 0.0298 0.0261 −0.0113 0.0706 0.0172 0.0422 0.0175 −0.0017 −0.0025 0.1008

ρ(λ01, λ10) −0.6628 −0.6388 −0.6383 −0.6866 −0.6215 −0.6596 −0.6584 −0.6667 −0.7177 −0.7327 −0.6606
−0.5564 −0.2211 −0.5275 −0.5618 −0.4047 −0.5259 −0.5020 −0.4994 −0.5451 −0.4701 −0.4685

ρ(λ0102 , λ10) 0.7532 0.7308 0.7380 0.7723 0.7111 0.7427 0.7500 0.7631 0.8001 0.8221 0.7652
0.7268 0.7349 0.7866 0.7284 0.7298 0.6084 0.7387 0.7241 0.6935 0.7056 0.7207

ρ(λ011, λ10) −0.6547 −0.6326 −0.6310 −0.6698 −0.6124 −0.6387 −0.6380 −0.6408 −0.6875 −0.7033 −0.6450
−0.4979 −0.2404 −0.5101 −0.5017 −0.4507 −0.4887 −0.4657 −0.3815 −0.4739 −0.4260 −0.3933

ρ(λ021, λ10) −0.7887 −0.7671 −0.7734 −0.8041 −0.7503 −0.7830 −0.7865 −0.7956 −0.8318 −0.8475 −0.8000
−0.6504 −0.5952 −0.6845 −0.6518 −0.6771 −0.6168 −0.6430 −0.6223 −0.6434 −0.5618 −0.6607

ρ(λ001 , µ1) −0.4635 −0.4290 −0.4215 −0.4598 −0.4089 −0.4410 −0.4233 −0.4161 −0.4810 −0.4797 −0.4087

Table 2.8: Simulation results from d = 2 slow switching (study 7 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

0.0628 −0.0465 −0.0558 −0.0237 −0.0410 −0.0343 −0.0751 0.0032 0.0164 −0.0128 −0.0537

ρ(λ01, µ1) 0.7134 0.6893 0.6901 0.7297 0.6654 0.7005 0.6989 0.7075 0.7507 0.7644 0.7011
0.6626 0.3925 0.6148 0.6245 0.5208 0.6370 0.5776 0.6132 0.6428 0.5733 0.6022

ρ(λ0102 , µ1) −0.8275 −0.8067 −0.8203 −0.8412 −0.7915 −0.8145 −0.8246 −0.8362 −0.8593 −0.8756 −0.8328
−0.8870 −0.8837 −0.8959 −0.8767 −0.8818 −0.8643 −0.8927 −0.8835 −0.8770 −0.8559 −0.8819

ρ(λ011, µ1) 0.7067 0.6868 0.6878 0.7176 0.6662 0.6896 0.6897 0.6919 0.7279 0.7405 0.6931
0.6151 0.4014 0.5766 0.5828 0.5771 0.5499 0.5319 0.5133 0.5949 0.5246 0.5236

ρ(λ021, µ1) 0.8828 0.8664 0.8782 0.8914 0.8564 0.8784 0.8845 0.8889 0.9093 0.9150 0.8896
0.7657 0.7285 0.7994 0.7742 0.7882 0.7764 0.7867 0.7827 0.7849 0.7263 0.7742

ρ(λ10, µ1) −0.7789 −0.7556 −0.7605 −0.7950 −0.7335 −0.7729 −0.7761 −0.7898 −0.8301 −0.8498 −0.7951
−0.8129 −0.8276 −0.8237 −0.8102 −0.8129 −0.7683 −0.7842 −0.7749 −0.7782 −0.7852 −0.8033

ρ(λ001 , δ) −0.0117 −0.0110 −0.0108 −0.0052 0.0048 0.0120 0.0206 0.0321 0.0477 0.0621 0.0642
−0.0587 −0.0580 0.0102 0.0161 0.0344 0.0484 0.0241 −0.0216 0.0364 0.0362 0.0294

ρ(λ01, δ) 0.0003 0.0041 0.0120 0.0306 0.0564 0.0752 0.0946 0.1178 0.1359 0.1516 0.1630
0.0039 0.0034 0.0240 0.1295 0.1571 0.1277 0.1704 0.1942 0.2498 0.2150 0.1237

ρ(λ0102 , δ) −0.0014 −0.0019 −0.0036 −0.0071 −0.0104 −0.0072 −0.0128 −0.0134 −0.0134 −0.0118 −0.0130
0.0140 −0.0551 −0.0075 0.0114 0.0020 0.0084 0.0394 −0.0730 −0.0802 −0.0697 0.0352

ρ(λ011, δ) 0.0011 0.0023 0.0059 0.0134 0.0238 0.0244 0.0338 0.0401 0.0469 0.0525 0.0551
−0.0186 −0.0120 0.0512 −0.0097 0.1336 0.0405 −0.0117 0.0456 0.1134 0.0161 0.0316

ρ(λ021, δ) 0.0047 0.0057 0.0078 0.0113 0.0138 0.0110 0.0147 0.0142 0.0121 0.0108 0.0110
0.0193 0.0371 0.0195 −0.0824 0.0192 0.0113 −0.0329 0.0613 0.1009 0.0259 −0.0146

ρ(λ10, δ) −0.0488 −0.0597 −0.0679 −0.0723 −0.0840 −0.0763 −0.0713 −0.0559 −0.0316 −0.0210 −0.0162
−0.0760 −0.1348 −0.0990 −0.1065 −0.1229 −0.0849 −0.1186 −0.1887 −0.2027 −0.0679 −0.0344

ρ(µ1, δ) −0.0030 −0.0048 −0.0043 −0.0022 −0.0096 −0.0132 −0.0096 −0.0113 −0.0109 −0.0127 −0.0153
−0.0219 0.0949 −0.0145 −0.0152 0.0317 −0.0101 −0.0325 0.0822 0.0891 0.0197 −0.0336

Table 2.9: Simulation results from d = 2 slow switching (study 7 of Table 2.1) continued:
Mean approximate correlations obtained from the Hessian matrices compared with the values
calculated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3418 0.3428 0.3604 0.3767 0.3931 0.4104 0.4493 0.5074 0.4984 0.4728 0.4644
0.3578 0.4383 0.3207 0.3759 0.3966 0.4616 0.4572 0.7093 0.5343 0.4565 0.4863

ρ(λ001 , λ0102 ) 0.2102 0.2077 0.1803 0.1570 0.1424 0.1291 0.1274 0.1185 0.1034 0.0927 0.0831
0.1448 0.1084 0.1646 0.0317 0.1551 0.0747 0.0551 0.0984 0.0732 0.0845 0.0274

ρ(λ01, λ0102 ) −0.1329 −0.1320 −0.1142 −0.1002 −0.0877 −0.0703 −0.0367 0.0025 0.0044 −0.0098 −0.0167
−0.1305 −0.0815 −0.0471 −0.1104 −0.0044 0.0860 −0.0391 0.0872 0.0595 0.0264 −0.0565

ρ(λ001 , λ011) 0.3630 0.3698 0.4039 0.4334 0.4572 0.4730 0.4971 0.5341 0.5586 0.5672 0.5791
0.4174 0.3864 0.4574 0.5145 0.4500 0.4464 0.5019 0.6346 0.5959 0.5705 0.6507

ρ(λ01, λ011) 0.3114 0.3084 0.2987 0.2885 0.2814 0.2684 0.2712 0.2913 0.2905 0.2815 0.2782
0.2614 0.2775 0.2635 0.3035 0.2272 0.2364 0.2422 0.4806 0.3408 0.2312 0.2962

ρ(λ0102 , λ011) −0.1423 −0.1352 −0.0936 −0.0594 −0.0387 −0.0274 −0.0020 0.0287 0.0519 0.0544 0.0591
−0.0358 −0.0399 −0.0072 −0.0452 0.1050 0.0116 −0.0167 0.1275 0.1244 0.1939 0.1078

ρ(λ001 , λ021) −0.2231 −0.2208 −0.1900 −0.1644 −0.1446 −0.1310 −0.1145 −0.0855 −0.0705 −0.0660 −0.0603
−0.1357 −0.1891 −0.1442 −0.0181 −0.0645 −0.0120 −0.0687 0.0151 0.0627 0.0828 −0.0005

ρ(λ01, λ021) 0.1673 0.1672 0.1515 0.1382 0.1277 0.1116 0.0955 0.0741 0.0647 0.0657 0.0657
0.1498 0.0747 0.0893 0.1506 0.0716 0.1465 0.0547 0.0630 0.1546 0.0216 0.0338

ρ(λ0102 , λ021) −0.5349 −0.5316 −0.4878 −0.4483 −0.4222 −0.4031 −0.3735 −0.3306 −0.2913 −0.2810 −0.2680
−0.4590 −0.4133 −0.3344 −0.3654 −0.2513 −0.1643 −0.1913 −0.1074 −0.0021 −0.0288 0.0257

ρ(λ011, λ021) 0.3805 0.3760 0.3486 0.3219 0.3080 0.2900 0.2792 0.2569 0.2381 0.2325 0.2247
0.2976 0.2930 0.2831 0.3103 0.2394 0.2386 0.1643 0.1985 0.1807 0.1182 0.1320

ρ(λ001 , λ10) 0.1437 0.1126 0.0845 0.0469 0.0092 −0.0437 −0.1405 −0.1785 −0.0853 −0.0070 0.0227
0.1258 0.1137 0.0199 0.0010 −0.0612 −0.0805 −0.2612 −0.5137 −0.1376 0.0150 −0.0170

ρ(λ01, λ10) 0.2225 0.1748 0.1430 0.0592 −0.0525 −0.2120 −0.4267 −0.4160 −0.1634 0.0438 0.1643
0.2128 0.2225 0.1431 0.0456 −0.1341 −0.2405 −0.5987 −0.7957 −0.2786 0.0774 0.1346

ρ(λ0102 , λ10) 0.1310 0.1186 0.0940 0.0741 0.0598 0.0450 0.0238 0.0271 0.0516 0.0674 0.0713
0.0825 0.1071 0.0554 0.0044 0.0366 0.0182 −0.0310 −0.0885 −0.0364 −0.0015 0.0547

ρ(λ011, λ10) −0.0228 −0.0215 −0.0105 −0.0110 −0.0192 −0.0373 −0.0817 −0.1139 −0.0749 −0.0329 −0.0130
−0.0055 0.0790 0.0003 0.0121 −0.0290 0.0069 −0.1295 −0.3429 −0.1393 0.0212 0.0021

ρ(λ021, λ10) −0.1744 −0.1627 −0.1390 −0.1210 −0.1089 −0.0985 −0.0920 −0.0986 −0.1032 −0.1003 −0.0947
−0.1129 −0.1435 −0.1276 −0.0343 −0.0845 −0.1230 −0.0509 −0.0557 −0.0876 −0.0911 −0.0323

ρ(λ001 , µ1) −0.2455 −0.2455 −0.2151 −0.1915 −0.1745 −0.1658 −0.1752 −0.1719 −0.1454 −0.1232 −0.1102

Table 2.10: Simulation results from d = 2 medium switching (study 8 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

−0.1973 −0.1578 −0.1436 −0.0563 −0.1368 −0.1149 −0.0934 −0.2910 −0.0182 −0.1163 0.0363

ρ(λ01, µ1) 0.1665 0.1670 0.1486 0.1304 0.1088 0.0703 0.0022 −0.0672 −0.0600 −0.0274 −0.0145
0.1581 0.0993 0.1173 0.1754 0.0089 0.1282 −0.0726 −0.3225 −0.0989 −0.1461 −0.0194

ρ(λ0102 , µ1) −0.5887 −0.5900 −0.5488 −0.5129 −0.4876 −0.4676 −0.4470 −0.4131 −0.3757 −0.3664 −0.3534
−0.5547 −0.4743 −0.4429 −0.4524 −0.3355 −0.2417 −0.2201 −0.1795 −0.1525 −0.0547 0.0107

ρ(λ011, µ1) 0.3555 0.3539 0.3216 0.2923 0.2732 0.2515 0.2267 0.1864 0.1695 0.1726 0.1678
0.2864 0.2858 0.2606 0.2965 0.2075 0.2217 0.1741 −0.0343 0.0314 −0.0467 0.0264

ρ(λ021, µ1) 0.7892 0.7931 0.7682 0.7430 0.7238 0.7036 0.6845 0.6461 0.6193 0.6136 0.6031
0.7308 0.7359 0.6911 0.6600 0.5947 0.5151 0.4457 0.2904 0.2393 0.2314 0.2140

ρ(λ10, µ1) −0.1696 −0.1516 −0.1213 −0.0932 −0.0673 −0.0352 0.0128 0.0072 −0.0516 −0.0883 −0.0981
−0.1419 −0.1207 −0.1143 0.0096 −0.0065 −0.0526 0.1267 0.2870 0.0659 0.0484 0.0283

ρ(λ001 , δ) 0.0097 0.0251 0.0392 0.0637 0.0929 0.1395 0.2312 0.3502 0.3348 0.2749 0.2391
0.0344 0.0906 0.1098 0.1030 0.1259 0.1979 0.3136 0.6346 0.3826 0.2479 0.1893

ρ(λ01, δ) −0.0247 0.0104 0.0460 0.1360 0.2580 0.4269 0.6343 0.8224 0.8432 0.7971 0.7568
0.0371 0.0456 0.0871 0.1160 0.3167 0.4716 0.7803 0.9485 0.8742 0.7884 0.7136

ρ(λ0102 , δ) −0.0009 −0.0027 0.0045 0.0112 0.0186 0.0274 0.0407 0.0517 0.0462 0.0366 0.0336
−0.0917 −0.0066 −0.0172 0.0377 0.0262 0.0610 0.0370 0.1253 0.1161 0.0567 −0.0179

ρ(λ011, δ) −0.0095 −0.0073 −0.0073 0.0006 0.0130 0.0362 0.0876 0.1690 0.1751 0.1494 0.1338
0.0148 0.0379 0.0230 0.0587 0.0403 0.0344 0.1317 0.4143 0.2533 0.1249 0.1302

ρ(λ021, δ) 0.0071 0.0150 0.0095 0.0072 0.0046 0.0043 0.0111 0.0204 0.0195 0.0168 0.0161
0.0087 0.0584 −0.0125 0.0114 0.0028 0.0583 0.0296 0.0512 0.1283 −0.0333 −0.0154

ρ(λ10, δ) −0.3872 −0.5744 −0.6153 −0.6602 −0.6947 −0.7337 −0.7813 −0.5962 −0.3004 −0.0994 0.0205
−0.2960 −0.6377 −0.6105 −0.6919 −0.7027 −0.7630 −0.8379 −0.8906 −0.4383 −0.0889 −0.0137

ρ(µ1, δ) −0.0088 −0.0105 −0.0234 −0.0378 −0.0562 −0.0808 −0.1196 −0.1437 −0.1233 −0.0956 −0.0854
0.0353 0.0577 0.0100 −0.0561 −0.0918 −0.0357 −0.1748 −0.3398 −0.1752 −0.2138 −0.1197

Table 2.11: Simulation results from d = 2 medium switching (study 8 of Table 2.1) contin-
ued: Mean approximate correlations obtained from the Hessian matrices compared with the
values calculated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

ρ(λ001 , λ01) 0.3226 0.3564 0.3883 0.4924 0.6686 0.7631 0.7393 0.6992 0.6671 0.6401 0.6163
0.3530 0.2565 0.3992 0.4931 0.8714 0.8827 0.8089 0.7678 0.7209 0.7226 0.6324

ρ(λ001 , λ0102 ) 0.1205 0.1371 0.1522 0.1932 0.2358 0.2296 0.1957 0.1732 0.1615 0.1535 0.1484
0.1615 0.1546 0.1761 0.2190 0.4098 0.4319 0.2675 0.2230 0.1780 0.2474 0.1447

ρ(λ01, λ0102 ) −0.0160 −0.0010 0.0170 0.0689 0.1544 0.1760 0.1431 0.1192 0.1055 0.0960 0.0907
0.0199 0.0016 −0.0031 0.1587 0.4162 0.3949 0.3343 0.2595 0.2576 0.2741 0.2093

ρ(λ001 , λ011) 0.3840 0.3753 0.3716 0.3504 0.3733 0.4291 0.4677 0.4892 0.5101 0.5303 0.5467
0.3631 0.3306 0.3419 0.3466 0.3618 0.5052 0.4664 0.5257 0.5900 0.5914 0.5367

ρ(λ01, λ011) 0.2566 0.2469 0.2396 0.2196 0.2317 0.2671 0.2786 0.2735 0.2705 0.2684 0.2630
0.2175 0.1456 0.1721 0.2223 0.2091 0.3397 0.2823 0.2565 0.2823 0.3085 0.2422

ρ(λ0102 , λ011) 0.1555 0.1397 0.1423 0.1310 0.1647 0.2001 0.2222 0.2270 0.2381 0.2495 0.2555
0.1101 0.1276 0.1696 0.0494 0.2502 0.4050 0.2364 0.3057 0.2715 0.3348 0.3640

ρ(λ001 , λ021) −0.1023 −0.1287 −0.1449 −0.1908 −0.1978 −0.1537 −0.1004 −0.0767 −0.0563 −0.0370 −0.0258
−0.0643 −0.2151 −0.2247 −0.2111 −0.4299 −0.3191 −0.2016 −0.1728 −0.0955 −0.1175 −0.0431

ρ(λ01, λ021) 0.0598 0.0412 0.0217 −0.0344 −0.0945 −0.0891 −0.0446 −0.0249 −0.0089 0.0057 0.0166
0.0633 −0.0582 0.0131 −0.1040 −0.4517 −0.3535 −0.2757 −0.2656 −0.1532 −0.1856 −0.1403

ρ(λ0102 , λ021) −0.1144 −0.1613 −0.1743 −0.2246 −0.2222 −0.1757 −0.1218 −0.0939 −0.0688 −0.0434 −0.0304
−0.1028 −0.1426 −0.2482 −0.2027 −0.2314 −0.0931 −0.0403 0.0285 0.0814 0.0039 0.1128

ρ(λ011, λ021) 0.1776 0.1938 0.2014 0.2144 0.1960 0.1692 0.1605 0.1530 0.1489 0.1435 0.1411
0.2054 0.1622 0.1693 0.2174 −0.0014 −0.0196 0.0495 0.0043 0.0344 −0.0082 0.0687

ρ(λ001 , λ10) −0.1279 −0.1442 −0.1935 −0.3236 −0.4959 −0.4884 −0.3454 −0.2112 −0.1089 −0.0308 0.0135
−0.1493 −0.1895 −0.2607 −0.3754 −0.7682 −0.7460 −0.4048 −0.1836 −0.0485 0.0547 0.1022

ρ(λ01, λ10) 0.4418 0.3439 0.2393 −0.0537 −0.4460 −0.5453 −0.3998 −0.2325 −0.0835 0.0564 0.1530
0.3562 0.3696 0.2138 −0.1255 −0.7916 −0.7995 −0.4417 −0.2177 −0.0264 0.1237 0.2645

ρ(λ0102 , λ10) −0.0801 −0.0752 −0.0813 −0.1086 −0.1412 −0.1003 −0.0339 0.0058 0.0311 0.0471 0.0565
−0.1580 −0.1416 −0.1723 −0.1874 −0.3643 −0.3863 −0.0279 0.0105 0.0135 0.0831 0.1246

ρ(λ011, λ10) 0.1203 0.1013 0.0866 0.0508 −0.0503 −0.1218 −0.1120 −0.0779 −0.0506 −0.0276 −0.0139
0.1284 0.1092 0.0637 0.1215 −0.1283 −0.2744 −0.0791 −0.0893 −0.0258 −0.0098 0.0145

ρ(λ021, λ10) 0.0939 0.0820 0.0865 0.1021 0.0967 0.0301 −0.0345 −0.0573 −0.0689 −0.0694 −0.0685
0.1706 0.2060 0.2060 0.1375 0.4010 0.2234 0.0684 −0.0768 0.0238 −0.0354 −0.1246

ρ(λ001 , µ1) −0.1149 −0.1340 −0.1544 −0.2243 −0.3015 −0.2857 −0.2128 −0.1656 −0.1327 −0.1052 −0.0906

Table 2.12: Simulation results from d = 2 fast switching (study 9 of Table 2.1): Mean
approximate correlations obtained from the Hessian matrices compared with the values cal-
culated directly from 500 fits.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρ (Correlation) ↓

−0.1227 −0.1989 −0.1324 −0.1101 −0.4881 −0.3325 0.0572 0.0196 0.1341 0.2721 0.2246

ρ(λ01, µ1) 0.0736 0.0474 0.0205 −0.0731 −0.2292 −0.2706 −0.2108 −0.1702 −0.1434 −0.1197 −0.1106
0.0433 −0.0127 0.0151 −0.0464 −0.5420 −0.4629 −0.0440 −0.0765 0.0686 0.1439 0.1185

ρ(λ0102 , µ1) −0.1442 −0.1719 −0.1791 −0.2215 −0.2377 −0.2021 −0.1534 −0.1265 −0.1071 −0.0907 −0.0828
−0.1792 −0.0526 −0.0951 0.0309 −0.1222 0.0194 0.2899 0.3101 0.3597 0.4460 0.3249

ρ(λ011, µ1) 0.0990 0.1122 0.1148 0.1252 0.0841 0.0428 0.0375 0.0398 0.0402 0.0391 0.0384
0.0734 0.1633 0.0462 0.1292 −0.0900 −0.0806 −0.1047 −0.1696 −0.1339 −0.0172 −0.1325

ρ(λ021, µ1) 0.3356 0.3797 0.3948 0.4513 0.4571 0.4090 0.3590 0.3293 0.3053 0.2799 0.2662
0.3900 0.3971 0.3593 0.3572 0.4253 0.1470 −0.1956 −0.2335 −0.3394 −0.4054 −0.3861

ρ(λ10, µ1) 0.1818 0.1730 0.1932 0.2468 0.3011 0.2370 0.1326 0.0710 0.0281 −0.0017 −0.0196
0.2083 0.2031 0.1800 0.2156 0.5718 0.5468 0.2826 0.3285 0.2487 0.2693 0.3157

ρ(λ001 , δ) 0.2862 0.3072 0.3486 0.4606 0.6247 0.6987 0.6506 0.5851 0.5300 0.4784 0.4323
0.3317 0.3202 0.4446 0.5140 0.8560 0.8311 0.6868 0.6312 0.5043 0.5148 0.3463

ρ(λ01, δ) −0.1171 −0.0230 0.0611 0.3069 0.6540 0.8472 0.8578 0.8361 0.8164 0.7897 0.7638
0.0380 0.0149 0.0767 0.3770 0.9100 0.9211 0.8556 0.8544 0.8037 0.7933 0.6842

ρ(λ0102 , δ) 0.1187 0.1268 0.1365 0.1683 0.2037 0.1889 0.1459 0.1197 0.1041 0.0933 0.0893
0.1516 0.2215 0.2373 0.2975 0.4224 0.4253 0.2382 0.2510 0.2036 0.1671 0.1251

ρ(λ011, δ) −0.0705 −0.0611 −0.0536 −0.0292 0.0721 0.1701 0.1878 0.1755 0.1664 0.1568 0.1447
−0.0607 −0.0930 −0.0387 −0.1213 0.1667 0.2773 0.1776 0.1937 0.1175 0.1607 0.0881

ρ(λ021, δ) −0.1494 −0.1557 −0.1653 −0.1846 −0.1743 −0.1195 −0.0639 −0.0414 −0.0227 −0.0045 0.0117
−0.1951 −0.2923 −0.3103 −0.2549 −0.4483 −0.3200 −0.2484 −0.2362 −0.1840 −0.1652 −0.0590

ρ(λ10, δ) −0.7786 −0.7828 −0.8115 −0.8588 −0.8723 −0.7580 −0.6020 −0.4491 −0.3053 −0.1681 −0.0732
−0.7288 −0.7674 −0.8005 −0.8653 −0.9448 −0.9320 −0.7030 −0.4571 −0.2589 −0.1178 0.0043

ρ(µ1, δ) −0.2283 −0.2331 −0.2570 −0.3149 −0.3713 −0.3353 −0.2602 −0.2192 −0.1924 −0.1693 −0.1622
−0.2079 −0.2474 −0.2130 −0.2348 −0.5936 −0.5430 −0.1652 −0.1521 0.0032 0.0379 −0.0300

Table 2.13: Simulation results from d = 2 fast switching (study 9 of Table 2.1) continued:
Mean approximate correlations obtained from the Hessian matrices compared with the values
calculated directly from 500 fits.
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2.B Consistency tables

In this section, we present tables to compare the convergence in mean squared

errors of the PSHMM parameter estimates (under studies 1-9) when M = 100

and M = 1000, as analysed in Section 2.3.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 1.0014 0.9966 0.9912 0.9850 0.9773 0.9705 0.9683 0.9936 1.0061 1.0127 1.0079

λ̂01 MSE (100) ×10−4 0.3356 0.3902 0.4012 0.4044 0.4503 0.4779 0.5474 0.5950 0.7025 0.5211 0.4466

λ̂01 MSE (1000) ×10−4 0.0376 0.0403 0.0343 0.0718 0.0977 0.1455 0.1746 0.1862 0.0927 0.0659 0.0531

λ̂10 Mean 3.1604 3.1634 3.1610 3.1572 3.1662 3.1674 3.1578 3.1250 3.1262 3.1296 3.1454

λ̂10 MSE (100) ×10−4 3.6676 3.5676 3.8007 3.8985 4.1441 3.9991 4.0541 4.2626 3.7268 4.0394 3.7124

λ̂10 MSE (1000) ×10−4 0.4015 0.4324 0.4274 0.3815 0.4071 0.4204 0.4033 0.5648 0.6505 0.4453 0.4247
µ̂1 Mean 0.1055 0.1058 0.1073 0.1080 0.1084 0.1089 0.1092 0.1061 0.1053 0.1044 0.1042

µ̂1 MSE (100) ×10−4 0.1325 0.1211 0.1200 0.1138 0.1229 0.1206 0.1342 0.1295 0.1232 0.1016 0.1155
µ̂1 MSE (1000) ×10−4 0.0115 0.0108 0.0125 0.0105 0.0136 0.0113 0.0107 0.0130 0.0130 0.0162 0.0136

Table 2.14: d = 0 slow switching (study 1 of Table 2.1): Means and Mean Squared Er-
rors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 1.0014 0.9966 0.9912 0.9850 0.9773 0.9705 0.9683 0.9936 1.0061 1.0127 1.0079

λ̂01 MSE (100) ×10−4 3.6014 3.1477 4.0102 6.3179 8.5862 12.5950 18.1615 24.8810 19.6845 10.8940 6.4757

λ̂01 MSE (1000) ×10−4 0.3129 0.4614 0.9002 2.8093 5.8887 9.4462 14.7635 16.2443 3.9079 2.1320 1.0608

λ̂10 Mean 3.1604 3.1634 3.1610 3.1572 3.1662 3.1674 3.1578 3.1250 3.1262 3.1296 3.1454

λ̂10 MSE (100) ×10−4 36.9219 42.3621 40.6597 38.6860 39.7586 44.7820 60.3105 71.4363 61.3570 50.1797 40.2596

λ̂10 MSE (1000) ×10−4 3.4391 3.6448 3.9765 3.8151 3.7223 3.9205 4.7250 7.5561 32.5732 16.5867 5.6184
µ̂1 Mean 0.1055 0.1058 0.1073 0.1080 0.1084 0.1089 0.1092 0.1061 0.1053 0.1044 0.1042

µ̂1 MSE (100) ×10−4 1.0219 0.9556 1.0623 1.3524 1.2432 1.2929 1.4148 1.2926 1.1855 1.2989 0.9957
µ̂1 MSE (1000) ×10−4 0.1093 0.1167 0.1311 0.1158 0.1848 0.1678 0.2003 0.2111 0.1536 0.1536 0.1225

Table 2.15: d = 0 medium switching (study 2 of Table 2.1): Means and Mean Squared
Errors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂01 Mean 3.1587 3.1236 3.0899 3.0167 2.9548 2.8934 2.8359 2.8888 3.1553 3.2415 3.2202

λ̂01 MSE (100) ×10−3 4.2580 5.2544 9.0954 25.0617 47.3891 78.0354 114.2236 125.1663 122.2452 53.9577 29.2550

λ̂01 MSE (1000) ×10−3 0.2806 1.4529 5.2052 20.2176 44.1040 75.7929 109.6569 122.9487 16.5624 14.1061 6.1912

λ̂10 Mean 9.9869 10.0025 9.9970 10.0068 10.0000 9.9712 9.9610 9.8077 9.6313 9.7021 9.8473

λ̂10 MSE (100) ×10−3 46.0991 67.4772 67.8874 67.2548 82.5422 85.0991 75.3934 189.8646 235.7081 133.0161 74.5628

λ̂10 MSE (1000) ×10−3 4.0829 6.5112 6.2349 6.8307 9.0871 8.9417 13.7226 36.7124 243.7806 114.5101 33.4812
µ̂1 Mean 0.3336 0.3412 0.3387 0.3476 0.3549 0.3598 0.3642 0.3590 0.3337 0.3205 0.3308

µ̂1 MSE (100) ×10−3 1.0400 1.1957 1.0078 1.3647 1.8971 2.1253 2.2552 2.8067 2.2045 1.3641 1.1986
µ̂1 MSE (1000) ×10−3 0.1057 0.1187 0.1353 0.2655 0.5306 0.7058 1.0352 0.9740 0.4821 0.3477 0.1859

Table 2.16: d = 0 fast switching (study 3 of Table 2.1): Means and Mean Squared Er-
rors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.1522 0.1499 0.1521 0.1491 0.1501 0.1500 0.1493 0.1505 0.1517 0.1508 0.1515

λ̂001 MSE (100) ×10−4 3.1832 3.3354 3.2151 3.1054 3.0920 3.3521 2.3554 3.1366 3.4032 3.2362 3.4182

λ̂001 MSE (1000) ×10−4 0.3359 0.3018 0.3093 0.2870 0.3105 0.3521 0.3355 0.3240 0.3449 0.3322 0.3361

λ̂01 Mean 0.3008 0.2993 0.3002 0.2985 0.2985 0.2976 0.2980 0.3000 0.3005 0.3007 0.3000

λ̂01 MSE (100) ×10−4 0.8397 0.7758 0.7117 0.8869 0.8883 0.9291 0.9691 1.0938 1.0441 1.0730 0.8439

λ̂01 MSE (1000) ×10−4 0.0960 0.0820 0.0921 0.1022 0.1356 0.2059 0.2391 0.2297 0.1271 0.1090 0.1040

λ̂011 Mean 0.1002 0.0995 0.1000 0.0994 0.0994 0.0996 0.0997 0.0999 0.1004 0.0999 0.1001

λ̂011 MSE (100) ×10−4 0.2087 0.2164 0.2058 0.2201 0.2054 0.2090 0.1745 0.1948 0.2117 0.2425 0.2098

λ̂011 MSE (1000) ×10−4 0.0197 0.0216 0.0242 0.0176 0.0221 0.0256 0.0233 0.0215 0.0191 0.0199 0.0240

λ̂10 Mean 0.7985 0.7993 0.8005 0.7996 0.8008 0.8010 0.7997 0.7991 0.7971 0.7986 0.7988

λ̂10 MSE (100) ×10−4 1.7727 1.7760 1.8119 1.7244 1.8805 1.8472 2.2378 2.0228 1.8457 1.9318 1.7723

λ̂10 MSE (1000) ×10−4 0.1852 0.1642 0.1766 0.1630 0.1801 0.1611 0.2042 0.3483 0.2588 0.2562 0.1874
µ̂1 Mean 0.0102 0.0101 0.0102 0.0101 0.0100 0.0101 0.0099 0.0101 0.0100 0.0100 0.0101

µ̂1 MSE (100) ×10−4 0.0218 0.0246 0.0201 0.0232 0.0276 0.0278 0.0224 0.0238 0.0224 0.0226 0.0237
µ̂1 MSE (1000) ×10−4 0.0022 0.0024 0.0028 0.0021 0.0024 0.0025 0.0026 0.0023 0.0028 0.0025 0.0025

Table 2.17: d = 1 slow switching (study 4 of Table 2.1): Means and Mean Squared Er-
rors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.3553 0.3584 0.3544 0.3469 0.3438 0.3438 0.3408 0.3538 0.3472 0.3534 0.3495

λ̂001 MSE (100) ×10−4 25.6851 27.5699 27.2189 23.9852 27.1779 26.6249 23.8982 28.9833 27.3760 31.2609 28.7500

λ̂001 MSE (1000) ×10−4 2.8673 2.5538 2.7678 3.0469 3.0582 3.3915 3.6247 3.4359 3.5640 2.7995 3.2578

λ̂01 Mean 1.0029 1.0013 0.9947 0.9861 0.9774 0.9745 0.9734 0.9907 0.9997 1.0004 0.9999

λ̂01 MSE (100) ×10−4 11.8527 11.8486 12.4051 13.3163 16.8455 20.6807 23.6586 31.5621 27.5247 21.7894 19.0594

λ̂01 MSE (1000) ×10−4 1.3297 1.4966 1.6546 3.5872 5.9372 9.6060 13.8229 11.2374 3.0040 2.1362 2.0034

λ̂011 Mean 0.3007 0.3028 0.2999 0.2989 0.2964 0.2966 0.2950 0.2996 0.2996 0.3009 0.2988

λ̂011 MSE (100) ×10−4 3.7738 3.5633 3.6592 3.3376 3.8073 3.7841 3.5575 3.8889 4.1254 3.4619 4.0927

λ̂011 MSE (1000) ×10−4 0.4245 0.3556 0.3786 0.4918 0.5113 0.4931 0.5018 0.5469 0.5059 0.3990 0.4637

λ̂10 Mean 2.2919 2.2960 2.2995 2.3010 2.3050 2.3006 2.2971 2.2874 2.2788 2.2849 2.2908

λ̂10 MSE (100) ×10−4 24.5487 28.2653 25.7279 23.7907 27.0397 31.0944 35.0341 41.3352 33.0594 28.5781 25.8814

λ̂10 MSE (1000) ×10−4 2.4204 2.4919 2.1457 2.8788 3.2393 3.0825 3.1199 11.6558 13.9423 7.3326 3.6860
µ̂1 Mean 0.0996 0.1012 0.1007 0.1023 0.1015 0.1016 0.1020 0.1013 0.1001 0.0995 0.1001

µ̂1 MSE (100) ×10−4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
µ̂1 MSE (1000) ×10−4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2.18: d = 1 medium switching (study 5 of Table 2.1): Means and Mean Squared
Errors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.

δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 1.9923 1.9843 1.9661 1.9170 1.9068 1.8723 1.9401 2.0162 2.0622 2.0605 2.0236

λ̂001 MSE (100) ×10−2 1.6820 1.7604 2.1581 2.5568 2.8720 3.9995 4.7420 5.2883 4.0860 3.2989 3.6349

λ̂001 MSE (1000) ×10−2 0.1811 0.2328 0.3443 0.7816 1.2921 1.9940 1.5430 0.7706 0.8508 0.5470 0.3272

λ̂01 Mean 9.8520 9.7112 9.5725 9.3138 9.0396 8.8526 9.0706 9.4378 9.8018 9.9327 9.7973

λ̂01 MSE (100) ×10−2 13.9078 19.4594 29.9885 57.2287 103.9807 144.7740 143.2314 116.6074 57.4840 47.1627 48.6892

λ̂01 MSE (1000) ×10−2 3.0531 9.3754 20.7562 53.2153 94.8435 138.2305 136.8150 35.6913 8.4465 6.2657 6.4313

λ̂011 Mean 0.6980 0.6986 0.6929 0.6913 0.6888 0.6804 0.6880 0.6942 0.6986 0.6988 0.7000

λ̂011 MSE (100) ×10−2 0.1321 0.1175 0.1289 0.1280 0.1430 0.1735 0.1687 0.1759 0.1706 0.1695 0.1843

λ̂011 MSE (1000) ×10−2 0.0153 0.0154 0.0171 0.0207 0.0319 0.0440 0.0441 0.0201 0.0150 0.0140 0.0180

λ̂10 Mean 9.7762 9.7862 9.7305 9.7983 9.7404 9.7100 9.4153 9.2234 9.1590 9.4201 9.6822

λ̂10 MSE (100) ×10−2 15.4335 20.4386 27.7001 28.6734 30.5012 33.6122 79.2853 91.6354 77.9001 39.1059 15.6054

λ̂10 MSE (1000) ×10−2 3.1389 8.2192 7.9311 9.2028 11.4808 15.3201 38.0538 94.2513 75.0687 37.7118 12.0628
µ̂1 Mean 0.3320 0.3342 0.3365 0.3448 0.3463 0.3546 0.3426 0.3342 0.3259 0.3257 0.3328

µ̂1 MSE (100) ×10−2 0.1006 0.1155 0.1127 0.1387 0.1518 0.1884 0.1712 0.1917 0.1239 0.1180 0.1188
µ̂1 MSE (1000) ×10−2 0.0104 0.0101 0.0106 0.0190 0.0255 0.0326 0.0304 0.0279 0.0250 0.0220 0.0129

Table 2.19: d = 1 fast switching (study 6 of Table 2.1): Means and Mean Squared Er-
rors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.1655 0.1708 0.1679 0.1781 0.1684 0.1575 0.1709 0.1669 0.1657 0.1675 0.1721

λ̂001 MSE (100) ×10−4 44.0687 48.1666 40.4240 56.9849 46.9907 34.6941 48.7498 40.4209 37.4097 39.4570 54.9917

λ̂001 MSE (1000) ×10−4 6.5107 4.6626 3.1803 5.7639 5.2326 4.9994 4.3972 4.3537 3.4098 4.1759 3.9254

λ̂01 Mean 0.2935 0.2979 0.2974 0.2927 0.2952 0.2915 0.2952 0.2933 0.2905 0.2920 0.2938

λ̂01 MSE (100) ×10−4 7.9565 7.2124 7.2222 7.3178 7.2362 7.5725 8.0150 6.8996 6.4214 7.3674 6.8179

λ̂01 MSE (1000) ×10−4 1.6610 2.0638 1.9069 2.1283 1.4913 1.6825 1.6591 2.0276 1.2090 1.2242 1.2403

λ̂0102 Mean 0.0541 0.0527 0.0523 0.0568 0.0525 0.0547 0.0540 0.0549 0.0577 0.0564 0.0537

λ̂0102 MSE (100) ×10−4 2.5311 2.9952 2.9581 2.3374 2.7167 2.4805 2.4671 2.3162 1.7318 1.9756 2.1198

λ̂0102 MSE (1000) ×10−4 1.1641 1.4721 1.4550 1.0681 0.8202 0.9414 0.8395 0.7101 0.6520 0.7776 0.5784

λ̂011 Mean 0.0918 0.0969 0.0966 0.0927 0.0946 0.0880 0.0948 0.0937 0.0873 0.0898 0.0941

λ̂011 MSE (100) ×10−4 11.2553 11.4354 10.3173 10.4587 10.2103 11.9950 9.3411 9.2835 9.7223 9.8362 11.2910

λ̂011 MSE (1000) ×10−4 2.4837 2.6489 3.0001 1.8920 1.5318 2.1322 2.0623 2.0265 1.5063 1.6543 1.2973

λ̂021 Mean 0.0010 0.0012 0.0012 0.0009 0.0011 0.0010 0.0010 0.0010 0.0008 0.0008 0.0010

λ̂021 MSE (100) ×10−4 0.0047 0.0079 0.0077 0.0026 0.0075 0.0041 0.0045 0.0036 0.0017 0.0017 0.0035

λ̂021 MSE (1000) ×10−4 0.0017 0.0025 0.0034 0.0014 0.0013 0.0012 0.0010 0.0012 0.0011 0.0013 0.0011

λ̂10 Mean 0.8198 0.8181 0.8135 0.8262 0.8172 0.8222 0.8161 0.8208 0.8250 0.8267 0.8200

λ̂10 MSE (100) ×10−4 28.5496 29.2364 28.3205 26.0696 30.5973 26.4407 25.8326 26.6544 20.9132 25.9590 24.5221

λ̂10 MSE (1000) ×10−4 11.0639 11.2100 11.5840 9.2298 6.7888 8.7008 6.2439 6.7714 6.0394 7.3362 5.4836
µ̂1 Mean 0.0295 0.0355 0.0353 0.0241 0.0342 0.0311 0.0325 0.0313 0.0228 0.0255 0.0326

µ̂1 MSE (100) ×10−4 18.0527 18.2972 18.0223 16.9144 17.8902 15.6854 15.8466 15.0540 13.7984 13.4112 14.6161
µ̂1 MSE (1000) ×10−4 10.1650 10.9061 10.2482 9.1750 6.0234 7.8785 6.6199 5.1603 5.1085 5.9133 4.7159

Table 2.20: d = 2 slow switching (study 7 of Table 2.1): Means and Mean Squared Er-
rors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 0.8036 0.7956 0.7886 0.7854 0.7771 0.7741 0.7632 0.8116 0.8310 0.8319 0.8279

λ̂001 MSE (100) ×10−3 3.0144 2.8559 2.9198 2.9900 3.5072 3.4486 4.3369 5.7624 5.6709 5.2478 5.6638

λ̂001 MSE (1000) ×10−3 0.3128 0.2841 0.3111 0.6009 0.9634 1.2946 1.4308 0.9600 1.3473 1.3295 0.7073

λ̂01 Mean 3.9984 3.9547 3.9089 3.8364 3.7578 3.6906 3.6473 3.9421 4.1152 4.1213 4.0996

λ̂01 MSE (100) ×10−3 9.9119 11.3783 16.1007 36.5443 68.6703 106.2609 147.0739 144.2045 71.3273 49.7364 39.7939

λ̂01 MSE (1000) ×10−3 1.2355 3.2177 9.2571 29.9110 61.3052 101.7778 132.2323 35.7616 24.8360 19.5067 9.6962

λ̂0102 Mean 0.1002 0.1019 0.1001 0.1002 0.0998 0.0992 0.0995 0.1001 0.1029 0.1017 0.1017

λ̂0102 MSE (100) ×10−3 0.1459 0.1478 0.1169 0.1333 0.1114 0.1104 0.0982 0.0984 0.1200 0.1025 0.1032

λ̂0102 MSE (1000) ×10−3 0.0186 0.0128 0.0156 0.0168 0.0120 0.0106 0.0101 0.0163 0.0124 0.0180 0.0178

λ̂011 Mean 0.4013 0.3980 0.3966 0.3953 0.3971 0.3953 0.3893 0.3970 0.4045 0.4050 0.4049

λ̂011 MSE (100) ×10−3 0.8079 0.7637 0.7999 0.8251 0.8119 0.7423 0.8910 1.0031 1.0903 1.0056 1.0403

λ̂011 MSE (1000) ×10−3 0.0791 0.0683 0.0653 0.1070 0.1447 0.1444 0.1803 0.0983 0.1160 0.1195 0.0974

λ̂021 Mean 0.0051 0.0050 0.0052 0.0052 0.0053 0.0053 0.0052 0.0052 0.0053 0.0052 0.0053

λ̂021 MSE (100) ×10−3 0.0012 0.0011 0.0011 0.0010 0.0009 0.0009 0.0007 0.0006 0.0006 0.0005 0.0006

λ̂021 MSE (1000) ×10−3 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

λ̂10 Mean 7.9687 7.9803 7.9715 7.9827 7.9840 7.9804 7.9415 7.6940 7.6285 7.7437 7.8902

λ̂10 MSE (100) ×10−3 25.0985 36.8189 38.8441 39.8706 39.5881 46.9644 75.1187 202.7373 163.6210 86.1649 32.2554

λ̂10 MSE (1000) ×10−3 3.3643 4.0670 4.1188 4.4424 3.9562 5.9792 15.2332 195.7356 157.2629 65.2038 13.7654
µ̂1 Mean 0.1013 0.0987 0.1026 0.1073 0.1128 0.1157 0.1152 0.1093 0.1073 0.1082 0.1109

µ̂1 MSE (100) ×10−3 1.0780 0.9975 0.7788 0.7643 0.8492 0.8663 0.7543 0.4665 0.3883 0.3751 0.4219
µ̂1 MSE (1000) ×10−3 0.1209 0.1109 0.1112 0.1647 0.1523 0.2716 0.2475 0.1378 0.0711 0.0851 0.1268

Table 2.21: d = 2 medium switching (study 8 of Table 2.1): Means and Mean Squared
Errors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown for all
parameter estimates.
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δ
∆
→ 10−4 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

λ̂001 Mean 2.0359 2.0293 2.0469 2.0815 2.2804 2.5864 2.6748 2.6492 2.6063 2.5731 2.4697

λ̂001 MSE (100) ×10−2 2.4447 2.3738 3.0898 4.2635 20.8307 50.8394 55.0500 51.6242 44.0403 41.0364 28.3079

λ̂001 MSE (1000) ×10−2 0.2685 0.3666 0.5155 0.7732 2.6830 33.2383 40.8341 40.2410 35.8971 28.6887 22.1064

λ̂01 Mean 9.8536 9.7290 9.6305 9.5301 9.9097 10.9416 11.4587 11.5278 11.5300 11.5069 11.1842

λ̂01 MSE (100) ×10−2 17.2377 21.3207 26.7591 37.4432 94.3525 239.7721 312.6215 330.2248 302.7605 295.8218 186.1543

λ̂01 MSE (1000) ×10−2 2.9915 8.3804 14.5863 27.9367 26.5326 97.9595 183.0150 229.2597 239.9449 205.5458 153.9862

λ̂0102 Mean 0.2049 0.2116 0.2156 0.2253 0.2391 0.2524 0.2590 0.2631 0.2661 0.2703 0.2709

λ̂0102 MSE (100) ×10−2 0.0531 0.0780 0.0884 0.1358 0.2402 0.3600 0.4144 0.4701 0.5090 0.5766 0.5755

λ̂0102 MSE (1000) ×10−2 0.0071 0.0148 0.0225 0.0558 0.1152 0.2843 0.3347 0.3911 0.4220 0.4433 0.4663

λ̂011 Mean 0.6910 0.6854 0.6826 0.6704 0.6632 0.6737 0.6747 0.6752 0.6734 0.6721 0.6661

λ̂011 MSE (100) ×10−2 0.3199 0.3288 0.3566 0.3887 0.4659 0.4169 0.4301 0.4615 0.4717 0.5270 0.5524

λ̂011 MSE (1000) ×10−2 0.0380 0.0438 0.0698 0.1232 0.2166 0.1193 0.1187 0.1018 0.1261 0.1720 0.2028

λ̂021 Mean 0.0098 0.0091 0.0089 0.0082 0.0071 0.0064 0.0062 0.0061 0.0059 0.0059 0.0058

λ̂021 MSE (100) ×10−2 0.0003 0.0004 0.0004 0.0006 0.0010 0.0014 0.0016 0.0016 0.0017 0.0018 0.0018

λ̂021 MSE (1000) ×10−2 0.0000 0.0001 0.0001 0.0004 0.0008 0.0013 0.0015 0.0016 0.0017 0.0017 0.0018

λ̂10 Mean 9.5735 9.4538 9.4108 9.3594 8.9483 8.5021 8.5916 8.9477 9.3422 9.7067 10.0918

λ̂10 MSE (100) ×10−2 36.2423 52.0110 56.4493 65.8577 173.3694 258.4795 207.4896 116.7524 49.0383 14.6224 7.3112

λ̂10 MSE (1000) ×10−2 15.9769 31.8406 38.4982 48.2685 88.8552 281.1336 200.7809 114.7007 47.4346 9.0499 1.1104
µ̂1 Mean 0.3233 0.3205 0.3193 0.3121 0.2905 0.2688 0.2614 0.2664 0.2727 0.2801 0.2898

µ̂1 MSE (100) ×10−2 0.1398 0.1778 0.1546 0.1737 0.3280 0.5032 0.5754 0.5245 0.4283 0.3572 0.2602
µ̂1 MSE (1000) ×10−2 0.0207 0.0297 0.0368 0.0639 0.1449 0.5308 0.5420 0.4790 0.4057 0.3094 0.2209

Table 2.22: d = 2 fast switching (study 9 of Table 2.1) of Table 2.1): Means and Mean
Squared Errors (MSE) from datasets with M = 100 (100) and M = 1000 (1000) are shown
for all parameter estimates.
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3
Molecular Counting

3.1 Introduction

Under different experimental conditions, the varying photo-switching rates

between the photo-kinetic states of a fluorophore give rise to a collection

of sparsely localised molecules at each time frame. The temporally varying

fluorescence not only allows for inference upon photo-switching rates, using

for example the PSHMM method detailed in Chapter 1, but can also provide

quantitative information on molecular stoichiometries. In particular, being

able to accurately count the number of fluorescently labelled molecules from

the recorded localisations would allow much greater insight into the cellular

structures and processes under observation. However, this is a notoriously

difficult task as deriving the probability distribution for the number of local-

isations per fluorophore is highly non-trivial due to complex photo-switching

models and imperfect imaging systems.

Methods exist for recovering the number of imaged molecules in SMLM, how-

ever, these have primarily focused on photo-activated localisation microscopy

(PALM) and are not wholly applicable or adaptable for counting molecules

that are imaged via (d)STORM. For instance, the PALM methods of Lee
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et al. (2012), Fricke et al. (2015), Nino et al. (2017), Rollins et al. (2014)

assume a four state kinetic model (inactive, photon-emitting/On, dark and

photo-bleached) for the photo-activatable fluorophore. Each fluorophore be-

gins in a non-emissive dark (inactive∗) state before briefly moving into the

photon-emitting On state. While there is then the small possibility of a

small number of repeat transitions between this and a temporary dark state,

to align with PALM, these methods assume that photo-bleaching is most

likely to occur after the fluorophore has reached the On state for the first

time. However, this kinetic model is inappropriate for (d)STORM, in which

all fluorophores start in the On state, before stochastically moving back and

forth between this and one or more dark states, and then permanently photo-

bleaching.

The analysis of Nieuwenhuizen et al. (2015) is applicable for (d)STORM

experiments, however, it assumes an underlying photo-kinetic model with

d = 0, enabling fluorophores to only occupy three states (On, dark and photo-

bleached). In this method, the switching between the On and dark state is

modelled with a Poisson distribution and the bleaching is is governed by a

geometric distribution, therefore giving rise to a Poisson-geometric mixture

distribution on the number of blinks. However, from Lin et al. (2015) and the

analysis presented in Chapter 1, empirical evidence supports the existence of

multiple dark states, rendering this method difficult to apply in practice.

Importantly, common to the methods in Lee et al. (2012), Fricke et al. (2015),

Nino et al. (2017), Nieuwenhuizen et al. (2015), is the assumption that all

blinks (transitions to the On state followed by a return to a dark state) are

detected and hence the data is uncorrupted for statistical inference. In fact,

missed blinks occur in two different ways. Firstly, a fluorophore can briefly

transition from the On state into a dark state and back again within a single

camera frame of time ∆; this transition will not be detected as a separate

blink. Secondly, a fluorophore may briefly transition from a dark state to

the On state for such a short time that the number of emitted photons is

insufficient to detect the event above background noise. Accounting for these

∗An inactive state is a transient dark state which fluorophores imaged in PALM occupy
before their photo-switching behaviour has been activated, and they begin to be observed.
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missed transitions is key for precise molecular counting. Missed transitions

will result in fewer blinks being recorded than actually occurred, which in

turn will lead to fewer molecules being predicted than are in fact present. We

note that in the four state PALM setting, Rollins et al. (2014) attempts to

mitigate for missed transitions, however, to do so requires the exact extrac-

tion of dwell times from time-traces. This is not suitable for (d)STORM, par-

ticularly in densely labelled environments, since the nuanced photo-switching

behaviour means we cannot be certain of a specific fluorophore’s photo-kinetic

state at any one time.

3.1.1 Chapter summary

In this chapter, we present a method of molecular counting that utilises

the photo-switching and observation model developed in Chapter 1. In our

method, both missed blinks and false positives are fully accounted for in the

modelling, something which has been absent from molecular counting meth-

ods thus far. Furthermore, we perform counting using just the localisation

count, making our method highly scalable and able to count thousands of

molecules with computational ease.

In Section 3.2, we will use the observation process {Yn} to carefully derive

the exact form of the probability mass function of the number of localisa-

tions Nl a single fluorophore produces during an imaging experiment, and

also prove the form of its probability generating function. Derivatives of this

probability generating function will be subsequently used to calculate the

expected number and variance of localisations per molecule. Importantly,

we will show that these statistics are fully characterised by the underlying

photo-switching parameters θ(d)
ω . We then use the fast Fourier transform to

extend this distribution to characterise the probability mass function of Nl,

obtained from M (unknown) molecules during an experiment. In Section 3.3

we discuss how using training data to estimate the unknown photo-switching

rates, leads us to being able to compute the posterior distribution of M

given Nl, and therefore an estimate for M via its mode. In Section 3.4,

we demonstrate the validity of our method through simulations conducted
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under different experimental conditions, from three photo-switching mod-

els. Finally, in Section 3.5, we demonstrate the validity of our method on

Alexa Fluor 647 data, providing both maximum a posteriori estimates of M

from the resulting posterior distributions, and their associated 95% credible

intervals.

3.2 Cumulative localisations

In this section, we will describe how the probability mass function of the total

number of localisations collected during an experiment can be computation-

ally recovered given photo-switching parameters θ(d)
ω . Specifically, given an

unknown number of M independently fluorescing molecules, with localisa-

tion processes {Yn,1}, {Yn,2}, . . . , {Yn,M}, we will use the PSHMM derived in

Chapter 1 to characterise the distribution of

Nl =
M∑
m=1

NF∑
n=1

Yn,m, (3.1)

the cumulative number of localisations obtained over an experiment of length

NF frames. In order to do so, we will firstly derive the probability mass

function for Nl made by a single fluorophore (i.e. when M = 1), and provide

simulations to highlight key characteristics of this function, including its

variability among a number of different photo-kinetic models. We then derive

its probability generating function (pgf) and give expressions for its first

two moments, from which both the expected value and variance of Nl can

be deduced. We will subsequently explain how the Fast Fourier Transform

can be used to efficiently perform M convolutions of this density, thereby

recovering the probability distribution of Nl, when M > 1. This density,

which will be seen as a function of M and the parameter vector θ(d)
ω , will

then be used to derive the posterior mass function of M given Nl and θ(d)
ω .

Along a series of n ∈ Z>0 frames, we define {Sn : n ∈ Z>0} to be the non-

decreasing discrete time series process denoting the cumulative number of

localisations obtained from a single fluorophore up to and including frame
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n ≤ NF . This process takes values in the set SSn = {0, 1, ..., n} and is

formally defined as

Sn =
n∑
i=1

Yi,

where the sum is taken over the values Y1, . . . , Yn from the observed process

{Yn}. Since each Yi is a function of the photo-switching parameters θ(d)
ω , we

will show that the probability mass function of Sn given θ(d)
ω can be recovered

computationally. In particular, we will be looking to find the probability mass

function for SNF when a microscopy experiment is conducted over a known

number of NF frames.

3.2.1 Probability mass function

For any n ≥ 1, Proposition 3 outlines a method for computing the probability

mass function for Sn recursively. Furthermore, an algorithm specifying the

relevant steps for its implementation when n = NF , is shown in Algorithm

3.

Proposition 3. Fix n ∈ Z>0. For s ∈ SSn, define R(s, n) ∈ R1×(d+3) to be

the vector

R(s, n) :=
(
R(0, s, n) R(01, s, n) . . . R(0d, s, n) R(1, s, n) R(2, s, n)

)
,

whereby for each j ∈ SX

R(j, s, n) := P
θ

(d)
ω

(X(n∆) = j, Sn = s). (3.2)

By recursively computing

R(s, 1) = ν>XB
∗(s)
∆ s ∈ {0, 1}

R(0, n) = R(0, n− 1)B
∗(0)
∆ n > 1

R(s, n) = R(s, n− 1)B
∗(0)
∆ + R(s− 1, n− 1)B

∗(1)
∆ 1 ≤ s < n

R(s, n) = R(n− 1, n− 1)B
∗(1)
∆ s = n,
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the probability mass of Sn follows

p
θ

(d)
ω

(Sn = s) := P
θ

(d)
ω

(Sn = s) = R(s, n)1d+3 s ∈ SSn . (3.3)

Proof. Let R be as defined in (3.2).

Initialising with n = 1, we have (for s ∈ {0, 1}) that

R(j, s, 1) =
∑
i∈SX

P
θ

(d)
ω

(X(∆) = j, Y0 = s|X(0) = i)Pθ(d)(X(0) = i)

=
∑
i∈SX

b
∗(s)
ij,∆Pθ(d)(X(0) = i).

Then, R(s, 1) = ν>XB
∗(s)
∆ .

For arbitrary n > 1, and for s = 0 we have

R(j, 0, n) =
∑
i∈SX

P
θ

(d)
ω

(X(n∆) = j, Sn = 0|X((n− 1)∆) = i, Sn−1 = 0)

×R(i, 0, n− 1)

=
∑
i∈SX

b
∗(0)
ij,∆R(i, 0, n− 1).

Then, R(0, n) = R(0, n− 1)B
∗(0)
∆ .

For 1 ≤ s < n we have

R(j, s, n) =
n∑

x=s−1

∑
i∈SX

P
θ

(d)
ω

(X(n∆) = j, Sn = s|X((n− 1)∆) = i, Sn−1 = x)

×R(i, s− x, n− 1)

=
1∑

x=0

∑
i∈SX

b
∗(x)
ij,∆R(i, s− x, n− 1).

Then, R(s, n) = R(s, n− 1)B
∗(0)
∆ + R(s− 1, n− 1)B

∗(1)
∆ .
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And finally for s = n, we have

R(j, n, n) =
∑
i∈SX

P
θ

(d)
ω

(X(n∆) = j, Sn = n|X((n− 1)∆) = i, Sn−1 = n− 1)

×R(i, n− 1, n− 1)

=
∑
i∈SX

b
∗(1)
ij,∆R(i, n− 1, n− 1).

Then, R(n, n) = R(n− 1, n− 1)B
∗(1)
∆ .

Now since

P
θ

(d)
ω

(Sn = s) =
∑
j∈SX

P
θ

(d)
ω

(X(n∆) = j, Sn = s),

we obtain

p
θ

(d)
ω

(Sn = s) := P
θ

(d)
ω

(Sn = s) = R(s, n)1d+3 s ∈ SSn .

Algorithm 3 Compute probability mass function (PMF) for SNF

function PMF S(θ(d)
ω ,∆, NF )

B
∗(0)
∆ , B

∗(1)
∆ ← COMPUTE TRANSMISSIONS(θ(d)

ω ,∆) . Using

Algorithm 2

R0, R1 ← 0NF+10
>
d+3

R0[1, :]← ν>XB
∗(0)
∆

R0[2, :]← ν>XB
∗(1)
∆

for n = 2 to NF do

R1[1, :]← R0[1, :]B
∗(0)
∆

for s = 2 to n do

R1[s, :]← R0[s, :]B
∗(0)
∆ +R0[s− 1, :]B

∗(1)
∆

R1[n+ 1, :]← R0[n, :]B
∗(1)
∆

R0 ← R1

p← R01d+3 . p[i] = P
θ

(d)
ω

(SNF = i− 1) for i = 1, . . . , NF + 1

return p . Probability mass function for SNF
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Figure 3.1 presents the exact distributions p
θ

(d)
ω

(SNF = s) for s ∈ Z≥0

when compared with simulated data under three photo-switching models,

d = 0, 1, 2. The shape of the densities can be seen to be determined by d, the

dwell times in dark states and the photo-bleaching rates. Moreover, as is to

be expected, the average number of localisations decreases as the number of

dark states d increases. In particular, the slow growth to the mode of each

distribution is related to the presence of the photo-bleached state, as seen

in Figure 3.1b, which compares the mass functions under the d = 1 model

with µ0 = 0 when µ1 varies. When µ1 is close to zero (the expected time

to move into the bleached state is long), a bell shaped curve is observed.

This is sharply in contrast to when µ1 is large and photo-bleaching is much

more likely to occur at the beginning of the experiment, giving rise to a ge-

ometric decay. For values in between, a mixture of these two properties is

detected. These simulations therefore provide strong evidence that photo-

kinetic models incorporating a photo-bleached state are likely to give rise to

mixture distributions (that are potentially multi-modal) for the number of

localisations recorded per molecule.

3.2.2 Probability generating function

Here, we will show that the probability generating function of Sn can be

computed in a similar recursive fashion to its probability mass function.

Proposition 4 gives its exact form.

Proposition 4. For any n ∈ Z>0, the probability generating function (pgf)

of Sn, GSn(z) = E
θ

(d)
ω

(zSn) is given by

GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3. (3.4)

Proof. By defining the vector quantity GSn(z) :=
∑n

i=0 R(i, n)zi, we have

GSn(z) = GSn(z)1d+3, similarly to (3.3). We therefore need to equivalently

show that GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n.
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(a) (b)

Figure 3.1: Figure 3.1a shows the theoretical and histogram estimate (from 106 simula-
tions) of p

θ
(d)
ω

(SNF
= s) under 3 photo-switching models: d = 0 (blue), d = 1 (red)

and d = 2 (green). In all simulations, µ1 > 0, µ0 = · · · = µ0d
= 0, NF = 1000,

ν0 = ν1 = 0.5, ∆ = 1
30 s, δ = 10−3s and ω = 10−6; rates chosen (where appropriately

zero) are λ001
= 0.35s−1, λ01 = 1s−1, λ0102

= 0.2s−1, λ011 = 0.3s−1, λ021 = 0.1s−1,
λ10 = 2.3s−1, µ1 = 0.05s−1. Figure 3.1b shows the theoretical and histogram estimate
(from 106 simulations) of p

θ
(d)
ω

(SNF
= s) when d = 1 with µ1 = 0.5s−1 (blue), µ1 = 0.2s−1

(red) and µ1 = 0.05s−1 (green).
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The statement in (3.4) is true for n = 1, since

GS1(z) = P
θ

(d)
ω

(S1 = 0) + zP
θ

(d)
ω

(S1 = 1)

= (ν>XB
∗(0)
∆ + zν>XB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3.

Assuming (3.4) is true for n = k, consider n = k + 1:

GSk+1
(z) =

k+1∑
i=0

P
θ

(d)
ω

(Sk+1 = i)zi

=

(
k+1∑
i=0

R(i, k + 1)zi

)
1d+3

=

(
R(0, k)B

∗(0)
∆ +

(
k∑
i=1

(R(i, k)B
∗(0)
∆ + R(i− 1, k)B

∗(1)
∆ )zi

)

+ R(k, k)B
∗(1)
∆ zk+1

)
1d+3

=

((
k∑
i=0

R(i, k)zi

)
B
∗(0)
∆ + z

(
k∑
i=0

R(i, k)zi

)
B
∗(1)
∆

)
1d+3

= GSk(z)(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )k+11d+3.

Moments

In theory, the moments of the distribution p
θ

(d)
ω

(Sn = s) are fully char-

acterised by the pgf given in (3.4). In particular, the expected value of

Sn, denoted by E
θ

(d)
ω

(Sn) = G′Sn(1) and its second moment E
θ

(d)
ω

(S2
n) =

G′′Sn(1) + E
θ

(d)
ω

(Sn) can be determined by differentiating this pgf from first

principles. Lemma 5 computes G′Sn(1) and G′′Sn(1) to give explicit expres-

sions for the expected value E
θ

(d)
ω

(Sn) and variance Var
θ

(d)
ω

(Sn) of the random

variable Sn.
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Lemma 5. The expected value E
θ

(d)
ω

(Sn) and variance Var
θ

(d)
ω

(Sn) of Sn fol-

lows

E
θ

(d)
ω

(Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3 (3.5)

Var
θ

(d)
ω

(Sn) = G′′Sn(1) + E
θ

(d)
ω

(Sn)− E2

θ
(d)
ω

(Sn), (3.6)

where

G′′Sn(1) = νTX

(
n−1∑
i=1

n−i∑
j=1

eG∆(n−i−j)B
∗(1)
∆ eG∆(j−1)B

∗(1)
∆ eG∆(i−1)

+
i∑

j=1

eG∆(n−i−1)B
∗(1)
∆ eG∆(i−j)B

∗(1)
∆ eG∆(j−1)

)
1d+3,

and eG denotes the matrix exponential of the generator matrix G as defined

in (1.1).

Proof. See Section 3.A of Appendix 3.

3.2.3 Extension to M molecules

When M ∈ Z>0 independent molecules are imaged, the total number of

localisations Nl (which can take a minimum value of 0 and a maximum value

of MNF ), can be written as

Nl =
M∑
m=1

SNF ,m =
M∑
m=1

NF∑
i=1

Yi,m Nl ∈ [0,MNF ], (3.7)

where SNF ,m denotes the total number of localisations made by the mth fluo-

rophore over an experiment consisting of imaging NF frames. Using this ex-

pression for Nl, it now follows that the expected number and variance of total

localisations are Eθ,M(Nl) = ME
θ

(d)
ω

(SNF ) and Varθ,M(Nl) = MVar
θ

(d)
ω

(SNF ),

which can be computed using (3.5) and (3.6).
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Probability mass function

The probability mass function for Nl follows

p
θ

(d)
ω ,M

(Nl) =
∑

s1,...sM
:s1+···+sM=Nl

M∏
i=1

p
θ

(d)
ω

(SNF = si),

which can be obtained by applying M convolutions of the mass function for

SNF . This is most efficiently achieved via the Fast Fourier Transform.

Specifically, for any u ∈ R, we define the characteristic function γSNF (u) of

the random variable SNF to be

γSNF (u) := E
θ

(d)
ω

(eiuSNF ) =
∞∑
s=0

P
θ

(d)
ω

(SNF = s)eius

=

NF∑
s=0

p
θ

(d)
ω

(SNF = s)eius,

where i =
√
−1. The characteristic function for Nl =

∑M
m=1 SNF ,m is then

E
θ

(d)
ω ,M

(eiuNl) = E
θ

(d)
ω ,M

(
eiu(SNF ,1+···+SNF ,M)

)
= E

θ
(d)
ω ,M

(
eiuSNF ,1 . . . eiuSNF ,M

)
=

M∏
m=1

E
θ

(d)
ω

(
eiuSNF ,m

)
(since SNF ,1, . . . , SNF ,M are independent)

= γMSNF
(u) (since SNF ,1, . . . , SNF ,M are identically distributed).

(3.8)

For any N ≥ 0, we can define tN := 2π
N+1

and uN = −tNk, where k can take

any value in the set {0, . . . , N}. When N = NF , this enables

Fs→k(pθ(d)
ω

(SNF )) := γSNF (−uNF ) =

NF∑
s=0

p
θ

(d)
ω

(SNF = s)e−itNF ks,

to be seen as the Discrete Fourier Transform (DFT) of the probability mass
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p
θ

(d)
ω

(SNF = s), where Fs→k(·) denotes the discrete Fourier operator. The

inverse DFT can then recover the probabilities via

F−1
k→s(γSNF (−tNF k)) =

1

NF + 1

NF∑
k=0

γSNF (−tNF k)eitNF ks

≡ p
θ

(d)
ω

(SNF = s).

Using the characteristic function of Nl from (3.8), it now follows that prob-

ability mass p
θ

(d)
ω ,M

(Nl = s) := P
θ

(d)
ω ,M

(Nl = s) (where Nl takes values in the

set {0, . . . ,MNF}), can be recovered via

p
θ

(d)
ω ,M

(Nl = s) =
1

MNF + 1

MNF∑
k=0

γMSNF
(−tMNF k) eitMNF

ks, (3.9)

so that p
θ

(d)
ω ,M

(Nl = s) = F−1
k→s(γ

M
SNF

(−tMNF k)) = F−1
k→s(FMs→k(pθ(d)

ω
(SNF ))).

It should be noted here that a computational implementation would require

one to apply the DFT to the MNF + 1 vector of probabilities p, whose

(s + 1)th element is defined as p
θ

(d)
ω

(SNF = s). The first NF + 1 elements of

p are therefore those outputted by Algorithm 3 and the remaining NF (M −
1) elements are zeros. Algorithm 4 provides the scheme to compute the

probability distribution of Nl using this reasoning.

Algorithm 4 Compute probability mass function (PMF) for Nl from M
fluorophores

1: function PMF Nl(p1,M) . p1 ← PMF S(θ(d)
ω ,∆, NF ) from

Algorithm 3
2: p2 ← [p>1 0>NF (M−1)]

>

3: f ← F(p2) . Apply Discrete Fourier Transform (DFT) to p2 to get f
4: fM ← fM . fM [i] = f [i]M for i = 1, . . . ,MNF + 1
5: p← F−1(fM) . Apply inverse DFT to fM to get p, where

p[i] = P
θ

(d)
ω ,M

(Nl = i− 1) for i = 1, . . . ,MNF + 1

6: return p . Probability mass function for Nl

127



3.3 Inference

In this section, we discuss how the (posterior) distribution of M can be

obtained using the derived probability mass function of Nl in (3.9) given M

and θ(d)
ω . Here, we also discuss how the mode of the resulting distribution

can be used to estimate M , and provide a scheme to compute posterior 95%

credible intervals.

The task of interest is to estimate M , the unknown number of molecules in a

(d)STORM experiment, from Nl, the number of localisations recorded across

NF frames. Given a datum Nl, that takes the functional form in Equation

(3.7), inferring both M and θ(d)
ω from their joint posterior distribution is

difficult due to poor model specification. To deal with this, we choose to

utilise a method of inference, formally termed as modular inference (Jacob

et al., 2017), which can be implemented to determine parameters of interest

in misspecified models, or models which produce poor quality data, as is the

case here.

Specifically, since θ(d)
ω is well estimated through, for example, the PSHMM

(maximum likelihood) fitting method outlined in Chapter 1, we may obtain

an estimate θ̂
(d̂)

ω of the photo-switching parameter vector θ(d)
ω using training

data Dtr or through the module (θ(d)
ω ,Dtr). This training data consists of a

set of observations of the localisation process {Yn} from a known number of

molecules, from which θ̂
(d̂)

ω can be obtained via the PSHMM. Subsequently,

M can be inferred by utilising the determined estimate θ̂
(d̂)

ω to compute its

posterior distribution under the module (M,Nl) as

p
θ̂

(d̂)
ω ,m

(M = m|Nl) ∝ p
θ̂

(d̂)
ω ,m

(Nl)πM(m), (3.10)

where πM(m) := P(M = m) denotes a suitable prior distribution on M .

We here elect to use a uniform prior restricted to the interval [Mmin,Mmax].

Furthermore, we choose Mmin = max
(⌈

Nl
NF

⌉
, 1
)

and while it should be clear

thatMmax =∞, one may choose to pre-specify a large value forMmax to avoid

unnecessarily large computations. For example, we let m̄ =

⌈
Nl

E
θ̂

(d̂)
ω

(SNF )

⌉
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and Mmax = m̄ +

⌈
4
√
m̄Var

θ̂
(d̂)
ω

(SNF )

⌉
and consider the range [Mmin,Mmax]

suitable for inference. Here, E
θ̂

(d̂)
ω

(SNF ) and Var
θ̂

(d̂)
ω

(SNF ) can be computed

using (3.5) and (3.6).

For a given prior distribution πM , Algorithm 5 computes p
θ̂

(d̂)
ω ,m

(M = m|Nl)

using this described method.

Algorithm 5 Compute posterior distribution p
θ̂

(d̂)
ω ,m

(M = m|Nl)

function Compute posterior(Dtr, Nl,∆, NF , πM)

Use Dtr to obtain θ̂
(d̂)

ω

p← PMF S(θ̂
(d̂)

ω ,∆, NF ) . From Algorithm 3

e′ ← E
θ̂

(d̂)
ω

(SNF ) . Using (3.5)

v′ ← Var
θ̂

(d̂)
ω

(SNF ) . Using (3.6)

Mmin ← max
(⌈

Nl
NF

⌉
, 1
)

m̄←
⌈
Nl
e′

⌉
Mmax ← m̄+

⌈
4
√
m̄v′

⌉
p∗ ← 0Mmax

for i = Mmin to Mmax do

p2 ← PMF NL(p, i) . From Algorithm 4

p∗[i]← p2[Nl + 1]πM(i)

p∗ ← p∗

p∗>1Mmax
. Normalise probabilities

return p∗ . p∗[m] = P
θ̂

(d̂)
ω ,m

(M = m|Nl)

Subsequently, the estimate M̂ of the number of molecules is found by locating

the mode of the posterior p
θ̂

(d̂)
ω ,m

(M = m|Nl), also known as the maximum a

posteriori (MAP) estimate.

Under this inference mechanism, a 95% credible interval or highest density

region (HDR) (Hyndman, 1996) can also be obtained. The upper and lower

bounds of this credible interval inform us that M (under this distribution)

lies within this region with probability 0.95, and is therefore a useful tool in

analysing the potential number of molecules that are truly imaged. Specif-

ically, this region is chosen to be I =
{
m : pθ̂

ω̂(d̂) ,m
(m|Nl) ≥ k0.05

}
, where
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Parameter d λ001 λ01 λ0102 λ011 λ021 λ10 µ1 ∆−1 δ ω ν0 ν1 M NF
(s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s)

Study

1 (SLOW) 0 0.3162 1 0.0333 30 0.0033 10−5 0.2 0.8 100 104

2 (MEDIUM) 0 1 3.162 0.1054 30 0.0033 10−5 0.2 0.8 100 104

3 (FAST) 0 3.162 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

4 (SLOW) 1 0.15 0.3 0.1 0.8 0.01 30 0.0033 10−5 0.2 0.8 100 104

5 (MEDIUM) 1 0.35 1 0.3 2.3 0.1 30 0.0033 10−5 0.2 0.8 100 104

6 (FAST) 1 2 10 0.7 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

7 (SLOW) 2 0.15 0.3 0.05 0.1 0.001 0.8 0.05 30 0.0033 10−5 0.2 0.8 100 104

8 (MEDIUM) 2 0.8 4 0.1 0.4 0.005 8 0.1 30 0.0033 10−5 0.2 0.8 100 104

9 (FAST) 2 2 10 0.2 0.7 0.01 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

Table 3.1: Global parameter values for the stimulation studies conducted in this section.

k0.05 is the largest value such that

pI :=
∑
m∈I

p
θ̂

(d̂)
ω ,m

(M = m|Nl) ≥ 0.95.

3.4 Simulations

In this section, we provide posterior estimates of M from nine simulation

studies highlighting slow, medium and fast switching scenarios under the

three photo-switching models Md
{1} with d, the number of multiple dark

states, equalling 0, 1 and 2.

For each simulation study, 104 independent datasets, each containing 350

molecules were simulated. From this, the localisations from 250 molecules

were used to estimate θ(d)
ω . The number of localisations from the remaining

100 molecules were used to estimate M through the posterior mode of (3.10),

under a uniform prior, πM(m) ∝ 1. The true parameter values for each study

can be found in Table 3.1, where T ∗ = 0 in all simulations. Figures 3.2a -

3.4c show histograms of posterior modes M̂ under each study and show that

our estimation method can recover the true (M = 100) number of molecules

from simulated data.
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Figure 3.2: Simulation results from studies 1-3 in Table 3.1. Histograms represent counts
of M̂ under the slow (Figure 3.2a), medium (Figure 3.2b) and fast (Figure 3.2c) scenarios
when d = 0, from 104 independently generated datasets with M = 100 and NF = 104. For
each estimate, θ(0)

ω was determined using a training data set with M = 250 and NF = 104.
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Figure 3.3: Simulation results from studies 4-6 in Table 3.1. Histograms represent counts
of M̂ under the slow (Figure 3.3a), medium (Figure 3.3b) and fast (Figure 3.3c) switching
scenarios when d = 1, from 104 independently generated datasets with M = 100 and
NF = 104. For each estimate, θ(1)

ω was determined using a training data set with M = 250
and NF = 104.

3.5 Application to Alexa Fluor 647 data

In this section, we use the Alexa Fluor 647 dataset as was previously analysed

in Chapter 1, for the purpose of validating the theory and counting method

presented in this chapter. For each of the experiments in this dataset, we

apply our method to obtain an estimate for M and present the 95% credible

intervals from the resulting posterior distributions.

Using this dataset, consisting of 27 independent experiments, the photo-
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Figure 3.4: Simulation results from studies 1-3 in Table 3.1. Histograms represent counts
of M̂ under the slow (Figure 3.4a), medium (Figure 3.4b) and fast (Figure 3.4c) switching
scenarios when d = 2, from 104 independently generated datasets with M = 100 and
NF = 104. For each estimate, θ(2)

ω was determined using a training data set with M = 250
and NF = 104.

emission time trace of each photo-switchable molecule detected was extracted†.

Therefore, in each experiment, the number of fluorophores present was known

and therefore acts as a ground truth against which our estimate M̂ can be

compared. For each dataset (labelled 1 - 27), each photo-switchable molecule

detected had its discrete observation trace {Yn} extracted from its photo-

emission time trace. 70% of these traces were then used as the training set

Mtr, used to identify model parameters θ̂
(2)

ω via the PSHMM method de-

scribed in Chapter 1. The remaining 30% (the test set) was then used to

validate the inference method outlined in this chapter. Here, M (known) is

the 30% of molecules that remain in the test set, and Nl is the (total) number

of localisations recorded from these M molecules. Additionally, we fitted the

photo-switching parameters using the d = 2 photo-kinetic model M2
{1}, as

was predicted by both the PSHMM in Chapter 1, and the method detailed

in Lin et al. (2015) for this dataset.

For each experiment, the posterior modes (MAP values) M̂ given Nl, along

with the true values of M and corresponding 95% credible intervals are shown

in Figure 3.5. With this are shown two examples of the posterior distribution

of M given Nl (using (3.10)). The remaining figures can be found in Figure

3.6 of Section 3.B in Appendix 3. The values of the laser intensity, frame rate

∆−1, number of molecules in each dataset (Mtr,M), the number of frames

†See Section 1.F.2 of Appendix 1 for more details.
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Dataset Laser ∆−1 Mtr M NF Nl M̂ I pI
intensity

1 1.0 200 192 81 49796 4340 77 [62, 91] 0.951
2 1.9 200 180 77 49533 5300 81 [67, 94] 0.950
3 3.9 200 234 100 49815 2443 106 [87, 125] 0.955
4 3.9 200 295 110 39758 2834 112 [94, 130] 0.956
5 7.8 200 238 102 39721 2679 106 [88, 123] 0.954
6 7.8 800 171 72 29418 4648 75 [63, 87] 0.953
7 7.8 800 159 67 29257 4251 66 [54, 77] 0.956
8 7.8 800 121 51 29438 2760 54 [43, 65] 0.961
9 16 800 304 129 29467 3538 126 [108, 144] 0.953
10 16 200 201 86 39703 1609 89 [73, 104] 0.953
11 16 800 213 90 29074 3309 88 [74, 101] 0.952
12 16 800 201 85 29145 2977 84 [71, 97] 0.951
13 31 800 425 181 29059 4050 177 [157, 197] 0.955
14 31 800 374 159 29778 2845 156 [137, 174] 0.954
15 31 800 360 153 29179 3431 156 [136, 175] 0.954
16 31 800 343 147 29400 3013 140 [122, 158] 0.957
17 31 800 317 135 29071 4616 137 [120, 153] 0.950
18 62 800 385 164 29327 3160 165 [147, 183] 0.955
19 62 800 309 132 29107 2728 132 [116, 148] 0.950
20 62 800 294 126 29551 1935 124 [107, 141] 0.956
21 62 800 298 127 29426 3022 132 [116, 148] 0.952
22 62 800 279 119 28989 2842 121 [106, 136] 0.951
23 97 800 315 135 29191 1579 136 [117, 154] 0.955
24 97 800 307 131 29198 1659 138 [120, 156] 0.955
25 97 800 304 129 29270 2120 132 [115, 148] 0.954
26 97 800 295 126 29295 2280 124 [107, 140] 0.953
27 97 800 287 123 29218 1351 126 [106, 145] 0.954

Table 3.2: A description of the Alexa Fluor 647 datasets, with reference to the laser inten-
sities in kW/cm2 and frames ∆−1 sampled per second used to characterise each of the 27
experiments. For each dataset, a training set of size Mtr was used to find the maximum

likelihood estimate θ̂
(2)

ω . A hold out test set of size M was used validate the inference proce-
dure.

over which they were imaged (NF ), the total number of localisations (Nl),

the posterior mode M̂ , its 95% credible interval (I) and its corresponding

value pI are summarised in Table 3.2. The maximum likelihood estimates

θ̂
(d)

ω used for each study is presented in Table 3.3 of Section 3.B of Appendix

3.

The plots show that the modes of the posterior distributions (M̂) can be

used to accurately estimate the true number of imaged molecules, with all

studies’ 95% credible intervals containing the true values of M . Furthermore,

the inference method shows a consistently strong performance, both in the

MAP estimate and the width of the credible intervals, across the range of

laser intensities and frame rates. This demonstrates its robustness to different

experimental conditions and photo-switching rates.
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Figure 3.5: (a) Posterior distributions of M given θ̂
(2)

ω and Nl for the Alexa Fluor 647
datasets 1 and 2 (descriptions of which can be found in Table 3.3). For each study, M̂ is
given by the corresponding posterior mode plotted in cyan, with the true values of M shown
in magenta (dotted). 95% credible intervals for each M̂ are shown in black (dotted).(b)

Posterior estimates of M given θ̂
(2)

ω and Nl for the 27 Alexa Fluor 647 datasets (descriptions
of which can be found in Table 3.2) with varying laser intensities (kw/cm2). For each study,
M̂ is given by the corresponding posterior mode plotted in blue (circle), with the true values
of M shown in red (crosses) and 95% credible intervals for each M̂ are shown by blue error
bars.

3.6 Conclusions

In this chapter, for an arbitrary number of fluorophores in a (d)STORM ex-

periment, we have derived the distribution of the number of localisations per

fluorophore and also provided expressions for its first two moments. This

has allowed us to present an inference procedure for estimating the unknown
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number of molecules, given an observed number of localisations. These re-

sults have been successfully validated on both simulated and experimental

data across a range of different imaging conditions, thus demonstrating a ro-

bust and precise new tool for the quantification of biological structures and

mechanisms imaged via SMLM methods.

The method that we have constructed in this chapter is an example of mod-

ular inference, which separates the rate estimation (training) procedure from

the counting procedure. While the training procedure requires a separate

experiment to estimate fluorophore switching rates, it does mean that the

counting process is computationally cheap and therefore highly scalable. In

particular, this method can count several thousand molecules from tens of

thousands of localisations with relative computational ease.
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Appendix 3

3.A Proof of Lemma 5

In this section, we provide a proof for Lemma 5.

Proof. In the following, we utilize the following expansion

(Cz + hB
(1)
∆ )n = Cn

z + hCn−1
z B

(1)
∆ + hCn−2

z B
(1)
∆ Cz + . . .+ hB

(1)
∆ Cn−1

z +O(h2),

which holds for the two square matrices Cz and B
(1)
∆ .

From the definition of a derivative, we have

GSn(z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3.

dGSn

dz
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dz→0

1

dz

[
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]
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dz
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z dzB
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]
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[
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∗(1)
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]
1d+3,

where Cz := B
∗(0)
∆ + zB

∗(1)
∆ .

When z = 1, C1 = B
∗(0)
∆ +B

∗(1)
∆ = eG∆, giving

E
θ

(d)
ω

(Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3.
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Defining D :=
∑n−1

j=1 C
n−1−j
z B

∗(1)
∆ Cj−1

z , we can now derive G′′Sn(1) as follows
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This gives
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so that E
θ

(d)
ω

(S2
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(Sn) and therefore Var
θ
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ω
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3.B Alexa Fluor 647 results

In this section, we provide the posterior distributions of M given Nl from

the 27 Alexa Fluor 647 experiments studied. We additionally provide a

table to detail the imaging parameters θ̂
(d)

ω used when deriving the posterior

distribution of M given θ̂
(2)

ω for these experiments.

Figure 3.6 shows the posterior distributions of M given Nl, along with the

true values and MAP estimates from the 27 experiments. Moreover, each

distribution’s 95% credible interval (under a uniform prior on M) is given.

Table 3.3 provides the number of each study, the laser intensity used, ∆, M
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Figure 3.6: Posterior distributions of M given θ̂
(2)

ω and Nl for the 27 Alexa Fluor 647
datasets (descriptions of which can be found in Table 3.3). For each study, M̂ is given by
the corresponding posterior mode plotted in cyan, with the true values of M shown in ma-
genta (dotted). 95% credible intervals for each M̂ are shown in black (dotted).
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(used for training and testing), NF and the maximum likelihood parameter

estimates in θ̂
(2)

ω .

Dataset Laser ∆−1 Mtr M NF λ̂001 λ̂01 λ̂0102 λ̂011 λ̂021 λ̂10 µ̂1
δ̂
∆

ω̂ ν̂X
intensity × × × ×10 ×104 × ×102 ×105

∆ ∆ ∆ ×∆ ×∆ ∆ ×∆

1 1.0 200 192 81 49796 0.10 0.55 0.01 0.22 1.24 0.65 1.04 0.78 1.48 (0.21, 0.00, 0.65, 0.13, 0)
2 1.9 200 180 77 49533 0.23 0.73 0.02 0.46 1.43 0.92 1.37 0.32 1.13 (0.00, 0.46, 0.34, 0.20, 0)
3 3.9 200 234 100 49815 0.12 0.46 0.02 0.21 0.58 0.55 2.44 0.65 0.80 (0.10, 0.07, 0.70, 0.13, 0)
4 3.9 200 295 110 39758 0.28 0.67 0.03 0.42 1.22 0.55 2.53 0.69 0.98 (0.02, 0.12, 0.61, 0.24, 0)
5 7.8 200 238 102 39721 0.14 0.39 0.02 0.14 1.42 0.55 2.98 0.57 0.27 (0.10, 0.06, 0.72, 0.12, 0)
6 7.8 800 171 72 29418 0.03 0.15 1.35 6.08 1.39 0.52 0.65 0.56 1.17 (0.52, 0.00, 0.00, 0.47, 0)
7 7.8 800 159 67 29257 0.25 0.58 0.02 0.47 1.12 0.81 0.61 0.37 1.60 (0.50, 0.03, 0.00, 0.47, 0)
8 7.8 800 121 51 29438 0.13 0.40 0.01 0.23 0.68 0.54 0.00 0.66 0.09 (0.71, 0.00, 0.00, 0.29, 0)
9 16 800 304 129 29467 0.38 0.70 0.02 0.57 0.81 0.59 1.18 0.77 0.72 (0.23, 0.03, 0.00, 0.74, 0)
10 16 200 201 86 39703 0.19 0.42 0.01 0.08 1.25 0.57 3.10 0.73 0.83 (0.00, 0.01, 0.46, 0.53, 0)
11 16 800 213 90 29074 0.21 0.46 0.03 0.37 0.73 0.54 0.00 0.64 0.48 (0.54, 0.00, 0.00, 0.46, 0)
12 16 800 201 85 29145 0.12 0.35 0.02 0.19 0.72 0.57 0.00 0.61 0.00 (0.13, 0.00, 0.00, 0.87, 0)
13 31 800 425 181 29059 0.21 0.41 0.03 0.28 0.75 0.58 0.01 0.72 0.93 (0.33, 0.07, 0.04, 0.56, 0)
14 31 800 374 159 29778 0.25 0.50 0.04 0.30 0.71 0.70 0.01 0.75 0.95 (0.26, 0.00, 0.00, 0.74, 0)
15 31 800 360 153 29179 0.13 0.32 0.02 0.11 0.70 0.61 0.00 0.63 0.34 (0.50, 0.00, 0.09, 0.41, 0)
16 31 800 343 147 29400 0.17 0.38 0.03 0.20 0.68 0.65 0.00 0.67 0.35 (0.25, 0.00, 0.00, 0.75, 0)
17 31 800 317 135 29071 0.21 0.47 0.03 0.34 0.75 0.59 0.00 0.68 1.18 (0.09, 0.00, 0.00, 0.91, 0)
18 62 800 385 164 29327 0.22 0.37 0.04 0.21 0.87 0.69 0.17 0.61 1.35 (0.26, 0.00, 0.00, 0.73, 0)
19 62 800 309 132 29107 0.25 0.47 0.04 0.26 0.87 0.69 0.23 0.66 1.10 (0.54, 0.00, 0.00, 0.46, 0)
20 62 800 294 126 29551 0.18 0.36 0.03 0.15 0.60 0.75 0.00 0.63 1.20 (0.14, 0.04, 0.00, 0.81, 0)
21 62 800 298 127 29426 0.16 0.39 0.03 0.14 0.77 0.65 0.05 0.67 1.68 (0.06, 0.00, 0.00, 0.94, 0)
22 62 800 279 119 28989 0.17 0.37 0.03 0.16 0.85 0.67 0.00 0.60 1.35 (0.39, 0.00, 0.00, 0.61, 0)
23 97 800 315 135 29191 0.21 0.36 0.04 0.19 0.95 0.79 3.50 0.60 0.75 (0.45, 0.00, 0.00, 0.55, 0)
24 97 800 307 131 29198 0.17 0.30 0.02 0.08 0.75 0.77 1.10 0.67 1.11 (0.36, 0.00, 0.00, 0.64, 0)
25 97 800 304 129 29270 0.30 0.48 0.04 0.27 1.17 0.75 2.47 0.61 1.97 (0.00, 0.00, 0.00, 1.00, 0)
26 97 800 295 126 29295 0.18 0.42 0.02 0.10 1.04 0.62 1.35 0.82 1.14 (0.17, 0.00, 0.00, 0.82, 0)
27 97 800 287 123 29218 0.26 0.51 0.04 0.34 0.96 0.71 4.22 0.79 0.93 (0.51, 0.00, 0.00, 0.48, 0)

Table 3.3: A description of the Alexa Fluor 647 datasets, with reference to the laser inten-
sities in kW/cm2 and frames ∆−1 sampled per second used to characterise each of the 27
experiments. For each dataset, a training set of size NF ×Mtr (train) was used to find the

maximum likelihood estimate θ̂
(2)

ω via the PSHMM (estimated values shown). A hold out
test set of size NF ×M (test) was used in the posterior computations of M .
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4
Spatio-temporal Modelling

4.1 Introduction

Under special experimental conditions, molecules can be placed on a cover-

slip with sufficient spatial separation to neighbouring fluorophores as to en-

able observations per molecule to be extracted without difficulty in each

frame (Lin et al., 2015). In this situation, their true spatial locations can

be determined as the centroid of the observed localisations and their photo-

switching rates can be inferred using, for example, the PSHMM estimator

presented in Chapter 1.

In most experiments, however, an unknown number of fluorophores is used

in attaining the resulting super-resolution image of a structure of interest.

Specifically, when a dense set of fluorophores (of unknown cardinality) is

filmed over a number of frames, the photo-switching property enables accu-

rate localisations to be made when molecules are detectable. However, their

resulting non-stationary photo-switching behaviours invoke non constant de-

tection rates per frame, which in turn generate a random number of offspring

coordinates per molecule during an experiment. Such measurements are typ-

ically collected by first using a segmentation algorithm (Olivo-Marin, 2002,
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Henriques et al., 2010, Ovesný et al., 2014) to locate high photon intensity

regions of each image, and then by fitting point spread functions (Ober et al.,

2015, Sage et al., 2015) to determine the precise coordinates of each locali-

sation expected to be observed in the image. Due to the manner in which

measurements are collected, the localisations will therefore differ between

frames, as the same molecules are localised with measurement errors about

their true spatial locations. Figures 4.1a and 4.1b provide a visualisation as

to how these fluorophores are localised in space-time.

When multiple localisations are made, the superimposed image (see Figure

4.1b) does not in general allow for molecules to be individually resolved.

These images are formed by the temporal aggregation of obtained (locali-

sation) measurements that may invoke clusters of observations to develop

in any one region of an image. Figure 4.2 shows an example of all locali-

sations collected from seven spatially close molecules during an experiment.

Without knowledge of the exact number of molecules present, it is observed

here that identifying the true positions of the molecules (indicated in blue)

may be challenging. These situations are in fact not uncommon in experi-

mental set-ups and not only prove challenging in estimating the number of

molecules present with their true spatial locations, but also render rate es-

timation procedures developed for this problem difficult to use. From just

utilising the offspring measurements collected during an experiment, the in-

ference problem therefore lies in identifying the number of fluorophores, their

true spatial positions and the photo-switching rates which have generated the

observations.

Spatial point processes or random finite sets are random variables that take

values as sets (of points) with a random cardinality, and are therefore natu-

rally suited to the spatial modelling of molecules that are imaged in fluores-

cence microscopy. The idea of modelling the clusters obtained in the superim-

posed image (Hsu and Baumgart, 2011, Wiemhöfer et al., 2012) or the spatial

distributions of molecules themselves (Owen et al., 2010) via spatial point

patterns is familiar. Modelling clusters of specific shapes and sampling loca-

tions of their centres through, for example, both maximum likelihood based

and MCMC methods (Geyer and Møller, 1994, Møller and Waagepetersen,
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(a) True spatial coordinates. (b) Time aggregated localisations.

Figure 4.1: Figure 4.1a shows the true spatial locations of a set of fluorophores from one
fluorescence microscopy experiment. Figure 4.1b shows the aggregated measurements of
localised fluorophores detected from the first 3 frames; objects detected from frame 1 (blue),
frame 2 (red) and frame 3 (cyan) are shown with respect to the true locations (black).
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Figure 4.2: Superimposed image of the localisations (red) attained from seven (spatially
close) fluorescing molecules with true positions indicated in blue (crosses). Measurement
unit is nanometre (nm) ×104.

2003) are well studied in the literature. For example, in the case of Neymann-

Scott point processes (that produce Gaussian distributed clusters), Mrkvička

et al. (2014) develop a targeted MCMC algorithm able to jointly sample the

cluster centres (with its unknown cardinality) and other parameters of the

model. While this method could be applied to the superimposed image,

ignoring the time domain is likely to result in poor estimation of the un-

derlying photo-switching parameters. Furthermore, using the superimposed

image will in general lead to spatial biases due to false positive localisations

and cases where molecules are spatially close.

On the other hand, Mahler (2007b) introduced a Bayesian filtering approach

aimed at sequentially tracking the spatial locations of dynamic objects or

targets modelled as hidden finite point processes, that are observed in highly
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noisy environments over time. However, the intractability of the derived

Bayes filter for the tracking of a large number of targets has subsequently

motivated numerous approximations to this original approach. Important

developments include but are not limited to: the Probability Hypothesis

Density (PHD) filter and its cardinalised version (Mahler, 2003, Vo and Ma,

2005, Vo et al., 2006), which propagates the first moment measure of the

hidden point process to track both the positions and unknown number of

targets, and their implementations through sequential Monte Carlo (SMC)

type algorithms (Mahler, 2007a, Vo et al., 2003, 2005, Whiteley et al., 2010).

All of these methods allow for the spatial tracking of hundreds of objects

across time and have been used in many radar/sonar tracking, navigation

and computer vision applications (Bar-Shalom et al., 2001, Maggio et al.,

2008). Furthermore, estimation of the static parameters of the model in these

approaches has been made possible through, for example, sequential Monte

Carlo approximations of the marginal likelihood (Whiteley et al., 2009), an

online Expectation-Maximisation (EM) algorithm (Yıldırım et al., 2015), or

a reversible-jump MCMC sampler (Jiang et al., 2015). For instance, the

MCMC approach mentioned here is designed to jointly sample target num-

bers, locations and the static parameters of the model, and do so by designing

a likelihood function which incorporates a data association variable between

measurements and objects. Common to all these methods, however, is the

assumption that targets are dynamic across time, an assumption that is vi-

olated in the case of fluorescence imaging of stationary fluorophores. While

methods for estimating the number of molecules and their spatial locations

could still be applied using the above methods, one would need to take extra

precautions during implementation. For example, in the case of the sequen-

tial Monte Carlo filter of Vo et al. (2003), the static nature of the molecules

is likely to lead to particle degeneracy, therefore requiring additional pro-

cedures to ensure the validity of the resulting estimates. Nevertheless, the

methods described here are attractive due to their temporal incorporation

and we thus look to formulate a model, specific to this application, which

rests on similar principles. To the best of our knowledge, inference of de-

tected points which so heavily rely on the temporal nature at which they

occur has not been studied for this application.
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4.1.1 Chapter summary

Motivated by the work of Mahler (2007b), we will in this chapter formally de-

rive a suitable spatio-temporal model for fluorophores imaged in fluorescence

microscopy, that is based upon point process theory. We therefore begin in

Section 4.2 by mathematically defining the notion of (simple) finite point

processes or random finite sets and define their probability density function

with respect to a commonly used reference measure. In Section 4.3, we then

formally characterise the time varying model that unifies the true spatial po-

sitions of fluorophores and the offspring observations that are made at each

time frame. Here, we will show that a single photo-switching fluorophore

can be regarded as an element of a pure birth spatial parent point process

of molecular positions. Through this setting, its probability of detection and

birth in a given frame can be derived, and are observed to be determinis-

tic functions of the unknown photo-switching parameter θ(d). Furthermore,

some asymptotic results regarding detections and births are also given. By

placing a suitable prior distribution on the number of total fluorophores im-

aged in an experiment, a prior distribution of true molecular positions is then

retrieved. From this, the full Bayes filter appropriate to this model is subse-

quently derived. In Section 4.4, we discuss how an MCMC algorithm, which

we adapt to this problem, can be used to infer the parent point process and

its associated photo-switching parameter vector θ(d). We will then define the

Deviance Information Criterion (DIC) and illustrate how, using the outputs

of MCMC simulations, it can be used as a model selection tool to pick the

most likely number of molecules M and multiple dark states d. In Section

4.5, three simulation studies will be provided to demonstrate the validity of

this method. Finally, in Section 4.6, we will apply this MCMC approach on

a real dataset consisting of Alexa Fluor 488 molecules.

4.2 Random finite sets

In this section, we will begin by giving a mathematical definition of a ran-

dom finite set (RFS) and describe the notion of a probability density of an
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RFS with respect to a non-Lebesgue reference measure. Through an ex-

ample which gives the probability density of an independent and identically

distributed cluster process, we will study the well known spatial Poisson pro-

cess. We then briefly describe a convolution theorem for random sets which

is shown to be useful in analysing the superposition property of independent

Poisson processes.

A random finite set (RFS) or a simple-finite point process C on C ⊂ Rn is a

random variable that takes values in the space of finite subsets of C, denoted

F(C). In each of these subsets, the number of points in the set is random and

the points themselves are distinct∗, random and unordered. An RFS C is

therefore specified by a discrete random variable NC on Z≥0 with probability

mass function pNC (·) which determines the number of points in C, and a

probability distribution pC|nC (·) on the product space CnC = C × · · · × C, for

nC ∈ Z>0, which determines the joint spatial distribution of the points given

that there are NC = nC points in the set C (Daley and Vere-Jones, 1998,

Stoyan et al., 1987, Mahler, 2007b).

Definition 6. A random finite set (RFS) or a simple-finite point process C

on C ⊂ Rn is a measurable mapping

C : Ω→ F(C),

from a sample space Ω to the space of finite subsets F(C).

Formally, an RFS as defined in Definition 6 is a measurable mapping from

a sample space Ω to F(C). Here, Ω is equipped with a probability measure

P defined on a σ-algebra of events σ(Ω). Intuitively, this means that any

probability distribution P of the RFS C can be written as the probability

measure of its pre-image in the sample space Ω, i.e that P = P(C−1). A

more formal definition is stated in Definition 7.

Definition 7. Let C be an RFS on C ⊂ Rn. The probability distribution of

C on C is the probability measure P on F(C), the space of finite subsets of

∗This is equivalent to a finite point process C being simple.
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C, defined as

P (B) = P({C ∈ B}) := P({ω ∈ Ω|C(ω) ∈ B}),

for any Borel measurable subset B ⊆ F(C).

For a more comprehensive overview on point processes, including a detailed

introduction to its measure theoretic formulation, the interested reader is

directed to Daley and Vere-Jones (1998), Stoyan et al. (1987).

4.2.1 Probability density function

Defining the probability density of an RFS is highly non-trivial since F(C)
does not inherit the standard (Euclidean) notion of a density defined on Rn.

However, by utilising a suitable choice of reference measure, we can firstly

define the notion of a set integral and finally the probability density function

of an RFS, which can be shown to be mathematically consistent with that

of a usual probability density.

A measure µ̄ on C is defined as the relative size of subsets of C and can be

described as a countably additive function µ̄ : A→ [0,∞], for any A ⊆ C. In

RFS and point process theory, the conventional choice of reference measure

(Vo et al., 2005, Mahler, 2007b) is given by

µ̄(T ) =
∞∑
i=0

λiL(χ−1(T ) ∩ Ci)
i!

, (4.1)

defined for any subset T ⊆ F(C). Here, Ci is the ith Cartesian product

of C such that C0 := {∅}, λiL is the ith product unitless Lebesgue measure

on Ci and χ : ]∞i=0Ci → F(C) is a mapping from vectors to sets such that

χ([c1, . . . , ci]
>) = {cj : j = 1, . . . , i}, defined for any (distinct) c1, . . . ci ∈ C.

This choice of reference measure is analogous to the Lebesgue measure on C
and therefore allows the definition of a set integral of a function f : F(C)→
R, as is provided in Definition 8.
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Definition 8 (Mahler (2007b, 2003)). The integral of a non-negative func-

tion f : F(C) → [0,∞) over all T ⊆ F(C) with respect to the reference

measure µ̄ defined in (4.1) is given by∫
T
f(C)µ̄(dC) =

∞∑
i=0

1

i!

∫
χ−1(T )∩Ci

f({c1, . . . , ci})λiL(dc1 . . . dci).

It now follows that the set integral of f over a closed subset A ⊆ C is∫
A

f(C)δC =
∞∑
i=0

1

i!

∫
Ai
f({c1, . . . , ci})λiL(dc1 . . . dci),

noting that the two integrals are related via∫
A

f(C)δC =

∫
U
f(C)µ̄(dC),

with U = ∪∞i=0A
i.

By defining the notion of a set integral with respect to the reference measure

µ̄, we are able to now define the probability density function fC(C) of an RFS

C on C. Technically, fC(C) (if it exists) is defined as the Radon-Nikodým

derivative† of the probability distribution P with respect to the reference

measure µ̄ and can be written as

fC(C) =
dP

dµ̄
⇐⇒ P (T ) = P({C ∈ T }) =

∫
T
fC(C ′)µ̄(dC ′),

for any T ⊆ F(C). To ensure the existence of fC(C), it is implicitly assumed

here that P (·) is absolutely continuous with respect to µ̄.

Example 3 (Independently, identically distributed cluster processes (Mahler,

2007b)). Let NC be a discrete random variable on Z≥0 with distribution

pNC (n) := P(NC = n) and let f(c) be a probability density function on some

†The Radon-Nikodým Theorem (Mahler, 2007b, Vo et al., 2005) states that given two
σ-finite measures µ̄1 and µ̄2 on F(C) whereby µ̄2 is absolutely continuous with respect
to µ̄1, there exists a function g : F(C) → [0,∞) such that for all T ⊆ F(C), µ̄1(T ) =
0 =⇒ µ̄2(T ) = 0 if and only if µ̄2(T ) =

∫
T g(C ′)µ̄1(dC ′). Here g = dµ̄2

dµ̄1
is known as the

Radon-Nikodým derivative or the density of µ̄2 with respect to µ̄1.
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bounded set C. For any C = {c1, . . . , cn}, with |C| = n, the density function

of C is defined to be

fC(C) := n!pNC (n)
∏
c∈C

f(c), (4.2)

where it is easily seen that the set integral over C is∫
C
fC(C)δC = pNC (0) +

∞∑
n=1

pNC (n)

∫
Cn
f(c1) . . . f(cn) dc1 . . . dcn

=
∞∑
n=0

pNC (n)

= 1.

Remark 8. For some γ > 0, letting NC ∼ Poi(γ) enables pNC (n) = e−γγn

n!
.

In this case

fC(C) = e−γ
∏
c∈C

γf(c)︸ ︷︷ ︸
v(c)

, (4.3)

for some spatial density f(c) on C. When f(c) ∝ 1 (uniform), C is known

as the (homogeneous) Poisson RFS. Moreover, the function v(c) = γf(c) is

known as the intensity function of C and is such that

E(|C ∩ A|) =

∫
A

v(c)dc,

gives the expected number of points in the RFS C that are in the region A ⊆ C.

Taken directly from Mahler (2007b), Example 3 defines the probability den-

sity function of an independent and identically distributed (iid) cluster pro-

cess C on C, which (analogously to densities defined on the Euclidean space)

integrates to unity over its domain. This kind of process is uniquely charac-

terised by a random variable NC which describes the cardinality of its points,

and f(c) (a probability density on C) which defines their spatial distributions.

Importantly, we see from Remark 8 that the well known Poisson RFS is an

example of an iid cluster process with a Poisson cardinality distribution. Fur-

148



thermore, it is uniquely characterised by its intensity function v(c) (given in

(4.3)), which describes the expected number of points per unit volume on C.

An interesting property of the Poisson RFS, and one which we will utilise in

the next section, is that the superposition of two independent Poisson pro-

cesses defined on the same space C is also a Poisson RFS‡. This is shown

in Example 4, and relies on Theorem 6, the Fundamental Theorem of Con-

volution (Mahler, 2007b) for random finite sets. This theorem is useful in

providing an explicit expression for the probability density of an RFS which

is formed by superposition.

Theorem 6 (Fundamental Theorem of Convolution (Mahler, 2007b)). Let

C = ∪ni=1Ci, where C1, . . . , Cn are statistically independent random sets on C.

The probability density of C is related to the probability densities of C1, . . . , Cn

via

fC(C) =
∑

W1]···]Wn=C

fC1(W1) . . . fCn(Wn),

where the summation is taken over all mutually disjoint subsets W1, . . . ,Wn

of C such that ∪ni=1Wi = C.

Example 4. Let C1 and C2 be two independent Poisson random finite sets

on C with intensity functions v1(c) = γ1f(c) and v2(c) = γ2f(c). By the

fundamental theorem of convolution, the probability distribution of C = C1 ∪
‡This result can be inductively extended to hold for the superposition of a countable

number of Poisson processes.
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C2 follows

fC(C) =
∑

W⊆C1∪C2

fC1(W )fC2(C1 ∪ C2 \W )

=
∑

W⊆C1∪C2

e−(γ1+γ2)

[
γ
|W |
1

∏
c∈W

f(c)

]γ|C1∪C2\W |
2

∏
c∈C1∪C2\W

f(c)


= e−(γ1+γ2)

∏
c∈C1∪C2

f(c)
∑

W⊆C1∪C2

γ
|W |
1 γ

|C1∪C2\W |
2

= e−(γ1+γ2)
∏

c∈C1∪C2

f(c)

|C1∪C2|∑
k=0

(
|C1 ∪ C2|

k

)
γk1γ

|C1∪C2|−k
2

= e−(γ1+γ2)(γ1 + γ2)|C1∪C2|
∏

c∈C1∪C2

f(c)

= e−(γ1+γ2)
∏
c∈C

(γ1 + γ2)f(c),

which is recognised as the probability density of a Poisson RFS with intensity

function v(c) = (γ1 + γ2)f(c).

4.3 Spatio-temporal model of a fluorophore

In this section, we define a spatio-temporal model suitable for fluorophores

that are imaged under general experimental conditions. Here, we formu-

late the true positions of molecules as elements of an unobserved parent

RFS which produces offspring observation sets collected at each time frame.

From this, we derive the time variant birth and detection probabilities of

fluorophores that are needed to characterise the parent and offspring RFS

densities, and highlight its asymptotic properties. These densities are subse-

quently used in the derivation of the full Bayes filter under this model.

In the most general case, an experiment can give rise to an unknown initial

probability mass ν∗X . Due to the stochastic nature of {X(t)}, fluorophores

that are imaged under such experimental conditions may therefore take a

non-zero amount of time to first reach the On state 1, and that this time will

vary between molecules. Although the set-up of {Yn} implies that reaching
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the On state is not sufficient for the detection of a molecule, once a molecule

has reached this state, it is activated as part of the underlying molecular con-

figuration. This procedure therefore induces a pure spatio-temporal (hidden)

birth process of true molecular positions, as new fluorophores are detected

over time.

Specifically, suppose at time n there are K(n) := |Cn| fluorophores that have

already reached their photon-emission states, where Cn = {cn,1, . . . , cn,K(n)}
and each parent c ∈ C denotes the true position of a fluorophore that is

present in the RFS Cn. Here, we assume that imaging occurs on some

bounded region C ⊂ R2. When NF frames are imaged during an experi-

ment, at every time n = 1, ..., NF , a set of offspring measurements Zn =

{zn,1, . . . , zn,M(n)} are recorded. This is said to mean that |Zn| =: M(n) ∈
Z≥0 distinct vectors {zi}M(n)

i=1 , with each z ∈ C are collected in frame n. We

define Zn to be the multi-target measurement formed by the K(n) present

fluorophores and false positive observations (background noise).

A suitable model we choose to place is therefore given by

C1 = B1 ∪B0

Cn = Cn−1 ∪Bn n > 1 (4.4)

Zn = Φ(Cn) ∪ An n ≥ 1, (4.5)

where Cn denotes the hidden parent RFS and Zn denotes the observed RFS.

In particular, Bn denotes the independent birth RFS of fluorophores “born”

in frame n, with B0 denoting the RFS of fluorophores activated before imag-

ing begins. Moreover, Φ(Cn) denotes the RFS of primary target generated

measurements and An independently denotes the RFS of false positive mea-

surements. An illustration of this model over three frames is shown in Figure

4.3, which compares the hidden RFS C1, C2 and C3 with their observation

counterparts Z1, Z2 and Z3.

In order to statistically characterise the RFS densities of Zn and Cn, we

must first derive the detection and birth probabilities of a single fluorophore

in each frame n. Specifically, the detection probabilities are needed to for-

mulate the likelihood function for Zn, and the birth probabilities determine
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1

2

3

n

Cn Zn

Figure 4.3: An illustration of the RFS Cn compared with the RFS Zn against time n. Left:
C1 = B1 ∪ B0 (with B0 = ∅) is plotted in red at time n = 1, C2 = C1 ∪ B2 is plotted
with B2 in cyan at time n = 2 and C3 = C2 ∪ B3 is plotted with B3 in magenta at time
n = 2. Right: Observation sets Z1, Z2, Z3 are shown, with false positive observations plotted
in blue.

the cardinality distribution of births occurring in each frame.

4.3.1 Probability of detection

For a single fluorophore, we define its detection probability in frame n as

pD,n(θ(d)) = Pθ(d)(Yn = 1).

Proposition 7. The probability of detection pD,n(θ(d)) of a single fluorophore

at frame n ∈ Z>0 is given by

pD,n(θ(d)) = ν>XeG(n−1)∆B
(1)
∆ 1d+3, (4.6)

152



where G denotes the Markovian generator of {X(t)} given in (1.1), and where

eG∆ = B
(0)
∆ +B

(1)
∆ denotes its transition probability matrix over time instance

∆.

Proof. For any n ∈ Z>0, we have

pD,n(θ(d)) =
∑

i1,j∈SX

Pθ(d)(X(n∆) = j, Yn = 1|X((n− 1)∆) = i1)

× Pθ(d)(X((n− 1)∆) = i1)

=
∑

i1,...in,j
∈SX

b
(1)
i1j,∆

(
n−1∏
l=1

Pθ(d)(X(∆) = il|X(0) = il+1)

)
Pθ(d)(X(0) = in),

where the notational convention
∏
∅ := 1 is used for the case n = 1.

Proposition 7 gives the form of the detection probability for any n > 0, which

is seen as a function of the photo-switching parameters θ(d). Furthermore,

Figure 4.4a shows how pD,n(θ(d)) decays over time and is in general non

constant. In particular, Remark 9 proves that this probability under any

photo-switching model Md
A, A ⊆ SX tends to a deterministic constant.

Remark 9. Using (4.6), we see that asymptotically

lim
n→∞

pD,n(θ(d)) = lim
n→∞

ν>XeG(n−1)∆B
(1)
∆ 1d+3 = π>XB

(1)
∆ 1d+3,

where πX is the stationary distribution of {X(t)}. When the photo-bleaching

state 2 is not included in the model, i.e. under model Md
∅, the irreducibility

of {X(t)} on SX implies that πX is the unique solution of π>XG = 0 and

π>X1d+2 = 1. When the photo-bleaching state is included: πX = ed+3
d+3, the

(d+ 3)th canonical (standard) basis vector of Rd+3, which, given the form of

B
(1)
∆ in (1.4), implies that limn→∞ pD,n(θ(d)) = 0, for all θ(d) ∈ Θ(d). Under

any model, we therefore see that pD,n(θ(d)) tends to a deterministic constant.
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4.3.2 Number of births

We will now introduce the notion of the birth probability. Intuitively, the

probability that a fluorophore is “born” in frame n represents the fact that

its hidden Markovian signal {X(t)} reaches the photon-emission On state 1

for the first time, and that this first passage time lies within the time interval

[(n − 1)∆, n∆). Specifically, at every time instance n ∈ Z>0, we define the

birth probability of a single molecule to be

pB,n(θ(d)) =Pθ(d)(There exists t ∈ [(n− 1)∆, n∆) : X(t) = 1, X(s) 6= 1

for all s ∈ [−T ∗, (n− 1)∆))

=Pθ(d),δ=0(Yn = 1, Yn−1 = 0, . . . , Y1 = 0, X(s) 6= 1 for all s ∈ [−T ∗, 0))

≡Pθ(d),δ=0(Yn = 1, Y1:n−1 = 0, X(s) 6= 1 for all s ∈ [−T ∗, 0)),

where we use the notational convention that {Y1:n−1 = 0} := {Y1 = 0, Y2 =

0, . . . , Yn−1 = 0}. Here, we shall remind the reader that an experiment is

defined to begin at time −T ∗; that is to say, the Markov process {X(t)}
associated with each molecule is initialised at this time. While molecules

are not observed in the time interval [−T ∗, 0) (see Remark 1 of Chapter 1),

the signals generated by {X(t)} may activate fluorophores into the On state

within this period. Proposition 8 proves that the form of pB,n(θ(d)) therefore

relies now on the probability mass ν∗X of {X(−T ∗)} (see Remark 2 of Chapter

1) and the transmission matrices B
(0)
T ∗,δ=0, B

(0)
∆,δ=0 and B

(1)
∆,δ=0, which can be

readily computed using the same methodology as is presented in Section

1.3.1, setting δ = 0. We further note that the birth of a fluorophore does not

necessarily mean it is detected in that frame, with its detection probability

given in (4.6).

Proposition 8. The birth probability pB,n(θ(d)) of a single fluorophore at

frame n ∈ Z>0 is given by

pB,n(θ(d)) = ν∗>X (B
(0)
T ∗,δ=0)(B

(0)
∆,δ=0)n−1B

(1)
∆,δ=01d+3, (4.7)

where B
(0)
∆,δ=0 and B

(1)
∆,δ=0 denote the two transmission matrices computed

when δ = 0. Moreover, the probability pB,0(θ(d)) that a molecule is activated
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before imaging begins is given by

pB,n(θ(d)) = ν∗>X B
(1)
T ∗,δ=01d+3. (4.8)

Proof. For each i, j ∈ SX , l ∈ {0, 1} and t > 0, define the transmission

probabilities under the noiseless system as b
(l)
ij,t,δ=0 = Pθ(d)(X(t) = j, Y0 =

l|X(0) = i, δ = 0). Then

pB,n(θ(d)) =
∑

j,i1∈SX

b
(1)
i1j,∆,δ=0Pθ(d),δ=0(X((n− 1)∆) = i1|Y1:n−1 = 0)

× Pθ(d),δ=0(Y1:n−1 = 0, X(s) 6= 1 ∀s ∈ [−T ∗, 0))

=
∑

j,i1,i2∈SX

b
(1)
i1j,∆,δ=0b

(0)
i2i1,∆,δ=0Pθ(d),δ=0(X((n− 2)∆) = i2|Y1:n−2 = 0)

× Pθ(d),δ=0(Y1:n−2 = 0, X(s) 6= 1 ∀s ∈ [−T ∗, 0))

=
∑

i1,...in+1,j
∈SX

b
(1)
i1j,∆,δ=0

(
n−1∏
l=1

b
(0)
il+1il,∆,δ=0

)
b

(0)
in+1in,T ∗,δ=0Pθ(d)(X(−T ∗) = in+1),

where the notational convention
∏
∅ := 1 is used for the case n = 1. By

using similar arguments, the probability that {X(t)} with initial probability

mass ν∗X , first reaches the photon emission state within the time [−T ∗, 0) is

simply ν>XB
(1)
T ∗,δ=01d+3.

Proposition 9 shows that for any model placed on the photo-switching be-

haviour of the fluorophores, the birth probability pB,n(θ(d))→ 0 as n→∞,

and so we will see a decrease in the number of births. Figure 4.4b specifically

shows how this birth probability decays over time.

Proposition 9. For any θ(d) ∈ Θ(d) and ∆ > 0,

lim
n→∞

pB,n(θ(d)) = 0.

Proof. See Section 4.A of Appendix 4.

The birth probabilities are useful in determining the average number of births

in any given frame. In particular, if M (total number of independently
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imaged molecules) is known prior to the experiment, then the number of

births at frame n, which will herein be referred to as NB,n, clearly satisfies

NB,n ∼ Bin(M, pB,n(θ(d))) with expected value MpB,n(θ(d)). In most mi-

croscopy experiments however, M is unknown. Since each fluorophore will

generate an independent set of spatial measurements (which frequently over-

lap between molecules) until the end of the experiment is reached, there is

only partial information available of M and as such a suitable prior distri-

bution must be invoked for proper inference.

For this problem, we deem a Poisson prior on M , namely that M ∼ Poi(λM),

suitable over the observation window. Here, λM is an appropriate parameter

characterising the number of molecules expected to be imaged prior to the

experiment. By Remark 10, this choice of prior enables NB,n to be Poisson

distributed with mean parameter λMpB,n(θ(d)) and therefore motivates our

choice of placing a Poisson prior distribution on the RFS Bn.

Remark 10. Using NB,n|M ∼ Bin(M, pB,n(θ(d))) and M ∼ Poi(λM), we

have E(sNB,n) = EM(ENB,n|M (sNB,n|M)) = EM((1−pB,n(θ(d))+pB,n(θ(d))s)M)

= exp(−λMpB,n(θ(d))(1 − s)), which is recognised as the pgf of a Poisson

random variable with rate parameter λMpB,n(θ(d)). Hence

NB,n ∼ Poi(λMpB,n(θ(d))).

Remark 11. Since NB,n ∼ Poi(λMpB,n(θ(d))) from Remark 10, we have for

any ε > 0 that P(NB,n > ε) ≤ 1−e−λMpB,n(θ(d)) → 0 as n→∞ by Proposition

9, so the sequence of random variables {NB,n} → 0 in probability (and hence

in distribution). In particular, NB,n converges to the degenerate distribution

centred at 0.
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(a) Probability of a detection over an experi-
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Figure 4.4: Plots showing how the probability of detection of a single fluorophore (left)
and the the number of births in a single frame (right) changes over the course of the ex-
periment. Blue shows the simulated (empirical) estimates and orange shows the true prob-
abilities (calculated directly). Simulations carried out under model M1

{1} whereby T ∗ = 0,

ν∗01
= ν01

= 1, ∆ = 1
30 s, δ = 10−3s and α = 0; rates chosen are λ001

= 0.35s−1,
λ01 = 1s−1, λ011 = 0.3s−1, λ10 = 2.3s−1, µ1 = 0.05s−1.

Specifically, both the birth RFS Bn and RFS for false positives are assumed

to be apriori Poisson distributed, with respective spatial densities (see (4.3)

in Remark 8) fBn(C ′) and fAn(C ′) defined for any C ′ ⊆ C. By the above, Bn

is modelled to have cardinality distribution NBn ∼ Poi(λMpB,n(θ(d))) where

pB,n(θ(d)) as is given in (4.7) denotes the birth probability of a fluorophore

(switching between d+ 1 dark states) at time step n. Moreover, An is mod-

elled to have cardinality distribution NAn ∼ Poi(α), where α is the unknown

average number of false positive observations produced in a single frame. In

this manner, the spatial densities (with respect to the reference measure in

(4.1)), take the form

fBn(C ′) = e−λMpBn (θ(d))
∏
c∈C′

λMpBn(θ(d))b(c)

fAn(C ′) = e−α
∏
c∈C′

αa(c) n ≥ 1,

where b(c), a(c) denote the spatial distributions of births and false posi-

tives, respectively. In particular, these densities must satisfy
∫
C b(c) dc =∫

C a(c) dc = 1.

Since false positives are likely to occur uniformly over C, we choose a(c) =
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1
λL(C) . Furthermore, since in most imaging applications, the spatial structures

of cells are not known apriori, we also choose b(c) = 1
λL(C) to account for this

uncertainty. It is important to note that this distribution can be suitably

adjusted in experiments where one may have a better insight into b(c). This

choice of prior distribution on the birth point processes further informs us of

the prior distribution of the RFS Cn. Specifically, by Equation (4.4) of the

model, Cn can be written as Cn = ∪ni=0Bi. Since the birth processes {Bi}ni=0

are statistically independent on C, we observe (through an application of

Example 4) that under any choice of b(c), Cn is apriori Poisson distributed

with intensity function v(c) = λM
∑n

i=0 pBi(θ
(d))b(c) for any c ∈ C.

In order to specify the function Φ(Cn) of Zn, we note that each fluorophore

or parent c ∈ Cn generates an offspring z ∈ Φ(Cn) such that z = ∅ with

probability 1− pD,n(θ(d)) or is a variate from the density f(z∗|c) otherwise.

Here, pD,n(θ(d)) denotes the detection probability of a parent in frame n (as

is given in (4.6)) and

f(z∗|c) ∝ exp

(
− 1

2σ2
z∗

(z∗ − c)>(z∗ − c)

)
denotes the likelihood that offspring point z∗ is generated from parent c. As

is common in fluorescence microscopy experiments, the localisation standard

deviation σz∗ can be measured from the localisation algorithm used, and is

therefore assumed to be known for each observation z ∈ Zn.

4.3.3 Derivation of the Bayes filter

From Remark 11, one can see that Bn → {∅} in probability and thus that

fBn(C)
D→

1 if C = ∅

0 otherwise,

where the limit denotes convergence in distribution. By defining the limiting

RFS C∗ := limn→∞Cn, which is interpreted as the implicit point pattern

configuration of the parents, the true configuration of C∗ can thereby be
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updated through time. Specifically, for any n ∈ Z>0, we wish to infer upon

the parent RFS Cn (with its cardinality), and posterior estimates for

θ(d)
α := ((θ(d))> α)> ∈ Θ(d)

α := Θ(d) × (0,∞)

under a photo-switching model with d+ 1 dark states, given all observations

Z(n) := ∪ni=1Zi through the Bayes-updated density

f
Cn,Θ

(d)
α |Z(n)(Cn,θ

(d)
α |Z(n)) ∝

f
Zn|Cn,Θ(d)

α
(Zn|Cn,θ(d)

α )f
Cn|Z(n−1),Θ

(d)
α

(Cn|Z(n−1),θ(d)
α )π(θ(d)

α ). (4.9)

Here, π(θ(d)
α ) denotes a suitable prior probability density for θ(d)

α .

Equation (4.9) can be computed by first using the multi-target likelihood as

described in Mahler (2007b) by

f
Zn|Cn,Θ(d)

α
(Zn|Cn,θ(d)

α ) =

(1− pD,n(θ(d)))|Cn|fAn(Zn)
∑
φ

∏
i:φ(i)>0

pD,n(θ(d))f(zφ(i)|ci)µ(S)

α(1− pD,n(θ(d)))
, (4.10)

where the sum is taken over all mappings φ : {1, . . . , |Cn|} → {0, 1, . . . , |Zn|},
whereby φ(i) = φ(i′) > 0 =⇒ i = i′. It should be noted here that when

|Zn| = 0, no observations are collected and the likelihood is therefore reduced

to f
Zn|Cn,Θ(d)

α
(∅|Cn,θ(d)

α ) = e−α(1− pD,n(θ(d)))|Cn|.

We can additionally show that up to a proportionality constant, the density

f
Cn|Z(n−1),Θ

(d)
α

(Cn|Z(n−1),θ(d)
α ) takes the form in (4.11) as is stated in Propo-

sition 10.

Proposition 10. For any n ∈ Z>1, the density f
Cn|Z(n−1),Θ

(d)
α

(Cn|Z(n−1),θ(d)
α )

is proportional to the function∑
Wn⊆Cn

∑
Wn−1⊆Wn

. . .
∑

W1⊆W2

fBn(Cn \Wn)fB0(W1) ×[
n−1∏
i=1

fBi(Wi+1 \Wi)fZi|Cn,Θ(d)
α

(Zi|Wi+1,θ
(d)
α )

]
. (4.11)
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Proof. For every n ∈ Z>1, we can write {Cn|Z(n−1),θ(d)
α } = {Cn−1|Z(n−1),θ(d)

α }∪
{Bn}, where the point processes {Cn−1|Z(n−1),θ(d)

α } and {Bn} are indepen-

dent by model construction.

By Theorem 6, we have for all n > 1 that

f
Cn|Z(n−1),Θ

(d)
α

(Cn|Z(n−1),θ(d)
α ) ∝∑

W⊆Cn

f
Cn−1|Z(n−1),Θ

(d)
α

(W |Z(n−1),θ(d)
α )fBn(Cn \W ), (4.12)

where the sum is taken over all subsets W of Cn.

Since fB0∪B1(C1) characterises the distribution of C1, we have

f
C1|Z(1),Θ

(d)
α

(C1|Z1,θ
(d)
α ) ∝ f

Z1|C1,Θ
(d)
α

(Z1|C1,θ
(d)
α )fB0∪B1(C1)

∝ f
Z1|C1,Θ

(d)
α

(Z1|C1,θ
(d)
α )

∑
W⊆C1

fB0(W1)fB1(C1 \W ).

Using this as an initialisation for (4.12), coupled with the Bayes update rule

given in (4.9), yields the desired result.

Remark 12. When ν∗1 = 1, as is the case in (d)STORM experiments (see

Remark 2), all fluorophores have been activated prior to imaging. In this

situation, we therefore have that pB,0(θ(d)) = 1 and pB,n(θ(d)) = 0 for all

n ≥ 1, enabling C∗ = C1. Moreover, the birth densities in (4.11) are only

non-zero when each Wi is chosen to be Cn, and f
Cn|Z(n),Θ

(d)
α

(Cn|Z(n),θ(d)
α )

reduces to

f
Cn|Z(n),Θ

(d)
α

(Cn|Z(n),θ(d)
α ) ∝

(
e−λM

∏
c∈Cn

λMb(c)

)
n∏
i=1

f
Zi|Cn,Θ

(d)
α

(Zi|Cn,θ(d)
α ).

(4.13)

4.3.4 Limitations

While the full Bayes filter for this problem has been derived, we should

highlight that the likelihood in (4.10) requires computations of all unique
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combinations of the set {1, . . . ,M} that have cardinality smaller than or

equal to the size of the observation set. This is therefore only computationally

feasible to compute when the number of molecules M is small, or when the

cardinality of the observation set is small. Furthermore, while Remark 12

highlights a more computationally feasible density that can be implemented

when all births of molecules have occurred in the first time step, the full

density in (4.11) is observed to being even more restrictive on M , requiring

multiple computations of power sets. In any case, this filter heavily limits

the number of molecules that can be analysed at once.

4.4 Inference

In this section, we describe how a Metropolis-within-Gibbs MCMC sampler

can be used to infer the unknown parameters CNF and θ(d)
α from the posterior

density

f
CNF ,Θ

(d)
α |Z(NF )(CNF ,θ

(d)
α |Z(NF )).

While there are many different variations of MCMC algorithms which can be

implemented to sample from the intended target distribution, we construct

a sampler that relies on a transformation of the parameter vector θ(d)
α and

which is found to perform well for this problem. We subsequently describe

the specific steps of this sampler and discuss how posterior samples of CNF
and θ(d)

α obtained from this algorithm can be used for parameter estimation

and model selection.

In the previous section, specifically in Equation (4.9), we derived the con-

ditional density f
Cn,Θ

(d)
α |Z(n)(Cn,θ

(d)
α |Z(n)) for any n ≥ 1. Using this, we

now wish to perform inference on CNF and θ(d) given all observation sets

Z(NF ) collected during an experiment consisting of NF frames. Since in-

ference of point processes and their parameters is typically done through

Markov Chain Monte Carlo (MCMC) (Geyer and Møller, 1994, Møller and

Waagepetersen, 2003), we choose to implement a suitable Metropolis-within-

Gibbs (MwG) MCMC algorithm that targets CNF and θ(d) from their joint

posterior distribution via continual sampling from the conditional distri-
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butions f
Cn|Θ(d)

α ,Z(n)(Cn|θ(d)
α , Z(n)) and f

Θ
(d)
α |Cn,Z(n)(θ

(d)
α |Cn, Z(n)) through two

Metropolis-Hastings kernels.

In Møller and Waagepetersen (2003), the authors describe two Metropolis-

Hastings type algorithms which can be implemented to sample from unnor-

malised point processes with a known density, as is the case for CNF here.

The first, called the fixed number of points Metropolis-Hastings sampler (Al-

gorithm 7.1 of Møller and Waagepetersen (2003)) can sample locations of the

point process of a fixed cardinality. The second, called the birth-death-move

Metropolis-Hastings sampler (Algorithm 7.5 of Møller and Waagepetersen

(2003)) is a special type of the well known reversible jump MCMC (Green,

1995) algorithm which can be implemented to jointly sample both the loca-

tions and the cardinality of the process. The latter therefore also produces a

(posterior) distribution over the unknown number of points the process has.

The ergodicity and irreducibility properties of the resulting chains are also

proved in this reference.

For our problem, we have chosen to use the fixed number of points Metropolis-

Hastings algorithm to update cluster centres CNF from the conditional den-

sity f
Cn|Θ(d)

α ,Z(n)(Cn|θ(d)
α , Z(n)). This sampler is chosen for two reasons. Firstly,

the form of the posterior density inhibits computations for large M , which

will affect the irreducibility of a chain constructed by the birth-death-move

algorithm. Secondly, the posterior distribution of θ(d) is seen to be non-

nested between models with differing cardinalities M and d. This is said to

mean that the resulting posterior distribution of θ(d) is not invariant to M .

This is not surprising however, since for a fixed dataset Z(NF ), the detection

and birth probabilities are likely to vary between models of varying dimen-

sion. For this reason, constructing efficient jump proposals within the same

MCMC chain is also difficult.

Sampling the unknown parameters of the model θ(d) from the conditional

density f
Θ

(d)
α |Cn,Z(n)(θ

(d)
α |Cn, Z(n)), can be done through an application of the

standard Metropolis-Hastings sampler. Although updating the parent pro-

cess CNF through the fixed number of points MCMC sampler is not seen

to be problematic, we found that implementing a Metropolis-Hastings al-

gorithm which updates parameters in θ(d)
α independently resulted in poor
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mixing of the chain. Poor mixing was observed due to two main reasons.

Firstly, the target space Θ
(d)
α is restricted, in that parameters can only take

values on some smaller subset of the real hyper-plane. This makes it difficult

to construct efficient proposals from distributions living in the same space.

Secondly, the parameters in θ(d) appear in the model through the birth and

detection probabilities, and are therefore subject to time induced correla-

tions. The correlation analysis of photo-switching parameters presented in

Chapter 2 also supports this observation. To this end, we decide to im-

plement a sampler which utilises a bijective transformation that maps the

parameter vector θ(d)
α to the real valued hyper-plane. The inherent correla-

tion structure between transformed parameters can then be exploited by an

application of the Adaptive Metropolis (AM) algorithm detailed in Haario

et al. (2001). This algorithm constructs new proposals using the empiri-

cal covariance of previously accepted samples. A further description of this

sampler, including a proof detailing its ergodicity, can also be found in this

reference.

The MwG MCMC algorithm we use here will therefore use the fixed number

of points Metropolis-Hastings algorithm to shift the locations of a given num-

ber ofM centres in CNF from the density f
CNF |Z

(NF ),Θ
(d)
α

(CNF |Z(NF ),θ(d)
α ,M) ∝

f
ZNF |CNF ,Θ

(d)
α

(ZNF |CNF ,θ
(d)
α ,M)f

CNF |Z
(NF−1),Θ

(d)
α

(CNF |Z(NF−1),θ(d)
α ,M),

(4.14)

which can be evaluated (up to a proportionality constant) from (4.10) and

(4.11). Further, it will also update θ(d) from (4.9) given a photo-switching

model of the form Md
A, where A ⊆ SX denotes the set of states in SX

from which the photo-bleaching state 2 is accessible. Multiple chains will

therefore be created over different models, resulting in the application of

a model selection criterion to pick the most suitable model from a range

of given proposals. For this problem, we have chosen to use the Deviance

Information Criterion (DIC) for our analysis, which can easily be evaluated

using the output of the corresponding MCMC chain.

Before describing the specific update and shift moves that are needed for

implementing this sampler, we first detail the transformation which is used to
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update θ(d) and define a suitable prior distribution for it under this mapping.

Change of variables

Under a model Md
A A ⊆ SX , the parameter vector of interest is θ(d)

α which

takes values in

Θ(d)
α = R2(d+1)+|A|+1

>0 × Sd+3 × [0,∆),

where Sd+3 denotes the simplex of d+ 3 - dimensional probability vectors.

We now endeavour to find a bijective mapping g : Θ
(d)
α → R3(d+2)+|A|. This

not just enables Gaussian proposals to be used for the transformed parame-

ters in the corresponding Metropolis-Hastings step, but is likely to improve

mixing of the resulting chain. We define

θ
′(d)
α := g(θ(d)

α ) =
[
g>1 ([λG α]>) g>2 (ν>X) g3(δ)

]>
,

and is such that its inverse mapping θ(d)
α := g−1(θ

′(d)
α ) is

g−1(·) =
[
g−1>

1 (·) g−1>
2 (·) g−1

3 (·)
]>
.

Firstly, we let [λ
′

G α
′
]> := g1([λG α]>) = log([λG α]>). This implies

that the inverse transformation is defined by [λG α]> = g−1
1 ([λ

′

G α
′
]>) =

exp([λG α]>). Moreover, we choose each photo-switching rate in λG and α

to be apriori log-normally distributed, such that

log
(

[λG α]>
)
∼ N (02(d+1)+|A|+1, I2(d+1)+|A|+1).

The prior distribution of [λ
′

G α
′
]> under this transformation is therefore

given by πg1([λ
′

G α
′
]>) ∝ exp

(
−1

2
[λ
′

G α
′
]>[λ

′

G α
′
]
)
.

Secondly, we let ν
′
X := g2(νX) =

[
log
(
ν0

ν2

)
. . . log

(
ν0d

ν2

)
log
(
ν1

ν2

)]>
with ν2 = 1 −

∑
i∈S̄X νi. The inverse transformation is defined by νX =

g−1
2 (ν

′
X) =

[
e−ν
′
0

1+
∑
i∈S̄X

e−ν
′
i

. . . e
−ν
′
0d

1+
∑
i∈S̄X

e−ν
′
i

e−ν
′
1

1+
∑
i∈S̄X

e−ν
′
i

]>
. Moreover, we
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let νX be prior distributed from a Logistic-Normal distribution with mean

parameter 0d+2 and covariance matrix Id+2. This distribution has probability

density function

π(νX) =
1

(2π)
d+3

2

1∏
i∈SX νi

e
− 1

2
log

(
ν−
X
ν2

)>
log

(
ν−
X
ν2

)
,

where ν−X =
(
ν0 . . . ν0d ν1

)>
. It is known from Atchinson and Shen

(1980) that the distribution of ν
′
X resulting from the transformation g2 fol-

lows g2(νX) ∼ N (0d+2, Id+2), enabling πg2(ν
′
X) ∝ exp

(
−1

2
ν
′>
X ν

′
X

)
.

Finally, we let δ
′
:= g3(δ) = − log

(
∆−δ
δ

)
, with inverse g−1

3 (δ
′
) = ∆

e−δ
′
+1

. Here

we define the prior distribution of δ
′

to be

πg3(δ
′
) =

e−δ
′

(1 + e−δ
′
)2
,

which is equivalent to the untransformed parameter δ ∼ Unif(0,∆).

The components of θ
′(d)
α are chosen to be apriori independent, that is

πg(θ
′(d)
α ) = πg1([λ

′

G α
′
]>)πg2(ν

′

X)πg3(δ
′
), (4.15)

the product of priors of its individual components.

4.4.1 Update moves

We now describe the Metropolis-Hastings step suitable for updating the pa-

rameter vector θ(d)
α . Specifically, let θ̄

(d)
α be the current value of the trans-

formed parameter vector and let C̄ be the current set of parent locations

from the RFS CNF with M centres. A proposal θ
′(d)
α is then generated via

θ
′(d)
α ∼ N (θ̄

(d)
α , Σ̃u),

where Σ̃u ∈ R(3(d+2)+|A|)×(3(d+2)+|A|) is the proposal covariance matrix. For

the first 100 iterations of the sampler, Σ̃u = (0.1)2

(3(d+2)+|A|)I(3(d+2)+|A|). For the
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remaining iterations, Σ̃u = (2.38)2

(3(d+2)+|A|)Σ̂ + 10−3 (0.1)2

(3(d+2)+|A|)I(3(d+2)+|A|), with

Σ̂ being the current empirical estimate of the covariance structure of the

(transformed) parameters θ
′(d)
α .

This proposal is then accepted with probability min(1, hu), where the update

hastings ratio hu follows

hu =
f
CNF |Z

(NF ),Θ
(d)
α

(C̄|Z(NF ), g−1(θ
′(d)
α ),M)πg(θ

′(d)
α )

f
CNF |Z

(NF ),Θ
(d)
α

(C̄|Z(NF ), g−1(θ̄
(d)
α ),M)πg(θ̄

(d)
α )

, (4.16)

and where f
CNF |Z

(NF ),Θ
(d)
α

(C̄|Z(NF ), g−1(·),M) can be evaluated from (4.14).

It should be noted here that since we are generating proposals from the multi-

variate Normal distribution, the proposal densities cancel in the Hastings’

ratio to reach (4.16).

4.4.2 Shift moves

Here, we define the Metropolis-Hastings step which is taken from Møller and

Waagepetersen (2003), suitable for updating cluster centres of the parent

RFS CNF . Let C̄ = {c̄1, x̄2, . . . , c̄M} be the current configuration of the par-

ent RFS with M clusters, and let θ̄
(d)
α be the current value of the transformed

parameter vector. The location of a single cluster in C̄ is now shifted ran-

domly. Specifically, an index I is chosen uniformly from the set {1, 2, . . . ,M}
and

c′ ∼ N (c̄I , Σ̃s)

is sampled. Here, Σ̃s ∈ R2×2 denotes a user defined proposal covariance

matrix. For this problem, we let Σ̃s = cΣsI2, where the constant cΣs > 0 is

appropriately chosen to achieve an acceptance rate of around 23%.

The proposal C ′ = {c̄1, . . . , c̄I−1, c
′, c̄I+1, . . . , c̄M} is then accepted with prob-

ability min(1, hs), where the shift hastings ratio hs follows

hs =
f
ZNF |CNF ,Θ

(d)
α

(ZNF |C ′, g−1(θ̄
(d)
α ),M)f

CNF |Z
(NF−1),Θ

(d)
α

(C ′|Z(NF−1), g−1(θ̄
(d)
α ),M)

f
ZNF |CNF ,Θ

(d)
α

(ZNF |C̄, g−1(θ̄
(d)
α ),M)f

CNF |Z
(NF−1),Θ

(d)
α

(C̄|Z(NF−1), g−1(θ̄
(d)
α ),M)

,
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which can be computed using (4.10) and (4.11).

An algorithm detailing our MwG MCMC method to output NMC posterior

samples from CNF and the (transformed) parameter vector θ
′(d)
α , is given in

Algorithm 6.
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Algorithm 6 Metropolis-within-Gibbs algorithm to obtain NMC samples
from the posterior f

CNF ,Θ
(d)
α |Z(NF )(CNF ,θ

′(d)
α |Z(NF ),M) under model Md

A

function Run MWG(Z(NF ),∆, NMC ,M,A, d, C, Σ̃s)

θ
′(d)
α ← 0NMC

0>3(d+2)+|A|

C ← 0M×2×NMC
. Array of zeros in RM×2×NMC , with ith slice 0M0>2

Sample C̄ ← UnifM(C) . Initialise M uniform points on C
C[:, :, 1]← C̄

Sample θ′ ∼ πg(θ
′(d)
α ) . Initialise from prior given in (4.15)

θ
′(d)
α [:, 1]← θ′

Σ̃u ← (0.1)2

(3(d+2)+|A|)I(3(d+2)+|A|) . Initialise update covariance

for i = 2 to NMC do

C ′ ← C[:, :, i− 1] . //Shift pattern C

l ∼ Unif({1, . . . ,M}) . Sample index from set {1, . . . ,M}
Sample c′ ∼ N (C[l, :, i− 1], Σ̃s) . Propose shift

C ′[l, :]← c′

hs ←
f
CNF

|Z(NF ),Θ
(d)
α

(C′|Z(NF ),g−1(θ
′(d)
α [:,i−1]),M)

f
CNF

|Z(NF ),Θ
(d)
α

(C[:,:,i−1]|Z(NF ),g−1(θ
′(d)
α [:,1]),M)

,

Sample U ∼ Unif(0, 1)

if U < hs then

C[:, :, i]← C ′ . Accept shift

else

C[:, :, i]← C[:, :, i− 1] . Reject shift

if i ≥ 100 then . //Update θ
′(d)
α

Σ̂← Cov(θ
′(d)
α [:, 1 : i− 1]) . Compute current covariance

Σ̃u ← (2.38)2

(3(d+2)+|A|)Σ̂ + 10−3 (0.1)2

(3(d+2)+|A|)I(3(d+2)+|A|)

Sample θ′ ∼ N (θ
′(d)
α [:, i− 1], Σ̃u) . Propose update

hu ←
f
CNF

|Z(NF ),Θ
(d)
α

(C[:,:,i]|Z(NF ),g−1(θ′),M)πg(θ′)

f
CNF

|Z(NF ),Θ
(d)
α

(C[:,:,i]|Z(NF ),g−1(θ
′(d)
α [:,i−1]),M)πg(θ

′(d)
α [:,i−1])

Sample U ∼ Unif(0, 1)

if U < hu then

θ
′(d)
α [:, i]← θ′ . Accept update

else

θ
′(d)
α [:, i]← θ

′(d)
α [:, i− 1] . Reject update

return C,θ
′(d)
α
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4.4.3 Parameter estimation

After running the MCMC algorithm, each chain will output NMC samples of

the parent RFS CNF and the transformed parameter vector θ
′(d)
α . Maximum

a posteriori (MAP) values for the components of θ̂
′(d)

α can thereby be deter-

mined via the modes of the corresponding posterior distributions. Moreover,

a (1−αC)% credible interval for the ith component (θ
′(d)
α )i can be calculated

as (Chen and Shao, 1998)

[(θ
′(d)
α )

(αC/2NMC)
i (θ

′(d)
α )

((1−αC/2)NMC)
i ],

where (θ
′(d)
α )

(αC/2NMC)
i and (θ

′(d)
α )

((1−αC/2)NMC)
i denote the (αC/2)NMCth and

(1− αC/2)NMCth ordered samples of (θ
′(d)
α )i, respectively. The MAP values

and credible intervals for each component can then be mapped back to their

untransformed versions through the function g−1.

Modal estimates of parent locations ĈNF can be obtained from finding the

M peaks of a kernel smoothed density applied on the posterior samples of

CNF . We note that credible intervals are not well defined here since CNF
represents a random set, and therefore has no ordering of its points.

4.4.4 Model selection

After several MCMC runs have been conducted under different models pa-

rameterised by M andMd
A, using samples obtained from the respective pos-

terior distributions, model selection can be conducted to select the most likely

model.

There exist many methods in the Bayesian model selection literature (Newton

and Raftery, 1994, Chib, 1995, Chib and Jeliazkov, 2001) that attempt to

utilise the NMC posterior MCMC samples (CNF ,θ
(d)
α )(1), . . . , (CNF ,θ

(d)
α )(NMC)
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to approximate the model evidence or marginal likelihood

f(Z(NF )|M,Md
A) =

∫
CM×Θ

(d)
α

f(Z(NF )|CNF = {c1, . . . , cM},θ(d)
α ,M,Md

A)

× π(CNF = {c1, . . . , cM},θ(d)
α ) dc1 . . . dcM dθ(d)

α ,

required to compute the posterior model probabilities P(M,Md
A|Z(NF )) ∝

f(Z(NF )|M,Md
A)P(M,Md

A). However, the majority of these methods are dif-

ficult to apply in our setting. For example, the method of Chib (1995) is not

applicable since it requires the MCMC samples to be generated from a Gibbs

sampler, with prior and posterior distributions to be known in closed form.

Nevertheless, while its extension, as derived in Chib and Jeliazkov (2001), to

Metropolis-Hastings type samplers can be used here, computing the estimate

is computational intensive and can exhibit high variance. On the other hand,

while the method described in Newton and Raftery (1994) is easy to imple-

ment, the resulting estimator suffers from infinite variance and is therefore

rarely used in practice.

For this problem, we therefore choose to use the Deviance Information Cri-

terion (DIC) which is defined through the deviance function (Spiegelhalter

et al., 2002)

D(θ(d)
α , CNF ,M) = −2 log f

CNF ,Θ
(d)
α |Z(NF )(CNF ,θ

(d)
α |Z(NF ),M).

Here, we define the DIC as

DIC = 2D(θ(d)
α , CNF ,M)−D(θ̂

(d)

α , ĈNF ,M),

where θ̂
(d)

α denotes the modal value of the parameter vector θ(d)
α , ĈNF denotes

the modal parent locations from the RFS with M centres, and D(·) denotes

the mean deviance. Similar to the model-robust version of the AIC, the

DIC measures a model’s goodness of fit and penalises over-fitting. Note that

this criterion is particularly useful since the first expression can be easily

calculated as the average deviance over the MCMC samples, and the second

as the deviance evaluated at the MAP estimates of these samples. Similarly

to the BIC, the model with the smallest DIC value is favoured.
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4.5 Simulations

In this section, we present the results of three simulated dSTORM exper-

iments that have been conducted to assess the performance of the MCMC

algorithm described previously. For each dataset, several MCMC chains were

run over different values of M and d, and the DIC applied to select the most

likely model. For the selected model, the output of the simulations are pre-

sented through posterior densities, where 95% credible intervals and posterior

modes are also noted.

In order to fully control and account for the random number of false positive

observations in the model, the simulations in this section were conducted

under a simplified procedure to that presented in Section 1.F of Appendix

1.7. This procedure is described in Section 4.B of Appendix 4, and requires

simulation of the observed process {Yn} for each of the M molecules imaged.

It should be noted here that we held out the observation traces Y for each

simulated dataset, in order to compare the PSHMM rate estimation proce-

dure described in Chapter 1 with that outputted by the MCMC algorithm

developed in this chapter.

The first simulation was conducted under the (d = 0) M0
{1} model with

C = [0.1, 0.7] × [0.25, 0.7], the second under the (d = 1) M1
{1} model with

C = [0.3, 0.8] × [0.3, 0.8] and the third under the (d = 2) M2
{1} model with

C = [0.2, 0.8] × [0.3, 0.8]. The unit of measurement used was nanometres

(nm) ×104. The global parameter values used for the three simulations are

presented in Table 4.1. In particular, to align for (d)STORM experimental

conditions, ν∗1 = 1, enabling the form of the more computationally efficient

density in (4.13) of Remark 12 to be used in the MCMC algorithm.

In all three studies, MCMC chains were tested for values of M ∈ {3, . . . , 10}
over three photo-switching models M0

{1}, M1
{1} and M2

{1}. Each algorithm

for was run for 3× 105 iterations, with a burn-in period of 3× 104 iterations.

Moreover, in order to reduce the autocorrelation in the output, we sub-

sampled each chain at every 20th iteration. These sub-samples form the

basis of the (posterior) distributional summaries we will present for each
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study.

Parameter d λ001 λ01 λ0102 λ011 λ021 λ10 µ1 ∆−1 δ−1 λM T ∗ M NF
(s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s)

Study

1 0 1 3.162 0.001 30 300 10 10∆ 7 104

2 1 0.35 1 0.3 2.3 0.001 30 300 10 25∆ 8 104

3 2 0.35 1 0.1 0.3 0.1 3.162 0.001 30 300 10 50∆ 6 104

Table 4.1: Global parameter values for the stimulation studies conducted in this section. All
studies have been conducted with the model format of Md

{1} for d = 0, 1, 2.

For each simulation study 1-3, the outputted DIC values are shown in Tables

4.6-4.8 in Section 4.C of Appendix 4, with the predicted model highlighted

in red. Remarkably, it was able to identify the exact model under simulation

for all three studies, providing us with primary evidence of the power this

method has in estimating both the number of images molecules M and the

number of multiple dark states d under observation.

The posterior intensity maps in Figures 4.5a, 4.6a and 4.7a show the dis-

tribution of samples gained from the respective posterior distributions for

each study 1-3. The coordinate estimates (after applying kernel smoothing)

are plotted against true positions and observation sets in Figures 4.5b, 4.6b

and 4.7b. For most of the molecules, it is seen that the sampler is able

to accurately estimate their exact positions. However, when molecules are

very spatially close to one another, as is seen in studies 1 and 2, the poste-

rior intensities have the tendency to overlap within the neighbouring region,

causing the resulting spatial estimates to be slightly biased.

Under study 1, trace plots (without sub-sampling) for the transformed photo-

switching parameters log λ01, log λ10, log µ1,− log(∆/δ−1) and noise parame-

ter logα is shown in Figures 4.8 and 4.9. The fast mixing about the posterior

modes that can be observed in these plots is likely due to the inclusion of

the adaptive step in the corresponding update moves of the algorithm. Fur-

thermore, the posterior distributions of the transformed parameter θ
′(d)
α are

shown in Figures 4.10 and 4.11. Here, MAP values and 95% credible bounds

are presented for each transformed parameter against the true simulated val-

ues. It is interesting to observe that posterior samples for all parameters but
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µ1 centre close to the true parameter values and are well within the credi-

ble intervals. The resulting MAP estimate for µ1 is slightly biased and its

95% credible interval does not contain the true value. The specific MAP

values and 95% credible intervals of all untransformed parameters, together

with rate estimates gained from the PSHMM are presented in Table 4.2, and

generally show agreement between both estimators.

Under study 2, the posterior distributions of θ
′(d)
α are shown in Figures 4.12,

4.13 and 4.14. Here, it is again observed that the MAP estimates for all

transformed photo-switching parameters log λ001 , log λ01, log λ011, log λ10 are

able to recover the underlying rates, with all parameters’ credible intervals

containing the true values (also shown in Table 4.3). In this study, however,

the MAP estimates for log λ001 and log λ011 are seen to be more biased than

those of log λ01 and log λ10. Table 4.3 also shows that the PSHMM estimator

is also more biased for these estimates; this is especially highlighted for the

estimated value of λ001 , which is seen more poorly estimated by the PSHMM.

Using the analysis presented in Chapter 2, the most likely reason for the bias

exhibited by both methods is the small sample size (determined by M) of

the data.

Under study 3, the posterior distributions of θ
′(d)
α are shown in Figures 4.15-

4.18, and (untransformed) parameter estimates in Table 4.4. While the algo-

rithm is seen to perform well in estimating the parameters λ01, λ011, λ10, MAP

estimates for log λ001 , log λ0102 , log λ021 are poorer and are not contained in

the respective credible intervals. Furthermore, the posterior variance under

these parameters is higher. This is highlighted most along the directions of

λ001 and λ011. Although invoking proper priors enables posterior modes to be

identified, these observations indicate that the resulting MAP values are not

wholly indicative of the true parameter values. While most rate estimates

(especially for λ0102) under the PSHMM seem less biased, this method still

struggles in properly identifying λ001 , which aligns with the results presented

from study 2. We may conclude that a dataset of this size (M = 6) is not

sufficiently large to produce more meaningful estimates. Insufficiently large

data was also shown as the reason for the identification issues of λ0102 in

Chapter 2. We would therefore expect to see (under these parameter val-
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ues) sharper peaked and lower variance posteriors given datasets consisting

of more photo-switching fluorophores.

Under all studies, with the exception of µ1 under study 1 as previously

noted, the posterior distributions and credible intervals of the parameters

log µ and logα indicate accurate estimation of the true values. Furthermore,

− log(∆/δ − 1) is also seen to be well estimated, albeit producing a higher

variance posterior. Interestingly, the sampler being at higher values of δ may

also justify the larger posterior variance of the photo-switching parameters in

studies 2 and 3, in that these parameters could be forced into regions of the

parameter space which may otherwise not be visited, thereby corroborating

the correlation and identifiability analysis presented in Chapter 2. This may,

for example, be owed to the choice of Uniform prior invoked on δ, of which

a change in prior would lead to a different posterior being observed.
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(a) Posterior intensity map.
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(b) Estimates against true positions.

Figure 4.5: Posterior spatial analysis for study 1. 4.5a: Posterior intensity map of MCMC
samples. 4.5b: Coordinate estimates from the Bayes filter (red crosses) plotted with the
true positions (black stars) and the superimposition of offspring observation sets and false
positive observations (red dots). Unit of measurement is nm×104.

Parameter True PSHMM MLE MAP 95% Credible Interval

λ01 1 1.0234 1.0226 (0.7496, 1.5338)
λ10 3.162 3.1710 2.4509 (1.691, 3.8339)
µ1 0.001 0.0034 0.0006 (0.0003, 0.0009)
δs 0.0033 0.0026 0.0094 (0.0003, 0.0305)
α 0.001 Not estimated 8.74 ×10−4 (0.0004, 0.0016)
ν0 Unknown 0.1264 0.0280 (0.0062, 0.1413)
ν1 Unknown 0.8736 0.8925 (0.7303, 0.9604)
ν2 Unknown 0 0.0795 (0.0245, 0.1784)

Table 4.2: Parameter estimates and 95% credible intervals under study 1.
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Parameter True PSHMM MLE MAP 95% Credible Interval

λ001 0.35 4.5493 0.8970 (0.1308, 6.2179)
λ01 1 1.4480 0.9359 (0.1646, 4.4325)
λ011 0.3 0.5312 0.9675 (0.0490, 4.3652)
λ10 2.3 2.2103 1.8110 (0.2862, 7.4025)
µ1 0.001 0.0021 0.0008 (0.0005, 0.0012)
δ 0.0033 0.0003 0.0110 (0.0005, 0.0317)
α 0.001 Not estimated 0.0010 (0.0005, 0.0018)
ν0 Unknown 0.1587 0.0808 (0.0112, 0.2538)
ν01 Unknown 0.2636 0.1182 (0.0272, 0.2931)
ν1 Unknown 0.4937 0.5659 (0.3925, 0.7500)
ν2 Unknown 0 0.0839 (0.0155, 0.1130)

Table 4.3: Parameter estimates and 95% credible intervals under study 2.

Parameter True PSHMM MLE MAP 95% Credible Interval

λ001 0.35 2.6383 1.2883 (0.4852, 9.3418)
λ01 1 1.4907 1.6139 (0.2178, 5.4257)
λ0102 0.1 0.2557 1.3724 (0.2356, 6.2320)
λ011 0.3 0.8468 1.0663 (0.1094, 3.8521)
λ021 0.1 0.1401 0.1477 (0.1091, 0.2722)
λ10 3.162 2.9065 1.4605 (0.7364, 5.3808)
µ1 0.001 0.0019 0.0010 (0.0005, 0.0014)
δ 0.0033 0.0199 0.0114 (0.0011, 0.0326)
α 0.001 Not estimated 7.66 ×10−4 (0.0003, 0.0014)
ν0 Unknown 0.1561 0.0778 (0.0212, 0.3755)
ν01 Unknown 0.1819 0.1802 (0.0126, 0.3107)
ν02 Unknown 0.2076 0.2328 (0.0180, 0.2915)
ν1 Unknown 0.4544 0.4427 (0.3230, 0.7025)
ν2 Unknown 0 0.0665 (0.0517, 0.2167)

Table 4.4: Parameter estimates and 95% credible intervals under study 3.
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(b) Estimates against true positions.

Figure 4.6: Posterior spatial analysis for study 2. 4.6a: Posterior intensity map of MCMC
samples. 4.6b: Coordinate estimates from the Bayes filter (red crosses) plotted with the
true positions (black stars) and the superimposition of offspring observation sets and false
positive observations (red dots). Unit of measurement is nm×104.
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(a) Posterior intensity map.
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(b) Estimates against true positions.

Figure 4.7: Posterior spatial analysis for study 3. 4.7a: Posterior intensity map of MCMC
samples. 4.7b: Coordinate estimates from the Bayes filter (red crosses) plotted with the
true positions (black stars) and the superimposition of offspring observation sets and false
positive observations (red dots). Unit of measurement is nm×104.

4.6 Application to Alexa Fluor 488 data

In this section, we apply the MCMC method presented in this chapter to a

dSTORM experiment imaging Alexa Fluor 488 fluorophores. Here, we select

two small subsets of the overall (superimposed) image and apply the MCMC

algorithm described by testing different models which vary the cardinality

of molecules M and the number of multiple dark states d of the underlying

photo-switching process. We present the spatial posterior locations of the

estimated positions of fluorophores, and MAP values (with 95% credible
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(b) Trace plot for log λ10(s−1).

Figure 4.8: Trace plots of the transformed photo-switching rates log λ01, log λ10 under
study 1 with true values in green.
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(a) Trace plot for logµ1(s−1).
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(b) Trace plot for logα.
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(c) Trace plot for
− log(∆/δ − 1).

Figure 4.9: Trace plots of the transformed parameters logµ1, logα, − log(∆/δ − 1) under
study 1 with true values in green.

intervals) of θ(d)
α under the photo-kinetic model estimated for each dataset.

In this experiment, chromosomes labelled with Alexa Fluor 488 fluorophores

embedded in Polyvinyl Alcohol (PVA) resin were imaged over 104 frames, at
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(b) Posterior histogram for log λ10(s−1).

Figure 4.10: Posterior histograms of transformed photo-switching rates log λ01, log λ10

under study 1, with MAP values (green), true values (red) and 95% credible intervals (black,
dotted).

-9 -8.5 -8 -7.5 -7 -6.5

log(
1
)

0

500

1000

1500

2000

(a) Posterior histogram for
logµ1(s−1).

-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5

log( )

0

500

1000

1500

2000

2500

(b) Posterior histogram for
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− log(∆/δ − 1).

Figure 4.11: Posterior histograms of the transformed parameters logµ1, logα, − log(∆/δ−
1) under study 1, with MAP values (green), true values (red) and 95% credible intervals
(black, dotted).

a frame aquisition time of ∆ = 0.03 seconds, with dSTORM§. In each raw

image obtained, the algorithm in Ovesný et al. (2014) was applied to find

§This dataset was made available for our use by Professor Paul French, Imperial College
London.
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Figure 4.12: Posterior histograms of the transformed photo-switching rates log λ01, log λ10

under study 2, with MAP values (green), true values (red) and 95% credible intervals (black,
dotted).
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Figure 4.13: Posterior histograms of the transformed photo-switching rates log λ001
,

log λ011 under study 2, with MAP values (green), true values (red) and 95% credible in-
tervals (black, dotted).

high photon intensity spots, and localisations determined through a Gaussian

fitting algorithm. More information about the experimental set-up for this

study can be found in Section 4.D.1 of Appendix 4. In this experiment, the

number of molecules present, their true spatial positions and the underlying

photo-kinetic model were unknown.

In order to test the MCMC algorithm constructed in this chapter, we located

two subsets of the superimposed imaged (with no edge effects). These areas

within the superimposed image of localisations derived from this experiment

are presented in Figure 4.19. For each of the two datasets, we ran several

MCMC algorithms (in parallel) over values of M ∈ {5, . . . , 25} and models

Md
{1} with d = 0, 1, 2, and subsequently calculated the DIC for each model.

The prior distributions for all (transformed) parameters were the same as
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Figure 4.14: Posterior histograms of the transformed parameters logµ1, logα, − log(∆/δ−
1) under study 2, with MAP values (green), true values (red) and 95% credible intervals
(black, dotted).
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Figure 4.15: Posterior histograms of the transformed photo-switching rates log λ01, log λ10

under study 3, with MAP values (green), true values (red) and 95% credible intervals (black,
dotted).

those described in Section 4.4, with λM = 10. Each algorithm for was run

for 3×105 iterations, with a burn-in period of 3×104 iterations. Furthermore,

we sub-sampled each chain at every 20th iteration.
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Figure 4.16: Posterior histograms of the transformed photo-switching rates log λ001
,

log λ011 under study 3, with MAP values (green), true values (red) and 95% credible in-
tervals (black, dotted).
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(a) Posterior histogram for log λ0102
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Figure 4.17: Posterior histograms of the transformed photo-switching rates log λ0102
,

log λ021 under study 3, with MAP values (green), true values (red) and 95% credible in-
tervals (black, dotted).

For both datasets, the algorithm predicted theM2
{1} model; this is the photo-

kinetic model with three dark states and is such that the photo-bleached

state is only accessible from the photo-emitting On state 1. Although the

fluorophore used here is different than that considered in Chapters 1 and 3,

this observation supports the analysis presented in these chapters, in that

the fluorophores used in (d)STORM experiments are likely to give rise to a

photo-kinetic model with three dark states.

For datasets 1 and 2, the DIC predicted M = 18 and M = 16 fluorophores

in the respective clusters. The posterior intensity maps against estimated

locations of fluorophores are depicted in Figures 4.20 and 4.21, and show

clear structures of the chromosomes under observation.

The MAP values of the photo-switching rates, with their respective 95%
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Figure 4.18: Posterior histograms of the transformed parameters logµ1, logα, − log(∆/δ−
1) under study 3, with MAP values (green), true values (red) and 95% credible intervals
(black, dotted).

credible intervals is shown in Table 4.5, for both datasets. Furthermore, the

distributions of the transformed parameter vector θ
′(d)
α are shown in Figures

4.22 - 4.30 of Section 4.D.1 in Appendix 4. It is generally seen that the

posterior distributions under most parameters are similar between the two

datasets. The parameters which are observed to being most different are λ011

and λ10, with dataset 1 indicating a much higher rate for λ011, and a lower

rate for λ10. Nevertheless, all rates are shown to be of the same order of

magnitude between the two studies. In particular, the photo-switching rates

determined by the MAP values indicate that λ10 is higher than λ01, and the

furthest dark state 02 is characterised by the longest lifetime. This observa-

tion aligns with the kinetic behaviour that fluorophores should undergo in

STORM applications, as is dictated by the photo-physics.

In addition, the posterior variances are seen to be lower than from the same

parameters studied in study 3 of Section 3.4, of which fewer molecules were
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Figure 4.19: Superimposed localisations obtained from a dSTORM experiment observ-
ing chromosomes labelled with Alexa Fluor 488 fluorophores. Blue squares correspond to
datasets 1 and 2 analysed.

observed. This corroborates our intuition that analysing datasets containing

more molecules are likely to yield lower variance parameter estimates.

Parameter MAP dataset 1 95% Credible Interval dataset 1 MAP dataset 2 95% Credible Interval dataset 2

λ001 0.0159 (0.0058, 0.0443) 0.0651 (0.0165, 0.1765)
λ01 0.0796 (0.0665, 0.1564) 0.1395 (0.0447, 0.3534)
λ0102 0.2492 (0.0298, 1.0120) 0.1294 (0.0291, 0.7184)
λ011 4.3836 (0.9010, 17.7112) 1.4429 (0.7667, 11.0597)
λ021 0.0060 (0.0048, 0.0088) 0.0089 (0.0036, 0.0153)
λ10 0.6003 (0.5798, 0.8803) 1.6030 (0.9402, 4.5359)
µ1 0.0258 (0.0197, 0.0277) 0.0144 (0.0067, 0.0250)
δ 0.0155 (0.0006, 0.0292) 0.0151 (0.0010, 0.0286)
α 0.1947 (0.1851, 0.2042) 0.1636 (0.1562, 0.1720)
ν0 0.0291 (0.0048, 0.1014) 0.1307 (0.0112, 0.2538)
ν01 0.0440 (0.0171, 0.1167) 0.1462 (0.0272, 0.2931)
ν02 0.7694 (0.5365, 0.8441) 0.5843 (0.3925, 0.7500)
ν1 0.0586 (0.0138, 0.0955) 0.0389 (0.0155, 0.1130)
ν2 0.0989 (0.0304, 0.2593) 0.0998 (0.0517, 0.2924)

Table 4.5: Parameter estimates and 95% credible intervals for the Alexa Fluor 488 datasets
1 and 2.

4.7 Conclusions

In this chapter, we have proposed a novel spatio-temporal model describ-

ing the evolution of photo-switching fluorophores imaged in fluorescence mi-

croscopy. By using a pure birth process to model when fluorophores first

reach their photo-emission states, we have formulated a state-space model
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Figure 4.20: Posterior spatial analysis for dataset 1 (Alexa Fluor 488). 4.20a: Posterior
intensity map of MCMC samples. 4.20b: Coordinate estimates from the Bayes filter (blue
crosses) plotted with the superimposed dataset. Measurement unit is nanometres.
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Figure 4.21: Posterior spatial analysis for dataset 2 (Alexa Fluor 488). 4.21a: Posterior
intensity map of MCMC samples. 4.21b: Coordinate estimates from the Bayes filter (blue
crosses) plotted with the superimposed dataset. Measurement unit is nanometres.
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which links the hidden point process of true molecular positions, Cn with

observation sets collected at each time frame n. Under this model, we have

derived a molecule’s birth and detection probabilities, and showed that these

are functions of the unknown photo-switching parameters θ(d). This model,

furthermore, is able to account for the common scenario in which observation

sets are corrupted by false positive observations. Using this, we have care-

fully derived the Bayes filter which is used to update the true point pattern

configuration of molecules across time. Inference of the resulting posterior

distribution has been made possible through the application of a Metropolis-

Hastings type algorithm and the computation of the Deviance Information

Criterion, which was shown to be effective in selecting the most likely car-

dinality of parent points M and number of dark states d + 1 in a given

photo-switching model. We have further shown, through simulations, that

the true locations of molecules and most parameters of the underling photo-

switching parameter can, in general, be recovered well. Additionally, we have

discussed, through a comparison with the PSHMM estimator, that the most

likely reason for the poor estimation of other parameters (specifically those

of λ011, λ0102 , λ011 in the d = 1, 2 scenarios) is due to the limited number of

molecules studied. An application to two subsets of a real dSTORM image

dataset, consisting of more molecules than those studied in simulations, has

also supported this. In both of these datasets, the algorithm determined a

three dark state model of the fluorophore and the resulting posterior distri-

butions of the photo-switching parameters approximately aligned, thereby

verifying the suitability of this method to real data.

While our method cannot easily be extended to account for a greater number

of fluorophores, the sequential Monte Carlo approximations discussed in the

introduction of this chapter, provide a solid basis for the extension of this

work to larger datasets.
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Appendix 4

4.A Proof of Proposition 9

In this section, we detail the proof of Proposition 9 described in Section 4.3.2.

Proof. Fixing d ≥ 0, when the photo-bleaching state 2 is accessible from at

least one of the other d + 2 states of {X(t)}, i.e. under some model Md
A

with |A| > 0, we can write B
(0)
∆,δ=0 =

[
A0 d0

0>d+2 1

]
, and B

(1)
∆,δ=0 =

[
A1 d1

0>d+2 0

]
,

where for each j = 0, 1, Aj = (B
(j)
∆,δ=0)(1:d+2,1:d+2) denotes the (d+2)× (d+2)

sub-matrix gained by deleting the last row and column of B
(j)
∆,δ=0, dj =

(B
(j)
∆,δ=0)(1:d+2,d+3) and 0d+2 denotes the (d+ 2)× 1 vector of zeros.

Since B
(0)
∆,δ=0 +B

(1)
∆,δ=0 = eG∆ is a stochastic matrix, it is easy to see that the

row sums of both A0 and A1 are less than one when ∆ > 0¶. In particular

if (φ,v) denotes an eigenpair of A0, let vk be the entry of v with maximum

absolute value and aij the i, jth entry of A0. Then φvk =
∑

j akjvj and

|φvk| ≤
∑

j |akj||vj| < |vk| since the row sums of A0 are strictly less than

one. This implies that every eigenvalue φ of A0 satisfies |φ| < 1 and thus

that limn→∞ φ
n = 0.

Now let J be the Jordan-canonical form for matrix A0 composed of its p

(distinct eigenvalues) Jordan blocks, so that A0 = QJQ−1 for some invertible

matrix Q. Each Jordan block Ji(φ) corresponding to eigenvalue φ can be

written in the form Ji(φ) = φIs + N , where s is the algebraic multiplicity

of φ and N is the nilpotent matrix whose entries are ones on its super-

diagonal and zero otherwise. By the binomial theorem Ji(φ)n = (φIs+N)n =∑n
k=0

(
n
k

)
φn−kNk, from which it is easy to see that each Jordan block will

go to the zero matrix of its dimension as n → ∞. Note also that if A0

is diagonalisable, then J = D (its diagonal matrix) and Dn → 0d+20
>
d+2

mirrors.

¶This result actually holds for any set of transmission matrices computed when δ ∈
[0,∆), so δ = 0 is non-restrictive in this proof.
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We haveAn0 = QJnQ−1 → 0d+20
>
d+2 and hence that (B

(0)
∆,δ=0)n →

[
0d+20

>
d+2 f

0>d+2 1

]
,

for some column vector f . Now since the last row of B
(1)
∆,δ=0 consists of just ze-

ros, we have limn→∞(B
(0)
∆,δ=0)nB

(1)
∆,δ=0 = 0d+30

>
d+3 and hence that pB,n(θ(d))→

0.

Under modelMd
∅, i.e. when the photo-bleaching state is not included in the

model, pB,n(θ(d)) = ν>XA
n
0A11d+2 → 0.
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4.B Imaging simulation

In this section we provide the simulation methods for the simulation studies

presented in Section 4.5.

Each study (1-3), was simulated using the parameter values listed in Table

4.1 for each corresponding study. Firstly, a random number of M ∼ Poi(λM)

molecules was generated and then uniformly distributed over C to obtain

the true point pattern {c1, . . . , cM}. For each point ci, the hidden photo-

switching process {X(t)} was simulated (with ν∗1 = 1) up to time NF∆ +T ∗.

From this, both the time series {Yn} and the total times spent in the On state

Tn in each frame [(n−1)∆, n∆), n ∈ Z>0 were extracted. When the molecule

was detected, i.e. when Yn = 1, its localisation zn was then generated via

zn ∼ N
(

ci,
∆

NpTn
I2

)
,

with NpTn
∆

denoting the number of photons emitted by the molecule in that

frame. Here, Np represents the expected number of photons a molecule emits

if it occupies the On state 1 for an entire frame of length ∆, and is therefore

user defined. Under the three simulations studied in this chapter, Np = 2000.

Note also that this covariance aligns with standard experimental conditions,

as is discussed in Section 1.F.1, and is such that each localisation’s standard

deviance is inversely proportional to the time the molecule spends in the

frame.

Secondly, in each frame n, a random number of NAn ∼ Poi(α) false positive

observations were generated and then uniformly distributed over C. The ob-

served covariance matrix of each false positive was then calculated as ∆
NpTn

I2,

with Tn ∼ Unif(δ,∆).

The observation set Zn for frame n was collected as the superposition of

all vectors collected from the detected molecules and false positives. The

localisation standard deviations were also stored for the calculations of the

posterior density.

Lastly, to align with STORM experiments, the first dT ∗/∆e frames were
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removed from the video, allowing for Z(NF ) = {Z1, . . . , ZNF } to be used.
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4.C DIC outputs

In this section, we present the DIC values outputted from the three MCMC

simulations conducted in Section 3.4.

Model → M0
{1} M1

{1} M2
{1}

M ↓

3 -1.2209 -1.2204 -1.2190
4 -1.3082 -1.3081 -1.3079
5 -1.3428 -1.3426 -1.3424
6 -1.3534 -1.3530 -1.3528
7 -1.3550 -1.3548 -1.3546
8 -1.3549 -1.3548 -1.3546
9 -1.3544 -1.3542 -1.3539
10 -1.3538 -1.3534 -1.3530

Table 4.6: Table showing the computed DIC values (×105) under simulation study 1, from
three candidates M0

{1}, M
1
{1} and M2

{1} with varying values of M . The predicted model is
indicated in red.

Model → M0
{1} M1

{1} M2
{1}

M ↓

3 -1.09555 -1.09493 -1.09461
4 -1.17717 -1.17664 -1.17610
5 -1.21563 -1.21526 -1.21521
6 -1.22936 -1.22911 -1.22878
7 -1.23382 -1.23347 -1.23325
8 -1.23385 -1.23391 -1.23372
9 -1.23384 -1.23345 -1.23333
10 -1.23196 -1.23245 -1.23216

Table 4.7: Table showing the computed DIC values (×105) under simulation study 2, from
three candidates M0

{1}, M
1
{1} and M2

{1} with varying values of M . The predicted model is
indicated in red.
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Model → M0
{1} M1

{1} M2
{1}

M ↓

3 -5.2202 -5.2183 -5.2143
4 -5.4526 -5.4536 -5.4523
5 -5.6610 -5.6687 -5.6749
6 -5.6974 -5.7872 -5.7874
7 -5.7645 -5.7475 -5.7473
8 -5.7734 -5.7751 -5.7656
9 -5.7735 -5.7741 -5.7767
10 -5.7614 -5.7566 -5.7617

Table 4.8: Table showing the computed DIC values (×105) under simulation study 3, from
three candidates M0

{1}, M
1
{1} and M2

{1} with varying values of M . The predicted model is
indicated in red.
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4.D Alexa Fluor 488 results

In this section, we first describe the experimental set-up used to obtain the

Alexa Fluor 488 data used in Section 4.6 and then provide the posterior

histograms of the parameter vector θ(2)
α under both datasets.

4.D.1 Experimental set-up

In this experiment, the EMCCD camera lens used to obtain the Alexa Fluor

488 data had a Numerical Aperture (NA) of 1.49. The electron count per

pixel was calculated after applying an EMCCD gain of 100 counts and adding

it to a base offset of 170 digital camera counts and a readout noise of 1.8e− per

pixel. This was then divided by an analogue to digital conversion sensitivity

to give the digital camera count. This produced raw images (of length 127

micrometres) with physical pixel sizes of 106 nanometres. These raw images

were then post-processed using ThunderSTORM (Ovesný et al., 2014). Using

this software, localisation measurements were recorded by using a Gaussian

fitting algorithm. In particular, a Gaussian PSF was applied to high photon

intensity spots binned to grids of size 11 by 11 pixels (squares of length 1166

nanometres), and run over each image of size 1200 by 1200 pixels. When

fitting the point spread function (PSF), the photon positions were distributed

according to a 2D Gaussian distribution, with parameters determined by the

NA and the observed emission wavelengths.

4.D.2 Posterior histograms
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under dataset 2.

Figure 4.22: Posterior histograms of transformed photo-switching rates log λ001
for the

Alexa Fluor 488 datasets 1 (Figure 4.22a) and 2 (Figure 4.22b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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der dataset 1.
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Figure 4.23: Posterior histograms of transformed photo-switching rates log λ01 for the
Alexa Fluor 488 datasets 1 (Figure 4.23a) and 2 (Figure 4.23b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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under dataset 1.
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Figure 4.24: Posterior histograms of transformed photo-switching rates log λ0102
for the

Alexa Fluor 488 datasets 1 (Figure 4.24a) and 2 (Figure 4.24b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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(a) Posterior histogram of log λ011(s−1)
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Figure 4.25: Posterior histograms of transformed photo-switching rates log λ011 for the
Alexa Fluor 488 datasets 1 (Figure 4.25a) and 2 (Figure 4.25b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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(a) Posterior histogram of log λ021(s−1)
under dataset 1.
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Figure 4.26: Posterior histograms of transformed photo-switching rates log λ021 for the
Alexa Fluor 488 datasets 1 (Figure 4.26a) and 2 (Figure 4.26b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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(a) Posterior histogram of log λ10(s−1) un-
der dataset 1.
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Figure 4.27: Posterior histograms of transformed photo-switching rates log λ10 for the
Alexa Fluor 488 datasets 1 (Figure 4.27a) and 2 (Figure 4.27b), plotted with MAP values
(green) and 95% credible intervals (black, dotted).
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Figure 4.28: Posterior histograms of transformed photo-switching rates logµ1 for the Alexa
Fluor 488 datasets 1 (Figure 4.28a) and 2 (Figure 4.28b), plotted with MAP values (green)
and 95% credible intervals (black, dotted).
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under dataset 1.
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Figure 4.29: Posterior histograms of transformed photo-switching rates − log(∆/δ − 1)
for the Alexa Fluor 488 datasets 1 (Figure 4.29a) and 2 (Figure 4.29b), plotted with MAP
values (green) and 95% credible intervals (black, dotted).
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Figure 4.30: Posterior histograms of transformed photo-switching rates logα for the Alexa
Fluor 488 datasets 1 (Figure 4.30a) and 2 (Figure 4.30b), plotted with MAP values (green)
and 95% credible intervals (black, dotted).
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5
Conclusions and future work

Accurate measurement of fluorophore photo-switching rates has the potential

to enable tailored design of single molecule localisation microscopy (SMLM)

experiments to specific requirements. For instance, one may wish to select

a fluorophore and photo-switching environment to achieve the rapid photo-

switching at low laser intensities required for live-cell samples. Alternatively,

one may wish to promote long off times required for densely packed samples.

Furthermore, precise estimates of photo-switching rates has both the poten-

tial to advance data processing methods used in SMLM imaging, enabling

more accurate image reconstruction, and can also aid proper quantitative

analysis of molecular stoichiometries. For this purpose, the main idea that

we have presented in this thesis is a method for fully characterising the photo-

switching kinetics of fluorophores imaged in SMLM.

In Chapter 1, we carefully defined a continuous time Markov process {X(t)}
suitable for modelling fluorophores that stochastically photo-switch between

a photon emission state, d + 1 dark states and a photo-bleached state. Mo-

tivated by the imperfections of most imaging systems, we subsequently de-

rived the observation process {Yn} indicating when a molecule is detected in

a given frame n of the video. From this, we formulated the photo-switching
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hidden Markov model (PSHMM) and utilised a novel adaptation to the

forward-backward algorithm to derive its likelihood function. Maximum like-

lihood parameter estimates were then obtained via numerical optimisation

and shown to be accurate in estimating the unknown parameters θ(d) and un-

derlying photo-kinetic model (characterised by d), frequently outperforming

estimates obtained from an existing method. While this model was con-

structed specifically for (d)STORM applications, we also noted (see Remark

3) that the form of {X(t)} is also well suited to modelling the photo-switching

behaviour of molecules imaged in PALM.

In Chapter 2, we investigated the properties of the PSHMM maximum likeli-

hood estimator under different experimental conditions. Although we found

that certain photo-switching parameters are subject to inherent correlation

structures dictated by the model, correlations with the noise parameter δ

were also observed. This had the ability to effectuate parameter identifi-

cation issues via decreased curvature of the PSHMM log-likelihood surface

in two situations: as δ becomes large relative to the frame acquisition rate

∆−1, and under faster photo-switching scenarios. Furthermore, this was also

seen to be the reason for poorer convergence of mean squared errors in the

resulting parameter estimates. Although we concluded that this situation

does not frequently arise in experimental set-ups, and hence the PSHMM

generally well suited for parameter estimation in this application, the two

problematic situations derived from this analysis provide a useful basis for

improved experimental design.

Nevertheless, while it may not always be possible to change the conditions

of imaging, especially to those concerning the background noise, the anal-

ysis conducted here may additionally provide a scope for improvements in

the PSHMM likelihood estimation procedure. For poorly conditioned data,

alternative approaches such as pre-conditioning (Penrose, 1955) or regularisa-

tion/penalisation strategies (Golub et al., 1999) are available and have seen

application within many fields, including neuroscience (Monti et al., 2015,

2017). These methods can be implemented to improve the invertibility of

the Hessian matrix, and therefore the curvature of the (log-)likelihood sur-

face at the maximum likelihood estimate, thereby having the ability to reduce
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potential identification issues arising from collinearity between parameters.

Future work to improve the PSHMM could therefore study potential avenues

for combining such strategies with our current methodology. Such extensions

may also be combined with a novel method to estimate both first and second

derivatives of the PSHMM (log-)likelihood function from the aforementioned

forward-backward algorithm developed for this problem for improved param-

eter estimation in the PSHMM via Newton’s algorithm.

In Chapter 3, we used the PSHMM to derive the exact (posterior) distri-

bution of the unknown number of M fluorescing molecules given the total

number of localisations obtained in an imaging experiment. Using the re-

sulting mode as an estimate for M , we demonstrated the utility this method

has in addressing large scale molecular counting problems arising in SMLM.

While our method requires a plug-in estimate for θ(d)
ω , the resulting (modu-

lar) inference technique allows for thousands of molecules to be counted at

once and at computational ease.

Constructing a method suitable for (d)STORM experiments which is able

to dually estimate the number of molecules M and their photo-switching

rates θ(d)
ω using count localisation data, is difficult and non-trivial. One such

attempt could be via the inference of these parameters from the count time

series {Ỹn : n ∈ Z>0} defined by

Ỹn =
M∑
m=1

Yn,m.

Here, a reversible-jump Metropolis-within-Gibbs sampler could be imple-

mented to sample from the posterior distribution

p(θ(d)
ω ,M,x0, . . . ,xNF |ỹ1, . . . , ỹNF ),

with xi ∈ RM denoting the M molecules’ hidden states at time instance

i∆. In this setting, these hidden states could be (block) updated through

the (aforementioned) forward-backward algorithm, the parameter θ(d)
ω up-

dated through a standard Metropolis-Hastings kernel and M updated via

a reversible-jump move. However, such a method is unlikely to guarantee
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feasible scalability with respect to M . For example, in the PALM setting,

Rollins et al. (2014) attempts to count and do rate estimation simultaneously.

While having a single procedure avoids the problem of a separate training

experiment, the authors recognise that the computational burden of such a

procedure is extreme and drastically limits the numbers of molecules that can

be counted at any one time. Furthermore, it requires careful extraction of the

time traces from crowded environments, which is in itself problematic and

challenging. Nevertheless, recent advances in machine learning algorithms

applied to SMLM data (Nehme et al., 2018, Davis et al., 2019), would indi-

cate opportunities to do so. For example, a recurrent neural network (RNN),

which can learn patterns in temporal information, could be trained to identify

all parameters of interest. However, the success of these algorithms lies in the

ability to perfectly train a network and may therefore require a huge amount

of training data to reflect the numerous types of experiments conducted in

SMLM.

In Chapter 4, we formulated a novel spatio-temporal point process that links

the true unobserved point process of molecular positions with spatial local-

isation sets obtained when an unknown number of M fluorescing molecules

are detected during an experiment. Using the PSHMM, we derived the full

Bayes filter appropriate for inference and applied a constructed Metropolis-

within-Gibbs MCMC algorithm that was shown in simulations to recover

the true point process and underlying photo-kinetic model θ(d)
α of the imaged

molecules.

Although we demonstrated that the MCMC algorithm suitable for this prob-

lem can be used to infer the parameters of interest in the model, inference

through this Bayes filter is only computationally feasible for a small number

of imaged molecules. When dealing with larger datasets, which is common in

fluorescence experiments, approximations of this filter will be required. The

sequential Monte Carlo (SMC) approximations (Mahler, 2007a, Vo et al.,

2003, 2005, Whiteley et al., 2010) to Mahler’s full Bayes filter, which in-

stead of inferring the full point process, propagate its first order intensity,

therefore provide us with a useful insight that the Bayes filter developed

here can be approximated to deal with larger datasets. As a scope for fu-
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ture research, for example, the number of molecules M , their true locations

C = {c1, . . . , cM} and the static parameters of the model θ(d)
α could be in-

ferred in a particle MCMC framework. Such an approach could utilise an

(unbiased) approximation to the likelihood of (the first order intensity of) C

and θ(d)
α via an SMC algorithm, with parameter updates conducted through

a Metropolis-Hastings kernel. Furthermore, inference on d could be subse-

quently be performed using a particle estimate of the marginal likelihood and

then applying the method described in Chib and Jeliazkov (2001) as a model

selection tool.

While the work presented here focuses on SMLM, the type of kinetic models

we have utilised are unlikely to be unique to photo-switching fluorophores

and super-resolution applications. Certainly, stochastic processes in which

the observed signal depends on both the current and past states of a hidden

process are likely to be a general feature of digital, discretised measurements

of stochastic signals. This is particularly true in image processing, where

images are inevitably formed by exposing the camera’s sensor over a non-

zero length time window. The relationship we observed between the emission

and transition probabilities of the PSHMM is a direct consequence of this

exposure time, and therefore it is likely that the presented methodology will

find use in imaging applications that have not been considered in this thesis.
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A
A.1 Copyright statements

This section first highlights (see Figure A.1) the copyright transfer agreement

for the paper entitled “A hidden Markov model approach to characterizing

the photo-switching behavior of fluorophores” (Patel et al., 2019), which

is presented in Chapters 1 and 2. The relevant section for this thesis is

highlighted in yellow.

Secondly, we provide the the copyright agreement (see Figure A.2) for the

paper entitled “Bayesian filtering for spatial estimation of photo-switching

fluorophores imaged in Super-resolution fluorescence microscopy” (Patel and

Cohen, 2018), which the work presented in Chapter 4 is based upon.
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Figure A.1: Copyright agreement for Patel et al. (2019).

202



Figure A.2: Copyright agreement for Patel and Cohen (2018).
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List of abbreviations &

symbols

SMLM Single Molecule Localisation Microscopy

HMM Hidden Markov Model

PSHMM Photo-Switching Hidden Markov Model

MCMC Markov Chain Monte Carlo

PALM Photo-activated Localisation Microscopy

(d)STORM (Direct) Stochastic Optical Reconstruction Microscopy

PSF Point Spread Function

FFT Fast Fourier Transform

EM Expectation Maximisation

PSARP Photo-Switching Alternating Renewal Process

BIC Bayesian Information Criterion

(R)MSE (Root) Mean Squared Error

PMF Probability Mass Function

PGF Probability Generating Function

DFT Discrete Fourier Transform

MAP Maximum a Posteriori

HDR Highest Density Region

RFS Random Finite Set

SMC Sequential Monte Carlo

PDF Probability Density Function

DIC Deviance Information Criterion

X(t) Continuous time photo-switching process

Yn Discrete time observation process

R≥0 Non-negative real numbers

R>0 Positive real numbers

Z≥0 Non-negative integers

Z>0 Positive integers

−T ∗ Time at the beginning of an experiment

d Number of multiple dark states

SX State space of X(t)

S̄X State space of X(t) without the photo-bleached state

G Generator matrix of X(t)

eGt Transition matrix of X(t) over time t

λG Vector of photo-switching rates in G

νX Probability mass of X(t) at time 0

ν∗X Probability mass of X(t) at time −T ∗

∅ Empty set

Md
S PSHMM model with d+ 1 dark states restricted on the set S ⊆ SX from where photo-bleaching is accessible
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1·(·) Indicator function

∆ Frame acquisition time

δ Time threshold for a detection of a molecule in a frame

ω Probability a molecule is falsely observed in a frame

Sd d-dimensional simplex of probability vectors

θ(d) Parameter vector containing λG,νX , δ when ω = 0

Θ(d) Parameter space for θ(d)

θ
(d)
ω Parameter vector when ω > 0

Θ
(d)
ω Parameter space for θ

(d)
ω

B
(0)
∆ , B

(1)
∆ Transmission matrices over a frame when ω = 0

B
∗(0)
∆ , B

∗(1)
∆ Transmission matrices over a frame when ω > 0

epn pth canonical (standard) basis vector of Rn

� Hadamard (element-wise) product between two matrices

NF Number of imaged frames

M Number of imaged molecules

N (µ,Σ) Multivariate Gaussian distribution with mean µ and covariance Σ

Nl Cumulative number of observed localisations

Sn Discrete time cumulative localisation process

SSn State space of Sn

γSNF
(·) Characteristic function of SNF

θ̂
(d̂)
ω Maximum likelihood estimate of θ

(d)
ω

F(C) Space of all finite subsets of C
µ̄(·) Reference measure for random finite sets

v(·) Intensity measure

Cn Parent point process

Zn Offspring/observed point process

Z(n) All offspring/observation sets collected up to and including time n

Bn Birth point process

An False positive point process

λM (Apriori) expected number of imaged molecules

α (Apriori) expected number of false positive localisations in a frame

C∗ Implicit (limiting) parent point process

θ
(d)
α Parameter vector when α > 0

Θ
(d)
α Parameter space for θ

(d)
α

θ
′(d)
α Transformed parameter vector of θ

(d)
α
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