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Summary of Notation

An MDP is defined as a tuple {S,A,T,r,y} with:
S a set of states
A ~ m(+|Sy) a set of actions
T : S’xSxA — [0.1] a probability mass function defining S+ ~ T(:|S,,A)
r: SXA — [-100,100] a bounded reward function

v € [0,1] a discount factor

H is a trajectory of length L, a state-action history
D a set of n historical trajectories

|D| the number of trajectories in D

k the number of states or clusters in the model

C; the cluster number i

n(a, s) any policy defining p(a|w, s)
1, a behaviour policy, a clinicians’ policy
7, an evaluation policy, an Al policy

" an optimal policy

V() a state-value function under
Q(s, @) an action-value function

o a learning rate



Abstract

The goal of this PhD was to generate novel tools to improve the management of patients with sepsis,
by applying machine learning techniques on routinely collected electronic health records. Machine
learning is an application of artificial intelligence (AlI), where a machine analyses data and becomes
able to execute complex tasks without being explicitly programmed. Sepsis is the third leading cause
of death worldwide and the main cause of mortality in hospitals, but the best treatment strategy remains
uncertain. In particular, evidence suggests that current practices in the administration of intravenous
fluids and vasopressors are suboptimal and likely induce harm in a proportion of patients. This

represents a key clinical challenge and a top research priority.

The main contribution of the research has been the development of a reinforcement learning framework
and algorithms, in order to tackle this sequential decision-making problem. The model was built and
then validated on three large non-overlapping intensive care databases, containing data collected from
adult patients in the U.S.A and the U.K. Our agent extracted implicit knowledge from an amount of
patient data that exceeds many-fold the life-time experience of human clinicians and learned optimal
treatment by having analysed myriads of (mostly sub-optimal) treatment decisions. We used state-of-
the-art evaluation techniques (called high confidence off-policy evaluation) and demonstrated that the
value of the treatment strategy of the Al agent was on average reliably higher than the human clinicians.
In two large validation cohorts independent from the training data, mortality was the lowest in patients
where clinicians’ actual doses matched the Al policy. We also gained insight into the model
representations and confirmed that the Al agent relied on clinically and biologically meaningful
parameters when making its suggestions. We conducted extensive testing and exploration of the
behaviour of the Al agent down to the level of individual patient trajectories, identified potential sources

of inappropriate behaviour and offered suggestions for future model refinements.

If validated, our model could provide individualized and clinically interpretable treatment decisions for

sepsis that may improve patient outcomes.
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Chapter 1: Background

Definitions

Sepsis is defined as a severe infection leading to life-threatening acute organ dysfunction (Singer M,
Deutschman CS, Seymour C, & et al, 2016). Sepsis differs from a “simple” infection in the sense that
it represents an aberrant or dysregulated host response to the infection and that it requires the presence
of organ dysfunction. In the new “sepsis-3” definition, organ dysfunction is defined, in the ICU, by an
increase in the Sequential Organ Failure Assessment (SOFA) score from baseline of 2 points or more
(Figure 1) (J. L. Vincent et al., 1996). The sepsis-3 definition replaced in 2016 the 15-year old sepsis-2
criteria (Levy et al., 2003). In using the sepsis-3, we adhered to the current international definition,
which was confirmed to be superior to Systemic Inflammatory Response Syndrome (SIRS) or quick
Sequential Organ Failure Assessment (QSOFA) for sepsis identification in ICU patients (Raith et al.,
2017).

Septic shock is a subset of sepsis in which cellular and circulatory abnormalities are severe enough to
significantly increase the risk of mortality. It is defined by the presence of persistent hypotension despite
adequate fluid volume resuscitation requiring vasopressors to maintain a mean arterial pressure greater

than or equal to 65 mmHg and blood lactate greater than or equal to 2 mmol/L.



Patient with suspected infection ‘
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Y

Septic shock

Figure 1: Sepsis-3 definition of sepsis and septic shock. SOFA: Sequential Organ Failure Assessment
score, qSOFA indicates quick SOFA; MAP, mean arterial pressure. Reproduced from (Singer M et al.,
2016).

Sepsis epidemiology

Sepsis affects as many as 25 million people annually worldwide, is a leading cause of death and one of
the most expensive conditions treated in hospitals (Fleischmann et al., 2015; Gotts & Matthay, 2016;
Torio & Andrews, 2013). In the USA, treating sepsis may account for up to 40% of all ICU expenses
(Torio & Andrews, 2013). It has been estimated that sepsis could cost more than $27 billion per year to
US taxpayers and up to £15 billion yearly in direct and indirect costs to the UK economy (Hex, Retzler,
Bartlett, & Arber, 2017; Torio & Andrews, 2013; J.-L. Vincent et al., 2006).

The main risk factors for sepsis include male gender, non-white ethnicity, advancing age,
immunosuppression, cancer, genetic factors such as polymorphisms in Toll-like receptor 1 and 4,

alcohol consumption, smoking, and vitamin D deficiency (Gotts & Matthay, 2016).
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There is wide variation in national-level estimates of sepsis, although most authors reported increasing
sepsis rates and decreasing trends in case mortality overall in the last 4 decades (Bouza, Lopez-
Cuadrado, Saz-Parkinson, & Amate-Blanco, 2014; Dombrovskiy, Martin, Sunderram, & Paz, 2007; T.
E. S. Group, 2004; Kaukonen K, Bailey M, Suzuki S, Pilcher D, & Bellomo R, 2014; Martin, Mannino,
Eaton, & Moss, 2003; Stevenson, Rubenstein, Radin, Wiener, & Walkey, 2014). Undoubtedly, sepsis
is being more and more recognised and diagnosed, thanks to more global awareness and various
education campaigns, which may have contributed to this trend. However, research using standardised
diagnostic methods also confirmed the existence of a rising trend. For example, Stevenson et al.
calculated standardized mortality ratios from the observed 28-day mortality of usual care participants
in clinical trials, for the period 1991 to 2009 (Figure 2) (Stevenson et al., 2014). At the time of this
writing, the most recent data available for the United Kingdom had been published by Shankar-Hari et
al. (Shankar-Hari, Harrison, Rubenfeld, Rowan, & Myles, 2017). In accordance with the rest of the
literature, these authors reported an increase in population incidence and a decrease in hospital mortality

over a 5-year period.

100
m  Multicenter Trials
90 A Martin criteria
80 - o Angus criteria
7o - = Multicenter trials regression line
604 e Martin regression line
> 1
®° - - =Angus regression line
5 50 i
=
R 40 -
30 4
20 4
10
| Year
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Mumber of Mo
Trial subjects 544 it 863 1682 1554 1148 97 882 1799 1670 537 645 91 509 45 834 400
Mumber of

“Angus' definition® 583 659 727 779 822 9802 929 95 103 118 134 151 170 188 211 250 272

MNumber of
‘Martin' definition* 2.07 233 259 290 312 336 348 355 394 449 513 609 69 791 889 102 108

2 Survey-weighted number of patients identified each year through specified administrative data algorithm, x 10°

Figure 2: Standardized mortality ratios from the observed 28-day mortality of usual care
participants in clinical trials, for the period 1991 to 2009. Reproduced with permission from

Stevenson et al. (Stevenson et al., 2014).
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Despite improvements in the last decades, mortality remains unacceptably high, at betweenl5 to 50%
depending on the definitions used and the various cohorts (Kaukonen K et al., 2014; P. E. Marik, 2015;
Mayr, Yende, & Angus, 2014; Rhee et al., 2017). Altogether, sepsis may claim the lives of around
150,000 and 215,000 people annually, in Europe and the US, respectively (Angus et al., 2001; Artero,
Zaragoza, & Miguel, 2012; J.-L. Vincent et al., 2006).

Sepsis physiopathology

Sepsis is caused by bacteria invading the body. These pathogens, when detected by the immune system
lead to a massive release, locally and systemically, of cytokines (such as interleukin 1, tumour necrosis
factor alpha, etc.), and other inflammatory mediators (Gotts & Matthay, 2016). These mediators are
responsible for massive vasodilation, endothelial damage, and local activation of coagulation pathways,
increased capillary permeability and decreased systemic vascular resistance. Myocardial dysfunction

may also occur and worsen circulation issues.

Altogether, these insults explain that a key clinical feature of patients in the early phase of sepsis is
relative (via systemic vasodilation) or absolute (via vascular leakage and reduced fluid intake)
hypovolaemia (inappropriate blood volume). Hypovolaemia is a serious condition, especially in frail
patients, and can manifest itself through a wide range of features including tachycardia, hypotension,
metabolic acidosis, kidney failure, perturbed clotting, respiratory distress or altered consciousness
(Gotts & Matthay, 2016; Rhodes et al., 2017). If left untreated, sepsis and hypovolaemia lead to rapid
death. Figure 3 shows an example of the different organ failures that can occur in a critically ill patient
with septic shock from pneumococcal pneumonia. It should be remembered that pneumonia was by far

the leading cause of death in the world before the discovery of antibiotics (Dowling, 1972).
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Figure 3: Example of organ failure occurring in a critically ill patient with septic shock from

pneumococcal pneumonia. Reproduced with permission from Gotts and Matthay (Gotts & Matthay,
2016).
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Current state-of-the-art sepsis management

Several important international endeavours have attempted over the years to improve recognition and
treatment of sepsis, noticeably the Surviving Sepsis Campaign (SSC) guidelines, the World Sepsis Day,
the Global Sepsis Alliance, among others. The SSC guidelines were introduced in 2002 to provide
clinicians with the best available evidence to guide their management of sepsis in an effort to improve

patient outcomes (Levy, Evans, & Rhodes, 2018; Rhodes et al., 2017).

The challenges in the management of sepsis include early identification, severity prognostication and
providing optimal targeted therapy. The management of a patient with sepsis can be summarised in 3

points (Gotts & Matthay, 2016):

1. Rapid control of the source of infection and treatment with antibiotics
2. Correction of the relative and absolute hypovolaemia with intravenous fluids and/or
Vasopressors;

3. Treatment of sepsis-induced secondary organ dysfunctions.

Among these three topics, the management of intravenous fluids and vasopressors to correct
hypovolaemia remains a central difficulty in sepsis management, and a top research priority (Avni et
al., 2015; Byrne & Haren, 2017; Cohen et al., 2015; Gotts & Matthay, 2016; P. Marik & Bellomo,
2016). The classic physiologic rationale for correcting hypovolaemia in sepsis is to restore intravascular
volume, cardiac output, and oxygen delivery (Gotts & Matthay, 2016; Rhodes et al., 2017; Semler &
Rice, 2016). We have defined hypovolaemia in sepsis as being both absolute and relative, which
schematically (and simplistically) can be corrected by the administration of intravenous fluids and

vasopressors, respectively.

Intravenous fluids represent sterile solutions which contain water combined with electrolytes or larger
molecules and are given intravenously to expand the extracellular volume (“volume expanders”). They
are schematically classified in 3 categories: crystalloids, colloids and blood products (Lewis et al., 2018;
P. Marik & Bellomo, 2016; Severs, Hoorn, & Rookmaaker, 2015). Crystalloids are solutions of ions
which are freely permeable through capillary membranes. They increase plasma volume by about 200
mL for every 1,000 mL given. Normal saline (0.9% sodium chloride) is the most commonly used
crystalloid globally. It is isotonic to extracellular fluid but contains a chloride concentration
significantly higher than plasma (154 mmol/L), which can lead to hyperchloraemic acidaemia when
large volumes are infused. In contrast, so-called balanced crystalloids derived from Hartmann's and

Ringer's solutions provide anions that more closely approximate plasma composition.
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Colloids are suspensions of large molecules in a carrier fluid with high enough molecular weight to
prevent crossing healthy capillary membranes. Colloids can be synthetic (hydroxyethyl starches,
gelatins, dextrans) or derivatives of human plasma (albumin solutions). They are thought to be more
effective plasma expanders than crystalloids by remaining in the intravascular space and maintaining
oncotic pressure. Blood products (red blood cell packs, fresh frozen plasma, pools of platelets, etc.) are

not recommended in routine sepsis resuscitation for the correction of hypovolaemia.

Since the advent of intravenous fluids, there has been debate as to which product is the best for patients
critically ill from infection. The ideal sepsis resuscitation fluid would increase intravascular volume
without accumulating in tissues, contain a chemical composition similar to plasma, and improve patient
outcomes in a cost-effective manner (Gotts & Matthay, 2016; Semler & Rice, 2016). No such fluid
currently exists. Importantly, capillary leakage is not corrected by fluids or vasopressors, so any type
of fluid administration may ultimately exacerbate interstitial oedema and impair organ perfusion. A
2018 Cochrane systematic review of the literature concluded that using colloids versus crystalloids for
fluid resuscitation in critically ill people probably makes little to no difference to mortality, but that
starches probably slightly increase the need for renal replacement therapy and blood transfusion (Lewis
et al., 2018). Crystalloids remain the first line treatment recommended by the latest iteration of the SSC
guidelines (Rhodes et al., 2017).

The other drug category of interest is represented by vasopressors. They are powerful drugs that are
given by slow intravenous infusions (in general using a central venous access) mainly for their
vasoconstrictive properties. They can be classified as adrenergic (norepinephrine, phenylephrine,
epinephrine, ephedrine, dopamine) and non-adrenergic (vasopressin and analogues, angiotensin II,
nitric oxide synthase inhibitors) (Avni et al., 2015; Russell et al., 2008). In addition to their
vasoconstrictive effect, they exert various actions on the cardiovascular system and others (such as
positive inotropic effect), which may prompt physicians to use one or another. For example, adrenaline
has a potent positive inotropic effect (through beta-1 adrenergic receptor stimulation), and may be
administered for patients combining vasoplegia and heart failure. Multiple comparative studies showed
that noradrenaline was associated with higher survival than dopamine, and it remains the most

commonly administered vasopressor in sepsis (Avni et al., 2015; Rhodes et al., 2017).

The current consensus among intensivists is to titrate fluid administration and vasopressors to reach
certain resuscitation targets such as mentation, urine output, mean arterial pressure, central venous
pressure, fluid responsiveness, blood lactate, mixed venous oxygen saturation or others, in an attempt
to normalise or optimise tissue perfusion (Avni et al., 2015; Gotts & Matthay, 2016; P. Marik &
Bellomo, 2016; Rhodes et al., 2017). In this vision, haemodynamic outcomes are used as surrogate

markers for survival, the ultimate goal of treatment (Avni et al., 2015). The recommended approach is
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to administer intravenous fluids until fluid responsiveness is corrected, and then to initiate vasopressors
if blood pressure targets are not achieved. Fluid responsiveness is estimated using various
haemodynamic parameters that may be static (central venous pressure, inferior or superior vena cava
diameter, pulmonary artery occlusion pressure, etc.) or dynamic (pulse pressure variation, stroke
volume variation, inferior or superior vena cava collapsibility/distensibility, plethysmographic

variability index, etc.) (Gotts & Matthay, 2016; Mackenzie & Noble, 2014; Rhodes et al., 2017).

Repletion of adequate intravascular volume with intravenous fluids is crucial prior to the initiation of
vasopressors since they may be ineffective in the setting of coexistent hypovolaemia. The SSC
recommends initiating vasopressors within the first hour in patients who remain hypotensive during or
after initial fluid resuscitation (Levy et al., 2018). If maximal doses of a first agent are inadequate, then
a second drug should be added (Gotts & Matthay, 2016; Levy et al., 2018). A difficulty comes from the
fact that resuscitation parameters are numerous and that optimal targets for each of them are unknown
at the patient level and likely dynamic in time. For example, it is still unclear which level of mean
arterial pressure should be targeted in sepsis (Asfar et al., 2014; Beloncle, Lerolle, Radermacher, &
Asfar, 2013; Corréa, Jakob, & Takala, 2015). The multiple resuscitation targets and the methods for
assessing fluid responsiveness that have been proposed over the years can be seen as yet another
indicator of the lack of consensus and definite knowledge about the right approach, which leads to huge
practice variation from bewildered clinicians. Additionally, although many clinicians advocate titrating
therapies in individuals based on physiological response, we know that this has limitations that short-
term physiological improvement doesn’t always result in longer-term clinical benefit i.e. survival for

patients.

Until recently, the gold standard for sepsis treatment was represented by the Early-Goal Directed
Therapy (EGDT) protocols, a highly aggressive and structured approach to sepsis resuscitation (Rivers
et al.,, 2001). It was commonly accepted that septic patients urgently required large amounts of
intravenous fluids in order to reverse refractory sepsis-induced tissue hypoperfusion or organ
dysfunction. For example, the latest two iterations of the SSC guidelines recommend the administration
of 30 ml/kg of crystalloid in the first 3 hours for septic patients with suspected hypovolaemia or initial
blood lactate concentration > 4 mmol/L (with no exception) (Dellinger et al., 2013; Rhodes et al., 2017).
These guidelines have been implemented and enforced (including by law, for example with Rory’s
Regulations in the USA) for many years, noticeably in the form of sepsis bundles such as the “sepsis
six” which have dramatically impacted routine practice. As a consequence, clinically significant fluid
overload and positive fluid balance is a common finding in septic cohorts. For example, a retrospective
study measured a positive fluid balance in excess of 6 litres at 24h in 43% of patients with sepsis (Boyd,

Forbes, Nakada, Walley, & Russell, 2011).
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The harmful effects of administering excessive amounts of fluids and of a sustained positive fluid
balance in sepsis are well documented (Acheampong & Vincent, 2015; Byrne & Haren, 2017; Gotts &
Matthay, 2016; Kelm et al., 2015; P. E. Marik, 2015). Various studies from multiple countries have
established an association between large resuscitation volumes and/or a positive fluid balance in sepsis
and acute kidney injury, heart and respiratory failure, hospital, 28-day and 90-day mortality (see
example on Figure 4), and the need for medical interventions (diuretics, thoracocentesis, renal
replacement therapy for fluid removal, etc.) (Acheampong & Vincent, 2015; Angus et al., 2015a; Boyd
et al., 2011; de Oliveira et al., 2015; T. A. Investigators & Group, 2014; T. P. Investigators, 2014;
Malbrain et al., 2014; Micek et al., 2013; Mouncey et al., 2015; Rosner et al., 2014; Sirvent, Ferri, Baro,
Murcia, & Lorencio, 2015). Several large randomized controlled trials (RCTs) (including ProCESS,
ARISE, and ProMISe) have invalidated EGDT, leaving physicians with little guidance on how to best
treat patients (Allen-Dicker, 2015; Angus et al., 2015a; P. E. Marik, 2015; The PRISM Investigators,
2017). Conversely, it was established as early as 20 years ago that a net daily negative fluid balance
was closely associated with a reduction in mortality in sepsis (Alsous, Khamiees, DeGirolamo,
Amoateng-Adjepong, & Manthous, 2000). This effect seems to persist after adjusting for potential

confounders such as patient illness severity.
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Figure 4: Association between cumulated fluid balance on day 4 post sepsis and 28-day mortality.

Reproduced with permission from Boyd (Boyd et al., 2011).
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An alternative resuscitation strategy is to use vasopressor therapy earlier (Byrne & Haren, 2017; P. E.
Marik, 2015; Waechter et al., 2014) and the potential benefit of this approach in sepsis has been
described (Figure 5) (Bai et al., 2014; Beck et al., 2014; Subramanian et al., 2008; Waechter et al.,
2014). Noradrenaline has many desirable properties which address several of the physiologic
derangements in sepsis. These properties include arterial constriction leading to an increase in blood
pressure, positive inotropy and venoconstriction which increases preload and can improve cardiac
output and renal perfusion (Bai et al., 2014; Kipnis & Vallet, 2010; Paul E. Marik, 2014). In
hypovolaemic patients, noradrenaline may improve preload while intravenous fluids are simultaneously

being infused.
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Figure 5: Association between norepinephrine administration delay (from the onset of septic

shock) and hospital mortality. Reproduced from Bai (Bai et al., 2014).

To sum up, no tool is currently available to individualise the treatment of sepsis, while a more
personalised medicine has been hoped for (Byrne & Haren, 2017; Dellinger et al., 2013; P. Marik &
Bellomo, 2016; P. E. Marik, 2015; J.-L. Vincent, 2016). Several key clinical questions in sepsis
management remain unanswered, such as the right balance between fluid and vasopressors, the timing
for initiating those drugs, the rate of fluid administration, the correct volume of intravenous fluid to
administer during initial resuscitation and later stages, resuscitation targets and fluid balance targets

(Acheampong & Vincent, 2015; Asfar et al., 2014; Beck et al., 2014; Beloncle et al., 2013; Corréa et
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al., 2015; de Oliveira et al., 2015; Gotts & Matthay, 2016; Malbrain et al., 2014). The cut-off point
between giving too little and too much fluid is dynamic and difficult to assess, and both conditions lead
to adverse outcomes (Figure 6). Clinicians have difficulty identifying which patients need fluid: several
studies have shown that approximately 50% of fluid boluses fail to achieve an increase in cardiac output,

meaning that they were given inappropriately (Mackenzie & Noble, 2014).

* Cardiacfailure

* Pulmonaryoedema

* Interstitial oedema

* Coagulationdisorders

* Low cardiac output
* Tissue hypoperfusion
* Organ failure

Risk of adverse outcomes

Volume of fluid given

Figure 6: Fluid load in sepsis versus risk of organ failure and other complications. Modified from

Bellamy (Bellamy, 2006).

As a consequence of the uncertainty around sepsis resuscitation, clinical variability in treatment is
extreme, with consistent evidence that suboptimal decisions lead to poorer outcomes. It has been
suggested that current research paradigms (in particular in the form of RCTs) have stalled, and that new
approaches are needed in order to achieve further improvements in outcomes (Bosurgi, 2015; Leo

Anthony Celi, Zimolzak, & Stone, 2014; Cohen et al., 2015; M. Ghassemi, Celi, & Stone, 2015).

RCTs remain the gold standard for clinical knowledge discovery (M. Ghassemi et al., 2015; Murad,
Asi, Alsawas, & Alahdab, 2016). The reality is that most treatment comparisons have never been tested
by an RCT and that only a small proportion of medical decisions are based on RCT-supported evidence
(M. Ghassemi et al., 2015). The British Medical Journal analysed the harms and benefits of 3,000

medical interventions in RCTs and came to striking conclusions (Smith, Street, Volk, & Fordis, 2013).
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Half of the interventions were of unknown effectiveness, while only about a third of the treatments were
shown to be beneficial (11%) or likely to be beneficial (23%). Exponential combinations of patients,
diseases and treatments can never be exhaustively tested by RCTs. RCTs often include highly selected
populations, hence their conclusions are not generalizable to other groups, such as those of different
age, ethnic origins or with particular comorbidities or medications. Often, conclusions from RCTs are

simply not applicable to real-world decisions about real-world patients (M. Ghassemi et al., 2015)!

Large-scale retrospective health data analytics, combined with biostatistics and/or machine learning
represent an opportunity to address clinically relevant questions using another approach than RCTs
(Leo A. Celi, Csete, & Stone, 2014; Leo A. Celi, Mark, Stone, & Montgomery, 2013; M. Ghassemi et
al., 2015). Retrospective studies, in general, are useful for testing the association between multiple
exposures and outcomes and often can be conducted faster than RCTs and for less money (Frieden,

2017; Murad et al., 2016). The risk of bias and confounding effects are well documented.

The potential applications for health data analytics in acute care environments include predictive models
for prognostication and early alerting, reporting analytics of patient stays, triage, readmission, adverse
events, clinical decompensation, and optimization of treatment decisions and care pathways (M.
Ghassemi et al., 2015). Over the last few years, ICU databases have allowed to develop predictive
models with actionable outputs that potentially influenced clinical practice and led to quantifiable
improvements in process and/or outcome (Leo A. Celi et al., 2014, 2013; Leo Anthony Celi, Hinske,

Alterovitz, & Szolovits, 2008; M. Ghassemi et al., 2015; M. M. Ghassemi et al., 2014).

The opportunity for machine learning in decision-making in healthcare

Machine learning is an application of artificial intelligence (Al), where a machine analyses data and
acquires the ability to execute complex (“smart”) tasks without being explicitly programmed. Machine
learning has been suggested as a novel approach to assist decision-making in healthcare (Bennett &
Hauser, 2013; Murdoch TB & Detsky AS, 2013). This concept fits into the vision of a data-driven
healthcare system, where the previous medical cases and information are converted into clinical tools
and decision support systems that are applied to new patients, whose information is thereafter added to

the global database, leading to further increases in knowledge (Leo Anthony Celi et al., 2014).

Reinforcement learning (RL) is a category of machine learning tools where a virtual agent learns from
trial-and-error an optimized set of rules — a policy — that maximizes an expected return (Bennett &
Hauser, 2013; Sutton & Barto, 2018). Similarly, a clinician’s goal is to make therapeutic decisions in

order to maximize a patient’s probability of a good outcome (Bennett & Hauser, 2013; Schaefer, Bailey,
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Shechter, & Roberts, 2005). RL has many desirable properties that may help medical decision-making.
Their intrinsic design that uses sparse reward signals makes them well suited to overcome the
complexity related to the heterogeneity of patient responses to medical interventions and delayed
indications of the efficacy of treatments (Sutton & Barto, 2018). Importantly, these algorithms can infer
optimal strategies from suboptimal training examples, which is what human clinicians’ decisions
provide. Clinical databases present an opportunity to study medical questions where practice variation
exists, as a result of either lack of or conflicting medical knowledge (Leo A. Celi et al., 2014, 2013; M.
Ghassemi et al., 2015). RL can take advantage of this variability in clinical practice, and identify which
decision(s) appear(s) to be the most optimal for a given group of patients or even at the individual

patient level.

Introduction to reinforcement learning and notation

As defined by Sutton and Barto: “Reinforcement learning is learning what to do—how to map situations
to actions—so as to maximize a numerical reward signal” (Sutton & Barto, 2018). RL is a class of
machine learning algorithms, whose goal is to estimate an optimal set of rules (a policy) that maximises
some form of reward or return, using a model of a decision process. “The learner is not told which
actions to take, but instead must discover which actions yield the most reward by trying them. In the
most interesting and challenging cases, actions may affect not only the immediate reward but also the
next situation and, through that, all subsequent rewards. These two characteristics—trial-and-error
search and delayed reward—are the two most important distinguishing features of reinforcement

learning.” (Sutton & Barto, 2018).

Various Markov model frameworks can be used to deploy RL algorithms, the simplest being a discrete
Markov decision process (MDP) (Puterman, 1994; Sutton & Barto, 2018). In an MDP, we model the
interactions of an agent and an environment, in which the agent follows a policy n and acts on the
environment. The environment reacts by transitioning into a new state and releasing a reward if the new
state has more desirable properties than the previous state (Figure 7). When this happens, the decision

that led to this transition is being reinforced — hence the term RL.
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Figure 7: The agent-environment interaction in an MDP. Reproduced from Sutton and Barto (Sutton

& Barto, 2018).
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In medical applications, the true patient physiological state is only partially represented by the data
available, and therefore the disease process could be formulated as a Partially Observable MDP
(POMDP). A POMDP accounts for the uncertainties in the decision maker’s observations of the actual
state of the environment (Spaan, 2012). In our problem, we observe patient parameters (consciousness,
heart rate, blood pressure, arterial pH...) which depend on the actual health state of a patient, but only
represent a part of the information about the true state. A POMDP extends the MDP framework by
adding observations (a finite set of observations of the state) and an observation function (which
captures the relationship between the observations and the state, and can be action dependent). These
observations can be used to model perceptual aliasing (the fact that many states can give the same
observation), noisy or faulty sensors (e.g. electrode disconnection for heart rate measurement), or both
(Spaan, 2012). Since solving a POMDP is computationally expensive and require additional
assumptions, we simplified the POMDP into an MDP to approximate patient trajectory and to model
the decision-making process (Bennett & Hauser, 2013; Puterman, 1994; Sutton & Barto, 2018). The
MDP model naturally captures the variability in physiological responses to clinical events as well as
the variability in patients’ trajectories. Markov models deal very well with time series since they are
able to capture the dependencies between variables, but also the serial correlation in the measurements
(Aghabozorgi, Seyed Shirkhorshidi, & Ying Wah, 2015). In our model, the patient represents the

environment in which the physician (the agent) acts (Figure 8 and Figure 9).
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Figure 8: The framework of RL applied to the healthcare setting, showing the physician-patient
interaction. Adapted from (Sutton & Barto, 2018). The policy 7 is the set of rules controlling which

action is taken while in a particular state.
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Figure 9: Conceptual representation of trajectories of critically ill patients through different

states, from admission to survival or death. Each known possible transition is associated with a

reward or penalty (the value of the action), ranging from -100 to +100 points in this example, depending

on how the treatment administered probabilistically affects the patient prognosis. In each state, the

action of highest value is the most optimal action.
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Formally, a Markov decision process (MDP) is defined as a tuple {S,A,T,r,y} where S is a set of states,
A is aset of actions, T : S’xSxA — [0.1] is a probability mass function defining a distribution over next
states S’ for each state and action, r : SXxA — [-100,100] is a bounded reward function, y € [0,1] is a
discount factor, which can be thought of as an interest rate (an immediate reward is worth more than a
reward in the future). Our notation assumes that the state, action, and reward sets are finite. An agent
samples actions from a policy, © : SxA— [0,1], which is a probability mass function on A conditioned
on the current state. A policy is deterministic if m(als) = 1 for only one a in each s, or probabilistic if
n(als) = p(als,m). A trajectory, H of length L is a state-action history, So,Au,...,SL-1,AL-1 where So ~ do,
do is a probability mass function over initial states, A; ~ n(-|S;), and Si+1 ~ T(:|Si,A¢). The return of a
trajectory H is g(H). The policy, n, and transition dynamics, T, induce a distribution over trajectories,
p=- We write H ~ 7w to denote a trajectory sampled by executing = (i.e., sampled from p5). The expected
discounted return of a policy « is defined as V(m) := E[g(H)|H ~ =t]. Two separate policies are defined:
T, the behaviour policy, the policy followed by clinicians, and 7., the evaluation policy, Al policy or
“optimal” policy for the model. The training ICU dataset provides a set of n historical trajectories

DZ{H1,. . .,Hn}, where Hi ~Tp.

Next, we must select and justify the choice of RL algorithms in order to 1) evaluate 7, and 2) generate

TCe.

Reinforcement learning algorithms

Clinicians’ policy evaluation

We performed an evaluation of m, the policy of clinicians using temporal difference learning (TD-
learning) of the Q function, by observing all the drug prescriptions in existing records and computing
the average value of each treatment option, at the state level (Sutton & Barto, 2018). Because the

algorithm uses existing episodes, it is said to rely on offline sampling.

The advantage of TD-learning versus policy iteration is that it does not require knowledge of the MDP
(model-free), and makes it possible to learn simply from sample trajectories (Sutton & Barto, 2018). It
was computed from actual patient episodes of successive state-action pairs, with resampling, using the

following iterative procedure (Algorithm 1). A learning rate o of 0.1 was selected.
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Initialise the Q value as a zeros array
Pick one episode randomly from the training data
Compute the Q update formula for all the time steps of the episode,

in reverse order:

Q"(s,a) « Q"(s,@) +a- (r+y-Q"(s",a’) — Q" (s, @) (1)

With @Q"(s,a) the Q wvalue of the current {state, action} tuple
considered, Q7(s',a’) the Q value of the next {state, action} tuple, o

the learning rate and r the immediate reward.

Repeat steps 2 and 3 for a total of 500,000 iterations

Algorithm 1: Pseudocode for TD-learning.

Optimal policy estimation

We learned 7., a theoretical optimal policy for the simplified MDP using in-place policy iteration, which

identified the decisions that maximized the long-term sum of rewards, hence the expected survival of

patients (Sutton & Barto, 2018). Policy iteration is a type of dynamic programming algorithm that starts

with a random policy that is iteratively evaluated then improved until converging to an optimal solution

(see schematic below, from (Sutton & Barto, 2018), page 63).

evaluation

T Vv
TT—gready(V)

improvement
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Policy iteration was implemented using the procedure summarised in Algorithm 2.

1- Randomly initialise the optimal policy

2- Evaluate the value function of the current optimal policy

3- Improve the current optimal policy using a greedy policy definition
4- Repeat steps 2 and 3 until no further improvement in the optimal

policy is seen

Algorithm 2: Pseudocode for policy iteration.

After convergence, the Al policy m* corresponds to the actions with the highest state-action value in

each state:
*(s) « argmax,Q™ (s,a) Vs 2)

The value V of a policy © was computed using the recursive, self-consistent Bellman equation for V'™

and represents the expected return when starting in s and following 7 thereafter:

VT(s) = Zan(s,a) X, T(s',s,A)[R(s) +yV7(s")] )

We also estimated the Al policy using off-policy Monte Carlo control, which led to identical results but
was roughly 1,000 times slower to run. In Monte Carlo control, the optimal policy is learnt from
exploring the state-action space, generating virtual patient trajectories and using complete sample
returns (from any state until discharge or death). The general concept is that the Q function will be learnt
from averaging the returns from multiple visits to each state. The convergence of the algorithm is
guaranteed by the use of a soft policy definition, which maintains a degree of exploration during the
generation of episodes, so the probability to visit any {s,a} pair is not null. We used an off-policy variant
of the algorithm since the policy used to generate the data (the behaviour policy, or the clinicians’
policy) may be unrelated to the policy that is evaluated and improved (the estimation policy, or the Al
policy). The estimation policy is updated using a greedy policy definition. Off-policy methods are

appropriate to learn from data generated by a non-learning controller or from a human expert (Sutton
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& Barto, 2018). In the end, policy iteration was the only method used to estimate the optimal policy

because it was computationally more efficient.

Challenges of model evaluation

Retrospective validation of a learning algorithm is challenging because it is impossible to know the
outcome of an action that was not taken. We must find reliable methods to assess the value of a policy
that was never deployed and is different from the one that was executed by clinicians. Formally, we
want to predict the performance of a newly generated RL policy (n., the evaluation policy, the Al policy)
given historical data that has been generated by a different policy (m,, the behaviour policy, the
clinicians’ policy). This problem is called off-policy policy evaluation (OPE).

Why is it so difficult?

Both shallow and deep RL algorithms have been successfully applied to a variety of artificial tasks such
as solving randomly generated MDPs (Precup, Sutton, & Singh, 2000), pathfinding (Hanna, Stone, &
Niekum, 2016; Jiang & Li, 2015), self-balancing poles, the mountain car problem (Jiang & Li, 2015; P.
S. Thomas, Theocharous, & Ghavamzadeh, 2015), playing Atari games (Mnih et al., 2015) even without
reward function (Aytar et al., 2018), chess or the game of go (Silver et al., 2016). Why are we not seeing
myriads of high impact research applying RL to healthcare problems? The following section on “related
work” presents a few examples, most of which have limited value (in particular because of limited state
and action spaces) and have made little to no impact to clinical practice. However, the list of candidate
questions that could theoretically be addressed with RL in intensive care alone is infinite: blood glucose

control, renal replacement therapy and sedation, sequential antibiotic dosing, etc.

We explored some of these arguments in a separate Nature Medicine publication (Gottesman et al.,
2019). First of all, a key limitation until recently has been the lack of available data to conduct such
research. Digitization of healthcare is now widespread, having reached for example 96% of all non-
federal acute care hospitals in the USA in 2015 (Office of the National Coordinator for Health
Information Technology, 2016). Next, converting raw electronic health record (EHR) data into an
analysable dataset requires a tremendous effort, expertise in data science, healthcare and the individual
EHR software, in order to address many issues such as siloed data, anonymisation, harmonization,
encoding of clinical concepts, etc. (Leo A. Celi et al., 2014; Leo Anthony Celi et al., 2014). The next

difficulty is that healthcare is a high-risk environment: deploying a bad policy would be dangerous
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and/or costly (P. S. Thomas & Brunskill, 2016; P. S. Thomas et al., 2015). We need guarantees of the
safety of the policy before implementation. In medicine, we only have a limited amount of training data,
whereas virtual agents (such as those used in computer simulations) can collect millions of hours of
simulated trials (e.g. gameplay). In these other settings, the environment is in general fully specified: at
any moment, all the information available to make the best possible move (Figure 10). On the other
hand, in medicine, the patient data available represents only a fraction of the data that could be collected,
which itself represents an imperfect and incomplete representation of the true patient health state. In
some sense, the data available could be compared to “looking through the keyhole of physiology”. In
artificial computer science problems, RL agents learn and improve by trial and error. This is impossible
in healthcare: we cannot let an RL agent try various (partially random or unrefined) policies on human
subjects and simply learn by trial and error. Also, training time would be prohibitive if only one trial
could be run in the real world at a time. These challenges are to some extent common when trying to
apply RL in other domains such as robotics, where hardware cost and training speed precludes large-
scale learning by trial and error (Kormushev, Calinon, & Caldwell, 2013). High-fidelity simulation of
the robots in their environment can allow some of these difficulties to be overcome. In medicine, there

is no high-fidelity simulator that would allow testing the policy without putting human lives at risk.

28



Value (V)

T T T T T T T 1
0 5 0 15 20 26 3 35 40 45 50 55 60 65 7O 75 B8O 85 S0 95 1MW WS 110 15 120

Frame #

Figure 10: Breakthrough 2015 Nature paper on deep RL applied to learning to play classic Atari
games “pixel to action”. Here the environment is fully specified: at any moment, all the information is
available to make the best possible decision, which is not true for medical problems. Reproduced from

(Mnih et al., 2015).

Formalising off-policy evaluation

In OPE tasks, we want to predict the performance of 7. the evaluation policy (generated by the RL

agent) given historical data that was generated by m, the behaviour policy (the clinicians in our case).

Schematically, OPE can be model-based or importance sampling based (Jiang & Li, 2015; P. S. Thomas
& Brunskill, 2016). The first approach is model-based, which Jiang & Li call “regression-based”, and
Thomas refers to as computing the “approximate model” estimator, where an approximate model of the
MDP is constructed using all the available data (fitted to the data via regression), then used to compute
the performance of the evaluation policy, which is used as an estimate of V(n) (P. S. Thomas &
Brunskill, 2016). “Such a regression-based approach has a relatively low variance and works well
when the model can be learned to satisfactory accuracy. However, for complex real-world problems, it
is often hard to specify a function class in regression that is efficiently learnable with limited data while
at the same time has a small approximation error. Furthermore, it is in general impossible to estimate

the approximation error of a function class, resulting in a bias that cannot be easily quantified.” (Jiang
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& Li, 2015). “The second class of approaches are based on the idea of importance sampling (1S), which
corrects the mismatch between the distributions induced by the target policy and by the behavior policy.
Such approaches have the salient properties of being unbiased and independent of the size of the
problem’s state space, but its variance can be too large for the method to be useful when the horizon is

long” (Jiang & Li, 2015).

An important motivation for off-policy evaluation is to guarantee safety before deploying a policy. For
this purpose, we have to characterize the uncertainty in our estimates, usually in terms of a confidence
interval (CI), which led to the concept of high-confidence off-policy evaluation (HCOPE) (Gottesman
et al., 2019; Hanna et al., 2016; Jiang & Li, 2015; P. S. Thomas & Brunskill, 2016; P. S. Thomas et al.,
2015). Different approaches can be used to achieve this, but the most data-efficient appears to be
bootstrapping (more detail below in chapter 4) (Hanna et al., 2016; P. S. Thomas & Brunskill, 2016; P.
S. Thomas et al., 2015).

Related work

MDPs are a powerful and appropriate technique for modelling medical decision (Schaefer et al., 2005).
They are most useful to formulate problems involving sequential, stochastic and dynamic decisions like
medical treatment, for which they can find optimal solutions (Schaefer et al., 2005). Despite this
tremendous potential, there have been very few applications of RL in healthcare, for the reasons

discussed above (Bennett & Hauser, 2013).

Early models such as the one proposed by Tsouklas et al., that dealt with antibiotic treatments options
in intensive care (Tsoukalas, Albertson, & Tagkopoulos, 2015) were limited by a restricted state space
(only 10 states, defined by expert opinion) and set of features (only 6). Other early applications of
Markov models in healthcare explored various problems such as insulin therapy in diabetes (Bothe et
al., 2013; Daskalaki, Diem, & Mougiakakou, 2016), propofol anaesthesia (Moore et al., 2014), liver
transplant (Alagoz, Maillart, Schaefer, & Roberts, 2004), HIV therapy (Shechter, Bailey, Schaefer, &
Roberts, 2008), breast cancer (Maillart, Ivy, Ransom, & Diehl, 2008), Hepatitis C progression (Daniel
M Faissol, 2007), statin therapy (Denton, Kurt, Shah, Bryant, & Smith, 2009) and hospital discharge
management (Kreke, 2007).

Lately, a few exciting projects made use of the high dimensionality of patient data, in ICU (Prasad,
Cheng, Chivers, Draugelis, & Engelhardt, 2017), in ophthalmology (T. D. R. Group, 2017) or for HIV
therapy (Parbhoo, Bogojeska, Zazzi, Roth, & Doshi-Velez, 2017). Prasad’s used the Medical
Information Mart for Intensive Care, version 3 (MIMIC-III) database to build a continuous MDP to

30



model sedation and mechanical ventilation. The authors derived an optimal strategy and demonstrated
that the higher the distance between actual and optimal policies, the worse the outcomes (Figure 11).

We use some similar validation methods (see for example Figure 38).
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Figure 11: Evaluation method suggested by Prasad et al. Patient outcome is plotted against the
distance between the Al and the clinicians’ policies, demonstrating that outcomes are better when the

actual actions match the policy generated by the RL agent. Reproduced from (Prasad et al., 2017).

RL was also used to model the best interval for monitoring of diabetic retinopathy (T. D. R. Group,
2017). Parbhoo’s work combined an RL model to kernel-based methods (so-called mixture-of-experts

approach) to derive an optimal management strategy for HIV therapy (Parbhoo et al., 2017).

Hypotheses and objectives

I hypothesised that RL could be used to model the dynamics of adult patients with sepsis and help
identify optimal treatment strategies. The objective of this research to build a framework to implement
RL algorithms from the secondary analysis of existing ICU medical records, in order to optimise the

management of intravenous fluids and vasopressors in adult patients with sepsis.
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This hypothesis implies several sequential assumptions:

1. The true patient health state is represented to a sufficient extent by the data available in existing
ICU databases;

2. Itis possible to retrospectively identify sepsis according to the recognized definition;
The trajectories of patients with sepsis can be modelled with an MDP;

4. Fluid and vasopressor therapy (stochastically) influence the transition between health states in
this target patient population;

5. The value of drug dosage can be quantified (with a confidence interval) in terms of their impact
on the risk of mortality;

6. An optimal policy can be learnt, that optimises patient mortality;

7. Methods exist to quantify the value (with a confidence interval) of this newly generated optimal
policy;

8. This optimal policy has a higher value than the clinicians’ treatment strategy.
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Overview of the approach

The data flow in this research is outlined in Figure 12.
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Figure 12: Data flow in the project and content of the thesis chapters. Eighty percent of the MIMIC-
IIT dataset was used to define the elements of the Markov decision process. The dose of intravenous
fluids and vasopressors were discretized into 25 possible actions. Patients’ survival at 90 days after ICU
admission defined rewards. RL was used to evaluate the value of clinicians’ policy and estimate optimal
treatment strategies. The model was validated on the remaining 20% MIMIC-III data then tested on two
independent datasets from the e-Research Institute (eRI) and CCHIC databases.

33



Chapter 2: Data extraction and pre-processing

This chapter contains the description of how the three separate datasets used in this project were

prepared.

The datasets

Three databases were used in this research: MIMIC-III (version 1.4), eRI (version 2.0) and CCHIC
(version 1.0). All databases contain high-resolution patient data including demographics, vital signs
time series, laboratory tests, illness severity scores, medications and procedures, fluid outputs, clinical
notes, and diagnostic coding. CCHIC does not contain information about intravenous fluid intake, so
this set of decisions could not be assessed. In all databases, the data of interest can be constant (age,
gender) or time-varying, and features can be binary (e.g. readmission), categorical (e.g. gender) or

continuous (e.g. blood sodium).

MIMIC-III is an open-access anonymized database of 61,532 distinct admissions between 2001 and
2012 in 6 ICUs (Coronary Care Unit, Cardiac Surgery Recovery Unit, Medical Intensive Care Unit,
Surgical Intensive Care Unit, Trauma Surgical Intensive Care Unit and Paediatric Intensive Care Unit)
at the Beth Israel Deaconess Medical Center, a large Boston teaching hospital (Goldberger et al., 2000;
Alistair E. W. Johnson et al., 2016). The data in MIMIC-III was collected via two different critical care
information systems: Philips CareVue Clinical Information System (models M2331A and M1215A;
Philips Healthcare, Andover, MA) and iMDsoft MetaVision ICU (iMDsoft, Needham, MA). MIMIC-
[T is unique among the databases used because it linked hospital electronic health record with the Social

Security Administration Death Master File, so mortality even after hospital discharge is known.

The full version of the eRI contains more than 3.3 million admissions in 459 ICUs across the U.S.A,
recorded between 2008 and 2016 via the Philips tele-ICU program. This project allows clinicians to
remotely monitor and guide the management of multiple ICU patients across multiple sites, from a
centralised location. As such, the system streams a wide range of patient information, which is then
collected and stored by the company. It contains the same data types as MIMIC-III, but data quality is
very heterogeneous across the sites, so processes had to be developed to filter out the ICUs where data

quality was insufficient (more on this later in this chapter).

The full MIMIC database is available to researchers who complete a human research ethics training
programme and sign a data use agreement. Access to MIMIC has been granted to more than 4,000

individuals and institutions throughout the world. The full version of the eRI is not openly available but
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access was granted by the Philips Research Institute research committee in December 2016. A subset
of over 200,000 patients from the eRI has been made available to the public in 2017, following the
MIMIC model, and is called the eICU Collaborative Research Database (https://eicu-crd.mit.edu/).

The Critical Care Health Informatics Collaborative database (CCHIC) comprises data from 33,535
unique patients (42,232 ICU admissions) admitted between 2014 and 2017 into 11 general adult medical
and surgical ICUs at the five founding National Institute of Health Research (NIHR) Biomedical
Research Centres (BRCs) at Cambridge, Guy’s, Kings’ and St Thomas’, Imperial, Oxford and
University College London (UCL) (Harris et al., 2018). The current dataset includes 264 fields
comprising 108 constant fields (hospital, unit, patient and episode descriptors, recorded once per
admission), and 154 time-varying physiology and therapeutic fields (recorded hourly, daily etc.). Data
is currently being added on a quarterly basis, and the full database is hosted in a “safe haven” with
restricted physical access within the Wolfson Institute for Biomedical Research, based in the UCL
Cruciform building. An anonymised data subset is freely available, but access to the full identifiable

dataset is restricted to a selected number of researchers internal to UCL.

All the three datasets are relational SQL databases. MIMIC-III and eRI (PostgreSQL) were accessed
and queried using HeidiSQL (version 9.4.0.5125), while CCHIC (SQLite) was accessed from Rstudio
(version 1.1.383) using the packages cleanEHR (https://github.com/ropensci/cleanEHR), dplyr and

dbplyr. With regards to data readiness level, all three databases were “band C” as per Lawrence’s
taxonomy, meaning that the data was available and ready to be loaded into a data extraction software,

but no information was known at this point on data trustworthiness, missingness, etc. (Lawrence, 2017).

The institutional review board (IRB) of the Massachusetts Institute of Technology (No. 0403000206)
and Beth Israel Deaconess Medical Center (2001-P-001699/14) approved the use of MIMIC-III for
research. The use of the eRI database was approved by the eICU research committee and exempt from
IRB approval as the database security schema and the re-identification risk were certified as meeting
safe harbour standards by Privacert (Cambridge, MA) (45 Code of Federal Regulations 164.514(b)(1)
and Health Insurance Portability and Accountability Act Certification no. 1031219-2). The UK National
Research Ethics Service granted an exemption to the common law duty of confidentiality for the CCHIC
project (14/LO/103) (Harris et al., 2018). Data sharing agreements were signed between the
participating NHS Trusts and UCL which hosts the Data Safe Haven (DSH) where CCHIC is stored.
The DSH is certified to the ISO/IEC 27001:2013 information security standard and conforms to the
NHS Digital’s Information Governance Toolkit. Since this research was a secondary analysis of fully
anonymised data and that all databases had been individually certified for research use, individual

patient consent was not required.
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Data requirements

Sepsis is a heterogeneous syndrome that presents as an infinite number of clinical features and
evolutions. If we hope to capture even a fraction of this heterogeneity in our model, we require a high
dimensional dataset, comprising many features (synonyms: parameters, variables), each representing a
fraction of the information about the patient’s clinical status. To capture the time-varying character of
patients’ status, we require the data to be represented as time series, built from data encoded at
successive time points. The higher the sampling frequency of the data, the more granular the model will
be. Obviously, many patient features are not sampled very frequently, for example, many blood tests,

so increasing the granularity of the model amplifies the quantity of missing data.

The quality of the data is a key determinant of model quality and robustness. Processes were developed
to test for data quality, in particular to identify hospitals with low data availability in eRI (see below).
We also check for the presence of erroneous values, outliers and missing data (see below). When
referring to the “readiness level” of the data after the dataset preparation, our modelling requires a band
B dataset, meaning that the data quality must be trusted or that missing values, outliers and noise must

be quantified (Lawrence, 2017).

The most straightforward way to represent a patient in a computational model is using numerical values.
Fortunately, the bulk of the data collected in ICU patients is numerical and structured (heart rate, blood
pressure, arterial blood gases, etc.). Limiting patient features to numerical data is a limitation but
capturing text-based information (past medical history, diagnoses, clinical signs) is much more complex
and requires methods such as natural language processing to produce word embeddings (see for
example word2vec (Mikolov, Chen, Corrado, & Dean, 2013)). Novel approaches based on deep-
learning to generate patient representations have been proposed (M. Ghassemi et al., 2014; Miotto, Li,
Kidd, & Dudley, 2016; Rajkomar et al., 2018). Also, this information is often sampled at low frequency,
at best a few times per day. Finally, representing this information in a (numerical) database means in
general transforming text concepts in a potentially very vast number of binary or categorical variables,
while making trade-offs in the translating process (e.g. keeping only one feature for “cardiac history”
when it actually represents a large variety of diagnoses). A final limitation to text-based medical data
is variability in the encoding due to subjectivity. Indeed, different providers, ICUs and countries are
likely to encode the information very differently. On the other hand, numerical information is in general
more objective: a heart rate of 90 bpm is the same thing regardless of the clinician who recorded it or
the country it was measured in. To some extent, past medical history can be summarised by scores
(Charlson, Pompei, Ales, & MacKenzie, 1987; Elixhauser, Steiner, Harris, & Coffey, 1998). We used
the Elixhauser score in MIMIC-III (Elixhauser et al., 1998), but diagnoses and textual past medical

history were not used for state definition. We demonstrated below that textual clinical concepts and
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diagnoses were to some extent encapsulated within our state definition, using the International
Classification of Diseases (ICD) codes as a surrogate (see Chapter 4, section “Capture of clinical

concepts and diagnoses within the states” and Figure 48).

Defining the patient cohort

Inclusion criteria

In MIMIC-III and eRI, we included all adult patients fulfilling the sepsis-3 criteria (Singer M et al.,
2016). The implementation of the sepsis-3 criteria in the databases is described below. CCHIC did not
include data about bacteriological sampling, so we could only rely on the administration of antibiotics

and the presence of organ dysfunction to identify patients with infectious syndromes.

Exclusion criteria

e In all databases:
0 Age < 18 years old at the time of ICU admission
0 Possible withdrawal of treatment, as defined below.
0 Mortality not documented
e In MIMIC-III:
0 Intravenous fluid intake not documented
e IneRl:
0 ICU readmissions, because of the potential risk in this database of mixing up data from
subsequent ICU admissions.
0 Patient admitted in an ICU with low-quality data (see below).
e In CCHIC:

0 Recorded vasopressor dose above “3”, since most corresponded to infusions in ml/h.

We excluded patients whose treatment was withdrawn, since in their case clinical decisions are no
longer made aiming to optimise survival, which would have led to spurious actions in the Al policy.
Withdrawal of treatment often involves patients with high severity of illness, on high doses of
vasopressors, in which the treatment is withdrawn since it is considered futile. Therefore, we defined
withdrawal as patients who died within 24 hours of the end of the data collection period and received

vasopressors at any point and whose vasopressors were stopped at the end of the data collection. This
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definition is likely to misclassify a number of patients, but after examining individual patient records,

it appeared to be more reliable than using the “code status” information available in the databases.

Implementation

In MIMIC-III and eRI, sepsis was defined as a suspected infection (prescription of antibiotics and
sampling of bodily fluids for microbiological culture) combined with evidence of organ dysfunction,
described by a Sequential Organ Failure Assessment (SOFA) score greater than or equal to 2 (Seymour
CW, Liu VX, Iwashyna TJ, & et al, 2016; Singer M et al., 2016). We adhered to the original temporal
criteria for the diagnosis of sepsis: when the antibiotic was given first, the microbiological sample must
have been collected within 24 hours; when the microbiological sampling occurred first, the antibiotic
must have been administered within 72 hours (Seymour CW et al., 2016). The earlier event defined the
onset of sepsis. In line with previous research, we assumed a baseline SOFA of zero for all patients
(Raith et al., 2017; Seymour CW et al., 2016). The relevant variables were used to compute the SOFA
score at each time point. The maximum SOFA score from up to 48 hours before to up to 24 hours after
the presumed onset of infection was recorded and used to determine whether the patient had sepsis or

not.

Since CCHIC did not include data about microbiological sampling, we could not directly implement
the sepsis-3 criteria, and used antibiotics administration and a maximum SOFA score during the first
24h after admission greater than or equal to 2 to identify patients with possible sepsis. We also intended
to use the Intensive Care National Audit & Research Centre (ICNARC) codes to further refine the
cohort selection (proposed list of codes in Table 1), but the final anonymised dataset excluded many

ICNARC codes since many of them were considered to be identifiable information.
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Diagnosis ICNARC code
Bacterial pneumonia 2.1.4.27.1
Pneumonia, no organism isolated 2.1.4.27.5
Empyema 2.1.5.27.2
Mediastinitis 2.1.5.27.3
Pleurisy 2.1.5.27.1
Mediastinitis/sternotomy related infection 2.2.3.27
Endocarditis 2.2.4.27
Peritonitis 2.3.10.27
Liver/gallbladder infection 2.3.7.27
Colon infection 2.3.6.27
Small bowel infection 2.3.5.27
CNS infection 2.4.2.27
Kidney infection 2.7.1.27
Gynaecological infection 2.7.3.27
Testes/prostate infection 2.7.5.27
Bone infection 2.10.2.27
Muscle/connective tissue infection 2.10.3.27
Skin infection 2.11.1.27
Septic shock, aetiology uncertain 2.2.12.35.2

Table 1: List of ICNARC codes of infectious diseases in CCHIC.

Exclusion of eRI hospitals with low data availability

In eRI, the data was recorded heterogeneously across ICUs. Some ICUs did not record vasopressors
and/or intravenous fluids in the eRI software but used a third-party software or paper-based charts. To
avoid any systematic bias in our analysis (e.g. when no medication appears in the database, where it
was actually administered), we excluded hospitals for the years where the quality of data recorded was

not sufficient, as data recording practices could vary over time.

We defined two separate indicators of data availability for vasopressors and intravenous fluids,
averaged per day, per patient, per hospital and per year. Given that our analysis resolution is 4 hours,
we expected at least 6 records to be available per day, even if the dosage was constant. Hospital-years

with less than 6 daily records on average were excluded.
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e Vasopressors may have been started at any time of a day, so we focused on days where we
estimated that the drug was running for a whole 24-hour period. We thus selected days where
the drug was running during the first 4 hours (midnight to 4 AM) and the last 4 hours of the day
(8 PM to midnight). We then measured how often the administration of that drug was recorded
during that same day.

e For intravenous fluids, we computed the daily average of records during the first 3 days after
ICU admission, which is our period of interest, rather than averaging over the whole ICU stay.
In the case of intravenous fluids, both drug delivery and no drug delivery are in general

recorded.

In total, 331 ICUs out of 459 were excluded with the combined data quality selection approach (Figure
13). For comparison, the data quality was also assessed in MIMIC-III using the same definitions.
MIMIC-III contained high-quality data, with a weighted average over the 5 ICUs of 20.4 intravenous

fluids records and 31.1 vasopressor records per day.
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Figure 13: Estimation of data quality per hospital-year in eRI. Because some ICUs did not record
intravenous fluids and vasopressors accurately, we computed the daily number of records for these 2
medications, averaged per patient, per year, in each ICU. In the figure, ICUs were ranked according to
this index. We excluded all hospital-years with less than 6 daily records, to match the time resolution
of the model, leading to the exclusion of 331 out 0of 459 ICUs. For comparison, the data quality assessed

in MIMIC-III using the same definitions was also reported.

Patient inclusion flow diagrams

The patient inclusion flow diagrams are shown in Figure 14.
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Figure 14. Patient inclusion diagrams in MIMIC-III (a), eRI (b) and CCHIC (c).

Data extraction

In all datasets, we extracted a set of up to 48 variables, including demographics, Elixhauser premorbid
status (Elixhauser et al., 1998), vital signs, laboratory values, fluids and vasopressors received and fluid

balance (see Table 2).

The first step required identifying the correct mapping of item identifiers. All three databases use a
different system to encode concepts (what the data fields correspond to, e.g. heart rate, sodium, fluid
balance, etc). While MIMIC-III and CCHIC use numerical item identifiers, eRI contains both structured
data and free-text entries. In MIMIC-III, multiple item identifiers often map the same physiological
parameter (e.g. heart rate corresponds to identifiers “211” and “220045”). Mapping the item identifiers
was performed for every parameter of interest, which required knowledge of medical terminology (e.g.
acronyms) including specificities of the American medical system (e.g. body temperature in degree
Fahrenheit). In eRI, concepts are encoded as text fields, not as numerical item identifiers. The content
of the text fields can come from drop-down lists (therefore be relatively structured) or from free-text
entries (and be highly unstructured). As a result, we used regular expressions (regex) to retrieve
information. For example, noradrenaline infusions were retrieved using the regex ‘%norepi%’. In
CCHIC, data is encoded using proprietary NIHR Health Informatics Collaborative (NHIC) codes,
whose mapping was provided by the database curators. For example, the code “NIHR HIC ICU 0122~

corresponds to arterial lactate.
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In all datasets, the data was extracted using SQL queries. The results were saved in comma-separated
value (csv) files and later imported into Matlab (version 2017a) for further processing. The size of the
elCU database (over 2,4 TB) precluded to employ a similar method, so the data was reformatted into
4h time steps directly in SQL. We created subqueries for each data category (vital signs, lab values,
etc), which were then merged using SQL join queries. Extraction from CCHIC was executed in RStudio

connected to an SQLite database, before the data was imported and further processed into Matlab.

Data preparation

Patients’ data were coded as multidimensional discrete time series with 4-hour time steps. Data
variables with multiple measurements within a 4-hour time step were averaged (e.g. heart rate) or
summed (e.g. urine output) as appropriate. In MIMIC-III, fluid administration is recorded using two
different formats, one being STAT doses (boluses of fluid, stored as a “total amount given”), while the
other corresponds to continuous infusions (stored as a “rate” in ml/h and a “total amount given”). These
inputs were converted into an amount of fluid given during each 4h time blocks. All timestamps were
converted to POSIX time to simplify handling of date and time between the different computer
programs. All features were checked for outliers and errors using frequency histograms (see example
Figure 15) and univariate statistical approaches (Tukey’s method). Errors were corrected when possible
(e.g. conversion of body temperature from degrees Fahrenheit to Celsius). To remove further erroneous
data, values above impossible thresholds were deleted (e.g. FiO2 not between 0.21 and 1, serum sodium

not between 100 and 180 mEq/L, etc.).
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Figure 15: Illustration of the method used to identify impossible values. We show the example of
the distribution of the inspired fraction of oxygen, below and above a threshold of 0.21. Forty-two

values of FiO2 of 0.1 and 0.11 correspond to impossible values (left panel) and were discarded.

Data is missing in databases for various reasons, related to patient disconnections, recording and
transmission errors, or human omissions (Cismondi et al., 2013; Salgado, Azevedo, Proenga, & Vieira,
2016; Tutz & Ramzan, 2015). Sometimes, the data is not missing at random, since it can be due to
changes in shifts or staff-to-patient ratios, or simply because a clinician or nurse did not think that the
data were important. To address the problem of missing or irregularly sampled data, we used a time-
limited parameter-specific sample-and-hold approach (Hug, 2009; Kshetri, 2013). In this method, a
validity period (of 2 to 24 hours) is assigned to each variable. Then, an existing value is copied in the
row below if the missing value is within the validity (“hold”) period following the last available value,
otherwise the data is noted as missing. In MIMIC-III, at this point, any feature with more than 50% of
missing values was deleted. Also in MIMIC-III, remaining missing data were imputed using
multivariable nearest neighbour imputation (Tutz & Ramzan, 2015). This was necessary since the
clustering algorithm we used did not tolerate missing values. Prasad used Gaussian Process modelling
for data resampling and handling of missing values, which could be a direction for future work (Prasad
etal., 2017). In eRI and CCHIC, missing data were not interpolated since it was not necessary for model
evaluation: only the available features were used to determine state membership of test records. The
characteristics of the final datasets, with patient demographics and clinical information, are described

in Table 3.
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List of model features

The list of model features in the three datasets is provided in Table 2.

calcium, carbon dioxide

Category Item Type Available in [Available in | Available
MIMIC-III [eRI in CCHIC
Demographics | Age Cont. + + +
Gender Binary + + +
Weight Cont. + + +
Readmission to intensive care Binary + + -
(binary)
Cont. +- - -
Elixhauser score (premorbid status)
Vital signs Modified SOFA* Cont. + + -
SIRS Cont. + + -
Glasgow coma scale Cont. + + +
Heart rate, systolic, mean and Cont. + + +
diastolic blood pressure, shock index
Cont. + + +
Respiratory rate, SpO-
Cont. + + +
Temperature
Lab values Potassium, sodium, chloride Cont. + + +
Glucose, BUN, creatinine Cont. + + +
Magnesium, calcium, ionized Cont. + + -
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SGOT, SGPT, total bilirubin, Cont. + + -
albumin
Cont. + + +
Haemoglobin
Cont. + + +
White blood cells count, platelets
count, PTT, PT, INR
pH, Pa0,, PaCO,, base excess, Cont. * * +
bicarbonate, lactate, PaO,/FiO; ratio
Ventilation Mechanical ventilation Binary + + +
parameters
FiO, Cont. + + +
Medications Current I'V fluid intake over 4h Cont. + + -
and fluid
balance Maximum dose