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Abstract

First-principles calculations have been performed to explore the temperature-pressure phase

diagram of calcium carbonate (CaCO3) in a range of temperatures and pressures up to 1000 K

and 10 GPa respectively. The calcite I - calcite II and calcite I - aragonite phase boundaries

have been obtained. Imaginary phonon modes in the aragonite phase suggest pathways to

three distinct alternative phases that involve symmetry breaking and distortion of the unit cell.

The variation of the Gibbs free energy with pressure and temperature has been computed in

the quasi-harmonic approximation. Several approaches have been discussed in this thesis for

the most accurate determination of the temperature - pressure phase boundary. A method

for determining the calcite I - calcite II second order phase boundary has been described

in this work. Hybrid exchange and GGA density functional theory in the all-electron linear

combination of atomic orbitals approximation have been exploited, as well as the effect of the

inclusion of van der Waals dispersion corrections. The resultant theoretical phase diagram is

compared to the available measurements.

The detailed theoretical understanding of the phase transitions mechanisms developed in this

thesis sets the basis for a future exploration of the thermodynamic stability phase of CaCO3. In

this respect, the methodology described in this work could be used to predict the temperature

- pressure phase boundaries of the rest of the polymorphs of this complex system, e.g. phase

transitions occurring in calcite III, IIIb, IV, V and VI.
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Chapter 1

Introduction

Calcium carbonate (CaCO3) is one of the most abundant rock-forming minerals in the Earth’s

crust [1], occurring as the principal component of limestone and chalk cliffs [2]. Limestone,

sand and gravel constitute the raw materials for the production of the largest volume manu-

factured solid on earth, concrete [3]. Concrete has been the building block for constructions

over centuries. Most historic buildings in Europe are made of limestone, which are noticeably

damaged by salt crystallization processes [4, 5]. Investment in finding healing solutions to this

deterioration is among one of the European government priorities in order to preserve cultural

patrimony.

CaCO3 is one of the subproducts generated in the production of ordinary Portland cement [6],

one of the most common cements in concrete, whose production contributes about 5% of global

anthropogenic CO2 emissions. More than 60% of these emissions have a fossil origin, mainly

coming from the limestone rock. Hence, there is an important need to replace Portland cement

with a greener alternative; e.g. several studies report the use of “low CO2” concretes with

different chemistry and mechanical properties [3, 7]. Not only is the cement industry interested

in calcium carbonate, but also other industrial activities benefit from the application of this

material, e.g. it forms part of optical devices [8], fillers and pigments in papers [9, 10], acts as a

catalyst in the diamond formation at high pressures and temperatures [11, 12], and is the cause

of calcareous scale depositions from hard water leading to lower heat transfer efficiency and

a considerable increase of energy consumption specially in oil, gas and desalination industries

[13], which causes a substantial economical loss.
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Calcium carbonate is considered a candidate for carbon dioxide sequestration [14], which rep-

resents a promising alternative natural solution for the problem of the accumulation of carbon

dioxide in the atmosphere. Carbon dioxide sequestration can be achieved via either a natural

or an artificial path. A natural path is accomplished as a consequence of the important role

calcium carbonate plays in the geochemical Carbon cycle in the Earth [15, 16], which highly

affects the climate on our planet [17]. Subduction processes are responsible for supplying this

Carbon into a deep Earth level [18], containing more than three quarters of Earth’s Carbon

[19, 20]. Since carbon solubility in mantle silicates such as olivine is extremely low [21], the ma-

jority of this carbon is to be hosted as carbonate minerals [22]. The high pressure polymorphs

of calcite are possible host structures of CO2 in the Earth’s mantle [17], where pressures of

13-23 GPa (upper mantle) and 23-135 GPa (lower mantle) are reached [23] (see Fig. 1.1b).
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Figure 1.1: (1.1a) and (1.1b) show, respectively, the profile of temperature and pressure versus the distance
from the surface of the earth. Figure adapted from Refs. [23].

Artificial CO2 sequestration can be conducted as well. Experts in enhanced oil recovery (EOR)

processes claim that carbonate rocks constitute one of the largest oil reservoirs [24]. Because

this gas strongly binds to the carbonate rocks, these are considered as excellent candidates for

injection of CO2. This allows for the possibility of large scale CO2 storage. Not only does

this material attract considerable geological and environmental interest, it is also involved in

biological processes, as it plays a key role in self-healing processes, i.e. biomineralization of

skeletons and shells of marine organisms [25]. A clear example of these are Scleractinian corals,

one of the fastest marine mineralizing organisms [26], where their skeleton is a composite

structure of organic components and aragonite, a polymorph of calcium carbonate. In these

corals, the calcification process occurs in a biological confined environment, under the control
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of biological macromolecules [27]. Other examples found in nature are the case of organic-

mineral bio-composite materials such as Abalone nacre, which is a composite of aragonite grains

glued together by biopolymers. This material has a fracture toughness 1000 times higher than

aragonite [28]. Something as relevant as the mineralization of artificial bone can be guided by

developing self-assembled materials that mimic these natural self-healing processes [29].

From a fundamental physics point of view, most recent studies suggest that calcium carbon-

ate nucleation pathways do not follow classical nucleation theory [30, 31], which presents an

opportunity to a development of new theories on heterogeneous nucleation.

1.1 The Temperature-Pressure phase diagram of CaCO3

Pressure and temperature significantly affect the structure of calcite (CaCO3), resulting in a

rich polymorphism: 10 distinct solid phases have indeed been reported so far [17, 15]. In fact,

no other compound exhibits polymorphic variation as commonly and abundantly in nature as

does CaCO3 [32]. Beside calcite I that is the most stable at ambient conditions, the others

(calcite II, III, IIIb, IV, V, VI, aragonite and vaterite) are high temperature and/or high

pressure phases. In Fig. 1.2 we have assembled the experimental stability data available so

far, which will be explained with much more detail in Chapter 4. It is apparent that the phase

boundaries between polymorphs are not clearly defined experimentally. In this respect, the

accurate characterization of the structural and energetic transformations occurring in calcite

as a function of both temperature and pressure represents a challenge to the state of the art

experimental and theoretical techniques, is of great interest and is yet to be fully accomplished.

For instance, the pressure-temperature phase diagram of the seemingly simple calcite I to calcite

II phase transition has not yet been obtained theoretically. The study of this phase transition

is of great interest in order to better understand any other phase transformation on calcite,

since this is the very first transformation that occurs when applying pressure on this material.
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Figure 1.2: Experimental phase diagram of CaCO3 gathering all the available information so far for this
material.

1.2 Core motivation, research question and thesis out-

line

As has already been shown, this TP phase diagram is a complex one. The main purpose of this

project is to successfully compute the phase diagram of calcium carbonate, and understand the

mechanism of phase transitions involved using first principles simulation techniques. Standard

ab initio techniques account for the energy at zero kelvin and zero pressure. The simultaneous

effect of both temperature and pressure is something that can be computed by state of the art

techniques, such as ab intio molecular dynamics [33, 34, 35]. Unfortunately, this approach is

computationally very expensive. As will be thoroughly explained in Chapter 3, the sole effect

of pressure can be taken into account if the geometry optimization is performed at several

volume constraints. On the other hand, the unique effect of temperature can be addressed by

computing the vibrations, or phonons in a periodic system.
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My personal interest and motivation for this project comes from my education in Theoretical

Chemistry, and my concern how to include a simultaneous effect of pressure and temperature

in an ab initio simulation, and then to extend this formalism to a solid state system, to obtain

something as relevant as the TP phase diagram. As has been presented earlier in this chapter,

calcium carbonate is an ubiquitous material with obvious polymorphism, which makes it a

perfect candidate to study and unravel the unknown phase transition mechanisms that lead to

each of those polymorphs presented in Fig. 4.1.

The aim of this thesis is to understand the phase stability and phase transition mechanisms

occurring in calcium carbonate at finite temperature and pressure in order to generate the

computed temperature-pressure phase boundary.

The overall structure of this thesis is as follows: Chapter 2 contains a background theory used

throughout this thesis, followed by a more concise Methodology Chapter 3. The experimentally

known polymoprhs are described in Chapter 4. The benchmarking of accurate computational

thresholds is discussed in Chapter 5. The electronic structure of calcite I is studied in Chapter

6. Special attention has been given to the calcite I to calcite II phase transition, are covered in

Chapter 7. Phase transitions occurring in Aragonite, as well as the calcite I to Aragonite phase

transition are summarized in Chapter 8. Special emphasis is given to the effect of the DFT

functional used, as well as the inclusion of dispersion interactions. Finally, Chapter 9 gives the

conclusions and identification of limitations and ideas that deserve further investigation.



Chapter 2

Background Theory

2.1 Elements of Crystallography

The aim of this section is to present essential concepts of crystallography needed to gain a

better understanding of the crystal structures considered in this thesis.

2.1.1 Bravais Lattices

A lattice is a regular periodic arrangement of points in space. The Bravais lattice specifies

the periodic array in which the repeated units of the crystal are arranged. A three dimensional

Bravais Lattice consists of the set of all lattice points with position vectors g or R of the form:

g = R = n1 a1 + n2 a2 + n3 a3 (2.1)

where ni are integers (0, 1, 2 ...). This vector is called the translational vector. Thus, the

point
∑

i niai is reached by moving ni steps of length ai in the direction of ai for i = 1, 2, 3.

The vectors ai appearing in the definition of a Bravais lattice are called primitive vectors, that

generate or span the lattice:

a1 = (a1x , a1y , a1z) a2 = (a2x , a2y , a2z) a3 = (a3x , a3y , a3z) (2.2)

There are several Bravais lattices:

40
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• Simple cubic (sc) lattice.

It consists of three perpendicular primitive vectors of equal length (Fig. 2.1a):

a1 = a x̂ a2 = a ŷ a3 = a ẑ (2.3)

• Body-centered cubic (bcc) lattice.

It is formed by adding to the simple cubic lattice an additional point, at the center of the cube

(Fig. 2.1b). The most symmetric set of lattice vectors is:

a1 =
a

2
(ŷ + ẑ − x̂) a2 =

a

2
(ẑ + x̂− ŷ) a3 =

a

2
(x̂+ ŷ − ẑ) (2.4)

• Face-centered cubic (fcc) lattice.

Formed by adding to the simple cubic lattice an additional point in the center of each square

face (Fig. 2.1c). A symmetric set is:

a1 =
a

2
(ŷ + ẑ) a2 =

a

2
(ẑ + x̂) a3 =

a

2
(x̂+ ŷ) (2.5)

(a) simple cubic (sc)

a1

a3

a2

(b) body-centered cubic (bbc)

a2

a3

a1

(c) face-centered cubic (fcc)

Figure 2.1: Three types of Bravais lattices with the most symmetric disposition of the three lattice vectors
in each case: simple cubic (sc), body-centered cubic (bbc) and face-centered cubic (fcc) with coordination
numbers of 6, 8 and 12 respectively. Figure adapted from Ref. [36]

• Simple hexagonal (sh) lattice.

This Bravais lattice is the building block for the hexagonal lattice of Calcite I. For this reason,

we will explain it in closer detail in Section 4.1.1.
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2.1.2 The Unit cell

The unit cell is a parallelepiped-shaped volume cell that gives the whole Bravais lattice when

reproduced in 3D. The volume of a cell is defined by the lattice vectors a1, a2 and a3 as:

V = |a1 · (a2 × a3)| (2.6)

There are two main unit cells: the primitive, which is a minimum-volume cell and contains

only one lattice point (there are lattice points at the eight corners of the parallelepiped, but

each is shared among the eight neighbour cells), and the conventional, which contains more

than one lattice point. Because the bcc and fcc lattices contain two and four lattice points,

these can be conceived as conventional unit cells. For example, the body-centered cubic cell and

the face-centered cubic cell have, respectively, 2 times and 4 times the volume of the primitive

cell embedded inside the conventional lattice (Fig. 2.2a and 2.2b). The sc unit cell can be

considered either primitive or conventional since the two are equivalent. The shape of the unit

(a) Body-centered cubic (bcc) (b) Face-centered cubic (fcc)

Figure 2.2: Primitive (grey) and conventional (white) unit cells for the bcc (2.2a) and fcc (2.2b) Bravais
lattices. The primitive cell for the bcc has half the volume of the conventional cubic cell. The primitive cell
for the fcc has one quarter the volume of the conventional cubic cell. Figure reproduced from Ref. [36].

cell is completely defined by the lattice parameters a = |a1|, b = |a2| and c = |a3|, and the

angles α, β and γ. Another way of choosing a cell of equal volume V is by (a) drawing lines

that connect a given lattice point to all neighbour lattice points, and (b) at the midpoint and

normal to these lines, draw new perpendicular lines. The smallest volume enclosed in this way

is the Wigner-Seitz primitive cell (Figure 2.3).



2.1. Elements of Crystallography 43

Figure 2.3: Wigner-Seitz primitive cell for a two dimensional lattice.

2.1.3 Fractional coordinates

The atomic positions are specified by the use of fractional coordinates:

r = f1 a1 + f2 a2 + f3 a3 (2.7)

where fi are the fractional coordinates of the atom inside a given cell. These are obtained by

dividing the absolute atomic coordinates xi in a particular direction by the length of the lattice

parameter in that direction, i.e.

fi =
xi
|ai|

(2.8)

In this way, the coordinates of the atom located in the body center are (1
2
, 1

2
, 1

2
). The atomic

position for the face centers are (1
2
, 1

2
, 0), (0, 1

2
, 1

2
), (1

2
, 0, 1

2
). We can generalize this situation

and conclude that the atomic position of any atom in a periodic system is given by the vector

R + r (Fig. 2.4).

10

01

00

21

20

11

R+r

Figure 2.4: Any atomic position in space is given by R + r. This situation is applicable in 3D.
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2.1.4 The crystal structure

The basis consists of a single or groups of atoms, molecules, groups of molecules or ions. The

crystal structure is formed only when the basis of atoms is attached to each lattice point:

lattice + basis = crystal structure

In other words, a crystal structure is formed by the addition of a basis to every lattice point, as

shown in Fig. (2.5). A symmetry transformation or symmetry element is a rigid operation that

Figure 2.5: A basis and a lattice gives the crystal structure. Figure reproduced from Ref. [37].

transforms the lattice into itself. The set of all symmetry transformations of a crystal structure

or Bravais lattice is known as the symmetry group or space group of the crystal structure

or Bravais lattice. We will consider a single unit cell that presents the same symmetry elements

of the entire Bravais lattice. This unit cell is usually a conventional and not primitive unit cell.

We can consider two symmetry operations: translation through a Bravais lattice vector R and

a point operation, which includes all symmetry operations that are not translations. The types

of point operations are Inversion, Reflection, Rotation and Rotation-Inversion. All symmetry

operations of a given Bravais lattice form part of a set known as the point group of the

Bravais lattice. It turns out to be seven different point groups that a Bravais lattice can have,

known as crystal systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal and

hexagonal. (Figure 2.6, in which lattice points are connected by lines). For instance, if there

is no symmetry, the three lattice parameters have different module, and the three angles are

different from each other and from 90◦ (triclinic system).

If the translational symmetry is considered, then it turns out to be 14 different symmetry

groups that a given Bravais lattice can adopt, shown entirely in Figure 2.6.

If we no longer consider the individual lattice points but also the basis, we now have to consider
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Figure 2.6: The seven crystal systems and 14 Bravais lattices. The lattice points (black and gray points)
do not represent atoms. They represent places in space that are indistinguishable from each other. Symbols
P , C, I, F and R refer to different lattice types: P = primitive; C = centered in the faces perpendicular
to the c axis; I = centered in the body of the cell; F = centered in all faces of the cell; R = primitive,
identical cell axes and cell angles. Figure reproduced from Ref. [38].

not only the symmetry of the underlying Bravais lattice, but also the internal symmetry of the

basis (say, the molecule or ions). In other words, in most of the cases the basis is formed of

objects that do not have the maximum spherical symmetry of the individual lattice points of

a Bravais lattice. The number of symmetry transformations and possible symmetry groups

that transform the crystal structure into itself is enormously increased, i.e. 230 different space

groups that a crystal structure can have.
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2.1.5 The reciprocal lattice

There are two lattices for a given crystal structure: the direct and the reciprocal lattices. The

first one is a lattice in real or ordinary space, while the second one is in Fourier space. A

diffraction pattern of a crystal is a map of the reciprocal lattice of the crystal. On the other

hand, a microscope image is a map of the direct lattice.

Given the direct lattice vectors a1, a2 and a3, we can define the corresponding reciprocal lattice

vectors b1, b2 and b3 as:

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

(2.9)

where b1, b2 and b3 are the basis vectors of the reciprocal lattice. These vectors form an

infinite set of G vectors:

G = hb1 + kb2 + lb3, (2.10)

G is a vector from the origin to any point in this reciprocal lattice, and h, k, l are integers

named the Miller indices. Normally the plane normal to G is represented by the notation

(hkl).

The three bi satisfy bi · aj = 2πδij, where δij is the Kronecker delta symbol:

δij = 0, i 6= j;

δij = 1, i = j.
(2.11)

Vectors in the crystal lattice have dimensions of [length], as opposed to dimensions of [length]−1

for vectors in the reciprocal lattice. When the crystal is rotated, both the direct and reciprocal

lattices are rotated. A Brillouin zone (BZ) is defined as a Wigner-Seitz cell in the reciprocal

lattice. The first Brillouin zone is the smallest volume entirely enclosed by planes that are the

perpendicular bisectors of the reciprocal lattice vectors drawn from the origin (Figure 2.7, for

an oblique lattice in two dimensions). The first Brillouin zone also contains one lattice point.

The volume of the BZ can be calculated as follows:
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b2

b1

O

Figure 2.7: First Brillouin zone for an oblique lattice in two dimensions. From O we draw a set of vectors
to the nearby points in the reciprocal lattice. Then we construct lines perpendicular to these vectors at
their midpoints. The first Brillouin zone is the smallest enclosed area.

Vb = b1 · (b2 × b3)

=

(
2π

V

)3

{(a2 × a3) · (a3 × a1) · (a1 × a2)} (2.12)

Using the definition of the vector quadruple product:

(A×B) · (C×D) = [A,B,D] C− [A,B,C] D

= [A · (B×D)] ·C− [A · (B×C)] ·D (2.13)
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and applying this to Eq. (2.12), we get:

Vb =

(
2π

Va

)3



(a2 × a3) ·


[a3 · (a1 × a2)]︸ ︷︷ ︸

=Va

·a1 −


a3 · (a1 × a1)︸ ︷︷ ︸

= 0


 · a2







=

(
2π

Va

)3

{(a2 × a3) · Va · a1}

= Va

(
2π

Va

)3

{(a2 × a3) · a1}︸ ︷︷ ︸
=Va

= V 2
a

(
2π

Va

)3

=
8π3

Va
(2.14)

2.2 Elements of Quantum Mechanics

The most relevant aspects of Quantum Mechanics used to produce the results presented in this

thesis are reviewed in this section.

2.2.1 The Electronic Problem

One of the problems in quantum chemistry is to describe the motion of N electrons in the

field of M nuclear point charges. The position of the M nuclei can be specified by the 3M

spatial coordinates {RA} = {R1,R2, ...,RM}. However, to completely describe an electron, not

only is necessary to specify its spatial coordinates, but also its spin. Within a non-relativistic

approach, this is accomplished by introducing two spin functions α (s) and β (s), corresponding

to spin up and spin down respectively. These are functions of an spin variable s. For the

electron, the spin coordinates can only assume the values ±1/2. The possible values of the spin

functions α (s) (spin up) and β (s) (spin down) are:

α (1/2) = β (−1/2) = 1 (2.15a)

α (−1/2) = β (1/2) = 0 (2.15b)
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Given two basis vectors e1 and e2, they are orthonormal when they are mutually perpendicular

(orthogonal) and have unit length (normalized). This orthonormality is represented by the

Kronecker delta symbol δij:

e1 · e2 = δij = δji =





1, if i = j

0, otherwise

(2.16)

The two spin functions are complete and orthonormal1:

∫
ds α∗(s)α(s) =

∫
ds β∗(s)β(s) = 1 (2.17a)

〈α|α〉 = 〈β|β〉 = 1 (2.17b)

and

∫
ds α∗(s)β(s) =

∫
ds β∗(s)α(s) = 0 (2.18a)

〈α|β〉 = 〈β|α〉 = 0 (2.18b)

In this way, an electron is described not only by the three spatial coordinates r, but also by

one spin coordinate s. We denote these four coordinates collectively by x,

x = {r, s} (2.19)

The collective term {xi} = {x1,x2, ...,xN} for the electrons denotes the 3N spatial coordinates

and the N spin coordinates.

The time-independent, non-relativistic Schrödinger equation reads like:

ĤΨ (x1,x2, ...,xN ,R1,R2, ...,RM) = EΨ (x1,x2, ...,xN ,R1,R2, ...,RM) (2.20)

where Ψ stands for the wavefunction of a particular state of the system. The wavefunction Ψ

contains all the information that can be known about the system. E is the value of the energy

of the state described by Ψ.

1We are using Bra-ket notation, in which Ψ∗ is the complex-conjugate of Ψ: 〈Ψ| ≡ Ψ∗; |Ψ〉 ≡ Ψ; 〈Ψ|Ψ〉 =∫
dτ Ψ∗Ψ; 〈Ψ|A|Ψ〉 =

∫
dτ Ψ∗ÂΨ
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Ĥ is the Hamilton operator for a system formed of M nuclei and N electrons:

Ĥ = T̂e + T̂n + V̂ee + V̂nn + V̂ne + V̂ee (2.21)

where the first term is the operator for the kinetic energy of the electrons, the second term

is the operator for the kinetic energy of the nuclei, the third term represents the coulomb

attraction between electrons and nuclei (also named external potential V̂ext in density functional

theory), the fourth and fifth terms represent the repulsion between electrons and between nuclei,

respectively. The kinetic operator of a particle a and the Coulomb operator between a particle

a and b can be obtained as follows:

T̂a =
p̂2
a

2ma

= − ~2

2ma

∇2
a = − ~2

2ma

(
∂2

∂x2
a

+
∂2

∂y2
a

+
∂2

∂z2
a

)
(2.22)

V̂ab =
qaqb

4πε0rab
(2.23)

where ma is the mass of the particle, qa the charge of the particle, ~ the reduced Planck’s

constant and 1/4πε0 the Coulomb constant. From now on, we will work on atomic units, where

the mass of an electron, the absolute value of its charge, ~ and 4πε0 are all set to unity.

If we define the distance between the ith electron and Ath nucleus as riA = |riA| = |ri −RA|,
the distance between the ith and jth electron as rij = |rij| = |ri − rj|, and the distance between

the Ath and Bth nucleus as rAB = |RAB| = |RA −RB|, using atomic units on the Equations

(3.22) and (3.7), we can write Eq. (2.21) as:

Ĥ = −
N∑

i=1

1

2
∇2
i −

M∑

A=1

1

2MA

∇2
A −

N∑

i=1

M∑

A=1

ZA
riA

+
N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB
RAB

(2.24)

where MA is the ratio of the mass of nucleus A to the mass of an electron, and ZA is the atomic

number of nucleus A. The Laplacian operators ∇2
i and ∇2

A involve differentiation with respect

to the {xi} coordinates of the ith electron and the {RA} coordinates of the Ath nucleus.

The wavefunction is not an observable, and a physical interpretation can only be found when

considering the square of the wave function, that represents the probability that electrons

1, 2, ..., N are found simultaneously with spin given by s within the volume elements dr1, dr2, ... drN .
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In other words, in terms of the collective term {xi}:

P = |Ψ (x1,x2, ...,xN)|2 dx1, dx2, ... dxN (2.25)

The integral of Eq. (2.25) over all the variables, or in other words, the probability of finding

the N electrons anywhere in space, must equal one:

∫
...

∫
|Ψ (x1,x2, ...,xN)|2 dx1, dx2, ..., dxN = 1 (2.26)

Because electrons are indistinguishable, this probability must be the same if the coordinates of

any two electrons i and j are switched:

P = |Ψ (x1,x2, ...,xi,xj, ...,xN)|2 = |Ψ (x1,x2, ...,xj,xi, ...,xN)|2 (2.27)

The two wavefunctions can only differ by a unimodular complex number exp(iφ). In order to

Eq. (2.27) to hold true, there are two possibilities:

a) Ψ is a antisymmetrical wave function, which means that the interchange leads to a sign

change:

Ψ (x1,x2, ...,xi,xj, ...,xN) = −Ψ (x1,x2, ...,xj,xi, ...,xN) (2.28)

These particles are called fermions, and have spin half-integral. Electrons are fermions

with spin 1/2, and the wavefunction must be antisymmetric with respect to the spatial

and spin coordinates of any two electrons.

b) Ψ is a symmetrical wave function, which means that the interchange does not lead to a

sign change. These particles are called bosons, which have an integer spin, including zero.

2.2.2 The Born-Oppenheimer Approximation

Nuclei are much heavier than electrons. Even the lightest of all nuclei, the proton 1H, weighs

1800 times more than an electron. Therefore, the nuclei move much slower than the electrons.

A good approximation is to consider that the electrons are moving in the field of fixed nuclei.

Within this approximation, the kinetic energy of the nuclei (term T̂n in Eq. (2.21)) a can be
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neglected, and the potential energy due to nucleus-nucleus repulsion (term V̂nn in Eq. (2.21))

can be considered to be constant. A constant added to an operator has no effect on the operator

eigenfunctions and only adds to the operator eigenvalues. The electronic Hamiltonian describes

the motion of N electrons in the filed of M point charges:

Ĥelec = T̂e + V̂ne + V̂ee

= −
N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

A=1

ZA
riA
−

N∑

i=1

N∑

j>i

1

rij
(2.29)

The solution of the Schrödinger equation with Ĥelec:

ĤelecΨelec = EelecΨelec (2.30)

is the electronic wave function:

Ψelec = Ψelec ({ri} ; {RA}) (2.31)

which describes the motion of the electrons. Ψelec depends explicitly on the electronic coordi-

nates and parametrically on the nuclear coordinates, as does the electronic energy:

Eelec = Eelec ({RA}) (2.32)

The concept of parametric dependence means that, for different arrangements of the nuclei, Ψelec

is a different function of the electronic coordinates. In other words, the nuclear coordinates do

not appear explicitly in Ψelec. The total energy for fixed nuclei must also include the constant

nuclear repulsion:

Etot = Eelec +
M∑

A=1

M∑

B>A

ZAZB
RAB

(2.33)

In quantum mechanics, given an observable Ô, we define the expectation value of this observable

as 〈
Ô
〉

=
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 (2.34)
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where the denominator equals to 1 if Ψ is normalised. For instance, the electronic energy will

be obtained as Eelec = 〈Ψ|Ĥelec|Ψ〉. If we now define the operator Ô as:

Ô = −
N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

A=1

ZA
riA
−

N∑

i=1

N∑

j>i

1

rij
(2.35)

then the expectation value of this particular operator is just Eelec ({RA}), the electronic energy

for a given fixed position of the nucleii:

〈
Ô
〉

=

〈
−

N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

A=1

ZA
riA
−

N∑

i=1

N∑

j>i

1

rij

〉

= 〈Ψ|Ô|Ψ〉

= Eelec ({RA}) (2.36)

In order to solve the motion of the nuclei, starting from Eq. (2.24), we can obtain an expression

of the nuclear Hamiltonian, replacing the electronic coordinates by their average values, aver-

aged over the electronic wave function. This generates a nuclear Hamiltonian for the motion

of the nuclei in the average field of the electrons:

Ĥnucl = −
M∑

A=1

1

2MA

∇2
A +

〈
−

N∑

i=1

1

2
∇2
i −

N∑

i=1

M∑

A=1

ZA
riA
−

N∑

i=1

N∑

j>i

1

rij

〉
+

M∑

A=1

M∑

B>A

ZAZB
RAB

= −
M∑

A=1

1

2MA

∇2
A + Eelec ({RA}) +

M∑

A=1

M∑

B>A

ZAZB
RAB

= −
M∑

A=1

1

2MA

∇2
A + Etot ({RA}) (2.37)

The total energy Etot ({RA}) is the Potential Energy Surface. The solution to the nuclear

Schrodinger equation:

ĤnuclΨnucl = EΨnucl (2.38)

gives:

a) E, which is the Born-Oppenheimer approximation to the total energy of Eq. (2.20). This

includes electronic, vibrational, rotational and translational energy.

b) Ψnucl, which describes the vibration, rotation translation of a molecule. As opposed to



54 Chapter 2. Background Theory

Eq. (2.31), Ψnucl depends only explicitly on the nuclear coordinates:

Ψnucl = Ψnucl ({RA}) (2.39)

The corresponding approximation to the total wave function of Eq. (2.20) is:

Ψ ≡ Ψ ({ri} ; {RA}) = Ψelec ({ri} ; {RA}) Ψnucl ({RA}) (2.40)

From now on, we will only consider electronic Hamiltonians and electronic wave functions

because we will concentrate on the electronic problem, not considering the vibrational-rotational

problem. When convenient, a distinction will be made between the electronic energy of Eq.

(2.32) and the total energy of Eq. (2.33), which includes nuclear-nuclear repulsion.

2.2.3 The Variational Principle

The exact solution for the Scrödinger equation cannot be obtained with the exception of the

most trivial systems like the hydrogen atom. The variational principle is an approach to obtain

Ψ0, the wave function of the ground state, the state that has the lowest energy, E0. For any

guessed Ψtrial, the expectation value of the Hamilton operator Ĥ will give an energy Etrial, that

will be an upper bound to the true energy of the ground state:

〈Ψtrial|Ĥ|Ψtrial〉 = Etrial > E0 = 〈Ψ0|Ĥ|Ψ0〉 (2.41)

where the equality holds if and only if Ψtrial is identical to Ψ0. At this stage, it is important to

distinguish between the concepts of function and functional :

a) A function f(x) is a rule that, given a number x as input, returns a number y: x
f(x)−−→ y

b) A functional F [f(x)] is a rule that, given a function f(x) as input, returns also a number

y: f(x)
F [f(x)]−−−−→ y .

In our case, we have a function Ψtrial as input, that returns a number Etrial. Thus, this is the

case of a functional. The rule that converts the first to the last one is represented schematically

byEtrial[Ψtrial] = 〈Ψtrial|Ĥ|Ψtrial〉.
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In order to find the ground state energy and wave function, we need to minimize the functional

Etrial[Ψtrial] by searching through all eligible (continuous and quadratic integrable) N-electron

wave functions. The function which gives the lowest energy will be Ψ0,trial and the energy will

be the ground state energy E0,trial:

E0,trial = min
Ψtrial→N

Etrial[Ψtrial] = min
Ψtrial→N

〈Ψtrial|T̂e + V̂ne + V̂ee|Ψtrial〉 (2.42)

where Ψtrial → N means that Ψtrial is an eligible N-electron many body wave function.

2.2.4 Spin Orbitals and Slater determinant

Given the fact that the electrons are described by three spatial coordinates and one spin co-

ordinate (Eq. 2.19), we can describe the spatial distribution of an electron as a spatial orbital

φ(r), which is a function of the position vector r. It is usually assumed to be orthonormal:
∫

dr φ∗i (r)φj(r) = δij. The spin is described by two orthonormal functions: α(s) and β(s),

which are also orthonormal (Equations 2.15a - 2.15b). A spin orbital χ(x) is a wave function

for an electron that describes both its spatial distribution and its spin. From each spatial or-

bital, φ(r), one can form two different spin orbitals by multiplying the spatial orbital by the α

or beta spin function:

χ(x) =





φ(r)α(s)

or

φ(r)β(s)

(2.43)

If the spatial and spin orbitals are orthonormal, so are the spin orbitals:
∫

dx χ∗i (x)χj(x) = δij.

We could think as a model wave function the simple product:

Ψ = χ1(x1)χ2(x2)...χi(xi)χj(xj)...χN(xN) (2.44)

This is known as the Hartree Product. However, this wave function violates the fact that

electrons are indistinguishable because it assigns a particular one-electron function (for example

χ1) to a particular electron (x1). Moreover, this product is not antisymmetric with respect to

the interchange of any two electrons:
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χ1(x1)χ2(x2)...χi(xi)χj(xj)...χN(xN) 6= −χ1(x1)χ2(x2)...χi(xi)χj(xj)...χN(xN) (2.45)

Because of these two reasons, the Hartree Product is not an acceptable wave function. An

acceptable candidate for the wave function is the so called Slater determinant:

Ψ0 ≈ ΦSD(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(xN)
...

...
. . .

...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣

(2.46)

where the prefactor (N !)−
1
2 is a normalization constant. This Slater determinant meets all the

requirements:

a) Satisfies the Pauli exclusion principle: no more than one electron can occupy a spin

orbital. Having two electrons occupying the same spin orbital corresponds to having two

columns of the determinant equal, which makes the determinant zero.

b) Satisfies the antisymmetry principle. The rows are labelled by electrons: first row (x1),

second row (x2), etc., and the columns are labelled by spin orbitals: first column (χ1),

second row (χ2), etc. Interchanging the coordinates of two electrons corresponds to inter-

changing two rows of the Slater determinant, which changes the sign of the determinant.

2.2.5 Hartree-Fock Approximation

Using the variational principle, The Hartree-Fock approach varies the spin orbitals χi under

the constraint that they remain orthonormal, such that the energy obtained from the Slater

determinant is minimal:

EHF = min
ΨSD→ΦSD

E[ΦSD] (2.47)

It can be shown that the HF energy is given by:

EHF = 〈ΦSD|Ĥ|ΦSD〉 =
N∑

i

(i|ĥ|i) +
1

2

N∑

i

N∑

j

(ii|jj)− (ij|ji) (2.48)
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where (i|ĥ|i) contains the contribution due to the kinetic energy and the electron-nucleus at-

traction:

(i|ĥ|i) =

∫
χi(x1)

[
−1

2
∇−

M∑

A

ZA
r1A

]
χi(x1) dx1 (2.49)

The interaction between two electrons is described by two integrals:

a) The Coulomb integral:

(ii|jj) =

∫∫
|χi(x1)|2 1

r12

|χj(x2)|2 dx1dx2 (2.50)

b) The exchange integral:

(ij|ji) =

∫∫
χi(x1)χ∗j(x1)

1

r12

χj(x2)χ∗i (x2) dx1dx2 (2.51)

It is obvious from Eq. (2.48) that EHF is a functional of the spin orbitals: EHF = E[χi]. Those

χi are minimized with the constraint that they remain orthonormal. This constraint is math-

ematically implemented by introducing Lagrangian multipliers, εi in the following equations.

These equations represent the Hartree-Fock equations:

f̂χi = εiχi i = 1, 2, ..., N (2.52)

These N equations are eigenvalue equations, where the Lagrangian multipliers εi are the eigen-

values of the operator f̂ , and are essentially the orbital energies. The Fock operator f̂ is a

one-electron operator:

f̂i = −1

2
∇2
i −

M∑

A

ZA
riA

+ VHF(i) (2.53)

where the first two terms are respectively the kinetic energy and the potential energy due to

the electron-nucleus attraction. The complicated electron-electron repulsion represented by the

1/rij operator in the Hamiltonian is replaced by VHF(i), the Hartree-Fock potential, an average

repulsive potential experienced by the ith electron due to the remaining N − 1 electrons:

VHF(x1) =
N∑

j

[
Ĵj(x1)− K̂j(x1)

]
(2.54)

Hence, the electron-electron repulsion problem is solved by considering this repulsion in an
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average way. VHF has two components:

a) The Coulomb operator Ĵ is defined as:

Ĵj(x1) =

∫
|χj(x1)|2 1

r12

dx2 (2.55)

Given a reference electron at position x1 and another one at position x2, the Coulomb

repulsion between the reference electron and electron 2 is weighted by the probability to

find electron 2 in the volume element dx2. This probability is integrated over all space

and spin coordinates.

b) The operator K̂ is defined as the exchange operator:

K̂j(x1)χi(x1) =

∫
χ∗j(x2)

1

r12

χi(x2) dx2 χj(x1) (2.56)

which has no classical interpretation, and can only be defined through its effect when

operating on a spin orbital. This effect has to do with exchanging the variables in the

two spin orbitals.

In the double summation in Eq. (2.48), the term i = j is allowed. This means that if i = j, the

Coulomb integral (Eq. 2.50) would be describing the Coulomb interaction of the charge distri-

bution of one electron with itself. Consequently, in a system with only one electron, even though

there is no electron-electron repulsion, the Coulomb integral is non-zero. This problem is called

self-interaction. However, HF solves this problem in a very elegant way: if i = j, the Coulomb

and exchange integrals are identical and both reduce to
∫ ∫
|χi(x1)|2 1

r12
|χi(x2)|2 dx1dx2. Both

integrals enter Eq. (2.48) with opposite sign and the self-interaction is exactly cancelled.

In order to solve Eq. (2.52), we need to know the expression of the Fock operator, and this

depends on the HF potential (Eq. 2.54), which depends on the spin-orbitals, in other words, on

the solutions of the eigenvalue that needs to be solved. Thus, this has to be solved iteratively,

through a technique called self-consistent field (SCF): we start with a “guessed” set of orbitals,

solve the HF equations, and the resulting set of orbitals used in the next iteration until the

input and output orbitals differ by less than a threshold.

It can be easily shown that a Slater determinant is an eigenfunction of a Hamilton operator
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defined as the sum of the Fock operators of equations (2.52):

ĤHFΦSD = E0
HFΦSD =

N∑

i

f̂iΦSD = εiΦSD (2.57)

The difference between the HF energy and the exact ground state energy is called the electron

correlation energy. Post HF methods go beyond the assumption that the solution is a single

Slater determinant, for instance, those based on many body perturbation theory (MP methods

formulated by Møller and Plesset [39]), configuration interaction (CI) [40], and coupled-cluster

(CC) methods [41]. These methods are extremely accurate, but computationally expensive.

2.2.6 Density Functional Theory

The foundation for Density Functional Theory (DFT) is the electron density, designated by

ρ(r) [42], which is the number of electrons per unit volume in a given state:

ρ(r) = N

∫
· · ·
∫
|Ψ (r, r2, . . . , rN)|2 dr2 . . . drN (2.58)

By integrating this function is possible to get the total number of electrons:

∫
ρ(r) dr = N (2.59)

In DFT, V̂ne, the Coulomb interaction between electrons and nuclei, is commonly referred to

as V̂ext, the external potential, which can also be written as a sum over all the N electrons, of

each attraction:

V̂ext =
N∑

i=1

vext (ri) (2.60)

where vext (ri), the external potential acting on each electron, is just:

vext (ri) = −
M∑

A=1

ZA
riA

(2.61)

DFT is constructed upon two theorems, described herein.
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2.2.6.1 The First Hohenberg-Kohn Theorem

The first theorem states that:

“Given two external potentials v (r) and v′ (r), if their difference v (r) − v′ (r) is a constant,

they will not give rise to the same ground-state density distribution ρ (r).”

We will prove this theorem by assuming that it is possible to find two external potentials, that

differing by a constant, they separately give the same electron density.

Given two Hamiltonians Ĥ and Ĥ ′, which they only differ in the external potential:

Ĥ = T̂ + V̂ee + V̂ext (2.62)

Ĥ ′ = T̂ + V̂ee + V̂ ′ext (2.63)

The two Hamiltonians belong to two different ground state wave functions, Ψ and Ψ
′
, and

to two corresponding ground state energies E0 and E
′
0 respectively, with E0 6= E

′
0. However,

because the density is constructed from a wave function by quadrature (Eq. (2.58)), it is very

well possible that both wave functions give the same electron density, i.e.

V̂ext ⇒ Ĥ ⇒ Ψ⇒ ρ(r) ⇐ Ψ′ ⇐ Ĥ ′ ⇐ V̂ ′ext (2.64)

Using the variational principle:

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 (2.65)

= E ′0 + 〈Ψ′|T̂ ′ + V̂ext + V̂ee − T̂ − V̂ ′ext − V̂ee|Ψ′〉

= E ′0 + 〈Ψ′|V̂ext − V̂ ′ext|Ψ′〉

= E ′0 + 〈Ψ′|
N∑

i=1

vext (ri)−
N∑

i=1

v′ext (ri)|Ψ′〉

Since electrons are indistinguishable, V̂ext =
∑N

i=1 vext (ri) = vext (r1)+vext (r2)+· · ·+vext (rN) =

Nvext (r1) ≡ Nvext (r). Thus,

E0 < 〈Ψ′|Ĥ|Ψ′〉 = E ′0 + 〈Ψ′|N [vext (r)− v′ext (r)]|Ψ′〉

= E ′0 +

∫
Ψ′Ψ′∗N [vext (r)− v′ext (r)] dτ (2.66)
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From Eq. (2.58) and Eq. (2.64):

∫
Ψ′Ψ′∗Ndr = ρ′(r) ≡

∫
ΨΨ∗Ndr = ρ(r) (2.67)

Therefore,

E0 < 〈Ψ′|Ĥ|Ψ′〉 = E ′0 +

∫
ρ(r) [vext (r)− v′ext (r)] dr (2.68)

where E0 and E ′0 are the ground state energies for Ĥ and Ĥ ′ respectively. Similarly, taking Ψ

as a trial function for the Ĥ ′ problem:

E ′0 < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉

= E0 −
∫
ρ(r) [vext (r)− v′ext (r)] dr (2.69)

Adding (2.68) and (2.69) we obtain E0 +E ′0 < E ′0 +E0. This is a contradiction, so there cannot

be two different external potentials that give the same ground state electron density. In other

words, the ground state density uniquely specifies the external potential Vext. Due to the fact

that the ground state energy is a functional of the ground state electron density, so must be its

individual components:

E0[ρ0] = T [ρ0] + Vee[ρ0] + Vne[ρ0] (2.70)

where we write Vne[ρ0] to specify that the external potential is fully determined by the attraction

to the nuclei. This term can be obtained as:

Vne[ρ0] =

∫
ρ0 (r) vext (r) dr (2.71)

and its value depends on the system. However, the other two terms are universal, in the sense

that they do not depend on N , ZA or RA:

E0[ρ0] =

∫
ρ0 (r) vext (r) dr

︸ ︷︷ ︸
system dependent

+T [ρ0] + Vee[ρ0]

︸ ︷︷ ︸
universally valid

(2.72)

Gathering the system independent parts into a new quantity, the Hohenberg-Kohn functional

FHK[ρ0], one gets to:

E0[ρ0] =

∫
ρ0 (r) vext (r) dr + FHK[ρ0] (2.73)



62 Chapter 2. Background Theory

If we give as an input some arbitrary density ρ (r), the Hohenberg-Kohn functional will allow

us to calculate the expectation value 〈Ψ|T̂ + V̂ee|Ψ〉, which is the sum of the kinetic energy and

the electron-electron repulsion operator with the ground state wave function Ψ associated with

this arbitrary chosen density ρ (r):

FHK[ρ] = T [ρ] + Vee[ρ] = 〈Ψ|T̂ + V̂ee|Ψ〉 (2.74)

Because FHK[ρ] contains the functional of the kinetic energy T [ρ] and the electron-electron

interaction Vee[ρ], it is completely independent of the system. However, the explicit form of

these two functionals is not known exactly. Vee[ρ0] can be written as a sum of classical and

non-classical contributions:

Vee[ρ] = J [ρ] + Vnon-classsical[ρ] (2.75)

The first term J [ρ] represents the classical electrostatic energy of a charge distribution with

itself:

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1dr2 (2.76)

This term contains the unphysical self-interaction: if we consider a system formed of only one

electron, there cannot be any electron-electron Coulomb interaction, and unfortunately in this

case we obtain J [ρ] 6= 0.

Enon-classical[ρ] is the energy of interaction between the charge density and the charge distribution

of the exchange-correlation hole. It includes the correction for the self interaction as well as all

contributions of quantum-mechanical correlation effects. It is important to know at this stage

that hole functions are very useful for discussing exchange and correlation effects.

2.2.6.2 The Second Hohenberg-Kohn Theorem

This theorem reads: For any density ρ′(r) that satisfies the necessary boundary conditions such

as ρ′(r) > 0,
∫
ρ′(r)dr = N , and which is associated with some external potential vext, the

energy functional is an upper bound to E0, the true ground state energy :

E0 6 E0[ρ′] = T [ρ′] + Vee[ρ
′] + Vne[ρ

′] (2.77)
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E0 results only if and only if the exact ground state density is inserted into Eq. (2.73). This

theorem is a consequence of the variational principle. If we rewrite Eq. (2.41) with Ψ′ as a trial

function:

〈Ψ′|Ĥ|Ψ′〉 = E ′0 > E0 = 〈Ψ0|Ĥ|Ψ0〉 (2.78)

and if we work with the exact and trial functionals E0[ρ0] and E0[ρ′] we arrive at:

〈Ψ0|Ĥ|Ψ0〉 = E0 ≡ E0[ρ0] = T [ρ0] + Vee[ρ0]︸ ︷︷ ︸
= FHK[ρ0]

+Vne[ρ0] (2.79)

where Vne[ρ0] =
∫
ρ0(r)vext (r) dr. Similarly,

〈Ψ′|Ĥ|Ψ′〉 = E ′0 ≡ E ′0[ρ′] = T [ρ′] + Vee[ρ
′]︸ ︷︷ ︸

= FHK[ρ′]

+Vne[ρ
′] (2.80)

where since we are using a Hamiltonian Ĥ and not Ĥ ′, the external potential corresponds to

vext (r) so that Vne[ρ
′] =

∫
ρ′(r)vext(r)dr.

In Density Functional Theory, the functional E[ρ] contains an explicit prescription for how

to uniquely map an electron density onto an energy, neglecting the complicated N-particle

wave function. The variational principle as proven above, applies to the exact functional only.

Many conventional wave function based theories (Hartree-Fock or configuration interaction

approaches) are strictly variational and the expectation value E = 〈Ψ′|Ĥ|Ψ′〉 is an indicator of

the quality of the trial function (the lower E, the better approximation is Ψ′ to Ψ). However,

the energy value obtained by a trial functional has absolutely no meaning in that respect: it

can well occur that the energies obtained from DFT are lower than the exact ones. The reason

for these results is that in DFT, by using an approximation for the functional, consequently we

are using an approximated Hamiltonian rather than the exact one. Therefore, if we change Ĥ

and use something which is an approximation to it, the variational principle does not hold any

more.

2.2.6.3 The Kohn-Sham Approach

As showed in Hartree-Fock, the Fock operator (Eq. 2.53) is an effective one-electron operator,

and hence, the Hartree-Fock equations (Eq. (2.57)) describe a system of N electrons which do
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not interact among themselves but experience an effective potential VHF. In other words, the

Slater determinant describes the wave function of N non-interacting fermions moving in the

field of the effective potential VHF.

In a Kohn-Sham approach, it is again possible to set up a non-interacting reference system by

introducing a Hamiltonian ĤS that contains an effective, local potential VS(r):

ĤS = −1

2

N∑

i=1

∇2
i +

N∑

i=1

VS(ri) (2.81)

In addition, the ground state wave function is represented by a Slater determinant ΘS:

ΘS =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) · · · ϕN(x1)

ϕ1(x2) ϕ2(x2) · · · ϕN(xN)
...

...
. . .

...

ϕ1(xN) ϕ2(xN) · · · ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣

(2.82)

where the spin orbitals ϕi are named Kohn-Sham orbitals, and are determined by:

f̂KSϕi = εiϕi (2.83)

and the Khon-Sham operator f̂KS is defined as:

f̂KS = −1

2
∇2 + VS(ri) (2.84)

Hence, [
−1

2
∇2 + VS(ri)

]
ϕi = εiϕi (2.85)

It can be shown that ρS(r), the electron probability density of an N-particle system whose wave

function is a Slater determinant of the spin-orbitals (Eq. (2.82)), is given by
∑N

i=1 |ϕi|
2. Thus,

the effective potential VS(ri) is then chosen such that the density ρS(r) exactly equals ρ0(r),

the ground state density of our real target system of interacting electrons:

ρ(r) ≡ ρS(r) =
N∑

i=1

|ϕi (x)|2 = ρ0(r) (2.86)

From now on, we will use ρ as if we were talking about ρS, for simplicity. The kinetic energy
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of the non-interacting system will be calculated exactly:

TS[ρ] = −1

2

N∑

i=1

〈ϕi|∇2|ϕi〉 (2.87)

TS[ρ], the non-interacting kinetic energy is not equal to T [ρ], the kinetic energy of the interacting

system. This is accounted for by introducing TC[ρ], a residual part of the part of the true kinetic

energy:

T [ρ] = TC[ρ] + TS[ρ] (2.88)

The non-classical contribution of Vee[ρ] (Eq. (2.75)) is also not known. Both Vnon-classsical[ρ] and

TC[ρ] are gathered onto the so called exchange-correlation energy :

EXC[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC[ρ] + Vnon-classsical[ρ] (2.89)

In this way, the exchange-correlation energy contains everything that is unknown: not only

the non-classical effects of self-interaction correction, exchange and correlation, which are the

contributions to the potential energy of the system, but also a portion belonging to the kinetic

energy. Having introduced EXC, [ρ] F [ρ] now reads like:

F [ρ] = TS[ρ] + J [ρ] + EXC[ρ] (2.90)

Using the expression for TS[ρ] (Eq. 2.87), J [ρ] (Eq. 2.76), Vne[ρ] (Eq. 2.71), we find that the

expression for the energy is the following:

E[ρ] = TS[ρ] + Vee[ρ]︸ ︷︷ ︸
= F [ρ]

+Vne[ρ]

= TS[ρ] + J [ρ] + EXC[ρ] + Vne[ρ]

= −1

2

N∑

i=1

〈ϕi|∇2|ϕi〉+
1

2

∫∫
ρ(r1)ρ(r2)

r12

dr1dr2 + EXC[ρ] +

∫
ρ (r) vext (r) dr (2.91)

By inserting Eq. (2.61) into Eq. (2.71), we get that Vne[ρ] can be expressed as:

Vne[ρ] =

∫
−

M∑

A=1

ZA
r1A

ρ (r1) dr1 (2.92)
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where, using Eq. (2.86) we can replace ρ (r1) dr1 by the Kohn-Sham orbitals:

Vne[ρ] =

∫
−

M∑

A=1

ZA
r1A

N∑

i=1

|ϕi (x1)|2 dr1

= −
N∑

i=1

∫ M∑

A=1

ZA
r1A

|ϕi (x1)|2 dr1 (2.93)

Similarly, J [ρ] (Eq. 2.76) in terms of Khon-Sham orbitals gives:

J [ρ] =
1

2

N∑

i=1

N∑

j=1

∫∫
|ϕi(r1)|2 1

r12

|ϕj(r2)|2 dr1dr2 (2.94)

Gathering all this together the final expression of E[ρ] reads like:

E[ρ] =− 1

2

N∑

i=1

〈ϕi|∇2|ϕi〉+
1

2

N∑

i=1

N∑

j=1

∫∫
|ϕi(r1)|2 1

r12

|ϕj(r2)|2 dr1dr2

+ EXC[ρ]−
N∑

i=1

∫ M∑

A=1

ZA
r1A

|ϕi (x1)|2 dr1 (2.95)

This scheme is summarized in Fig. 2.8. Just as one can show that the orthonormal orbitals that

minimize the Hartree-Fock expression for the energy are those that satisfy Equations (2.52),

one can show that the Kohn-Sham orbitals that minimize the expression (2.95) for the ground

state energy are: (
−1

2
∇2 +

[∫
ρ(r2)

r12

dr2 + VXC(r1)−
M∑

A=1

ZA
r1A

])
ϕi

=

(
−1

2
∇2 + Veff(r1)

)
ϕi = εKS

i ϕi

(2.96)

By comparing Eq. (2.85) with Eq. (2.96), it is possible to see that Veff is exactly the same as

VS(r):

VS(r) ≡ Veff(r) =

∫
ρ(r2)

r12

dr2 + VXC(r1)−
M∑

A=1

ZA
r1A

(2.97)

Once each of the contributions in Eq. (2.97) are known, the potential VS(r) is then casted into

the one-electron particle equations (Eq. 2.96), from which we obtain the orbitals, and therefore

the ground state density. By using Eq. (2.95), we can determine the ground state energy.

However, we encounter an already known problem here: VS(r) depends on the density, and

thus on the orbitals. Therefore, just like the Hartree-Fock equations (2.52), the Kohn-Sham
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one-electron equations (2.96) also have to be solved iteratively.

1 E[ρ] = T [ρ] + Vee[ρ]
︸ ︷︷ ︸

= F [ρ]

+Vne[ρ]

Vne[ρ] =

ˆ

ρ (r) vext (r) dr

vext (ri) = −
M∑

A=1

ZA

riA

Vne[ρ] =

ˆ

−
M∑

A=1

ZA

r1A
ρ (r1) dr1

ρ(r) ≡ ρS(r) =

N∑

i=1

|ϕi (x)|
2 = ρ0(r)

Vne[ρ] =

ˆ

−
M∑

A=1

ZA

r1A

N∑

i=1

|ϕi (x1)|
2dr1

Vne[ρ] = −
N∑

i=1

ˆ M∑

A=1

ZA

r1A
|ϕi (x1)|

2 dr1

Vee[ρ] = J [ρ] + Vnon-classical[ρ]

J [ρ] =
1

2

¨

ρ(r1)ρ(r2)

r12
dr1 dr2

ρ(r) ≡ ρS(r) =
N∑

i=1

|ϕi (x)|
2 = ρ0(r)r

J [ρ] =
1

2

N∑

i=1

N∑

j=1

¨

|ϕi(r1)|
2 1

r12
|ϕj(r2)|

2 dr1 dr2

T [ρ] = TS[ρ] + TC[ρ]

TS[ρ] = −
1

2

N∑

i=1

〈
∇2

∣
∣ϕi

∣
∣∇2

〉

EXC[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC[ρ] + Vnon-classical[ρ]

2 E[ρ] = TS[ρ] + J [ρ] + Vne[ρ] + EXC[ρ]

3 E[ρ] = −
1

2

N∑

i=1

〈
∇2

∣
∣ϕi

∣
∣∇2

〉
+

1

2

N∑

i=1

N∑

j=1

¨

|ϕi(r1)|
2 1

r12
|ϕj(r2)|

2 dr1 dr2

+EXC[ρ]−
N∑

i=1

ˆ M∑

A=1

ZA

r1A
|ϕi (x1)|

2 dr1

Figure 2.8: Summary of the DFT formulation

Since we do not know the exchange correlation energy EXC, we also do not know the explicit
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form of the exchange-correlation potential, VXC in Eq. (2.96). Therefore, it is simply defined as

the functional derivative of EXC with respect to ρ:

VXC =
δEXC

δρ
(2.98)

The Kohm-Sham approach is in principle exact. The approximation only enters when deciding

on an explicit form of the unknown functional for the exchange-correlation energy EXC and the

corresponding potential VXC.

2.2.6.4 Approximate Exchange-Correlation Functionals

There are several proposed approximate exchange-correlation functionals, e.g. LDA, GGA and

Hybrid functionals, described herein.

• Local density approximation

The Local Density Approximation (LDA) assumes that EXC can be written as:

ELDA
EX [ρ] =

∫
ρ(r)εXC (ρ(r)) dr (2.99)

where εXC (ρ(r)) is the exchange-correlation energy per particle of a uniform electron gas of

density ρ(r), and can be splitted into exchange and correlation contributions:

εXC (ρ(r)) = εX (ρ(r)) + εC (ρ(r)) (2.100)

The exchange part εX represents the exchange energy of an electron in a uniform electron gas

of a particular density, determined by Bloch and Dirac:

εX (ρ (r)) = −3

4

(
3

π

)1/3

(ρ (r))1/3 (2.101)

No explicit expression is known for εC, the correlation part. It has instead been derived from

highly accurate quantum Monte Carlo simulations of the homogeneous electron gas. On the

basis of these results, some authors have obtained analytical expressions of εC, giving rise to

widely used LDA functionals such as the Vosko-Wilk and Nusair (VWN) [43] and the Perdew-

Wang (PW92) [44] functionals.
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Since the LDA functional is based on the uniform electron gas model, this situation resembles

the model of an idealized metal consisting of a perfect crystal of valence electrons and positive

cores. For this reason, this functional reproduces fairly well the geometries of simple metals

e.g. sodium. However, it underestimates band gaps. In addition, this model is far from any

realistic situation in atoms or molecules, which are usually characterized by varying densities.

• Generalised gradient approximation

In order to account for the non-homogeneity of the true electron density, a possible solution

is not only to use the information about the density ρ(r), but also the gradient of the charge

density, ∇ρ(r). This idea gives birth to the Generalised Gradient Approximation (GGA) func-

tionals.

Functionals like Perdew-Wang (PW91) [45], Becke88 (B) [46] are based on scaling relations

and sum rules. Others, like Perdew-Burke-Ernzerhof (PBE) [47] are parametrised by numerical

fitting procedures in order to reproduce the experimental value of some molecular properties.

GGA functionals lead to a better description of energy barriers and atomisation energies. How-

ever, like LDA, it fails to describe van der Waals interactions and also underestimates band

gaps. One explanation for this last effect is because of the unresolved problem of the self-

interaction in DFT, which makes the occupied levels to be pushed up in energy, leading to an

underestimation of band gaps.

Meta-GGA functionals such as PKZB and VS98 [48, 49, 50] include higher order derivatives of

the electron density and lead to an improvement in atomisation and binding energies.

• Hybrid functionals

These functionals arise from the idea of introducing some percentage of HF exchange energy.

This percentage is chosen such that the experimental atomization, ionization energies and

proton affinities are optimally reproduced. The best example is the Becke 3 parameter Lee-

Yang- Parr (B3LYP) hybrid functional [51, 52]:

EB3LYP
XC = ELDA

XC + 0.2
(
EHF

X − ELDA
X

)
+ 0.72

(
EB88

X − ELDA
X

)
+ 0.81

(
EPW91

C − ELDA
C

)
(2.102)

where EB88
X is the B88 exchange functional and EPW91

C the PW91 correlation functional. These
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coefficients are determined by fitting to observed atomisation energies, ionisation potentials,

proton affinities and total atomic energies [52].

Hybrid functionals are more accurate in atomisation enthalpies, geometries and vibrational

frequencies. Band gaps are as accurate as those obtained with correlated methods [53]. B3LYP

is considered to be the functional mostly used [54]. Other hybrid functionals include PBE0

[55, 56] and Heyd-Scuseria-Ernzerhof (HSE) [57].

2.2.6.5 Dispersion correction

Even in the absence of charges or permanent electric moments, two non-interacting molecules or

atoms present long range attractive forces, also referred to as London forces due to the electron

density of both units. At an intermediate distance, the motion of electrons in one unit induces

slight perturbations in the electron density of the neighbour unit, generating a induced dipole

moment that induces a charge polarization in the first unit. The result is an attractive force

between the two systems that decays with the inverse sixth power of the intermolecular distance.

2 These dispersion interactions play an important role in all organic or metallo-organic systems,

in terms of the optimized geometry, lattice energy, frequencies, and reactivities. Because of

the organic nature of the carbonate group (CO2−
3 ), dispersion interactions need to be taken

into account in the determination of the phase boundary of calcium carbonate. Within this

formalism, the total energy is given by:

EDFT−D = EKS−DFT + Edisp (2.103)

where Edisp, the empirical dispersion correction, is given by

Edisp = −s6

Nat−1∑

i=1

Nat∑

j=i+1

Cij
6

R6
ij

fdmp(Rij) (2.104)

Nat is the number of atoms in the system, Cij
6 denotes the dispersion coefficient for atom pair ij,

s6 is a global scaling factor that only depends on the functional used, and Rij is an interatomic

2 An estimation of the strength of the dispersion energy is the following: two atoms or small molecules in
contact at r = σ ≈ 0.3 nm, with α0/4πε0 ≈ 1.5 · 10−30 m3 and I = hν ≈ 10−18J (a typical ionization potential
in the UV), yield a dispersion interacting energy of −4.6 · 10−21J ≈ 1kBT (at 298K) [58]. Large molecules such
as hexane or higher molecular weight hydrocarbons are liquids or solids namely because they are held together
solely by dispersion forces.
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distance. In order to avoid near-singularities for small R, a damping function fdmp must be

used, which is given by

fdmp(Rij) =
1

1 + exp [−d (Rij/Rr − 1)]
(2.105)

Dispersion corrections were initially developed by Grimme [59], and have been progressively

being improved by collaborators [60, 61, 62], and implemented in the CRYSTAL code [63], e.g.

D2 or the most recent D3 corrections for dispersion interactions.

2.2.7 From Atomic Orbitals to Bloch Functions

In a periodic system there are infinite number of orbitals. To tackle with this situation it is

necessary to exploit the translational symmetry.

We will start by developing the orbitals within the unit cell and then extend this situation to

a periodic system using Bloch functions.

2.2.7.1 One-dimensional chain of atoms

For a one-dimensional chain of atoms like the one shown in Fig. 2.9, the basis vector in the

reciprocal lattice is b, of length:

|b| = 2π

|a| =
2π

a
(2.106)

The shortest reciprocal lattice vectors from the origin O are b and −b. The perpendicular

bisector of these vectors at their midpoints define the boundaries of the first Brillouin zone.

Thus, the boundaries are at:

Boundaries: ± |b|
2

= ±2π

a
= ±π

a
(2.107)

The region of k values between π/a and −π/a is referred to as the first Brillouin zone. The

variation in energy as a function of the wavevector k is called the dispersion band. It can be

shown that the diagram energy vs k has a mirror symmetry about k = 0, so it is sufficient just
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Unit cell = BZ

a

Unit cell

a

|a| = a

b = 2π
a

|b| = 2π
a

+1
2 |b| = +π

a−1
2 |b| = −π

aBoundaries:

b
Reciprocal lattice

Linear crystal lattice

Figure 2.9: Direct (upper panel) and reciprocal (lower panel) lattices for a one-dimensional chain of atoms.

to use one-half of this diagram. We will choose the right-hand half that corresponds to positive

k. The point k = π/a is called the zone edge and k = 0 the zone center.

The electrons of each of these atoms are described by an orbital ϕµ centered on each atom.

Each unit cell of length a contains one atom and is labelled as n = 0, 1, 2... (Figure 2.10).

The origin of the Cartesian coordinate system is located in the bottom left corner of cell n = 0.

The position of each atom inside each nth cell is described by the vector Aµ. The translational

vector respect to the cell n = 0 is described by gn = na. In this way, we can define the position

of any atom in by summing two vectors: Aµ + gn:

Position of atom in n = 0 : g0 + Aµ = Aµ

Position of atom in n = 1 : g1 + Aµ = a + Aµ

Position of atom in n = 2 : g2 + Aµ = 2a + Aµ

In order to implement correctly the Bloch Theorem, it is necessary to change the origin of the

Cartesian coordinate system: each nth orbital ϕµ will be now referred to the left bottom corner



2.2. Elements of Quantum Mechanics 73

ϕµ ϕµ

n = 0 n = 1

Aµ

n = 2

g1 = a

g2 = 2a

Aµ

ϕµ

Aµ

Figure 2.10: One-dimensonal chain of atoms described by an orbital ϕµ centered on each atom. The
position of each atom inside each nth cell is described by the vector Aµ.

of each nth cell3

Position of the orbital in n = 0 : ϕµ (Aµ − g0) = ϕµ (Aµ)

Position of the orbital in n = 1 : ϕµ (Aµ − g1) = ϕµ (Aµ − a)

Position of the orbital in n = 2 : ϕµ (Aµ − g2) = ϕµ (Aµ − 2a)

It can be proved that the symmetry adapted linear combination of these ϕµ atomic orbitals

under the action of translational symmetry is given by Bloch functions:

φ(k) =
∑

g

ϕµ (Aµ − g) exp [ik · g] (2.108)

Since we are solving the electronic structure of a periodic system, we need to take into account

the position of each electron in the system. Thus, if we denote as r the position of an electron

in orbital Aµ, we redefine the problem by using a new vector m, as shown in Figure (2.11).

It is satisfied that: r = Aµ + m, so that m = r −Aµ. In this way, we now define the atomic

orbital as ϕµ (m− g) = ϕµ (r−Aµ − g):

3Notice that if we maintain the previous coordinate system in which there is only one origin, located in
the bottom left corner of the cell n = 0, the orbitals on each nth cell will then be given by ϕµ (Aµ + gn).
It is generally agreed by convention to stick to the ϕµ (Aµ − gn) notation in the construction of Bloch func-
tions. In order to use this notation, there must be n origins, located at the bottom left of each nth cell.
In other words, the original coordinate system is translated n times per cell, by a quantity a, 2a, 3a, etc.
y y′

x, x′

where x′ = x− a
y′ = y

a

r, r′
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ϕµ ϕµ ϕµ

n = 0 n = 1 n = 2

g1 = a

g2 = 2a

Aµ
Aµ

Aµ

mm m

r r r

Figure 2.11: One-dimensonal chain of atoms described by an orbital ϕµ centered on each atom. r is the
position of an electron in orbital ϕµ. The position of each atom inside each nth cell is described by the
vector Aµ, so that r = Aµ + m.

φ(r; k) =
∑

g

ϕµ (r−Aµ − g) exp [ik · g] (2.109)

The functions φ(r; k) are called Bloch functions and represent the symmetry adapted linear

combination of atomic orbitals, under the action of translational symmetry. BFs are periodic

functions with respect to k, and have the same value when equivalent k points are considered.

This property allows to analyze only the k points of the origin cell, that corresponds to the

first Brillouin Zone.

Each atomic orbital is expressed as a linear combination of normalized Gaussian type functions

(GTFs), with fixed coefficients dj and exponents αj:

ϕµ (r−Aµ − g) =

nG∑

j

djG (αj; r−Aµ − g) (2.110)

The collection of all atomic orbitals is referred to as the basis set.

We will now proceed to obtain the dispersion band for the case of a 1D chain of atoms in which

the unit cell of lenght a contains only one atom.

According to what has been discussed, each nth atom is described by an orbital ϕµ (r−Aµ − na),

as shown in Fig. 2.12.



2.2. Elements of Quantum Mechanics 75

n = 0 n = 1

g1 = a

g2 = 2a

n = 2 n = 3

ϕµ (r−Aµ) ϕµ (r−Aµ − 3a)ϕµ (r−Aµ − a) ϕµ (r−Aµ − 2a)

Figure 2.12: Four unit cells of length a, each of them containing one atom represented by a black dot.
ϕµ (r) is some arbitrary orbital located on some atom in the chain; ϕµ (r−Aµ − a) lies at a distance
a along the chain, ϕµ (r−Aµ − 2a) at a distance 2a, and so on, from ϕµ (r−Aµ). For simplicity, the
shape of the orbitals is omitted, but is to be considered as an arbitrary orbital.

For this situation, for a general value of k, Eq. (2.109) may be written as4:

φ(r; k) = ϕµ (r−Aµ) + ϕµ (r−Aµ − a) exp [ik · a] + ϕµ (r−Aµ − 2a) exp [ik · 2a] + ...

(2.111)

By implementing Eq. (2.111) on the boundary conditions:

a) If k = 0, exp [ik · g] = 1 so that:

φ(r; k = 0) = ϕµ (r−Aµ) + ϕµ (r−Aµ − a) + ϕµ (r−Aµ − 2a) + ϕµ (r−Aµ − 3a) + ...

(2.112)

b) If k = π/a:

φ(r; k = π/a) = ϕµ (r−Aµ)−ϕµ (r−Aµ − a)+ϕµ (r−Aµ − 2a)−ϕµ (r−Aµ − 3a)+...

(2.113)

In order to visualize in a simple way both wavefunctions (2.112) and (2.113), we will consider

each ϕµ (r−Aµ − na) orbital to be a spheric s type orbital, represented as circles in Figure

4The first term of this summation on Eq. (2.109) corresponds to g = 0, so that this first term reads like:

ϕµ

(
r−Aµ − a︸︷︷︸

=0

)
exp

[
ik · a︸︷︷︸

=0

]
= ϕµ (r−Aµ)
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(2.13): Wavefunction (2.112) found at the zone center (k = 0) corresponds to a maximum

bonding, and therefore a maximum stabilization. On the other hand, wavefunction (2.113) at

the zone edge (k = π/a) is the maximum antibonding situation (Figure (2.13)).

k = 0 k = π/a

E
(k
)

k

φ (r;k = 0)

φ (r;k = π/a)

Figure 2.13: Dispersion E(k) versus k band for a situation described in Figure (2.12), where there is only
one atom per unit cell, described by an orbital Aµ. For simplicity, this orbital is described in this figure as
a spheric s type orbital.

In Figure (2.12) we chose a repeating unit for our calculation that contained a single orbital. If

we choose a two-atom repeat unit as in Fig. (2.14), where a′ = 2a, the E(k) versus k diagram

will be now different: at each value of k there will now be two energy levels because there are

now two orbitals per unit cell. To tackle with this problem, we first need to develop Bloch

functions for each of the two orbitals in the unit cell.

n = 0 n = 1 n = 2

g1 = a′

g2 = 2a′

ϕ1 (r−Aµ) ϕ2

(
r−Aµ − 1

2
a′
)

ϕ1

(
r−Aµ − 5

2
a′
)

ϕ2

(
r−Aµ − 3

2
a′
)

ϕ1 (r−Aµ − a′) ϕ1 (r−Aµ − 2a′)

Figure 2.14: Four unit cells of length a, each of them containing two atoms. The labels represent the
same as in 2.12, where a′ = 2a.

As shown in Figure (2.14), we will locate ϕ1 and ϕ2 on the left and right hand side atoms

of any given unit cell. Starting with ϕ1 (r−Aµ), this orbital is sent to ϕ1 (r−Aµ − a′) by

a translation a′ and to ϕ1 (r−Aµ − 2a′) by a translation 2a′. ϕ1 and ϕ2 are translationally
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separated by a′/2. Using Eq. (2.111), on each of the two orbitals,

φ1(r; k) = ϕ1 (r−Aµ) + ϕ1 (r−Aµ − a′) exp [ik · a′] +

+ ϕ1 (r−Aµ − 2a′) exp [ik · 2a′] + ...

φ2(r; k) = ϕ2

(
r−Aµ −

1

2
a′
)

exp

[
ik · 1

2
a′
]

+ ϕ2

(
r−Aµ −

3

2
a′
)

exp

[
ik · 3

2
a′
]

+

+ ϕ2

(
r−Aµ −

5

2
a′
)

exp

[
ik · 5

2
a′
]

+ ...

(2.114a)

(2.114b)

Now there are two orbitals for each value of k. The best way to acquire an intuitive picture of

this situation is the following. We will describe the diatomic unit by an orbital ξ, from a linear

combination of the ϕ orbitals:

ξ1(r) = ϕ1 (r−Aµ) + ϕ2

(
r−Aµ −

1

2
a′
)

(2.115)

ξ2(r) = ϕ1 (r−Aµ)− ϕ2

(
r−Aµ −

1

2
a′
)

(2.116)

Similarly,

ξ1(r− a′) = ϕ1 (r−Aµ − a′) exp[ik · a′] + ϕ2

(
r−Aµ −

3

2
a′
)

exp[ik · a′] (2.117)

ξ2(r− a′) = ϕ1 (r−Aµ − a′) exp[ik · a′]− ϕ2

(
r−Aµ −

3

2
a′
)

exp[ik · a′] (2.118)

and

ξ1(r− 2a′) = ϕ1 (r−Aµ − 2a′) exp[ik · 2a′] + ϕ2

(
r−Aµ −

5

2
a′
)

exp[ik · 2a′] (2.119)

ξ2(r− 2a′) = ϕ1 (r−Aµ − 2a′) exp[ik · 2a′]− ϕ2

(
r−Aµ −

5

2
a′
)

exp[ik · 2a′] (2.120)

All these wavefunctions Eq.(2.115) - Eq. (2.120) are represented on Figure (2.15). We can now
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construct Bloch functions as:

Φ1 (r; k) = ξ1(r) + ξ1(r− a′) + ξ1(r− 2a′) + . . .

Φ2 (r; k) = ξ2(r) + ξ2(r− a′) + ξ2(r− 2a′) + . . .

(2.121a)

(2.121b)

(a) ξ1 (r) (b) ξ2 (r)

(c) ξ1 (r− a′; k = 0) (d) ξ1 (r− a′; k = π/a′)

(e) ξ2 (r− a′; k = 0) (f) ξ2 (r− a′; k = π/a′)

(g) ξ1 (r− 2a′; k = 0) (h) ξ1 (r− 2a′; k = π/a′)

(i) ξ2 (r− 2a′; k = 0) (j) ξ2 (r− 2a′; k = π/a′)

(k) Φ1 (r; k = 0) (l) Φ1 (r; k = π/a′)

(m) Φ2 (r; k = 0) (n) Φ2 (r; k = π/a′)

Figure 2.15: Wavefunctions for the one-dimensional lattice (Equations (2.115) to (2.121b)).

The dispersion band for both Φ1 (r; k) and Φ2 (r; k) Bloch functions is represented in Figure

(2.16).

From this Figure we can deduce that:
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k = 0 k = π/a′
E
(k
)

k

Φ1 (r;k = 0)

Φ1 (r;k = π/a′)

Φ2 (r;k = 0)

Φ2 (r;k = π/a′)

k = 0 k = π/a′
E
(k
)

k

Φ1 (r;k = 0)

Φ1 (r;k = π/a′)

Φ2 (r;k = 0)

Φ2 (r;k = π/a′)

Figure 2.16: Dispersion E(k) versus k band for a situation described in Figure (2.14), where there are
two atoms per unit cell, each of them described by an orbital Aµ. For simplicity, this orbital is described
in this figure as a spheric s type orbital.

a) At the zone center, the most bonding (Φ1 (r; k = 0)) and most antibonding (Φ2 (r; k = 0))

levels can be found.

b) At the zone edge, the nonbonding levels Φ1 (r; k = π/a′) and Φ2 (r; k = π/a′) are found.

Recall that a′ in Figure 2.14 is twice the value of a in Figure 2.12. Thus, there is a direct

relationship between Figures 2.16 and 2.13. The E(k) versus k diagram of the two-atom cell

is just that of the one-atom cell but the levels have been folded back along k = π/2a (Figure

2.17).

Figure 2.17: Process by which the “folding back” of the dispersion curve for the one orbital cell results
in the dispersion curve for the two orbital cell. Image obtained from Ref. [64].

The process can be continued. If the unit cell is tripled or quadrupled the band will fold as in

Figure 2.18a or 2.18b respectively.
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Figure 2.18: Dispersion curve for the three (a) and four (b) orbital cell. Image obtained from Ref. [64].

2.2.7.2 Two-dimensional crystal

Because materials are also two- or three-dimensional, we must extend this formalism to higher

dimensionality. In two dimensions, we shall treat k as a vector:

k = kx + ky = kxx̂+ kyŷ (2.122)

For example, for a square lattice defined by the translation vectors a1 and a2, where a = |a1| =
|a2| (Figure 2.19), we will consider that the range of each vector is 0 6 |kx| , |ky| 6 π/a.

a2

a1

ŷ

x̂

Figure 2.19: Square 2D lattice described by the translation vectors a1 and a2.

The reciprocal space here is defined by two vectors b1 and b2, and the Brillouin zone is a square

(Figure 2.20).

It is very frequent to identify a point on the first Brillouin zone by a set of 2 coordinates (or
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b1

b2

M

Γ X

X

Figure 2.20: First Brillouin zone of a 2D square lattice. The points X, M and Γ are points in reciprocal
space.

3 in 3D). This is a common practice in dispersion curves and electronic band structure plots.

Therefore, it is important to explain clearly how it is used. These coordinates (±m1,±m2) are

given by the fractional number that multiplies each reciprocal lattice vector. For instance, if

we are asking for the point (1
2
, 1

2
) in reciprocal space, this would mean:

1

2
b1 = kx

1

2
b2 = ky (2.123)

So that:

1

2
|b1| =

1

2

2π

|a1| |a2|
|a2| =

π

a
= kx (2.124)

1

2
|b2| =

1

2

2π

|a1| |a2|
|a1| =

π

a
= ky (2.125)

This situation corresponds to the wavefunction shown on Fig. (2.21c). Certain special values

of kx and ky are given names,

1. Point Γ refers to the position (0, 0), wavefunction shown on Fig. 2.21a.

2. Point X refers to 4 equivalent positions: (1
2
, 0); (−1

2
, 0); (0, 1

2
) and (0,−1

2
). These points

correspond respectively to (kx,ky) = (π
a
, 0), wavefunction shown on Fig. 2.21b; (kx,ky) =

(−π
a
, 0); (kx,ky) = (0, π

a
), wavefunction shown on Fig. 2.21d; (kx,ky) = (0,−π

a
).

3. Point M refers to 4 equivalent positions: (1
2
, 1

2
); (1

2
,−1

2
); (−1

2
, 1

2
); (−1

2
,−1

2
). These points

correspond respectively to (kx,ky) = (π
a
, π
a
), wavefunction shown on Fig. 2.21c; (kx,ky) =

(π
a
,−π

a
); (kx,ky) = (−π

a
, π
a
); (kx,ky) = (−π

a
,−π

a
).
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(a) Γ : kx = 0,ky = 0

(b) X : kx = π/a,ky = 0 (c) M : kx = ky = π/a (d) X : kx = 0,ky = π/a

(e) kx = π/(2a),ky = 0 (f) kx = ky = π/(2a) (g) kx = 0,ky = π/(2a)

Figure 2.21: Wavefunctions for the two-dimensional lattice

The wavefunctions for the case of a double sized cell shown in Figures 2.21e, 2.21f and 2.21g

refer to intermediate solutions, e.g. Fig. 2.21e is halfway point on going from Γ to X, and Fig.

2.21f corresponds to the halfway point on returning from M to Γ.

It would be a complicated task to show the energy levels of E(k) for all k. Typically, the

evolution of E along certain lines in the brillouin zone is shown. Some common paths are

Γ → X, Γ → M or X → M . From Fig. (2.21c) we see that M is the most antibonding

situation, and therefore is the highest energy wave function, as opposed to Γ (Fig. (2.21a)), the

most bonding interaction. X (Figs. (2.21b, 2.21d)) has a many bonding interactions as it does

antibonding ones, so we would be talking about a nonbonding interaction. A band structure

corresponding to a square lattice of H atoms with a = 2.0Å confirms this behaviour (see Fig.
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2.22).

Figure 2.22: Band structure for a square lattice of H atoms. Γ, X and M points correspond to the
wavefunctions shown in Fig. 2.21. Image reproduced from Ref. [64].

2.2.7.3 Three-dimensional crystal

In a 3D crystal, the first Brillouin zone is a parallelepiped, whose specific shape and zone

boundaries depend on the Bravais lattice considered in direct space. The different case scenarios

are described herein.

• Reciprocal lattice of the simple cubic (sc) lattice

Given the lattice vectors of the sc lattice (Eq. 2.3), the volume of the cell is a · b × c = a3.

Using the definition (Eq. 2.9), the primitive translation vectors of the reciprocal lattice are

found to be:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π

a
x̂; b2 =

2π

a
ŷ; b3 =

2π

a
ẑ (2.126)

Thus, the simple cubic reciprocal lattice has lattice constant 2π/a. The boundaries of the first

Brillouin zones are the planes normal to the six reciprocal lattice vectors ±b1, ±b2, ±b3 at

their midpoints:

Boundaries: ± 1

2
b1 = ±π

a
x̂; ±1

2
b2 = ±π

a
ŷ; ±1

2
b3 = ±π

a
ẑ (2.127)
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This six planes define a cube of edge 2π/a and volume (2π/a)3. This cube is the first Brillouin

zone of the sc crystal lattice.

A point in the first Brillouin zone will be now given by 3 coordinates (±m1,±m2,±m3). These

are given by the fractional number that multiplies each reciprocal lattice vector. For instance,

if we have in mind the first Brillouin zone for the sc lattice (Fig. 2.23), and we want to refer to

a point located in the surface of one of the faces of this cube, we will be asking for the boundary

of this first BZ, and therefore the coordinates are normally given as (±1
2
,±1

2
,±1

2
). In other

words:

1. Point X refers to 6 equivalent positions: (±1
2
, 0, 0), (0,±1

2
, 0) and (0, 0,±1

2
).

2. Point M refers to 12 equivalent positions: (±1
2
,±1

2
, 0), (0,±1

2
,±1

2
), and (±1

2
, 0,±1

2
).

3. Point R refers to 8 equivalent positions: (±1
2
,±1

2
,±1

2
),

Roman letters are normally used for points on the surface (boundary) of the BZ. On the other

hand, Greek letters are used to refer to points within the zone: ∆ for (ξ, 0, 0), Σ for (ξ, ζ, 0),

and Λ for (ξ, ζ, ς). where ξ, ζ and ς are no longer 1
2
. The point (0, 0, 0) is always given the label

Γ.

Figure 2.23: First Brillouin zone for a simple cubic lattice. The points R, X, M and Γ are indicated, as
explained in the text. Figure obtained from Ref. [65].

• Reciprocal lattice of the body-centered cubic (bcc) lattice

Given the lattice vectors of the bcc lattice (Eq. 2.4), the volume of the primitive cell is:

a1 · (a2 × a3) =
1

2
a3 (2.128)
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so that the reciprocal lattice vectors are:

b1 =
2π

a
(ŷ + ẑ) ; b2 =

2π

a
(x̂+ ẑ) ; b3 =

2π

a
(x̂+ ŷ) (2.129)

By comparison with Eq. (2.5), we see that these lattice vectors are just the primitive vectors

of an fcc lattice. In other words, an fcc lattice is the reciprocal lattice of the bcc lattice.

According to Eq. (2.10), the infinite set of reciprocal vectors is:

G = hb1 + kb2 + lb3 =
π

a
[(h+ l) x̂+ (h+ k) ŷ + (k + l) ẑ] (2.130)

where h, k and l are integers. The shortest vectors are the following 12:

Shortest G : G1 =
2π

a
(±x̂±y); G2 =

2π

a
(±ŷ±z); G3 =

2π

a
(±x̂±z); (2.131)

The primitive cell of the reciprocal lattice is the parallelepiped described by the b1, b2 and

b3 from Eq. (2.129), and has a volume of V = |b1 · (b2 × b3)| = 2(2π/a)3. Each of the eight

corners of the parallelepiped is shared among eight parallelepipeds, so that each parallelepiped

contains one-eight of each corner points. The first Brillouin zone is bounded by the planes

normal to these 12 vectors of Eq. (2.131) at their midpoints. The zone is a 12-faced solid, a

rhombic dodecahedron (Fig. 2.24). The vectors from the origin to the center of each face are:

Boundaries:
1

2
(Shortest G) :

1

2
G1 =

π

a
(±x̂±ŷ);

1

2
G2 =

π

a
(±ŷ±ẑ);

1

2
G3 =

π

a
(±x̂±ẑ)

(2.132)

For instance, the point N refers to 6 equivalent positions at the surface (boundary): (±1
2
, 0, 0),

(0,±1
2
, 0) and (0, 0,±1

2
).

• Reciprocal lattice of the face-centered cubic (fcc) lattice
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Figure 2.24: First Brillouin zone for a body centered cubic lattice. The points N , is indicated, as explained
in the text. Figure reproduced from Ref. [65].

Given the lattice vectors of the fcc lattice (Eq. 2.5), the volume of the primitive cell is:

a1 · (a2 × a3) =
1

4
a3 (2.133)

and the reciprocal lattice vectors are:

b1 =
2π

a
(x̂+ ŷ − ẑ) ; b2 =

2π

a
(−x̂+ ŷ + ẑ) ; b3 =

2π

a
(x̂− ŷ + ẑ) (2.134)

The volume of this primitive cell is |b1 · (b2 × b3)| = 4(2π/a)3. These vectors are the primitive

vectors of the bcc lattice, so that the bcc lattice is the reciprocal lattice of the fcc lattice.

The infinite set of reciprocal vectors is:

G = hb1 + kb2 + lb3 =
2π

a
[(h− k + l) x̂+ (h+ k − l) ŷ + (−h+ k + l) ẑ] (2.135)

The shortest vectors are the following 8:

Shortest G :
2π

a
(±x̂± y ± z) (2.136)

The boundaries are determined by the eight planes normal to these vectors at their midpoints:

Thus, the 8 vectors from the origin to the center of each face are:

Boundaries:
1

2
(Shortest G) :

1

2
G =

π

a
(±x̂± ŷ ± z) (2.137)
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The shape of this BZ is a truncated octahedron (Fig. 2.25) of volume (4π/a)3. For instance,

the point L refers to 2 equivalent positions at the surface of the BZ: (1
2
, 1

2
, 1

2
) and (−1

2
,−1

2
,−1

2
).

Figure 2.25: First Brillouin zone for a face centered cubic lattice. The points L is indicated, as explained
in the text. Figure reproduced from Ref. [65].

The corners of the octahedron are cut by the planes that are perpendicular bisectors of six

other reciprocal lattice vectors, so that equivalent lattice vectors can be found:

Other shortest G :
2π

a
(±2x̂);

2π

a
(±2ŷ);

2π

a
(±2ẑ) (2.138)

2.2.8 From Molecular Orbitals to Crystalline Orbitals

If Molecular Orbitals are linear combinations of AOs, Crystalline orbitals ψi(r; k) are expressed

as a linear combination of Bloch functions:

ψi(r; k) =
∑

g

aµ,i(k)φµ(r; k) (2.139)

The expansion coefficients of the Bloch functions, aµ,i(k), are calculated by solving the following

matrix equation for each reciprocal lattice vector, k:

F(k)A(k) = S(k)A(k)E(k) (2.140)

where all matrices have equal size, and F(k), A(k), S(k), and E(k) are, respectively, the Fock,

eigenvectors, overlap and eigenvalues matrices.

Eq. 2.140 is equivalent to the Roothan-Hall equations, with the only difference that in a periodic

system, these equations have to be solved at each k point of a chosen grid.



88 Chapter 2. Background Theory

By using a BF strategy, the infinite Hamiltonian matrix in the AOs basis becomes an infinite

block-diagonal matrix in the BF basis set, with each block referring to one particular k point

(Fig. 2.26).

Figure 2.26: The infinite hamiltonian matrix of AOs (left) is transformed to a infinite block-diagonal
matrix. Once we set a finite number of k points, the matrix becomes finite.

It is convenient to calculate all matrices in the Atomic Orbital representation (“direct space

representation”), simply because the Bloch Functions are expressed in terms of a local basis

set. After the evaluation of the several integrals has been performed in direct space, all the

quantities are transformed to reciprocal space, and Eq. 2.140 is solved for a given number of k

points.

2.2.9 Building the matrices

Every matrix element is identified by the indices µ and ν. The µ index refers to the atomic

orbital centered in the origin cell. The direct lattice vector g, labels the cell where the ν-th

atomic orbital is centered.

The matrix elements of the overlap matrix are denoted as Sµν and read like:

Sµν =

∫
φµ(r; k)φ∗ν(r; k)dr, (2.141)

Each of the elements of the Fock matrix is calculated as a sum of contributions: kinetic en-

ergy (T ), electron-nuclear (Z) interactions, electron-electron Coulomb (C) and exchange (X)

interactions:

F g
µν = T g

µν + Zg
µν + Cg

µν +Xg
µν (2.142)
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The total energy per cell is given by

Etot = N +
1

2

∑

µ,ν

∑

g

P g
µν

(
T g
µν + Zg

µν + F g
µν

)
, (2.143)

where P g
µν are the matrix elements of the density matrix:

P g
µν =

∑

k

Nocc∑

n

exp(ik · g)c∗µn(k)cνn(k) (2.144)

It is more intuitive to rewrite the total energy as a sum of five contributions:

Etot = ENuclear + EKinetic + ENuc-electron + ECoulomb + EExchange, (2.145)

where:

EKinetic =
∑

µν

∑

g

Kg
µν (2.146)

= −1

2

∑

µν

∑

g

T1︷ ︸︸ ︷〈
ϕ0
µ

∣∣∇2
∣∣ϕg

ν

〉
(2.147)

ENuc-electron =
∑

µν

∑

g

P g
µνZ

g
µν (2.148)

=
∑

µν

∑

g

P g
µν

∑

h

NA∑

A

T1︷ ︸︸ ︷
〈
ϕ0
µ

∣∣ 1

|r−RA − h|
∣∣ϕg

ν

〉
(2.149)

ECoulomb =
1

2

∑

µν

∑

g

P g
µνC

g
µν (2.150)

=
1

2

∑

µν

∑

g

P g
µν

∑

σ,ω

∑

g′

P g′

σω

∑

h

〈 T1︷ ︸︸ ︷
ϕ0
µϕ

g
ν

∣∣∣∣∣∣∣
1

|r1 − r2|

∣∣∣∣∣∣∣

T1︷ ︸︸ ︷
ϕh
σϕ

h+g′

ω

〉
(2.151)

EExchange = −1

4

∑

µν

∑

g

T4︷︸︸︷
P g
µν

∑

σ,ω

∑

g′

T5︷︸︸︷
P g′

σ,ω

∑

h

Xg
µν (2.152)

= −1

4

∑

µν

∑

g

T4︷︸︸︷
P g
µν

∑

σ,ω

∑

g′

T5︷︸︸︷
P g′

σ,ω

∑

h

〈 T5︷ ︸︸ ︷
ϕ0
µϕ

h
σ

∣∣∣∣∣∣∣
1

|r1 − r2|

∣∣∣∣∣∣∣

T3︷ ︸︸ ︷
ϕg
νϕ

h+g′

ω

〉
(2.153)

In the case of DFT, EExchange is the exchange-correlation energy, introduced in Eq. 2.89. These

summations are infinite in a periodic system, thus, they require a truncation. A set of five
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thresholds T1− T5 are defined: when the overlap between the two involved functions is smaller

than 10−Ti , the integral is disregarded. These thresholds monitor the overlapping of different

functions, as can be schematically seen in Eqns. 2.147 - 2.153. All of these thresholds are

shown in the above equations with the exception of T2, which controls the overlap between

ϕg
ν and ϕh

σϕ
h+g′

ω (more information in Refs. [66, 67, 63, 68]). Running a calculation with

these thresholds tight enough is critical in order to obtain correct energies. In CRSYTAL, the

TOLINTEG keyword followed by 5 numbers, represent each of these thresholds.

2.2.10 The Self Consistent Field

After each matrix element has been introduced, in order to solve Eq. 2.140, one can easily

notice that the Fock matrix depends on the Density matrix, which in turn depends on the

coefficients, which are not known and are included in the C matrix. Thus, this equation has

to be solved self-consistently. This iterative process is called Self Consistent Field (SCF), and

consists of the following steps:

• Step 1: As an iterative method, an initial guess has to be defined: either a density matrix

or a Fock matrix guess:

– The density matrix guess can be either a block-diagonal matrix, obtained as a sum

ot atomic densities for each atom, or a density matrix obtained in a previous similar

calculation for the same system.

– If a Fock matrix from a previous calculation is available, this will be used instead of

the density matrix. In this case the construction of a first Fock matrix is skipped.

Typically the SCF method starts with a density matrix guess.

• Step 2: Calculate analytically the kinetic, Coulomb and, if required, the exact exchange

contributions to the Fock matrix in direct space (atomic orbital) representation, Fg.

On the next section we will analyze the time required for each step of the SCF. In the

CRYSTAL output, this time is printed in terms of the time consumed by each routine. The

routines MOQGAD and SHELLXN calculate, respectively, the monoelectronic and bielectronic

integrals.
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• Step 3: If the DFT exchange and correlation contribution to Fg is required, a numerical

quadrature is adopted. This operation is performed by the NUMDFT routine.

• Step 4: Transform Fg into reciprocal space (or Bloch Function basis): F(k). This is

done by two steps: first a Fourier transform, followed by a similarity transform.

• Step 5: At each k point, diagonalize F(k). This operation is performed by the FDIK

routine.

• Step 6: Using the eigenvalues from Step 4, calculate the Fermi level as the energy of the

highest occupied state. The number of occupied crystalline orbitals at each k point are

obtained.

• Step 7: Sum over the occupied eigenvectors to construct a new density matrix, P(k),

that is then back Fourier transformed to give a new “direct space” density matrix Pg to

be used in Step 1. This operation is performed by the PDIG routine.

• Step 6: The convergence criteria for the SCF can work either on the density matrix, on

the Fock matrix or on the value of the energy. This step consists in repeating Steps 1-5

until the energy obtained in the cycle n is the same, within a tolerance, with respect to

the one obtained in the previous cycle. The SCF ends when the difference in energy is less

than a given threshold, defined in CRYSTAL with the TOLDEE keyword. Typically this

threshold is 10−8 for a geometry optimization or single point calculation. For a frequency

calculation, this value is increased to 10−10 to ensure a tighter convergence for all the

geometries as a result of the displacements.

2.3 Elements of Thermodynamics

2.3.1 Work, Heat and the First Law of Thermodynamics

Heat (q) is a form of energy transfer that leads to a temperature difference between the system

and its surroundings. On the other hand, work (w) is transfer of energy between the system of

interest and its surroundings, as a consequence of unbalanced forces between those two. The

established convention of signs in these two variables is presented in Figure 2.27.
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a) Work is done on the system

by its surroundings

q > 0

System

q < 0 Heat evolved by the system

b) Energy of the system is increased

b) Energy of the system is decreased

on the surroundings

a) The system does work

w < 0

w > 0 Input heat on the system

Figure 2.27: Sign convention for work and heat in thermodynamics

If we take a gas with pressure P confined in a cylinder to be our system, the work done on a

gas depends upon the pressure P used to compress the gas:

w = −
∫ Vf

Vi

P dV (2.154)

If P is constant during the expansion, w = −P ∆V . If the gas is expanding, ∆V > 0 so

that w < 0, or in other words, the system does work on its surroundings. If the gas is under

compression, ∆V < 0 so that w > 0 because work is being done on the system when it is

compressed.

Work depends on the path taken between the initial and final states 1 and 2. Thus, this is not

a state function, but a path function: the differential of work (δw) is an inexact differential,

where
∫ 2

1
δw = w 6= w2 − w1. In its differential form, δw is just:

δw = −PdV (2.155)

Heat is also a path function: the differential of heat (δq) is an inexact differential, where
∫ 2

1
δq = q 6= q2 − q1. As opposed to δw, the explicit expression of δq will be obtained when the

Second Law of Thermodynamics is introduced.

For a process in which energy is transferred both as work and heat, the law of conservation of

energy states that the energy of the system follows the equation:

dE = δq + δw (2.156)

in differential form, or:

∆E = q + w (2.157)
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in integrated form. Equations (2.156) and (2.157) are statements of the First Law of Ther-

modynamics. The static (or internal) energy is an example of a state function, because is a

property that depends only upon the state of the system, and not upon how the system was

brought to that state. The differential of a state function (dEstatic) is an exact differential.

2.3.2 Second Law of Thermodynamics

A big picture of a solid (e.g. ice) being an ordered lattice array of its constituent particles and

a liquid (e.g. water) being a random structure, directly implies that the melting of the solid

ice involves an increase in disorder.

Not only do systems evolve spontaneously in direction that lowers their energy, but also in

the direction where they increase their disorder. In general, a compromise between decreasing

energy and increasing disorder must be met.

It is at this point where it would be useful to write down the idea of disorder as a state function,

just like the static energy, because then it would be a property that would not depend on the

previous history of the system. We will relate this state function with δq, which is not a state

function.

However, if we divide by T , then δq/T is the derivative of a state function. If we denote this

state function as S,

dS =
δq

T
(2.158)

In this way, the inexact differential δq has been converted to an exact differential by multiplying

it by 1/T . This factor is called known as the integrating factor of δq, and the state function

we are looking after is called the entropy .

The second law of Thermodynamics states that the entropy of an isolated system increases as

a result of a spontaneous process, which we can express mathematically by dS > 0.

2.3.3 Third Law of Thermodynamics

Using Eq. (2.156) (First Law) and the fact that δq = TdS (Second Law), and δw = −PdV ,

we obtain the combination of the First and Second Laws of Thermodynamics:
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dE = TdS − PdV (2.159)

The Third Law of Thermodynamics does not introduce a new state function. If the first law

give us the energy, the second law the entropy, the third law presents a numerical scale for

the entropy: “Every substance has a finite positive entropy, but at zero kelvin the entropy may

become zero, and does so in the case of a perfectly crystalline substance”. The elegance of this

statement will be proved in the derivation of the statistical mechanics definition of entropy (Eq.

2.256), according to which, the entropy of a perfect crystalline solid is mathematically zero at

T = 0 K.

2.4 Elements of Statistical Mechanics

2.4.1 The Partition Function

Consider a macroscopical system such as a litre of gas, a litre of water or a kilogram of a solid.

This system can be described, from a mechanical point of view, by specifying three variables:

• The number of particles, N

• The volume, V

• The forces between the particles.

The Schrödinger equation for this N -body system is:

Ĥψ = Ejψ j = 1, 2, 3, . . . N (2.160)

Since the energies depend on N and V , we will write Ej (N, V ). For an ideal gas, the molecules

are independent of each other, so that the total energy Ej (N, V ) will be just a sum of individual

molecular energies:

Ej (N, V ) = ε1 + ε2 + ε3 + · · ·+ εN (2.161)
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For instance, in the special case of a monoatomic ideal gas of mass m in a cubic container with

sides of length a, if we ignore the electronic states and focus only on the translational states,

then the εjs are just the translational energies given by

εnx,ny ,nz =
h2

8ma2

(
n2
x + n2

y + n2
z

)
(2.162)

Note that the number of terms in Eq. (2.161) explains the dependence of Ej (N, V ) on N , and

the fact that a = V 1/3 in Eq. (2.162) explains the dependence of Ej (N, V ) on V . For a more

general system in which the particles interact with each other, Ej (N, V ) cannot be expressed as

a set of individual particle energies. Instead, a set of allowed macroscopic energies {Ej (N, V )}
will be considered.

What is the probability that a system is in state j with energy Ej (N, V )? To answer this

question, we will consider an enormous collection of such systems in thermal contact through

an infinite heat bath (heat reservoir) at a temperature T (Figure 2.28). Each system has the

same values of N , V and T but is likely to be in a different quantum state, consistent with

the values of N and V . This collection of systems is called ensemble. The number of systems

in the state j with energy Ej (N, V ) is denoted by aj and the total number of systems in the

ensemble is denoted by A.

Thermal reservoir

System

Thermal insulation

Figure 2.28: An ensemble of A macroscopic systems in thermal equilibrium provided by a heat bath. aj
is the number of systems in the state j with energy Ej (N,V ). Since an ensemble is a conceptual idea, we
shall consider A to be as large as we want.

Let’s focus on two particular states, 1 and 2: a1 is the number of systems in state 1 with energy

{E1 (N, V )} in the ensemble. In the same way, a2 is the number of systems in state 2 with

energy {E2 (N, V )} in the same ensemble. The relative number of systems in the states with
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energies E1 and E2 must depend on E1 and E2, so:

a2

a1

= f (E1, E2) (2.163)

Since the energy is a quantity that has to be referred to a zero of energy, the dependence on

E1 and E2 on Eq. (2.163) has to be of the form:

f (E1, E2) = f (E1 − E2) (2.164)

In this way, any arbitrary zero of energy associated with E1 nad E2 will cancel. Therefore,

a2

a1

= f (E1 − E2) (2.165)

Eq. (2.165) is equivalent to any two energy states, so we can also write

a3

a2

= f (E2 − E3) and
a3

a1

= f (E1 − E3) (2.166)

What is the relation between f (E1 − E3), f (E1 − E2) and f (E2 − E3) ? Since:

a3

a1

=
a2

a1

· a3

a2

, (2.167)

using Equations 2.164, 2.166 and 2.167, we find that the function f must satisfy

f (E1 − E3) = f (E1 − E2) · f (E2 − E3) (2.168)

The form of the function f that satisfies this equation may not be obvious, but it is indeed

f (E) = eβE, where β is an arbitrary constant. To verify that this form for f does satisfy Eq.

2.168, we substitute this functional form of f (E) into Eq. 2.168:

eβ(E1−E3) = eβ(E1−E2)eβ(E2−E3) = eβ(E1−E3) (2.169)

In addition, we find from Eq. 2.165 that

a2

a1

= eβ(E1−E2) (2.170)
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which we can write more generally as:

an
am

= eβ(Em−En) (2.171)

from which we can obtain an expression for an and am:

an = ame
β(Em−En) = ame

βEme−βEn = Cme
−βEn (2.172)

am = ane
−β(Em−En) = ane

βEne−βEm = Cne
−βEm (2.173)

where Cm and Cn are constants. If j represents either a state m or n and C is a constant, we

can simplify these last two equations to the following more general expression:

aj = Ce−βEj (2.174)

These two variables C and β have to be determined. By summing both sides of Eq. 2.174 over

all states j, we obtain:
∑

j

aj = C
∑

j

e−βEj (2.175)

The summation over aj must equal A, the total number of systems in the ensemble:
∑

j aj = A.

Thus, we can write:

C =

∑
j aj∑

j e
−βEj

=
A∑

j e
−βEj

(2.176)

Casting this result into Eq. 2.174, we get:

aj
A =

e−βEj

∑
j e
−βEj

(2.177)

The ratio
aj
A is the fraction of systems in our ensemble that will be found in the state j with

energy Ej. In principle we can make our ensemble as large as we want, so when A becomes

very large,
aj
A becomes a probability:

pj =
aj
A =

e−βEj

∑
j e
−βEj

(2.178)

where pj is the probability that a randomly chosen system will be in state j with energy

Ej (N, V ). Equation 2.178 is one of the most important results of physical chemistry. Typically
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the denominator of this expression is denoted by Z, and if we include the dependence of Ej on

N and V , then we write:

Q (N, V, β) =
∑

j

e−βEj(N,V ) (2.179)

Equation 2.178 then becomes:

pj (N, V, β) =
e−βEj(N,V )

Q (N, V, β)
(2.180)

β us defined as:

β =
1

kBT
(2.181)

where kB is the Boltzmann constant and T is the kelvin temperature. Therefore, we can write

Equation 2.180 as

pj (N, V, T ) =
e−Ej(N,V )/kBT

Q (N, V, T )
(2.182)

Equations 2.180 and 2.182 are equally acceptable. In a theoretical framework, often times β or

1/kBT are more convenient quantities to use than T itself.

The quantity Q (N, V, β) or Q (N, V, T ), is called the canonical partition function of the

system, and is a powerful tool that allows us to calculate macroscopic properties, (e.g., entropy

or heat capacity) from the microscopic, quantum behaviour of atoms.

In order to apply the partition function to our system, it is necessary to have the set of

eigenvalues {Ej (N, V )} for the N-body Schrödinger equation, which is a very difficult task.

However, writing the total energy as a sum of individual energies is a good approximation.

This allows to simplify the partition function and obtain important results.

For a system of distinguishable particles, we can denote the individual particle energies by
{
εaj
}

,

where the superscript labels the particle, and the subscript the energy state of the particle. The

total energy of the system can be the expressed as:

Ej (N, V ) = εai (V ) + εbk (V ) + εcm (V ) + ...︸ ︷︷ ︸
N terms ≡ N particles

(2.183)
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Then the system partition function reads like:

Q (N, V, β) =
∑

j

exp (−βEj) =
∑

i,k,m...

exp (−βεai ) · exp
(
−βεbk

)
· exp (−βεcm) ...

Since the particles are distinguishable, it is possible to sum over i, k,m · · · independently, so

that Q (N, V, β) can be written as a product of individual summations:

Q (N, V, β) =
∑

i

exp (−βεai )
∑

k

exp
(
−βεbk

)∑

m

exp (−βεcm) ...

= qa (V, T ) qb (V, T ) qc (V, T ) ... (2.184)

If the
{
εMj
}

is a set of molecular energies, thus qM (V, T ) is called a molecular partition

function.

Equation (2.184) shows a very important result: If we can write the total energy as a sum

of individual, independent terms, and if the atoms or molecules are distinguishable, then the

system partition function Q (N, V, β) is reduced to a product of molecular partition functions

q (V, T ). This will allow us to decompose the total partition function into the product of its

individual partition functions.

If the energy states of all atoms or molecules are the same, like in a monoatomic system, then

Eq. (2.184) becomes:

Q (N, V, T ) = [q (V, T )]N (2.185)

where

q (V, T ) =
∑

j

exp (−βεj) (2.186)

However, atoms and molecules are normally not distinguishable. Therefore, Eq. (2.185) cannot

be implemented directly. For indistinguishable particles, the total energy is

Ej (N, V ) = εi (V ) + εk (V ) + εm (V ) + ...︸ ︷︷ ︸
N terms ≡ N particles

(2.187)
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so that:

Q (N, V, β) =
∑

j

exp (−βEj) =
∑

i,k,m...

exp [−β (εi + εk + εm + ...)] (2.188)

Now, the direct evaluation of the summation of Eq. (2.188) has problems for fermions: If we take

an example of 2 independent fermions, each of which has states with energies ε1, ε2, ε3, ε4, ..., a

direct evaluation of Q (2, V, β) =
∑4

i,k exp [−β (εi + εk)] will produce the following 16 terms, in

which the energies in reverse order have also been taken into account:

ε1 + ε1 ε1 + ε2 = ε2 + ε1 ε2 + ε3 = ε3 + ε2 ε3 + ε4 = ε4 + ε3

ε2 + ε2 ε1 + ε3 = ε3 + ε1 ε2 + ε4 = ε4 + ε2

ε3 + ε3 ε1 + ε4 = ε4 + ε1

ε4 + ε4

(2.189)

each term is represented in Figure (2.29).
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Figure 2.29: Representation of each of the possibilities reported in Eq. 2.189.

The Pauli Exclusion Principle states that no two fermions (particles of spin 1/2, 3/2, 5/2, etc)

in an atom can have the same set of four quantum numbers, or in other words, no two electrons

in an atom can be in the same quantum state. Therefore, terms like ε1 +ε1, ε2 +ε2, etc. have to

be ignored. If we actually ignore these terms, there would be a total of 12 terms: those shown

in the second, third and fourth columns of the set of equations (2.189). Because the particles

are indistinguishable, the energies written in reverse order would not have to be taken into

account. This means that in the end there are 6 terms. By dividing Q (2, V, β) by 2!, we would

obtain the correct number allowed terms. Therefore, we can sum separately over i, k,m, ... in
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Eq. (2.188), just as we did in Eq. (2.184), as long as we divide by N!:

Q (N, V, β) =

∑
i exp (−βεi)

∑
k exp (−βεk)

∑
m exp (−βεm) ...

N !

=

[∑
j exp (−βεj)

]N

N !

=
[q (V, T )]N

N !
(2.190)

where

q (V, T ) =
∑

j

exp (−βεj) (2.191)

2.4.2 The definition of Entropy

Entropy is related to the disorder of a system. The most useful way to define disorder is the

following. Lets consider the ensemble shown in Figure (2.30), and maintain the last notation: aj

is the number of systems in the ensemble that are in a state j. If we divide the A distinguishable

systems of the ensemble into j groups, the number of ways of having a1 systems in state 1, a2

systems in state 2 or aj systems in state j is given by:

W (a1, a2, a3, ..., aj) =
A!

a1! a2! a3! ... aj!
=
A!∏
j aj!

(2.192)

with
∑

j

aj = A (2.193)

System

Figure 2.30: This is an ensemble consisted of A = 8 systems. In each system there are 4 states. There
are 3 systems in the first state, 2 systems in the second state, 2 systems in the third state and 1 system in
the fourth state. Thus, a1 = 3, a2 = a3 = 2 and a4 = 1. Note that

∑
j aj = 8 = A.

Now we consider two extreme cases:
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a) If all A systems are in one particular state, say state 1 (see Figure 2.31), then:

a1 = A (2.194)

a2 = a3 = ... = aj = 0 (2.195)

System

Figure 2.31: This is an ensemble consisted of A = 8 systems. All the systems are in state 1, therefore
W = 1 (Eq. 2.192), which is the minimum value that W can adopt, and corresponds to a situation of
maximum order.

This situation corresponds to a value of W = A!
a1!

= a1!
a1!

= 1, which is the smallest value

of W we can have, and corresponds to a totally ordered arrangement .

b) If all aj are equal:

a1 = a2 = ... = aj, (2.196)

it can be shown that W takes its largest value, and corresponds to a totally disordered

arrangement (Figure 2.32).

System

Figure 2.32: This is an ensemble consisted of A = 6 systems. There are only j = 2 possible states in
each system. In a situation of maximum disorder, a1 = a2 = ... = aj , and since

∑
j aj = A, then aj = A

j .
Thus, a1 = a2 = 6/2 = 3, which is what is shown in the figure.

Therefore, W can be interpreted as a quantitative measure of the disorder of the system. It

would be very useful if we could find a relation between the thermodynamic quantity (entropy)

and the statistical quantity (W ). This relation is proportional: S = constant·W . This constant

is the Boltzmann Constant, and we will not set the entropy proportional to W , but to lnW
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according to5:

S = kB lnW (2.197)

Even though all the systems have the same energy, they may be in different degenerate quantum

states. It would be very convenient if we could find an equivalent expression to (2.197) that

takes into account the degeneracy. One of the postulates of statistical thermodynamics states:

“there is no reason to choose one of the Ω degenerate quantum states over any other; each one

should occur in an ensemble with equal probability”.

Let the degeneracy associated with the energy be Ω. Now we have to change slightly the

formulation of the problem: an ensemble is still made of aj systems, but instead of having aj

systems in the state j, now we have a set of Ω degenerated quantum states replicated n times

in the ensemble. Thus, A = nΩ, and

Sensemble = ASsystem (2.198)

= nΩSsystem (2.199)

where

Sensemble = kB lnW (2.200)

Now it no longer makes sense the definition of each aj as the number of systems in the ensemble

5The reason why we set S equal to lnW rather than W is because we want S to be an extensive state
function, that is, that the total entropy of a system is made up of two parts (say A and B): Stotal = SA + SB ,
and this is only satisfied if S is proportional to lnW . If WA is the value of W for system A and WB is the
value of W for system B, WAB for the composite system is given by WAB = WAWB . Then, the entropy of the
composite sytem is given by SAB = kB lnWAB = kB lnWAWB = kB lnWA + kB lnWB = SA + SB
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that are in state j; instead, each aj = n. From Eq. 2.192 we can write 6:

lnW = lnA!− ln
∏

j

aj!

= A lnA− A− [ln a1! + ln a2! + ... + ln aj!]

= A lnA− A−
Ω∑

j=1

[aj ln aj − aj]

= A lnA− A−
Ω∑

j=1

[aj ln aj] +
Ω∑

j=1

aj

︸ ︷︷ ︸
=A

= A lnA−
Ω∑

j=1

[aj ln aj]

= nΩ ln (nΩ)−
Ω∑

j=1

[n lnn]

= nΩ ln (nΩ)− n lnn
Ω∑

j=1

= nΩ ln (nΩ)− Ω (n lnn)

= nΩ ln Ω (2.201)

By substituting this result in Eq. (2.200):

Sensemble = kB (nΩ ln Ω) (2.202)

Casting Eq. (2.202) into Eq. (2.199):

Ssystem = kB ln Ω (2.203)

If we drop the subscript “system”:

S = kB ln Ω (2.204)

Eq. (2.204) is an alternate form of Eq. (2.197) and relates entropy to disorder. Consider

for example a system of N distinguishable spins or dipoles that can be oriented in one of two

possible directions with equal probability. Then, each spin has a degeneracy of 2 associated

6The Stirling approximation has been used: ln aj ! = aj ln aj − aj
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with it, Ω = 2, and the degeneracy of the N spins is ΩN = 2N . The entropy of the system is

S = kB ln 2.

It is much more useful to express the entropy in terms of the system canonical partition function

Q (N, V, β). If we substitute Eq. (2.192) into Eq. (2.200):

Sensemble = kB ln
A!∏
j aj!

= kB lnA!− kB ln
∏

j

aj!

= kBA lnA− kBA− kB
∑

j

aj ln aj + kB
∑

j

aj

︸ ︷︷ ︸
=A

= kBA lnA− kB
∑

j

aj ln aj (2.205)

Using the fact that the probability of finding a system in the jth quantum state is given by

Eq. (2.178), substituting aj = Apj into Eq. (2.205), we obtain:

Sensemble = kBA lnA− kB
∑

j

Apj ln (Apj)

= kBA lnA− kB
∑

j

pjA lnA− kB
∑

j

Apj ln pj

= kBA lnA− kBA lnA
∑

j

pj

︸ ︷︷ ︸
=1

−kB
∑

j

Apj ln pj

= −kB
∑

j

Apj ln pj (2.206)

Using Eq. (2.198):

Ssystem =
Sensemble

A
= −kB

∑

j

pj ln pj (2.207)

Again, dropping the “system” subscript,

S = −kB
∑

j

pj ln pj (2.208)

Note the difference between this result, in which we express the entropy in terms of probability
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that the system is in a given jth quantum state, and Eq. (2.197) or Eq. (2.204), in which the

entropy is given, respectively, as a function of the statistical quantity (W ), or as a function of

the number of degenerated quantum states (Ω).

Again, we can encounter two extreme cases:

a) If only one pj is non-zero, say p1, and the rest are zero, then p1 must equal unity because
∑

j pj = 1:

p1 = 1 (2.209)

p2 = p3 = ... = pj = 0 (2.210)

This situation means that every system is in the j = 1 quantum state, so that the global

picture is the one presented in Figure (2.31), and therefore we are in the case of a totally

ordered arrangement . Substituting Eq. (2.208),

Ssystem = −kB[p1 ln p1 + p2 ln p2︸ ︷︷ ︸
= 0

+... + pj ln pj︸ ︷︷ ︸
= 0

] = 0 (2.211)

where S = 0 for a perfectly ordered system.

b) If all pj are equal:

p1 = p2 = ... = pj, (2.212)

it can be shown, through a similar procedure as with W , that S is maximum, and this

situation corresponds again to a totally disordered arrangement .
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If we substitute Eq. (2.180) into Eq. (2.208) we obtain:

S = −kB
∑

j

pj ln pj

= −kB
∑

j

e−βEj

Q
[−βEj − lnQ]

=
1

T

∑

j

Eje
−βEj

Q
+ kB lnQ · 1

Q
·
∑

j

e−βEj

︸ ︷︷ ︸
=Q

=
1

T

1

Q

∑

j

Eje
−βEj

︸ ︷︷ ︸
= kBT 2 ∂ lnQ

∂T
=U

+kB lnQ

=
U

T
+ kB lnQ (2.213)

where in the fourth line we have used this relation:

∂ lnQ

∂T
=

1

Q

∂Q

∂T
=

1

Q

1

kBT 2

∑

j

Eje
−Ej/kBT ⇒ 1

Q

∑

j

Eje
−Ej/kBT = kBT

2∂ lnQ

∂T
= U (2.214)

Thus,

S = kBT

(
∂ lnQ

∂T

)

N,V

+ kB lnQ (2.215)

This equation shines by itself: this is the relation between the entropy and the canonical

partition function.

2.4.3 The definition of Energy

The average energy of a system in an ensemble of systems is referred to as 〈E〉. Using Eq.

2.180, this quantity can be calculated as 7:

E ≡ 〈E〉 =
∑

j

pj (N, V, β)Ej (N, V ) =
∑

j

Ej (N, V ) e−βEj(N,V )

Q (N, V, β)
(2.216)

We can equate E ≡ 〈E〉, the ensemble average of the energy with the observed energy, E.

7Suppose that some number xj is associated with the outcome j. Then we define the average of x to be
〈x〉 =

∑n
j=1 xjpj =

∑n
j=1 xj p(xj), where the term p(xj) means the probability of realizing the number xj . The

average of a quantity is represented by enclosing that quantity in angular brackets.
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It would be much more convenient if E could be expressed entirely in terms of Q (N, V, β).

Using the expression for Q (N, V, β) given in Eq. 2.179, first we differentiate lnQ (N, V, β) with

respect to β, with N and V held constant:

(
∂ lnQ (N, V, β)

∂β

)

N,V

=
1

Q (N, V, β)

(
∂
∑

j e
−βEj(N,V )

∂β

)

N,V

=
1

Q (N, V, β)

∑

j

[−Ej (N, V )] e−βEj(N,V )

= −
∑

j

Ej (N, V ) e−βEj(N,V )

Q (N, V, β)
(2.217)

By comparison of Eq. (2.216) and (2.217) we see that:

E ≡ 〈E〉 = −
(
∂ lnQ

∂β

)

N,V

(2.218)

We can express this equation as a temperature derivative instead of a β derivative8:

E ≡ 〈E〉 = kBT
2

(
∂ lnQ

∂T

)

N,V

(2.219)

2.4.4 The definition of Pressure

Equation (2.216) represents the average energy of an equilibrium system that has the variables

N , V and T fixed. If we differentiate Eq. (2.216), we obtain:

dE =
∑

j

pj dEj +
∑

j

Ej dpj (2.220)

Because Ej = Ej (N, V, β), dEj can be seen as the change in Ej due to a small change in the

volume dV , keeping N fixed:

dEj =

(
∂Ej
∂V

)

N

dV (2.221)

8For any given function f = f(β, T ), the chain rule of differentiation allows us to write: ∂f
∂T = ∂f

∂β ·
∂β
∂T =

∂f
∂β ·

d(1/kBT )
dT = − 1

kBT 2
∂f
∂β , or in other words, ∂f

∂β = −kBT 2 ∂f
∂T . Using this result with f = lnQ give us the

alternate form.
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Substituting this into Eq. (2.220) gives:

dE =
∑

j

pj

(
∂Ej
∂V

)

N

dV +
∑

j

Ej dpj (2.222)

The first term in Eq. (2.222) can be interpreted as the average change in energy caused by a

small change in its volume, or in other words, the average work. In addition, if this change is

done reversibly so that the system remains essentially in equilibrium at each stage, then the pj

in Eq. (2.222) will be given by Eq. (2.180) throughout the entire process. We highlight this by

writing:

dE =
∑

j

pj(N, V, β)

(
∂Ej
∂V

)

N

dV +
∑

j

Ej(N, V ) dpj(N, V, β) (2.223)

If we compare this result with the macroscopic equation that arises from the First Law of

Thermodynamics (Equation 2.156): dE = δq + δw, we see that:

δw =
∑

j

pj(N, V, β)

(
∂Ej
∂V

)

N

dV (2.224)

which means that the reversible work comes from an infinitesimal change in the allowed energies

of a system, without changing the probability distribution of its states. Similarly,

δq =
∑

j

Ej(N, V )dpj (N, V, β) (2.225)

which means that the reversible heat results from a change in the probability distribution of

the states of a system, without changing the allowed energies. If we compare Eq. (2.224) with

Eq. (2.155) (δw = −PdV ) we can identify the pressure of the gas with:

P ≡ 〈P 〉 = −
∑

j

pj(N, V, β)

(
∂Ej
∂V

)

N

= −
〈(

∂Ej
∂V

)

N

〉
(2.226)

Just as we equated the ensemble average of the energy with the observed energy, we equate the

ensemble average pressure with the observed pressure. Using Equation (2.180) we can write:

P ≡ 〈P 〉 =
∑

j

pj(N, V, β)

(
−∂Ej
∂V

)

N

=
∑

j

(
−∂Ej
∂V

)

N

e−βEj(N,V )

Q (N, V, β)
(2.227)
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If we differentiate Eq. (2.179) with respect to V keeping N and β fixed:

(
∂Q

∂V

)

N,β

= −β
∑

j

(
∂Ej
∂V

)

N

e−βEj(N,V ) (2.228)

By comparison of this result with the second equality of Eq. (2.227), the following holds true:

P ≡ 〈P 〉 =
kBT

Q (N, V, β)

(
∂Q

∂V

)

N,β

(2.229)

or equivalently:

P ≡ 〈P 〉 = kBT

(
∂ lnQ

∂V

)

N,β

(2.230)

This result offers a deeper understanding of the concept of pressure from a statistical mechanics

point of view. Note the slightly difference with respect to the expression for the average energy

(Eq. 2.219). However, both equations shine because of its simplicity and elegance: if the

partition function Q is known, it is possible to calculate not only the average energy, but also

the average pressure.

2.4.5 Decomposition of the total partition function

Say our system is composed of many molecules. The total partition function cannot be obtained

directly, it is necessary to break it down into molecular partition functions. If we substitute

Eq. (2.190) into Eq. (2.219):

U ≡ E ≡ 〈E〉 = kBT
2

(
∂ lnQ

∂T

)

N,V

= NkBT
2

(
∂ ln q

∂T

)

V

= N
∑

j

εj
e−εj/kBT

q (V, T )
(2.231)

If 〈E〉 is the average energy a system composed of N molecules, then we denote 〈ε〉 as the

average energy of any one molecule, where

〈E〉 = N 〈ε〉 (2.232)
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By direct comparison of Eq. (2.231) and (2.232) we get:

〈ε〉 =
∑

j

εj
e−εj/kBT

q (V, T )
(2.233)

Recalling the definition of a probability (Eq. (2.182)), we can conclude that πj, the probability

that a molecule is in its jth molecular energy state, is given by:

πj =
e−εj/kBT

q (V, T )
=

e−εj/kBT∑
j e
−εj/kBT (2.234)

If we assume that the energy of a the jth energy state of a molecule can be written as a sum

of the individual contributions:

εj = εtrans
m + εrot

k + εvib
i + εelec

n (2.235)

where each of these terms are, respectively, the mth, kth, ith and nth translational, rotational,

vibrational and electronic states of a molecule in the jth molecular state.

Due to the fact that these energy terms are distinguishable, we can apply the reasoning from

Eq. (2.184) and write:

Q (V, T ) = QtransQrotQvibQelec (2.236)

where

qtrans =
∑

m

e−ε
trans
m /kBT

qrot =
∑

k

e−ε
rot
k /kBT

qvib =
∑

i

e−ε
vib
i /kBT

qelec =
∑

n

e−ε
elec
n /kBT

(2.237)

If we substitute Equations (2.235) and (2.236) into Eq. (2.234) we obtain:

πikmn =
e−ε

trans
m /kBT e−ε

rot
k /kBT e−ε

vib
i /kBT e−ε

elec
n /kBT

qtrans qrot qvib qelec

(2.238)

where πikmn is the probability that a molecule is in the mth translational state, the kth rota-

tional state, the ith vibrational state and the nth electronic state.
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2.5 Partition Function in a periodic system

With the aim of gaining some simplicity in the formalism, from now on, we will write the

partition function as Q instead of Q (N, V, β).

Since in a solid there is no translational or rotational degrees of freedom, there are no trans-

lational and rotational partition functions Therefore, the total partition function is reduced to

the vibrational and electronic contributions:

Q = QvibQelec (2.239)

2.5.1 The Vibrational Partition Function

The solution of the Schrödinger equation for the n-th level of an i-th harmonic oscillator reads

like:

En,i = (n+ 1/2)hνi, (2.240)

where En,i is the energy of the n-th level of the i-th harmonic oscillator that has frequency νi

and n is a quantum number that can take values of 0, 1, 2... Each of these n levels are equivalent

to the j quantum states we introduced in the beginning and throughout this Chapter.

To a first approximation, we will assume that the vibrations in a solid are composed of inde-

pendent harmonic oscillators (a detailed explanation will be given in the next Chapter). By

inserting the definition of En,i (Eq. 2.240) into Eq. 2.179, for a collection of independent

oscillators,the partition function for each harmonic oscillator is Qi:

Zi =
∞∑

n=0

exp

(−hνi (n+ 1/2)

kBT

)
(2.241)
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Ψ0(x); E0 = 1/2hν0

Ψ1(x); E1 = 3/2hν1

Ψ2(x); E2 = 5/2hν2

Figure 2.33: First three energy levels for a quantum harmonic oscillator.

By doing xi = 1
kBT
· hνi in Eq. (2.241), Qi can be written as:

Zi =
∞∑

n=0

exp [−xi (n+ 1/2)]

=
∞∑

n=0

exp [−xin− xi/2]

=
∞∑

n=0

exp (−xin) · exp (−xi/2)

= exp (−xi/2)
∞∑

n=0

exp (−xin)

= exp (−xi/2)
∞∑

n=0

[exp (−xi)]n (2.242)

It is known that:

1 + t+ t2 + t3 + ... =
1

1− t for |t| < 1, (2.243)

or in general terms:
∞∑

n=0

tn =
1

1− t for |t| < 1. (2.244)

In our case, t = exp (−xi). Since νi > 1, therefore, xi > 1. The function y = |exp (−x)| is
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plotted in Figure 2.34. It is always satisfied that |exp (−x)| < 1 for xi > 1, and therefore we

can use the result of the series in Eq. (2.244).

0

0

1

2

2

−6 −5 −4 −3 −2 −1  0  1  2  3  4  5  6

y
(x

)

x

y(x) = |exp(−x)|

Figure 2.34: Representation of the function y = |exp (−x)|.

If t = exp (−xi) , then Zi = exp
(
−xi

2

)
·
∞∑

n=0

tn

= exp
(
−xi

2

)
· 1

1− t
= exp

(
−xi

2

)
· 1

1− exp (−xi)

Since xi = 1
kBT
· hνi, therfore we have:

Qi =
exp

(
− hνi

2kBT

)

1− exp
(
− hνi
kBT

) (2.245)

Qi is the partition function for each i-th harmonic oscillator, and does not depend on the n

vibrational levels of each independent i-th harmonic oscillator.

For each harmonic oscillator, the Helmholtz free energy is defined as:

Fi = −kBT lnQi

= −kBT
[
− hνi

2kBT

]
+ kBT ln

[
1− exp

(−hνi
kBT

)]
.

Therefore:

Fi =
1

2
hνi + kBT ln

[
1− exp

(−hνi
kBT

)]
(2.246)
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For a molecule with normal vibration frequencies νi,
∑∞

i=0 Fi gives the part of its free energy

due to the vibratory motions.

Since the normal modes are independent and distinguishable, we can apply the same treatment

as we did with distinguishable particles (Eq. 2.184), and conclude in the following way: the

partition function of a polyatomic molecule is a product of the harmonic oscillator partition

functions for each normal coordinate:

Qvib =

3N−5
3N−6∏

i=1

Qi =

3N−5
3N−6∏

i=1

exp
(
− hνi

2kBT

)

[
1− exp

(
−hνi
kBT

)] for a polyatomic molecule, (2.247)

where νi is the vibrational frequency associated with the i-th normal mode and the product is

extended to the number of vibrational degrees of freedom (3N − 5 for a linear molecule and

3N − 6 for a nonlinear molecule, where N is the number of atoms in the molecule).

This idea can be easily extrapolated to a periodic system, where:

Qvib =
∏

k,i

Qi,k =
∏

k,i

exp
(
− hνi,k

2kBT

)

1− exp
(
−hνi,k

kBT

) for a periodic system, (2.248)

For each k-point in the first Brillouin zone, there are 3N harmonic oscillators (i.e., phonons)

labelled by a phonon branch index i that runs from 1 to 3N , where N is the number of atoms

in the unit cell. The sum
∑

i,k runs both over all the i = 1, ..., 3N branches of the phonon

dispersion curve, and over a finite number of k-points. νi,k is the frequency of vibration for a

branch i in a given k-point.

In the same way as Eq. 2.246, the Helmholtz free energy of each harmonic oscillator in a

periodic system reads like:

Fi,k =
1

2
hνi,k + kBT ln

[
1− exp

(−hνi,k
kBT

)]
(2.249)

The total partition function Q includes the vibrational partition function (Qvib) and the elec-

tronic (Qelec). The later can be expressed as:

Qelec = exp

(−Estatic

kBT

)
(2.250)



116 Chapter 2. Background Theory

where Estatic is the energy as a result of each lattice particle occupying its mean position. In

our calculations, this is the energy that comes from the SCF calculation. Substituting into Eq.

2.239, the total partition function for a periodic system reads like:

Q = Qelec ·Qvib = exp

(−Estatic

kBT

)
·
∏

i,k

exp
(
− hνi,k

2kBT

)

1− exp
(
−hνi,k

kBT

) (2.251)

2.5.2 The Helmholtz Free energy

According to statistical mechanics, the energy levels of a system completely determine its

thermodynamic functions, being the Helmholtz free energy normally given by

F = −kBT lnQ. (2.252)

Using the expression of Q from Eq. 2.251:

F = −kBT lnQ

= −kBT ln



exp

(−Estatic

kBT

)
·
∏

i,k

exp
(
− hνi,k

2kBT

)

1− exp
(
−hνi,k

kBT

)





= −kBT



ln

[
exp

(−Estatic

kBT

)]
+ ln


∏

i,k

exp
(
− hνi,k

2kBT

)

1− exp
(
−hνi,k

kBT

)







= Estatic − kBT
∑

i,k

ln




exp
(
− hνi,k

2kBT

)

1− exp
(
−hνi,k

kBT

)




= Estatic − kBT
∑

i,k

{[
− hνi,k

2kBT

]
− ln

[
1− exp

(
−hνi,k
kBT

)]}

F = Estatic +
1

2

∑

i,k

hνi,k + kBT
∑

i,k

ln

[
1− exp

(
−hνi,k
kBT

)]
(2.253)

From this expression an interesting quantity appears naturally: the zero point energy:

EZPE =
1

2

∑

i,k

hνi,k (2.254)
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From the free energy F , all the thermodynamical behaviour concerning changes in volume and

temperature can be deduced with the help of thermodynamical relations. For instance, the

entropy and heat capacity.

2.5.3 The Vibrational Entropy

The entropy is defined as:

S = −
(
∂F

∂T

)

V

(2.255)

= −kB




∑

i,k

ln

[
1− exp

(−hνi,k
kBT

)]
+ T

∑

i,k

− exp
(
−hνi,k
kBT

)

1− exp
(
−hνi,k
kBT

) · ∂
∂T

[−hνi,k
kBT

]


= −kB




∑

i,k

ln

[
1− exp

(−hνi,k
kBT

)]
− 1

T

h

kB

∑

i,k

νi,k exp
(
−hνi,k
kBT

)

1− exp
(
−hνi,k
kBT

) ·
exp

(
hνi,k
kBT

)

exp
(
hνi,k
kBT

)





S = −kB
∑

i,k

ln

[
1− exp

(−hνi,k
kBT

)]
+
h

T

∑

i,k

νi,k

exp
(
hνi,k
kBT

)
− 1

(2.256)

where

n (νi,k, T ) =
1

exp
(
hνi,k
kBT

)
− 1

(2.257)

is the Bose-Einstein distribution, which is an energy distribution function for bosons. Phonons

are bosons, and therefore behave according to this distribution. On the contrary, electrons

are fermions and follow the Fermi-Dirac statistics. At this point, hn (νi,k, T ) has the units of

energy, so that is very useful to define E as:

E =
∑

i,k

hνi,k

exp
(
hνi,k
kBT

)
− 1

(2.258)

Having reached to this point, an interesting result appears: plugging in Eq. (2.252) into Eq.

(2.255), it is possible to reach to the following expression:

S = kB lnQ+
kBT

Q
·
(
∂Q

∂T

)

V

= kB lnQ+ kBT ·
(
∂ lnQ

∂T

)

V

(2.259)
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Now, Q depends on the static energy, Estatic (See Eq. 2.251). According to Eq. (2.259) we

could think in principle that S depends on the internal energy too. According to Eq. (2.251),

we have that:

lnQ =

(−Estatic

kBT

)
+ lnQvib (2.260)

Then
∂ lnQ

∂T
=
Estatic

kBT 2
+
∂ lnQvib

∂T
(2.261)

Casting (2.260) and (2.261) into Eq. (2.259), we have that

S =
−Estatic

T
+ kB lnQvib +

Estatic

T
+ kBT ·

∂ lnQvib

∂T

= kB lnQvib + kBT ·
∂ lnQvib

∂T
, (2.262)

which means that the entropy does not depend on the internal energy, only on the vibrations.

This is a conclusion that has an important physical relevance. If we obtain the expressions for

lnQvib and ∂ lnQvib

∂T
, we get:

lnQvib = ln
∏

i,k

exp
(
−hνi,k
2kBT

)

1− exp
(
−hνi,k
kBT

)

=
∑

i,k

ln
exp

(
−hνi,k
2kBT

)

1− exp
(
−hνi,k
kBT

)

=
∑

i,k

−hνi,k
2kBT

−
∑

i,k

ln

[
1− exp

(−hνi,k
kBT

)]
(2.263)

∂ lnQvib

∂T
=

∂

∂T
ln
∏

i,k

exp
(
−hνi,k
2kBT

)

1− exp
(
−hνi,k
kBT

)

=
∂

∂T

∑

i,k

ln
exp

(
−hνi,k
2kBT

)

1− exp
(
−hνi,k
kBT

)

=
∑

i,k

∂

∂T
ln

exp
(
−hνi,k
2kBT

)

1− exp
(
−hνi,k
kBT

)

=
∑

i,k

hνi,k
2kBT 2

−
∑

i,k

1

exp
(
hνi,k
kBT

)
− 1
· hνi,k
kB

1

T 2
(2.264)
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Casting Eq. (2.263) and (2.264) into Eq. (2.262), we get the expression of the entropy obtained

previously (Eq. (2.256)).

2.5.4 The Energy at finite temperature

At a given temperature, the energy of the system is given by:

E = F + TS (2.265)

Casting F (Eq. 2.253) and S (Eq. 2.256) into Eq. 2.265:

E = Estatic +
1

2

∑

i,k

hνi,k + h
∑

i,k

νi,k

exp
(
hνi,k
kBT

)
− 1

(2.266)

Starting from Eq. 2.219, and inserting the expression of Q given in Eq. 2.251, the same

expression as Eq. 2.266 is obtained.

• For T = 0 K: We have that:

exp

(
hνi,k
0 · kB

)
− 1 = exp (∞)− 1 =∞− 1 =∞

so that the energy E reduces to the static energy Estatic, plus the zero-point energy:

E = Estatic +
1

2

∑

i,k

hνi,k + h
∑

i,k �
�
�7

0
νi,k
∞

E = Estatic +
1

2

∑

i,k

hνi,k (2.267)

• For high temperatures: If we recall 1
kBT

= β and hνi,k = εi,k and redefine Eq. (2.266) as:

E = Estatic +
1

2

∑

i,k

εi,k + h
∑

i,k

νi,k
exp (βεi,k)− 1
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A Taylor expansion of the exponential is: exp (βεi,k) = 1 + βεi,k + 1
2
β2ε2i,k + 1

6
β3ε3i,k + ...

At high temperatures, kBT � hνi,k → 1
β
� εi,k → β 1

β
� βεi,k → 1� βεi,k , and therefore it

is a good approximation to truncate the Taylor expansion in the second term. Hence, we get

to:

E = Estatic +
1

2

∑

i,k

εi,k +
1

β

= Estatic +
1

2

∑

i,k

hνi,k + kBT

(2.268)

Since kBT � hνi,k, then
∑

i,k hνi,k + kBT ≈ kBT , so:

E = Estatic + kBT (2.269)

This relation express the classical energy partition law: the energy for each vibrational degree

of freedom is kBT . This law holds only when the temperature is so high that the vibratory

modes are in such highly excited states, that the quantum effects become insignificant.

There are 3 vibrations for each atom (the total number of normal coordinates is equal to three

times the number of particles). In addition, there are the number of Avogadro particles in 1

mol. Therefore, we can express Eq. (2.268) as:

E = Estatic + 3kBTNA

E = Estatic + 3RT

(2.270a)

(2.270b)

2.5.5 The Heat Capacity

The heat capacity is also a path function, and is defined as the energy as heat required to raise

the temperature of a substance by one degree. This energy required depends on the amount of

substance, and therefore is an extensive quantity: twice the amount of substance require twice

the amount of heat to achieve the same change in temperature.

The heat capacity at a constant volume is obtained by differentiating the energy with respect
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to the temperature:

CV =

(
∂E

∂T

)

V

= − h
∑

i,k

νi,k

[
exp

(
hνi,k
kBT

)
− 1

]−2

· exp

(
hνi,k
kBT

)
· hνi,k
kB
· (−1) · 1

T 2

CV =
h2

kBT 2

∑

i,k

ν2
i,k ·

exp
(
hνi,k
kBT

)

[
exp

(
hνi,k
kBT

)
− 1
]2 (2.271)

• For T = 0 K:

If we recall 1
kB

= β and hνi,k = εi,k and redefine Eq. (2.271) as:

CV =
1

βT

∑

i,k

ε2i,k ·
exp (εi,kβ)

[exp (εi,kβ)− 1]2
(2.272)

A Taylor expansion of the exponential is: exp (βεi,k) = 1 + βεi,k + 1
2
β2ε2i,k + 1

6
β3ε3i,k + ...

At low temperatures, kBT � hνi,k → 1
β
� εi,k → β 1

β
� βεi,k → 1� βεi,k , and therefore in

this case it is not a good approximation to truncate the Taylor expansion in the second term.

However, we will still use that approximation:

CV =
1

βT
· 1

β2

∑

i,k

1 + εi,kβ

=
1

βT
· 1

β2
· β
∑

i,k

εi,k

= k2
BT
∑

i,k

hνi,k

For T = 0K −→ CV = 0 (2.273)

This is a well known feature in solids; the heat capacity falls to zero on cooling to zero temper-

ature. The origin for this is due to quantum effects.
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• For high temperatures:

If we recall 1
kB

= β and hνi,k = εi,k and redefine Eq. (2.271) as:

CV =
1

βT

∑

i,k

ε2i,k ·
exp (εi,kβ)

[exp (εi,kβ)− 1]2
(2.274)

A Taylor expansion of the exponential is: exp (βεi,k) = 1 + βεi,k + 1
2
β2ε2i,k + 1

6
β3ε3i,k + ...

At high temperatures, kBT � hνi,k → 1
β
� εi,k → β 1

β
� βεi,k → 1� βεi,k , and therefore it

is a good approximation to truncate the Taylor expansion in the second term.

Hence, we reach to:

CV = β · 1

T

∑

i,k

1 + βεi,k
β2

=
1

β
· 1

T

∑

i,k

1

CV = kB (2.275)

This is known as the Dulong-Petit law of specific heat, noted empirically in the 19th century.

The specific heat for each vibrational degree of freedom is kB. Hence, we can express Eq.

(2.275) as:

CV = 3kBNA

CV = 3R

(2.276a)

(2.276b)

This law holds only when the temperature is so high that the vibratory modes are in such

highly excited states that quantum effects become insignificant. Contrary to the classical result

(Dulong-Petit law), the heat capacity falls to zero on cooling to zero temperature.
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2.5.6 The Gibbs Free energy

Finally, the Gibbs free energy accounts for pressure and temperature effects on the energy:

G = F + PV

= E − TS + PV Plugging in Eq. (2.266) :

= Estatic +
1

2

∑

i,k

hνi,k + h
∑

i,k

νi,k

exp
(
hνi,k
kBT

)
− 1
− TS + PV

G = Estatic +
1

2

∑

i,k

hνi,k + h
∑

i,k

νi,k

exp
(
hνi,k
kBT

)
− 1
− TS + PV (2.277)

2.6 Classification of phase transitions

Ehrenfest established a classification of phase transitions as follows: the order of a phase tran-

sition is the order of the lowest differential of G which shows a discontinuity at the critical

temperature Tc or pressure Pc. For instance, if the entropy or the volume (a first differential

of G) show a discontinuity (Fig. 2.35), these are first order phase transitions. In addition, the

thermal compressibility and heat capacity, both second derivatives of G, show a discontinuity in

terms of a sharp spike (Fig. 2.35). Examples of first order phase transitions are the solid-liquid

solid-vapour and liquid-vapour transitions. Special interest is the discontinuity observed in the

entropy for a liquid-vapour phase transition: In order to change from phase 1 (water) to phase

2 (steam) at a constant temperature Tc, some extra heat is needed, know as latent heat, which

is given by:

L = ∆qrev = Tc(S2 − S1), (2.278)

where Tc is the critical temperature, corresponding to the boiling point in this liquid-vapour

phase transition. S1 is the entropy of phase 1 and S2 the entropy of phase 2. Thus, the spike

jump observed in the entropy (Fig. 2.35) corresponds to S2 − S1 = L/Tc

Second order phase transitions are found when the volume (a first derivative of G) is continuous

(Fig. 2.35) but the thermal compressibility (a second derivative of G) shows this sharp spike.

In a temperature-pressure phase diagram, for temperatures and pressures along the equilibrium
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Continuous Discontinuous Discontinuous

Continuous Discontinuous Discontinuous

water

ste
am

First order phase transition

Second order phase transition

Continuous Continuous Discontinuous

Figure 2.35: Summary with the shape of the main thermodynamic functions for a first order and second
order phase transition.
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curve (i.e. phase boundary), both phases exist simultaneously and in contact. The critical

point is a pressure-temperature point above which both phases become identical, no difference

of phases exists, and the substance is homogeneous.



Chapter 3

Methodology

3.1 Harmonic and quasi-harmonic approximations

In order to successfully compute a situation where temperature and pressure are involved, i.e.

the temperature-pressure phase boundary for a phase transition, we need to take into account

a combined effect of these two thermodynamic variables in our simulations. Even though usual

quantum-chemical DFT ab initio techniques allow for a determination of a wide range of ground

state structural, electronic, vibrational, elastic, optical and magnetic properties of materials,

these are normally calculated at zero temperature and pressure [66, 60, 68, 69]. The effect

of pressure can be easily taken into account if the energy-volume data is fitted to a general

equation of state [70, 71, 72, 73], or simply to a polynomial fit.

On the contrary, the inclusion of temperature is not so straightforward to implement, i.e., har-

monic and quasi-harmonic approximations (HA and QHA) are currently powerful techniques,

which are described herein.

3.1.1 Elements of Harmonic Lattice Dyanmics

3.1.1.1 Dimer in one dimension

The vibration of a diatomic molecule is correctly described by a simple harmonic oscillator, i.e.,

two masses connected by a spring (Figure 3.1). x1 and x2 are the position of masses 1 and 2

126
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m2

x1
xx = 0

x2

xeqm1

Figure 3.1: Two masses m1 and m2 connected by a spring separated by a distance xeq.

respectively, x is the extension of the spring at a given time, and xeq is the natural (equilibrium)

length of the spring, and accounts for a separation between both masses so that one does not

lie on top of the other.

A Taylor expansion of the potential energy V (x), about the equilibrium bond length x = xe

reads like:

V (x) = V (xe) +

(
dV

dx

)

x=xe

(x− xe) +
1

2!

(
d2V

dx2

)

x=xe

(x− xe)2 +
1

3!

(
d3V

dx3

)

x=xe

(x− xe)3 + . . .

(3.1)

The first term is just a constant and depends upon where we choose the zero of energy. Thus,

it is convenient to choose the zero of energy such that V (xe) = 0 and relate V (x) to this

convention.

In addition, because xe denotes the minimum value of V (x), then
(
dV
dx

)
x=xe

= 0, so that there

is actually no linear term in the expansion. dV
dx

is the force acting between the two nuclei, and

the fact that dV
dx

vanishes at x = xe means that the force acting between the nuclei is zero at

this point. This is why x = xe is called the equilibrium bond length.

With all these approximations we end up with the following expression:

V (x) =
1

2

(
d2V

dx2

)

x=xe

(x− xe)2 (3.2)

This is the so called harmonic approximation, in which atoms, when slightly disturbed from its

equilibrium or rest position, oscillate with simple harmonic motion.

We can consider extensions of the harmonic oscillator model by the higher-order terms in
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Equation (3.1). These terms are called anharmonic terms, and will make the potential from

this model look closer to the true internuclear potential for larger displacements. However,

although these corrections can be made, note that if x is close to xe (vibrations with small

amplitudes) then x− xe is always small. Consequently, the terms on the right hand side of Eq.

(3.1) get smaller and smaller.

To calculate the vibrational frequency of a dimer, the only piece of information we need is(
d2V
dx2

)
x=xe

. We can obtain a good estimate of the second derivative using a finite-difference

approximation: (
d2V

dx2

)

x=xe

∼= V (xe + δx)− 2V (xe) + V (xe − δx)

(δx)2
. (3.3)

This expression becomes exact when δx→ 0. In our simulations, δx is set to 0.003Å.

For this simple case like a diatomic molecule, the term
(
d2V
dx2

)
is trivial because the force is

trivial: “A small displacement x from its equilibrium position generates a restoring force which

is proportional to x acting in a direction towards the equilibrium position.” This restoring force

can be written as:

F = −kx (3.4)

where k is a constant of proportionality, called the stiffness or restoring force per unit distance

(displacement), and has dimensions of

[k] ≡ force

distance
≡ ML time−2

L
(3.5)

The negative sign in Eq. 3.4 shows that the force is acting against the direction of increasing

displacement and back towards the equilibrium position. This is Hooke’s Law of Elasticity.

If we recall that a force can be expressed as a derivative of a potential energy:

f(x) = −dV (x)

dx
, (3.6)

The potential energy is then:

V (x) = −
∫
f(x)dx+ constant. (3.7)
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Using Eq. (3.4), we have that

V (x) = −
∫
−kx+ constant. (3.8)

The constant term is an arbitrary constant that can be used to fix the zero of energy. By

choosing the potential energy of the system to be zero when the spring is undistorted (x = xeq),

we can write the potential energy associated with a simple harmonic oscillator as:

V (x) =
k

2
x2 (3.9)

When the spring is distorted, the potential reads like:

V (x) =
1

2
k (x− xe)2 (3.10)

 0

 1

 2

 3

 4

 5
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 7

 8

 0  50  100  150  200  250  300  350  400

V
(x

) 
/ 

1
0

−
1
9
 (

J
)

x (pm)

HCl(g)

V(x) = 0.5 k (x − xe)
2
 

Intermolecular Potential

Figure 3.2: For the HCl molecule, the harmonic potential (Eq. 3.10) is shown in black and the experimental
intermolecular potential is shown in red. Figure adapted from Ref. [74].

In Fig. 3.2 the harmonic potential (Eq. 3.10) and experimental internuclear potential for

HCl(g) is shown, from which we can see that the harmonic oscillator potential is a satisfactory

approximation at small displacements.

In this simple system there are two equations of motion, one for each mass:
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m1
∂2x1

∂dt2
= k (x2 − x1 − xeq) (3.11)

m2
∂2x2

∂dt2
= −k (x2 − x1 − xeq) (3.12)

If x2 − x1 > xeq, the spring is stretched and the force on mass m1 is toward the right. This is

why the force term in Eq. (3.11) is positive and that in Eq. (3.12) is negative. Note also that

the force on m1 is equal and opposite to the force on m2, as it should be according to Newton’s

third law.

We find that (x2 − x1 − xeq) is the amount by which the spring is stretched or compressed from

its natural length. Denoting this quantity simply as x:

x = x2 − x1 − xeq (3.13)

We will use x because the vibrational motion of the two-mass system in Figure (3.1) depend

upon only the relative separation of the two masses, or upon the relative coordinate x.

The two equations of motion are:

m1ẍ1 = kx (3.14)

m2ẍ2 = −kx (3.15)

If we divide Eq. (7.15) by m2 and subtract Eq. (7.16) divided by m1 we find that:

ẍ1 − ẍ2 = kx

(
1

m1

+
1

m2

)
(3.16)

By differentiating twice Eq. (3.13), we get:

ẍ = ẍ2 − ẍ1 (3.17)
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Introducing this result into Eq. (3.16) we get:

ẍ = −kx
(

1

m1

+
1

m2

)
(3.18)

If we let:

1

m1

+
1

m2

=
m1 +m2

m1m2

=
1

µ
(3.19)

the quantity µ that we have defined is called the reduced mass. Thus,

ẍ+
k

µ
x = 0 (3.20)

where the dimensions of k
µ

are time−2:

[
k

µ

]
=

[k]

[µ]
=
ML time−2

LM
= time−2 (3.21)

T is a time, or period of oscillation. Thus,

k

µ
=

1

T 2
⇒ T =

√
µ

k
(3.22)

The frequency at which the system oscillates is ν, the reciprocal of T , and has units of time−1.

Thus, the relation between the frequency and the force constant is the following:

k

µ
= ν2 ⇒ ν =

√
k

µ
(3.23)

However, when we solve the equation of motion we shall find that the behaviour of x with time

has a sinusoidal or cosinusoidal dependence, and it is more appropiate to consider, not ν, but

the angular frequency ω = 2πν so that k/µ is now written as ω2:
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ω2 =
k

µ
⇒ ω =

√
k

µ
(3.24)

ν =
1

2π

√
k

µ
(3.25)

and the period now reads like :

T = 2π

√
µ

k
(3.26)

Thus, Eq. (3.20) becomes:

ẍ+ ω2x = 0 (3.27)

Both these solutions

x = A cos(ωt) (3.28)

x = B sin(ωt) (3.29)

satisfy the Equation (3.27) of motion. The general solution for this equation is given by the

addition or superposition of both values for x so we have:

x = A cos(ωt) +B sin(ωt) (3.30)

with ẍ = −ω2 (A cosωt+B sinωt) = −ω2x, and where A and B are determined by the values

of x and ẋ at a specific time. If we rewrite the constants as:

A = a sinφ B = a cosφ (3.31)
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where φ is a constant angle, then:

A2 +B2 = a2(sin2 φ+ cos2 φ) = a2 (3.32)

so that

a =
√
A2 +B2 (3.33)

and

x = a sinφ cos(ωt) + a cosφ sin(ωt)

x = a sin(ωt+ φ) (3.34)

The limiting values of sin(ωt+ φ) are ±1, so the system will oscillate between the values of

±a, known as the amplitude of displacement. This amplitude of displacement will be shown in

Section 3.2, in which the energy profile along the normal mode coordinate is reported.

The angle φ is called the “phase constant”. The solution x = a sin(ωt) defines the displacement

that starts from the origin x = 0 at time t = 0 and the inclusion of φ allows the motion to be

defined from any starting point in the cycle.

3.1.1.2 Vibrations for a collection of atoms

A more general scenario corresponds to a situation where a collection of multiple atoms can

vibrate. This situation is closer to the vibration in a periodic system. We begin by defining a

set of N atoms defined by the Cartesian coordinates ra, rb, . . . rN . We need to apply the Taylor

expansion for a multi-variable vector-valued functions, i.e., expand V (ra, rb, . . . rN) around

reqa , r
eq
b , . . . r

eq
N :
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V (ra, rb, . . . rN) = V (reqa , r
eq
b , . . . r

eq
N )

+
N∑

a=1

(ra − reqa )T ∇ra
V (ra, rb, . . . rN)

∣∣∣∣
ra=reqa

+
1

2

N∑

a=1

N∑

b=1

(ra − reqa )T ∇ra
∇T

rb
V (ra, rb, . . . rN)

∣∣∣∣ra=reqa
rb=reqb

(rb − reqb ) + . . .

(3.35)

For the same reasons as in the 1D case, the first and second terms become zero, and we do not

consider higher order terms. It is more useful to work in terms of displacements:

xa = ra − reqa

xb = rb − reqb

(3.36)

So that:

V (ra, rb, . . . rN) =
1

2

N∑

a=1

N∑

b=1

(xa)
T ∇ra

∇T
rb
V (xa,bb, . . .xN)

∣∣∣∣xa=0
xb=0

xb (3.37)

At this point, we define the Hessian or force constant matrix as:

H
a,b

= ∇ra
∇T

rb
V (xa,bb, . . .xN)

∣∣∣∣xa=0
xb=0

(3.38)

so that:

V (ra, rb, . . . rN) =
1

2

N∑

a=1

N∑

b=1

(xa)
T H

a,b
xb (3.39)

There are N number of Hessian matrices. The matrix elements of each Hessian matrix are

calculated as the second derivative of the potential with respect to the displacement of atom a

along the ith Cartesian coordinate, and atom b along the j-th Cartesian coordinate.

Hai,bj =
∂2V

∂xai∂xbj

∣∣∣∣xa=0
xb=0

i, j = x, y, z (3.40)
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The second derivatives are estimated by using finite-difference approximations, in a similar

manner as in Eq. 3.3.

The Hessian must first be converted to the equivalent force-constant matrix in mass-weighted

coordinates. This new matrix is called F
a,b

and reads like:

F
a,b

= M−1/2

a
H
a,b

M−1/2

b
(3.41)

where

M−1/2

a
=




1√
ma

0 0

0 1√
ma

0

0 0 1√
ma


 (3.42)

It is necessary to mass weight the force-constant matrix because of the following reason. Say we

are modelling the bond between an halogen atom and a deuterium or proton atom, respectively,

X−D and X−H. The force constant k1 and k2 is roughly the same, to a good approximation.

However, the mass of the deuterium is clearly different from the proton, so that the deuterium

gives a different motion and a different zero point energy to the X−D compound. Therefore,

the masses of the atoms have to be taken into account because a force of a given magnitude

will have a different effect upon a larger mass than a smaller one. The use of mass-weighted

coordinates takes into account these effects.

We will simplify the notation by dropping the a and b subindices. We then need to obtain the

eigenvalues and eigenvectors of F, being an eigenvector a column matrix, i.e. a vector u such

that

F u = λu (3.43)

where λ is the associated eigenvalue. The eigenvector problem can be reformulated as follows:

F u = λu I⇒ F u− λu I = 0⇒
(
F− λI

)
u = 0 (3.44)

for which the non-trivial solution requires that:
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∣∣F− λI
∣∣ = 0. (3.45)

Expanding the determinant and solving a polynomial in λ is not an efficient way to determine

the eigenvalues and eigenvectors of larger matrices. Instead, we will diagonalise the matrix F,

which involves finding a matrix U such that:

U−1 F U = Λ (3.46)

where Λ is the diagonal matrix of eigenvalues and U the matrix of eigenvectors.

In a molecule, F is always real and symmetric matrix, as opposed to the periodic system,

where this matrix can be complex. The fact that is real means that the eigenvalues and

eigenvectors of F are always real. In addition, in a molecule the U matrix is orthonormal,

which means that:

a) The eigenvalues are unit vectors (i.e. vectors of length 1), and

b) The eigenvalues are orthogonal (i.e. the scalar product of all pairs of eigenvectors are

zero).

On the contrary, in a periodic system this matrix is unitary (we will see this in Section 3.1.1.3).

Orthogonal matrices satisfy the following relation:

UT U = U UT = I (3.47)

Thus, UT = U−1. Multiplying Eq. (3.46) by U from the left and by U−1 from the right, we

get:

U U−1 F U U−1 = U Λ U−1 (3.48)

Since U U−1 = I:

F = U Λ U−1 (3.49)
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We can now write Eq. (3.39) as:

V (ra, rb, . . . rN) =
1

2

N∑

a=1

N∑

b=1

(xa)
T U

a,b
Λ
a,b

U−1
a,b

xb (3.50)

This equation shines by itself: we have been able to express the potential energy of a system

as a function of the eigenvalues and eigenvectors of vibrating atoms.

The frequencies can be obtained from each eigenvalue as:

νi =

√
λi

2π
(3.51)

3.1.1.3 Periodic system

Extending this formalism to a periodic system, we must consider that in this case the Born-

Oppenheimer ground state energy of a crystal is also a well defined function of the equilibrium

positions of the a = 1, 2, . . . N nuclei in the reference zero cell. We denote by {(R0)a} the

equilibrium position of all a atoms in the reference zero unit cell. We can write the equilibrium

configuration as follows1:

R0 ≡ { . . . , [(R0)a + g] , . . . } (3.52)

The translational vector g was already introduced in Section 2.1.1, accounts for the periodic

images of atom a in the neighbour cells, and can be written as:

g =
3∑

m=1

lgmam, (3.53)

where am are the direct lattice vectors and the set of parameters {Lm} define the size and

shape of the supercell in direct space. For example, if we consider the matrix of lattice vectors

of the primitive cell, one possible supercell in which Lm = 2 would be the result of multiplying

1We will denote the translational vector as g instead of g, in order to stick to the standard notation
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the matrix of lattice vectors by the matrix 2I:




a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


 ·




2 0 0

0 2 0

0 0 2


 = 2 ·




a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


 (3.54)

where the new supercell has double the size of the primitive cell. In this case, there is only one

parameter Lm = 2 and the integers lgm = 0, 1. In other words, lgm runs from 1 to Lm − 1.

By multiplying the matrix of primitive lattice vectors by 2I, we are doubling the three lattice

parameters so that the supercell (SC) has the following dimensions:
∣∣aSC

1

∣∣ = 2 |a1|,
∣∣aSC

2

∣∣ = 2 |a2|
and

∣∣aSC
3

∣∣ = 2 |a3|.

If we label as Ln the integer that represents the expansion of the primitive cell in the three

directions, we can define the variable L as the variable that defines the size of the supercell:

L =
3∏

n=1

Ln, (3.55)

In the previous example, Ln = 2, so that L = 8 and the size of the supercell is therefore be 8

times bigger than the primitive cell.

When nuclear motion is considered, atoms are displaced by displacement vectors xg
a . Thus,

when atoms move, the new configuration R reads like:

R ≡ { . . . , [(R0)a + g + xg
a ] , . . . } (3.56)

Recalling the derivation of Eq. (3.39):

V (ra, rb, . . . rN) =
1

2

N∑

a=1

N∑

b=1

(xa)
T H

a,b
xb (3.39 Previous Section)

We can now express V (R) as:

V (R) =
L

2

∑

g

(
x0
)T

Hg xg + O3 ({xg}) (3.57)

where we now sum over all the translational g vectors, and multiply by L (Eq. 3.55).
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For the periodic system we can use the following notation for the Hessian matrix elements:

Hg
ai,bj =

(
∂2V

∂x0ai∂x
g
bj

)
(3.58)

where x0ai represents the displacement of atom a along the i-th Cartesian direction in cell 0

(reference cell) and xgbj represents the displacement of atom b in the g crystal cell along the

j-th Cartesian direction. All the periodic images of atom b in the crystal are displaced in that

direction. Indices a and b run from 1 to N , and i and j run from 1 to 3N . The number of

Hessian matrices is equal to L (Eq. 3.55). We will refer to these as the set of Hessian matrices
{
Hg
}

.

By neglecting all the O3 terms, we are still under the formalism of the harmonic approximation.

Like we did in the dimer, we will use a mass-weighted force constant matrix, F: However, in

a periodic system, we need to account for the translational symmetry, and use Bloch func-

tions (Section 2.2.7). Instead of using F matrices, we will use Wk matrices, called dynamical

matrices, and summing over all vectors g we get:

Wk =
L∑

g=1

M− 1
2 Hg M− 1

2 exp (ik · g) (3.59)

There is a set of L dynamical matrices
{
Wk

}
. Each of these has a wave vector associated:

k =
3∑

n=1

Ln−1∑

m=0

(
κm
Ln

)
bn (3.60)

where bn are the reciprocal lattice vectors and the integers m run from 0 to Ln − 1. Since

there are L Hessian matrices, therefore there are L number of reciprocal lattice vectors bn. In

our previous example, that SC will contain 8 reciprocal lattice vectors bn. If we constructed

a SC from the matrix 3I, the frequencies will be calculated over 27 reciprocal lattice vectors.

Similarly, if we used 4I, the frequencies will be calculated over 64 reciprocal lattice vectors.

Consequently, we can express Eq. (3.57) as:

V (R) =
L

2

∑

g

(
x0
)T

Wk xg + O3 ({xg}) (3.61)
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As has been explained in the previously, F is a real matrix. However, in a periodic system, Wk

is a complex matrix, meaning that some eigenvalues and eigenvectors are complex. Thus, the

diagonalisation is reformulated as:

(
Uk
)†

Wk Uk = Λk (3.62)

where Uk is the matrix of eigenvectors, and has complex entries.
(
Uk
)†

is the complex conjugate

of the transpose of Uk, which means that for a given Uk, we take the transpose of this matrix,
(
Uk
)T

, and then we take the complex conjugate of each entry.

Uk is a unitary matrix, meaning that its conjugate transpose
(
Uk
)†

satisfies:

(
Uk
)†

Uk = Uk
(
Uk
)†

= I (3.63)

Since
(
Uk
)−1

Uk = I, thus,
(
Uk
)−1

=
(
Uk
)†

(3.64)

Multiplying Eq. (3.62) by
((

Uk
)†)−1

from the left and by
(
Uk
)−1

from the right, we get:

((
Uk
)†)−1 (

Uk
)†

Wk Uk
(
Uk
)−1

=
((

Uk
)†)−1

Λk
(
Uk
)−1

(3.65)

Since
((

Uk
)†)−1 (

Uk
)†

= I and Uk
(
Uk
)−1

= I:

Wk =
((

Uk
)†)−1

Λk
(
Uk
)−1

(3.66)

Using Eq. (3.64),

Wk =
((

Uk
)−1
)−1

Λk
(
Uk
)−1

(3.67)

So that:

Wk = Uk Λk
(
Uk
)†

(3.68)

We can now write Eq. (3.61) as:

V (R) =
L

2

∑

g

(
x0
)T

Uk Λk
(
Uk
)†

xg + O3 ({xg}) (3.69)
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As happened with the molecule, we have been able to elegantly express the potential energy of

a periodic system as a function of the eigenvalues and eigenvectors of vibrating atoms.

3.1.1.4 Deficencies of the Harmonic approximation

The harmonic approximation presents serious limitations, that arise from the fact that only

constant volume quantities can be calculated, so that thermal expansion cannot be explained

[75, 76]. In this respect, an effective technique, although computationally expensive, is ab

initio molecular dynamics [33, 34, 35], which takes into account the simultaneous effect of

both temperature and pressure, and intrinsically accounts for anharmonicity. Simpler and less

computationally expensive, but still effective techniques can be used based on the so called

quasi-harmonic approximation (QHA), which corrects the HA deficiencies, and is described

herein.

3.1.2 Framework of the Quasi-Harmonic Approximation

Let’s recall the equations derived in the previous sections:

dE = TdS − PdV (Eq. 2.159 from Section 2.3.3)

E = F + TS (Eq. 2.265 from Section 2.5.4)

By differentiating F = E − TS from Eq. 2.265,

dF = dE − TdS − SdT (3.70)

Plugging in Eq. 2.159, we get:

dF = −PdV − SdT (3.71)

So that the pressure is defined as:

P = −
(
∂F

∂V

)

T

(3.72)
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If we recall Eq. 2.253:

F = Estatic +
1

2

∑

i,k

hνi,k + kBT
∑

i,k

ln

[
1− exp

(
−hνi,k
kBT

)]
(2.253 Previous Chapter)

The quasi-harmonic approximation corrects the HA deficiencies by maintaining the same har-

monic expression [77]:

F (T ) = Estatic + EZP + E(T )− TS(T ), (3.73)

but introducing an explicit dependence of both the electronic energy and the vibration phonon

frequencies on volume [78, 79]:

F (V, T ) = Estatic(V ) + EZP(V ) + E(V, T )− TS(V, T ). (3.74)

For the sake of simplicity, from now on the subindex “static” will be dropped, so that:

F (V, T ) = E(V ) + EZP(V ) + E(V, T )− TS(V, T ). (3.75)

where EZP(V ), E(V, T ) and S(V, T ) are the same expressions derived in Eqns. 2.254, 2.258 and

2.256, but introducing the dependence on the volume and temperature:

EZP(V ) =
h

2

∑

i,k

νi,k(V ) (3.76)

E(V, T ) =
∑

i,k

hνi,k(V )

exp
(
hνi,k(V )

kBT

)
− 1

(3.77)

S(V, T ) = −kB
∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]
+

1

T
E(V, T ). (3.78)

It is quite reasonable to think that a better description of the system is obtained when consider-

ing that the electronic energy depends on the volume constraint of the cell. In addition, E is to

be regarded a well known function of V (by a fit to a cubic polynomial or any of the generally-

purposed equation of state, such as the Birch-Murnaghan [71]).Regarding the vibrations, it is

reasonable to think that these are affected by the volume constraint, i.e. for a compressed

volume, atoms have less room to move, so that frequencies become higher. On the contrary,

for expanded volumes, phonons get softer. By casting Eqns. 3.77 and 3.78 into Eq. 2.253, one

gets the following expression for the Helmholtz free energy:
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F (V, T ) = E(V ) + EZP(V ) + kBT
∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]
. (3.79)

differentiation of Eq. (3.79) yields the pressure-volume relation at a finite temperature.

P (V, T ) = −
(
∂F (V, T )

∂V

)

T

(3.80)

= −∂E(V )

∂V
− h

2

∂

∂V

[∑

i,k

νi,k(V )

]
− kBT

∂

∂V

{∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]}

(3.81)

The pressure at T = 0 K (athermal limit) considering zero-point motion, is just:

P (V, T = 0 K, considering zero-point motion) = −∂E(V )

∂V
− h

2

∂

∂V

[∑

i,k

νi,k(V )

]
(3.82)

By neglecting zero-point energy, we get:

P (V, T = 0 K, neglecting zero-point motion) = −∂E(V )

∂V
(3.83)

The derivative over the neperian logarithm from Eq. 3.79 reads like:

∂

∂V

{∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]}
=

1

1− exp
(
−hνi,k(V )

kBT

) ∂

∂V

[
1− exp

(−hνi,k(V )

kBT

)]

=
exp

(
−hνi,k(V )

kBT

)

1− exp
(
−hνi,k(V )

kBT

) h

kBT

∂νi,k(V )

∂V
(3.84)

Casting Eq 3.84 into Eq. 3.80, we can obtain the pressure at finite temperature (finite pressure),

as a function of the vibrations:

P (V, T ) = −∂E(V )

∂V
−
∑

i,k


1

2
+

1

exp
(
hνi,k(V )

kBT

)
− 1


h ∂νi,k(V )

∂V
(3.85)
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νi,k(V ) is a known function of volume, where a polynomial of degree 2 is generally good ap-

proximation:

νi,k(V ) = ci,kV
2 + di,kV + fi,k (3.86)

so that:

∂νi,k(V )

∂V
= 2ci,kV + di,k (3.87)

Eq. 3.85 provides the requisite relation between P , V and T . It is often convenient to introduce,

instead of the derivatives of the frequencies, the dimensionless quantities γi,k called Grüneisen

parameters:

γi,k = −∂ ln νi,k(V )

∂ lnV
= −V 1

νi,k(V )

∂νi,k(V )

∂V
(3.88)

At this level, the Gibbs free energy can be calculated:

G(V, T ) = E(V ) + EZP(V ) + E(V, T )− TS(V, T ) + P (V, T )V (T ) (3.89)

= F (V, T ) + P (V, T )V (T ) (3.90)

It is more convenient to work in terms of G as a function of P and T so that at this point all

these properties become as a function of pressure and no longer volume:

G(P, T ) = E(P ) + EZP(P ) + E(P, T )− TS(P, T ) + P (T )V (P, T ) (3.91)

= F (P, T ) + P (T )V (P, T ) (3.92)

The pressure of transition between two phases at a finite temperature occurs when the following

condition is satisfied:

GI(P ;T ) = GII (P ;T ) (3.93)

For the case of 0 K, the Gibbs free energy is reduced to the enthalpy:

H(P ) = E(P ) + EZP(P ) + PV (P ), (3.94)
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and the pressure is

P (V ) = −∂(E(V ) + EZP(V ))

∂V
. (3.95)

For the specific case of the athermal limit without considering zero point motion, the enthalpy

is just

H(P ) = E(P ) + PV (P ), (3.96)

so that the pressure is

P (V ) = −∂E(V )

∂V
. (3.97)

In both cases the pressure of transition is obtained when HI(P ) = HII (P ).

3.1.3 Deficiencies of the quasi-harmonic approximation

The QHA allows to study the combined effect of temperature and pressure on materials. This

represents an advantage respect to the HA. However, there is still one deficiency not solved by

the QHA, and is the fact that we are considering independent harmonic oscillators, which is

a simplification, because in nature all vibrations are coupled to each other, e.g. normal mode

i = 1 affects the vibration of normal mode i = 2. If higher order terms are considered in the

Taylor expansion, then the vibrations are no longer treated as independent harmonic oscillators,

but coupled oscillations. Including higher order terms means considering anharmonic effects,

which requires the calculation of phonon-phonon interaction coefficients with techniques such as

Vibrational Configuration Interaction (VCI), Vibrational Self-Consistent-Field (VSCF), Vibra-

tional Perturbation Theory (VPT), Transition Optimized Shifted Hermite (TOSH), calculation

of higher order interatomic force constants, etc [80, 81, 82, 83, 84, 85]. These calculations are

computationally demanding for large systems.

3.2 Distortion of the geometry along a soft phonon

mode

In the course of this PhD we have encountered, for some expanded or compressed volumes,

negative eigenvalues λi, and therefore imaginary frequencies νi. From now on the terms “imag-
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inary frequency” and “negative frequency” are used interchangeably throughout this thesis.

These are often referred to as soft phonon modes in a periodic system. This means that we

are in a transition state, and a phase transition can occur. An example occurs in calcite I

when compressed. A soft phonon mode appears at a finite k point (details about this phase

transition will be given in Chapter 7). In these situations it is very useful to distort the atomic

positions along the normal mode coordinate responsible for this imaginary frequency. This

provides the natural way of breaking symmetry and induce the correct structural changes for

the phase transition to occur. An energy scan along this normal coordinate is shown in Fig.

3.3. The two minima are equivalent to each other, arise from a positive and negative normal

mode displacement, and correspond to the distortion that yields to the calcite II structure.
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Figure 3.3: Brown circles: energy scan along the soft phonon mode of frequency -87.6 cm−1 observed in
the calcite I structure for a percentage of compression corresponding to 15% using the PBE-D3 level of
theory. A symmetric double well potential is observed (for more details refer to text).

There is available a feature on CRYSTAL named SCANMODE that performs this energy scan. Say

|r0〉 is the equilibrium configuration, then the following |ri〉 configurations are explored through

this routine:
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|ri〉 = |r0〉+ i ∆︸︷︷︸
STEP︸ ︷︷ ︸

DISPLACEMENT

|u〉︸︷︷︸
eigenvector

(3.98)

where |u〉 is the eigenvector of the selected mode and ∆ is the step. This step is chosen in the

variable STEP, as well as two more variables: INI and IFI, the initial and final points of the

scan. i is a positive or negative integer, that runs from INI to IFI.

For example, the calculation INI=-10; IFI=10; STEP=0.4 will be computing, in a step of 0.4

Å, IFI - INI = 10− (−10) = 20 configurations, where i = ±1,±2,±3 · · · ± 10:

i = 1⇒ |r1〉 = |r0〉+ 0.4 |u〉

i = 2⇒ |r2〉 = |r0〉+ 0.8 |u〉

i = 3⇒ |r3〉 = |r0〉+ 1.2 |u〉

i = 4⇒ |r4〉 = |r0〉+ 1.6 |u〉

i = 5⇒ |r5〉 = |r0〉+ 2.0 |u〉

i = 6⇒ |r6〉 = |r0〉+ 2.4 |u〉

i = 7⇒ |r7〉 = |r0〉+ 2.8 |u〉

i = 8⇒ |r8〉 = |r0〉+ 3.2 |u〉

i = 9⇒ |r9〉 = |r0〉+ 3.6 |u〉

i = 10⇒ |r10〉 = |r0〉+ 4.0 |u〉

i = −1⇒ |r1〉 = |r0〉 − 0.4 |u〉

i = −2⇒ |r2〉 = |r0〉 − 0.8 |u〉

i = −3⇒ |r3〉 = |r0〉 − 1.2 |u〉

i = −4⇒ |r4〉 = |r0〉 − 1.6 |u〉

i = −5⇒ |r5〉 = |r0〉 − 2.0 |u〉

i = −6⇒ |r6〉 = |r0〉 − 2.4 |u〉

i = −7⇒ |r7〉 = |r0〉 − 2.8 |u〉

i = −8⇒ |r8〉 = |r0〉 − 3.2 |u〉

i = −9⇒ |r9〉 = |r0〉 − 3.6 |u〉

i = −10⇒ |r10〉 = |r0〉 − 4.0 |u〉

All 20 |ri〉 configurations in this case would arise from 20 displacements of the atoms along the

selected eigenvector. We will denote the product i∆ as DISPLACEMENT, which is the x axis in

Fig. 3.3. In this figure, we can distinguish:

a) The brown circles represent the DFT energy over all the 20 |ri〉 displacements shown in

the above list.

b) The blue circles represent the harmonic energy of all these displacements over the selected

negative mode. After all the previous derivation, it may be evident now that these points

are calculated using the equation derived previously:
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V (R) =
L

2

∑

g

(
x0
)T

Uk Λk
(
Uk
)†

xg + O3 ({xg}) (3.69 Previous Section)

In this case, the matrix Λk only contains one eigenvalue, the one that is scanned. Because

it is negative, the resulting parabola is inverted. Similarly, the matrix Uk only contains

one eigenvector.

c) The horizontal red line represents the first vibrational state of this scanned mode, i.e.
(
0 + 1

2

)
hν (note that the y-axis is the energy of the crystal).

d) The classical amplitude of an harmonic oscillator is indicated. This is the amplitude of

displacement introduced in Section 3.1.1.1 as the variable a (Eq. 3.34).



Chapter 4

The polymorphism of the calcite

system

In this section we will describe the structure of most of the polymorphs in some detail. In Fig.

4.1 we have assembled the stability data for all the phases to produce a temperature-pressure

phase diagram. The most stable phase of calcite at ambient conditions is calcite I. Under

these conditions, aragonite and vaterite are metastable polymorphs of calcite I. In solution, the

pH is the most important factor that affects the preference of precipitation between calcite I,

aragonite and vaterite [86]. However, the influence of this factor is still unclear: while some

authors have obtained pure vaterite at pH between 9.3 and 9.9[87], others have shown that pH

lower than 9 results in an increase of supersaturation and nuclei formation, improving vaterite

crystal growth [88].

Chemical control of phase stability beyond just pH, has been demonstrated as well. For instance,

in several experiments it has been observed the deposition of an amorphous calcium carbonate

phase when calcium chloride and sodium carbonate salt solutions are mixed [89, 90]. This

amorphous phase rapidly transforms to vaterite within minutes. If vaterite remains in contact

with the solution, it transforms to calcite I within one day. If kept dry, vaterite is metastable

at temperatures up to 670 K [91].

Vaterite is an important ingredient of Portland cement [6] and has been found in gallstones

[92] and in oil field drills [6]. As a biomaterial, vaterite can be found in very low proportion

in green turtle eggshells [93], coho salmon otoliths [94], freshwater lackluster pearls [95], and

149
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Figure 4.1: Experimental phase diagram of CaCO3 gathering all the available information so far for this
material.

in the aberrant growth of mollusk shells repaired after an injury [96]. Vaterite can also be

found as the only mineral component in the endoskeleton of the body and tunic spicules of

the solitary stolidobranch ascidian Herdmania momus [97]. Recent investigations suggest that

the nucleation of calcium carbonate does not proceed accordingly to classical nucleation theory

and a more complex pathway is involved in the process [30, 31]. As a consequence, in the last

few years there has been an increasing interest in vaterite, since it is the metastable phase that

appears in the mechanism of nucleation of calcium carbonate. The existence of vaterite in a wide

range of biominerals suggests biological control of the nucleation mechanism. Therefore, the

study of its initial nucleation and growth offer an opportunity not only to better understand

the crystal nucleation and growth of calcium carbonate [98, 99], but also the mechanism of

biomineralization. However, it is rather difficult to make further progress in understanding the

growth and nucleation because its crystal structure is still controversial, and a matter of ongoing

debate [100]. On the other hand, this is a great challenge. Its structure has stymied scientists
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for over almost a century, and many authors have proposed very different interpretations [101,

102, 103, 104, 105, 106, 94, 107, 108, 97, 90, 100, 109, 110, 111], which will be described in

Section 4.3.

Recently, there has been interest in the behaviour and properties of CaCO3 above 1.7 GPa as a

potential geological carbon storage pathway. Research in this field is aimed at understanding the

carbon cycle on Earth [112]. At ambient temperature and by applying pressure, calcite I evolves

from a highly symmetric structure (R3c) to lower symmetric structures: calcite II (monoclinic),

calcite III and calcite VI (both triclinic). In 1938 Bridgman first identified Calcite II and III by

applying volumetric measurements [113]. In that study, the calcite I - calcite II and calcite II -

calcite III phase boundaries were described. These corresponds, respectively, to the negatively

and positively sloped curves shown in Fig. 4.1 with blue dashed lines.

Calcite II and III appear within the accepted stability field of aragonite. They have larger

molar volumes and are considered to be metastable with respect to aragonite [114]. On the low

temperature (300 to 600 K) and high-pressure side of the phase diagram (Fig. 4.1), aragonite

transforms to calcite II and calcite III [113, 115, 116, 114, 117].

As can be seen in Fig. 4.1, the calcite III-aragonite boundary is curved: from 2 to 4.5 GPa, the

transition temperature increases with pressure, and from 4.5 GPa, the transition temperature

decreases with increasing pressure [12]. One possible interpretation for this bowed boundary

could be the fact that there is a change in the transition, from first to second order [118]. Ac-

cording to Suito et al. [12], there is no thermodynamic evidence that supports this hypothesis.

However, Hess’s et al. [119] negatively sloped boundary , combined with the already mentioned

Bridgman’s positively sloped boundary is the best explanation for this bowed behaviour, even

though these two boundaries do not meet exactly at the maximum of the curve.

For the last 40 years calcite III has been extensively studied [115, 120, 121, 122, 12, 123], but

the determination of its structure has generated considerable controversy. In 2012, Merlini

et al. first characterized calcite III using single-crystal synchrotron X-ray diffraction [17]. At

ambient temperature, they observed this phase above 2.5 GPa and up to 15 GPa, a pressure

range that corresponds to that in the upper mantle (Fig. 1.1b). By applying very slow pressure

ramps, they revealed a structural modification of calcite III that was named calcite IIIb. This

phase is described in more details in the next section.
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By performing shock-compression experiments, Tyburczy et al. [124] first revealed in 1986 the

formation of a denser phase above 15 GPa, named calcite VI. From changes in infrarred spectra,

Catalli et al. [125] noticed a further phase transition also above 15 GPa. However, it was not

until 2012 that this structure was first determined by Merlini et al. [17], where high pressure

was produced with a membrane type diamond anvil cells (DAC). The authors report that in

all these experiments the transitions towards the high pressure polymorphs were reversible,

always obtaining calcite I. From this, they concluded that it would be improbable to find these

structures directly in nature or as synthetic materials quenched to ambient pressures. However,

in 2015 Schaebitz et al. [15] found calcite III and calcite IIIb as 50-150 nm sized crystals

natural samples several meters from the surface in quaternary loess deposits in Central Asia,

characterizing them by TEM. Based on their recent finding, Schaebitz et al. [15] suggested that

high surface stresses may stabilize the high-pressure phase nanoparticles outside their stability

region of bulk phases.

At ambient pressure as upon heating, calcite I undergoes a reversible phase transition to a

high-temperature disordered form (space group R3̄m) [126, 127, 128, 129, 130] at ∼ 967 K (see

Fig. 4.1). This phase has been named calcite V. Recent studies by Ishizawa et al. [131] over a

range of temperatures from 294K to 1275K revealed the following temperature stability field:

calcite I (from 294K to 974K), calcite IV (form 995K to 1234K) and calcite V (from 1254K to

1275K). Calcite IV was classified as an intermediate state that bridges phases I and V. The

experimental temperature and pressure data at which calcite I, IV and V were observed is

shown in Fig. 4.1. These measurements were made in the limited pressure range of 0.1 to 0.44

MPa (more details will be given in the next section). The influence of higher pressures on these

phases has yet to be documented.

Suito et al. [12] performed three type of experiments for a wide range of pressure and temper-

ature on the stability field of calcite II, III and aragonite: 1) in-situ X-ray diffraction (XRD)

using synchrotron radiation to 6 GPa and 1750◦C, 2) Raman scattering to 10 GPa at room

temperature using a diamond-anvil cell and 3) post-compression XRD on samples retrieved

after heat treatment at temperatures to 2000◦C and pressures to 9 GPa. These results are

displayed in Fig. 4.1. In this study, they described a phase boundary between aragonite and

a high temperature “disordered calcite” phase to be a line with a slope of 125 ◦C/GPa. This

“disordered calcite” is just a term to refer to calcite IV and V, due to the orientational disorder
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of the carbonate groups. Unfortunately these points were presented as a whole set and were

not classified into calcite IV or V.

At higher temperatures calcite melts. Irving et al. [132] were the first to determine the melting

point curve up to 3.6 GPa from the texture of quenched samples. Suito et al. [12] reported a

melting curve to be Tm (◦C)= 1338 + 82P − 2.9P 2 (P in GPa) up to 6 GPa. An extrapolation

of that curve to 8 GPa gives a Tm of 1800◦C, just 200◦C less than the minimum temperature

required for the synthesis of diamond using CaCO3 as a catalyst.

In the following sections, the structure of each of the polymorphs will be described.

4.1 Calcite I

Calcite I is the most studied polymorph throughout this PhD project, and its careful study and

understanding of the structure sets the basis for any other phase transition observed in CaCO3.

4.1.1 The direct lattice

Calcite I has a structure that belongs to the Trigonal Crystal. The periodicity of the structure is

represented most efficiently in a rhombohedral (primitive) cell (a = b = c and α = β = γ 6= 90◦,

Fig. 4.2b), but the symmetry of the structure is revealed best by an hexagonal (conventional)

cell (a = b 6= c and α = β = 90◦ and γ = 120◦, Fig. 4.2a).

(a) (b)

Figure 4.2: (4.2a) Hexagonal cell. (4.2b) rhombohedral cell

The hexagonal cell has three times the volume of the rhombohedral cell (the so called “triple
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hexagonal representation”) as shown in Figure 4.3. Calcite I belongs to the space group R3̄c,

which in the international tables for crystallography is the 167th space group.

Figure 4.3: (a): The basis of the rhombohedral cell is labelled as aR, bR and cR. (b): Projection along
cH. The basis of the hexagonal centered cell is labelled as aH, bH and cH.

  

a
2

a
1

a
3

120°

z

x

y

(a)

  

a
2

a
1 x

y

120°

(b)

  

x
y

a
2

a
1

120°

α

β

(c)

Figure 4.4: Different projections of an hexagonal Bravais Lattice: 4.6a: three-dimensional projection,
where the vectors a1, a2, a3 are shown, as well as the unitary vectors x̂, ŷ and ẑ. 6.4e and 4.4c: two-
dimensional representation. The unitary vector ŷ and ẑ coincide with the a2 and a3 vectors respectively.
The a1 vector is at an angle of α with respect to x̂, and at an angle of β with respect to −ŷ

We will describe the hexagonal Bravais Lattice using three lattice vectors: a1, a2, a3, as shown
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in Fig. 4.4. By using the geometric relations shown on Fig. 4.4c, each lattice vector ai and its

module |ai| can be easily obtained:

a1 = a1x · x̂ + a1y · (−)ŷ + ��
�*0

a1z · ẑ

= a1x · x̂ − a1y · ŷ

= a cos(α = 30) x̂ − a cos(β = 60) ŷ

=

√
3a

2
x̂ − a

2
ŷ

|a1| =
√

3

4
a2 +

a2

4

=

√
4

4
a2

= a

a2 =���*
0

a2x · x̂ + a2y · ŷ + �
��*0

a2z · ẑ = b ŷ

|a2| =
√
a2

2y = a2y = b

a3 =���*
0

a3x · x̂ + ��
�*0a3y · ŷ + a3z · ẑ = c ẑ

|a3| =
√
a2

3z = a3z = c

The set of lattice vectors can be represented in matrix form:




a1

a2

a3


 =




a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


 =




a1x a1y 0

0 a2y 0

0 0 a3z


 =




a1x a1y 0

0 b 0

0 0 c


 =

Calcite I




4.376 −2.527 0

0 5.053 0

0 0 17.234




(4.1)
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By direct calculation, the volume of the cell is:

V = |a1 · (a2 × a3)| =
(√

3a

2
x̂ − a

2
ŷ

)
·

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

0 b 0

0 0 c

∣∣∣∣∣∣∣∣∣

=
a=b

(√
3a

2
x̂ − a

2
ŷ

)
· (ac x̂)

=

√
3a2c

2

Other equivalent definition of the volume of the cell is the determinant of the lattice vector

matrix:

V =

∣∣∣∣∣∣∣∣∣

a1x a1y 0

0 b 0

0 0 c

∣∣∣∣∣∣∣∣∣

= bc a1x

=
a=b

√
3a2c

2

The hexagonal and rhombohedral lattices can be easily related by a mathematical transforma-

tion: the supercell expansion matrix that converts the rhombohedral lattice vectors matrix to

the hexagonal is the following:

SC =

∣∣∣∣∣∣∣∣∣

1 −1 0

0 1 −1

1 1 1

∣∣∣∣∣∣∣∣∣
(4.2)

so that the hexagonal direct lattice vectors matrix (H) is obtained from the rhombohedral (R)

as:

SC ·R = H (4.3)
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4.1.2 The reciprocal lattice

Similarly, each reciprocal lattice vector bi and its module |bi| can be easily obtained:

b1 = 2π ·

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

0 b 0

0 0 c

∣∣∣∣∣∣∣∣∣
√

3a2c
2

=
a=b

4π√
3a
x̂

|b1| =
4π√
3a

b2 = 2π ·

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

0 0 c
√

3a
2

−a
2

0

∣∣∣∣∣∣∣∣∣
√

3a2c
2

=
a=b
− 2π · 1√

3a
x̂− 2π · 1

a
ŷ

|b2| =
4π√
3a

b3 = 2π ·

∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ
√

3a
2

−a
2

c

0 b 0

∣∣∣∣∣∣∣∣∣
√

3a2c
2

=
a=b

2π

c
ẑ

|b3| =
2π

c

The First Brillouin Zone of the trigonal crystal of Calcite I is shown in Fig. 4.5. Several of

the reciprocal lattice points shown in this figure will play a key role in the phase transitions of

calcite I.
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Figure 4.5: First Brillouin Zone of the trigonal crystal of calcite I. On green, a path along several reciprocal
lattice points is shown: L = [1/2, 0, 0], F = [1/2, 1/2, 0], Γ = [0, 0, 0], T = [1/2, 1/2, 1/2]. The k-point
T can also be labeled as Z. Some of these reciprocal lattice points will be crucial for understanding phase
transitions in this material.

4.1.3 Crystal structure

The crystallographic cell of Calcite I is hexagonal, contains 6 formula units and 30 atoms

(Fig. 4.6a). The coordinates of the asymmetric unit are the following: one calcium atom at

fractional coordinates (0,0,0), and one carbon atom at (0,0,1
4
). The only positional parameter

not constrained by symmetry is the x coordinate for the oxygen atom, which is located at

(x,0,1
4
). The experimental lattice parameters deduced from X-ray diffraction at T = 293K are

found to be a = 4.991(2)Å, c = 17.062(2)Å, V = 368.1(3)Å3, x = 0.2573(2), and density of

2.709 g/cm3[133].

The Ca cation is coordinated with six oxygen ions forming an octahedron which is slightly

flattened in the direction of the hexagonal c axis (see Fig. 4.6a). The Ca-O bond distance

in the octahedral environment is 2.359 Å, and two types of ̂O − Ca−O angles are identified:

87.435◦ and 92.575◦ (Fig. 4.7), which means the octahedron is slightly distorted from a perfect

octahedron (all angles equal to 90◦). This distortion of a perfect octahedral environment may

be caused because of the vertex of the octahedron forms part of a carbonate group, which

“pulls” the octahedron in that direction.

The carbonate groups are perpendicular to the c-axis and located at planes parallel to (001),

as shown in Fig. 4.6b. These are pointing opposite directions, as shown with different colors,



4.1. Calcite I 159

a
0 b

c

(a) (b)

a

0

b c

(c)

Figure 4.6: View of the crystallographic (4.6a) and primitive (6.4e) cells of Calcite I. Fig. 4.6b: all
carbonate groups are located at planes parallel to (001), pointing to opposite directions, as shown with
two different colors: blue and purple.

Figure 4.7: Two types of angles are described in the octahedral environment of a calcium ion: 87.425◦

and 92.575◦.

blue and purple.
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4.2 Aragonite

Aragonite adopts an orthorhombic lattice with space group Pmcn with 20 atoms in the unit

cell (4 formula units). The experimental lattice parameters deduced from single-crystal X-ray

diffraction are: a = 4.9616, b = 7.9705, c = 5.7394, α = β = γ = 90◦, and a density of 2.929

g/cm3 [134].

The CO2−
3 ions are perpendicular to the c-axis, projected on top of each other, in different

planes, and pointing in opposite directions (Fig. 4.8a), destroying the trigonal symmetry that

is characteristic of Calcite I. The calcium ions are in an hexagonal closest packing, and have a

ninefold coordination with the oxygen atoms [135].

In this ninefold polyhedron a very interesting way of coordination appears. We can identify

two types of Ca−O bonds (see Fig. 4.8b) :

1. Bonds to 2 Oxygen atoms in each of 3 carbonate groups. There are a total of 6 Ca−O

bonds of this type, per calcium atom. These 6 bonds are distributed as follows:

(a) Two equal d(Ca−O) = 2.541 Å distances to the first carbonate group.

(b) d(Ca−O) = 2.655 Å and d(Ca−O) = 2.526 Å to the second carbonate group.

(c) d(Ca−O) = 2.655 Å and d(Ca−O) = 2.526 Å to the third carbonate group.

2. Bonds to 1 Oxygen atom in 3 other carbonate groups. There are a total of 3 Ca−O bonds

of this type, per calcium atom. These 3 bonds are distributed as follows:

(a) A d(Ca−O) = 2.448 Å to the forth carbonate group.

(b) A d(Ca−O) = 2.411 Å to the fifth carbonate group.

(c) A d(Ca−O) = 2.448 Å to the sixth carbonate group.

Each oxygen is bonded to three Ca cations, whereas in Calcite I each oxygen was bonded to

two Calcium cations.
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(a) (b)

Figure 4.8: Structure of Aragonite: 4 formula units in the unit cell, where the carbonate planes are one
on top of the other in different planes, oriented in opposite directions. Fig. (4.8a) is a projection on the ab
plane, showing the ninefold coordination of calcium ion. Fig. (4.8b) highlights a single calcium atom and
the 6 types of bonds (bonds to 2 Oxygen atoms in each of 3 carbonate groups) and the 3 types of bonds
(bonds to 1 Oxygen atom in 3 other carbonate groups). For more details, refer to text.

4.3 Vaterite

As has been said at the beginning of this chapter, the structure of vaterite is still unknown. Its

crystalline state is today a matter of ongoing debate. There are many interpretations of both

the experimental data and theoretical calculations. The symmetry and space group, dimensions

of the unit cell, orientation and site symmetry of the carbonate groups are controversial. Figure

4.9 is a chart of the proposed vaterite structures available in the literature. They are organized

in such a way so as to identify the parent vaterite structures. There are several interpretations,

based on a hexagonal, monoclinic, or orthorhombic lattices.

In 1959 Meyer was the first to determine the vaterite crystal structure derived from single-crystal

X-ray diffraction experiments, in which an orthorhombic unit cell with a space group Pnma

was reported [101]. One year later he refined the structure and suggested an orthorhombic cell,

but with space group Pbnm with partial occupancies of different carbonate sites [102]. From

X-ray diffraction experiments, in 1963 Kamhi classified the structure with hexagonal symmetry

and space group P63/mmc [103], in which the calcium atoms are in eightfold coordination
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Figure 4.9: Structures of vaterite proposed so far. Models are based on hexagonal, monoclinic, or
orthorhombic lattices. Figure updated and inspired from Burgess et al. [111]. Rectangles filled in blue and
yellow indicate theoretical and experimental studies respectively. For more details refer to text.

with oxygen atoms. In 1969 Meyer [104] and later confirmed by Lippmann [105] proposed an

hexagonal lattice with the same space group as Kamhi’s model

The Raman spectrum of vaterite performed in carbonically pure water [106] revealed in 2000

that the only structure that is in agreement with the experiment is the one considered by

Meyer in 1969. However, a more recent Raman spectrum study of vaterite is inconsistent

with either an hexagonal or orthorhombic symmetry [94]. Recently, Le Bail [107] suggested

a modified orthorhombic unit cell based on a microtwinning hypothesis. In this study, the

ESPOIR code was used to move independently the Ca ions and one or several rigid carbonate

groups in the cell, by Monte Carlo approaches. A structure with Ama2 space group was the

most appropriate candidate based on these simulations. Mugnaioli et al. [108] suggested in

2012 two structures with very low symmetries: a monoclinic unit cell (space group C2/c) and a

triclinic one (space group C1̄) based on automated diffraction tomography (ADT) and electron
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diffraction experiments done on a transmission electron microscope.

Only one year later Kabalah-Amitai et al. [97] concluded that the structure of vaterite consists

of an hexagonal structure coexisting with at least another structure not fully characterized.

Both of them are rotated by 30◦ respect to the other, and with a lattice parameter relationship

of a′ =
√

3a.

Although there is no consensus on the structure, some features regarding the vaterite crystal

structure emerge: a) the Ca atoms are in an hexagonal sublattice; b) carbonate groups are

parallel to the c-axis, as opposed to calcite and aragonite, where the carbonate planes are

perpendicular to the c-axis; and c) there is considerable disordering of the carbonate groups in

the structure [90].

In order to understand the structure of vaterite, theoretical calculations have also been per-

formed. Medeiros et al. [100] conducted DFT calculations (plane-wave basis and ultrasoft

Vanderbilt pseudopotentials) of the Pbnm orthorhombic cell given by Meyer [102] with LDA

and GGA level of theory. In that study the structural, electronic (band gap) and optical proper-

ties were investigated. The intensity of optical absorption was predicted to be more pronounced

that the experiment only for energies larger than 6.0 eV.

Wang et al. [90] performed DFT calculations with the projector-augmented wave method

(PAW) and GGA functionals (PW91). The starting point was also the orthorhombic structure

of Meyer. Then, Molecular dynamics (MD) simulation with temperature annealing was used to

address disordering and to find an ordered superstructure. As a result of an energetic analysis

of different hexagonal configurations, a structure with 18 formula units, belonging to the P6522

space group was proposed, in which two Ca sites can be identified: Ca atoms coordinated by

six O atoms at distances of about 2.350−2.440 Å (octahedra labelled as 1 in Fig. 4.10) and Ca

atoms coordinated by six O atoms at distances of about 2.313−2.460 Å (octahedra labelled as

2 in Fig. 4.10).

Demichelis et al. [109, 110] suggested that the P6522 structure proposed by Wang was a

Boltzmann-weighted average structure of three different configurations with space groups P65,

P3221 and P1121, as a consequence of rotations of the carbonate groups. In the P65 structure

the calcium ions are only surrounded by 6 oxygens, whereas in the P3221 structure calcium

ions are surrounded by 6 and 7 oxygens. A coordination index of 6, 7 and 8 is observed in the



164 Chapter 4. The polymorphism of the calcite system

Figure 4.10: Wang’s proposed structure for Vaterite, with two types of Ca sites: octahedras 1(Ca−O
distances of about 2.350−2.440 Å) and octahedras 2 (Ca−O distances of about 2.313−2.460 Å).

P1121 structure. These calculations were performed with all-electron localized Gaussian-type

functions basis sets, using the GGA (PBEsol functional).

Regarding the C2/c structure described by Mugnaioli et. al, Demichelis et al. [109], suggested

two more stable monoclinic lattices, again as a result of rotations in the carbonate ions: C2

and Cc. Similarly, Demichelis et al. [109] postulated the C1̄ structure described by Mugnaioli

et. al to be two C1 structures of very similar energy, in which the difference is a minor rotation

of carbonates. In addition, Meyer’s Pbnm structure was identified to be P212121.

PAW DFT calculations of Mugnaioli’s C2/c and Le Bail’s Ama2 structures were performed

by Burgess et al. [111] , in order to understand 43Ca solid-state nuclear magnetic resonance

(SSNMR) experiments on vaterite.
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4.4 High-pressure polymorphs

4.4.1 Calcite II

The Bravais Lattice of Calcite II is monoclinic, with symmetry group P21/c and experimental

lattice parameters a = 6.334(20)Å, b = 4.948(15)Å, c = 8.033(25)Å, β = 107.9◦, V = 239.57Å3,

with 20 atoms in the unit cell (4 formula units) and a density of 2.77 g/cm3. Merril et al. [114]

obtained these experimental values by applying 1.8 GPa to Calcite I at room temperature.

The structure was characterized by single-crystal X-ray diffraction using designed miniature

diamond-anvil pressure cell. The Calcium atoms are surrounded by six oxygen atoms(Figures

4.11a and 4.11b). As can be seen in these figures, each calcium atom is coordinated to one

oxygen atom of a carbonate group, as opposed to aragonite, where a calcium atom was coordi-

nated to the two oxygens of a single carbonate group. The Ca−O distances in each octahedra

are shown in Fig. 4.11a. In addition, all octahedra are not oriented in the same way, and 4

types of octahedra can be defined: Oh1 − Oh4. The relationship between each of them is an

inversion symmetry operation between Oh1 and Oh3, and similarly between Oh2 and Oh4, as

is shown in (4.11d).

The Calcite I - Calcite II phase transition is displacive and the sample remains a single crystal in

the Calcite II phase. The mechanism proposed for this phase transition was due to a soft phonon

instability at the F point of the rhombohedral Brillouin zone boundary [136] (See Fig. 4.5).

This mechanism, as well as the temperature-pressure phase diagram for this phase transition

has been studied with substantial detail in the course of the PhD, and will be thoroughly

explained in Chapter 7.

Biellmann et al. [137] performed experiments on Calcite I at 45 GPa and temperatures between

300 and 2000 K in a YAG-laser-heated diamond-anvil cell. In these experiments calcite II was

quenched and characterized for the first time by transmission electron microscopy (TEM) at

ambient conditions. In that experiment no decomposition reaction was observed (CaCO3 →
CaO + CO2), which lead the authors to think that CO2 may be trapped in carbonates in the

upper and lower mantle. The transition calcite I to calcite II results from two displacements:

first, an 11◦ rotation in opposite directions of adjacent carbonate groups along the c axis, and

second, a small antiparallel displacement of adjacent rows of Ca in the (104) direction [137].
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(a) (b)

(c) (d)

Figure 4.11: Structure of calcite II: (4.11a) shows the octahedral coordination of the four calcium ions
per formula unit, and the carbonate groups pointing alternately in two different directions. (4.11b) shows
the polyhedron and again the alternate orientation of the carbonate groups. Unlike in Aragonite, each
calcium atom is coordinated to only one oxygen atom of a carbonate group. (4.11c) is a similar projection
as (4.11a) but shows only the Ca−O distances in each octahedron. From this figure we can define 4 types
of octahedrons: Oh1 − Oh4, not oriented in the same way. An inversion symmetry operation relates Oh1

and Oh3, and similarly between Oh2 and Oh4, as is shown in (4.11d).
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(a) (b)

(c) (d)

Figure 4.12: Structure of calcite III: (4.12a) and (4.12b) show a projection on the ab and ac plane
respectively. (4.12c) shows the unit cell of Calcite III, with 10 formula units. (4.12d) shows the three
different sites of the calcium atoms with coordination numbers of 7, 8 and 9.
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4.4.2 Calcite III and IIIb

As has been mentioned at the beginning of this Chapter, the most recent characterization of

calcite III and IIIb was conducted by Merlini et al.[17] in 2012. In that study, they characterized

Calcite III as triclinic (space group P1) in the pressure range 2.5 − 15 GPa, and was presented

as a closely related structural modification of Calcite III. Calcite III has 10 formula units

(50 atoms in the unit cell), in which the lattice parameters are found to be a = 6.281(1)Å,

b = 7.507(2)Å, c = 12.516(3)Å, α = 93.76(2)◦, β = 98.95(2)◦, γ = 106.49(2)◦, V = 555.26(20)

Å3 and a density of 2.99 g/cm3 at 2.8 GPa. In an attempt to observe more polymorphs,

Merlini et al.[17] studied in detail the Calcite II−Calcite III stability field by applying very slow

pressure ramps (0.01 GPa/min). They were able to observe in two experiments a polymorph

that was not Calcite II because it could not be indexed with a monoclinic cell, but with a

tricilinc P1 space group. They called this structure Calcite IIIb, with 4 formula units (20

atoms), a = 6.144(3)Å, b = 6.3715(14) Å, c = 6.3759(15)Å, α = 93.84(2)◦, β = 107.34(3)◦,

γ = 107.16(3)◦, V = 224.33(13) Å3 and a density of 2.96 g/cm3 at 3.1 GPa. Different pressure-

time experimental paths can stabilize one or the other polymorph (more information on Ref.

[17]). Both structures are characterized by the presence of non-coplanar CO3 groups.

In Calcite III the carbonate groups are no longer coplanar with each other as occurs in Calcite

II. The coordination number of calcium atom varies from 7, 8 and 9 (see Fig. 4.12). Therefore,

the cation sites are not equivalent.

Calcite IIIb has a similar structure as Calcite III: it also contains non coplanar carbonate

groups and two non-equivalent Ca coordination polyhedron (Fig. 4.13). Merlini et al.[17] did

not report the coordination numbers. As can be seen in Fig. (4.13d), the calcium ion has a

7+1 irregular coordination: 7 shorter Ca−O distances (2.3 - 2.6 Å) and one longer one (3.4 Å).

Merlini et al.[17] hypothesized that Calcite IIIb should have a higher energy than Calcite III

and therefore the first one is thermodynamically metastable with respect to Calcite III In this

work we will prove Merlini’s hypothesis showing through our calculations that in fact the energy

of Calcite IIIb is higher that Calcite III, at least at 0K.
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(a) (b)

(c) (d)

Figure 4.13: Structure of Calcite IIIb: (4.13b) and (4.13b) show the projection on the planes ab and
ac respectively (the same planes from which Calcite III was visualized in Figures (4.12a) and (4.12b).
(4.13c) shows the unit cell of Calcite IIIb, with 4 formula units. (4.13d) shows the the calcium atoms with
coordination numbers of 8.

4.4.3 Calcite VI

Merlini et al.[17] characterized this phase as triclinic (space group P1), with 10 atoms (2

formula units) in the unit cell and lattice parameters: a = 3.3187(12)Å, b = 4.8828(14)Å,

c = 5.5904(14)Å, α = 103.30(2)◦, β = 94.73(2)Å◦, γ = 89.21(2)◦, V = 87.86(20)Å3 at 30.4
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GPa.

Calcite VI has parallel (coplanar) CO3 groups (Figures 4.14a and 4.14b), but the structure

is no longer layered as in the lower pressure polymorphs. According to Merlini et al.[17], the

different orientation of the carbonate groups is responsible for a higher density than aragonite:

3.78 g/cm3 at a pressure of 30.4 GPa. In that study it is suggested that this higher density could

result in calcite IIIb replacing aragonite in some regions of the Earth’s intermediate mantle.

As can be seen in Fig. 4.14c, the calcium atom has a 7+2 irregular coordination: 7 shorter

Ca−O distances (2.301, 2.217, 2.302, 2.316, 2.159, 2.353, 2.324 Å) and 2 longer ones (2.499 and

2.630 Å).

4.5 High temperature polymorphs

4.5.1 Calcite IV and V

Despite many attempts to determine the structure of Calcite V unambiguously [138] a consensus

has yet to be reached. This is, in part, because Calcite V is very unstable and decomposes

into calcium oxide and carbon dioxide even under a CO2 atmosphere up to 0.4 MPa. The

characterization is also difficult because of thermal vibrations, the oxygen atoms do not sit at

rest at the specific atom positions defined by the space group [131].

In 2013 Ishizawa et al. [131] performed high-temperature X-ray diffraction experiments on

a crystal-sample sealed in a quartz glass capillary with CO2 gas under ambient pressure and

temperature. In that work they came to the conclusion that calcite I has a definite structure

(see Fig. 4.15a, with oxygen occupying atomic positions in blue and lime). Under the influence

of temperature, at 995K the carbonate group can flip between two orientations (Calcite IV,

Fig. 4.15b) and at 1240 K almost free rotation (Calcite V, Fig. 4.15c).

The structure of Calcite IV belongs to R3̄c space group, in which the experimental lattice

parameters are: a = 4.9747(2)Å, c = 17.4468(8)Å, x = 0.2492(6), and V = 373.91(3)Å3 at

995K. The Ca ion is at fractional coordinates (0,0,0) and the C ion at (0,0,1
4
), just as is Calcite

I. However, it contains two different O atom sites partially occupied due to substitutional

disorder: O1 at (x,0,1
4
) and O2 at (−x,0,1

4
). The two kinds of carbonate molecules in disorder
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(a) (b)

(c)

Figure 4.14: Structure of Calcite VI: (4.14a) shows the orientation of the carbonate groups in the structure.
(4.14b) is a projection on the bc plane. (4.14c) shows the distances Ca−O and the 7+2 coordination number
of both calcium sites.

are not in the 60◦ or 180◦ rotation relationships, but related by an inversion symmetry operation

at the carbon atom.
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Figure 4.15: (a) Phase I at 787 K. (b) Phase IV at 1151 K. The carbonate groups occupy parital positions
O1 and O2. (c) Phase V at 1275 K. The carbonate ion can freely rotate. In order to obtain a similar atom
arrangement as phases I and IV, Calcite V has been drawn with aV = −aI , bV = −bI and two units cells
along the c axis. Image reproduced from Ishizawa et al. [131].

In Calcite V the Ca atom sits at (0,0,0) and the carbon atom at (0,0,1
2
). The oxygen atom

does not sit still at a specific position because the carbonate ion can freely rotate with a very

low activation energy (Fig. 4.15c). The experimental parameters given were: a = 4.9699(8)Å,

c = 8.9167(18)Å, x = 0.2370(14) and V = 190.73(7)Å3 at 1254 K.



Chapter 5

Benchmarking accurate thresholds and

description of higher symmetry

structures found

All calculations are performed with the CRYSTAL17 program [63], which works within peri-

odic boundary conditions and with localized Gaussian-type function basis sets (BSs). Several

computational parameters need to be tight enough to ensure accurate calculations. The first

of these considerations is the basis set. Initially, the basis set used was the one labelled as BSA

[139], which includes a triple-zeta valence with polarization quality for the calcium and oxygen

atoms and double-zeta valence with polarization for the carbon atom.

In addition to the Basis set, there are several computational parameters that have to be taken

into account as well:

1. Integrals calculated in reciprocal space require an integration over the possible values of

k in the First Brillouin Zone, e.g. a given integral ḡ would be defined as:

ḡ =
Vcell

8π3

∫

BZ

g(k)dk (5.1)

The Pack and Monkhorst method [140] is used in CRYSTAL to define the sampling of

k points. A shrinking factor s specifies how many equidistant k vectors must be taken

along each direction of b1, b2, and b3 inside one reciprocal lattice unit cell so that the

173
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total number of points in the grid, ns, is equal to sn, with n denoting the order of peri-

odicity (n = 3 for three dimensional crystals). Because of the symmetry operators, the

integrals in reciprocal space do not need to be evaluated using the entire BZ. Instead,

they can just be evaluated in a reduced portion of the zone and then be extended without

approximation to fill the entire BZ using symmetry. This reduced region is called the

Irreducible Brillouin Zone (IBZ).

A Monkhorst-Pack mesh of 6× 6× 6 was initially used, which corresponds to the SHRINK

6 option in CRYSTAL, and 32 k-points in the Irreducible part of the Brillouin Zone (IBZ)

for calcite I.

2. The DFT exchange-correlation contribution, which is evaluated by numerical integration

over the unit cell volume. A pruned grid with 75 radial (through Gauss-Legendre radial

quadrature) and 974 angular points (Lebedev two- dimensional angular point generation)

was initially used. This corresponds to the defult XLGRID option, as implemented in the

CRYSTAL program.

3. The truncation of the Coulomb and exchange sums. As was explained in Section 2.2.9,

these sums are infinite for a periodic system, so they must be truncated at some point, in

order to perform the calculation effectively. The truncation of these sums is implemented

in CRYSTAL via five thresholds (T1 − T5), through the TOLINTEG keyword, set here to

the default 6, 6, 6, 6, and 12 respectively. Each threshold Ti is controlling a specific

integral, as was thoroughly explained in Section 2.2.9. For the sake of simplicity, since

T1 = T2 = T3 = T4, we will refer the TOLINTEG settings with two numbers separated by a

dash, e.g. 6-12.

These last two thresholds used correspond to the default ones in the CRYSTAL code. Addi-

tionally, the energy difference between two optimization steps is controlled through the TOLDEE

keyword. This was set to 10−8 for the geometry optimization.

Working on this basis, we started by performing geometry optimisations of calcite I, III, IIIb,

and VI. Since there are several models available for vaterite, the optimization of this structure

was not considered in the first place. Kamhi’s structure of vaterite is the experimental inter-

pretation most accepted nowdays, however it presents partial occupation, so that it cannot be
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studied by conventional DFT geometry optimisation approaches. Calcite II becomes calcite I

for conditions corresponding to a fully relaxed geometry optimization (T = 0 K and P = 0

GPa), and this phase transition will be thoroughly explained in Chapter 7. The high temper-

ature polymorphs Calcite IV and V present partial occupation of the oxygen atoms as well

(Section 4.5).

After the geometry optimization was conducted, the next step consisted in performing volume

constraint optimisations of the calcite I, IIIb and VI polymorphs at different degrees of com-

pression and expansion, as implemented in the CRYSTAL program within the EOS (equation of

state) routine [141]. Several interesting jumps were observed in the energy-volume curves for

calcite IIIb and VI (space group 2, or P-1), as shown in Figs. 5.1a and 5.2a. A search of the

symmetry was performed using the FINDSYM program over each of these volumes, in order to

verify whether a change of symmetry was occurring in the proximity of those jumps. For the

structures highlighted with a magenta arrow in Fig 5.1a (calcite IIIb) and 5.2a (calcite VI), a

higher symmetry structure was found (space group of 13, or P2/c). A full geometry optimiza-

tion of this higher symmetry structure, followed by an equation of state run yields the green

curves shown in Figs. 5.1b and 5.2b. Similarly, calcite VI presented three expanded volumes

(shown with three magenta arrows in Fig. 5.1a), for which a further symmetry search yields

space group 13 instead of space group 2. Both structures space group 13 obtained from calcite

IIIb and VI have the same energy and neighbour analysis, thus, they are the same structure.

This jump observed in the volume has to be reflected in a change in the structure. Hence, a

highly detailed analysis of the distances was performed. The Ca-O distances were found to be

severely affected by this jump. As an example, we can focus on the distance labelled as Ca1-O8

(Fig. 5.3a)

In the volume range from 62 to 67 Å3, two types of Ca1-O8 distances are observed: a short

one (2.6 Å) and a larger one (4.1 Å, see Fig. 5.3b). On the contrary, only one type of

distance is observed (3.5 Å) at volumes higher than 67.5 Å3. The higher space group found is

in agreement with two different distances becoming equivalent. A visualization of this higher

symmetry structure is shown in Fig. 5.4.

In order to verify whether these phase transitions in calcite IIIb and VI were indeed physical,

a richer basis set was used: triple zeta in all three atoms of calcium, carbon and oxygen, i.e.

the pob-TVPZ, a type of TZ basis sets developed by Peintinger, Oliveira, and Bredow [142],
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Figure 5.1: Energy-volume curves for calcite IIIb (space group 2). By analyzing the symmetry of each
volume with the FINDSYM program, a symmetry of P2/c (space group 13) is observed for the last two
points highlighted with magenta arrows. Fig. 5.1b: Removing these last 2 points for calcite IIIb, and
showing also S.G. 13.
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Figure 5.2: Fig. 5.2a: Energy-volume curves for calcite VI (space group 2). By analyzing the symmetry
of each structure with the FINDSYM program, a symmetry of P2/c (space group 13) is observed for the
last 3 points highlighted with magenta arrows. Fig. 5.2b: Removing the last 3 points for calcite VI, and
showing also S.G. 13.

specially optimized for periodic quantum-chemical solid-state calculations with the crystalline-

orbital program CRYSTAL. By maintaining the rest of the thresholds constant, a difference in

energy of 0.07 Ha was obtained, between BSA and pob-TVPZ for calcite I. (Table 5.1).

In other words, just by increasing the richness of the basis set, a lower energy was obtained, in

agreement with the variational theorem.
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Figure 5.3: 5.3a: Distance Ca1-O8 as a function of volume for calcite IIIb, in the reference 000 cell and
the nearest 00-1 cell. From 62 to 67 Å3, two types of calcium-oxygen distances are observed: 2.6 and
4.1 Å. From 67.5 Å3 onwards, the Ca1-O8 distance in both cells become equivalent. 5.3b: Schematic
representation of both scenarios.
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Figure 5.4: Space group 13 (P2/c): (5.4a) shows the orientation of the carbonate groups in the structure.
(5.4b) shows the packaging of octahedras

Within this basis set, we decided to tighten each of those computational parameters, one at at

a time:

1. Firstly, several TOLINTEG parameters were studied for the Coulomb and exchange sums,

i.e. 6-12, 7-14, 8-16, 9-18, 10-20, 11-21. All these tests were produced keeping constant

the rest of the default computational parameters, i.e. SHRINK 6 6 and XLGRID. As can be

displayed in Fig. 5.5a, convergence is reached at 8-16, which yields the same energy as



178Chapter 5. Benchmarking accurate thresholds and description of higher symmetry structures found

Energy (Ha/F.U.) ∆ Energy
BSA, XLGRID, SHRINK 6 6, TOLINTEG 6-12 -941.510819247000 0.036 Ha/F.U.

95.29 KJ/molpob, XLGRID, SHRINK 6 6, TOLINTEG 6-12 -941.547122134500

Table 5.1: A difference in energy of 0.036 Ha/F.U. or 95.29 KJ/mol is observed for calcite I between
two different basis sets: BSA (triple-zeta valence with polarization quality for the calcium and oxygen
atoms and double-zeta valence with polarization for the carbon atom) and pob-TVPZ (triple zeta in all
three atoms of calcium, carbon and oxygen). All computational thresholds are maintained constant for this
comparison.

the computationally expensive 10-20.

2. Secondly, the SHRINK parameter was tested at 2, 4, 6, 8 and 10. As can be seen in Fig.

5.5b, convergence is reached at SHRINK 6.

3. Finally, the DFT grid can be assessed through the error on the numerically integrated

density. Since calcite I contains 100 electrons, we find that the default XLGRID setup

yields an error on the numerically integrated density on the order of 3.25 · 10−4|e| out

of a total of 100|e|. On the contrary, a finer DFT grid such as XXLGRID, i.e. 99 radial

(Gauss-Legendre radial quadrature) and 1454 angular points (two-dimensional angular

points generation), yileds an error of 1.42 · 10−4|e| (Table 5.2).
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Figure 5.5: Variation of the energy with the TOLINTEG and (Fig. 5.5a) SHRINK (Fig. 5.5a) thresholds.

As a result of this analysis, we decided to use a TOLINTEG 8-18, SHRINK 6 6 and the XXLGRID

parameters.

Under this scheme, no change of symmetry was observed at all compressed and expanded

volumes for calcite IIIb and VI. The realisation of this fact allowed us to confirm the urgent
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Numerically integrated density,
@pob-TVPZ, TOLINTEG 6-12, SHRINK 6 6

(|e|)
∆

(|e|)
XLGRID 100.0003259339 3.25 · 10−4

XXLGRID 99.9998579240 1.42 · 10−4

Table 5.2: Calcite I numerically integrated density (in units of the charge of one electron). There are
100 electrons in the unit cell of calcite I, thus the exact value is 100|e|. Using a finer grid (XXLGRID), the
difference in the integrated density with respect to the exact value is 1.42 · 10−4|e|.

need to tighten these computational parameters. However, we must highlight that, even though

the symmetry is conserved along all the volumes explored, there are some jumps still remaining,

as shown in Figs. 5.6a and 5.6b. These might correspond to pathways to phase transitions to

other polymorphs. A frequency calculation at Γ was performed al all of these volumes of calcite

IIIb and calcite VI shown in Fig. 5.6, and all frequencies were positive.
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Figure 5.6: Energy-volume curves for calcite IIIb and calcite VI using the pob-TVPZ basis set, and the
tighter computational parameters described in the text. For all these volumes, a FINDSYM analysis yields
a consistent P-1 space group, despite the fact that some jumps are also being observed. Both calcite IIIb
and VI volumes present positive frequencies at the Γ point.
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Electronic structure of Calcite I

6.1 Electronic and charge distribution

When studying the electronic structure of a material, several questions arise, e.g. how are

the electrons distributed in the solid, or how does the charge density look like. One way of

addressing these questions is by studying the partial charges on atoms. Several methods have

been developed for the determination of partial charges on atoms; these can be classified into

methods based on the population analysis of wavefunctions (Mulliken [143, 144, 145, 146],

Lowdin [147] or natural polulation analyses [148, 149, 150]), or those based on partitioning the

electron density distribution, such as the Bader’s atoms-in-molecules (AIM) technique [151,

152, 153]. None of the above methods give an accurate atomic charge, but nevertheless these

are valid methods that allow us to have a general idea on the charge distribution.

A Mulliken analysis has been performed in the equilibrium volume of calcite I. This method

provides a charge on the calcium atom of 18.220 times the charge of one electron, which means

that the calcium atom is charged as +1.78 in the calcite I crystal (Table 6.1). Similarly, the

Mulliken analysis predicts a charge of -8.851 and -5.227 for the oxygen and carbon atoms

respectively. According to this, the carbonate group (CO2−
3 ) would have a charge of -1.78,

which compensates exactly the +1.78 in the calcium ion. The carbonate group in gas phase

presents a charge of -2 delocalized over four atoms via three resonant forms (see Fig. 6.1). On

the contrary, in a solid, this situation changes, because there is no longer an isolated carbonate

group; instead, each oxygen atom is bonded to two calcium atoms (as described in Section 4.1),

180
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so that the charge must decrease. According to the Mulliken analysis, this charge is decreased

from -2 to -1.78.

Charge on each ion
qCa atom -18.220

Ca1.78+

ZCa +20
qO atom -8.851

[CO3]1.78−ZO +8
qC atom -5.227
ZC +6

Table 6.1: The result of the Mulliken Analysis of Calcite I shows that the calcium ion in the solid is
charged positively with 1.78 times the charge of the electron and the carbonate group is charged negatively
with 1.78 times the charge of the electron.

Figure 6.1: Three resonants forms of the carbonate group in gas phase. The charge of -2 is delocalized
in the four atoms.

A more qualitatively analysis of the electronic density in the crystal can be obtained by choosing

a plane of intersection, e.g. the 110 plane (Fig. 6.2a), and analyzing the electron density map

projected on this plane (Fig. 6.2b). An almost spherical electron density can be identified for

the calcium atom, as opposed to an elongated shape for the carbonate group due to this 110

plane is cutting the triangular shape of this group. Fig. 6.2c shows the 3D isosurface, and Fig.

6.2d a 3D orthoslice of the electron density parallel to the c axis, in which a maximum electron

density is identified in the surroundings of the atoms (warm colors) as opposed to neighbour

regions where the electronic density decreases (colder colors).

6.2 Electronic band structure and density of states

The purpose of this section is to show the electronic band structure of the calcite I crystal.

We would like to show the valence and conduction bands, as well as the band gap obtained

with different levels of theory. For the basis set chosen, i.e. pob-TVPZ for calcium, oxygen

and carbon atoms, there are a total number of 190 atomic orbitals in the calcite I primitive

cell (10 atoms / cell). Since there are a total number of 100 electrons (Table 6.2), and one

band is occupied by 2 electrons, there will be 50 bands occupied. Thus, the last valence band
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Figure 6.2: Fig. 6.2a shows the 110 plane, and 6.2b shows the electron density map projected on this
plane. 6.2c shows the 3D isosurface. 6.2d shows a 3D orthoslice of the electron density parallel to the c
axis.

will correspond to the 50th band, and the 51th band will belong to the conduction band (Fig.

6.3a).

The band gap will be then be given by the energy difference between the 50th and 51 bands.

Total number
of e−/atom

Number of atoms
in the primitive cell

Total number of e−

Ca 20 2 40
C 6 2 12
O 8 6 48

Total: 100 e−

Table 6.2: Number of electrons per atom and total number of electrons in the primitive cell. There is a
total of 100 electrons for calcite I.

The calculated and experimental band gaps for calcite I are reported in Table 6.3. Reflection

electron energy-loss spectroscopy (REELS) experiments reveal a value of 0.2205± 0.01 Hartree

for the band gap [154]. Our theoretical calculations show that GGA type of functional slightly

underestimates this band gap. On the contrary, the hybrid functional clearly overestimates it.

The value of the band gap is independent on the inclusion of dispersion. Finally, the LDA

approximation yields a significantly lower value, as it is well known for this level of theory to

give underestimated band gaps [155]. In any case, this material is undoubtedly an insulator.

Each set of bands has been grouped and labelled as “Peaks” in Fig. 6.3a. Each of these set of

bands are displayed in a density of states plot (Fig. 6.3b), where the contribution of each atom

is shown in green, black, red for calcium, carbon and oxygen respectively. The total density

of states as a sum of the individual contributions is shown in blue. The contribution of each
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atom to each peak is something that cannot be easily observed in this plot. A zoomed version

of each peak is shown in Fig. 6.4. First peak has a major contribution of calcium atom, while

third, fifth and sixth contain a major contribution of oxygen atom.

Level of theory Band Gap (eV) Band Gap (Ha)
PBE and PBE-D3 5.2855 0.1942
B3LYP and B3LYP-D3 7.5217 0.2764
LDA 4.9238 0.1809
Experimental [154] 6.0 ± 0.35 0.2205 ± 0.01

Table 6.3: Band gaps obtained for calcite I, for PBE and B3LYP (with and without dispersion) and LDA
levels of theory, well as the experimental value.
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Figure 6.3: Fig. 6.3a: Electronic band structure for Calcite I. In the y axis, the difference in energy
between the absolute value of energy of each band and the energy of the Fermi level. The selected path of
K points chosen contains the higher symmetry K points from the First Brillouin Zone shown in Fig. 4.5.
The conduction band starts at band 51. The GAP energy, defined as the energy difference between the
Fermi energy and the minimum value reached by band 51, is is found to be 0.1942 Hartree for the PBE-D3
level of theory. In the graph it has been identified a set of bands: Peak 1−Peak 2, which correspond to
the homologous peaks shown in the density of states (Fig. 6.3b).
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Figure 6.4: Density of states of calcite I, in which each set of peaks 1 - 7 shown in Fig. 6.3b is magnified.



Chapter 7

Calcite I - calcite II phase transition

7.1 Literature review on the CI-CII phase transition

The calcite I - calcite II transformation is an example of a soft phonon mode phase transition.

Pioneer works on the understanding of soft phonon modes mechanisms were mainly devoted

to perovskites (e.g. BaTiO3 and SrTiO3) where the high symmetry phase is cubic and the low

symmetry is tetragonal (e.g. the well known SrTiO3 transition at 104 K and P = 0 [156]). The

calcite I - calcite II phase transition, even though mechanistically simple (a rotation and a small

displacement), it however involves a noncubic, more complex system (the higher symmetry

is trigonal and the lower symmetry is monoclinic). In this respect, first principles lattice

dynamical simulations of this phase transition are needed. Most studies focused on the sole

effect of pressure on the phase transition, while few of them explicitly explored the combined

effect of pressure and high temperature. At room temperature, when applying pressure, a first

order phase transition is observed, from calcite I (trigonal, R3c) to calcite II (monoclinic, P21c),

at about 1.5 GPa [113, 119, 12, 157, 136, 158, 17, 114, 159]. Volumetric and compressibility

experiments at room temperature were performed by Vaidya et al. [160] and Singh et al.

[161], where a polynomial V (P )/V0 relation was addressed for both polymorphs. Synchrotron

X-ray diffraction experiments conducted by Suito et al. [12] in 2001 and Merlini et al. [17]

in 2012 also studied the effect of pressure at ambient temperature, as shown in Fig. 7.1.

On the contrary, partially contradicting accounts have been reported as regards the explicit

characterization of the corresponding phase boundary as a function of both temperature and

186
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pressure. The temperature - pressure phase boundary was first investigated using volumetric

measurements by Bridgman in 1938 [113], up to 473 K and 2.8 GPa. A slightly negative slope

of the temperature - pressure phase boundary was reported (Fig. 7.1). By studying the velocity

of compressional waves of ultrasonic frequencies up to 453 K and 1.5 GPa, Wang et al. [158]

also reported in 1968 a slightly negative slope, almost parallel to the one reported by Bridgman

(Fig. 7.1). Raman spectroscopic techniques were performed by Fong et al. [162] and Hess et al.

[119]. In particular, the latter conducted experiments up to 4 GPa and 623 K, and described

a positive slope for the calcite I - calcite II phase transition. Suito et al. [12] supported the

occurrence of a negative slope by a thermodynamic analysis based on the Clapeyron equation,

assuming a negative change in volume and a positive change in entropy upon transition (we

will further discuss this point in Section 7.7.) Most of the above mentioned results from the

literature are summarized in Fig. 7.1.

A second order phase transition at higher temperatures has been suggested in several studies

([157, 136, 163, 159].) This will be covered thoroughly in Section 7.13.1, in which our findings

regarding a change in the order of the transition will be presented.

Clearly, some aspects of the calcite I to calcite II phase boundary are still to be fully under-

stood. In particular, the sign of the slope of the phase boundary as a function of temperature

is debated. Experimental measurements with the associated error bars (also shown on Fig.

7.1) might not allow for a definitive conclusion. Several molecular dynamics simulations using

empirical interatomic potentials overestimate the transition pressure, i.e., 3.2 GPa [164] or 8.3

GPa [165]. Thus, theoretical first-principles lattice-dynamical simulations could help to clarify

and shed new light on this respect, as they allow for an atomistic description and understanding

of energetic, structural, mechanical and thermodynamic aspects of phase transitions. Addition-

ally, atomistic simulations are needed to address a possible change in the order of the transition

at higher temperatures. While the only such theoretical study previously reported solely ad-

dressed the description of the transition pressure at zero kelvin (Ukita et al. [166]), an explicit

investigation of the combined effect of temperature and pressure on the phase boundary is still

to be examined.
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Figure 7.1: Temperature - pressure experimental data for calcite I (triangles), calcite II (circles) obtained
by Merlini et al. and Suito et al., together with the calcite I - calcite II phase boundary represented with
diamonds (Wang et al., Hess et al.) and by a line (Bridgman) with the experimental error bars associated.

7.2 The theoretical approach

In order to successfully compute the phase boundary of this phase transition as a function of

temperature and pressure, we need to take into account the combined and simultaneous effect

of these two thermodynamic variables in our simulations.

The sole effect of pressure can be easily taken into account if the structure is fully relaxed

through a volume constraint geometry optimization process. If this process is repeated over a

series of equidistant volumes ranging from compression to expansion [141], a energy-volume or

pressure-volume relation equation of state is obtained, which describes the behaviour of a solid

under compression and expansion in the athermal limit. On the contrary, the inclusion of tem-

perature is not so straightforward to implement. As has been explained in the Methodology

Chapter (Chapter 3), different approaches can be considered. The Quasi-harmonic approxi-

mation was the method of choice most suitable for our pressure-temperature phase boundary

purpose, due to the reasons explained in that chapter.

In this chapter, we will show the results obtained by performing DFT lattice dynamical sim-

ulations. These will provide a thermodynamic insight of the phase boundary, in which dif-

ferent functionals from different families have been used: generalized-gradient approximation

(Perdew-Burke-Ernzerhof, PBE) and hybrid (Becke-three parameters-Lee-Yang-Parr, B3LYP).
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Furthermore, the inclusion of weak dispersion interactions will also be considered in terms of

the Grimme’s D3 correction. All simulations are performed using all-electron basis sets instead

of pseudo-potentials, as it has been recently shown to be of particular relevance since core elec-

trons can participate in the chemical bond when materials are under high pressure conditions

[167].

7.3 Mechanism of the phase transition in the athermal

limit

Calcite I cell is trigonal, space group 167 (R3c), with two formula units per cell, while calcite II

is monoclinic, s.g. 14 (P21c), with four formula units per cell. The phase transition mechanism

is driven by the softening of the phonon mode located at the F k-point of the first Brillouin zone

[114, 136]. Because of the symmetry of the trigonal crystal, F has several symmetry equivalent

k-points in the first Brillouin zone: [±1
2
,±1

2
, 0], [±1

2
, 0,±1

2
] or [0,±1

2
,±1

2
] (see the representation

of the First Brillouin Zone for the trigonal crystal shown in Fig. 4.5). Hatch and Merril [136]

explained this phase transition in terms of the Landau theory of phase transitions. In that

study, the transformation matrix between the trigonal lattice of calcite I to the monoclinic

lattice of calcite II has been rationalized to be:




1 0 0

0 −1 1

1 −1 −1


 (7.1)

This supercell will be labelled as “Landau supercell” from now on throughout this thesis.

We started by performing full structural relaxations of both calcite I and calcite II. The full

optimization gives the equilibrium volume in the athermal limit, Veq (no zero point energy effects

are considered at this point). An unconstrained geometry optimization of calcite II yields a

configuration that is energetically and structurally identical to calcite I because the optimization

process is performed at zero pressure and zero temperature, and in those conditions calcite I

is the most stable phase. Secondly, we performed volume constraint geometry optimisations of

the calcite I structure at different degrees of compression and expansion, as implemented in the
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CRYSTAL17 program [141]. The corresponding energy-volume curve is reported in Figure 7.2

for the PBE-D3 level of theory. At that point, in order to check whether or not calcite I was

mechanically and energetically stable at different compressed and expanded configurations, we

computed harmonic phonons at each volume by sampling the phonon dispersion at both the Γ

and F k -points.
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Volume / F.U.
(Å3)

%
compression

k-point
Imaginary
Frequency

S.G. found
(0.1. Tol)

54.6958 15.04%
Gamma -99.0651 161

[0, 0.5, 0.5] -87.0462 14

55.4201 13.54%
Gamma -88.6188 161

[0, 0.5, 0.5] -81.3470 14

56.1833 11.99%
Gamma -73.8666 161

[0, 0.5, 0.5] -74.4209 14

56.9484 10.49%
Gamma -60.6482 161

[0, 0.5, 0.5] -67.6441 14

57.7162 9.02%
Gamma -40.8219 161

[0, 0.5, 0.5] -59.9609 14
58.4872 7.58% [0, 0.5, 0.5] -52.6922 14
59.2756 6.15% [0, 0.5, 0.5] -43.6047 14
60.0669 4.75% [0, 0.5, 0.5] -32.6514 14
60.8627 3.38% [0, 0.5, 0.5] -16.9922 14

Table 7.1

Fig. 7.2 shows the electronic energy as a function of volume for calcite I, calcite II and the space group 161
found. Calcite I volumes that present imaginary frequencies are shown with empty red triangles. Stable
calcite I volumes are represented with filled red triangles. All data is fitted to a cubic polynomial and PBE-
D3 level of theory. Table 7.1 summarizes the imaginary frequencies found in all the explored constrained
volumes of calcite I for the PBE-D3 level of theory. The space group found is a result of a symmetry search
(imposing a low tolerance) over the broken symmetry structure found as a consequence of the distortion of
the atomic positions along the phonon eigenvector. Space groups 14 and 161 have no imaginary frequencies
at the Γ point

Harmonic phonon frequencies at k -points different from Γ are computed by diagonalizing the

dynamical matrix [168, 169], and building a supercell (the one described in eq. 7.1), following

a direct-space approach [80, 170, 171, 172].

For all of the expanded configurations, all the frequencies are found to be positive, which is also

the case for the equilibrium volume and for all compressions below 3.4% for the PBE-D3 level

of theory (Table 7.1). The volumes with positive frequencies are shown with filled red triangles

(calcite I). On the contrary, volumes with imaginary frequencies are shown with empty red

triangles. For all compressions greater or equal than 3.4%, an imaginary frequency appears

at the F k -point in the phonon dispersion (-16.99 cm−1 for 3.4% compression, becomes -87.05

cm−1 for 15.04% compression for PBE-D3 level of theory, see Table 7.1). Additionally, for

compressions greater than 9%, an extra imaginary frequency appears at the Γ point.
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Both the normal mode at the F k -point and the one at Γ correspond to a rotation of the

carbonate groups and to a small displacement of calcium atoms. The eigenvectors of both

phonon modes are shown on Fig. 7.3c. There is a clear difference in the relative displacements:

in the phonon mode at the F k -point, calcium atoms and carbonate groups in different planes

move in opposite directions, while in the phonon mode at Γ they move in the same direction.

An animation for both eigenvectors can be found in Ref. [173]. The normal mode at the F

k -point has already been identified through DFT lattice dynamical calculations by Ukita et al.

[166]. On the contrary, the normal mode at Γ point has not been reported, to our knowledge.
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Figure 7.3: (a): Energy-volume data for calcite I, calcite II and space group 161. (b): Energy as a function
of the displacement for the soft phonon mode that leads to space group 14 (calcite II). (c): Eigenvectors
for the distortion that leads to space group 14 and 161. An animation of both eigenvectors represented in
(c) can be found in Ref. [173]

We have performed energy scans along this normal coordinate at all the volumes where we

observed the imaginary frequency. The corresponding results are shown on Fig. 7.3b for the

eigenvector at the F k -point. The same scan is also performed for the equilibrium volume and

for a couple of compressed volumes (2% and 0.92% compression), where that frequency was

still positive. We can see that the curves referring to volumes where the frequency is positive

show a minimum of the energy at zero normal displacement along the normal mode. On the

contrary, for the most compressed volumes, two new broken symmetry minima appear, whose
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depth increases with compression. These two minima are equivalent to each other, arise from a

positive and negative normal mode displacement, and correspond to the distortion that yields

to the calcite II structure. The space group of this broken symmetry structure at the minimum

has been deduced with the FINDSYM program [174]. When running this program, a threshold

corresponding to the accuracy to which dimensions of the unit cell and positions of atoms are

known has to be defined. Different space groups can be obtained depending on this parameter:

If the threshold is very tight (10−6), almost always the less symmetry space group is obtained,

i.e. P1 (space group 1), as shown in Table 7.2. If the threshold is less tight (10−2), space

group 7 is obtained. Finally, if the threshold is 10−1, the desired space group 14 is obtained. A

Tolerance
(Å)

S.G. found

1 · 10−6 P1 (1)
1 · 10−5 P1 (1)
1 · 10−4 P1 (1)
1 · 10−3 P1 (1)
1 · 10−2 Pc (7)
1 · 10−1 P21/c (14)

Table 7.2: Different space groups obtained when analyzing the symmetry of the structure at the bottom
of the curve (Fig. 7.3b) of the most compressed calcite I volume (54.7Å3). The column “Tolerance” refers
to a FINDSYM threshold in Å on the lattice parameters and atomic coordinates. Both the symbol and the
space group number corresponding to that symbol in parentheses are shown on the second column.

further constant volume geometry optimization is performed using as an input the coordinates

and lattice parameters printed on the CIF file generated with FINDSYM for a tolerance of

1 ·10−1. This process is repeated at at each volume, so that the calcite II curve is obtained (see

green circles in Fig. 7.3a). Similar energy scans were performed for the imaginary frequency

at Γ point. In the same way, a FINDSYM analysis of the broken symmetry structure produces

the structure labelled as space group 161. A further constant volume geometry optimization

of this structure under this space group produces the yellow triangles in Fig. 7.3a. As can be

seen in that figure, space group 161 is less stable than calcite II, but slightly more stable than

calcite I at the highest pressure studied.

The structural changes that lead to calcite II have been described by an angle θ and a displace-

ment ∆ and are graphically introduced in Fig. 7.4. This provides the natural way of breaking

symmetry and induce the correct structural changes to transform from calcite I to calcite II. In

order to establish a link between the different volumes at which the calculations were performed
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Figure 7.4: Calcite I in the Landau supercell representation (Fig. 7.4a) shows two pathways of trans-
formation via imaginary phonon modes: towards space group 161 (Fig. 7.4b) through the softening of a
phonon mode at Γ, or towards space group 14 (Fig. 7.4c) through the softening of a phonon mode at the
F k-point.

and pressure, the energy-volume data reported in Fig. 7.2a has been fitted to a third order

polynomial. The corresponding pressure at 0 K is computed as P = −∂E(V )
∂V

. Fig. 7.5b shows

the evolution of θ and ∆ as a function of pressure, as determined with the four levels of theory

considered (here, data still corresponds to 0 K). At pressures below the transition pressure,

both parameters are zero in calcite I. As soon as the transition pressure is reached, a sharp

increase is observed, increasing regularly as a function of pressure.

This increase of ∆ and θ upon compression is graphically shown on the lower panel of Fig.

7.5a, where the structure of calcite I at the volume constraint of 60.9 Å3 together with three

chosen volumes for calcite II are shown: 54.7, 56.2 and 60.9 Å3. For a volume constraint of

60.9 Å3, both calcite I and II structures are identical, which is in agreement with the fact that

both structures have the same energy (upper panel Fig. 7.5a). For a volume constraint of 54.7

Å3, both ∆ and θ reach the maximum value studied (0.97 Å and 19.5◦ respectively, for the

PBE-D3 level of theory). It can also be noted that inclusion of dispersion interactions in the
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DFT functionals produces an increase of the structural modifications in calcite II: for instance,

the values of ∆ and θ are higher in PBE-D3 and B3LYP-D3 compared to PBE and B3LYP.

Merril and Basset [114] reported an experimental 11 degree rotation of the carbonate groups

at the transition pressure of 1.5 GPa. The experimental structure provided by these authors

corresponds to a pressure of 1.8 GPa, where the angle is 13 degree and the displacement is

0.52 Å. We see that both dispersion corrected functionals, and in particular B3LYP-D3 provide

structural changes that are found to agree with these experimental values.
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Figure 7.5: Fig. 7.5a, upper panel: Energy-volume curves for calcite I, II and space group 161. The
structure of each of the calcite II volumes highlated with an arrow (54.7, 56.2 and 60.9 Å3) are shown in
Fig. 7.5a, lower panel, together with the calcite I structure at the same V = 60.9Å3. Fig. 7.5b: evolution
of θ and ∆ as a function of the athermal pressure, for the four levels of theory studied: PBE-D3, PBE,
B3LYP and B3LYP-D3.

A great amount of information can be extracted by studying this phase transition across func-

tionals. For the GGA case, without dispersion (PBE), a greater level of compression is required

(5.79%) in order to detect the imaginary phonon mode that leads to calcite II, as shown on

Table 7.3 and Fig. 7.6. As said previously, just the inclusion of dispersion (PBE-D3) reduces

the level of compression to 3.4% (Table 7.1). This is also true for hybrid functionals: 7%

compression is needed for B3LYP (Table 7.4), as opposed to just 4.5% for B3LYP-D3 (Table

7.5). As is clearly shown in Fig. 7.4, this behaviour is intrinsically related with the nature

of the calcite I to calcite II phase transition: In calcite I (Fig. 7.4a), carbonate groups are
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pointing in the same direction, and there is a greater repulsion effect due to electronic clouds

being close to each other. When calcite I transforms to calcite II (Fig. 7.4c), the rotation

of carbonate groups in opposite direction, as well as the small displacement of calcium atoms

contribute to an overall decrease of this esteric effect. The inclusion of dispersion interactions

in the functional allow to take into account long range interactions such as those that appear

when atoms are at greater distance. In calcite II there is a large number of those long range

interactions. Therefore, the inclusion of dispersion effects (PBE-D3 and B3LYP-D3) allows to

better capture these interactions on calcite II, which in turn makes the level of compression

required to observe calcite II, to be lowered with respect to modelling the transition with a

level of theory that does not account for long range interactions (PBE and B3LYP). On the

contrary, the level of compression required to observe the instability at Γ that leads to s.g. 161

is roughly the same for PBE and PBE-D3 (around 9% compression). The only explanation for

this is again the nature of the phase transition that leads to space group 161, which is slightly

different: the carbonate groups rotate in the same direction, which results in s.g. 161 containing

carbonate groups slightly rotated, but still facing directly one to each other. Because of this

slight rotation in the same direction, a direct comparison of s.g. 161 (Fig. 7.4b) and calcite I

(Fig. 7.4a), shows that the amount of repulsion effects is greater in s.g. 161. In other words,

the number of short range interactions is greater than the amount of long range. This results

in dispersion effects not having such an important effect for describing the calcite I to s.g. 161

phase transition. In summary, we have found that:

• If the soft phonon mode phase transition leads to a structure in which the amount of

long range interactions has been increased, i.e. there is an overall decrease of repulsion

effects between electronic clouds, the inclusion of dispersion will lower down the level of

compression needed in order to start detecting the imaginary frequency. This has been

found to occur in the calcite I to calcite II phase transition, where PBE and PBE-D3

require a level of compression of 5.79% and 3.4% respectively. This statement also holds

true for hybrid functionals, where B3LYP and B3LYP-D3 require levels of compression

of, respectively, 7% and 4%.

• If the soft phonon mode phase transition leads to a structure in which the amount of short

range interactions has been increased, i.e. there is an overall increase of repulsion effects

between electronic clouds, the inclusion of dispersion, and so the inclusion of long range
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interactions will not have a significant effect on the level of compression needed in order

to start detecting the imaginary frequency. This has been found to occur in the calcite

I to s.g. 161 phase transition, where both PBE and PBE-D3 levels of theory require

around 9% compression. While this last argument is found to be valid for GGA, on the

other hand, this explanation is not so valid for hybrid functionals, since an unequal level

of compression has been found for B3LYP and B3LYP-D3: the first one requires a 12%

level of compression, as opposed to 8% for the second one.
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Frequency

S.G. found
(0.1. Tol)

56.0571 13.06%
Gamma -78.3283 161

[0, 0.5, 0.5] -76.5672 14

56.8045 11.90%
Gamma -64.4728 161

[0, 0.5, 0.5] -70.0812 14

57.5820 10.70%
Gamma -45.5676 161

[0, 0.5, 0.5] -62.6908 14

58.3625 9.49%
Gamma -14.5807 167 a

[0, 0.5, 0.5] -55.5251 14
59.1467 8.27% [0, 0.5, 0.5] -46.8729 14
59.9407 7.04% [0, 0.5, 0.5] -37.3304 14
60.7459 5.79% [0, 0.5, 0.5] -23.7625 14

Table 7.3

56 58 60 62 64 66 68 70

V / F.U. (Angstrom3)

941.546

941.544

941.542

941.540

941.538

941.536

E 
/ F

.U
. (

a.
u.

)

B3LYP, pob-TZVP

Calcite I
Calcite II
s.g. 161

Figure 7.7

Volume
%

compression
k-point

Imaginary
Frequency

S.G. found
(Tol. 0.1)

55.7969 13.06%
Gamma -51.5206 161

[0, 0.5, 0.5] -66.3997 14

56.5438 11.90%
Gamma -28.1521 161

[0, 0.5, 0.5] -59.5391 14
57.3161 10.69% [0, 0.5, 0.5] -51.0784 14
58.0920 9.48% [0, 0.5, 0.5] -41.0868 14
58.8718 8.27% [0, 0.5, 0.5] -28.8782 14
59.6634 7.04% [0, 0.5, 0.5] -3.6351 14

Table 7.4

54 56 58 60 62 64 66

V / F.U. (Angstrom3)
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Figure 7.8

Volume / F.U.
(Å3)

%
compression

k-point
Imaginary
Frequency

S.G. found
(Tol. 0.1)

Constant volume
optimization,

followed
by FINDSYM

analysis.
S.G. found
(Tol. 0.1)

53.4001 13.08%
Gamma -94.0810 161

[0, 0.5, 0.5] -85.3680 14

54.1105 11.93%
Gamma -84.1995 161

[0, 0.5, 0.5] -79.9728 14

54.8531 10.72%
Gamma -71.1906 7 14b

[0, 0.5, 0.5] -73.3793 7 14b

55.6016 9.50%
Gamma -55.0033 161

[0, 0.5, 0.5] -66.1821 14

56.3525 8.28%
Gamma -32.5851 161

[0, 0.5, 0.5] -58.4583 14
57.1063 7.05% [0, 0.5, 0.5] -49.6819 14

57.8734 5.80% [0, 0.5, 0.5] -40.2551 14

58.6478 4.54% [0, 0.5, 0.5] -28.3388 14

Table 7.5

(Caption next page)
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Figs. 7.2, 7.6, 7.7 and 7.8 show the electronic energy as a function of volume for calcite I, calcite II and the
space group 161 found, for the PBE-D3, PBE, B3LYP and B3LYP-D3 levels of theory respectively. Those
calcite I volumes that present imaginary frequencies are shown with empty red triangles. Calcite I volumes
that do not present imaginary frequencies are represented with filled red triangles. Calcite II is represented
with green filled circles. The space group 161 is shown in filled yellow triangles. Tables 7.1, 7.3, 7.4 and
7.5 summarize the imaginary frequencies found in all the explored constrained volumes of calcite I. All data
is fitted to a cubic polynomial. Note a in Table 7.3: the scanmode over the imaginary frequency -14.5807
cm−1 does not yield a minimum, hence, the space group of this structure remains 167 (calcite I). Note
b in Table 7.5: the scanmode around the imaginary frequencies -71.1906 and -73.3793 cm−1 yields space
group 7. A constant volume optimization of these two structures, followed by a FINDSYM analysis yields
space group 14. These two structures have the same energy. For all levels of theory, the space groups 14
and 161 found have no imaginary frequencies at the Γ point.

7.4 Automation of the process

After having introduced in detail how to isolate a structure coming from a soft-phonon mode

phase transition, the following is a summary of the automated steps that one should follow:

1. Generation of the energy-volume curve for the low pressure phase, e.g. calcite I. The EOS

routine in CRYSTAL is the feature most suitable for this purpose.

2. Perform a frequency calculation over several dispersion k-points, for each of these volumes.

The standalone SCELPHONO routine in CRYSTAL accounts for this step.

3. The series of python and bash codes available in my GitHub repository named search neg freqs

[175] will scan the frequencies of the entire set of constrained-volume-frequency outputs.

This program will output the volumes for which an imaginary frequency has been en-

countered, and the dispersion k-point at which that negative eigenvalue belongs to.

4. Distortion of the atomic coordinates along the eigenvector of that imaginary frequency.

The SCANMODE routine built-in CRYSTAL is in charge of this step.

5. Extraction of the geometry corresponding to the minimum energy displacement (the

minimum on the curves presented in Fig. 7.3b) The SCANMODE routine saves this geometry

is in a .gui file format.

6. A FINDSYM analysis over this .gui file is conducted, in order to determine the space

group of this structure. As shown on Table 7.2, a not very tight tolerance has to be set

in order to determine the space group we are looking for, e.g. space group 14 (calcite II).
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7. The FINDSYM program writes the relevant information in a .cif file. In order to

automate this process for all the volumes, the program CIF2CELL [176] has been used

to generate valid CRYSTAL input files for the next step.

8. A constant volume geometry optimization over this structure by imposing the space group

found is required. This is best computed by the CVOLOPT routine. The stability of this

structure is checked by computing the frequencies at the Γ point at least. The frequency

calculation at finite k-points of the broken symmetry structure can also be a matter of

study, and will be part of a thorough discussion in the next chapter.

It is possible to automate the series of tasks 1-8 in the high performance computing facilities

by using the series of python and bash codes available in my EOS 2 phonons [177] GitHub

repository.

7.5 Influence of finite temperature

Up to now, all the plots presented correspond to the athermal limit, where the starting point

is the energy-volume curve, E(V ). A volume range has been identified, for which imaginary

frequencies are found in calcite I. We will denote these volumes as metastable volumes for

calcite I. The upper and lower bound of this volume range depends on the level of theory.

At 0 K, a small correction due to zero point motion is necessary, i.e. (E + EZP )(V ). Finally,

at finite temperature the starting point is the Helmholtz free energy-volume curve, F (V ),

according to the expressions already introduced in the Methodology chapter (Section 3.1.2).

A great amount of useful information can be extracted from the evolution of the F (V ) curves

with temperature. In particular, for the determination of the temperature-pressure phase

boundary, we will be looking for the pressure at which GI(P, T ) = GII(P, T ), as was ex-

tensively explained in Section 3.1.2. For this purpose, it is essential to work with an excellent

quality on the F (V ) fit because, for instance, the pressure at finite temperature is obtained by

a direct differentiation of this fit (Eq. 3.72). If the initial F (V ) is poor quality, the consequent

thermodynamic analysis derived from here is going to be dramatically affected.
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The evolution of E(V ), (E +EZP )(V ) and F (V ) (at two temperatures) are shown in Fig. 7.9a

and 7.9b: in the first case, calcite I metastable volumes have been included in the fit; in the

second case, these have been neglected. In the athermal limit, the quality of the fit is almost the

same independently of the inclusion of calcite I metastable volumes. On the contrary, whenever

metastable volumes are included, it can be easily seen that the F (V ) fit is very poor, specially

at higher temperatures.

Not only we are looking for a good quality of the overall fit, but also this fit has to be exceptional

specially in the regions close to the phase transition, which is the region of interest. In particular,

at 311.52K the stable calcite I volume highlighted with an arrow color magenta (Fig. 7.9a) is

very poorly described by a calcite I fit that includes metastable volumes. On the contrary, just

by removing these metastable volumes from the fit, that volume is much better described by

the model (Fig. 7.9b at 311.52 K).

From here we conclude that only stable volumes (i.e. those that do not contain soft phonon

modes) will be considered in the determination of the phase boundary. In addition, an inclusion

of those volumes in the thermodynamic analysis will be physically incorrect, since we will be

using a F (V ) expression obtained via having considered calcite I volumes out of their stability

domain.

Once we have decided not to include calcite I metastable volumes, we can now commence the

study about the relative stability of calcite I, calcite II and space group 161 with temperature,

as shown in Figs. 7.10, 7.11, 7.12 and 7.13 for the PBE-D3, PBE, B3LYP and B3LYP-D3

levels of theory respectively, in which the pressure as a function of volume is also shown. The

motivation behind this study was to address whether space group 161 would become more

stable than calcite II at higher temperatures.

There is a remarkable strange behaviour on the P (V ) curves for the 161 space group. From

these plots we conclude that space group 161 does not become more stable than calcite II for

every level of theory studied, at any temperature.
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Figure 7.9: E(V ), (E + EZP )(V ) and F (V ) (at two temperatures: 150.71 and 311.52 K), including
volumes with imaginary phonons in the fit (7.9a) and excluding them (7.9b). The same color code has
been used: red triangles for calcite I (filled: stable; empty: unstable), and filled green circles for calcite II.
The space group 161 has been omitted for the sake of clarity. In the athermal limit (both with and without
zero point motion, the inclusion of metastable volumes for calcite I does not have a significant effect on
the quality of the fit. When studying F (V ) at finite temperature (e.g. 311.52 K) the equation that fits
the stable volumes of calcite I does not describe well these volumes near the phase transition (e.g. the
volume marked with an arrow color magenta). On the other hand, if the metastable calcite I volumes are
not considered in the fit, the model produces a better description of calcite I near the phase transition (the
equivalent volume is now closer to the fitting equation). All PBE-D3 level of theory.
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(Caption from previous figures): Figs. 7.10, 7.11, 7.12 and 7.13 show the energy-volume and volume-
pressure curves at 0 K, 150.71 K and 311.52 K, for the PBE-D3, PBE, B3LYP and B3LYP-D3 levels of
theory respectively. Calcite I, II and space group 161 are shown. Neither for any level of theory nor any
temperature space group 161 becomes more stable than calcite II.

7.6 Determination of the phase boundary

In order to successfully determine the temperature-pressure phase boundary, we must recall

the following condition introduced in the Methodology Chapter (Section 3.1.2): The pressure

of transition between two phases at a finite temperature occurs when the following condition

is satisfied:

GI(P ;T ) = GII (P ;T ) (3.93 Previous Chapter)

Several approaches have been considered:

7.6.1 Intersection between Gibbs free energy surfaces, G(P, T )

If we were able to construct G(P, T ) surfaces for calcite I and II, we would find that the

intersection between both surfaces is defined by a curve (Fig. 7.14), whose projection in the

PT plane yields the temperature-pressure phase boundary.

Figure 7.14: The intersection between two surfaces (α and β) give us a curve, whose projection in the
PT plane yields the temperature-pressure phase boundary we are looking for. Figure adapted from Ref.
[178]
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In order to construct a G(P, T ) surface, we need to solve the equation introduced in the Method-

ology Chapter (Section 3.1.2):

G(P, T ) = E(P ) + EZP(P ) + E(P, T )− TS(P, T ) + P (T )V (P, T ) (3.91 Previous Chapter)

= F (P, T ) + P (T )V (P, T ) (3.92 Previous Chapter)

Because we start working on the basis of independent frequency calculations for each volume,

it is more convenient to work in terms of volume, at least as a starting point:

G(V, T ) = E(V ) + EZP(V ) + E(V, T )− TS(V, T ) + P (V, T )V (T ) (3.89 Previous Chapter)

= F (V, T ) + P (V, T )V (T ) (3.90 Previous Chapter)

All of the quantities EZP(V ) ,E(V, T ), S(V, T ) and P (V, T ) have in common that they depend

on the sum over phonon modes as a function of volume, i.e.
∑

i,k νi,k(V ):

EZP(V ) =
h

2

∑

i,k

νi,k(V ) (3.76 Previous Chapter)

E(V, T ) =
∑

i,k

hνi,k(V )

exp
(
hνi,k(V )

kBT

)
− 1

(3.77 Previous Chapter)

S(V, T ) = −kB
∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]
+

1

T
E(V, T ). (3.78 Previous Chapter)

P (V, T ) = −
(
∂F (V, T )

∂V

)

T

(3.80 Previous Chapter)

= −∂E(V )

∂V
−
∑

i,k


1

2
+

1

exp
(
hνi,k(V )

kBT

)
− 1


h ∂νi,k(V )

∂V
(3.85 Previous Chapter)

For each volume, an independent frequency calculation has been performed, over two dispersion

k-points (Γ and F, as described in Section 7.3). It is more convenient to encompass E(V ),

EZP(V ), E(V, T ) and S(V, T ) into F (V, T ), i.e F (V, T ) = E(V )+EZP(V )+E(V, T )−TS(V, T ),
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for a fixed volume. According to Eq. 3.90, the only term left is P (V, T ). Two approaches were

pursued to obtain this term: either by a direct sum over the frequencies or by differentiation

of the Helmholtz free energy.

7.6.1.1 First approach: calculation of P (V, T ) by summing directly over frequencies

According to Eq. 3.85, the P (V, T ) term can be obtained by summing directly over phonon

modes. When coding Eq. 3.85, special attention has to be paid to the νi,k(V ) term, which has

been approximated to a polynomial of degree 2:

νi,k(V ) = ci,kV
2 + di,kV + fi,k (3.86 Previous Chapter)

CRYSTAL prints the frequencies in ascending order, for each dispersion k-point considered, for

a fixed volume. For instance, the first 8 normal modes appearing at the Γ point for calcite I

for two consecutive volumes (61.7 and 62.3 Å3) are shown in ascending order in Table 7.6.

Volume / F.U. = 61.7 (Å3) Volume / F.U. = 62.3 (Å3)
Frequencies (cm−1) Frequencies (cm−1)

i=1 80.9187 87.0309
i=2 92.7025 98.2464
i=3 92.7025 98.2464
i=4 160.2778 157.7408
i=5 160.2778 157.7408
i=6 182.0797 176.5630
i=7 241.6601 236.7709
i=8 241.6601 236.7709

Table 7.6: List of the eight first frequencies at the Γ point for calcite I at two of the stable volumes
considered in Fig. 7.3a,b. These frequencies are shown in ascending order, so that the i label only
accounts for the position of the sorted list of frequencies. It may occur that the frequency labelled as i = 3
on both volumes does not correspond to the same eigenvector and thus the same vibration.

As an example, we will work with the i = 3 mode. It may occur very frequently that the mode

labelled as i = 3 for instance in one volume may not correspond to the same normal mode

and phonon vibration as the phonon labelled as i = 3 for the next volume, since the i label is

just referring to the ascending order in which the frequencies are sorted for each volume. For

example, the mode labelled as i = 3 for V = 61.7 (Å3) may correspond to the one labelled as

i = 4 for V = 62.3 (Å3). Although this issue is less probable to occur at low frequencies, it is
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much more common at higher frequencies. Therefore, one of the most important requirements

of Eq. 3.86 is to ensure that the i-th mode refers to the same eigenvector across volumes, so that

the volume dependence νi,k(V ) given by that polynomial expression actually monitors the same

i-th frequency across all volumes. The only way of checking whether or not we are referring to

the same normal mode in two consecutive volumes is by ensuring that the eigenvector for i = 3

in both volumes is the same.

Unfortunately, we did not realise about this small detail in the first place, and Eq. 3.89 was

coded by extracting each frequency and considering that for example the label i = 3 refers

to the same normal mode across all the volumes studied. Once P (V, T ) has been obtained,

then F (V, T ) can be calculated. This gives us G(V, T ), which in turn allows us to rewrite it

to G(P, T ) so that we end up with the G(P, T ) scattered surface shown in Fig. 7.15 with red

circles. The code that allows the construction of Gibbs free energy surfaces following this first

approach is available in the GitHub repository named QHA 3D [179].
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Figure 7.15: G(P, T ) scattered surface constructed either via summing directly over the frequencies (red
circles), or by the derivative of the Hemholtz free energy (blue circles). All PBE-D3 level of theory.
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7.6.1.2 Second approach: calculation of P (V, T ) as the derivative of F (V, T )

Instead of analyzing the eigenvectors between all the modes across all the volumes, a simpler

approach was pursued: since the thermal pressure is the derivative of the Helmholtz free energy

(Eq. 3.72), the former can be obtained accurately without the need to sum directly over the

frequencies. This approach is more correct than summing directly over the frequencies without

checking the eigenvectors. The scattered surface obtained by this strategy is shown in Fig. 7.15

with blue circles.

The code that allows the construction of Gibbs free energy surfaces following this second ap-

proach is available in the GitHub repository entitled QHA 3D der F.

7.6.1.3 Discussion of first and second approaches

The shape of the scattered surface obtained through both approaches 1 and 2 is presented in

Fig. 7.15 with red and blue circles respectively. Instead of behaving as a nice flat surface in

all the pressure and temperature domain, this surface has been found to be slightly folded in

the range of extreme temperatures (1000 - 2000 K) and pressures ≈2 GPa. This behaviour is

related to the fact that at these conditions calcite I is no longer stable, so that the G(P, T )

surface presents a discontinuity. Both approaches coincide at low temperatures for any given

pressure studied, but they start to differ at temperatures higher than 500 K approximately. This

certainly can be due to an incorrect thermal pressure constructed by summing the frequencies

without checking the eigenvectors. Interestingly, some noise can be appreciated in the blue

scattered plot, which might be related to the fact that in the end, the pressure comes from a

first derivative of a fitting equation to the Helmholtz free energy. First derivatives of a fitting

polynomial are quite sensitive.

7.6.2 Intersection between Gibbs free energy curves, G(P ), at a fixed

temperature

In order to pursue the approach based on the intersection between two Gibbs free energy

surfaces G(P, T ), we would have to ensure first that the surfaces produced do not present
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discontinuities, i.e. restrict the G(P, T ) surface to values of pressure and temperature for which

calcite I and II are stable.

In practice, we developed a simplified approach, based on a transformation from a three di-

mensional to a two dimensional problem. The first part of this 2D approach is the same as

the method described in Section 7.6.1: firstly, obtain F (T ) for a fixed volume, and secondly

an expression for F (V, T ) across the range of stable volumes. At this point, the experience

obtained by the approaches 1 and 2 (section 7.6.1.1 and 7.6.1.2), is enormously useful to re-

alise that the thermal pressure has to be obtained by direct differentiation of the Helmholtz

free energy. Having reached to this point, instead of analyzing the intersection between two

G(P, T ) surfaces, we will fix a temperature instead and sort out the intersection between two

G(P ) curves at that temperature. For a fixed temperature, the equation to solve now becomes

GI(P )−GII(P ) = 0, (7.2)

so that a pressure of intersection is obtained, for that temperature. A temperature-pressure

phase diagram arises quite naturally form this treatment. The code that automates this process

and produces the temperature-pressure phase diagram is available in the GitHub repository

QHA 2D [180].

The energy-volume, volume-pressure and Gibbs free energy-pressure curves for several tem-

peratures are presented in Figs. 7.16, 7.17 7.18 and 7.19 for the PBE-D3, PBE, B3LYP-D3

and B3LYP levels of theory respectively. Regarding the volume-pressure plots, there is a clear

discontinuity when passing from calcite I to calcite II, which confirms the fact that this is a

first order phase transition (as explained in the Theory Chapter).

In the athermal limit, the pressure of transition is 1.99 GPa and 2.57 GPa for the PBE-D3 and

B3LYP-D3 level of theory respectively (see Figs. 7.16 and 7.18).When neglecting zero point

motion, the pressure of transition is slightly lower: 1.87 and 2.44 GPa for the PBE-D3 and

B3LYP-D3 level of theory respectively. The pressure of transition increases progressively as a

function of temperature. Along the pressure-temperature phase boundary there is a coexistence

between both phases. The temperature - pressure phase diagram has been obtained through

this methodology using PBE and B3LYP functionals, both with and without Grimme’s D3

dispersion correction. The results are shown in Fig. 7.20.
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For every functional there is a temperature for which GI(P ) and GII(P ) are very flat and

coincide in a broad pressure range, so that the intersection occurs at very high values of pressure.

This corresponds to a value of temperature above which there is no coexistence between calcite

I and II.

For both a GGA and hybrid type of functional, a remarkable decrease in the pressure of

transition is observed when including dispersion effects: a decrease of 3.2 GPa (when passing

from B3LYP to B3LYP-D3) and 1.7 GPa (when passing from PBE to PBE-D3) is observed at

0 K (Fig 7.20). Hybrid functional with dispersion effects (B3LYP-D3) is capable of describing a

phase boundary up to 653 K, while this upper bound is increased up to 934 K when dispersion

is not included (B3LYP). On the contrary, there is no calcite I - calcite II phase boundary

above 331 K for GGA (both PBE and PBE-D3) level of theory. These four Hamiltonians

result in a slightly positive TP slope. A decrease in the pressure of transition is observed

when passing from hybrid to GGA. The minimum percentage of compression needed in order

to detect the imaginary phonon mode responsible for the transition to calcite II is of 7.04%

and 4.54% for B3LYP and B3LYP-D3 respectively (As was summarized in Tables 7.4 and 7.5).

On the contrary, PBE and PBE-D3 only require 5.79% and 3.38% respectively (Tables 7.3 and

7.1) From these results we conclude that GGA functionals require lower level of compression,

which is in agreement with the fact that GGA functionals lead to a greater overestimation of

the volume with respect to B3LYP, as has been shown elsewhere [181]. This leads to a lower

pressure of transition for PBE and PBE-D3 with respect to B3LYP and B3LYP-D3 (Fig. 7.20).
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Figure 7.16: Energetics for the PBE-D3 level of theory
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Figure 7.17: Energetics for the PBE level of theory



7.6. Determination of the phase boundary 215

-941.592

-941.590

-941.587

-941.585

E 
/ F

.U
. (

a.
u.

)

T = 0K
Calcite I
Calcite II

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 0K

941.65

941.60

941.55

941.50

H
 / 

F.
U.

 (a
.u

.)

2.44 GPa

T = 0K

-941.572

-941.570

-941.567

-941.565

(E
+
E Z

P) 
/ F

.U
. (

a.
u.

)

T = 0K

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 0K

941.65

941.60

941.55

941.50

941.45

H
 / 

F.
U.

 (a
.u

.)

2.57 GPa

T = 0K

-941.575

-941.572

-941.570

-941.567

-941.565

F 
/ F

.U
. (

a.
u.

)

T = 150.71K

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 150.71K

941.65

941.60

941.55

941.50

941.45

G
 / 

F.
U.

 (a
.u

.)

2.72 GPa

T = 150.71K

-941.577

-941.575

-941.572

-941.570

F 
/ F

.U
. (

a.
u.

)

T = 311.52K

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 311.52K

941.65

941.60

941.55

941.50

941.45

G
 / 

F.
U.

 (a
.u

.)

2.99 GPa

T = 311.52K

-941.580

-941.575

F 
/ F

.U
. (

a.
u.

)

T = 452.22K

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 452.22K

941.65

941.60

941.55

941.50

941.45

G
 / 

F.
U.

 (a
.u

.)

3.26 GPa

T = 452.22K

55 60 65
V / F.U. (Å3)

-941.595

-941.590

-941.585

F 
/ F

.U
. (

a.
u.

)

T = 673.32K

5 0 5 10
P (GPa)

55

60

65

V 
/ F

.U
. (
Å

3 )

T = 673.32K

4 1 6 11
P (GPa)

941.65

941.60

941.55

941.50

941.45

G
 / 

F.
U.

 (a
.u

.)

T = 673.32K

Figure 7.18: Energetics for the B3LYP-D3 level of theory
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Figure 7.19: Energetics for the B3LYP level of theory

Figs. 7.16, 7.17, 7.18, 7.19: PBE-D3, PBE, B3LYP-D3, and B3LYP levels of theory respectively. First
row: energy, pressure and enthalpy at 0 K, neglecting zero point motion. Second row: accounting for
zero point energy. Rest of the rows: Helmholtz free energy, pressure and Gibbs free energy at different
temperatures. For all the cases, the pressure has been obtained as the derivative of the energy (athermal
limit) or Helmholtz free energy (finite temperature). The Enthalpy and Gibbs free energy fits correspond to
cubic fits. The pressure of intersection between calcite I and II is also shown. In each case, the temperature
at which the intersection between Gibbs free energy curves is located at very high values of pressure is also
shown.
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Figure 7.20: Theoretical result for the calcite I - calcite II phase boundary, using B3LYP, B3LYP-D3, PBE
and PBE-D3. The experimental phase boundaries are also reported: Bridgman [113], Wang et al. [158]
Hess et al. [119],

7.7 Justification of the theoretical results based on the

Clapeyron equation

The slope of the temperature-pressure phase boundary of two phases in equilibrium is related

with the change of the entropy and volume upon transition according to the Clapeyron equation:

dP

dT
=

∆Strs

∆V trs

=
∆Htrs

T∆V trs

, (7.3)

where X represents a molar quantity, i.e. NAX/n F.U., and ∆Xtrs = X
II

trs − X
I

trs, for a tem-

perature and pressure along the phase boundary. Superindex I and II refer to calcite I and II

respectively. The enthalpy along the pressure-temperature phase boundary must be an enthalpy

at a finite temperature and pressure, so that it has been considered as:

H(P ;T ) = E + EZP + E(T ) + PV. (7.4)
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We have computed ∆Htrs, ∆Strs and ∆V trs as a function of temperature and pressure along

the phase boundary (Fig. 7.21). Along the pressure-temperature phase boundary, ∆Htrs,

∆Strs and ∆V trs are negative, which implies a positive slope, in agreement with our theoretical

calculations.
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Figure 7.21: Evolution of ∆V trs, ∆Strs, and ∆Htrs with temperature and pressure across the temperature-
pressure phase boundary shown in Fig. 7.20, for the B3LYP-D3 and PBE-D3 levels of theory.

7.8 Phase transition on expanded supercells

As has been explained in the previous section, by computing the phonons in terms of the

Landau supercell for calcite I, i.e. 


1 0 0

0 −1 1

1 −1 −1


 (7.5)

the thermodynamic quantities are calculated by summing frequencies over two dispersion k -

points: Γ and F. The calcite II structure arises naturally via a distortion of the atomic co-

ordinates along the imaginary phonon eigenvector at the F k -point. Once this structure was

isolated, a further constant-volume-optimisation is required. The thermodynamic quantities

for calcite II are then calculated at the Γ point. The temperature-pressure phase boundary
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presented so far has been obtained by computing the phonons in terms of the Landau supercell

for calcite I and the primitive cell of calcite II. Table 7.7 summarizes the lattice parameters for

these two cells, for a volume constraint of 56.9 Å3/formula unit. As can be seen, calcite I in

the Landau supercell and calcite II contain a, b and c lattice parameters that only differ on the

second decimal figure. Since the Landau supercell interconverts calcite I to calcite II, the lattice

parameters for calcite I within the Landau supercell match the ones of calcite II for the same

level of compression. The small difference is only due to the constant-volume-optimisations

performed throughout the process.

If we would like to have a higher sampling of phonon dispersion k -points, we would need to

increase the size of these supercells so that similar sized supercells are obtained in each case.

For Calcite I, a convenient workflow would be to work in terms of integer multiples of the

Landau supercell, e.g. n = 1, 2, 3 and 4 were the cases of study. In this way, we can end up

with double, triple or quadruple times the Landau supercell candidates, as presented on Table

7.7. Because of the monoclinic lattice of calcite II, integer multiples of the diagonal supercell:




n 0 0

0 n 0

0 0 n


 (7.6)

are perfect candidate supercells to be considered; for instance, the n = 2 diagonal calcite II

supercell yields lattice parameters almost equal to 2 times the landau supercell for calcite I

(See table 7.7). Similarly, the equivalent is observed for n = 3 and n = 4.

a b c α β γ N. of Atoms
Monkhorst-

Pack
mesh

N. of
k -points

in the IBZ

N. of
dispersion
k -points

A.O.

CI 6.01702 6.01702 6.01702 48.99139 48.99139 48.99139 10 8x8x8 65 1 190
CI + Landau sc 6.01702 4.98961 7.81670 90 103.91205 90 20 8x8x8 260 2 380
CII 6.11378 5.04374 7.65481 90 105.26647 90 20 8x8x8 170 1 380
CI + 2x Landau sc 12.03404 9.97923 15.63340 90 103.91205 90 160 4x4x4 36 16 3040
CII + 200 020 002 sc 12.22757 10.08748 15.30961 90 105.26647 90 160 4x4x4 36 8 3040
CI + 3x Landau sc 18.05106 14.96884 23.45010 90 103.91205 90 540 2x2x2 8 54 10260
CII + 300 030 003 sc 18.34135 15.13123 22.96442 90 105.26647 90 540 2x2x2 8 27 10260
CI + 4x Landau sc 24.06809 19.95845 31.26680 90 103.91205 90 1280 1x1x1 1 128 24320
CII + 400 040 004 sc 24.45514 20.17497 30.61922 90 105.26647 90 1280 1x1x1 1 64 24320

Table 7.7: Lattice parameters for the calcite I (CI) and calcite II (CII) structures, both volume-constrained
at the same volume, 56.9 Å3/formula unit. The Landau supercell (sc) is the supercell expansion matrix
(Eq. 7.5) studied for calcite I. Regarding calcite II, the primitive cell and an integer multiple of the diagonal
supercell expansion matrix (Eq 7.6) have been studied. The number of dispersion k-points for the phonon
calculation, the number of atomic orbitals (A.O.), number of atoms and the number of k-points in the
Irreducible part of the Brillouin Zone (IBZ) according to the Monkhorst-Pack scheme are also reported.
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The frequency calculation in the Landau supercell of calcite I and the primitive cell of calcite II

were both performed with a k -point Monkhorst-Pack mesh of 8x8x8. When increasing the size

of the supercell, i.e., two times the Landau supercell for calcite I and n = 2 for calcite II, this

sampling has been reduced to 4x4x4. Similarly, for three times the Landau supercell (calcite

I) and n = 3 (calcite II), both a Monkhorst-Pack mesh of 3x3x3 and 2x2x2 was tested. A

difference smaller than 10−10 Ha in the energy was observed between these two meshes. Thus,

a mesh of 2x2x2 was finally used due to its lower computationally cost. Finally, for the case

of four times the Landau supercell (calcite I) and n = 4 (calcite II), a Monkhorst-Pack mesh

of 1x1x1, i.e. 1 real k -point is enough sampling, since both cells already are very big (lattice

parameters over 20 Å).

7.9 Convergence study on calcite I

For each dispersion k -point, there are 3N frequencies, where N is the number of atoms in the

cell. At the Γ point, three of these frequencies are zero and correspond to the three translational

degrees of freedom.

Recalling the expression of the entropy:

S(V, T ) = −kB
∑

i,k

ln

[
1− exp

(−hνi,k(V )

kBT

)]
+

1

T
E(V, T ), ( 3.78 Previous Chapter)

since all thermodynamic quantities are computed as a sum over the frequencies, if this sum is

performed over a greater number of dispersion k -points, the phonon-dependent thermodynamic

quantities are expected to reach convergence.

We shall explain first the concept of cumulated entropy. CRYSTAL prints 3N frequencies at

each dispersion k -point. Say we now set an upper bound of 300 cm−1, so that we could calculate

the total value of entropy we have reached, by summing all the frequencies below this upper

bound (across all k -points). Computationally, an easy way of doing this is by extracting all the

frequencies at all k -points, sort them on ascending order, set the upper bound, and sum the

entropy at each step, until we reach that upper bound. This is what we have named cumulated

entropy. The series of bash and python scripts that perform this operation are available in my

GitHub repository named ENTROPY PDOS [182].



7.9. Convergence study on calcite I 221

The Phonon density of states (continuous line) and the cumulated entropy (dahsed line) are

plotted in Fig. 7.22, as a function of the energy for integer multiples of the Landau supercell

expansion matrix, for the equilibrium volume of calcite I. Lighter colors refer to smaller supercell

(1 times Landau supercell), and the darkest represents the biggest supercell (4 times Landau

supercell). The cumulated entropy increases quite rapidly for frequencies lower tan 400 cm−1,

while this increase is slower for frequencies above 400 cm−1. This is showing that phonon

modes below 400 cm−1 are the ones that contribute the most to the entropy. This statement

is supported by the fact that the integrated area below the PDOS is greater in the frequency

interval corresponding to 0-400 cm−1. It can also be seen that when the number of dispersion

k -points increase, the height of the PDOS peaks decrease, they become less sharp, while their

width is increased. This is a quite known behaviour of the PDOS: whenever the phonon

dispersion sampling is increased, peaks become less sharp and wider. The highest value reached

by the cumulated entropy function corresponds to the summation over the highest and last

frequency available, so that this value corresponds to the final entropy for the material. This

value is reported in Fig. 7.22, for the supercells studied. The difference in entropy between

supercells is shown in the third column: the difference in entropy between the Landau supercell

and the primitive is 6 · 10−3 mHartree/cell · K. An order of magnitude lower (6 · 10−4) occurs

between 2 times and 3 times the Landau supercell. This effect can be considered as a very fast

convergence. On the other hand, when passing from 3 times to 4 times the Landau supercell,

the difference is just 3 · 10−4 mHartree/cell · K. From this we conclude that by the time we

reach 3 times the Landau supercell, convergence has been reached.

Calcite I +

n 0 0
0 −n n
n −n −n




(Landau supercell)

Entropy (mHartree/cell · K)
at 298.15K

∆ Entropy (mHartree/cell · K)

n = 1 0.061791907577 -
n = 2 0.068127898779 |(n = 1)− (n = 2)| = 6 · 10−3

n = 3 0.068783244632 |(n = 2)− (n = 3)| = 6 · 10−4

n = 4 0.0690823344822 |(n = 3)− (n = 4)| = 3 · 10−4

Table 7.8: Entropy and entropy difference between the Landau supercells studied for the equilibrium
volume of calcite I
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Figure 7.22: PDOS and cumulated entropy for the equilibrium volume of calcite I. The supercells studied
are integer multiples of the Landau supercell.

7.10 Convergence study on calcite II

A similar convergence study can be conducted for calcite II. We will work in terms of the volume

at 56.948 Å3 / F.U. The PDOS and cumulated entropy are shown in Fig. 7.23. Interestingly,

while all frequencies are positive for the primitive cell, a total number of one, four and six

imaginary frequencies were found, respectively, for the diagonal supercells n = 2, 3 and 4, as

reported in the legend of that figure. Because of the exponential dependence of the entropy on

the phonon frequencies, a mathematical indetermination is found when plugging in negative

frequencies in Eq. 3.78. Thus, the cumulated entropy shown is already neglecting negative

frecuencies in the summation. As occured in calcite I, phonons below 400 cm−1 are the ones

that contribute most to the entropy. The difference in entropy between the supercells of study

is shown in the last column of Table 7.9. While a difference of 1.4 · 10−2 mHartree/cell· K is

observed between the primitive cell of calcite II and the n = 2 supercell, a difference of 1.7 ·10−3

mHartree/cell· K, i.e., an order of magnitude higher separates n = 3 from n = 2. There is

hardly gain in entropy when passing from n = 3 to n = 4, i.e., 1.0 · 10−3 mHartree/cell· K. As
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in calcite I, convergence is reached with the n = 3 cell as well.

0 200 400 600 800 1000 1200 1400 1600
Energy (cm 1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

PD
OS

 (s
ta

te
s/

cm
1 /c

el
l)

Calcite II, PBE-D3, pob-TVPZ, V=  56.929 Å3/ F.U.

Prim cell
200 020 002:
1 neg freq
300 030 003:
4 neg freqs
400 040 004:
6 neg freqs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

En
tro

py
 (m

Ha
rtr

ee
/(c

el
lK

))
at

 T
 =

 2
98

.1
5 

K

Figure 7.23: PDOS and cumulated entropy for the equilibrium volume of calcite II, at the volume of
56.948 Å3/F.U. The supercells studied are integer multiples of the diagonal supercell (Eq. 7.6).

Calcite II
Entropy (mHartree/cell · K)
at 298.15K

∆ Entropy

Primitive cell 0.115451771327 -

Calcite II +n 0 0

0 n 0

0 0 n


n = 2 0.129273062632 |Prim cell− (n = 2)| = 1.4 · 10−2

n = 3 0.130951392433 |(n = 2)− (n = 3)| = 1.7 · 10−3

n = 4 0.131966933294 |(n = 3)− (n = 4)| = 1.0 · 10−3

Table 7.9: Entropy and entropy difference between the diagonal supercells studied for the calcite II at the
constrained volume of 56.948 Å3/F.U.

7.11 Stability of calcite II in expanded supercells

Even though all calcite II volumes contained positive frequencies at Γ, to our surprise, imaginary

frequencies were found for the first expanded supercell studied, i.e. the n = 2 diagonal supercell.

This is something that has already been observed for calcite II at 56.929 Å3/F.U (Fig. 7.23). As

shown in Figs. 7.24, 7.25, 7.26, and 7.27, this issue is happening, respectively, across PBE-D3,
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PBE, B3LYP-D3 and B3LYP functionals.
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Figure 7.24

Volume / F.U.
(Å3)

k-point
Imaginary
Frequency

(cm−1)

54.6569 [0, 0.5, 0.5]
-21.1818
-21.1818

55.3555 [0.5, 0, 0]
-12.9294
-12.9294

56.1392 [0.5, 0, 0] -14.1722
56.9292 [0.5, 0, 0] -12.8153
57.6992 [0.5, 0, 0] -3.8663

Table 7.10

56 58 60 62 64 66 68 70

V / F.U. (Angstrom3)

941.230

941.228

941.226

941.224

941.222

E
/ 

F.
U

. 
(H

a
)

PBE, pob-TZPV
CI: 2x Landau; CII: 200 020 002

Calcite I

Calcite II

[0.5, 0, 0]
-14.1442 cm-1

[0.5, 0, 0]
-15.8527 cm-1

[0.5, 0, 0]
-9.7115 cm-1

Figure 7.25

Volume / F.U.
(Å3)

k-point
Imaginary
Frequency

(cm−1)
55.9991 [0.5, 0, 0] -14.1442
56.7941 [0.5, 0, 0] -15.8527
57.5445 [0.5, 0, 0] -9.7115

Table 7.11
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Figure 7.26

Volume / F.U.
(Å3)

k-point
Imaginary
Frequency

(cm−1)
53.3543 [0.5, 0, 0] -17.7415
54.0477 [0.5, 0, 0] -16.1867
54.8281 [0.5, 0, 0] -17.6181
55.5832 [0.5, 0, 0] -18.2968
56.3249 [0.5, 0, 0] -5.3610

Table 7.12
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V / F.U. (Angstrom3)
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E
/ 

F.
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. 
(H

a
)
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CI: 2x Landau; CII: 200 020 002

Calcite I

Calcite II

[0.5, 0, 0]
-18.6028 cm-1

[0.5, 0, 0]
-15.1808 cm-1

Figure 7.27

Volume / F.U.
(Å3)

k-point
Imaginary

Frequency(cm−1)

55.7627 [0.5, 0, 0] -18.6028
56.5103 [0.5, 0, 0] -15.1808

Table 7.13

Figs. 7.24, 7.25, 7.26, and 7.27, show the electronic energy as a function of volume for calcite I, calcite II
and the space group 2 found, for the PBE-D3, PBE, B3LYP-D3 and B3LYP levels of theory respectively.
Those calcite I volumes that present imaginary frequencies are rounded with circles. Calcite I, Calcite II,
and s.g. 2 are represented, respectively, with filled red triangles, green filled circles and filled brown circles
Tables 7.10, 7.11, 7.12 and 7.13 summarize the imaginary frequencies found in all the explored constrained
volumes of calcite I. All data is fitted to a cubic polynomial.

The -21.18 cm−1 imaginary frequency found at the most compressed volume for the PBE-

D3 level of theory was scanned. The eigenvectors along this phonon mode are shown in Fig.

7.28c. The animation for this eigenvector is displayed in Ref. [183]. Since this phonon mode

is at a finite k -point, and the SCANMODE routine in crystal only works at the Γ point,

it is necessary to perform the frequency calculation over the n = 2 diagonal supercell for

calcite II, which means that there are no longer 5 irreducible atoms, but 80. Consequently,

a frequency calculation for this case would require 80 · 3 = 240 displacements, which is quite

expensive. After this calculation has been performed, then the scan of this imaginary phonon
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mode can be conducted (Fig. 7.28b). As can be seen, the depth of the double well potential

is not as prominent as those shown in Fig. 7.3b for the soft phonon mode responsible for the

transformation from calcite I to calcite II. After performing the steps 1-8 described in Section

7.4, the space group of the structure is found to be P-1 (space group 2) (Fig. 7.29). A constant

volume optimization of this structure, gives the brown circle shown in Fig. 7.28a.

(a) (b)

Calcite II + 
200 020 002 supercell.

Distortion
towards s.g. 2

Calcite II distortion
towards s.g. 2

(c)
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Figure 7.28: (a) Electronic energy vs volume curves for calcite I and II. In addition, the space group 2
is also shown, as a consecuence of distorting the atomic coordinates of the most compressed volume of
calcite II. (b) Scanmode over the -21.18 cm−1 imaginary phonon mode encountered over the calcite II
structure at 54.66 Å3. The depth of this minimum is very low. (c) Eigenvectors for this phonon mode. An
animation for this eigenvector is shown in Ref. [183].
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b
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Calcite II
+ 200 020 002 supercell 
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Figure 7.29: Transformation from the n = 2 diagonal supercell of calcite II at the most compressed
volume (56.66 Å3) to the space group 2.
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As shown in Figs. 7.24 and 7.25, only 4 volumes for calcite II do not contain imaginary

frequencies, for both PBE-D3 and PBE respectively. Therefore, these are considered as the

stable calcite II volumes, which we will take into account for the temperature - pressure phase

boundary. On the other hand, there are only 3 calcite II stable volumes (Figs. 7.26 and 7.27).

This is not enough data for a cubic fit for both the E(V ) and F (V ) curves. The temperature

analysis of F (V ) and G(P ) has been performed considering these four calcite II stable volumes,

for the PBE-D3 and PBE levels of theory. These results are shown in Figs. 7.30 and 7.31.

We must notice that a cubic fit for only four data points is not ideal; thus, the F (V ) curves, and

consequently the first derivative which gives us the pressure, are results not to be considered

as significant. For instance, a strange shape of the V (P ) curve at 0 K for PBE-D3 has been

obtained for calcite II (Fig. 7.30). This can only be explained because we only start with four

data points in the E(V ) or F (V ) curves respectively. The pressure of transition happens not

to vary as the temperature increases, which leads to a temperature - pressure phase boundary

that is almost a straight line (light green circles in Fig. 7.32).

An anomalous behaviour in the V (P ) curves at T > 311.52 K has been observed for the PBE

level of theory as well (Fig. 7.31). Similarly, the explanation behind this is only because the

starting point, 4 volumes for calcite II, is not ideal; hence, the temperature - pressure phase

boundary obtained with this scheme in Fig. 7.33a with light green circles cannot be trusted

completely.
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Figure 7.30: Energetics for the expanded supercells in the PBE-D3 level of theory.
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Figure 7.31: Energetics for the expanded supercells in the PBE level of theory.
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Figs. 7.30, and 7.31: Results for the n = 2 supercell, for the PBE-D3 and PBE levels of theory respectively.
First row: energy, pressure and enthalpy at 0 K, neglecting zero point motion. Second row: accounting
for zero point energy. Rest of the rows: Helmholtz free energy, pressure and Gibbs free energy at different
temperatures. For all the cases, the pressure has been obtained as the derivative of the energy (athermal
limit) or Helmholtz free energy (finite temperature). The Enthalpy and Gibbs free energy fits correspond to
cubic fits. The pressure of intersection between calcite I and II is also shown. In each case, the temperature
at which the intersection between Gibbs free energy curves is located at very high values of pressure is also
shown.
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Figure 7.32: Temperature-pressure calcite I- calcite II phase diagram for the PBE-D3 level of theory, by
considering the Landau supercell for calcite I and the primitive cell for calcite II (dark green), and two times
the Landau supercell and the n = 2 diagonal supercell for calcite II (light green).
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Figure 7.33: All PBE level of theory, with calcite II using the n = 2 supercell (light green circles) or the
primitive cell (dark green circles). Fig. 7.33a shows the temperatures; For the same reason as explained
before, there is a critical temperature for which the Gibbs free energy curves coincide in a broad pressure
range. This critical temperature is 673.33 K in this case. Fig. 7.33b is showing the same plot, but without
temperatures.
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Imaginary frequencies were also detected in almost all volumes for calcite II in the n = 3

diagonal cell for calcite II, as can be seen in Fig. 7.34.
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Figure 7.34: Electronic energy - volume curves for the three times the Landau supercell for calcite I and the
n = 3 diagonal supercell for calcite II. Only one calcite II volume does not present imaginary frequencies.
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7.12 A possible explanation for imaginary frequencies

found at expanded supercells

Imaginary phonon frequencies have been found in the high-pressure simple cubic phase of

calcium [184]. In that study, by fully including anharmonic effects, imaginary phonons become

positive even at zero temperature so that the simple cubic phase becomes mechanically stable,

in agreement with experiments.

Given the simplicity and high symmetry of the simple cubic calcium, all necessary anhar-

monic coefficients were calculated ab initio up to the fourth order in displacement. Techniques

such as self-consistent harmonic approximation (SCHA) can be then applied to compute the

temperature-dependent renormalized phonon frequencies.

One possible explanation for imaginary frequencies found at finite k-points in the n = 2 and

n = 3 diagonal supercells for calcite II might be because of there is a need to account for

anharmonicity. This is subject to a further study in the future.

7.13 Linear fit and other approaches for modeling G(P )

So far, the G(P ) curves have been fitted to a cubic polynomial. The pressure of intersection

that arises from GI(P )−GII (P ) = 0 is very sensitive to the order of the polynomial to which

the curves have been fitted. This is because both G(P ) curves merge smoothly at pressures

close to the pressure of transition. This effect is shown in Fig. 9.1 for three temperatures: 0 K

(including zero point energy), 10.00 K, 90.40K and 311.52K.

For both the athermal limit and 10.00 K, a pressure of intersection of 1.99 and 1.57 GPa is

predicted for cubic and linear fits respectively (Fig. 7.35a - 7.35d). This intersection corresponds

to an interpolation within the range of data set available.

For 90.40 K, a cubic fit predicts a pressure of intersection of 2.08 GPa, and an extrapolation

in the calcite I branch is necessary to yield the intersection (Fig. 7.35e). On the contrary,

there is no need for an extrapolation within a linear fit, where the pressure of intersection is

interpolated to 1.58 GPa (Fig 7.35f).
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This effect is remarkable at 311.52 K: a cubic fit predicts a pressure of intersection of 3.25 GPa

(again, extrapolation of the calcite I branch is necessary, Fig. 7.35g). For this temperature, the

linear fit extrapolates as well, predicting a pressure of intersection of 1.58 GPa (Fig. 7.35h).

In that figure, it can be easily seen that the highest pressure available for calcite I is not very

well described by the linear fit. Consequently, a fit linear fit based on the last three volumes

for each branch was proposed. This is shown in Fig. 7.35i, where an extrapolated pressure of

intersection sits at 1.93 GPa.

Since both G(P ) curves are coincident in a wide range of pressure, the pressure of transition

can also be estimated as the mean value of pressure located between the highest pressure of

calcite I and the lowest pressure for calcite II. This range of pressures is shown with a pink

window frame in Fig 7.36 for several temperatures: athermal limit (Fig. 7.36a), 10.00 K (Fig.

7.36b), 90.40 K (Fig. 7.36c) and 311.52 K (Fig. 7.36d). The error bar in these cases is given

by the range of pressures inside this region.

The pressure - temperature phase boundary obtained by fitting to cubic, linear and linear

restricted to last three volumes is shown in Fig. 7.37:

• The approach based on a cubic fit produces the green phase boundary, already shown in

Fig. 7.20.

• The approach based on a linear fit restricted to last three points is shown in pink.

• The linear approach produces a phase boundary very close to the experiment (blue curve).

• The phase boundary originated as a consequence of the mean value of pressure located

between the highest pressure of calcite I and the lowest pressure of calcite II is shown in

orange.

From these results, we deduce that the linear approach is the closest to the experiment. The

error bar for the phase boundary obtained through this approach has been determined in the

following way. Given two linear fits, e.g. G1 = a1 + b1P and G2 = a2 + b2P , the intersection is

given by:

P =
a2 − a1

b1 − b2

(7.7)
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Figure 7.35: (Caption next page.)
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Figure 7.35: (Previous page). G(P ) curves at four different temperatures for calcite I and calcite II,
where a cubic (left panel) and linear fit (right panel) has been adopted. For 311.52 K, a linear fit to the
last volumes of calcite I and II has been studied as well.
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Figure 7.36: G(P ) curves at four different temperatures for calcite I and calcite II. The range of pressures
within a pink frame are those for which both curves are almost coincident. The mean value of pressure is
also shown in this region.

so that P is a function of 4 variables: P = P (a1, a2, b1, b2). Thus, the error on P is given by:

δP =

√(
∂P

∂a1

δa1

)2

+

(
∂P

∂a2

δa2

)2

+

(
∂P

∂b1

δb1

)2

+

(
∂P

∂b2

δb2

)2

(7.8)

where δbi is the error in the slope, and δai is the error in the intercept. On the other hand

these derivatives are:
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Figure 7.37: Temperature-pressure phase boundary obtained with the following approaches: cubic, linear,
linear restricted to last 3 volumes and the approach based on the mean value of pressure located beteween
the highest pressure of calcite I and the lowest pressure for calcite II.
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The temperature - pressure phase diagram for each level of theory is shown in Fig. 7.38. PBE-

D3 is the closest answer to the experiment, followed by B3LYP-D3, PBE and B3LYP. Clearly,

dispersion effects lower down the pressure of transition at any temperature, as was observed

with the cubic fit approach (Fig. 7.20). Unlike the cubic fit approach, the linear fit approach

is capable of describing a calcite I - calcite II phase boundary up to 1000 K and beyond.

7.13.1 Second order phase transition at higher temperatures

There are some studies in the literature that focus on the nature of the calcite I - calcite II phase

boundary at higher temperatures. The motivation behind these studies is driven by the fact
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Figure 7.38: Temperature-pressure phase boundary using a linear approach, for the PBE-D3, PBE, B3LYP-
D3 and B3LYP levels of theory. The error bar has been calculated according to Eq. 7.8.

that it has been observed that soft phonon mode phase transitions are commonly accompanied

with a multicritical point phenomena and a change in the order of the transition (i.e. BaTiO3,

at 32 kbar and room temperature [185], or a bicritical point in SrTiO3 [186]). In 1972, Kondo

et al. [157] measured the change of longitudinal ultrasonic velocity up to 973 K and 2.5 GPa.

In that study, a change of slope from negative to positive is found to occur at 573 K. Hatch

and Merril [136] have used group-theoretical techniques based on the Landau criteria of second

order phase transitions and have shown that the symmetry of the two structures is compatible

for such a calcite I - calcite II second order phase transition to occur. On the contrary, Felix and

Hatch [163] studied the transformation with renormalization-group techniques and concluded

that the transition is not second order unless additional restrictions are imposed. Barnett et

al. [159] performed Electron Paramagnetic Resonance experiments at 473 K and 1.5 GPa, and

suggest the possibility of a critical point at 473 K.

In this section, we will discuss a potential change in the order of the transition at higher

temperatures. As was explained in Section 2.6, a first order phase transition is discontinuous

in the first derivative of G(P ), i.e. V (P ). In other words, a first order phase transition can be

identified by a drop in the volume as a function of pressure. On the contrary, a second order

phase transition does not present this discontinuity on V (P ).

The evolution of V (P ) for calcite I and II at 0 K, 10 K, 90.4 K, 311.52 K, 532.63 K, 693.43 K

and 753.74 K are summarised in Fig. 7.39 for the PBE-D3 level of theory. For each temperature
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there is a pressure of transition (Ptrs), with an error bar associated (δP ), as was reported in

Fig. 7.38. The pressure of transition Ptrs at each temperature as well as the error bar δP is

shown in Fig. 7.39, respectively, with an orange dashed line and a light blue area.

Given a Ptrs for each temperature, an interpolation V (P = Ptrs) generates the volumes Vcalcite I

and Vcalcite II, illustrated in Fig. 7.39 with dashed orange lines. A clear drop in the volume is

observed for temperatures below 600 K. It is useful to quantify this drop in the volume with

the quantity ∆V , defined as:

∆V = Vcalcite I − Vcalcite II (7.13)

with an error bar associated:

δ(∆V ) =
√

(δVcalcite I)2 + (δVcalcite II)2 (7.14)

The evolution of ∆V ± δ(∆V ) with temperature is shown in Fig. 7.40 for each level of theory.

It can be noticed that this quantity ∆V decreases with temperature. The temperature at which

∆V = 0 is a critical temperature at which the phase transition changes from first to second

order. For instance, this critical temperature is Tc = 684.9 K for the PBE-D3 level of theory

(Fig. 7.40a). The lower bound of the error associated with this critical temperature has been

estimated as the temperature at which the error bar on ∆V crosses the ∆V = 0 line. For

instance, ∆V = 0 is within the lower bound of the error on ∆V at T = 532.6 K (blue arrow in

Fig. 7.40a). Thus, 532.6 K has been considered as the lower bound of the error on Tc.

Consequently, Tc = 684.9±152 K, 1430.2±214 K and 732.6±159 K for, respectively, PBE-D3,

B3LYP-D3 and PBE levels of theory (see Fig. 7.40). B3LYP does not predict a ∆V = 0 for the

range of temperatures considered, but we can estimate the lower bound of critical temperature

to be 1376.9 K (Fig. 7.40c).

The second order phase transition for each level of theory is represented along with the phase

diagram in Fig 7.41.
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Figure 7.39: Evolution of V (P ) at 10.0, 90.40, 311.52, 532.63, 693.43 and 753.74 K for the PBE-D3
level of theory. At each temperature, the pressure of transition for a linear fit apporach and the error bar
associated is shown, respectively, with orange line and a light blue shadow.
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Figure 7.40: Evolution of ∆V with temperature for PBE-D3, B3LYP-D3, B3LYP and PBE levels of theory.
The error on ∆V at each temperature has been calculated according to Eq. 7.14. The temperature at
which ∆V = 0 is the critical temperature, Tc, and corresponds to the temperature at which there is a
change in the order of the transition. The lower bound error for this Tc is given by the temperature at
which the error bar on ∆V crosses the ∆V = 0 line.
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Figure 7.41: Temperature-pressure phase boundary using a linear approach, for the PBE-D3, PBE, B3LYP-
D3 and B3LYP levels of theory. The error bar has been calculated according to Eq. 7.8. The experimental
phase boundaries are also reported: Bridgman [113], Wang et al. [158] Hess et al. [119], as well as the
critical point proposed by Barnett et al. [159] in thick dashed lines. The lower bound critical temperature
obtained for PBE-D3 and B3LYP-D3 are shown with, respectively, dashed horizontal red and blue lines.
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7.14 Common tangent approach

The last approach we tried in order to determine the pressure of transition for a given temper-

ature is based on the analysis of the slope of the common tangent between both calcite I and

II F (V ) curves.

Given two F (V ) curves for two phases, the slope of the common tangent gives the pressure of

transition at finite temperature. Since the Hemholtz free energy is:

F = E − TS, (Eq. 2.265 from Section 2.5.4)

in the athermal limit (T = 0), the curves to be analyzed are E(V ), or (E + EZP )(V ) if we

include the zero point motion.

Given two energy-volume curves like the ones shown in Fig. 7.42a (E1(V ) and E2(V ), respec-

tively for calcite I and II), the common tangent passes through both curves in points [V1, E1(V1)]

and [V2, E2(V2)].The evaluation of E1 and E2 on V1 and V2 reads like:

E1(V1) = a0 + a1V1 + a2V
2

1 + a3V
3

1 (7.15)

E2(V2) = a4 + a5V2 + a6V
2

2 + a7V
3

2 , (7.16)

where the first derivative is:

E ′1(V1) = a1 + 2a2V1 + 3a3V
2

1 (7.17)

E ′2(V2) = a5 + 2a6V2 + 3a7V
2

2 , (7.18)

It is satisfied that m, the slope of the common tangent reads like:

m =
E1(V1)− E2(V2)

V1 − V2

= E ′1(V1) = E ′2(V2). (7.19)

We can write down a system of two equations:





E1(V1)− E2(V2)

V1 − V2

− E ′1(V1) = 0

E ′1(V1)− E ′2(V2) = 0

(7.20)

(7.21)
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Figure 7.42: E(V ) curves for calcite I and II in the athermal limit (neglecting zero-point motion). The
slope of the common tangent is shown, which is an equation that passes through points [V1, E1(V1)] and
[V2, E2(V2)] Fig 7.42b is just the zoomed version of 7.42a.

The system of equations 7.20 and 7.21 contain two unknowns, V1 and V2. Once solved this

system of equations, and V1 and V2 are obtained, then m can be calculated with Eq. 7.19.

Once obtained m, the common tangent equation just reads like:

E − E1(V1) = m(V − V1)

E = E1(V1) +m(V − V1) (7.22)

The same formulation is valid at finite temperature, by replacing E with F in equations 7.15

- 7.22. An analysis of the slope of the common tangent across temperatures is shown in Fig.

7.43 for the PBE-D3 level of theory.
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Figure 7.43: Common tangent for calcite I and II E(V ), (E + EZP )(V ) and F (V ) curves, across
temperatures.

The slope of the common tangent at each temperature gives the pressure of transition at a

finite T , so that the temperature - pressure phase boundary can be generated. The search

of the common tangent between two phases for an array of temperatures, and the consequent

generation of the temperature-pressure phase boundary has been automated in a series of

python and bash scripts available in my GitHub repository named Common Tangent [187].
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7.15 Comparison between the common tangent approach

and the cubic fit approach

It is very interesting to compare both methods: the previous method based on the intersection

of cubic or linear Gibbs free energies and the common tangent approach. As can be seen in

Fig. 7.44, the overall temperature-pressure phase boundary obtained with the common tangent

procedure yields a phase boundary almost coincident with the one obtained via the intersection

of Gibbs free energies fitted to a cubic polynomial.

For temperatures below 300 K, the common tangent approach gives the same phase boundary

as the cubic fit. It is only at higher temperatures that both approaches start to differ. As

we already know, there is a temperature at which both G(P ) curves are coincident in a broad

pressure range, and the non-complex root for GI(P ) = GII (P ) is located at very high values

of pressure. This effect is also transferred to the common tangent approach in the following

way. By analyzing the shape of the F (V ) curves across temperatures, it can be noticed that

for T=0 K, and up to 150.71 K (Figs. 7.43a - 7.43c), the volume V1 (volume needed for sorting

out the common tangent equation (Eq. 7.22)) is interpolated from the data set of calcite I

volumes available. On the contrary, from 211.01 K onwards, the common tangent starts not

being representative of the situation, since the volume V1 is clearly extrapolated (this effect is

remarkable at 311.52 K). This is the explanation for the phase boundary behaving abnormally

from 331.52 K onwards. This coincides with the temperature at which the cubic fit approach

starts to fail as well.

7.16 Determination of the TP phase boundary above the

critical temperature

Both cubic and common tangent approaches are mathematically equivalent and indeed give the

same phase boundary (Fig. 7.44). On the other hand, the linear approach fortuitously gives

a phase boundary closer to the experiment (Fig. 7.41), but indeed this approach shall not be

considered as reliable, since it does not agree with the phase boundary obtained through the

common tangent approach.
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Figure 7.44: Temperature-pressure phase boundary obtained via intersection of Gibbs free energy curves
(cubic fits) and by the common tangent procedure. All PBE-D3 level of theory.

For a fixed temperature T , the intersection of the cubic fits GI(P ) and GII (P ) (i.e. the solution

for GI(P ) − GII (P ) = 0) gives us the pressure of transition. For temperatures and pressures

lying on the equilibrium curve (i.e. phase boundary), both calcite I and II exist simultaneously

and in contact. For every level of theory there is a temperature for which both G(P ) curves

start to coincide in a broad pressure range, which makes the solution (GI(P )−GII (P ) = 0) to

occur at very high values of pressure. We will label this temperature as the critical temperature,

Tc. Above this critical temperature, the order of the transition changes from first to second

order. The difference between first and second order phase transitions was clearly presented in

Fig. 2.35. A simplified version of this figure is presented in Fig. 7.45, where only the shapes of

G(P ) and V (P ) are presented for a first and second order phase transition.

For T 6 Tc, the shape of G(P ) curves is such that this allows to identify an intersection between

Gibbs free energy curves (Fig. 7.45a). On the contrary, for T > Tc, the shape of G(P ) curves

do not allow for a clear intersection (Fig. 7.45c), and this is the reason why we cannot identify

a clear crossing between GI(P ) and GII (P ) above this critical temperature.

A method to determine the second order phase boundary above this critical temperature is

needed. As can be seen in Fig. 7.45d, this pressure of transition can be determined as the

pressure where both V (P ) curves meet.
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Figure 7.45: Summarized version of Fig. 2.35. In this figure, only the evolution of G(P ) and V (P ) are
shown for a first and second order phase transition.

For T 6 Tc, the V (P ) curves are shown in Fig. 7.46. The pressure indicated as Ptrs at each

temperature is the pressure obtained from the cubic fit approach. Volumes V1 and V2 for calcite

I and II respectively can be interpolated as shown in these figures.

Above the critical temperature, the equation V I(P )− V II (P ) = 0 is solved so that we can sort

out a pressure of transition for a fixed temperature (Fig. 7.47). In this way, a TP second order

phase boundary can be obtained, which is presented in Fig 7.48 with crosses for the PBE-D3,

PBE, B3LYP-D3 and B3LYP levels of theory. The position of the critical temperature Tc varies

with the level of theory, and is summarized in Table 7.14.

Level of theory Tc (K)
PBE-D3 331.62

PBE 331.62
B3LYP-D3 653.23

B3LYP 934.65

Table 7.14: Critical temperature Tc found for PBE-D3, PBE, B3LYP-D3 and B3LYP levels of theory
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Figure 7.46: Evolution of V (P ) for several temperatures below and at the critical temperature (Tc =
331.62 K), according to the cubic approach, for the PBE-D3 level of theory. The pressure of transition
Ptrs indicated in each case is just the pressure of intersection at each temperature according to the cubic
fit. For 0, 10.00 and 90.40 K, the volumes for calcite I and II are interpolated on the V (P ) curves. An
extrapolation is needed in the calcite I branch at 150.71, 311.52 and 331.52 K.
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Figure 7.47: Evolution of V (P ) for several temperatures above the critical temperature (Tc = 331.62 K),
according to the cubic approach, for the PBE-D3 level of theory. The pressure of transition Ptrs indicated
in each case is the pressure at which both V (P ) curves for calcite I and II meet. For temperatures close to
Tc, e.g. 351.72, 452.22 or 552.72 K this meeting point arises from an extrapolation on the calcite I curve.
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Figure 7.48: With circles: first order phase boundary corresponding to a first order phase transition. The
cubic fit approach has been conducted. With crosses: a second order pressure-temperature phase boundary
that corresponds to a second order phase transition. The pressure of transition at each temperature has
been determined following the approach presented in Section 7.16.

Plots in Figs. 7.39e-7.39g and 7.47d-7.47f show that the tail of calcite II V (P ) curve tends to

turn over with the increase of temperature. This indicates that there is a temperature, (e.g.

854.24K is a clear example) above which for a given value of pressure there are two possible

volumes available. This means that there is in fact a phase transition occurring in calcite II

at 854.24K and ≈ 8 GPa. The F (V ) curve at this temperature (Fig. 7.49a) presents some

discontinuities in the lower volume range, that might support this hypothesis. Further analysis

is needed in this respect.

54 56 58 60 62 64 66 68

V / F.U. (Angstrom3)

941.270

941.268

941.266

941.264

941.262

941.260

F 
/ F

.U
. (

Ha
)

T= 854.24 K
Calcite I
Cubic fit Calcite I
Calcite II
Cubic fit Calcite II

(a)

4 2 0 2 4 6 8
P (GPa)

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

V 
/ F

.U
. (

An
gs

tro
m

3 )

Ptrs = 1.01 GPa

V1 =V2 = 60.93 Å3

T= 854.24 K
Calcite I
Cubic fit Calcite I
Calcite II
Cubic fit Calcite II

(b)

Figure 7.49: Fig. 7.49a: F (V ) curve, and Fig. 7.49b: V (P ) curve at 854.24 K.



Chapter 8

Phase transitions in the

thermodynamic stability field of

Aragonite

Several studies have been encountered regarding the calcite I - Aragonite phase transition, e.g.

Crawford and Hoersch [188] Johannes and Puhan [189]; both studies were conducted below

20 kb, and in a temperature range from 200◦C to 700◦C. These investigations are based on

applying piston-cylinder pressures, and are gathered in a further revision by Carlson [190].

Differential thermal analysis (DTA) experiments were conducted by Mirwald [128], between 10

to 45 kbar, and up until 1000◦C.

In this work, the stability of aragonite with respect to calcite I has been studied for PBE and

B3LYP functionals, with and without the inclusion of the D3 Grimme dispersion correction.

As can be seen in Fig. 8.1 and Table 8.1, aragonite becomes more stable than calcite I upon

the inclusion of dispersion interactions, for both Hamiltonians. This effect is remarkable with

the PBE-D3 level of theory, where aragonite is more stable with a Gibbs free energy difference

of 2.102 KJ/mol. On the contrary, the hybrid B3LYP-D3 describes aragonite to be more stable

than calcite I only by 0.094 KJ/mol.

At room temperature and pressure, calcite I is found to be experimentally more stable than

aragonite (Table 8.1). The inclusion of dispersion thus leads to a wrong relative stability. Since

aragonite is more dense than calcite I, the addition of dispersion interactions might lead to an

252
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Figure 8.1: Energy-volume curves for aragonite and calcite I for B3LYP and B3LYP-D3 (8.1a) and PBE
and PBE-D3 (8.1b). The inclusion of dispersion yields a stabilization of Aragonite respect to calcite I.

Functional
∆E

(KJ/mol)
∆G (1 atm, 298K)

(KJ/mol)
Meaning

PBE +3.13 +2.555 Calcite I more stable
PBE-D3 −2.74 −2.102 Aragonite more stable
B3LYP +9.86 +8.437 Calcite I more stable

B3LYP-D3 −0.73 −0.094 Aragonite more stable

Experiment
+0.8± 0.2 [191]

+0.92 [192]
Calcite I more stable

Table 8.1: Experimentally, calcite I is found to be more stable than aragonite at 1 atm and 298K. This
result is in agreement with PBE and B3LYP levels of theory. B3LYP-D3 stabilizes aragonite only by -0.094
KJ/mol, as opposed to PBE-D3 (-2.102 KJ/mol). ∆G has been calculated at 298 K and 1 atm, considering
the transformation Calcite I → Aragonite, i.e. ∆G = GArag − GC1. ∆E has been calculated at 0 K and
zero pressure.

extra stabilization, which might be the reason for aragonite being more stable than calcite I.

Several imaginary phonon modes are observed at expanded volumes in aragonite at Γ (Table

8.2). A distortion of the atomic positions along the eigenvector of the negative phonon mode

produces similar energy scans as the ones presented for the calcite I - calcite II phase transition.

The symmetry of the minimum energy structure is analyzed with the FINDSYM program [174],

which yields a lower symmetry space group with respect to aragonite (Pnma, space group 62).

A constant volume geometry optimization of the broken symmetry structure produces the

pattern of structures shown in Table 8.2. Two structures with symmetry corresponding to

space group 19 have been found: a lower energy (type I) and a higher energy (type II), as

shown Fig. 8.2, panel A. Four structures belonging to space group 14 have been observed: type

I, II, III and IV: type I has lower energy than type II for all the volumes explored, as shown in
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Fig. 8.2, panel B. Regarding type III and IV, these are structures that exist at higher volumes.

Only one structure belonging to space group 33 has been observed, labelled as 33 type I, whose

energy is presented in Fig. 8.2, panel C. Since the energy of 19 type II is lower than the energy

of 19 type I, the latter shall not be considered in the analysis. Similarly, the structure 14 type

II will be discarded because its energy is higher than 14 type I. For the sake of simplicity,

structures 14 type III and 14 type IV have also not been selected as potential candidates for

the thermodynamic analysis.
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Volume/F.U.
(Å3)

Frequency
(cm−1)

S.G. of the
broken symmetry

structure
found

Frequency
(cm−1)

S.G. of the
broken symmetry

structure
found

63.1498 -10.8658 Notea

65.0238
-60.3124 19 type I
-49.4693 33 type II -40.2000 4 type I

66.9315

-78.2389 19 type I
-67.2146 33 type II -39.7351 4 type I

-26.6283 14 type II
-71.6292 4 type II
-49.7864 2

-17.2844 14 type I

68.8814

-92.9496 19 type I
-82.1308 33 type I
-56.5697 14 type II
-47.6817 14 type I

70.8754

-103.5969 19 type I
-93.4809 33 type I
-75.3797 14 type II
-62.0736 14 type I
-31.5572 19 type II

72.9069

-107.5144 19 type I
-96.8684 33 type I
-78.1545 14 type II
-72.2541 19 type II
-59.1385 14 type I

74.9459

-97.6581 19 type I
-85.5900 19 type II
-85.3516 33 type I
-68.8401 14 type II -52.6626 4 type III
-34.6936 14 type IV

77.0766

-81.2175 19 type II
-64.6552 19 type II
-48.0058 33 type I
-34.6231 14 type III
-7.9279 14 type IV

Table 8.2: Imaginary phonon modes observed at Γ on the expanded volumes of aragonite. Once the
broken symmetry structure has been isolated, a frequency calculation at Γ is conducted. There are some
cases where an imaginary frequency is observed as well over this broken symmetry structure. All PBE level
of theory. Note a: the constant volume optimization of this structure is a long process that requires more
than 100 steps.
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Figure 8.2: Broken symmetry structures found in the first set of imaginary phonon modes. All PBE level
of theory
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All these broken symmetry structures do not present imaginary phonon modes at the Γ point.

However, for some expanded volumes of aragonite (65.023, 66.931, 74.946 Å3), the broken

symmetry structures found in the first scan do contain imaginary phonon modes (Table 8.2).

These structures have been labeled as space group 33 type II and space group 14 type II (shown

in Fig. 8.3). In these cases, a second scan is necessary, which yields to the structures space

group 2 and space group 4 type I, II and III shown in Fig. 8.3. From now on, the structures

space group 2 and space group 4 type I, II and III will not be considered because its energy is

noticeably higher.

The electronic energy and the Helmholtz free energy of the selected candidates (19 type I, 14

type I and 33 type I) is shown in Fig. 8.4 at different temperatures. At 0 K, the structures

14 type I and 33 type I have the same energy, and are less stable than the structure 19 type

I. A soon as temperature increases (532.63 K), the structure 33 type I becomes slightly more

stable than 14 type I. At 1075.35 K, 19 type I has the same energy as 33 type I. For all these

temperatures, calcite I is more stable than the broken symmetry structures. However, when

reaching 1537.68 K, space group 33 type I has the same energy as calcite I, and for a higher

temperature of 2000 K, it becomes more stable than calcite I. As explained in Section 4.5, it

has been observed experimentally that calcite I experiences a phase transition to calcite IV

(s.g. 167) at 1151 K and to calcite V (s.g. 166) at 1275 K. This theoretical observation of space

group 33 being more stable than calcite I at high temperatures might be the path for a phase

transition to calcite IV or V.

It is very interesting the energetic evolution of aragonite and calcite I as a function of temper-

ature: in the athermal limit, calcite I is more stable than aragonite (Fig. 8.4). A progressive

stabilization of aragonite is observed with the increase of temperature. However, when reaching

532.63 K, no minimum in the Helmholtz free energy curve is observed, and an extrapolated

minimum would be located at very low energy. In this respect, if the phase boundary calcite

I - aragonite is deduced using the same framework, a negatively curved phase boundary is

found at temperatures higher than 298 K (Fig. 8.5a). This negatively curved phase boundary

means that the stability field of aragonite increases, which makes sense with the fact that the

extrapolated minimum is located at very low energy. Calcite I is more stable than aragonite

for pressures below the transition pressure (Fig. 8.5c), so that the stability field for calcite I

and aragonite corresponds to lower and higher pressure respectively.
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Similarly, the aragonite - space group 19 phase boundary is also curved (Fig. 8.5a) because

of the thermal stability of aragonite already explained. Space group 19 is more stable than

aragonite for pressures below the transition pressure (Fig. 8.5b). In addition, no intersection

between Gibbs free energy curves of calcite I and space group 19 were observed, so that an

hypothetical calcite I - space group 19 phase transition will not occur.
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Figure 8.4: Electronic energy-volume curves for aragonite, calcite I and the broken symmetry structures
found, at 0 K and at different temperatures for the PBE level of theory. See text for complete description
on the evolution of the stability with temperature. All PBE level of theory.



260 Chapter 8. Phase transitions in the thermodynamic stability field of Aragonite

4 2 0 2 4 6

P (GPa)

0

250

500

750

1000

1250

1500

1750

298

T
(K

)

Calcite I - Aragonite S.G. 62

S.G. 19 - Aragonite S.G. 62

Mirwald 1976

Carlson 1980

2 1 0 1 2 3 4

P (GPa)

941.24

941.22

941.20

941.18

941.16

G
/ 

F.
U

. 
(H

a
)

Intersection
P= 0.830146 GPa

T = 10.00K

Calcite I

Aragonite S.G. 62

2.5 2.0 1.5 1.0 0.5 0.0 0.5

P (GPa)

941.28

941.26

941.24

941.22

941.20

G
/ 

F.
U

. 
(H

a
)

Intersection
P= -1.49623 GPa

T= 10.00K

Calcite I

Aragonite S.G. 62

S.G. 19

S.G. 19 S.G. 62 CI S.G. 62

(a)

(b) (c)

Figure 8.5: Calcite I - aragonite and aragonite - space group 19 phase boundaries.



Chapter 9

Conclusions

The thermodynamic stability field of solid CaCO3 with temperature and pressure is a matter

of ongoing debate due to its rich polymorphism. The purpose of this thesis has been to inves-

tigate the thermodynamic stability of the CaCO3 solid system across some of its polymorphic

variations, principally calcite I, calcite II and aragonite. Chapter 4 describes the atomic struc-

ture of the polymorphs of CaCO3. The computational setup and thresholds used have been

benchmarked in Chapter 5, followed by description of the electronic band structure of calcite I

in Chapter 6.

In Chapter 7, the temperature-pressure phase boundary between calcite I and II has been

theoretically determined for the first time. The mechanism that transforms calcite I into calcite

II is due to a softening of a phonon mode when calcite I is compressed to higher pressures. On

the other hand, several unknown broken symmetry structures on the stability field of aragonite

have been documented for the first time, as well as its mechanisms of transformation, which are

also due to softening of phonon modes. Finally, the relative stability of aragonite with respect

to calcite I has also been examined.

The determination of the phase boundary requires the calculation of thermodynamic quantities,

e.g. the pressure at finite temperature, the entropy, and the Helmholtz and Gibbs free energies.

According to the harmonic approximation, thermodynamic quantities can be expressed as a

sum over frequencies. On the other hand, within the quasi-harmonic approximation framework,

there is a dependence of the phonon frequencies on volume. This dependence νi,k(V ) is correctly

described with a polynomial fit. The pressure at finite temperature can be obtained by a direct
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sum over frequencies across volumes, or simply by differentiation of the Helmholtz free energy.

The first approach requires monitoring the same phonon eigenvector across volumes. The latter

approach is straightforward, and was the one pursued due to its simplicity.

In order to cover a wide range of pressures, both expanded and compressed volumes are ex-

plored, where imaginary phonons can appear at these extreme conditions. In these cases, a

distortion of the atomic coordinates along the phonon eigenvector needs to be explored and a

broken symmetry structure yields from this analysis. Two broken symmetry structures have

been described when compressing calcite I: space group 14 (calcite II) and space group 161. In

the case of aragonite, several broken symmetry strucures were found: space group 19 , space

group 14 and space group 33.

When considering the computation of the phase boundary, volumes with imaginary phonon

frequencies have not been considered in the thermodynamic analysis, as this aggravates the

quality of the F (V ) fits.

The temperature-pressure coexistence line can be obtained by analyzing the intersection be-

tween two Gibbs free energy surfaces, i.e. GI(P, T ) = GII (P, T ). A simplification is based

on fixing a temperature, and analyzing the pressure at which two Gibbs free energy curves

intersect, i.e. GI(P ) = GII (P ), at T = constant.

One characteristic of this phase transition is the fact that the Gibbs free energy curves of

calcite I and II do not intersect with a clear angle; instead, they merge together. This effect is

remarkable as soon as temperature increases from 10 K to room temperature and beyond. This

effect is in agreement with the experiment, where calcite II cannot be quenched to ambient

conditions, i.e. calcite I transforms to calcite II as soon as the pressure of transition is reached,

and the transformation is reversible, obtaining calcite II when pressure is released.

Both G(P ) curves fit well to a cubic polynomial. However, there is a temperature at which

the intersection between both cubic fits occurs at very high values of pressure, simply because

both curves intersect with very low angle so that they are coincident in a wide pressure range.

This temperature has been referred to as a critical temperature Tc. Within this formalism, the

temperature-pressure phase boundaries obtained with different levels of theory are reported in

Fig. 7.20. The value of pressure at which this phase boundary is located is found to be very

sensitive to the inclusion of dispersion: the phase boundary is substantially shifted to lower



263

pressures when accounting for van der Waals interactions.

A second approach is to fit linerarly both G(P ); in this case the curves intersect with greater

angle, so that the pressure of intersection is lowered. Through this methodology there is no such

temperature for which the intersection of G(P ) curves is located at very high values of pressure.

Instead, the temperature - pressure phase boundary obtained runs to higher temperatures.

A straightforward error bar on the pressure of intersection can be calculated. The phase

boundaries obtained through this procedure are shown in Fig. 7.41.

A mathematically equivalent methodology is to calculate the pressure of intersection as the

common tangent of two F (V ) curves. The pressure at each temperature yields a phase boundary

very similar to the one obtained through the cubic fit intersection (Fig. 7.44). Since there is

agreement between the cubic fit and the common tangent approaches, the cubic fit approach

was considered as the path to follow for the determination of the phase boundary.

A completely different scenario is presented between the G(P ) curves for calcite I and aragonite:

they do intersect with greater angle, which yields a clear pressure of intersection. Unlike calcite

II, aragonite is thermodynamically stable at ambient conditions (Fig. 9.1a). The difference

in Gibbs free energy between calcite I and aragonite is 1.46 KJ/mol (at 311 K and 1 bar).

This scenario is very similar to the diamond - graphite equilibria, where both polymorphs

exist at ambient conditions, and where ∆G is considerably higher, i.e. 2.9 KJ/mol (at room

temperature and 1 bar, as reported in Ref. [193]). On the contrary, the difference in Gibbs free

energy between calcite I and II can only be given at the short range of pressures where both

coexist, i.e. 0.71 KJ/mol (at 311 K and 1.28 GPa, as shown in Fig. 9.1b).

Dispersion effects lower the pressure of the calcite I - calcite II transformation. On the contrary,

because aragonite is a denser phase, dispersion effects yield a stabilization of aragonite with

respect to calcite I. A clear calcite I - aragonite TP phase boundary is described up to room

temperature (Fig. 8.5a). From 298K onwards, a negatively curved phase boundary is obtained

as a consequence of aragonite not presenting an interpolated minimum in the F (V ) curves.

The possibility of a calcite I - calcite II second order phase transition above the critical temper-

ature Tc has been investigated. The position of this temperature varies with the level of theory:

331 K for PBE and PBE-D3, and 653 K and 934 for, respectively, B3LYP-D3 and B3LYP

(Table 7.14 and Fig. 7.20). For temperatures T 6 Tc, the phase transition is first order. Above
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Figure 9.1: 9.1a: G(P ) for calcite I and aragonite at 311.52 K, for the PBE level of theory. The value of
Gibbs free energy for both phases at 1 bar is shown. 9.1b: G(P ) for calcite I and II at 311.52 K, for the
PBE-D3 level of theory. The value of Gibbs free energy for both phases at 1.28 GPa is shown.

GC1(T = 311.52K, P = 1bar ≡ 10−3GPa) -941.21720 Ha/F.U.
GC2(T = 311.52K, P = 1.28GPa) -941.22309 Ha/F.U.
GArag(T = 311.52K, P = 1bar ≡ 10−3GPa) -941.21665 Ha/F.U.
∆GC1→Arag(T = 311.52K, P = 1bar ≡ 10−3) = GArag −GC1 1.4599 KJ/mol
∆GC1→C2(T = 311.52K, P = 1.28 GPa) = GC2 −GC1 0.7134 KJ/mol

Table 9.1: Summary of the Gibbs free energy thermodynamic stability of calcite I, II and aragonite.

the Tc, both V (P ) intersect at a value of pressure that corresponds to the pressure of a second

order phase transition. This leads to the second order TP phase boundary reported in Fig.

7.48.
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Appendix

10.1 Codes generated for this thesis

Several codes have been generated in this thesis, which can be found in each of my GitHub

repositories described herein. Each repository is a series of bash and python scripts and there is

a detailed explanation in html format on how to use them. These codes can be easily adapted

to similar projects.

1. The repository search neg freqs [175] scans the frequencies of a given set of constrained-

volume frequency outputs. This program will output the volumes for which an imaginary

frequency has been encountered, and the dispersion k-point at which that negative eigen-

value belongs to.

2. The repository EOS 2 phonons [177] is a collection of bash and python scripts. These allow

to automate the process based on the search for broken symmetry structures that arise

from soft phonon mode mechanisms. The internal coordinates and lattice parameters at

each volume are extracted, followed by a frequency calculation. Negative phonon modes

are scanned and the symmetry is analysed. A constant volume optimization is then

performed, over the broken symmetry structure found. A more detailed explanation of

the process can be found in Section 7.4.

3. The repository named QHA 3D [179] allows the construction of Gibbs free energy surfaces

G(P, T ).
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4. The repository QHA 2D [180] automatically sets a temperature and produces the temperature-

pressure phase boundary via GI(P ) − GII(P ) = 0, for an array of given temperatures.

More information in Section 7.6.2.

5. The repository Common Tangent [187] generates the temperature-pressure phase boundary

by calculating the common tangent between two F (V ) curves (more information in Section

7.14).

6. The repository ENTROPY PDOS [182] plots the cumulated entropy and phonon density of

states. More information in Section 7.9.

7. Given a direct matrix lattice vectors, the repository supercell generator [194] generates

a set of supercell expansion matrix candidates for which the new lattice parameters are

greater than a chosen value, and the three of them of the same size, within a tolerance.

This allows to construct supercells for different polymorphs with lattice parameters of

equal length, so that we ensure phonons are calculated within a ”sphere” of equal radius.

10.2 Bulk Modulus

The purpose of this section is to show how the bulk modulus at finite temperature is obtained.

In addition, we will show how functions that depend on the second derivative of F (V ) (e.g. the

bulk modulus) are extremely sensitive to the quality of the F (V ) fit. For a fixed temperature

T , given the F (V ) curves fitted to a cubic polynomial:

F (V ) = a0 + a1V + a2V
2 + a3V

3 (10.1)

The pressure is straightforward to obtain:

P (V ) = −∂F (V )

∂V
= −a1 − 2a2V − 3a3V

2 (10.2)

The bulk modulus is the inverse of the compressibility:
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BT =
1

KT

= −V ∂P (V )

∂V
(10.3)

Since ∂P (V )
∂V

= −2a2 − 6a3V , the bulk modulus then reads like:

BT = 2a2V + 6a3V
2 (10.4)

In the case of the athermal limit, F (V ) is just replaced by E(V ). The E(V ), P (V ), B(V ) and

B(P ) plots for calcite I and II are shown in Figs. 10.1a - 10.1d. For calcite II, two different

branches are reported: branch 1 (green circles) and branch 2 (purple circles). For the E(V )

and P (V ) plots, both branches 1 and 2 are almost coincident. For the B(V ) and B(P ) plots,

both branch 1 and 2 are not exactly coincident. This is because the bulk modulus is related

to the second derivative of E(V ), and is very sensitive to the curvature. Nevertheless, both

branches describe the correct trend for calcite II: the bulk modulus increases with the decrease

of volume, or increase of pressure. If zero point motion is considered (Figs. 10.1e - 10.1f), both

branches 1 and 2 still coincide on the E(V ) and P (V ) curves. Now, a completely different trend

on the bulk modulus is predicted for both branches (Figs. 10.1g - 10.1h): branch 1 preducts an

increase on the bulk modulus with the increase of volume, and branch 2 the opposite behaviour.

This clearly shows that second derivative thermodynamic quantities are very sensitive to the

curvature of the E(V ) or F (V ) curves. A similar effect is observed at the finite temperature of

291.41 K (Figs. 10.1i - 10.1l).

Using the B(P ) curve for calcite I at finite temperature, it is possible to estimate the bulk

modulus at finite temperature and pressure, which is found to be 60.87 GPa (Table 10.1).

Calcite I Bulk Modulus (GPa)
DFT (PBE-D3)
T = 0 K, P = 0 GPa

75.07

DFT (PBE-D3)
T = 291.41 K, P = 1 bar

60.87

Experiment, at 298 K [161] 71.07

Table 10.1: Experimental and calculated bulk modulus for calcite I in the athermal limit (including zero
point motion effects), and at 291.41 K with PBE-D3 level of theory and using molecular dynamics.
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Figure 10.1: E(V ), P (V ), B(V ) and B(P ) plots for the athermal limit, without zero point motion (10.1a
- 10.1d), with zero point motion (10.1e - 10.1h), and at a finite temperature of 291.41 K (10.1i - 10.1l).
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