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High-frequency financial data modelling with hybrid

marked point processes

Abstract

The rise of electronic order-driven financial markets has brought a profusion

of new high-frequency data to study, with an opportunity to understand the

price formation mechanism at the smallest timescales. The original motiva-

tion of this thesis is to find a stochastic process that provides an accurate

statistical dynamic description of this new data.

A critical analysis of the literature reveals a dichotomy between two main

sorts of model, Hawkes processes and continuous-time Markov chains, each

having qualities that the other lacks. In particular, models of the former sort

are successful at capturing excitation e↵ects between di↵erent event types

but fail to incorporate the state of the market. We resolve this dichotomy

by introducing state-dependent Hawkes processes, an extension of Hawkes

processes where events can now interact with an auxiliary state process.

These new stochastic processes provide us with the first model that features

both excitation e↵ects and an explicit feedback loop between events and the

state of the market. The application of this new model to high-quality data

demonstrates that the excitation e↵ects are indeed strongly state-dependent.

State-dependent Hawkes processes come however with theoretical challenges:

under which conditions do they exist, are they unique and do not explode?

To answer these questions, we view state-dependent Hawkes processes as

ordinary point processes of higher dimension, which we then generalise to

the class of hybrid marked point processes. This class provides a framework

that unifies and extends the existing high-frequency models. Since hybrid

marked point processes are defined implicitly via their intensity, one can

address the above questions by studying instead a Poisson-driven stochastic

iv



Thesis advisor: Mikko S. Pakkanen Author: Maxime Morariu-Patrichi

di↵erential equation (SDE). We are able to solve this SDE under general

assumptions that dispense with the Lipchitz condition usually required in

the literature, which yields, as a corollary, the existence and uniqueness of

non-explosive state-dependent Hawkes processes.
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0
Introduction

0.1 Area of study

The last twenty years have seen the rise of electronic order-driven financial

markets where agents submit anonymised buy and sell orders to a virtual ex-

change via their computers. In these new markets, buyers and sellers trade

directly with one another at the prices they specify. This is the antonym of

quote-driven markets where traders can only exchange securities with dedi-

cated dealers who control the buy and sell prices.

In order-driven markets, the collection of outstanding orders is called the

limit order book (LOB) and is made visible to market participants. The

adoption of this order-driven trading mechanism by major stock exchanges

has brought a profusion of new intraday high-frequency data to study, with

an opportunity to understand the price formation mechanism at the smallest

timescales. A new area of research emerged: modelling the dynamics of

LOBs.

This field has turned out to be multidisciplinary, with contributions from

(econo)physicists, economists, mathematicians, statisticians, computer sci-

entists and regulators. It lends itself to di↵erent, yet complementing, ap-
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proaches, from purely empirical studies to theoretical and abstract consid-

erations. For mathematicians and statisticians, LOB modelling is an open

problem that can be tackled with many di↵erent kinds of tools, which in-

clude: stochastic processes, statistical inference, machine learning, game

theory, mean-field games and partial di↵erential equations. In fact, LOBs

can even be a source of inspiration and a catalyst for new breakthroughs in

these areas.

0.2 Main contributions

This thesis tackles the LOB modelling problem from the angle of stochas-

tic processes and statistical inference. The original motivation is to find a

stochastic process that provides an accurate statistical dynamic description of

the observed high-frequency data, that is, the sequence of orders and the cor-

responding states of the LOB. This contrasts with another approach, known

as agent-based modelling, where one tries to explain how the key (statistical)

features of the data derive from the behaviour of market participants.

A critical analysis of the literature reveals a dichotomy between two main

classes of stochastic processes: Hawkes processes and continuous-time Markov

chains. On the one hand, Hawkes-process models account for self- and cross-

excitation e↵ects between multiple event types (i.e, orders with di↵erent ef-

fects on the market), but ignore the state of the underlying system they

influence. On the other hand, Markov-process models focus on the state

of the LOB, but their dynamics are exclusively driven by the LOB’s cur-

rent shape, meaning that past-dependent excitations as in Hawkes processes

are not captured. In e↵ect, Hawkes processes and continuous-time Markov

chains can have either an event viewpoint or a state viewpoint, respectively.

To resolve this dichotomy, we introduce the class of state-dependent Hawkes

processes, an extension of Hawkes processes where the events can now in-

teract with an auxiliary state process. This class gives rise to the first non-

Markovian LOB models in continuous-time that introduce a feedback loop

between the order flow and the LOB’s shape. We show how statistical in-

ference for these new processes can be achieved via the maximum likelihood
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principle and create a public Python package, called mpoints, that imple-

ments simulation and estimation algorithms. An application to high-quality

high-frequency financial data reveals that the excitation e↵ects in the order

flow are indeed sensitive to the LOB’s shape and that the model is able to

capture the event-state structure of LOBs. Moreover, we observe a striking

state-dependent criticality, that is, intermittent high levels of endogeneity,

with a market activity that increases when the LOB is in a state of disequi-

librium.

This new class of state-dependent Hawkes processes comes with theoreti-

cal challenges. Because of the hybrid nature of their definition and the full

coupling between the events and the state process, it is not clear how exis-

tence, non-explosion and uniqueness can be proved. To solve this problem,

we lift the events and the auxiliary state process to a single point process

of higher dimension. We explain how the dynamics of this larger point pro-

cess are linked to the original state-dependent Hawkes process. This shift in

viewpoint transposes the above theoretical challenges to the setting of point

process theory. Under this alternative viewpoint, state-dependent Hawkes

processes are naturally generalised to the class of hybrid marked point pro-

cesses, which encompasses and extends continuous- time Markov chains and

(state-dependent) Hawkes processes. This larger class provides a unifying

and flexible framework for the joint modelling of events and the state of a

system. While still maintaining the event-state structure of LOBs, the feed-

back loop between the events and the system can now take virtually any

form.

To address the existence and uniqueness of non-explosive marked point pro-

cesses that are specified implicitly via their intensity, we study a well-known

Poisson-driven stochastic di↵erential equation. The strong existence and

uniqueness results that are available in the literature rely on a Lipschitz con-

dition that hybrid marked point process may fail to satisfy. Consequently, we

propose an intuitive pathwise construction that instead requires only a sub-

linear behaviour. Using a domination argument, we are able to verify that

this construction indeed yields a solution. As an important corollary, we

obtain the strong existence and uniqueness of hybrid marked point processes
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and, in particular, state-dependent Hawkes processes.

Finally, our theoretical framework for marked point processes relies on some

fundamental properties of the so-called weak-hash metric, a distance function

on a space of integer-valued measures. However, the original proofs of these

properties assume that a certain term is monotonic, which is not always the

case as we show by a counterexample. We manage to clarify these origi-

nal proofs by addressing the parts that rely on this assumption and finding

alternative arguments.

Because we test, investigate, develop and solidify the idea of state-dependent

Hawkes processes at di↵erent levels of abstraction, from the purely empirical

to the foundations of point process theory, this thesis is an illustration of

how the field of LOB modelling stimulates the interplay between theory and

practice.

0.3 Outline and chronology

In Chapter 1, we present the LOB mechanism in detail and survey the liter-

ature, with a focus on the application of stochastic processes. In Chapter 2,

we conduct a preliminary empirical analysis that motivates the theoretical

developments in the remainder of the thesis. In Chapter 3, we introduce the

class of state-dependent Hawkes processes, explain how statistical inference

can be achieved via maximum likelihood and present our Python package

mpoints. In Chapter 4, state-dependent Hawkes processes are applied to

high-frequency financial data. In Chapter 5, we set a theoretical framework

for marked point processes, allowing us, in Chapter 6, to generalise state-

dependent Hawkes processes to hybrid marked point processes. In Chapter

7, we address the existence and uniqueness of marked point processes that

are defined implicitly via their intensity. In Chapter 8, we prove two funda-

mental properties of the weak-hash metric for boundedly finite integer-valued

measures.

We chose to order the contents of this thesis from the concrete to the ab-

stract, from the applied to the theoretical. However, the actual research
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was a back and forth between these two poles. The identification of the gap

between Hawkes processes and continuous-time Markov chains (Chapter 1)

and the formulation of state-dependent Hawkes processes (Chapter 3) were

two intertwined actions. The preliminary data analysis of Chapter 2 was

then carried to test the relevance of these new ideas. Our focus then shifted

to the theoretical foundations of state-dependent Hawkes processes, general-

ising them to hybrid marked point processes and working on the existence

and uniqueness problem (Chapters 5, 6 and 7). While doing so, we studied

in detail the theory of point processes, which lead us to find and solve the

problem of Chapter 8. Only then, we started to work on estimation and sim-

ulation (Chapter 3). The application of state-dependent Hawkes processes

to high-frequency financial data (Chapter 4) was in fact the closing project

of the PhD experience.

0.4 Three papers

The research behind this thesis resulted in the following three papers.

1. Morariu-Patrichi, M. and Pakkanen, M. S. (2017). Hybrid marked

point processes: characterisation, existence and uniqueness. Preprint,

available at: http://arxiv.org/abs/1707.06970.

2. Morariu-Patrichi, M. (2018). On the weak-hash metric for boundedly

finite integer-valued measures. Bulletin of the Australian Mathematical

Society, 98(2):265–276.

3. Morariu-Patrichi, M. and Pakkanen, M. S. (2018). State-dependent

Hawkes processes and their application to limit order book modelling.

Preprint, available at: http://arxiv.org/abs/1809.08060.

The first paper was split into Chapters 5, 6 and 7, while its appendix consti-

tutes the last section of Chapter 8, the core of which consists of the second

paper. The third paper was divided into Chapters 3 and 4.
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1
Background on limit order

book modelling

In this chapter, we present in detail the trading mechanism of LOBs and

define key quantities that characterise them. We explain the motivations

of LOB modelling and review the main empirical findings available in the

literature. We then survey the use of stochastic processes and, in particular,

identify a dichotomy between two of the prominent modelling approaches,

that is, continuous-time Markov chains and Hawkes processes. In a sense,

resolving this dichotomy will become the main purpose of this thesis, moti-

vating the empirical analysis of Chapter 2 and leading to the introduction of

state-dependent Hawkes processes in Chapter 3.

1.1 LOB mechanism

Our main reference for this section and the following is the survey on LOBs

written by Gould et al. [55]. We adopt most of their notations.

Historically, a stock exchange was a physical location where participants
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traded via open outcry, that is, by shouting and using hand signals in the

trading pit area [104]. With the arrival of telephone and electronic trading

at the end of the 20th century, stock exchanges virtually became networks of

agents interacting at distance. This transformation came with new trading

mechanisms and a distinction between quote-driven and order-driven markets

emerged [88, 110, 57]. In the former, the buy and sell prices are quoted by a

group of competing dealers and market participants can only trade via this

group of intermediaries. In the latter, market participants submit orders at

the price of their choice and are matched directly with one another via a

LOB mechanism that nowadays is used on more than half of markets [70].

In practice, the distinction between the two is not always clear with some

major stock exchanges such as the New York Stock Exchange and the Nasdaq

operating a hybrid system. For instance, the Nasdaq was originally a quote-

driven exchange. While it now employs a LOB mechanism, there is a group

of dedicated market making firms who are by contract obliged to constantly

post buy and sell o↵ers.

1.1.1 Order-matching algorithm

To explain the LOB mechanism, we first have to define what is meant by an

order. In the following, it remains implicit that an order targets a specific

financial security on a given exchange.

Definition 1.1.1 (Order). An order x = (qx, px, tx) of size qx > 0 (respec-

tively qx < 0) with price px submitted at time tx is a commitment to sell

(respectively buy) up to |qx| units of the traded asset at a price no less

(respectively no greater) than px.

Note that we adopt the convention that positive (respectively negative) quan-

tities correspond to sell (respectively buy) orders. The price and size of an

order cannot take any values but must be multiples of the resolution param-

eters, which can vary across assets and exchanges.

Definition 1.1.2 (Resolution parameters: lot size and tick size). The res-

olution parameters are the lot size � and the tick size ⇢. For any order x,

7



qx must be a multiple of �, that is, qx 2 {k� : k 2 Z⇤
}, and px must be a

multiple of ⇢, that is, px 2 {k⇢ : k 2 N}.

We now explain how buy and sell orders are matched. When, say, a buy

order x is submitted, if the set A of outstanding sell orders x0 with prices

px0 < px is not empty, x is matched with the orders x0
2 A that provide

the smallest price(s) p0 until the quantity qx is traded or all the orders in

A are matched. If A is empty or x was only partially matched (i.e., all the

orders in A were exhausted), the order or its remaining part becomes active,

meaning that it enters the list of outstanding orders. Besides, agents are

allowed to cancel their active orders at any time. Note that a cancellation

can be partial, that is, the order remains active but its size is decreased.

Thus, an order is removed from the list of active orders either when it is

totally matched or cancelled and the size of an active order is updated when

it is partially matched or cancelled. The collection of active orders is called

the limit order book (LOB).

Definition 1.1.3 (Active order and limit order book). An active order is

an order that has neither been matched nor cancelled yet. The limit order

book (LOB) is the set of active orders and evolves in time as new orders are

submitted and previous orders are cancelled. The LOB at time t is denoted

by Lt.

Notation 1.1.4 (State at and after submission). For any order or cancella-

tion x, we denote by Lx� (respectively Lx) the state of the LOB just before

(respectively right after) its submission. We carry over this notation to all

time-varying quantities.

Remark 1.1.5. Strictly speaking, the above formalism does not allow to

update the size qx of an order x = (qx, px, tx) since qx is not time-dependent.

However, this can be handled by noticing that updating the size of an order

x to q0
x
is equivalent to removing x and adding a new order x0 = (q0

x
, px, tx)

as if it were submitted at time tx.

To illustrate the matching algorithm and the previous definitions, we present

an example of LOB and clarify how it evolves with the submission of new
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orders. To this end, we introduce a common way to represent the state of

LOBs, that is, the depth profile.

Definition 1.1.6 (Depth profile). The depth profile Dt(·) of the LOB Lt at

time t is defined by

Dt(p) :=
X

{x2Lt : px=p}

qx, p 2 R.

p (price levels)

|Dt(p)| (outstanding quantity)

$17.35$17.33

130
100

50

50

110

100

60

120 90

90

Active buy orders Active sell orders

Figure 1.1: Fictional example of LOB represented by its depth profile. The sign of Dt(p) can
be read from the blue (negative) and red (positive) colours. The tick size is set to ⇢ = $0.01.
Each block corresponds to an active order. The number inside each block indicates the size of
the order.

A fictional example of depth profile is shown in Figure 1.1, from which one

can read the cumulative size of orders |Dt(p)| at each price level p. In fact,

this figure shows more than the depth profile since the size of each individual

order is also indicated. Still, it does not allow to reconstruct Lt as it does not

inform us on the submission times of orders. The depth profile informs us on

the LOB’s shape but does not fully characterise it. The blue (commitments

to buy) and red (commitments to sell) regions are called the bid and ask

sides, respectively. These two regions cannot overlap, otherwise it would

mean that orders that should be matched were not matched.

Definition 1.1.7 (Ask and bid sides). The ask side At (respectively bid side

Bt) of the LOB Lt is the set of active sell (respectively buy) orders at time t:

At := {x 2 Lt : qx > 0} ,

9



Bt := {x 2 Lt : qx < 0} .

Remark 1.1.8. The above definition obviously implies that Lt = At [ Bt.

Example 1.1.9. Assuming that the LOB Lt at time t has the depth profile

of Figure 1.1, if the next order is x1 = (150, $17.32, t + �), � > 0, and

no cancellations occurs in the meantime, x1 is immediately matched: 110

units are sold at $17.33 and 40 at $17.32. The updated depth profile satisfies

Dt+�(17.33) = 0 and Dt+�(17.32) = �160. If instead the next order is

x2 = (150, $17.33, t+�), it is partially matched: 110 units are sold at $17.33

and the rest of the order becomes active. Then, the updated depth profile

satisfies Dt+�(17.33) = 40 and Dt+�(17.32) = �200.

1.1.2 Priority rules

In Example 1.1.9, when order x1 is submitted, it is matched with 40 of the

200 units available at the price level $17.32. However, there are 3 buy active

orders, denoted by (yi)i=1,2,3, at this price. Which of these is matched with

x1?

The answer to this question depends on the priority rule of the exchange.

The most common one is time priority: x1 is matched with the oldest order,

that is, yi⇤ where i⇤ = argmin tyi . This priority rule encourages the early

submission of orders [103].

Futures markets however commonly operate a pro-rata rule: x1 is matched

with the three buy orders, proportionally to their sizes (qyi)i=1,2,3. More

precisely, 40 ⇥ 50/200 = 10 units are matched with each of the two orders

of size 50, while 40⇥ 100/200 = 20 units are matched with the larger order

of size 100. This rule incentivises market participants to submit orders that

are larger than the amount they actually intend to trade.

In general, di↵erent priority rules may result in di↵erent strategic behaviours.

10



1.1.3 Limit and market orders

Two essential order types can now be defined: limit and market orders. A

limit order is an order that enters the list of active orders without resulting

in any trade, while a market order is an order that is entirely matched at its

submission time.

Definition 1.1.10 (Limit order). An order x = (qx, px, tx) is called a limit

order if

{y 2 Ax� : py  px} = ;, when qx < 0;

{y 2 Bx� : py � px} = ;, when qx > 0.

Definition 1.1.11 (Market order). An order x = (qx, px, tx) is called a mar-

ket order if

X

{y2Ax� : pypx}

qy � �qx, when qx < 0;

�

X

{y2Bx� : py�px}

qy � qx, when qx > 0.

Remark 1.1.12. Note that any order can be seen as a combination of market

orders and limit orders. In Example 1.1.9, the order x2 = (150, $17.33, t+�)

is equivalent to a market order (110, $17.33, t+�) followed by a limit order

(40, $17.33, t+�). Thereby, the LOB can be viewed as the set of active limit

orders, whence its name.

1.1.4 Real examples

Using the Nasdaq data introduced in Chapter 2, we created animations of

real depth profiles. These were uploaded to a Youtube channel⇤. By watch-

ing these videos, one quickly notices the high-frequency nature of today’s

markets: in a blink of an eye, the LOB’s shape changes multiple times.

Quantifying and studying these small-timescale dynamics will be the object

⇤https://www.youtube.com/user/maximemorariu/featured
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of Chapter 4.

We would also like to stress that the Youtube channel contains an animation

of the flash crash of May 2010. In particular, one can observe that the number

of active limit orders evaporates as the price plunges, perhaps reflecting the

uncertainty of the situation and people’s confusion.

1.1.5 Market fragmentation

With the purpose of increasing competition and improving the fairness of

prices, new regulations were introduced: the Markets in Financial Instru-

ments Directive (MiFID) in 2004 in the European Union and Regulation

National Market System (Reg NMS) in 2005 in the United-States of Amer-

ica. This changed drastically the trading landscape with, in particular, the

apparition of new trading venues that would compete with the historical ex-

changes, a phenomenon known as market fragmentation [100]. Concretely,

this implies that shares of the same company can be bought simultaneously

on multiple exchanges. Hence, to trade a single stock, one has to monitor

and interact with multiple LOBs. Benefiting from the increase in competition

between trading venues and market makers came at the cost of an increase

in complexity.

1.2 Characterising quantities

Now that the LOB mechanism has been exposed in detail, we define a list of

key characterising quantities that are studied in the literature.

1.2.1 Prices, levels and returns

We begin by defining the bid and ask prices, the spread, the mid price and

the returns. These are without a doubt the most famous quantities and the

first numbers that a trader would look at. We also define was is meant by

the level-n LOB and order flow.
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Definition 1.2.1 (Best bid and ask prices). The best bid and ask prices at

time t, denoted by Bt and At respectively, are defined as

Bt := max
{x2Bt}

px, At := min
{x2At}

px.

The best ask (respectively bid) price is the lowest (respectively highest) price

at which the ask (respectively bid) side is willing to sell (respectively buy).

Thus, buy (respectively sell) market orders are first matched with limit orders

sitting at the best ask (respectively bid) price.

Definition 1.2.2 (Spread). The spread St at time t is given by

St := At � Bt.

The spread measures the distance between the bid and ask sides or by how

much they disagree on the fair price. It is often taken as a proxy for the

level of liquidity (how much and how quickly one can trade the security) and

execution costs.

Definition 1.2.3 (Mid price). The mid price Mt at time t is defined as

Mt :=
At +Bt

2
.

The mid price can be understood as the average price at which the security

currently trades. Note however that the mid price is a fictional price, in the

sense that the first order after time t can never result in a transaction at

price Mt.

More generally, one can define the nth ask (bid) price as the nth price,

counting from the best ask (bid) price, at which sell (buy) limit orders are

currently posted.

Definition 1.2.4 (nth bid and ask prices). Let n 2 N. The nth bid and ask

13



prices at time t, denoted by B(n)
t and A(n)

t respectively, are defined as

B(n)
t := sup

(
p Mt :

X

pp0Mt

1(Dt(p) < 0) = n

)
,

A(n)
t := inf

(
p �Mt :

X

Mtp0p

1(Dt(p) > 0) = n

)
.

The level-n LOB and order flow are then naturally defined as follows. Perhaps

because of the di�culty in having access to more comprehensive data sets,

many studies focus on the level-I LOB exclusively.

Definition 1.2.5 (Level-n LOB and order flow). Let n 2 N. The level-n

LOB at time t, denoted by L
(n)
t , is given by

L
(n)
t :=

n
x 2 Lt : px 2 [B(n)

t , A(n)
t ]

o
.

The level-n order flow is the sequence of orders and cancellations y such that

L
(n)
y� 6= L

(n)
y .

Finally, a quantity for which there are many empirical studies, as we will

later see, is the mid price returns.

Definition 1.2.6 (Mid price returns). The time series of mid price returns

with constant time step ⌧ > 0 and initial time t0 is denoted by (R(⌧)
tk
)k2N⇤

and given by

R(⌧)
tk

:= ln

✓
Mtk+1

Mtk

◆

where tk := t0 + k⌧ .

1.2.2 Relative price and profile

To study the depth profile and the behaviour of market participants on each

side of the LOB, it can be more appropriate to think in terms of relative

price.
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Definition 1.2.7 (Relative price). The relative prices of a sell order x and

buy order x0 at time t are defined by

�a
t
(px) := px � At and �b

t
(px0) := Bt � px0 , respectively.

Active orders with positive relative prices do not belong to the level-I LOB

whereas incoming orders with negative relative prices can reduce the spread

and/or be market orders.

If one wants to study how orders are distributed on each side of the LOB,

taking the time average of the depth profile would not be adequate because a

given price level can pass through both bid and ask regions. This motivates

the introduction of the relative depth profile.

Definition 1.2.8 (Relative depth profile). The relative depth profile Da

t
(·)

of the ask side of the LOB Lt at time t is defined as

Da

t
(p) := Dt(At + p) =

X

{x2At : �
a
t (px)=p}

qx, p � 0.

The relative depth profile Db

t
(·) of the bid side of the LOB Lt at time t is

similarly given by

Db

t
(p) := Dt(Bt � p) =

X

{x2Bt : �
b
t (px)=p}

qx, p � 0.

Definition 1.2.9 (Mean relative depth profile). The mean relative depth

profile D
a

t1,t2
(·) of the ask side on the time interval [t1, t2] is defined as

D
a

t1,t2
(p) :=

1

t2 � t1

Z
t2

t1

Da

t
(p)dt, p � 0.

The mean relative depth profile D
b

t1,t2
(·) of the bid side on the time interval

[t1, t2] is defined analogously.

For example, D
b

t1,t2
(0) is the average number of units sitting at the best bid

price.
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1.2.3 Imbalances

We end this section with two measures of imbalance between buyers and

sellers. These two quantities play an important role in Chapters 2 and 4.

In the next section, we will review empirical studies that investigate their

influence on the price dynamics.

The queue imbalance is an indicator of the shape of the level-I LOB.

Definition 1.2.10 (Queue imbalance). The queue imbalance (QI) of the

LOB Lt at time t is defined as

QIt :=
|Dt(Bt)|� |Dt(At)|

|Dt(Bt)|+ |Dt(At)|
. (1.1)

Thanks to the normalisation, QIt 2 [�1, 1]. Some studies however work with

the unnormalised QI (i.e., the denominator in (1.1) is replaced by one). A

positive QI, for example, means that the cumulative size of orders sitting at

the best bid price is larger than at the best ask price, which can be interpreted

as a buy pressure.

The order flow imbalance, introduced by Cont et al. [36], measures the dif-

ferential between the inflows of level-I buy and sell orders.

Definition 1.2.11 (Order flow imbalance, ask events, bid events). The order

flow imbalance (OFI) between times t1 and t2 is defined as

OFIt1,t2 := Bidt1,t2 � Askt1,t2 ,

where Bidt1,t2 (respectively Askt1,t2) is the cumulative size of bid (respectively

ask) events in the time interval (t1, t2]. We count as bid events: level-I buy

orders and level-I sell cancellations (analogous statement for ask events).

1.3 A variety of motivations

Quantifying and understanding the dynamics of LOBs is crucial in many

interconnected aspects.
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1.3.1 Price formation mechanism

LOB models can shed light on the forces that drive the market and the

way they combine to generate price moves and volatility. One problem is

to understand how the main (statistical) features of a LOB (e.g., the price

patterns and mean relative depth profile) derive from the strategic behaviour

of agents [108]. Another problem is to reconcile the dynamics of the price

process at large timescales (typically modelled as an Itô di↵usion) with its

behaviour at small timescales (typically modelled as a pure jump process)

[34, 66, 71, 71].

1.3.2 Regulation

The resolution parameters and the priority rules can lead to di↵erent market

dynamics and statistical regularities, because of the di↵erent order place-

ment strategies they incentivise. For instance, one issue for exchanges and

regulators is to predict the e↵ect of a change in the tick size on the cost

of trading [64]. The analysis of LOBs can also provide new perspectives on

market stability. Indeed, studying the market dynamics from the viewpoint

of LOBs allows one to take into account the liquidity factor, that is, how

quickly one can trade large quantities without significantly impacting the

price [44]. More generally, the field of LOB modelling can assist regulators

in the design of their policies.

1.3.3 Quantitative trading

LOB modelling is obviously important for practitioners who seek optimal de-

cisions when trading. One major question, known as the optimal liquidation

problem, is to find the best possible way to sell (or buy) a large number of

shares in a given time window (from one hour to a few trading days) [5]. As

one usually searches for an optimal sequence of smaller trades, understand-

ing the impact of a trade on the LOB dynamics, and in particular the price,

seems crucial to tackle this question e↵ectively. Optimal order placement is

another topic that requires a deep comprehension of LOBs [35]. In this topic,
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one aims to determine the optimal way of combining limit and market orders,

potentially on multiple trading venues, to quickly trade a small quantity of

a considered asset.

The analysis of LOB data can also reveal robust statistical patterns that can

be exploited to increase the profit of market makers or generate alpha, that

is, returns that beat the overall market performance [23, 82]. In particu-

lar, statistically accurate LOB models can inspire or enhance high-frequency

trading algorithms that operate at very short timescales and react to the

order flow in sometimes less than a millisecond. Besides, the development of

realistic models can result in reliable market simulation tools [97], which are

essential for the backtesting of trading strategies.

1.4 Empirical studies

In this section, we finally turn to the empirical studies on LOB data. We

shall here focus on model-free analyses, that is, no specific stochastic process

is postulated as the data generating process. The application of Hawkes

processes and continuous-time Markov chains to high-frequency data will be

covered in Sections 1.6 and 1.7, respectively. We put up a list of statistical

facts that seem robust across all studies. We will later refer to these by using

their number in the list (e.g., Fact (xii)).

Before reviewing studies on aspects that are more specific to LOBs (the mid

price is not a concept that is specific to order-driven markets), we must men-

tion the stylised facts of (mid) price returns, which are now well established,

at least for stock prices [33, 25]. LOB models that aim for a realistic be-

haviour (e.g., LOB simulators) should generate a price process that exhibits

such statistical features.

(i) Heavy tails of mid price returns and aggregational Gaussian-

ity. The unconditional distribution of mid price returns (R(⌧)
tn
)n2N (cf.

Definition 1.2.6) displays heavy tails. As the sampling time step ⌧ in-

creases, the shape of the distribution changes and resembles more and
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more a normal distribution. Cont [33] calls this phenomenon aggrega-

tional Gaussianity.

(ii) Uncorrelated returns. The mid price returns have a negligible au-

tocorrelation except over short time scales, for which it is reported to

be negative.

(iii) Volatility clustering. The autocorrelation function �vol(·) of the

squared mid price returns ((R(⌧)
tn
)2)n2N is positive and decays slowly.

Some people argue that it exhibits long memory, with �vol(n) ⇠ n�↵

for some ↵ 2 (0, 1) (it decays as a non-integrable power law), but this

is subject to debate.

1.4.1 Unconditional statistical regularities

Compared to the mid price returns, establishing a consensus on the stylised

facts of LOB-specific aspects seems more delicate. Not only the number

of variables to investigate is significantly larger, but di↵erent studies can

sometimes reach contradictory conclusions. For instance, the distribution

of the size of limit orders on the Nasdaq and the Island ECN has radically

di↵erent shapes [27, 90]. Special rules such as bilateral trade agreements (on

foreign exchange markets) can also alter the statistical features of the data

[54]. Moreover, since the statistical characteristics of LOBs must somehow

result from the traders’ behaviour, there is no apparent reason to expect

stationary data. In addition to the daily to monthly potential changes in

behaviour, the regulatory and technological transformation of markets has

probably impacted the decision-making process of agents over the last two

decades. This possible non-stationarity at multiple timescales renders any

statistical analysis more fragile and makes it di�cult to compare empirical

studies over di↵erent time periods. Arguing that there are not enough papers

using present-day data, Gould et al. [55, p. 1734] insist that “[s]tudies of

recent, high-quality LOB data that are conducted with stringent awareness

of potential statistical pitfalls are needed to understand better the LOBs of

today”.
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With the above caveats in mind, we will now proceed with presenting what

seems to be statistical regularities of LOBs, beginning with their uncondi-

tional behaviour. Our main references here are [55] and [25].

(iv) Non-Poissonian submission times. The sequence of times at which

orders are submitted cannot be described by a stationary Poisson pro-

cess, which strongly suggests that orders are not sent independently

of one another. Modelling the dependence structure between the sub-

mission times of di↵erent order types is one of the main contributions

of this thesis. Our empirical findings in Chapter 4 do confirm this

statistical regularity.

(v) U-shaped intraday seasonality. On average, the market activity,

measured by the number of orders submitted, is higher at the beginning

and end of the day, but lower around midday, exhibiting a so-called U-

shape. We do find this pattern in our empirical analysis (Chapter 4).

(vi) High autocorrelations in the order flow. Define the sign of the nth

tradeXn asXn = �1 if the trade is triggered by a buy market order and

Xn = +1 otherwise. The autocorrelation function of (Xn)n2N decays

slowly, with many studies arguing for long memory [53], although this

could be an artefact caused by structural breaks in the data [7]. This

remains true if one considers instead limit orders or cancellations [16,

84]. As suggested by Tóth et al. [120], this apparent long memory

in the order flow could be due to traders splitting large quantities to

execute, called parent or meta orders, into a sequence of smaller actual

orders, their goal being to reduce their market impact.

(vii) Power law for the relative price of orders. The distribution of the

relative price of incoming orders, �a
x�(px) and �b

x�(px) (cf. Definition

1.2.7), is close to a power law [89] with an exponent systematically

above �2, meaning that the distribution is not integrable. Bouchaud

et al. [17, p.252] found some limit orders on the Paris Bourse that would

be filled only if the mid price moved by ±50%.

(viii) High cancellation rate. Most of active orders are removed from the

20



LOB because they are cancelled, not because they are matched [55,

Section IV.C]. A a group of studies on the Island ECN, the S&P 500

futures contracts, foreign exchange markets and an exchange-traded

fund tracking the Nasdaq 100 showed that approximately 70-80% of

orders end up being cancelled. Gould et al. [55] refer to one of their

papers in preparation that shows that more than 99.99% of active or-

ders are cancelled on today’s foreign exchange markets. They suggest

that this might be due to the intensification of algorithmic trading.

(ix) Hump-shaped mean relative depth profile. The mean relative

depth profiles (N
a

t1,t2
(p))p�0 and (N

b

t1,t2
(p))p�0 (cf. Definition 1.2.9)

display a hump, meaning that, on average, the longest queue of orders

is not situated at the best bid and ask prices, but deeper in the LOB.

Gould et al. [55, Section IV.D] refer to studies on the Paris Bourse,

the Nasdaq, the Stockholm Stock Exchange and the Shenzhen Stock

Exchange. For example, one can examine the results in [17, Paris

Bourse, data from February 2001]. The location of the hump depends

on the stock or the market however.

1.4.2 Conditional behaviour in LOBs

Given the large number of variables that define the order flow and the state

of the LOB, there are potentially infinitely many conditional relationships to

investigate. However, we will focus on three conditional behaviours that are

perhaps the most robust and popular.

(x) Concave price impact. The term price impact refers to the expected

mid price shift following the submission of a single market order of size

qx. Even though di↵erent definitions are considered in the literature,

the absolute price impact is always found to be a concave function of

|qx|, usually a power law [60, 85, 105, 15]. The average price slippage

during the execution of a large quantity Q (meta or parent order) that

is split into a sequence of smaller orders is also reported to be a concave

function of Q [120].
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(xi) Price-predictive power of the QI. The QI (Definition 1.2.10) carries

information on both the direction of the next price move (up or down)

[52] and the mid price variation over a fixed (short) time window [90,

23, 82]. A positive (respectively negative) QI, close to 1 (respectively

�1), tends to be followed by an increase (respectively decrease) in the

mid price.

(xii) Prices driven by the OFI. After introducing the OFI (Definition

1.2.11), Cont et al. [36] showed that a linear regression of the mid price

increments Mt+� �Mt on OFIt,t+� results in a very good fit with an

R2 around 65%.

Facts (xi) and (xii) will be confirmed, commented and studied in Chapter 2.

For now, let us just stress that the QI and the OFI are di↵erent in nature.

The QI is a measure of the current state of the level-I LOB and informs us on

the future price move. The OFI is a measure of the level-I order flow during

a fixed time window and explains the price variation during the same time

window.

1.4.3 Large- and small-tick stocks

To end this section, we would like to explain the distinction between large-

and small-tick stocks. The ratio ⇢/Mt (tick size over current price) can be

interpreted as the relative cost of bypassing a queue of pre-existing limit

orders to gain priority (i.e., submitting a limit order one tick closer to the

mid price or a market order). Moreover, the smaller ⇢/Mt, the more there

are price levels relatively close to the mid price. For these reasons, one

can expect ⇢/Mt to influence the traders’ strategic behaviour and, thus, the

shape and dynamics of the LOB. Indeed, for large-tick stocks (high ⇢/Mt), it

is observed and generally accepted that all price levels around the mid price

are occupied by large quantities of orders while St = ⇢ holds most of the time

(locked spread) [6, 34, 14]. For small-tick stocks however, many price levels

are unoccupied, orders tend to spread across small queues and St > ⇢ holds

most of the time.
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It is important to note that Facts (xi) and (xii) are only shown to hold for

large-tick stocks and seem to fade as ⇢/Mt decreases [52]. The last part of

Chapter 2 will propose a concept of deep imbalance that (partially) restores

these statistical regularities when small-tick stocks are considered.

1.5 Different modelling approaches

The purpose of this section is to acknowledge that the general modelling

approach considered in the remainder of the thesis (stochastic modelling)

cannot answer to all the motivations mentioned in Section 1.3 and that other

complementing philosophies exist. Here, we will simply make the distinction

between agent-based and stochastic models, but a more subtle classification

and additional references can be found in [55].

On the one hand, agent-based models explicitly represent the market as an

aggregation of agents. Each agent follows a predefined objective (e.g., ex-

pected utility maximisation) or acts according to a predetermined strategy.

The goal with such models is to derive the LOB dynamics that result from

the interaction between agents. To this end, one usually needs to make some

unrealistic assumptions (e.g., each agent trades only one unit of the asset and

then leaves the market) and invoke parameters that cannot be directly mea-

sured (e.g., a risk-aversion coe�cient in a utility function). Alternatively,

when models are more realistic but intractable, one can resort to simula-

tion to study the generated market dynamics. The downside of this however

is that it becomes di�cult, or at least costly, to understand the impact of

each parameter and each model component [26]. Perhaps the main value

of agent-based models resides in their ability to explain how some statistical

regularities of LOBs stem from the strategic behaviour of traders. Therefore,

agent-based models are key at shedding light on the price formation mech-

anism and can also help regulators understand how certain rules shape the

market dynamics.

Just to mention an example, Roşu [108] proposes a model where the utility

function of impatient traders is penalised by the time it takes to match their

(limit) order. In other words, this model explores the idea that traders can
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be driven by their impatience to access liquidity. Using game theory to derive

the implied market dynamics, Roşu [108] finds that, in the model, the LOB

displays a hump-shaped profile (cf. Fact (ix)). Hence, this model explains

Fact (ix) by the existence of patient traders, who are less penalised by long

waiting times, and who anticipate large market orders and thus post limit

orders beyond the level-I LOB.

On the other hand, stochastic models describe directly the dynamics of ob-

servable market quantities (e.g, mid, ask and bid prices, order sizes, order

submission times) without giving any causal explanation of the phenomenon.

There are no explicit agents that drive the LOB. Instead, one directly mod-

els the probability distribution and dependence structure of the order flow

and/or LOB variables, the goal being to provide an accurate and/or tractable

statistical dynamic description. As we shall see, the estimation of such mod-

els from market data can provide a framework for studying the conditional

behaviour of LOBs and reveal patterns that might not be visible or measur-

able with a model-free approach. Compared to agent-based models, stochas-

tic models usually rely on more reasonable assumptions and their parameter

values can be directly inferred from the available data. That’s why they are

perhaps more suited to answer to the motivations discussed in Subsection

1.3.3 (quantitative trading).

The next two sections will review two main classes of stochastic models:

Hawkes processes and continuous-time Markov chains.

1.6 Hawkes processes

Hawkes processes, named after the person who introduced them first [62],

are a class of self- and cross-exciting processes in which events of di↵erent

types can precipitate each other. Since they break the memorylessness prop-

erty of Poisson processes, they are a potential candidate for modelling the

dependence structure of the order flow (cf. Fact (iv)). A general literature

review on Hawkes processes was proposed by Laub et al. [81] while a survey

focusing on their applications to finance was provided by Bacry et al. [10].
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1.6.1 Basics of point process theory

To introduce Hawkes processes, we briefly recall some central concepts of

point process theory [19, 40]. A de-dimensional multivariate point process

consists of an increasing sequence of positive random times (Tn)n2N and a

matching sequence of random marks (En)n2N in E := {1, . . . , de}. We inter-

pret, for any n 2 N, the pair (Tn, En) as an event of type En occurring at time

Tn. A point process can be identified by its counting process representation

N := (N1, . . . , Nde), where

Ne(t) :=
X

n2N

1{Tnt,En=e}, t � 0, e 2 E ,

counts how many events of type e have occurred by time t. The counting

process N is said to be non-explosive if limn!1 Tn = 1 with probability

one. Given a filtration F = (Ft)t�0 to which N is adapted, we say that a

non-negative F-adapted process � = (�1, . . . ,�de) is the F-intensity of N if

lim
h#0

E [Ne(t+ h)�Ne(t) | Ft]

h
= �e(t), t � 0, e 2 E .

Intuitively, �e(t) is the infinitesimal rate of new events of type e at time

t. Note that this heuristic definition will be completed by a rigorous one

in Chapter 5, where we present a theoretical framework for marked point

processes.

1.6.2 Definition and interpretation

Definition 1.6.1 (Hawkes process). Let ⌫ = (⌫1, . . . , ⌫de) 2 Rde
>0 and

k = (ke0e)e0,e2E , where ke0e : R>0 ! R�0. A point process N is a Hawkes

process with base rate vector ⌫ and excitation kernel k, abbreviated as

Hawkes(⌫,k), if N has a FN -intensity � that satisfies

�e(t) = ⌫e +
X

e02E

Z

[0,t)

ke0e(t� s)dNe0(s), t � 0, e 2 E ,
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where FN is the natural filtration of N .

To illustrate how past events may influence the arrival rate of future events,

the sample path of a univariate Hawkes process with an exponential kernel

is sketched in Figure 1.2.

time

T1 T2 T3 T4

�(t)

⌫

Figure 1.2: Sample path of a univariate Hawkes process (de = 1) with an exponential kernel
of the form k(t) = ↵ exp(��t), where ↵,� 2 R>0.

The component ke0e of k determines the magnitude and the timescale of

the excitation e↵ect that events of type e0 have on events of type e. More

precisely, an event of type e0 2 E at time T = Tn for some n 2 N increases the

infinitesimal rate of new events of type e 2 E at time t > T by ke0e(t � T ).

Notice that when k ⌘ 0, the Hawkes process collapses to a multivariate

Poisson process with rate ⌫.

1.6.3 Cluster representation, endogeneity and stability

Additional intuition on Hawkes processes can be gained by understanding

their cluster representation [63, 73], which we here summarise for the uni-

variate case (de = 1). First, generate a Poisson process with rate ⌫ and

denote by G0 (generation 0) the corresponding set of time points. Then,

apply the following recursion. For each point t0 of the nth generation Gn,

generate a Poisson process starting at t0 with inhomogeneous rate k(t � t0),

t > t0, and denote by Gt
0
n+1 the corresponding set of time points. Genera-

tion n + 1 is defined by Gn+1 := [t2GnG
t

n+1. Sorting the superposition of

all generations [n2NGn into an increasing sequence of random times (Tn)n2N
defines a Hawkes(⌫, k).

Every event time t from generation Gn, n � 1, is the children of an event
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time t0 < t from the previous generation Gn�1. Points from the initial gen-

eration G0 are exogenous whereas points from all the other generations are

endogenous. In spite of this very transparent endogeneity and even though

it has been shown that Hawkes processes capture the Granger causality be-

tween di↵erent event types [45], one should remain careful and avoid saying

that “t0 causes t”. Large [78] prefers instead the expression “t0 precipitates

t”.

The cluster representation of Hawkes processes allows us to study their dy-

namics using the theory of branching processes [59], in particular multi-type

Galton-Watson processes. Remaining in the univariate case (de = 1), each

event generates on average ⇢ := ||k||1,1 :=
R1
0 k(t)dt children. Consequently,

each element in G0 generates on average

⇢|{z}
mean number of children

+ ⇢⇥ ⇢| {z }
mean number of grandchildren

+ . . . =
X

n�1

⇢n

events in total, which is finite if and only if ⇢ < 1. Hence, the process is

non-explosive under the su�cient condition that ⇢ < 1. This condition also

implies the existence of a stationary version [40, p. 184], but, again, is not

necessary.

In the multivariate case, an analogous result holds, where ⇢ becomes the

spectral radius of the matrix of kernel norms. Furthermore, still under the

condition ⇢ < 1, convergence to a unique stationary version can be proved.

We recall that the spectral radius of a square matrix is the largest modulus

of its eigenvalues.

Theorem 1.6.2 (Stability condition). Define the matrix M = (mij) where

mij := ||kji||1,1, i, j 2 E , and denote its spectral radius by ⇢. If ⇢ < 1,

Hawkes(⌫,k) converges to a unique non-explosive stationary version.

Proof. See Brémaud and Massoulié [21, Theorem 7].
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1.6.4 Estimation techniques

The problem of estimating the base rate vector ⌫ and kernel k from the

observation a sample path has been the focus of many publications.

Thanks to the general theoretical result that expresses the likelihood of a

sample path in terms of the intensity process [40], parametric kernels can

be estimated by a numerical maximisation of the likelihood function [98,

18]. However, computing the likelihood is very costly as it requires O(N2)

operations, where N is the number of events in the sample path, which

makes the optimisation problem practically insolvable. Happily, in the case

of (a superposition of) exponential kernels, that is, ke0e(t) = ↵e0e exp(��e0et),

↵e0e 2 R�0, �e0e 2 R>0, the computational complexity reduces to O(N) [102].

For this reason, parametric estimation via maximum likelihood is always

performed for kernels of this special form in the literature, even though Ogata

[99] reminds us that other more general parameterisations can also reduce

the complexity to O(N). More details will be given in Chapter 3 where we

extend this parametric framework to state-dependent Hawkes processes. To

close this paragraph on parametric estimation, we note the availability of the

generalised method of moments [38, 39].

In terms of non-parametric techniques, perhaps the most popular and ro-

bust one was introduced by Bacry and Muzy [12]. It consists in solving a

Wiener-Hopf equation that links the kernel k to the second-order statistics

of the process and can be adapted to the case of slowly decreasing kernels

(e.g., power laws). Another interesting approach was proposed by Kirchner

[77] who approximates a Hawkes process by an integer-valued vector autore-

gressive time series. Additional references and non-parametric techniques are

covered in [10].

Finally, we would like to mention the existence of an alternative technique

based on an Expectation-Maximisation (EM) algorithm that takes advantage

of the cluster representation and can be used in both parametric and non-

parametric frameworks (see, again, [10] and references therein).
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1.6.5 Applications to LOB modelling

The survey [10] demonstrates that Hawkes processes have found numerous

applications in finance. In particular, they have been used as models of

market risk [46], market endogeneity [49], market impact [11], the e↵ect of

news announcements [107] and the microstructure price [8], even in the con-

text of optimal execution [4]. More generally, the Hawkes-process approach

fits into the longer trend of using point processes to model sequences of

irregularly-spaced market events in continuous time [47, 61, 13]. Besides,

the study of scaling limits of Hawkes processes has provided a new way of

understanding how the large-timescale dynamics of a stock price derive from

the short-timescale LOB behaviour [71], with Jaisson and Rosenbaum [72]

o↵ering the first microstructural explanation of the roughness of volatility,

recently discovered by Gatheral et al. [50]

Coming back to the focus of this thesis, Hawkes processes have been used

as a model of the (level-I) order flow. While di↵erent model specifications

and estimation techniques have been used, the general approach remains the

same. First, one specifies a list of order categories that is used to classify or

discard the orders in the data. For example, one might only retain the sub-

mission times of market orders and classify them according to their direction

(buy or sell). Then, one estimates a Hawkes process from the timestamps of

the selected event types, enabling one to gain new insights on the dependence

structure of the order flow.

One can (and we will) try to explain the shape of the estimated kernel com-

ponents in terms of the traders’ strategic behaviour. However, the kernel

arguably captures the aggregate market reaction, which is very probably the

product of numerous heterogeneous agents. Inferring the traders’ behaviour

from the estimated kernel remains thus a delicate exercise. The kernel es-

timate can also be understood as a measure of market impact, that is, how

orders influence the LOB dynamics, complementing the studies on price im-

pact (Fact (x)). It is also interesting to note that estimating the kernel k

somehow implies disentangling the impact of orders to infer the contribution

of each event type in isolation, which model-free approaches like in [14] can-
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not achieve. Hawkes processes essentially provide us with a new lens to read

the market reaction to di↵erent order types and their interaction.

Large [78] was the first to use a Hawkes process as a model of the order flow

in a LOB market. Using a parametric framework with exponential kernels,

his focus is on formalising and measuring the resiliency of the LOB, that is,

its capacity to replenish following a market order that moves the mid price.

He considers de = 10 event types: buy/sell market/limit orders that move

the mid price, buy/sell market/limit orders that do not move the mid price

and cancellations on the bid/ask side. Focusing on the level-I order flow,

Bacry et al. [9] apply their non-parametric estimation technique to de = 8

event types: buy/sell market/limit/cancel orders that do not change the mid

price and orders that push the mid price up/down. Rambaldi et al. [106]

perform a similar study but take into account the size of orders, increasing

the number of event types to de = 24. The type of an event is determined by

three components: the order type (market, limit, cancellation), the direction

(buy, sell) and the bin in which the order size falls (4 bins are defined). From

these three studies, we stress the following main findings.

• The self-excitation e↵ects dominate the cross-excitation e↵ects, except

for price moves, as upwards (respectively downwards) moves mainly

precipitate downwards (respectively upwards) moves.

• The dominating excitation e↵ects are persistent, that is, the corre-

sponding kernel components decrease slowly. Note that this first two

items are reminiscent of and consistent with the high autocorrelations

in the order flow (Fact (vi)).

• There is a buy-sell symmetry, meaning that self-excitation on the bid

side and the cross-excitation from the bid side to the ask side mirror

the self-excitation on the ask side and the cross-excitation from the ask

side to the bid side, respectively.

• A high degree of endogeneity is observed, although no actual measures

of the spectral radius are given.
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• In [9] and [106], the timescale of the self- and cross-excitation e↵ects

can be very short, in the order of 0.1–1 millisecond. The timescales

reported by Large [78] are much larger (in the order of 10 seconds),

most probably because of the poor timestamp precision in his data,

which is of one second.

Except for the second item, our estimation results in Chapter 4, where we

apply state-dependent Hawkes processes to high-quality LOB data, are con-

sistent with these findings.

1.7 Continuous-time Markov chains

We now turn to another major LOB modelling approach which is based on

continuous-time Markov chains.

1.7.1 Zero-intelligence models

The first stochastic models of the LOB viewed the order flow as a homoge-

nous Poisson process [112], neglecting the dependence structure empirically

observed (Fact (iv)). This assumes that agents are submitting orders inde-

pendently of the LOB history, manifesting no strategic behaviour, whence

the name of zero-intelligence models.

In spite of this unrealistic assumption, this pioneering approach has led to

interesting results. Not only the probability of di↵erent events conditional

on the current state of the LOB can be computed in (semi-) closed form

[37, 34], but the volatility of the price process can be explicitly linked to the

parameters of the order flow [34, 1].

As an illustrative example, let us review in more detail the model of Cont

et al. [37]. Orders, assumed to be of unit size, are placed on a finite grid

{1, ..., N} of price levels, where N is taken large enough. The queue lengths

on this price grid are represented by the process Xt = (X1
t
, ..., XN

t
), which

in terms of the depth profile Dt (cf. Definition 1.1.6) is simply given by

Xn

t
= Dt(n⇢), where remember that ⇢ is the tick size. The positions of the
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best bid and ask queues on the finite grid are denoted by nb

t
:= Bt/⇢ and

na

t
:= At/⇢, where remember that Bt and At are the bid and ask prices.

The arrival rate of limit orders at a given price level is just a function of the

distance to the opposite best quote. For example, sell limit orders with price

level nb

t
+ i, i � 0, are submitted according to a Poisson process with rate

�(i) 2 R�0. Similarly, cancellations at a distance i 2 N from the opposite

best quote are given by a Poisson process with rate ✓(i)X
n
a/b
t ±i

t : the rate is

proportional to the number of outstanding orders at the corresponding price

level. The submission of market orders is also described by independent

exponential durations: trades are described by two Poisson processes with

rate µ, one for buys and one for sells. All Poisson processes are assumed

mutually independent. The process Xt is thus a continuous-time Markov

chain with state space ZN , meaning that the probability distribution of future

states depends only on the current state, as opposed to the full history.

Employing Laplace transform methods, Cont et al. [37] are able to compute

several conditional probabilities, in particular the probability that the next

mid price move is an increase. The model is strikingly able to replicate

Fact (xi) (price-predictive power of QI): the probability of an upward move

increases as the best bid queue lengthens and the best ask queue remains

fixed. We note that a simplified version of this model in [34], which accounts

only for the level-I LOB, yields a similar relationship. This finding suggests

that Fact (xi) is mainly a mechanical e↵ect that can be explained without

appealing to the anticipation and strategic behaviour of agents. Our empir-

ical results in Chapter 2 will support this hypothesis as well. Finally, let’s

also mention that the model reproduces Fact (ix) (hump-shaped profile) and

generates a price process with a volatility that has realistic magnitude.

1.7.2 Queue-reactive models

Huang et al. [65] propose a model where the arrival rates of orders can de-

pend on the relative depth profile, going beyond zero-intelligence models but

remaining in the setting of continuous-time Markov chains. Their approach

introduces a concept of reference price Pt, di↵erent from the mid price, that
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can be driven by both endogenous and exogenous factors and moves on the

shifted grid {(n + 0.5)⇢ : n 2 N}. The other component of the model, de-

noted by Qt = (Q�N

t , ..., Q�1
t , Q1

t
, ..., QN

t
), is the depth profile relative to the

reference price. For example, when i > 0, Qi

t
is the total size of outstanding

sell limit orders with price Pt + (i� 0.5)⇢. Most importantly, the point pro-

cess that describes the order flow has an intensity that is a function of the

relative depth profile, that is �(t) = f(Qt), and, thus, is not necessarily a

Poisson process anymore.

The estimation of this queue-reactive model for N = 3 and di↵erent forms

of f reveals that the arrival rates are indeed state-dependent. For example,

buy market orders are submitted faster when the best ask queue is relatively

short. This could be explained by market participants expecting a mid price

increase (Fact (xi)), making it more interesting to consume the remaining

orders in the best ask queue.

Huang and Rosenbaum [66] extend this queue-reactive model to a more gen-

eral class of processes, although we note that the behaviour of the reference

price and its impact on the LOB dynamics are slightly di↵erent in this follow-

up. In particular, the e↵ect of LOB events on the reference price are not in-

stantaneous anymore. This comprehensive class of continuous-time Markov

chains nests for example the reduced-form model in [34] (a slight variation

of the zero-intelligence model in [37]) and an analogue of the original queue-

reactive model in [65]. Under general assumptions, Huang and Rosenbaum

[66] prove that the system is ergodic and the rescaled reference price process

converges to a Brownian motion.

Even though this framework allows for a general dependence of the order flow

on the relative depth profile, it is important to clarify that it does not consider

all possible state variables. For instance, the actual number of orders in a

queue as well as their individual sizes and submission times might influence

the behaviour of traders. These state variables of the LOB are unfortunately

not contained in the relative depth profile.

The model of Cartea et al. [23] which describes the joint evolution of the mid

price, spread and QI as a continuous-time Markov chain with state-dependent
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arrival rates could also be classified as a queue-reactive model, although it

does no fall exactly within the framework of Huang and Rosenbaum [66].

To end this section, let us mention that Swishchuk and Vadori [117] extend

the zero-intelligence model in [34] in a di↵erent direction. They allow the type

of the next event and the probability distribution of its arrival time to depend

on the type of the previous event. Since the times between events are not

necessarily driven by exponential random variables anymore, this extension

leaves the setting of continuous-time Markov chain. The new model must be

studied from the viewpoint of Markov renewal processes.

1.8 A dichotomy to resolve

In light of the previous two sections, a dichotomy between Hawkes processes

and continuous-time Markov chains emerges.

Shorthand 1.8.1. Throughout the thesis, we will refer to the dichotomy

that is explained in this section as the HM dichotomy. This shorthand is

simply based on the last-name initials of Alan Hawkes and Andrey Markov.

While LOB models based on Hawkes processes have been rather successful

in describing the dynamics of the order flow, they do not to incorporate any

endogenous state variables describing the LOB, such as prices, volumes or

the bid–ask spread, nor their influence on the arrival rate of orders. The

Hawkes-process models that we reviewed in Section 1.6 account only for the

dynamics of the order flow and ignore the state of the underlying LOB. We

note that Hawkes processes have been used as building blocks to full LOB

models [97, 2], but the arrival rate of orders in these models is still not

influenced by the state of the LOB. In e↵ect, the existing Hawkes-process

models neglect the feedback loop between the order flow and the LOB.

By contrast, models that are based on continuous-time Markov chains focus

on the state of the LOB, represented by its depth profile. In particular, the

queue-reactive models assume that the arrival rate of orders is exclusively

driven by the shape of the LOB. This has the merit of introducing a feedback
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loop between the order flow and the state of the LOB but it omits the self-

and cross-excitation e↵ects evidenced by the empirical work based on Hawkes

processes.

In short, each of these two approaches to LOB modelling has desirable qual-

ities that the other lacks. Hawkes processes and continuous-time Markov

chains can have either an event viewpoint or a state viewpoint, respectively.

The former approach models the aggregate market reaction to di↵erent event

types while the latter captures the adjustment of the market dynamics to dif-

ferent shapes of the LOB. In practice, the agents’ strategic behaviour prob-

ably takes into account both the (recent) order flow history and the current

state of the LOB, as both carry di↵erent, yet complementing, information.

The dichotomy between Hawkes processes and Markovian models, and the

need for something bridging the two was also noticed by Bacry et al. [9,

p. 1190–1191] , Taranto et al. [118] and Gonzalez and Schervish [51]. In fact,

Gonzalez and Schervish [51] show empirically that the type of the next order

depends on both the type of the previous order and the state of the LOB,

which highlights the need for a more general modelling framework that can

somehow combine the two approaches.

Resolving the HM dichotomy is the high-level motivation and contribution

of this thesis.
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2
Preliminary data analysis

In this chapter, we present empirical results that were obtained relatively

early in the PhD process. On top of providing additional motivation for

addressing the HM dichotomy, we investigate further some of the statisti-

cal regularities discussed in the previous chapter, namely Facts (xi) (price-

predictive power of the QI) and (xii) (prices driven by the OFI) as well as

the distinction between small- and large-tick stocks. We find that the QI

(cf. Definition 1.2.10) is a significant state variable of the LOB in two ways

(Section 2.2). First, even if the OFI is the main pathwise driver of price

moves, the QI carries complementing information that dominates on aver-

age. Second, the aggregate market reaction to order flow events varies with

the QI. Furthermore, we propose a concept of deep imbalance which is able

to restore the price-predictive power of the QI for small-tick stocks (Section

2.3). This chapter is also an opportunity to introduce the data that is used

throughout this thesis (Section 2.1).
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2.1 LOBSTER data

The LOB data that we use is supplied by LOBSTER⇤ (Limit Order Book

System – The E�cient Reconstructor), a tool that o↵ers high-quality histor-

ical records of the LOB, for all the stocks that are traded on the Nasdaq.

LOBSTER is based on Nasdaq’s Historical TotalView-ITCH data†, which is

a record of the “standard Nasdaq data feed for serious traders”‡. However,

this record consists only of the sequence of orders and, thus, LOBSTER has

its own algorithm to reconstruct the evolution of the LOB throughout each

trading day.

When requesting data for a given stock, one must specify a number of levels

N . For each trading day, LOBSTER supplies the level-N order flow and

level-N LOB (cf. Definition 1.2.5) in the form of two CSV files: the message

file and the order book file. Each row in the message file corresponds to an

order flow event and intersects six columns:

• the timestamp of the event which, for the time periods we study, is

always stored with nanosecond precision;

• the event type, stored as an integer between 1 and 7 (see Table 2.1);

• the order ID, a unique reference number that identifies the limit order

associated to the event;

• the size, that is, the number of shares traded, cancelled or added to the

LOB;

• the price of the limit order associated to the event;

• the direction of the limit order associated to the event (buy or sell).

Regarding the order book file, it stores the first N ask and bid prices as well

as the outstanding quantities at those prices. More precisely, the ith row of

⇤
https://lobsterdata.com

†
http://nasdaqtrader.com/Trader.aspx?id=ITCH

‡
http://www.nasdaqtrader.com/Trader.aspx?id=Totalview2
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Event type number Description

1 Submission of a new limit order

2 Partial cancellation of a limit order

3 Total cancellation of a limit order

4 Execution of a visible limit order

5 Execution of a hidden limit order

6 Aggregate of trades that happen during an auction

7 Trading halt indicator

Table 2.1: Event types in LOBSTER.

the order book file stores the level-N depth profile following the ith event in

the message file as follows (cf. Definition 1.2.4):

A(1)
i
, |Di(A

(1)
i
)|, B(1)

i
, |Di(B

(1)
i
)|, . . . , A(N)

i
, |Di(A

(N)
i

)|, B(N)
i

, |Di(B
(N)
i

)|.

Note that the order book file does not provide the detailed list of limit orders

at each price level. The data does not inform us on the number of outstanding

orders in each queue as well as their respective sizes and submission times.

For this reason, a more accurate name for this file would have been the depth

profile file.

It is also important to stress that each row in the message file does not

correspond to the submission or cancellation of an order, but to one of the

event types in Table 2.1. In particular, instead of recording the submission

of buy (respectively sell) market orders, LOBSTER saves the execution of

sell (respectively buy) limit orders. As a market order can be matched with

more than one limit order, the submission of a market order can generate

multiple consecutive rows with tied timestamps in the message file. Even

though it is in theory possible that two separate market orders are sent at

exactly the same time (with nanosecond precision), we will always count a

string of consecutive events with type numbers in {4, 5}, tied timestamps

and identical directions as a single market order.

As shown in Table 2.1, the Nasdaq allows market participants to hide their
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limit orders. A hidden limit order is simply not displayed in the data feed

and thus not visible by other market participants. At each price level, hidden

limit orders must however always give priority to visible limit orders, that

is, a hidden limit order can be matched with an incoming market order only

after all visible limit orders with the same price are matched.

In the US equity markets, the tick size is fixed to $0.01 by Rule 612 of

Regulation National Market System (Reg NMS), with the exception of stocks

priced below $1.00 per share. For all the stocks we will consider, the tick

size ⇢ is equal to $0.01. Let us also clarify that the Nasdaq operates a time-

priority rule (cf. Subsection 1.1.2).

2.2 The queue imbalance: a significant state variable

2.2.1 The relationship between returns and imbalances

As already discussed, Cont et al. [36] defined a new variable called the OFI

in order to explain the relationship between price moves and the level-I or-

der flow. Remember that a positive (respectively negative) OFI essentially

indicates an excess of buy (respectively sell) level-I orders. For the purpose

of this section, we also need to recall the definition of bid and ask events (cf.

Definition 1.2.11).

Inspired by a stylised view of the LOB where all price levels are occupied

by the same amount of outstanding quantities, Cont et al. [36] propose the

following linear regression model, where (Xt) is the log-mid-price process,

that is, Xt = lnMt.

Linear Regression Model 1.

Xt+� �Xt = �N(t)OFIt,t+� + "(1)
t,t+�

Here, the function N : R! N maps time to the number of the corresponding

time bin. Over each time bin, the coe�cient � is assumed to be constant. For

time bins of 30 minutes and � = 10 seconds, Cont et al. [36] find an average
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coe�cient of determination R2 of 65% when performing an ordinary least

square regression over 50 stocks and one calendar month of data. Note that

in the original paper, Model 1 is specified in terms of mid price increments

instead of mid price returns. We prefer to work with (Xt) since it guarantees

a positive price.

This result catches our attention as it gives an explicit pathwise relation

simplifying the functional that maps the initial state of the LOB and the

subsequent order flow to the corresponding mid price trajectory. Given the

initial state Lt of the LOB at time t and the detailed order flow OFt,t+� in

the time interval (t, t+�], there is a deterministic functional '(Lt, OFt,t+�)

that returns the log-price increment Xt+��Xt. The quantity '(Lt, OFt,t+�)

is computed simply by applying the LOB mechanism described in Section

1.1. However, even if this functional is straightforward to compute on a case

by case basis, it cannot be written in an explicit form that would inform us

on its general behaviour. The finding of Cont et al. [36] reveals that this

functional can in fact be approximated by

Xt+� �Xt = '(Lt, OFt,t+�) ⇡ �N(t)OFIt,t+�. (2.1)

As a side remark, this approximation could be an e↵ective shortcut for un-

derstanding how the large-timescale dynamics of the mid price derive from

the short-timescale behaviour of the LOB. Given any model of the level-I or-

der flow, Equation (2.1) can virtually be used as a first order approximation

of the implied price process.

Putting aside the fact that �N(t) is a proxy for the average relative depth

profile in the considered time bin, it is striking that the approximation in

(2.1) does not use the information contained in the initial state Lt. Moreover,

how can the price-predictive power of the QI (Fact (xi)) be explained from

Model 1?

To investigate this question, we first use LOBSTER data on the stock of

Apple (AAPL) from the 8th of September 2015. As demonstated in Figure

2.1, we observe that Fact (xi) holds indeed: a higher QI implies an increased

expected mid price. However, as shown in Figure 2.2, it happens that, on the
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Figure 2.1: Average mid price returns conditioned on the QI for the stock of Apple (AAPL)
on the 8th of September 2015 between 10.30am and 4pm. The mid price returns are computed
over a time window of one second. We condition on the value of the QI at the beginning of
the time window. The values of the QI are split into 7 bins.

Figure 2.2: Average ask and bid arrival rates conditioned on the QI for the stock of Apple
(AAPL) on the 8th of September 2015 between 10.30am and 4pm. The arrival rates are
computed over a time window of one second. We condition on the value of the QI at the
beginning of the time window.
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same day, the average arrival rate of ask events is bigger than the average

arrival rate of bid events, even when we condition on the QI. This implies that

the average OFI conditioned on the QI is systematically negative. Hence, if

one applies Model 1 and treats the residuals "t,t+� as pure noise, one should

conclude that the expected mid price returns conditioned on the QI are

always negative, which is of course inconsistent with Figure 2.1. This suggests

that the residuals "t,t+� must depend on the LOB’s shape and cannot be

treated as purely exogenous variables.

To check this claim, we extend Model 1 by introducing the QI as an additional

explanatory variable.

Linear Regression Model 2.

Xt+� �Xt = �N(t)OFIt,t+� + �N(t)QIt + "(2)
t,t+�

We compare Models 1 and 2 using 4 months of data (5 Jan. 2016 to 29 Apr.

2016) on the stocks of Apple (AAPL) and Twitter (TWTR). In the following,

we only discuss the results for Twitter but similar plots are obtained for

Apple. As in [36], we split trading days (9.30am to 4pm) into 13 bins of

30 minutes but choose � = 1s. For every trading day, we estimate the

parameters � and � by performing an ordinary least square regression over

each 30-minute bin separately.

Figure 2.3 shows that most of the variance is explained by the OFI with an

average R2 around 70% for Model 1 (if one disregards the first 30 minutes

of trading). Model 2 allows to slightly increase the R2 but the contribution

of the QI remains small. Nevertheless, for almost all days across all time

bins, t-tests with a significance level of 1% reject the null hypothesis that

�n = 0 (cf. Figure 2.4). Moreover, Figure 2.5 shows that the residuals "(1)
t,t+�

in Model 1 depend on the LOB’s shape as claimed previously. This figure

estimates the functions q 7! E["(i)
t,t+�|QIt = q], i = {1, 2}, by splitting the

possible values of QIt into 11 bins. One can observe that the dependence of

the residuals on the QI is significantly reduced in Model 2.

This finding shows that the price-predictive power of the QI cannot be ex-
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Figure 2.3: Average and standard deviation of R2 for each 30-minute bin of the day in Linear
Regression Models 1 and 2 (� = 1s). We use 4 months of data (Jan-Apr 2016) for the stock
of Twitter.

Figure 2.4: Significance of the QI in Linear Regression Model 2 (� = 1s). For each day and
for each time bin, we test the null hypothesis that �n = 0 using a t-test. The plot shows, for
each time bin, the fraction of days for which the null hypothesis was rejected at a significance
level of 1%.
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Figure 2.5: Average of the residuals in Models 1 and 2 conditioned on the QI.

plained from Model 1. The reason a positive QI is followed on average by

a positive mid price return is not an adjustment of the order flow to the

LOB’s shape such that bid events outweigh ask events. Instead, these re-

sults suggest that the influence of the QI on the mid price moves is mainly

mechanical. A positive QI means that, the amount of bid events required to

increase the mid price is smaller than the amount of ask events required to

decrease it. The QI acts virtually as an initial o↵set to the OFI. This can be

summarised by rewriting the approximation in Equation (2.1) as

Xt+� �Xt = '(LOBt, OFt,t+�) ⇡ �N(t)QIt + �N(t)OFIt,t+�. (2.2)

While from a pathwise perspective the OFI is the main driver of price moves,

the arrival rates of bid and ask events compensate each other such that, on

average, the mechanical e↵ect of the QI dominates.

2.2.2 Influence on the market impact of LOB events

The application of Hawkes processes to LOB data shows that the order flow

exhibits significant self- and cross-excitation e↵ects (cf. Subsection 1.6). This
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Figure 2.6: Influence of the queue imbalance on the excitation e↵ects in the level-I order
flow. For each possible couple of event types (e, e0) 2 {ask, bid}2, we plot I(e ! e

0
| ·) as a

function of the QI (the bin’s mid point). We use the data from 10.30am to 4pm on the 8th of
March 2016 for the stock of Twitter. For example, the curve b>a corresponds to the couple
(e, e0) = (bid, ask).

subsection presents evidence that the aggregate market reaction to order flow

events depends in fact on the QI and is thus state-dependent.

We split the possible values of the QI into nbins = 5 bins. For each bin

i 2 {1, ..., nbins} and for each couple of event types (e, e0) 2 {ask, bid}2, we

do the following: for each event of type e such that the value of the QI just

after the event falls in the ith bin, we count the number N(e0  e | i) of events

of type e0 within the past � seconds (weighted by the size of orders) and the

number N(e ! e0 | i) of events of type e0 within the next � seconds (again,

weighted by the size of orders). We then compute the empirical average of

N(e ! e0 | i) � N(e0  e | i), denoted by I(e ! e0 | i), which we interpret as

a proxy of the excitation e↵ect of events of type e on events of type e0 when

the QI is in the ith bin.

Figure 2.6 plots I(e! e0 | i) as a function of the bin’s mid point for the four

possible couples (e, e0) 2 {ask, bid}2. Here, we use the data on the stock of
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Twitter from the 8th of March 2016 and we choose � = 1s. Consider for

example the curve b>a which corresponds to the function I(bid ! ask | ·).

When the QI is close to 1 (buy pressure), the occurrence of a bid event tends

to increase the arrival rate of ask events. However, when the QI is close to -1

(sell pressure), the impact of bid events is di↵erent as they tend to decrease

the arrival rate of ask events. Similar observations can be made for the other

curves. Furthermore, this pattern is robust across the 4 months of data (5

Jan. 2016 to 29 Apr. 2016).

If the order flow were described by a Hawkes process as in Section 1.6, and

thus not influenced by the LOB, all the curves in Figure 2.6 should be flat.

Therefore, this empirical result can be taken as evidence that the impact

of order flow events varies with the state of the LOB. Actually, this sug-

gests that the excitation kernel of the Hawkes process could depend on the

LOB’s shape, an idea that is explored in detail in Chapters 3 and 4. More

generally, this finding complements the existing empirical evidence on the

state-dependence of the order flow (Section 1.7) and provides additional mo-

tivation for addressing the HM dichotomy.

2.3 From level-I to deep imbalances

As mentioned in Subsection 1.4.3, the relationship between returns and im-

balances, that is, Facts (xi) and (xii), seems to fade as one goes from large-

tick stocks to small-tick stocks [52]. In this section, we try to restore these

statistical regularities for small-tick stocks by introducing a concept of deep

imbalance.

Facts (xi) and (xii) suggest that mainly orders with prices that are close

enough to the mid price influence price returns. However, for large-tick

stocks, the relative distance between the mid price and the bid and ask

prices is usually much larger than for small-tick stocks. This implies that,

for small-tick stocks, level-n orders with n > 1 can still be close enough to the

mid price to influence its trajectory. The following definition of the deep QI

applies this idea of relative distance and takes into account the contribution

of orders that sit deeper in the LOB.
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Definition 1 (Deep queue imbalance). Let � > 0. The deep queue imbalance

(deep QI) at time t is defined as

QI�
t
:=

P
Mte

��<p<Mt
|Dt(p)|�

P
Mt<p<Mte

� |Dt(p)|P
Mte

��<p<Mt
|Dt(p)|+

P
Mt<p<Mte

� |Dt(p)|
.

For example, to compute the contribution of buy limit orders, one adds up the

outstanding quantities at all the prices levels in the range (Mt exp(��),Mt),

that is, within a distance � of the mid price on a logarithmic scale. Depending

on the value of � and the current state of the LOB, this computation can

involve more than the level-I LOB. In a similar fashion, we define the deep

OFI, denoted by OFI�
t1,t2

, where one considers the order flow within a log-

distance � of the log-mid-price, instead of the level-I order flow (cf. Definition

1.2.11).

We use data on the stocks of Amazon (AMZN, $550), Google (GOOG,

$650), iShares NASDAQ Biotechnology Index (IBB, $300), Intuitive Surgical

(ISRG, $475) and Priceline Group (PCLN, $1,300) from the 1st of October

2015 to the 23rd of October 2015 (17 days of trading), where we indicated

in parenthesis the symbol and average price. Remember that the tick size is

fixed to ⇢ = $0.01, hence these assets can be considered as small-tick stocks

compared to companies like Twitter (TWTR, $30) [14].

For each stock, we set the value of � using the following procedure. We

sample the log-distance ln(At/Mt) between the ask price and the mid price

and set � to the 95th percentile of the empirical distribution. This means

that 95% of the time, the deep queue imbalance QI�
t
takes into account at

least the best bid and ask queues. The other 5% of the time, we set QI�
t
to

zero. In practice, with this choice of �, the number of levels used to compute

the deep QI varies from 1 to 15. The reason for choosing � in this manner is

that we postulate that the best ask and bid prices should most of the time

be close enough to the mid price. However, one could of course investigate

further what is the optimal value of � and how it varies across stocks.

In Figure 2.8, for AMZN, we plot the average of mid price returns conditioned

on the deep QI. Compared to Figure 2.7 (same scale on the vertical axis)
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Figure 2.7: Average mid price returns conditioned on the normalised queue imbalance for
the stock of Amazon (AMZN). The mid price returns are computed over a time window of
one second. We condition on the value of the queue imbalance at the beginning of the time
window. The values of the normalised queue imbalance are split into 11 bins.

Figure 2.8: Average mid price returns conditioned on the normalised deep queue imbalance
for the stock of Amazon (AMZN). The mid price returns are computed over a time window of
one second. We condition on the value of the deep queue imbalance at the beginning of the
time window. The values of the normalised queue imbalance are split into 11 bins.
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where we condition instead on the QI, we retrieve a relationship that is

stronger, less noisy and similar to the case of large-tick stocks (cf. Figure

2.1). Notice also that the distribution of the deep QI is more regular than

that of the QI, resembling more the distribution of the QI for large-tick

stocks. We obtain similar results for the other stocks mentioned above.

We also fitted Linear Regression Model 1 using the deep order flow imbalance

OFI� instead of OFI and found that this allows to increase R2 from 40%

to 50%, excluding the beginning and the end of the trading day (cf. Figure

2.9).

As a final remark, notice that for large-tick stocks, with the way we choose

�, the deep imbalances QI� and OFI� almost coincide with the level-1 im-

balances QI and OFI, since the spread is most of the time equal to one

tick. In this sense, the deep imbalances QI� and OFI� generalise the level-I

imbalances QI and OFI to small-tick stocks.

To summarise, the present results suggest that the mid price is driven by

orders that are close enough to it but that the concept of close enough should

be formalised in terms of relative price instead of number of ticks or number

of levels.

Figure 2.9: Average of R2 for each 15-minute bin of the day for Linear Regression Model 1
(� = 10s). For the green curve, we use the deep order flow imbalance OFI

� as the explanatory
variable instead of OFI. We use 17 days of data on the stock of Amazon (1st of October
2015 to the 23rd of October 2015).
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3
State-dependent Hawkes

processes

This chapter addresses the HM dichotomy by introducing the class of state-

dependent Hawkes processes, an extension of Hawkes processes where the

point process N is endowed with a piecewise-constant state process X. The

novelty here is that N and X are fully coupled, just like the order flow

and the LOB. The kernel that determines the excitation e↵ects between the

di↵erent event types can now depend on the history of the state process

X. Moreover, X can jump only at the event times of N , with transition

probabilities that depend on the event type.

A key idea is to lift (N , X) to a single ordinary point process of higher dimen-

sion. This allows us to use the framework of hybrid marked point processes

(Chapters 6 and 7) to obtain the existence and uniqueness of non-explosive

state-dependent Hawkes processes and derive a simulation algorithm.

Furthermore, we explain how the maximum likelihood estimation principle

applies to parametric specifications of this new class. In particular, we find

a convenient separability property of the likelihood which implies that the

transition probabilities and the kernel can be estimated independently of one
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another, in spite of the full coupling between N and X.

The chapter provides also some details on the package mpoints, a Python

library that we created for the simulation and estimation of state-dependent

Hawkes processes with exponential kernels.

3.1 Definition

To begin with, recall the basic definitions of point process theory from Sub-

section 1.6.1 and the notations therein. Then, to define state-dependent

Hawkes processes, we endow the point process N with a càdlàg state pro-

cess (X(t))t�0 that takes values in a finite state space X := {1, . . . , dx} and

denote by FN ,X the natural filtration of the pair (N , X).

Definition 3.1.1. Let � = (�e)e2E be a collection of dx ⇥ dx transition

probability matrices, ⌫ = (⌫1, . . . , ⌫de) 2 Rde
>0 and k = (ke0e)e0,e2E , where

ke0e : R>0 ⇥X ! R�0. The pair (N , X) is a state-dependent Hawkes process

with transition distribution �, base rate vector ⌫ and excitation kernel k,

abbreviated as sdHawkes(�,⌫,k), if

(i) N has FN ,X-intensity � that satisfies

�e(t) = ⌫e +
X

e02E

Z

[0,t)

ke0e(t� s,X(s))dNe0(s), t � 0, e 2 E ; (3.1)

(ii) X is piecewise constant and jumps only at the event times (Tn)n2N, so

that

P
⇣
X(Tn) = x |En,F

N ,X

Tn�

⌘
= �En(X(Tn�), x), n 2 N, x 2 X ,

(3.2)

where F
N ,X

Tn� :=
W

">0 F
N ,X

Tn�"
and X(Tn�) := limt"Tn X(t).

In applications to LOB modelling, the counting process N and state process

X will represent the order flow and the state of the LOB, respectively. An
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event of type e0 2 E at time T = Tn, for some n 2 N, increases the infinitesi-
mal rate of new events of type e 2 E at time t > T by ke0e(t� T,X(T )). In

particular, the self- and cross-excitation e↵ects now depend on the state pro-

cess X. Reciprocally, at each event in N , the state process X may switch to

a new state according to the probability (3.2) that depends on the event type.

Thereby, mimicking the mechanics of the LOB, the processes N and X are

fully coupled. This feature di↵erentiates state-dependent Hawkes processes

from Markov-modulated Hawkes processes, studied in Wang et al. [122], Co-

hen and Elliott [32], Vinkovskaya [121] and Swishchuk [116], where the state

follows an exogeneous Markov process that lacks the relationship (3.2). In

the case dx = 1, Definition 3.1.1 reduces to that of an ordinary linear Hawkes

process. A simulated sample path of a state-dependent Hawkes process with

de = 1, dx = 2 and exponential kernel is shown in Figure 3.1. In this example,

the process exhibits self-excitation only in the second state.

Figure 3.1: Simulation of a state-dependent Hawkes process with de = 1, dx = 2. The
upper plot shows the evolution of the state process. The blue dots indicate the event times
and the lower plot represents the intensity. The process is specified so that ⌫1 = 1 and
k11(t, x) = exp(�4t)1{x=2}, that is, in state 2 the process exhibits exponential self-excitation
whereas no self-excitation occurs in state 1.
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3.2 Non-explosion, existence and uniqueness

Since Definition 3.1.1 is implicit in the sense that the counting process N is

defined by intensity � that depends on the past of N and X, care is needed

to establish the existence and uniqueness of a pair (N , X) that solves (3.1)

and (3.2) so that N is non-explosive. To this end, we lift (N , X) to a dedx-

dimensional multivariate point process Ñ = (Ñex)e2E,x2X , where Ñex counts

the number of events of type e after which the state is x, formally,

Ñex(t) =
X

n2N

1{Tnt,En=e,X(Tn)=x}, t � 0, e 2 E , x 2 X .

The marks corresponding to Ñ are given by (En, Xn), n 2 N, where En is

as above and Xn := X(Tn) is the value of the state process following the

nth event and X0 is the initial state. Thus, given Ñ , the state X(t) can be

recovered from the most recent mark at time t, which makes the relationship

between Ñ and (N , X) bijective.

By applying the general characterisation result in Chapter 6, the dynamics

of Ñ can be expressed in terms of the dynamics of (N , X), and vice versa.

The natural filtration of Ñ is denoted by FÑ .

Theorem 3.2.1. The pair (N , X) is a non-explosive sdHawkes(�,⌫,k) pro-

cess if and only if Ñ is non-explosive, admitting FÑ -intensity �̃ that satisfies

�̃ex(t) = �e(X(t), x)

 
⌫e +

X

e02E,x02X

Z

[0,t)

ke0e(t� s, x0)dÑe0x0(s)

!
(3.3)

for all t � 0, e 2 E, x 2 X .

The above theorem in fact shows that state-dependent Hawkes processes

belong to the class of hybrid marked point processes studied in Chapters 6

and 7. The general existence and uniqueness results therein translate to the

present framework as follows.

Theorem 3.2.2. A unique, non-explosive sdHawkes(�,⌫,k) process exists

if one of the following two conditions is satisfied:
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(i) the components of k are bounded functions;

(ii)
P

e02E,x02X
R1
0 ke0e(t, x0)dt < (maxx02X �e(x0, x))�1 for all e 2 E and

x 2 X .

In Chapter 4, since we will only be using bounded exponentially decaying

kernels, we will rely on the first condition exclusively. Note that when dx = 1,

the second condition is the classical stability condition in Massoulié [91].

3.3 Simulation

Another implication of Theorem 3.2.1 is that the simulation of a state-

dependent Hawkes process can be reduced to the simulation of a multivariate

point process with an intensity given by (3.3) and, thus, many simulation

techniques from point process theory can be reused [83, 40].

In fact, the sample path in Figure 3.1 has been generated using Ogata’s

thinning algorithm [99], which is an exact simulation algorithm and is adapt-

able for state-dependent Hawkes processes as follows. We write R(t) :=
P

e2E,x2X �̃ex(t) =
P

e2E �e(t), which is a function of all (Tn, En, Xn) such

that Tn < t.

Algorithm 3.3.1 Iterative step in Ogata’s thinning algorithm for state-
dependent Hawkes processes

Require: (Ti, Ei, Xi)i=1,...,n�1

1: set T := Tn�1

2: set ⇠ := 0
3: while ⇠ = 0 do
4: draw U ⇠ Exp(R(T ))
5: set ⇠ := 1 with probability R(T+U)

R(T )
6: set T := T + U
7: end while
8: set Tn := T
9: draw En 2 E with probabilities proportional to (�e(Tn))e2E

10: draw Xn 2 X with probabilities (�En(Xn�1, x))x2X
11: return (Tn, En, Xn)
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Remark 3.3.1. (i) In Algorithm 3.3.1, we are implicitly assuming that

the components of the kernel k are non-increasing, which guarantees

that R(t0)  R(t) for all t0 2 [t, Tn]. In the general case, one needs

to define R(t) so that it bounds the total intensity
P

e2E �e(t
0) for all

t0 2 [t, Tn].

(ii) Lines 9–10 of Algorithm 3.3.1 use the product form (3.3) to simulate

the marks, which avoids the computation of dedx products at the cost

of generating an additional random number.

3.4 Parametric estimation via maximum likelihood

Estimating the base rate vector ⌫ and kernel k of an ordinary Hawkes process

has become a vibrant research topic in statistics and statistical finance liter-

ature. Whilst the recent focus has mostly been on non-parametric method-

ology [12, 77, 45, 109, 3], our aim in this chapter is to extend the classical

parametric framework [102], comprehensively summarised in Bowsher [18],

to state-dependent Hawkes processes. From now on, we work with a kernel

k = k✓ parametrised by a vector ✓ 2 Rp.

3.4.1 Likelihood function

We know from Subsections 3.2 and 3.3 that a state-dependent Hawkes pro-

cess (N , X) can be lifted to a dedx-dimensional point process Ñ . Given a

realisation (tn, en, xn)n=1,...,N of Ñ over a time horizon [0, T ], the likelihood

function L(�,⌫,✓) can be informally understood as the probability that
P

e2E,x2X Ñex(T ) = N and (Tn, En, Xn)n=1,...,N lies in a small neighbourhood

of (tn, en, xn)n=1,...,N , under the assumption that (Tn, En, Xn)n2N is generated

by a state-dependent Hawkes processes with parameters (�,⌫,✓). More rig-

orously, the likelihood function is the density of the Janossy measure with

respect to the Lebesgue measure on RN [40, p. 125, 213].

For ordinary Hawkes processes, the likelihood function L(⌫,✓) can be ex-

pressed directly in terms of � [40] and the maximum likelihood (ML) esti-
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mator (⌫̂, ✓̂) is obtained by maximising L(⌫̂, ✓̂), in practice numerically. For

state-dependent Hawkes processes, we are able to express L(�,⌫,✓) in terms

of � and �, and find that maximising the likelihood is conveniently achieved

by solving two independent optimisation problems.

Theorem 3.4.1. The log likelihood function of an sdHawkes(�,⌫,k✓) pro-

cess is given by

lnL(�,⌫,✓) =
NX

n=1

ln�en(xn�1, xn) +
nX

n=1

ln�en(tn)�

Z
T

0

X

e2E

�e(t)dt. (3.4)

Furthermore, (�̂, ⌫̂, ✓̂) 2 argmax�,⌫,✓ L(�,⌫,✓) if and only if

8
>>>><

>>>>:

�̂e(x, x
0) =

P
N

n=1 1(xn�1 = x, en = e, xn = x0)
P

N

n=1 1(xn�1 = x, en = e)
, e 2 E , x, x0

2 X ,

(⌫̂, ✓̂) 2 argmax
⌫,✓

NX

n=1

ln�en(tn)�

Z
T

0

X

e2E

�e(t)dt. (3.5)

The upshot of Theorem 3.4.1 is that the ML estimation of state-dependent

Hawkes processes is no harder than that of ordinary Hawkes processes. Namely,

� is estimated in a straightforward manner by the empirical transition prob-

abilities, whilst (⌫,✓) is estimated by maximising the log quasi-likelihood of

N , that is, the Radon-Nikodym derivative of a change of measure that trans-

forms a standard Poisson process into N [19, Theorem 10, p. 241], which is

similar to the log likelihood of a multivariate ordinary Hawkes process. It

is remarkable that, in spite of the strong coupling between the events and

the state process, the estimation of � and (⌫,✓) is decoupled due to the

separable form 3.4 of the log likelihood function.

Remark 3.4.2. It is not clear how to derive the likelihood function L directly

from Definition 3.1.1. It is once again the lift Ñ that allow us to transpose

the problem to the setting of point process theory, where classical results can

be reused (see the proof of Theorem 3.4.1 in Section 3.6).

We note that, in the case of ordinary Hawkes processes (dx = 1), consistency

and asymptotic normality results for the ML estimator (⌫̂, ✓̂) are available
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in the literature, see for example [98, 31]. However, these results rely on

the stationarity and ergodicity of the underlying process and, unfortunately,

these properties need not extend to state-dependent Hawkes processes in

general. Therefore, the analysis of the asymptotic properties of the ML

estimator is not straightforward and is left for future work. However, in

Subsection 3.5.1, we present Monte Carlo results that exemplify the finite-

sample performance of the ML estimator. In particular, the results provide

evidence that (�̂, ⌫̂, ✓̂) is consistent as the length of the estimation window

increases.

3.4.2 Goodness-of-fit diagnostics using residuals

Denote by (te
n
)n=1,...,ne the sequence of times at which an event of type e

occurred and by (tex
n
)n=1,...,nex the sequence of times at which an event type e

occurred and after which the state was x, and set te0 = tex0 = 0, e 2 E , x 2 X .

To assess the goodness-of-fit of a state-dependent Hawkes process with given

parameters (�,⌫,✓), introduce the event residuals re
n
and total residuals r̃ex

n

re
n
:=

Z
t
e
n

t
e
n�1

�e(t)dt, n = 1, . . . , ne, e 2 E ,

r̃ex
n

:=

Z
t
ex
n

t
ex
n�1

�̃ex(t)dt, n = 1, . . . , nex, e 2 E , x 2 X ,

where � and �̃ are computed by plugging (�,⌫,✓) into (3.1) and (3.3),

respectively.

It is a classical result that under the right time-change, N and Ñ become

standard unit-rate Poisson processes [93], with the event residuals and total

residuals as their respective time increments.

Theorem 3.4.3. (i) Suppose that (te
n
)n=1,...,ne,e2E was generated by a de-

dimensional multivariate point process N with an FN ,X-intensity � sat-

isfying (3.1), where X is a given state process. Then the event residuals

(re
n
)n=1,...,ne for any e 2 E are i.i.d. and follow the Exp(1) distribution.

(ii) Suppose that (tex
n
)n=1,...,nex,e2E,x2X was generated by an
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sdHawkes(�,⌫,k✓) process (N , X) such that Ñex(t) ! 1 as t ! 1

with probability one for any e 2 E and x 2 X . Then the total residuals

(r̃ex
n
)n=1,...,nex for any e 2 E and x 2 X are i.i.d. and follow the Exp(1)

distribution.

Consequently, given an estimate (�̂, ⌫̂, ✓̂), the goodness-of-fit of the process

can be assessed by comparing the empirical distribution of each sequence

among (re
n
)n=1,...,ne , e 2 E and (r̃ex

n
)n=1,...,nex , e 2 E , x 2 X to the Exp(1)

distribution,, where � and �̃ are now computed by plugging (�̂, ⌫̂, ✓̂) into

(3.1) and (3.3), respectively. This can by achieved by inspecting a Q–Q

plot (see Subsection 4.6). Goodness-of-fit diagnostics can also check whether

the residuals are mutually independent, which can be assessed by examining

their correlogram. One can of course go beyond these visual assessments by

applying formal statistical tests [18].

3.4.3 The special case of exponential kernels

The direct computation of the term
P

N

n=1 ln�en(tn) in the log likelihood

function (3.4) involves a double sum requiring O(N2) operations to evaluate,

which may render ML estimation numerically infeasible when the sample is

large. However, for ordinary Hawkes processes (dx = 1) with exponential

kernels, it is known that this computation can be achieved in O(Nd2
e
) oper-

ations [102, 99]. Fortunately, this property carries over to state-dependent

Hawkes processes with kernel k having exponential form

ke0e(t, x) = ↵e0xe exp(��e0xet), t > 0, e0, e 2 E , x 2 X , (3.6)

where the impact coe�cients ↵ := (↵e0xe) and decay coe�cients � := (�e0xe)

are non-negative. The reduction in computational cost becomes apparent

from the derivation in Subsection 3.5.2. In particular, it is due to the recur-

sive relationship between the sums Se0x0e therein, reducing the computational

cost from O(N2) to O(N) operations. A similar remark holds for the com-

putation of the gradient and the residuals.
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3.5 The mpoints package

The algorithms that we have developed to simulate and estimate state-

dependent Hawkes processes with exponential kernels were released publicly

as Python package called mpoints that is available at https://github.com/

maximemorariu/mpoints. We also worked to provide a full documentation

of the package that can be found at https://mpoints.readthedocs.io. In

particular, mpoints can be easily installed via a one-line command in the

terminal using the package management system pip and comes with a tu-

torial that demonstrates its main features. We believe that sharing one’s

code in an accessible manner is essential for research reproducibility and

transparency. Besides, it is hopefully an alternative channel to disseminate

state-dependent Hawkes processes beyond the mathematical finance commu-

nity. Note also that the mpoints package comes with specialised plotting

services that facilitate the visualisation of parameters and sample paths.

In this section, we shall test the consistency of the ML estimator and give the

formulae that we use for the computation of the log likelihood, its gradient

and the residuals. We will provide some details on our numerical optimisation

methodology in the next chapter, in Subsection 4.10.1.

3.5.1 Test on simulated data

We assess the finite-sample performance of the ML estimator in a small Monte

Carlo experiment using a state-dependent Hawkes process with exponential

kernel of the form (3.6) when de = 2 and dx = 5. The parameters are

naturally split into four groups: the transition probabilities in �, the base

rates in ⌫, the impact coe�cients in ↵ and the decay coe�cients in �. For

each group of parameters (✓ij)j=1,...,pi and their estimator (✓̂ij)j=1,...,pi , we

define the worst relative error as

"rel :=
✓̂ij? � ✓ij?

✓ij?
, where j? = argmax

j

|✓̂ij � ✓ij |

✓ij
. (3.7)

For two di↵erent sets of parameter values and four di↵erent sample sizes,
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(a) Specification 1. (b) Specification 2.

Figure 3.2: Violin plots of the worst estimation errors (3.7) under two di↵erent sets of
parameter values (specifications 1 and 2). For every specification and sample size N , we
simulate 100 paths with sample size N and perform ML estimation for each of them. The true
parameters are used as the initial guess in the optimisation procedure to speed up estimation
and reduce the computational cost.

we estimate the distribution of "rel for each of the four groups of param-

eters using Monte Carlo via Algorithm 3.3.1. However, for the transition

probabilities, we measure instead the worst absolute error, defined by re-

placing the denominator in (3.7) by one. The first set of parameter values

(Specification 1, Table 3.1) is constructed simply by averaging the daily es-

timates of ModelQI in Chapter 4 using INTC data over the 19 trading days

of February 2018. The second set of parameter values (Specification 2, Table

3.2) is artificial, chosen to produce more drastic changes in behaviour from

one state to another. The results are displayed in Figure 3.2 and indeed sup-

port the conjectured consistency of the ML estimators of the state-dependent

Hawkes process. Note that the observed bimodality is due to the fact that

the worst relative error inherently alternates between positive and negative

values.

3.5.2 Formulae for state-dependent Hawkes processes with ex-

ponential kernels

In the case of an exponential kernel k given by (3.6), the following formulae

can be derived for the second and third terms of the log likelihood function
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↵i1j ↵i2j ↵i3j ↵i4j ↵i5j

11,314 2,311 8,098 3,556 17,016 270 3,198 535 34,747 220

139 33,460 724 4,497 178 15,497 3,778 7,943 2,353 12,452

(a) Impact coe�cients.

�i1j �i2j �i3j �i4j �i5j

17,480 9,563 15,187 19,637 29,890 1,456 6,493 3,071 45,546 1,097

613 44,994 4,614 8,384 1,026 27,522 20,537 14,272 10,443 18,988

(b) Decay coe�cients.

�1(i, j) �2(i, j)

.89 .02 .05 .03 .01 .78 .19 .02 <.01 <.01

.13 .83 .01 <.01 .02 <.01 .75 .2 .02 <.01

.02 .17 .79 <.01 .02 .02 <.01 .79 .17 .02

<.01 .02 .21 .75 .01 .02 <.01 <.01 .82 .14

<.01 <.01 .02 .19 .78 <.01 .03 .06 .02 .89

(c) Transition distribution.

⌫i

2.2

2.2

(d) Base rate vector.

Table 3.1: Parameter values for Specification 1.

↵i1j ↵i2j ↵i3j ↵i4j ↵i5j

2 10 1 3 1,000 30 2,000 40 100 1,000

10 2 3 1 20 3,000 2,000 50 60 2,000

(a) Impact coe�cients.

�i1j �i2j �i3j �i4j �i5j

10 15 8 4 3,000 500 6,000 160 500 8,000

15 10 4 8 1000 5,000 10,000 300 120 5,000

(b) Decay coe�cients.

�1(i, j) �2(i, j)

.7 .3 .0 .0 .0 .0 .1 .2 .3 .4

.1 .8 .1 .0 .0 .2 .1 .4 .2 .1

.0 .1 .6 .2 .1 .1 .3 .1 .3 .2

.2 .2 .3 .1 .2 .0 .0 .1 .8 .1

.1 .3 .3 .1 .2 .1 .0 .1 .1 .7

(c) Transition distribution.

⌫i

5

1

(d) Base rate vector.

Table 3.2: Parameter values for Specification 2.
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in (3.4), denoted by l+ and l�, respectively. Here, we consider a general time

horizon (t0, T ], meaning that the origin of time is not necessarily t0 = 0 and

that the times tex
n
 t0 are treated like an initial condition, and we have

l+ =
X

e

X

ten>t0

ln�e(t
e

n
) =

X

e

X

ten>t0

ln

 
⌫e +

X

e0x0

↵e0x0eSe0x0e(t
e

n
)

!
,

Se0x0e(s, t) : =
X

s<t
e0x0
i <t

exp(��e0x0e(t� te
0
x
0

i
)),

Se0x0e(t) : = Se0x0e(�1, t),

Se0x0e(t) = exp(��e0x0e(t� s))Se0x0e(�1, s] + Se0x0e(s, t),

l� =

Z
T

t0

X

e

�e(t)dt

=

Z
T

t0

X

e

0

@⌫e +
X

e0x0

X

t
e0x0
i <t

↵e0x0e exp(��e0x0e(t� te
0
x
0

i
)

1

A dt

=
X

e

⌫e(T � t0)

+
X

e0x0

X

t
e0x0
i t0

↵e0x0e

�e0x0e
(exp(��e0x0e(t0 � te

0
x
0

i
))� exp(��e0x0e(T � te

0
x
0

i
))

+
X

t
e0x0
i >t0

↵e0x0e

�e0x0e
(1� exp(��e0x0e(T � te

0
x
0

i
)).

The gradients can then also be computed via

@l+
@⌫k

=
X

tkn>t0

 
⌫k +

X

e0x0

↵e0x0kSe0x0k(t
k

n
)

!�1

,

@l+
@↵ijk

=
X

tkn>t0

Sijk(ten)

⌫k +
P

e0x0 ↵e0x0kSe0x0k(tkn)
,

@l+
@�ijk

= �
X

tkn>t0

↵ijkS
(1)
ijk

(te
n
)

⌫k +
P

e0x0 ↵e0x0kSe0x0k(tkn)
,

S(1)
e0x0e(s, t) : =

X

s<t
e0x0
i <t

(t� te
0
x
0

i
) exp(��e0x0e(t� te

0
x
0

i
)),
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S(1)
e0x0e(t) : = S(1)

e0x0e(�1, t),

S(1)
e0x0e(t) = exp(��e0x0e(t� s))

⇣
S(1)
e0x0e(�1, s] + (t� s)Se0x0e(�1, s]

⌘

+ S(1)
e0x0e(s, t),

@l�
@⌫k

= T � t0,

@l�
@↵e0x0e

=
X

t
e0x0
i t0

1

�e0x0e
(exp(��e0x0e(t0 � te

0
x
0

i
))� exp(��e0x0e(T � te

0
x
0

i
))

+
X

t
e0x0
i >t0

1

�e0x0e
(1� exp(��e0x0e(T � te

0
x
0

i
)),

@l�
@�e0x0e

=
X

t
e0x0
i t0

↵e0x0e

�e0x0e
((T � te

0
x
0

i
) exp(��e0x0e(T � te

0
x
0

i
))

� (t0 � te
0
x
0

i
) exp(��e0x0e(t0 � te

0
x
0

i
)))

�
↵e0x0e

�2
e0x0e

(exp(��e0x0e(t0 � te
0
x
0

i
))� exp(��e0x0e(T � te

0
x
0

i
))

+
X

t
e0x0
i >t0

↵e0x0e

�e0x0e
(T � te

0
x
0

i
) exp(��e0x0e(T � te

0
x
0

i
))

�
↵e0x0e

�2
e0x0e

(1� exp(��e0x0e(T � te
0
x
0

i
))).

Besides, the e�cient computation of the residuals is based on the identity

Z
t

s

�e(u)du = (t� s)⌫e +
X

e0x0

Ce0x0e(t)� Ce0x0e(s)

�

X

e0x0

↵e0x0e

�e0x0e
(Se0x0e(t)� Se0x0e(s)),

Ce0x0e(t) :=
X

t
e0x0
i <t

↵e0x0e

�e0x0e
exp(��e0x0e(t0 _ te

0
x
0

i
� te

0
x
0

i
)).

The accompanying Python library mpoints implements the above formulae

in C via the Cython extension of Python, allowing us to drastically reduce

the computation time (up to 300 times faster computations compared to a

plain Python implementation using NumPy). This played a crucial role in

the feasibility of the study in Chapter 4.
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3.6 Proofs

Proof of Theorem 3.2.1. The statement follows by applying Theorem 6.2.5

in Chapter 6. We only need to check that if (N , X) is a state-dependent

Hawkes process, then Ñ admits an FÑ -intensity. By Proposition 3.1 in

Jacod [68], Ñ admits an FÑ -compensator ⇤ given by

⇤(dt, de, dx) =
X

n2N

Gn(dt� Tn, de, dx)

Gn([t� Tn,1], E ,X )
1{Tn<tTn+1},

and, consequently, this holds if the conditional distributions Gn of the triplets

(Tn+1 � Tn, En+1, Xn+1) with respect to F
Ñ
Tn

are absolutely continuous with

respect to dtµe(de)µx(dx) on (0, Tn+1 � Tn] ⇥ E ⇥ X , where µe and µx are

the counting measures on E and X , respectively. Moreover, by definition of

Ñ , ⇤(dt, de,X ) is an FÑ -compensator of N . But since N admits an FÑ -

intensity, by uniqueness of the compensator [75, Theorem 1.25, p. 39], we

necessarily have with probability one that

X

x2X

Gn(dt� Tn, {e}, {x})1{Tn<tTn+1} =

f(t, e)dt1{Tn<tTn+1}, e 2 E , n 2 N,

for some F
Ñ
Tn
⌦ B(R) ⌦ P(E)-measurable function f , which concludes the

proof.

Proof of Theorem 3.2.2. By Theorem 3.2.1, it is su�cient to show that each

of the two conditions ensures the existence and uniqueness of a non-explosive

point process Ñ with an FÑ -intensity given by (3.3), which is achieved by

applying Theorems 7.4.1 and 7.5.2 in Chapter 7.

Proof of Theorem 3.4.1. By Theorem 3.2.1, we know that Ñ has intensity

�̃, which is given by (3.3). Hence, by applying Proposition 7.3.III in Daley
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and Vere-Jones [40, p. 251], we can express the log likelihood function as

lnL(�,⌫,✓) =
NX

n=1

ln �̃enxn(tn)�

Z
T

0

X

e2E,x2X

�̃ex(t)dt. (3.8)

Plugging (3.3) in (3.8) and using that
P

x02X �e(x, x0) = 1, e 2 E , x 2 X ,

yields (3.4), from which it is immediate that (�̂, ⌫̂, ✓̂) 2 argmax�,⌫,✓ L(�,⌫,✓)

if and only if

8
>>>>><

>>>>>:

�̂ 2 argmax
�

NX

n=1

ln�en(xn�1, xn),

(⌫̂, ✓̂) 2 argmax
⌫,✓

NX

n=1

ln�en(tn)�

Z
T

0

X

e2E

�e(t)dt,

where the first optimisation problem is performed under the constraint that

�e is a transition probability matrix, e 2 E . By solving this optimisation

problem with the method of Lagrange multipliers, we obtain the claimed

expression for �̂e(x, x0).

Proof of Theorem 3.4.3. The statement follows directly from Theorem 1 in

Brown and Nair [22]. Note that this theorem requires that, with probability

one,
R

t

0 �e(s)ds ! 1 and
R

t

0 �̃ex(s)ds ! 1 as t ! 1, e 2 E , x 2 X . The

first condition is satisfied because, in Definition 3.1.1, we assume that all

the base rates are strictly positive (⌫ 2 Rde
>0). By Lemma 17 in Brémaud

[19, p. 41], the second condition is equivalent to Ñex(t) ! 1, t ! 1, with

probability one, e 2 E , x 2 X , which is assumed here.
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4
Application to

high-frequency financial data

We apply the new model and methodology of the previous chapter to high-

frequency financial data, estimating for the first time a LOB model that

accommodates an explicit feedback loop between the state of the LOB and

the order flow with self- and cross-excitation e↵ects. We estimate two specifi-

cations of a state-dependent Hawkes process on one year of level-I LOB data,

using the bid–ask spread and QI, respectively, as the state variable. Our es-

timation results reveal that the magnitude and speed of excitation e↵ects in

the order flow depend significantly on both state variables, being e↵ective at

timescales ranging from 100 microseconds to 100 milliseconds. This is a very

clear manifestation of the high-frequency automation of trading in modern

electronic markets. Moreover, we find that the level of endogeneity in the

order flow is state-dependent and, intriguingly, more pronounced in what can

be regarded as disequilibrium states of the LOB.
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4.1 Data and descriptive statistics

We use level-I data on the stock of Intel (INTC), traded on the Nasdaq, from

the 1st of June 2017 to the 31st of May 2018. The 3rd of July and 24th of

November 2017 are removed from the data set because of early market close

at 13:00 (Independence Day and Black Friday), which leaves us with 250 full

trading days. Besides INTC, we have also studied in the same manner the

stocks of Advanced Micro Devices (AMD), Micron Technology (MU), Snap

(SNAP) and Twitter (TWTR) from January to April 2018, but we only

report our results on INTC as they are largely representative of the findings

on the other stocks.

The first three stocks (INTC, AMD, MU) and the last two stocks (SNAP,

TWTR) are primarily listed on the Nasdaq and the New York Stock Ex-

change (NYSE), respectively. As an illustration of the current market frag-

mentation (cf. Subsection 1.1.5), around 20% of the total volume is traded on

the Nasdaq for the first group (AMD, INTC, MU), while nearly 10% for the

second group (SNAP, TWTR). In particular, Nasdaq has the largest market

share for INTC during the observation period. These estimates of Nasdaq’s

market share were given by Fidessa’s Fragulator tool⇤.

While there is no universally-accepted criterion to decide of the large-tick

character of a stock, the prices of our five stocks were most the time below

the threshold of $50 per share used by Bonart and Gould [14] and always

below $60. A defining characteristic of large-tick stocks is that the spread is

most often equal to one tick, which can be indeed checked in Figure 4.2a.

We will focus on the trading activity that begins at 12pm and ends at 2.30pm

for the following reason. As depicted in Figure 4.1a, it is known that market

activity is not constant throughout the day but tends to exhibit a U-shape

(cf. Fact (v)). Because of that, enforcing a constant base rate vector ⌫ over

the entire trading day can result in an overestimation of the self- and cross-

excitation e↵ects [107, 101]. The chosen time horizon exhibits a relatively

small variation in market activity while still o↵ering a large-enough sample

⇤
http://fragmentation.fidessa.com/fragulator/
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(a) Arrival rate of level-I orders. (b) Number of level-I orders.

(c) Fraction of level-I orders with non-unique
timestamp.

(d) Distribution of level-I order types.

Figure 4.1: Descriptive statistics of the level-I order flow of INTC. Except for Figure 4.1a,
only the data between 12:00 and 14:30 are used. In Figure 4.1a, the sample mean of the arrival
rate of level-I orders is computed over 10-minute bins. The translucent area represents the
range of the arrival rate across the 250 trading days, excluding the bottom and top 5% values.

size (at least 50,000 level-I orders each day, see Figure 4.1b).

We stress again that timestamps are recorded with nanosecond precision (cf.

Section 2.1). As a result, more than 99% of level-I orders have a unique

timestamp (Figure 4.1c). This contrasts with older studies [18, 78] where

lower time resolutions (e.g., one second) were used, leading to a significant

amount of tied timestamps, shared by multiple events. As Hawkes processes

capture the Granger causality between di↵erent event types [45], being able

to accurately order events, even at the smallest timescales, is essential for

the accurate estimation of Hawkes processes.
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4.2 Model specification

We work with models, based on state-dependent Hawkes processes, that

distinguish two event types, denoted ask and bid (that is, E = {ask, bid},
de = 2). These event types are nothing else than the ask and bid events in

the definition of the OFI (cf. Definition 1.2.11). Consequently, Nbid �Nask
can be interpreted as a proxy of the OFI. From Figure 4.1d, we see that the

distribution between these two event types is very balanced, with market or-

ders accounting for less than 5% of the level-I activity. As mentioned above,

only the level-I events are modelled and events occurring at deeper levels

of the LOB are discarded. One could of course increase de to have a more

granular classification of event types. Still, the focus of this chapter is on the

modelling of state dependence and the choice E = {ask, bid} already leads

to interesting results whilst keeping the dimensionality low, which makes the

results easier to visualise.

As the state variable we consider the bid–ask spread and the QI (cf. Defini-

tion 1.2.10) , giving rise to two models named ModelS and ModelQI, respec-

tively. In ModelS, we set X = {1, 2+} (dx = 2), where the states correspond

to the spread being one tick (X(t) = 1) and two ticks or more (X(t) = 2+).
Increasing the number of states beyond dx = 2 in this setting would not be

practically relevant since the spread is very rarely strictly wider than two

ticks. In ModelQI, as in Cartea et al. [23], we split the interval [�1, 1] into

dx = 5 bins of equal width which we label as follows:

X = { sell++| {z }
[�1,�0.6)

, sell+|{z}
[�0.6,�0.2)

, neutral| {z }
[�0.2,0.2)

, buy+|{z}
[0.2,0.6)

, buy++| {z }
[0.6,1]

}, (4.1)

whereby in ModelQI the state variable X(t) indicates bin where QI(t) is

located.

Finally, given the large number of observations we are dealing with (see

Figure 4.1b), we use the exponential specification (3.6) of the kernel k in

both models, as it leads to a significant reduction of computational cost in

estimation, as discussed in Subsection 3.4.3. The full specifications of the
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models are summarised in Table 4.1.

ModelS ModelQI

Event types Ask and bid events, de = 2, E = {ask, bid}

State process Spread, dx = 2

X = {1, 2+}

Queue imbalance, dx = 5

X = {sell++, sell+, neutral, buy+, buy++}

Kernels Exponential, of the form (3.6)

# params. 26 92

Table 4.1: Summary of ModelS and ModelQI.

4.3 Visualising the estimated excitation effects

We use the following approach to present our estimation results on self- and

cross-excitation e↵ects. For each triple (e, e0, x) 2 E
2
⇥ X , ML estimation

produces an estimated excitation profile t 7! ke0e(t, x), parameterised by

the estimated impact coe�cient ↵̂e0xe and decay coe�cient �̂e0xe. However,

instead of reporting ↵̂e0xe and �̂e0xe, we visualise the excitation profile by

plotting the truncated L1-norm

t 7! kk̂e0e(·, x)k1,t :=

Z
t

0

k̂e0e(s, x)ds,

from which the magnitude and the e↵ective timescale of the excitation e↵ect

is easier to gauge than from the numerical values of ↵̂e0xe and �̂e0xe. Extrapo-

lating from the cluster representation of simple Hawkes processes (Subsection

1.6.3), we can interpret kk̂e0e(·, x)k1,t as the average number of events of type

e that have been directly triggered by an event of type e0 in state x within t

seconds of its occurrence. Besides, notice that the full L1-norm is given by

kk̂e0e(·, x)k1,1 = lim
t!1
kk̂e0e(·, x)k1,t =

↵̂e0xe

�̂e0xe
.
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(a) ModelS (state process: bid–ask
spread).

(b) ModelQI (state process: queue imbalance).

Figure 4.2: Joint distribution of events and states for INTC, depicting the empirical distribu-
tion of the marks (En, Xn) for the two considered state processes.

4.4 Estimation results for ModelS

We estimate the model parameters (�̂(i), ⌫̂(i), ↵̂(i), �̂(i)) for each trading day

i in the sample by ML estimation, as explained in Section 3.4. Practical

details on the numerical solution of the underlying optimisation problem will

be given in Subsection 4.10.1.

The estimated transition distribution �̂ of ModelS, obtained by averaging

over the daily estimates �̂(i), is presented in Figure 4.3a. The state process

describing the bid–ask spread exhibits persistent behaviour, in the sense that

the probability of remaining in the current state is very high. We also observe

higher likelihood of moving from state 2+ to 1 than vice versa, which is

consistent with one-tick bid–ask spread being the equilibrium state for a

large-tick stock like INTC. We also find that the transition probabilities are

not sensitive to the event type, which is natural since the bid–ask spread not

is expected to be influenced by the direction of orders, ceteris paribus.

The estimation results on the excitation kernel, given in Figure 4.4a, indi-

cate that self-excitation e↵ects surpass cross-excitation e↵ects in both states.

Their magnitude and timescales, however, vary between the two states. The

e↵ective timescales of these e↵ects range from 0.1 to 100 milliseconds, which

is in agreement with the predominantly algorithmic origin and multiscale

nature of trading in modern electronic markets.

When the bid–ask spread increases to 2+, the magnitude of the self-excitation

e↵ects doubles whilst their timescale remains roughly the same. The timescale
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(a) Transition probabilities of the bid–ask spread (ModelS).

(b) Transition probabilities of the queue imbalance (ModelQI).

Figure 4.3: Estimated transition distributions �̂ of ModelS and ModelQI. We report the

average of �̂(i) across the 250 trading days. (Daily estimates vary little from these averaged
values.)

of cross-excitation, however, lengthens drastically, whilst their magnitude in-

creases slightly. A plausible microstructural explanation for this pattern goes

as follows. When the bid–ask spread is in state 2+, a trader can submit an

aggressive limit order inside the spread, gaining queue priority at the cost

of a less favourable price. A bid event can then be seen as a signal for an

upwards price move, which may prompt limit orders from buyers seeking a

favourable position in the new queue and cancellations of limit orders from

sellers trying to avoid adverse selection. Traders who submit sell orders are,

per contra, incentivised to wait and see if the expected price increase actually

materialises.

72



(a) ModelS (state variable: bid–ask spread).

(b) ModelQI (state variable: queue imbalance).

Figure 4.4: The estimated kernel k̂ under ModelS and ModelQI. Each panel describes self- or
cross-excitation as indicated by its title, whilst each colour corresponds to a di↵erent state. For

example, in Figure 4.4a, the red curves in the second panel represent the estimates k̂(i)e0e(·, x)
where e

0 = ask, e = bid and x = 1. All daily estimates are superposed with one translucent
curve for each day. An “aggregate” kernel is represented by a solid line, computed using the
median of ↵̂(i) and �̂(i) across the 250 trading days.

73



(a) ModelS. (b) ModelQI.

Figure 4.5: Estimated base rate vector ⌫̂(i) for ModelS and ModelQI over time (in number
of events per second).

The evolution of the base rate vector ⌫̂(i) throughout the 250 days of data is

displayed in Figure 4.5. We find a remarkable balance between buyers and

sellers (i.e., ⌫bid ⇡ ⌫ask). We also notice that the evolution of ⌫̂(i) mimics

that of the total number of orders (Figure 4.1b), which suggests that the

day-to-day variation in market activity is mainly due to exogenous factors

(cf. the analysis of endogeneity in Section 4.7).

4.5 Estimation results for ModelQI

The estimated transition probabilities of ModelQI, presented in Figure 4.3b,

convey a tendency to stick to the current state, similar to what is seen in

ModelS. Here, however, this behaviour is more of an artefact — each ask and

bid event, by definition, changes the queue imbalance but not necessarily the

state variable that is confined to the bins (4.1).

In contrast to ModelS, the estimated transition probabilities now depend

on the event type and we observe remarkable mirror symmetry, whereby

�̂bid equals, up to 1 percentage point, �̂ask with the order of states reversed.

This symmetry is natural, given the definition of the QI — a sell order always

decreases the queue imbalance unless it is submitted inside the bid–ask spread

or it depletes the current bid queue, whilst an analogous statement is true

for buy orders. As in ModelS, we find again that the probability of a state
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Figure 4.6: Estimated kernel norms kk̂k1,1 for ModelQI over time. The dashed line marks 5
February 2018 (“the return of volatility”), a day when the CBOE Volatility Index (VIX) jumped
by 116% to 38 points, a level not seen since August 2015. This day seems to have introduced a
systematic change in the magnitude of cross- and self-excitation. The spike in cross-excitation
that occurs on 21 February 2018 is linked to a sudden change in market behaviour around
14:00 on that day, when Intel Corporation rolled out patches for its most recent generation of
processors.

transition is higher when it is towards the equilibrium state, here neutral,
consistent with ideas about the resilience of the LOB [78].

Looking at the estimation results for the excitation kernel in Figure 4.4b,

we observe that, like in ModelS, self-excitation surpass cross-excitation, with

the magnitude of the former and the timescale of the latter being manifestly

sensitive to the current state. The mirror symmetry seen above in the context

of the transition probabilities holds here as well, whereby it su�ces to only

speak about the results for ask events, whilst analogous conclusions can be

drawn on bid events.

Even though the day-to-day variation of the estimates is more pronounced

in this model compared to ModelS, some clear patterns emerge again. The
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self-excitation of ask events consistently increases under heavy sell pressure

(state sell++). This can plausibly be explained by a combination of a flight to

liquidity, through the submission of sell orders, and fear of adverse selection,

leading to cancellations of buy orders, by traders expecting a downwards

price move. Under mild buy pressure (state buy+), self-excitation decreases

so that the corresponding kernel norm nearly halves.

In the state buy++ (heavy buy pressure), a closer look at the daily estimates

of the self-excitation of ask events plotted in purple in Figure 4.4b reveals

two distinct groups of curves above and below of the median curve. The daily

estimates of the (full) kernel norms plotted in time in Figure 4.6 suggest that

the self-excitation e↵ect has undergone a structural break in early February

2018 — the moment that suddenly marked the end of a year-long period

of unusually low volatility in the US equity markets, dubbed “the return of

volatility” by some financial journalists. It is also worth mentioning that at

the same time the price of INTC went above $50, at which point the large-

tick character of the stock starts to weaken. The behaviour characterised by

the lower group of curves (pre-February 2018) can be interpreted as traders

expecting a price increase and thus deferring the submission of sell orders,

whereas the upper group of curves (post-February 2018) hints at a tendency

of sellers to seek an advantageous position in the ask queue. Indeed, a queue

imbalance close to one implies that that only a very small amount of liquid-

ity is available at the ask price. Thus, placing a sell limit order following a

succession of sell limit orders from other traders allows one to acquire a good

position in the queue, should it be replenished (which brings the queue im-

balance back to equilibrium). If, however, the ask queue progresses towards

depletion, one has still time to cancel the order whilst the sell limit orders at

the front of the queue are matched with incoming buy market orders.

Under buy pressure (states buy++ and buy+), the timescale of the cross-

excitation from bid to ask events becomes almost as short as that of the

self-excitation of bid events. This reflects the resilience of the LOB — in

response to a bid event, ask events compete neck and neck with bid events

precisely when they push the queue imbalance back towards the equilibrium

state. Recall that the resilience of the LOB is also reinforced by the estimated
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Figure 4.7: The upper panel depicts the evolution of the queue imbalance and level-I order
flow of INTC on 13 February 2018 and the ask (red dots) and bid (blue dots) events. The
lower panel displays the estimated intensities ofModelQI. (The self- and cross-excitation kernel
norms of ModelQI on 13 February 2018 are visualised in Figure 4.11.)

state transition probabilities, as discussed above.

To exemplify the estimated intensity processes and their state dependence,

a very brief extract from the estimated dynamics of ModelQI is presented in

Figure 4.7. In particular, we observe how pronounced the self-excitation of

bid events becomes when the queue imbalance drops below �0.6, that is, to

state sell++.

4.6 Goodness-of-fit diagnostics

To assess the goodness of fit of the estimated models, we examine the event

residuals re
n
in sample (daily, 12:00–14:30) and out of sample (daily, 14:30–

15:00) for both ModelS and ModelQI. For comparison, we also estimated an

ordinary Hawkes process (dx = 1) with exponential kernel for the same event

types E = {ask, bid} and computed its event residuals. Since the state-
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(a) ModelS: in sample. (b) ModelS: out of sample.

(c) ModelQI: in sample. (d) ModelQI: out of sample.

Figure 4.8: In-sample (12:00–14:30) and out-of-sample (14:30–15:00) Q–Q plots of event
residuals under ModelS, ModelQI (state-dependent) and an ordinary Hawkes process (simple).

The residuals of the ith day are computed using the ML estimates (⌫̂(i)
, ↵̂(i)

, �̂(i)) obtained
from the 12:00–14:30 period. The empirical quantiles are obtained by pooling the residuals
of all 250 trading days. The two panels in each sub-figure correspond to the sequences of
residuals (ren) for e 2 E = {ask,bid}.

dependent Hawkes process nests the ordinary Hawkes process, the former

will by construction provide a better fit in sample than the latter. The Q–Q

plots in Figure 4.8 show that this improvement in the goodness of fit extends

out of sample, albeit the improvement is smaller than in sample. This is

a confirmation that that ModelS and ModelQI, and their state-dependent

features in particular, are not overfitted.

It should not come as a surprise that the improvement in goodness of fit

provided by the state-dependent model looks meagre when one examines the

Q–Q plots. Indeed, the behaviour of ModelS, ModelQI and their ordinary

Hawkes process alternative is quite similar when the bid–ask spread and

queue imbalance are in their most likely states. It is only in the less likely

states, 2+ in ModelS and sell++ and buy++ in ModelQI, where the di↵erence

between the state-dependent and ordinary Hawkes process models becomes

more pronounced. Thereby, the unconditional distribution of residuals does

not vary much between these three models.
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4.7 Endogeneity is state-dependent

The recent popularity of Hawkes processes in the modelling of high-frequency

financial data partly stems from their ability to capture the endogeneity of

market activity. In particular, recall from Section 1.6.3 that the spectral

radius of the matrix of kernel norms, denoted by ⇢, can be interpreted as a

measure of endogeneity and that the condition ⇢ < 1 ensures the stability of

the proceess.

Univariate Hawkes processes fitted to high-frequency financial data often

exhibit kernel norms slightly below one, whilst the base rates tend to be

relatively low in comparison. This phenomenon has been interpreted by

Filimonov and Sornette [49] and Hardiman et al. [58] as evidence that most

market events are endogenous, mere responses to earlier events, dwarfing the

flow of less frequent exogenous events that are driven by new information.

They dub the phenomenon critical reflexivity, which is a nod to George Soros

and his reflexivity theory on the endogeneity of financial markets [114].

In the context of state-dependent Hawkes processes, for any state x 2 X ,

the kernel (ke0e(·, x))e0,e2E defines a multivariate ordinary Hawkes process.

Setting mij := kkji(·, x)k1,1, we denote by ⇢(x) the spectral radius of the

de⇥de matrix (mij), which measures the endogeneity in this ordinary Hawkes

process. Figure 4.9 displays the daily estimates of ⇢(x) for both ModelS and

ModelQI as a function of x 2 X . We observe a remarkably clear pattern of

⇢(x) being almost uniformly higher in the disequilibrium states (2+, sell++,
buy++) than in the equilibrium states (1, sell+, neutral, buy+). In particular,

in ModelS, the spectral radius ⇢(2+) is systematically above the critical value

1, whilst in ModelQI, the values of ⇢(sell++) and ⇢(buy++) are above 0.9

half of the time, exceeding 1 occasionally. These results thus open a new

perspective on critical reflexivity, showing that it is in fact a largely state-

dependent phenomenon, observed only in particular circumstances. They

also lend credence to Soros’s remark that “[e]ven in the financial markets

demonstrably reflexive processes occur only intermittently” [115, p. 29].

The increase in endogeneity in the disequilibrium states seems attributable

to strategies employed by high-frequency traders (HFTs), who become active
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(a) ModelS (b) ModelQI

Figure 4.9: The estimated spectral radius ⇢̂(x) as a function of x 2 X under ModelS and
ModelQI. The daily profiles x 7! ⇢̂(x)(i), i = 1, . . . , 250, are represented by the red translucent
curves.

in these states, in anticipation of a price move. In a recent study, Lehalle and

Neuman [82] analyse a unique data set from Nasdaq Stockholm, where the

identities of the buyer and seller in each transaction were disclosed by the

exchange until 2014. In particular, they show that when the QI increases, the

trading activity of market participants they classify as proprietary HFTs is

amplified, in the direction of the imbalance. The pronounced sub-millisecond

self-excitation e↵ects seen in Figure 4.4b, which are the key driver behind the

high spectral radii ⇢(x), concur with the trading patterns observed by Lehalle

and Neuman [82]. Besides its use as a trading signal, Lehalle and Neuman

[82] find the QI to be mean-reverting, which is similarly compatible with our

results. A higher spectral radius in disequilibrium states corresponds here to

an immediate increase in market activity, which, reinforced by the structure

of the estimated transition probabilities (Figure 4.3), is more likely to push

the QI towards equilibrium than vice versa.

4.8 Event–state structure of LOBs

We could alternatively build a state-dependent variant of a Hawkes process

in the following, conceptually simpler way. Using the representation Ñ of

the counting and state processes (N , X), one could specify an intensity of
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Figure 4.10: In-sample (12:00–14:30) Q–Q plots of total residuals of ModelQI (state-
dependent) and the alternative model given by (4.2) (complex) on 11 May 2018. Each panel
corresponds to a sequence of residuals (r̃exn ) for all e 2 E and x 2 X .

the form

�̃ex(t) = ⌫ex +
X

e02E,x02X

Z

[0,t)

ke0x0ex(t� s)dÑe0x0(s), t � 0, e 2 E , x 2 X ,

(4.2)

instead of (3.3). This approach would in fact be tantamount to simply using

a dedx-dimensional ordinary Hawkes process.

The intensity (4.2) makes self- and cross-excitation state-dependent, but the

simple structure of the state process X in Definition 3.1.1 is lost. Namely,

under (4.2), the transition probabilities of the state process depend not only

on the current state but on the entire history. However, LOBs enjoy a cer-

tain event–state structure — knowing the current state of the LOB and the

characteristics of the next order su�ces to (approximately) determine the

next state. State-dependent Hawkes processes are by construction able to

reproduce such an event-state structure and, therefore, compared to the al-

ternative (4.2), we expect them to provide in general a better statistical

description of the LOB. Moreover, the model given by (4.2) requires a ker-

nel with d2
e
d2
x
components whereas a state-dependent Hawkes process can be

specified more parsimoniously, using only d2
e
dx components.
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To compare this alternative model to state-dependent Hawkes processes, we

estimate an ordinary Hawkes process with intensity (4.2), choosing an ex-

ponential form of the kernel k with event types in E and state space X as

in ModelQI. Because of the higher dimensionality of this alternative model,

estimation becomes computationally more expensive, which is why we use

INTC data for May 2018 only. In Figure 4.10, this alternative model is com-

pared to ModelQI via Q–Q plots of the total residuals. We choose to display

the results for a day when the alternative model provides one of its best fits,

although the goodness of fit does not vary markedly across the 22 trading

days in May 2018. Even though it has fewer parameters (92 as opposed to

210), we observe that ModelQI provides a better in-sample fit. These em-

pirical results thus underline the significance of the event–state structure of

LOBs.

4.9 Discussion

State-dependent Hawkes processes enable us to model two-way interaction

between a self- and cross-exciting point process, governing the temporal

flow of events , and a state process, describing a system. In the context

of LOB modelling, they provide a probabilistic foundation for a novel class

of continuous-time models that encapsulate the feedback loop between the

order flow and the shape of the LOB. Our estimation results, using these

models and one year’s worth of high-frequency LOB data on the stock of

Intel Corporation, reveal that state dependence is indeed significant, as we

uncover several robust patterns that persist throughout the daily estimation

results. In particular, we find that market endogeneity, measured through

the magnitude of self- and cross-excitation is state-dependent, being most

pronounced in disequilibrium states of the LOB.

Our results also validate the event–state structure of LOBs that is embedded

in the definition of a state-dependent Hawkes process. However, we do not

claim that ModelS and ModelQI would be the best possible representations of

the aforementioned feedback loop — we recognise that they could be refined

as follows:

82



(i) The exponential excitation kernels could be replaced by power laws,

motivated by the non-parametric estimation results on ordinary Hawkes

processes [58, 9]. A numerically more convenient alternative would be

to use a superposition of exponentials within the parametric framework

to mimic the slow decay of a power law [107, 87].

(ii) The base rates could be made state-dependent by replacing ⌫e with

⌫e(X(t)) in (3.1). Note that in this case, the model would contain

both a continuous-time Markov chain (k ⌘ 0) and an ordinary Hawkes

process as special cases.

(iii) One might argue for excitation kernels that allow for negative values,

to capture inhibition e↵ects that are known to exist in LOB data [87].

To ensure the non-negativity of the intensity, this would require trans-

forming the right-hand side of (3.1) by a non-linear function.

(iv) More granular event types and states would provide more nuanced un-

derstanding of the LOB dynamics. Besides, notice that the present

framework accommodates multiple state variables. For example, X

could in fact jointly represent both the bid–ask spread and the QI us-

ing the state space

X = {(1, sell++), . . . , (1, buy++), (2+, sell++), . . . , ({2+, buy++)}.

However, no matter how one modifies the intensity (3.1) by implementing any

of (i)–(iv) to incorporate one’s views on the feedback loop, the event–state

structure of the model remains intact. The process still falls within the class

of hybrid marked point processes that we will introduce in Chapter 6, whence

the theoretical results of Chapter 3 (existence, uniqueness, separability of the

likelihood function) still apply.
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4.10 Details on maximum likelihood estimation

4.10.1 Numerical optimisation

Similarly to ordinary Hawkes processes [87], the maximum likelihood (ML)

search (3.5) is broken down into de separate optimisation problems. For

every e 2 E , we have an independent optimisation problem that involves

only the parameters ⌫e, (↵e0xe)e02E,x2X , (�e0xe)e02E,x2X , and which we solve

using a conjugate gradient method.

More precisely, we call the minimize function in the scipy.optimize Python

package and use the method TNC. Three random sets of parameters are gen-

erated and used as alternative initial guesses. An ordinary Hawkes process

(dx = 1) is estimated before the state-dependent one and its parameters

are also used as an initial guess. Moreover, the estimate of the previous

day is used as another initial guess and, thus, a total of five di↵erent initial

guesses are employed. For ModelQI, around 50 iterations and 400 function

evaluations are required for each day, event type e 2 E and initial guess.

As this optimisation problem is non-convex, the above procedure might con-

verge to a mere local maximum instead of the global one [87]. Nevertheless,

in a Monte Carlo experiment, reported in the following subsection, this con-

jugate gradient method returns estimates that are consistently concentrated

near the true parameter values (see also Subsection 3.5.1).

4.10.2 Uncertainty quantification

The uncertainty of ML estimates of the parameters of a state-dependent

Hawkes process can be quantified using a parametric bootstrap procedure.

The procedure entails simulating realisations of the state-dependent Hawkes

process under the estimated parameter values using Algorithm 3.3.1 and

then applying ML estimation again to each simulated realisation, producing

a sample of estimates that approximates the distribution of the ML estimator.

To exemplify the method, we apply it here to ModelQI estimates for INTC on

13 February 2018. The results are presented in Figure 4.11, and we observe
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Figure 4.11: Uncertainty quantification of the estimated excitation profiles for INTC on 13
February 2018 under ModelQI. The parametric bootstrap procedure involves simulating 100
paths covering 2.5 hours of trading using the ML estimates of the parameters on the considered
day and applying ML estimation again to each of the simulated paths. Three random sets
of parameters are used as the initial guess in the optimisation procedure. We use the 100
estimates to compute a 99%-confidence interval for the truncated kernel norm (translucent
area). The solid line corresponds to the ML estimates using the original INTC data.

that the uncertainty of the estimates is negligible compared to the estimated

excitation patterns.
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5
Framework for marked point

processes

This chapter serves as a transition to the more theoretical part of this thesis

by presenting a general framework for marked point processes. It sets the

stage for the generalisation of state-dependent Hawkes processes to hybrid

marked point processes (Chapter 6) and the resolution of the strong existence

and uniqueness problem (Chapter 7).

In the following, U refers to a complete separable metric space and we denote

by B(U) its Borel �-algebra. We reserve the notation M for a complete sep-

arable metric space that represents the set of marks in the context of marked

point processes. For most definitions, we follow closely Daley and Vere-Jones

[41] along with Brémaud [19]. The former reference will be especially used to

introduce (marked) point processes while the latter is essential when defining

the intensity process.
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5.1 Spaces of integer-valued measures

Let ⇠ be a Borel measure on U . We say that ⇠ is boundedly finite if ⇠(A) <1

for every bounded Borel set A 2 B(U). We denote by N
1
U the space of Borel

measures on U with values in N [ {1}. We denote by N
#
U the set of all

⇠ 2 N
1
U such that ⇠ is boundedly finite. We denote by N

#g

R⇥M the set of all

⇠ 2 N
#
R⇥M such that their ground measure ⇠g(·) := ⇠(·⇥M ) satisfies:

(i) ⇠g 2 N
#
R ;

(ii) ⇠g({t}) = 0 or 1 for all t 2 R (we say that the ground measure is

simple).

Observe that N#g

R⇥M ⇢ N
#
R⇥M ⇢ N

1
R⇥M . The space N1

R⇥M corresponds to the

realisations of potentially explosive point processes, while the space N
#
R⇥M

corresponds to the realisations of non-explosive point processes and contains

all the realisations of potentially explosive marked point processes. Regarding

the space N
#g

R⇥M , each ⇠ 2 N
#g

R⇥M is a realisation of a non-explosive marked

point process. When ⇠({(t,m)}) = 1 for some t 2 R and m 2M , this should

be interpreted as an event happening at time t with characteristics m. The

boundedly finite property of the ground measure ensures that, in any finite

amount of time, only finitely many events can occur (i.e., the marked point

point process is non-explosive). The simpleness constraint on the ground

measure means that there cannot be two events at the same time.

The so-called w#-distance d# (“weak-hash”) introduced by Daley and Vere-

Jones [40, p. 403], makesN#
U a complete separable metric space, see Theorem

A2.6.III in Daley and Vere-Jones [40, p. 404]. The corresponding �-algebra

B(N#
U ) coincides with the one generated by all mappings

⇠ 7! ⇠(A), ⇠ 2 N
#
U , A 2 B(U).

Proposition A2.6.II of Daley and Vere-Jones [40, p. 403] characterises con-

vergence in this topology, called the w#-topology. These properties of the

space N
#
U play an important role in the subsequent chapters. Note that, in

Chapter 8, we clarify the proofs of Proposition A2.6.II and Theorem A2.6.III
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of Daley and Vere-Jones [40]. Indeed, the original proofs assume a certain

function to be monotonic. As this does not actually hold in general, we find

alternative arguments where required. Besides, in Chapter 8, we show that

N
#g

R⇥M is indeed a Borel set of N#
R⇥M , see Lemma 8.7.1.

Finally, for any u 2 U , we denote by �u the Dirac measure at u.

5.2 Non-explosive marked point processes

In the following, the notation (⌦,F ,P) refers to a probability space. For any

�-algebra S, the trace of A 2 S on S is defined by A\S := {A\S : S 2 S}.

Definition 5.2.1 (Non-explosive point process). A non-explosive point pro-

cess on U is a measurable mapping from (⌦,F) into (N#
U ,B(N#

U )).

Definition 5.2.2 (Non-explosive marked point process). A non-explosive

marked point process N on R ⇥M is a non-explosive point process N on

R⇥M such that N(!) 2 N
#g

R⇥M for all ! 2 ⌦.

Remark 5.2.3. By applying Lemma 1.6 in Kallenberg [74, p. 4], we obtain

that B(N#g

R⇥M ) = N
#g

R⇥M \B(N
#
R⇥M ), where N#g

R⇥M is also equipped with the

w#-metric d#. This implies that Definition 5.2.2 is equivalent to saying that

a non-explosive marked point process is a measurable mapping from (⌦,F)

into (N#g

R⇥M ,B(N#g

R⇥M )).

Next, a non-explosive point process induces a probability measure on N
#
U .

Definition 5.2.4 (Induced probability). Let N be a non-explosive point pro-

cess on U . We define the induced probability measure P
N on the measurable

space (N#
U ,B(N#

U )) through the relation

P
N(A) := P

�
N�1(A)

�
, A 2 B(N#

U ).

As we did in the previous chapters, it is common to define instead marked

point processes on R�0 ⇥M as a sequence (Tn,Mn)n2N of random variables

in (0,1] ⇥M such that (Tn)n2N is non-decreasing and Tn < 1 implies
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Tn < Tn+1 [68, 19]. We will call such a sequence an enumeration. Here, Tn is

to be interpreted as the time when the nth event occurs while Mn describes

the characteristics of that event. Moreover, Tn < 1 with Tn+1 = 1 means

that there are no more events after time Tn. Note that this definition allows

for explosion in the sense that limn!1 Tn < 1 is possible with positive

probability. This is why we stress the non-explosive character of marked

point processes in Definition 5.2.2. There is a one-to-one correspondence

between non-explosive marked point processes on R�0⇥M and enumerations

such that limn!1 Tn =1 a.s. We will give a proof of this correspondence in

Chapter 8 for completeness.

5.3 Pathwise integration

Let N be a non-explosive point process on U . Let H : ⌦ ⇥ U ! R�0 be

an F ⌦B(U)-measurable non-negative mapping. In particular, H is an R�0-

valued stochastic process on U . One can define the integral of H against N

in a pathwise fashion as

I(!) :=

Z

U
H(!, u)N(!, du), ! 2 ⌦.

Besides, by a monotone class argument, one can check that ! 7! I(!) is F -

measurable. In the special case where N is actually a non-explosive marked

point process on R�0 ⇥M , the integral can be rewritten as

ZZ

R�0⇥M
H(t,m)N(dt, dm) =

X

n2N

H(Tn,Mn)1{Tn<1}, a.s.,

where (Tn,Mn)n2N is the enumeration corresponding to N . For any realisa-

tion ⇠ 2 N
#g

R⇥M and any ⌧ 2 R such that ⇠({⌧} ⇥M ) > 0, we abuse the

notation and define
RR

{⌧}⇥M m⇠(dt, dm) as the unique element m 2M such

that ⇠({⌧}⇥ {m}) = 1.
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5.4 Shifts, restrictions, histories and predictability

For all t 2 R, define the shift operator ✓t : N
#
R⇥U ! N

#
R⇥U by

✓t⇠(A) := ⇠(A+ t), A 2 B(R⇥ U),

where A+ t := {(s+ t, u) 2 R⇥U : (s, u) 2 A}. Then, for any non-explosive

point process N on R⇥U , define ✓tN through (✓tN)(!) := ✓t(N(!)), ! 2 ⌦.

It will be useful to show that ✓t⇠ is jointly continuous in t and ⇠ (Lemma

8.7.2).

Denote the restriction to the negative real line of any realisation ⇠ 2 N
#
R⇥U

by ⇠<0, which is defined by ⇠<0(A) := ⇠(A \ R<0 ⇥ U), A 2 B(R ⇥ U). We

can then define the restriction to the negative real line of any non-explosive

point process N on R⇥ U by N<0(!) := (N(!))<0, ! 2 ⌦. Similarly, define

the notations ⇠0(A) := ⇠(A \ R0 ⇥ U), N0(!) := N(!)0,

⇠�0(A) := ⇠(A \ R�0 ⇥ U), N�0(!) := N(!)�0, ⇠>0(A) := ⇠(A \ R>0 ⇥ U)

and N>0(!) := N(!)>0.

These notations will allow us to refer to the internal history of N . For

instance, for any t 2 R, (✓tN)<0 contains the history of the process up to time

t, excluding time t. To lighten these notations, we will use the conventions

✓t⇠<0 := (✓t⇠)<0, ✓t⇠0 := (✓t⇠)0, ✓t⇠>0 := (✓t⇠)>0 and ✓t⇠�0 := (✓t⇠)�0. It

will be useful to note that these restriction mappings are measurable (Lemma

8.7.3) and that ✓t⇠<0 is left-continuous as a function of t 2 R (Lemma 8.7.4).

Let N be a non-explosive point process on R⇥U . We can define the filtration

FN = (FN

t
)t2R that corresponds to the internal history of N by

F
N

t
:= � {N(A⇥ U) : A 2 B(R), A ⇢ (�1, t], U 2 B(U)} for all t 2 R.

Using Lemma 1.4 in Kallenberg [74, p. 4] along with the characterisation of

B(N#
R⇥U) given in Theorem A2.6.III in Daley and Vere-Jones [40, p. 404],

one can check that FN

t
= �(✓tN0).

In the following, we call a history any filtration that contains the internal

history of N , that is any filtration F = (Ft)t2R such that F
N

t
⇢ Ft, t 2 R.
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Equivalently, one says that N is F-adapted. The notation F = (Ft)t2R will

always be used to refer to a history. We also need to define the predictable

�-algebra F
p on ⌦⇥R⇥ U corresponding to a history F. The �-algebra F

p

is the one which is generated by all the sets of the form

A⇥ (s, t]⇥ U, s, t 2 R, s < t, U 2 B(U), A 2 Fs.

Any mapping H : ⌦ ⇥ R ⇥ U ! R that is F
p-measurable is called an F-

predictable process. Any mapping H on the positive real line of the form

H : ⌦⇥ R>0 ⇥ U ! R that is (⌦⇥ R>0 ⇥ U) \ F
p-measurable is also called

an F-predictable process. Given an F-stopping time ⌧ , the strict past F⌧� is

defined as the �-algebra generated by the all the classes {t < ⌧}\Ft, t 2 R.

5.5 Integration with respect to Poisson processes

Let ⌫ be a boundedly finite measure on (U ,B(U)). We say that a non-

explosive point process N on U is a Poisson process on U with parameter

measure ⌫ if N(A1), . . . , N(An) are mutually independent for all disjoint

and bounded sets A1, . . . , An 2 B(U), n 2 N, and N(A) follows a Poisson

distribution with parameter ⌫(A) for all bounded sets A 2 B(U). Their

existence can be verified using Theorem 9.2.X in Daley and Vere-Jones [41,

p. 30], see Example 9.2(b) on p. 31 therein.

We next clarify briefly the link between point processes and random mea-

sures. A random measure M on a measurable space (S,S) is a mapping

M : ⌦ ⇥ S ! R�0 [ {1} such that M(!, ·) is a measure on (S,S) for all

! 2 ⌦ and M(·, A) is a random variable for all A 2 S, see Kallenberg [74,

p. 106] and Çinlar [30, Chapter 6, p. 243]. Note that the concepts of internal

history and adaptedness of Subsection 5.4 can be directly extended to ran-

dom measures. Not surprisingly, point processes are exactly the boundedly

finite integer-valued random measures.

Proposition 5.5.1. Let N be a random measure on (U ,B(U)) such that

N(!, ·) 2 N
#
U for all ! 2 ⌦. Then N is a non-explosive point process on U .

In return, any non-explosive point process N on U is a random measure on
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(U ,B(U)) such that N(!, ·) 2 N
#
U for all ! 2 ⌦.

Proof. See Proposition 9.1.VIII in Daley and Vere-Jones [41, p. 8].

One can show that Poisson processes are Poisson random measures in the

sense of Çinlar [30, Chapter 6, p. 249]. This enables us to apply an impor-

tant result on integration with respect to Poisson random measures. Before

stating the result, we need to define what it means for a Poisson process to

be Poisson relative to a filtration.

Definition 5.5.2. Let N be a Poisson process on R⇥U and F = (Ft)t2R be

a filtration. We say that N is Poisson relative to F if for all t 2 R, the point
process ✓tN0 is Ft-measurable and �(✓tN>0) is independent of Ft.

Trivially, a Poisson process N is always Poisson relative to its internal history

FN . The next result plays a crucial role in the Poisson embedding technique,

which is later used to construct marked point processes with given intensities.

Theorem 5.5.3. Let N be a Poisson process on R⇥U with parameter mea-

sure ⌫. Let F = (Ft)t2R be a filtration and suppose that N is Poisson rela-

tive to F. Then, for every non-negative F-predictable process H of the form

H : ⌦⇥ R⇥ U ! R�0, we have that

E
ZZ

R⇥U
H(t, u)N(dt, du)

�
= E

ZZ

R⇥U
H(t, u)⌫(dt, du)

�
.

Proof. See Theorem 6.2 in Çinlar [30, Chapter 6, p. 299].

5.6 Intensity process and functional

We equip the mark space (M ,B(M )) with a reference measure µM , allowing

us to define the concept of intensity rigorously. Let N be a marked point

process on R⇥M and F = (Ft)t2R a history. Let � : ⌦⇥ R>0 ⇥M ! R�0

be a non-negative F-predictable process. We say that � is the F-intensity of
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N relative to µM if for every non-negative F-predictable process of the form

H : ⌦⇥ R>0 ⇥M ! R�0,

E
ZZ

R>0⇥M
H(t,m)N(dt, dm)

�
= E

ZZ

R>0⇥M
H(t,m)�(t,m)µM (dm)dt

�
.

(5.1)

Note that if an intensity exists, it is then unique up to P(d!)µM (dm)dt-

null sets thanks to the predictability requirement, see Brémaud [19, Section

II.4] and Daley and Vere-Jones [41, p. 391]. In the following chapters, we

will be particularly interested in intensities that are expressed in terms of a

functional applied to the point process.

Definition 5.6.1 (Intensity functional). Let  : M⇥N#
R⇥M ! R�0[{1} be

a measurable functional. We say that a non-explosive marked point process

N : ⌦ ! N
#g

R⇥M admits  as its intensity functional if N admits an FN -

intensity � : ⌦⇥ R>0 ⇥M ! R�0 relative to µM such that

�(!, t,m) =  (m | ✓tN(!)<0), P(d!)dtµM (dm)-a.e. (5.2)

5.7 Initial condition

Let (⌦0,F0,P0) be a given probability space and N0 be a given marked

point process on R⇥M such that N0(!0)0 = N0(!0) for all !0 2 ⌦0

(i.e., there are no events on R>0). We will reserve the notation N0 to refer

to an initial condition.

Let (⌦>0,F>0,P>0) be another probability space that will correspond to the

driving Poisson process in the SDE of Chapter 7. In the context of strong

existence, we will work with the probability space (⌦,F ,P) which we define

as the completion [74, p. 13] of the product probability space given by

⌦ := ⌦0 ⇥ ⌦>0, F̃ := F0 ⌦ F>0, P̃ := P0 ⇥ P>0. (5.3)

Such a structure of the probability space is motivated by the fact that the

driving noise and the initial condition are independent.
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Definition 5.7.1 (Strong initial condition). Let N : ⌦ ! N
#g

R⇥M be a non-

explosive marked point process on R⇥M . We say that N satisfies a strong

initial condition N0 if N(!)0 = N0(!0) a.s., where ! = (!0,!>0) 2 ⌦.

In the context of weak uniqueness, one needs a another concept of initial

condition. Let (⌦0,F 0,P0) be another probability space potentially di↵erent

from (⌦,F ,P).

Definition 5.7.2 (Weak initial condition). Let N 0 : ⌦0
! N

#g

R⇥M be a non-

explosive marked point process on R⇥M . We say that N 0 satisfies a weak

initial condition N0 if the induced probability P
N

00
coincides with P

N0 .
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6
Generalisation to hybrid

marked point processes

We generalise state-dependent Hawkes processes to a class of hybrid marked

point processes that encompasses and extends continuous-time Markov chains

and Hawkes processes. To do so, we view the point process and the state pro-

cess as a single marked point process on a product mark space and allow the

intensity of events to be any measurable functional of past events and states.

Under this alternative viewpoint, these new hybrid marked point processes

are actually defined implicitly via their intensity that takes a specific prod-

uct form. The main result of this chapter is that the dynamics generated by

this product form completely characterise the class of hybrid marked point

processes (Theorem 6.2.5).

O↵ering an event–state viewpoint, this new class is well-suited to the joint

modelling of events and the time evolution of the state of a system. As far as

the modelling of LOBs is concerned, this class provides a framework that uni-

fies the existing models that are based on Hawkes processes and continuous-

time Markov chains. More importantly, it also contains new processes that

bridge these two prominent modelling approaches, state-dependent Hawkes
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processes being just one example, and thus, resolves the HM dichotomy.

6.1 Mark space and state process

Let (E ,B(E), µE) and (X ,B(X ), µX ) be two measure spaces where both E and

X are complete separable metric spaces and both µE and µX are a boundedly

finite Borel measures. Each e 2 E represents a type of event and we call E the

event space. Each x 2 X represents a possible state of a system and we call X

the state space. Motivated by the need to jointly model events and the state

of the system (HM dichotomy), we consider a mark space (M ,B(M ), µM )

of the form

M := E ⇥ X , B(M ) = B(E)⌦ B(X ), µM := µE ⇥ µX . (6.1)

Such a decomposition of the mark space admits the following interpretation.

Let ⇠ 2 N
#g

R⇥M be a realisation of a marked point process on R ⇥M . A

point t 2 R and a point m = (e, x) 2M such that ⇠({t,m}) = 1 can now be

interpreted as an event of type e occurring at time t and moving the state of

the system to x. To formalise this viewpoint, we define the state functional

and the state process as follows.

Definition 6.1.1 (State functional and state process). We define the mea-

surable state functional

F : N#
R⇥M ! X by

F (⇠) :=

8
<

:

RR
{(⇠)}⇥M x⇠(dt, de, dx), if ⇠ 2 N

#g

R⇥M and (⇠) > �1,

x0, otherwise,

where (⇠) := inf{t < 0 : ⇠((t, 0) ⇥M ) = 0} and x0 2 X is an arbitrary

initial state. Given a non-explosive marked point process N on M , we define

the state process (Xt)t2R by

Xt := F (✓tN
<0), t 2 R.
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Note that (✓tN<0) is the time of the last event up to time t and, thus, Xt

is the coordinate x 2 X of the mark m = (e, x) 2 M of the most recent

event. As a consequence, we indeed have that a point t 2 R and a point

m = (e, x) 2M such that N({t,m}) = 1 can be interpreted as an event of

type e occurring at time t and moving the state of the system to x. With

this viewpoint, a marked point process on R ⇥M allows to jointly model

the evolution of a system with state process (Xt)t2R in X and the arrival in

time of the event types E . To check that the state functional F is indeed

measurable, one can adapt the proof of Lemma 8.7.6 in Chapter 8.

6.2 Definition, implied dynamics and characterisation

We can now introduce the class of hybrid marked point processes, which pro-

vides a unified treatment of various types of processes, including continuous-

time Markov chains and Hawkes processes, whence the qualifier hybrid. More-

over, this class contains new types of processes, such as state-dependent

Hawkes processes, which are applicable to the joint modelling of events and

systems. This class is specified implicitly through a specific form of the in-

tensity. We were inspired by Cartea et al. [23] who, in the context of a

continuous-time Markov chain model, propose a decomposition of the inten-

sity that is similar in spirit. We should also mention the connection to the

decomposition of the rate kernel ↵ of a continuous-time Markov chain into

a rate function c and transition kernel µ (i.e., ↵ = µc), see Kallenberg [74,

p. 238-239], even though this is slightly di↵erent as c is the total intensity

and does not depend on the event variable e 2 E .

Definition 6.2.1 (Hybrid marked point processes). Let � : X⇥E⇥X ! R�0

be a measurable non-negative function such that �(· | e, x) is a probability

density over (X ,B(X ), µX ) for all e 2 E , x 2 X . Furthermore, let

⌘ : E ⇥ N
#
R⇥M ! R�0 [ {1} be a measurable non-negative functional.

Define the measurable intensity functional  : M ⇥ N
#
R⇥M ! R�0 [ {1}

by  (m | ⇠) := �(x | e, F (⇠))⌘(e | ⇠) for all m = (e, x) 2 M , ⇠ 2 N
#
R⇥M . A

hybrid marked point process with transition function � and event functional

⌘ is a non-explosive marked point process N : ⌦ ! N
#g

R⇥M that admits
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 as its intensity functional. In other words, N admits an FN -intensity

� : ⌦⇥ R>0 ⇥M ! R�0 relative to µM that satisfies

�(!, t, e, x) = �(x | e,Xt(!))⌘(e | ✓tN(!)<0), P(d!)dtµM (de, dx)-a.e.

(6.2)

To demonstrate the generality and flexibility of hybrid marked point pro-

cesses, we give three examples of well-known processes that belong to the

class. While at first these examples might be understood only at an intu-

itive level, the reader should become fully convinced of their validity once

Theorem 6.2.5 is introduced.

Example 6.2.2 (Compound Poisson process). Let E = {0} (i.e., just one

type of event), µE = �0, X = R, µX (dx) = dx (i.e., the Lebesgue measure)

and suppose that f : R! R�0 is a probability density function. Consider a

hybrid marked point process N with constant event functional ⌘ ⌘ ⌫ 2 R>0

and transition function given by �(x0
| x) = f(x0

� x), x0, x 2 R. Then,

the FN -intensity of N satisfies �(t, x) = f(x � Xt)⌫ and the state process

(Xt)t2R�0
is a compound Poisson process with rate ⌫ and jump size distribu-

tion f(x)dx.

Example 6.2.3 (Continuous-time Markov chain). Let E , µE , X and µX be

as in Example 6.2.2. Suppose that a hybrid marked point process N has

event functional of the form ⌘(⇠) = c(F (⇠)), ⇠ 2 N
#
R2 , where c is a positive

function. The FN -intensity of N is then given by �(t, x) = �(x |Xt)c(Xt)

and the state process (Xt)t2R�0
is a continuous-time Markov chain with rate

function c and transition kernel µ(x,B) =
R
B
�(y | x)dy, x 2 R, B 2 B(R).

Example 6.2.4 (Multivariate Hawkes process). Let E = {1, . . . , d},

d 2 N, µE =
P

d

n=1 �n, X = {0} (i.e., only one possible state), µX = �0,

⌫ = (⌫1, . . . , ⌫d) 2 Rd

>0 and k : R>0 ⇥ E
2
! R�0. Consider a hybrid marked

point process N with event functional

⌘(e | ⇠) = ⌫e +

ZZ

(�1,0)⇥E
k(�t0, e0, e)⇠(dt0, de0), e = 1, . . . , d, ⇠ 2 N

#
R⇥E ,

and note that the transition function must satisfy � ⌘ 1. Then N is a

multivariate Hawkes process with base rate ⌫ and kernel k.
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Let us next explain the dynamics that the intensity (6.2) implies. If one

integrates out the state variable x by using the fact that �(· | e,Xt) is a prob-

ability density, one can see that the FN -intensity of the marked point process

N(· ⇥ X ) on R ⇥ E is exactly ⌘(e | ✓tN<0). In other words, ⌘(e | ✓tN<0) is

the intensity of the aggregation of events of type e (irrespectively of how

they impact the state process Xt). Then, ⌘(e | ✓tN<0) is distributed in the

state space X according to �(x | e,Xt), specifying the intensity of events with

mark (e, x). This suggests that �(· | e,Xt) is the probability density of the

next state of the system given that the next event is of type e and that the

current state isXt. This intuition is confirmed by Theorem 6.2.5, which actu-

ally goes further and states that these dynamics characterise hybrid marked

point processes. The proof is presented in Subsection 6.4.2.

Theorem 6.2.5 (Implied dynamics and characterisation). Let � and ⌘ be

as in Definition 6.2.1. Moreover, suppose that N is a non-explosive marked

point process on R⇥M with an FN -intensity relative to µM . Then, N is a

hybrid marked point process with transition function � and event functional

⌘ if and only if the following two statements hold.

(i) NE(·) := N(· ⇥ X ) is a non-explosive marked point process on R ⇥ E

that admits an FN -intensity �E : ⌦ ⇥ R>0 ⇥ E ! R�0 relative to µE

such that �E(!, t, e) = ⌘(e | ✓tN(!)<0) holds P(d!)dtµE(de)-a.e.

(ii) Let t 2 R�0 and define the stopping time

⌧t := sup{u > t : N((t, u)⇥M ) = 0}

and the random elements

(E,X) :=

ZZ

{⌧t}⇥M
(e, x)N(du, de, dx)

such that ⌧t is the time of the first event after time t and (E,X) is the

corresponding mark. We have that

P
�
X 2 dx | �(E) _ F

N

⌧t�
�
1{⌧t<1} = �(x |E,Xt)µX (dx)1{⌧t<1}, a.s.

(6.3)
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Remark 6.2.6. As shown in the proof of Theorem 6.2.5, Equation (6.3)

implies that

P
�
X 2 dx | �(E) _ F

N

t
, {⌧t <1}

�
= �(x |E,Xt)µX (dx) a.s.

We now add a fourth example to show that Definition 6.2.1 contains also

new types of processes. This example is nothing else than the reformulation

of state-dependent Hawkes processes as hybrid marked point processes. To-

gether, the four examples demonstrate that hybrid marked point processes

provide a common framework to construct and analyse various types of pro-

cesses.

Example 6.2.7 (State-dependent Hawkes process). Consider hybrid marked

point processes with event functionals ⌘ of the form

⌘(e | ⇠) = ⌫(e) +

ZZ

(�1,0)⇥M
k(�t0,m0, e)⇠(dt0, dm0), e 2 E , ⇠ 2 N

#
R⇥M ,

(6.4)

where ⌫ : E ! R�0 and k : R⇥M ⇥ E ! R�0 are non-negative measurable

functions. We will show later that such functionals are indeed measurable

(Proposition 8.7.8). By Theorem 6.2.5, this gives rise to a marked point

process NE with marks in E and intensity ⌘ that interacts with a state process

(Xt)t2R on X with transition probabilities �. On the one hand, events in NE

occur like in a Hawkes process except that now the kernel depends also on the

state process. For example, an event of type e0 2 E might precipitate an event

of type e 2 E only if it moves the system to some specific state x0 2 X , i.e.,

k(·, e0, x0, e) ⌘ 0 as soon as x0
6= x0. On the other hand, the occurence of an

event in NE prompts a state change according to the transition probabilities

�. Consequently, such a marked point process defines a state-dependent

Hawkes process where the state process is fully coupled with the Hawkes

process. Viewing NE and (Xt)t2R as one single marked point process N on

E⇥X with intensity �⌘ will allow us to prove the existence of such dynamics

in the next chapter, see Corollary 7.4.2 and Example 7.4.3.

This subclass of hybrid marked point processes extends the regime-switching

model of Vinkovskaya [121], where the state process triggering the regime
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switches is not modelled. Besides, since here the events drive the dynamics

of the state process, this subclass is di↵erent from the Markov-modulated

Hawkes processes considered by Cohen and Elliott [32] or Swishchuk [116],

where the state process is a continuous-time Markov chain that jumps inde-

pendently of the events. Moreover, the intensity in Cohen and Elliott [32]

depends only on the current state whereas, here and in Swishchuk [116], it

may depend on all past states.

Remark 6.2.8. The term hybrid also alludes to a connection with stochastic

hybrid systems [24, 123]. These systems evolve continuously in time typically

according to di↵erential equations, switching between di↵erent regimes as

new discrete events occur. The class of hybrid marked point processes intro-

duced in this chapter could contribute to the modelling of such systems by

considering more general state functionals F . For example, F could generate

a state process (Xt)t2R such that, after each event (Tn, En, Xn), it follows

a di↵erential equation with initial condition Xn and parameters ✓(En) that

depend on the event type En.

6.3 A unifying framework for LOB modelling

Hybrid marked point processes provide us with a unifying framework that

contains not only all the existing LOBmodels discussed in Section 1.6 (Hawkes

processes) and Section 1.7 (continuous-time Markov chains) but also new

models like state-dependent Hawkes processes that preserve the event–state

structure of LOBs (cf. Sections 4.8 and 4.9). In fact, the present framework

can be used as a flexible and intuitive language that simplifies the specifica-

tion and comparison of a wide universe of models that are defined by four

components:

• an event space (E ,B(E), µE) that classifies the event types in the order

flow;

• a state space (X ,B(X ), µX ) that corresponds to the LOB state variables

described by the model;
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• an event functional ⌘ that determines how the arrival rates of events

are linked to the history of the order flow and the LOB;

• a transition function � that describes how order flow events impact the

LOB state variables.

As an illustration, we reformulate the level-I reduced-form model of Cont

and De Larrard [34] as a hybrid marked point process.

Example 6.3.1 (Reduced-form zero-intelligence model in [34]). The events

in the level-I order flow are classified according to six di↵erent types:

E ={buy market order, buy limit order, buy cancellation,

sell market order, sell limit order, sell cancellation}.

The state process takes values in X = N3, where the first component corre-

sponds to the bid price, while the second and third component correspond

to Dt(Bt) and Dt(At) (level-I depth profile), respectively:

Xt = (Bt/⇢, Dt(Bt), Dt(At)).

It is assumed that the spread always equals one tick so the ask price does

not need to be modelled. The event and state spaces are here equipped with

the canonical counting measures. The event functional does not depend on

the history and is thus of the simple form:

⌘(e | ⇠) = ⌫(e), e 2 E , ⇠ 2 N
#
R⇥M .

Finally, as it is assumed that all orders are of unit size, the LOB mechanism

is embedded in the transition function � as follows:

�((n0
1, n

0
2, n

0
3) | e, (n1, n2, n3)) =

1(e = buy limit, n0
1 = n1, n

0
2 = n2 + 1, n0

3 = n3)

+ 1(e = sell limit, n0
1 = n1, n

0
2 = n2, n

0
3 = n3 + 1)

+ 1(e 2 {buy market, sell cancellation})⇥

[1(n3 > 1, n0
1 = n1, n

0
2 = n2, n

0
3 = n3 � 1)
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+ 1(n3 = 1, n0
1 = n1 + 1)f(n0

2, n
0
3)]

+ 1(e 2 {sell market, buy cancellation})⇥

[1(n2 > 1, n0
1 = n1, n

0
2 = n2 � 1, n0

3 = n3)

+ 1(n2 = 1, n0
1 = max(n1 � 1, 0))f̃(n0

2, n
0
3)],

where e 2 E , (n1, n2, n3), (n0
1, n

0
2, n

0
3) 2 X and f and f̃ are the distribu-

tions of the new depth profile when the price jumps upwards or downwards,

respectively.

We would also like to point out that the simulation algorithm and estima-

tion framework introduced in Chapter 3 for state-dependent Hawkes pro-

cesses naturally extends to hybrid marked point processes. The separability

property of the likelihood function still holds and implies that the transition

function � and event functional ⌘ can be estimated independently of one an-

other. The goodness-of-fit diagnostics using residuals would also still apply,

providing a common framework to assess and compare di↵erent models. For

instance, the goodness-of-fit of continuous-time Markov chains could be as-

sessed through an analysis of residuals, something that has never been done

so far in the context of zero-intelligence and queue-reactive models and that

would allow for a direct comparison with Hawkes-process models.

While queue-reactive models specify the arrival rates as functions of the

current shape of the LOB, we have with state-dependent Hawkes processes

placed the state dependence in the excitation kernel, making the arrival rates

depend on the history of the state process. Hybrid marked point processes

provide us with new models where di↵erent kinds of state dependence can

now be combined, as illustrated by this straightforward extension of state-

dependent Hawkes processes already mentioned in Section 4.9.

Example 6.3.2 (State-dependent Hawkes process – bis). In Example 6.2.7,

change the event functional to

⌘(e | ⇠) = ⌫(e, F (⇠))+

ZZ

(�1,0)⇥M
k(�t0,m0, e)⇠(dt0, dm0), e 2 E , ⇠ 2 N

#
R⇥M ,

where now ⌫ : E ⇥ X ! R�0 is a non-negative measurable function.
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Notice that this slight extension of state-dependent Hawkes processes now

contains both Hawkes-process models and queue-reactive models of the LOB.

Indeed, if k ⌘ 0, the arrival rate of events is given by ⌘(e | ✓tN<0) = ⌫(e,Xt).

Hence, by estimating this model from market data, one could measure which

of ⌫ and k is the most state-dependent, shedding light on the true nature of

the state dependence.

Finally, we have stressed several times that a key novelty of state-dependent

Hawkes processes is that the state process is fully coupled to the point pro-

cess, which distinguishes them from Markov-modulated Hawkes processes.

However, we would like to clarify that this latter group of processes can also

be formulated as hybrid marked point processes, which shows the flexibility

of this new class.

Example 6.3.3 (Markov-modulated univariate Hawkes process).

Set X = E = {0, 1}, µX = µE = �0 + �1 and let ⌘ and � be of the form

⌘(0 | ⇠) = �(F (⇠)), ⇠ 2 N
#
R⇥M

⌘(1 | ⇠) = ⌫ +

Z

(�1,0)

k(�t0, F (⇠))⇠(dt0, {1},X ), ⇠ 2 N
#
R⇥M ,

�(x0
| 1, x) = 1(x0 = x), x0, x 2 X ,

where ⌫ 2 R>0 and � : X ! R>0 and k : R ⇥ X ! R�0 are measurable.

Then, the state process can only jump at events of type 0 and the intensity

at time t of these events is simply given by �(Xt). Consequently, (Xt)t2R
is a continuous-time Markov chain and the component N 0(·) := N(·, {1},X )

of the hybrid marked point process N is a Markov-modulated univariate

Hawkes process, with an intensity at time t of the form

�(t) = ⌫ +

Z

(�1,t)

k(t� s,Xt)N
0(ds).

Note that if � is relaxed to a more general form, the state process can also

jump when events of type 1 occur. In this case, N 0 is modulated by a state

process that is partially exogenous, and is somehow an hybrid of a Markov-

modulated Hawkes process and state-dependent Hawkes process.
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6.4 Proofs

In this section, we prove Theorem 6.2.5, which characterises the dynamics of

hybrid marked point processes.

6.4.1 Preliminaries

We first present a lemma that helps us reuse some results in the literature that

require a specific form for the filtration. It simply says that the information

up to time u is equal to the information up to time t to which we add the

information between time t and u, where t < u.

Lemma 6.4.1. LetN be a non-explosive point process on R⇥U . Let t, u 2 R
such that u > t. Then, we have that FN

u
= F

N

t
_ F

✓�t[✓tN>0]
u .

Proof. Note that

F
✓tN

>0

u
= � {N(A⇥ U) : A 2 B(R), A ⇢ (t, u], U 2 B(U)} for all u > t.

Then, clearly F
✓�t[✓tN>0]
u ⇢ F

N

u
. Also, FN

t
⇢ F

N

u
and, thus

F
N

t
_ F

✓�t[✓tN>0]
u ⇢ F

N

u
. On the other hand, let A 2 B(R) be such that

A ⇢ (�1, u] and let U 2 B(U). We have that

N(A⇥ U) = N(A \ (�1, t])⇥ U) +N(A \ (t, u]⇥ U).

The first term is FN

t
measurable while the second term is F ✓�t[✓tN>0]

u measur-

able. Hence, N(A⇥ U) is FN

t
_F

✓�t[✓tN>0]
u measurable. Since, by definition,

F
N

u
is the smallest �-algebra that makes all the N(A⇥ U) measurable, this

implies that FN

u
⇢ F

N

t
_ F

✓�t[✓tN>0]
u , which concludes the proof.

As defined in Subsection 5.6, an intensity process has to always be finite.

We verify that, if one finds a potentially infinite process that satisfies the

definition of the intensity, then one can take a finite version of this process

and identify it with the intensity.
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Lemma 6.4.2. Let N be a non-explosive marked point process on R ⇥M

and let �̃ : ⌦ ⇥ R>0 ⇥M ! R�0 [ {1} be an F-predictable process that

satisfies (5.1) for all non-negative F-predictable processes H. Then N admits

an F-intensity � : ⌦⇥ R>0 ⇥M 7! R�0 relative to µM such that

�(!, t,m) = �̃(!, t,m) holds P(d!)µM (dm)dt-a.e.

Proof. Since the marked point process N is non-explosive, using similar ar-

guments as in Lemma L2 of Brémaud [19, p. 24], one can show that, for all

bounded sets A 2 B(R>0),

ZZ

A⇥M
�̃(t,m)µM (dm)dt <1 , a.s.,

which implies that �̃(!, t,m) < 1 holds P(d!)dtµM (dm)-a.e. By a compo-

sition argument (see the beginning of the proof of Lemma 7.7.3), since �̃ is

F-predictable, we have that (!, t,m) 7! 1{�̃(!,t,m)<1} is also F-predictable.
It is then easy to check that �(!, t,m) := 1{�̃(!,t,m)<1}�̃(!, t,m) is the F-
intensity of N where we use the convention 0⇥1 = 0.

The next lemma says that by integrating the intensity against the state

variable x, we obtain the intensity of the marked point process that tracks

the event types, ignoring the state process.

Lemma 6.4.3. Let N be a marked point process on R⇥M with F-intensity
� relative to µM . Then, NE(·) := N(·⇥ X ) is a non-explosive marked point

process on R ⇥ E with F-intensity �E : ⌦ ⇥ R>0 ⇥ E ! R�0 relative to µE

such that �E(!, t, e) =
R
X �(!, t, e, x)µX (dx) holds P(d!)dtµE(de)-a.e.

Proof. Let H : ⌦⇥R>0⇥E ! R�0 be an F-predictable non-negative process.
Then, by applying the definition ofNE and using Tonelli’s theorem, we obtain

that

E
ZZ

R>0⇥E
H(t, e)NE(dt, de)

�
= E

ZZZ

R>0⇥E⇥X
H(t, e)N(dt, de, dx)

�

= E
ZZZ

R>0⇥E⇥X
H(t, e)�(t, e, x)µX (dx)µE(de)dt

�
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= E
ZZ

R>0⇥E
H(t, e)

✓Z

X
�(t, e, x)µX (dx)

◆
µE(de)dt

�
.

The process
R
X �(t, e, x)µX (dx), t 2 R>0, e 2 E , is F-predictable, see for ex-

ample Lemma 25.23 in Kallenberg [74, p. 503] and we conclude using Lemma

6.4.2.

We now check that an intensity functional applied to the history of a point

process defines a predictable process.

Lemma 6.4.4. Let  : U ⇥N
#
R⇥U ! R�0 [ {1} be a measurable functional

andN be a non-explosive point process on R⇥U that is F-adapted. Then, the
process � : ⌦⇥R⇥U ! R�0 [ {1} defined by �(!, t, u) =  (u | ✓tN(!)<0),

! 2 ⌦, t 2 R, u 2 U , is F-predictable.

Proof. By Lemma 8.7.4, ✓tN(!)<0 is left-continuous in t and, by assump-

tion, the process (✓tN<0)t2R is F-adapted. As a consequence, the mapping

(!, t) 7! ✓tN(!)<0 is F-predictable, see for example Lemmas 25.1 and 1.10

in Kallenberg [74, p. 491, p. 6]. We then obtain that � is F-predictable by

viewing it as the composition (!, t, u) 7! (u, ✓tN(!)<0) 7!  (u | ✓tN(!)<0)

and using the measurability of  .

The next lemma essentially says that if two predictable processes coincide

at all event times of a marked point process, then they coincide everywhere

under positive intensity. A less general variant of this result and its proof

are suggested in Brémaud [19, Theorem T12, p. 31].

Lemma 6.4.5. Let NE be a non-explosive marked point process on R ⇥ E

with F-intensity �E relative to µE . Let H1 : ⌦ ⇥ R>0 ⇥M ! R�0 [ {1}

and H2 : ⌦ ⇥ R>0 ⇥M ! R�0 [ {1} be two non-negative F-predictable
processes. Then, H1 = H2 holds P(d!)NE(!, dt, de)µX (dx)-a.e. if and only if

H1 = H2 holds P(d!)�E(!, t, e)dtµM (de, dx)-a.e.

Proof. By a composition argument, since H1 and H2 are F-predictable, we
have that the function (!, t,m) 7! 1{H1(!,t,m) 6=H1(!,t,m)} is F-predictable (see

the beginning of the proof of Lemma 7.7.3). By Lemma 25.23 in Kallenberg
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[74, p. 503], we also have that the process
R
X 1{H1(·,·,·,x) 6=H1(·,·,·,x)}µX (dx) is

F-predictable. Using the definition of the intensity and Tonelli’s theorem, we

obtain that
Z

⌦

Z

R>0⇥M
1{H1(!,t,m) 6=H1(!,t,m)}µX (dx)NE(!, dt, de)P(d!)

=

Z

⌦

Z

R>0⇥E

✓Z

X
1{H1(!,t,m) 6=H1(!,t,m)}µX (dx)

◆
NE(!, dt, de)P(d!)

=

Z

⌦

Z

R>0⇥M
1{H1(!,t,m) 6=H1(!,t,m)}µX (dx)�E(!, t, e)µE(de)dtP(d!),

from which the assertion follows.

Finally, we show that the link between joint densities and conditional den-

sities still holds when we pre-condition on a sub-�-algebra. Since M is a

complete separable metric space and, in particular, Borel, random elements

in M always have regular conditional distributions [74, p. 106, Theorem

A1.2, p. 561].

Lemma 6.4.6. Let (E,X) be a random element in M . Let G be a sub-

�-algebra, i.e., G ⇢ F , and let A 2 G such that P(A) > 0. Moreover, let

f : ⌦ ⇥M ! R�0 [ {1} be a non-negative measurable function that is

G ⌦ B(M )-measurable. If we have

P (E 2 de,X 2 dx | G)1A = f(e, x)µM (de, dx)1A, a.s., (6.5)

then

P (X 2 dx | �(E) _ G)1A =
f(E, x)R

X f(E, x0)µX (dx0)
µX (dx)1A, a.s.

Proof. Let B 2 B(X ), G 2 G and H 2 �(E). On the one hand,

E
⇥
1G1H1{X2B}1A

⇤
= E

⇥
1Gh(E)1{X2B}1A

⇤
= E

⇥
1GE

⇥
h(E)1{X2B}1A | G

⇤⇤

= E

1G1A

Z

E

Z

B

h(e)f(e, x)µX (dx)µE(de)

�
, (6.6)

where we successively used Lemma 1.13 in Kallenberg [74, p. 7] to write

108



1H = h(E) using a measurable function h : E ! {0, 1}, the Tower property,

the disintegration theorem in Kallenberg [74, Theorem 6.4, p. 108] with the

regular conditional distribution of (6.5) and, finally, the product form of

µM . Note that, here, the disintegration theorem is applied to the probability

measure P(· \ A)/P(A) on the measurable space (A,A \ F). On the other

hand, observe that (6.1) and (6.5) imply that

P (E 2 de | G)1A =

Z

X
f(e, x)µX (dx)µE(de)1A, a.s.

Then, using similar arguments,

E

1G1H

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

�

= E

1Gh(E)

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

�

= E

1GE


h(E)

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

���G
��

= E

1G1A

Z

E

✓
h(e)

Z

B

f(e, x)R
X f(e, x0)µX (dx0)

µX (dx)

◆Z

X
f(e, x0)µX (dx

0)µE(de)

�
.

Tonelli’s theorem and (6.6) then imply that

E
⇥
1G1H1{X2B}1A

⇤
= E


1G1H

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

�
. (6.7)

Using a monotone class argument, we show below that (6.7) can be extended

to

E
⇥
1F1{X2B}1A

⇤
= E


1F

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

�
(6.8)

for all F 2 �(E) _ G, which means exactly that

P (X 2 B | �(E) _ G)1A =

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A, a.s.,

as asserted.
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To prove (6.8), define the functions

µ1 : �(E) _ G ! [0, 1]

F 7! µ1(F ) := E
⇥
1F1{X2B}1A

⇤
,

µ2 : �(E) _ G ! [0, 1]

F 7! µ2(F ) := E

1F

Z

B

f(E, x)R
X f(E, x0)µX (dx0)

µX (dx)1A

�
.

One can check that µ1 and µ2 are bounded measures on (⌦, �(E) _ G) (to

swap an expectation with an infinite sum, use the monotone convergence

theorem, see for example Theorem 1.19 in Kallenberg [74, p. 11]). Define

also the class C := {G\H : G 2 G, H 2 �(E)}. Equation (6.7) means that

µ1(C) = µ2(C) for all C 2 C. Moreover, C is a ⇡-system such that ⌦ 2 C.

Also, note that �(E) [ G ⇢ C ⇢ �(E) _ G and, thus, �(C) = �(E) _ G. As a

consequence, we can apply Lemma 1.17 in Kallenberg [74, p. 9] to conclude

that µ1(F ) = µ2(F ) for all F 2 �(E) _ G, meaning that (6.8) holds.

6.4.2 Implied dynamics and characterisation

Proof of Theorem 6.2.5. Recall that we denote by � the FN -intensity of N

relative to µM and by �E the FN -intensity of NE := N(·⇥X ) relative to µE .

Necessity. Assume that N is a hybrid marked point process with transi-

tion function � and event functional ⌘. We first observe that statement (i)

holds simply by applying Lemma 6.4.3 and using the fact that �(· | e, x) is a

probability density for all e 2 E and x 2 X .

Next, we show that statement (ii) holds. When P(⌧t <1) = 0, this is clearly

true and, thus, we assume that P(⌧t <1) > 0. By applying Theorem T6 in

Brémaud [19, p. 236], we obtain that, for all M 2 B(M ),

P
�
(E,X) 2M | F

N

⌧t�
�
1{⌧t<1} =

R
M
�(⌧t,m)µM (dm)R

M �(⌧t,m0)µM (dm0)
1{⌧t<1}, a.s.

This is allowed since Lemma 6.4.1 tells us that the filtration FN is within

the framework of this result. Hence, we have identified the unique regular
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conditional distribution of (E,X) given F
N

⌧t� on the measurable space

({⌧t <1}, {⌧t <1} \ F)

equipped with the measure P(· \ {⌧t <1})/P({⌧t <1}) [74, Theorem 6.3,

p. 107]. Besides, observe that the mapping (!,m) 7! �(!, ⌧t(!),m)1{⌧t(!)<1}

is FN

⌧t� ⌦ B(M )-measurable, see for example Lemma 25.3 in Kallenberg [74,

p. 492]. Using Lemma 1.26 in Kallenberg [74, p. 14], we obtain that the

function f defined by

f(!, e, x) =
�(!, ⌧t(!), e, x)R

M �(!, ⌧t(!),m0)µM (dm0)
1{⌧t(!)<1}, ! 2 ⌦, e 2 E , x 2 X ,

is FN

⌧t�⌦B(M )-measurable. We can then apply Lemma 6.4.6 with G = F
N

⌧t�

and A = {⌧t <1}. This yields that

P
�
X 2 dx | �(E) _ F

N

⌧t�
�
1{⌧t<1} = (6.9)

�(⌧t, E, x)R
X �(⌧t, E, x0)µX (dx0)

µX (dx)1{⌧t<1}, a.s.

By viewing the term �(x | e,Xt) as a measurable function ' applied to the

triplet (e, x, ✓tN<0) where '(x, e | ⇠) = �(x | e, F (⇠)), and using the measur-

ability of the state functional F and the transition function �, we obtain by

Lemma 6.4.4 that �(x | e, ✓tN<0), t 2 R, e 2 E , m 2 M , is FN -predictable.

Similarly, note that ⌘(e | ✓tN<0), t 2 R, e 2 E , is also FN -predictable (this

will be useful when proving su�ciency). Besides, thanks to the assumption

on �,

�(!, t, e, x)R
X �(!, t, e, x

0)µX (dx0)
= �(x | e,Xt(!)), P(d!)dtµM (de, dx)-a.e.

Hence, using Lemma 6.4.5, (6.9) becomes

P
�
X 2 dx | �(E) _ F

N

⌧t�
�
1{⌧t<1} = �(x |E,X⌧t)µX (dx)1{⌧t<1}, a.s.

To obtain (6.3), it remains to notice that X⌧t = Xt+ on {⌧t < 1} since

there is no event on the time interval (t, ⌧t) by definition of ⌧t. Also, since
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the ground point process N(· ⇥M ) admits an FN -intensity, we have that

N({t}⇥M ) = 0 a.s., implying that Xt+ = Xt a.s. To show the statement in

Remark 6.2.6, simply use (6.3) and the tower property to obtain that

E
⇥
1F1{⌧t<1}1X2B

⇤
= E

⇥
1F1{⌧t<1}E

⇥
1X2B | �(E) _ F

N

⌧t�
⇤⇤

= E

1F1{⌧t<1}

Z

B

�(x |E,Xt)µX (dx)

�

for all F 2 �(E) _ F
N

t
, B 2 B(X ) and observe that

R
B
�(x |E,Xt)µX (dx) is

�(E) _ F
N

t
-measurable.

Su�ciency. Assume that N is a non-explosive marked point process on

R ⇥M such that it admits an FN -intensity relative to µM and such that

statements (i) and (ii) hold. We want to show that

�(!, t, e, x) = �(x | e,Xt(!))⌘(e | ✓tN(!)<0)

holds P(d!)µM (de, dx)dt-a.e. For all t 2 R�0, by using statement (ii), (6.9),

Lemmas 6.4.3 and 6.4.5, and statement (i), we obtain that

�(x |E,X⌧t)µX (dx)1{⌧t<1} = P
�
X 2 dx | �(E) _ F

N

⌧t�
�
1{⌧t<1}

=
�(⌧t, E, x)R

X �(⌧t, E, x0)µX (dx0)
µX (dx)1{⌧t<1}

=
�(⌧t, E, x)

�E(⌧t, E)
µX (dx)1{⌧t<1}

=
�(⌧t, E, x)

⌘(E | ✓⌧tN<0)
µX (dx)1{⌧t<1}, a.s.

This means that, for all t 2 R�0, we have that

�(⌧t, E, x)1{⌧t<1} = �(x |E,X⌧t)⌘(E | ✓⌧tN
<0)1{⌧t<1}, µX (dx)-a.e., a.s.

This holds a.s. simultaneously for all t 2 Q \ R�0, whence, using that the

number of events in N is countable and finite in any bounded time interval,

�(!, t, e, x) = �(x | e,Xt(!))⌘(e | ✓tN(!)<0), P(d!)NE(!, dt, de)µX (dx)-a.e.
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By Lemma 6.4.5, the above equality then implies that

�(!, t, e, x) = �(x | e,Xt(!))⌘(e | ✓tN(!)<0),

P(d!)�E(!, t, e)dtµM (de, dx)-a.e.

By noticing that, on �E(!, t, e) = 0, we have that ⌘(e | ✓tN(!)<0) = 0 holds

P(d!)dtµE(de)-a.e. and that �(!, t, e, x) = 0 holds P(d!)dtµE(de)µX (dx)-a.e.

(using again Lemma 6.4.3), we conclude that the above equation actually

holds P(d!)dtµM (de, dx)-a.e.
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7
Strong existence and

uniqueness

In this chapter, we prove the strong existence and uniqueness of non-explosive

state-dependent Hawkes processes and, more generally, hybrid marked point

processes. In fact, by dispensing with a Lipschitz condition, we extend the

results currently available in the literature for marked point processes defined

via their intensity.

It is known that a marked point process with an intensity � expressed in

terms of an intensity functional  can be formulated as a solution to a

Poisson-driven stochastic di↵erential equation (SDE) [91, 21]. However, the

existence and uniqueness results available in these works cannot be applied

to hybrid marked point processes because their intensity functional may fail

to satisfy the Lipschitz condition imposed therein. We show that, under cer-

tain integrability or decay conditions, it is enough for  to be dominated

by either a Hawkes functional or an increasing function of the total number

of past events in order to obtain the existence of a strong solution to the

Poisson-driven SDE (Theorem 7.4.1) and, in particular, the existence of hy-

brid marked point processes (Corollary 7.4.2). The solution is constructed
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piece by piece along the time axis in a pathwise manner, taking advantage

of the discrete nature of the driving Poisson random measure. A domination

argument is then used to show non-explosiveness. In the context of multi-

variate point processes, a similar construction has already been considered in

[30], while a similar domination argument is given in [28]. We combine the

two in a more general setting (i.e., general mark space, initial conditions and

intensity functional). We are also able to obtain strong and weak unique-

ness without any specific assumptions (Theorems 7.5.1 and 7.5.2) and, in

particular, uniqueness of hybrid marked point processes (Corollary 7.5.3).

Note that, in this chapter, M is not required to be a product space as in

Chapter 6 but can be again an arbitrary complete separable metric space.

7.1 The existence and uniqueness problem

A hybrid marked point processes (Definition 6.2.1) is defined implicitly via

its intensity process, which, in turn, depends on the history of the hybrid

marked point process. Due to the self-referential nature of the definition, it

is not clear a priori that such a marked point process exists. More generally,

given an initial condition N0 (see Subsection 5.7) and a measurable intensity

functional  : M ⇥N
#
R⇥M ! R�0[{1}, one can ask if there exists a unique

non-explosive marked point process N that satisfies the initial condition N0

on R0 and admits  as its intensity functional on R>0.

Massoulié [91] tackles this question by reformulating the existence problem

as a Poisson-driven SDE, extending the works of Brémaud and Massoulié

[21], Grigelionis [56] and Kerstan [76]. Delattre et al. [43] also employ this

Poisson embedding technique in the context of Hawkes processes on infinite

directed graphs. However, in these papers, strong existence and uniqueness

is obtained by imposing a Lipschitz condition on the intensity functional

 . More precisely, it is assumed that there exists a non-negative kernel

k : R>0 ⇥M ⇥M ! R�0 such that

| (m | ⇠)�  (m | ⇠0)| 

ZZ

R<0⇥M
k(�t0,m0,m)|⇠ � ⇠0|(dt0, dm0), (7.1)
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for all m 2M , ⇠,⇠0 2 N
#
R⇥M . Unfortunately, this condition is too restrictive

in the context of hybrid marked point processes. A simple, yet natural,

example of a hybrid marked point process not satisfying (7.1) is given in

Subsection 7.7.1. Hence, our goal is to construct a strong solution to a

Poisson-driven SDE without imposing the Lipschitz condition (7.1) on the

intensity functional  . We will in fact extend the existence result in Massoulié

[91] by imposing only a weaker sublinearity condition on  . The idea to define

a random measure as a strong solution to an SDE driven by another random

measure was also studied by Jacod [69]. Similarly, a Lipschitz condition

that does not seem to apply to Hawkes processes and hybrid marked point

processes is required [69, Chapter 14, Section 1].

Let us also briefly review some weak existence and uniqueness results. Jacod

[68] proved that there exists a unique probability measure on the canonical

space of marked point processes such that the canonical marked point process

admits a given compensator. However, this marked point process may be ex-

plosive a priori. Still, we will apply this result in the proof of Theorem 7.5.2

below to obtain weak uniqueness. A similar approach is followed by Jacobsen

[67, Proposition 4.3.5, Corollary 4.4.4] who, furthermore, gives a domination

condition on the intensity functional ensuring that the corresponding marked

point process is non-explosive. Proposition 7.7.12 will be the counterpart of

this result in the strong setting. These weak existence results are however

limited to intensities with respect to the internal history FN . The advantage

of the strong setting is that the results of Massoulié [91] and the pathwise

construction of this chapter also hold when the intensity functional depends

additionally on an auxiliary process, meaning that intensities with respect to

larger filtrations can be considered. Besides, the Poisson-driven SDE repre-

sentation of marked point processes considered in the strong setting directly

suggests a simulation (thinning) algorithm. In fact, the Poisson embedding

lemma (Lemma 7.7.3 below), which is a stepping stone to the strong setting,

was first given in the simulation literature [83, 99].

Finally, there is a third approach to obtain existence, based on a change of

measure, see Brémaud [19, Theorem 11, p. 242] and Sokol and Hansen [113].

While this technique also accommodates filtrations that are larger than the

116



internal history, existence is generally obtained only on finite time intervals.

7.2 The Poisson-driven SDE

Let (⌦>0,F>0,P>0) be given and let M>0 : ⌦>0 ! N
#
R⇥M⇥R be a Poisson

process on R ⇥M ⇥ R with mean measure dtµM (dm)dz. As usual, denote

by (FM>0
t )t2R the internal history of M>0 on ⌦>0. In this Subsection, we

work under the assumption that underlying probability space (⌦,F ,P) is the
completion of the product probability space defined by (5.3). In particular,

⌦ := ⌦0 ⇥ ⌦>0, where ⌦0 corresponds to the probability space of an

initial condition N0, see Subsection 5.7. We extend M>0 to a mapping

M : ⌦! N
#
R⇥M⇥R by simply setting

M(!) := M>0(!>0), ! = (!0,!>0) 2 ⌦. (7.2)

Let F = (Ft)t2R be the filtration on ⌦ such that, for all t 2 R, Ft is the P-
completion of F

N0

t ⌦ F
M>0
t in F . In particular, the filtration F is complete

[74, p. 123]. Similarly to Massoulié [91], we want to solve the following

Poisson-driven SDE.

Definition 7.2.1 (The Poisson-driven SDE).

Let  : M ⇥ N
#
R⇥M ! R�0 [ {1} be a given measurable functional. By

a solution to the Poisson-driven SDE, we mean an F-adapted non-explosive

marked-point process N : ⌦! N
#g

R⇥M that solves

8
>>><

>>>:

N(dt, dm) = M(dt, dm, (0,�(t,m)]), t 2 R>0, a.s.,

�(!, t,m) =  (m | ✓tN(!)<0), t 2 R>0,m 2M ,! 2 ⌦,

N0(!) = N0(!0), ! = (!0,!>0) 2 ⌦, a.s.,

(7.3)

where N0 is a given initial condition (see Subsection 5.7).

Still, notice that our problem di↵ers slightly as we only search for solutions

in the space of non-explosive marked point processes, a smaller space than

the one considered in Massoulié [91].
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7.3 Assumptions

The following assumptions are only required for the strong existence result

(Theorem 7.4.1 below). We first need to assume that the mark space M has

finite total mass.

Assumption A. The reference measure µM is finite, i.e., µM (M ) <1.

Next, we need to control for both the intensity functional  and the initial

condition N0. We will prove Theorem 7.4.1 for two di↵erent scenarios. In

the first scenario, the intensity is dominated by an increasing function of

the total number of past events, while the number of events before time 0 is

finite.

Assumption B. There exists a non-decreasing function

a : N [ {1} ! N [ {1} with a(n) < 1 for all n 2 N and a(1) = 1 such

that:

(i)  (m | ⇠)  a(⇠((�1, 0)⇥M )), m 2M , ⇠ 2 N
#
R⇥M ;

(ii)
P1

n=0 a(n)
�1 =1.

Assumption C. The initial condition satisfies

N0(!0, (�1, 0]⇥M )) <1 for all !0 2 ⌦0.

In the second scenario, the intensity functional  is dominated by a Hawkes

functional. Note that this requirement is weaker than the Lipschitz condition

(7.1) in Massoulié [91].

Assumption D. There exists �0 2 R�0 and a measurable function

k : R>0 ⇥M ⇥M ! R�0 such that:

(i)  (m | ⇠)  �0 +
RR

(�1,0)⇥M k(�t0,m0,m)⇠(dt0, dm0), for all m 2 M ,

⇠ 2 N
#
R⇥M ;

(ii) ⇢ := sup
m2M

RR
(0,1)⇥M k(t0,m0,m)µM (dm0)dt0 < 1 ;

(iii) sup
m2M k(t0,m0,m) <1 for all t0 2 R>0, m0

2M .
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Assumption E. The initial condition N0 satisfies:

(i) sup
t>0,m2M E

hRR
(�1,0]⇥M k(t� t0,m0,m)N0(dt0, dm0)

i
<1 ;

(ii) �̃0(!0, t) := sup
m2M

RR
(�1,0]⇥M k(t � t0,m0,m)N0(!0, dt0, dm0) is

finite for all !0 2 ⌦0, t 2 R>0.

Note that Assumptions D.(ii) and E.(i) are needed in order to reuse Theorem

2 in Massoulié [91]. It will allow us to dominate the marked point process N

by a Hawkes process with kernel k.

7.4 Existence

We construct a solution to the Poisson-driven SDE in two mains steps. First,

by taking advantage of the discrete nature of the driving Poisson process, we

construct in a pathwise fashion a mapping N : ⌦! N
1
R⇥M that solves (7.3)

up to each event time, generalising the construction in Çinlar [30, Chap-

ter 6, p. 302-306] and Lindvall [86, p. 127]. Second, we dominate N by a

non-explosive marked point process to show that N is itself non-explosive,

generalising the argument in Chevallier [28, Lemma B.1, p. 30]. When work-

ing under Assumptions D and E, these two steps must actually be performed

concurrently. Then, it turns out that this constructed N admits  as its in-

tensity functional on R>0 and, thus, solves the existence problem. The proof

of the following theorem, which extends the existence result in Massoulié

[91], is given in Subsection 7.7.2.

Theorem 7.4.1 (Strong existence). Under either Assumptions A, B, C or

Assumptions A, D, E, there exists a non-explosive marked point process,

denoted by N : ⌦ ! N
#g

R⇥M , that solves the Poisson-driven SDE (Definition

7.2.1). Any such N satisfies the strong initial condition N0 and admits  

as its intensity functional on R>0.

As a corollary, we obtain conditions that ensure the existence of hybrid

marked point processes.
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Corollary 7.4.2 (Existence of hybrid marked point processes). Suppose that

Assumption A holds and k�k1 <1. Moreover, suppose that either Assump-

tions B and C or Assumptions D and E hold with  (m | ⇠) replaced by ⌘(e | ⇠),

where the dominating kernel k is now a function k : R>0 ⇥M ⇥ E ! R�0,

and with the constraint ⇢ < k�k�1
1 . Then, there exists a hybrid marked point

process N : ⌦ ! N
#g

R⇥M with transition function � and event functional ⌘

that satisfies the strong initial condition N0.

Example 7.4.3 (Existence of state-dependent Hawkes processes). When the

transition function � is bounded, the above corollary encompasses the case of

state-dependent Hawkes processes (Example 6.2.7) for either bounded kernels

with no integrability constraint or unbounded kernels (up to the constraint

D.(iii)) with an integrability constraint.

7.5 Uniqueness

As Massoulié [91] considers point processes on R⇥M that are not necessarily

non-explosive marked point processes, he uses the Lipschitz condition (7.1) to

obtain strong uniqueness in a space of regular point processes. Here, since we

restrict ourselves to non-explosive marked point processes, the enumeration

representation allows us to prove strong uniqueness more easily without any

specific assumptions. The proof is deferred until Subsection 7.7.3.

Theorem 7.5.1 (Strong uniqueness). Let N : ⌦! N
#g

R⇥M and

N 0 : ⌦ ! N
#g

R⇥M be two non-explosive marked point processes solving the

Poisson-Driven SDE (Definition 7.2.1). Then N = N 0 a.s.

By applying Theorem 3.4 in Jacod [68], we can also obtain weak uniqueness.

Alternatively, we could also have applied Theorem 14.2.IV in Daley and

Vere-Jones [41, p. 381]. The idea is that the intensity and the conditional

distributions P((Tn+1,Mn+1) 2 · | F
N

Tn
) uniquely determine each other, see

also Last and Brandt [80] and Jacobsen [67, Theorem 4.3.2, p. 54]. Another

approach, as suggested by Massoulié [91], could be to use the fact that any

marked point process with an intensity functional can be represented as the

strong solution to a Poisson-driven SDE like in Definition 7.2.1, see Jacod
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[69, Theorem 14.56, p. 472], and use the strong uniqueness result. We prove

the following result in Subsection 7.7.3.

Theorem 7.5.2 (Weak uniqueness). Let N1 and N2 be two non-explosive

marked point processes (possibly on distinct probability spaces) that admit

the same intensity functional  on R>0. Assume also that both N1 and N2

satisfy the weak initial condition N0. Then, we have that PN1 = P
N2, i.e.,

the induced probabilities measures on N
#
R⇥M coincide.

As a corollary, we obtain the weak uniqueness of hybrid marked point pro-

cesses.

Corollary 7.5.3 (Uniqueness of hybrid marked point processes). All hybrid

marked point processes with transition function � and event functional ⌘ that

satisfy the weak initial condition N0 induce the same probability measure on

N
#
R⇥M .

Remark 7.5.4. Note that weak uniqueness might not hold for a general

history F. Given an F-predictable process �, there could be two marked point

processes N and N 0 that both admit � as their F-intensity, but such that

P
N
6= P

N
0
, see Proposition 9.54.(ii) in Kallenberg [75] for such an example.

The fact the we restrict ourselves to the natural filtration FN is crucial here.

7.6 Discussion on stationarity

We say that a non-explosive (marked) point process N on R ⇥M is sta-

tionary if its distribution is invariant with respect to time shifts, that is if

P
✓tN = P

N for all t 2 R. In addition of being an interesting topic in its own

right, stationarity is important for applications. Indeed, stationarity may

be required by estimation procedures [12, 77] and is crucial when applying

ergodic theorems [41, Section 12.2], [111, Section 2.5].

However, there is no reason to expect a non-explosive marked point process

with general intensity functional  to admit a stationary version. For exam-

ple, by contradiction, one can check that there is no stationary point process
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N on R with the intensity functional  (⇠) = 1(⇠((�1, 0)) < 1), ⇠ 2 N
#
R (in-

tuitively, the probability of an event occurring has to decrease as time tends

to infinity). Instead, it seems that stationarity of marked point processes

ought to be studied in a more case-specific manner.

Going back to hybrid marked point processes and considering the above

remark, we do not expect them in general to admit stationary versions. An-

other limitation of stationarity is that, in some applications, the state process

(Xt)t2R is expected to have some non-stationary components (think of any

di↵usive quantity like a stock price, say), implying that the corresponding

hybrid marked point process N on R⇥E⇥X cannot be stationary. If however

the event functional ⌘ does not depend on these non-stationary components,

one could try to find a stationary version of NE(·) := N(·⇥ X ), the marked

point process that only keeps track of the event types.

Let us now consider the hybrid marked point processes of Example 6.2.7

(state-dependent Hawkes processes). We will briefly review some main re-

sults in the literature on stationarity to see if they can be applied to this

special class. First, in the case of Lipschitz intensity functionals  , Mas-

soulié [91] constructs a stationary version of the corresponding marked point

process using a Picard iteration. Here, this technique cannot be applied

since  will generally not have the required Lipschitz property as shown in

Example 7.7.1 below. Second, Brémaud and Massoulié [20] find a condition

for stationarity when the intensity functional  has random finite memory,

generalising the case of (A,m) processes in Lindvall [86]. Here, this result

could be applied when the kernel k has bounded support in the time do-

main. Third, another approach to stationarity consists in using the theory of

Markov processes. Indeed, in some specific cases, the point process can ac-

tually be represented as an Rd-valued Markov process, d 2 N, which is easier

to show to be stationary [79]. Here, as in the case of linear Hawkes processes

[48, 42], one could try this approach when each k(·,m0, e), m0
2 M , e 2 E ,

is of an exponential form. Finally, we note that a marked point process on

R ⇥M with an intensity functional  can be seen as a Markov process in

N
#
R⇥M [41, p. 429]. However, the study of a stationarity from this general

viewpoint does not seem to be tackled in the literature.
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7.7 Proofs

In this section, we prove the strong existence result (Theorem 7.4.1) by means

of a Poisson embedding lemma given below. Subsequently, we also prove the

strong and weak uniqueness results (Theorems 7.5.1 and 7.5.2).

7.7.1 Preliminaries

Example violating the Lipschitz condition

We give here an example of a hybrid marked point process that does not sat-

isfy the Lipschitz condition (7.1), implying that the existence and uniqueness

results in Massoulié [91] do not apply.

Example 7.7.1. Set E = {0, 1} and X = {0, 1} with µE = �0 + �1 and

µX = �0 + �1. Consider an intensity functional  that corresponds to a

hybrid marked point process with transition function � and event functional

⌘ (see Definition 6.2.1). Take ⌘ to be a Hawkes functional of the form

⌘(e | ⇠) = ⌫ +

ZZ

R<0⇥M
k(�t0, x0, e)⇠(dt0, de0, dx0),

where ⌫ 2 R>0 and k : R>0⇥X ⇥E ! R>0 is continuous in time and strictly

positive. Let t0 2 R<0 and choose ⇠0, ⇠1 2 N
#g

R⇥M such that ⇠0 and ⇠1 coincide

on (�1, t0] (i.e., ✓t0⇠
0
0 = ✓t0⇠

0
1 ) but F (⇠0) = 0 and F (⇠1) = 1 (thus, ⇠0

and ⇠1 do not coincide on (t0, 0)). Assume also that �(0 | 0, 1) > �(0 | 0, 0),

⌘(0 | ⇠1) <1, and

ZZ

(t0,0)⇥M
k(�t0, x0, 0)⇠1(dt

0, de0, dx0) >

ZZ

(t0,0)⇥M
k(�t0, x0, 0)⇠0(dt

0, de0, dx0).

Then, following some computations that are left to the reader,

| (0, 0 | ⇠1)�  (0, 0 | ⇠0)| �

(�(0 | 0, 1)� �(0 | 0, 0))

ZZ

(�1,t0]⇥M
k(�t, x, 0)⇠0(dt, dx).
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Next, consider any non-negative kernel k : R>0 ⇥M ⇥M ! R�0. We have

that
ZZ

R<0⇥M
k(�t,m, 0, 0)|⇠1 � ⇠0|(dt, dm) =

ZZ

(t0,0)⇥M
k(�t,m, 0, 0)|⇠1 � ⇠0|(dt, dm).

We can now add as many points as necessary to ⇠0 and ⇠1 on (�1, t0] to

guarantee that

| (0, 0 | ⇠1)�  (0, 0 | ⇠0)| >

ZZ

R<0⇥M
k(�t,m, 0, 0)|⇠1 � ⇠0|(dt, dm).

Consequently, the intensity functional  does not satisfy the Lipschitz con-

dition (7.1).

Driving Poisson process

We prove that the mapping M : ⌦ ! N
#
R⇥M⇥R defined by (7.2) is still a

Poisson process.

Lemma 7.7.2. The mapping M : ⌦ ! N
#
R⇥M⇥R is a Poisson process on

R⇥M ⇥R with parameter measure dtµM (dm)dz. Moreover, M is Poisson

relative to F.

Proof. By composition, using the measurability of M>0, it is easy to check

thatM is a measurable mapping and, thus, it is a non-explosive point process.

To show that M is a Poisson process with parameter measure dtµM (dm)dz,

it is enough notice that, for any n 2 N, for every family of bounded sets

(Ai)i2{1,...,n}, for all k1, . . . , kn 2 N,

P(M(Ai) = ki, i = 1, . . . , n) = P>0(M>0(Ai) = ki, i = 1, . . . , n),

and use the fact that M>0 is a Poisson process with parameter measure

dtµM (dm)dz. To show that ✓tM0 is Ft-measurable for any t 2 R, use

the fact that ✓tM
0
>0 is F

M>0
t -measurable (since a Poisson process is always
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Poisson relative to its internal history) along with a composition argument.

Similarly, one can show that �(✓tM>0) ⇢ {?,⌦0} ⌦ �(✓tM
>0
>0 ) and, thus,

to show that �(✓tM>0) is independent of Ft, it is enough to show that

{?,⌦0} ⌦ �(✓tM
>0
>0 ) is independent of Ft. For this, let A0 2 {?,⌦0},

A>0 2 �(✓tM
>0
>0 ), B0 2 F

N0

t and B>0 2 F
M>0
t . Then, using the fact that

M>0 is Poisson relative to F
M>0 , we have that

P(A0 ⇥ A>0 \ B0 ⇥ B>0) = P(A0 \ B0 ⇥ A>0 \ B>0)

= P0(A0 \ B0)P>0(A>0 \B>0)

= P0(A0)P0(B0)P>0(A>0)P>0(B>0)

= P(A0 ⇥ A>0)P(B0 ⇥ B>0).

This shows that two ⇡-systems generating {?,⌦0}⌦ �(✓tM
>0
>0 ) and

F
N0

t ⌦ F
M>0
t , respectively, are independent. We conclude using Lemma

3.6 in Kallenberg [74, p. 50] that {?,⌦0} ⌦ �(✓tM
>0
>0 ) and F

N0

t ⌦ F
M>0
t

are independent. We can then verify that {?,⌦0} ⌦ �(✓tM
>0
>0 ) remains

independent of the completion of F
N0

t ⌦ F
M>0
t , which by definition is Ft.

Indeed, remember that Ft := �(C) with C := (F
N0

t ⌦F
M>0
t ) [A and where

A denotes the class of all subsets of P-null sets in F . It then su�ces to notice

that C is a ⇡-system and that {?,⌦0}⌦ �(✓tM
>0
>0 ) remains independent of

C.

Poisson-embedding lemma

We are now able to show the following key lemma which demonstrates how

the extra-dimension of the Poisson process M allows us to generate a marked

point process with a given intensity.

Lemma 7.7.3 (Poisson embedding). Let � : ⌦ ⇥ R>0 ⇥M ! R�0 be an

F-predictable process. Then, the mapping

N : ⌦⇥ B(R>0 ⇥M )! R�0 [ {1}

(!, A) 7! N(!, A) :=

ZZ

A

Z

(0,�(!,t,m)]

M(!, dt, dm, dz)

(7.4)
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is an F-adapted integer-valued random measure on R>0 ⇥M . Moreover, for

every non-negative F-predictable process H : ⌦⇥ R>0 ⇥M ! R�0, we have

that

E
ZZ

R>0⇥M
H(t,m)N(dt, dm)

�
= E

ZZ

R>0⇥M
H(t,m)�(t,m)µM (dm)dt

�
.

Proof. First, let A 2 B(R>0 ⇥M ) and consider the following composition

(!, t,m, z) 7! (�(!, t,m), z) 7! 1(0,�(!,t,m)](z)

to notice that 1(0,�(!,t,m)](z) is F-predictable by means of Lemma 1.7 and

Lemma 1.8 in Kallenberg [74, p. 5]. Then, the product 1A(t,m)1(0,�(!,t,m)](z)

of two F-predictable processes is also F-predictable by Lemma 1.12 in Kallen-

berg [74, p. 7]. This ensures that the integral

ZZ

A

Z

(0,�(!,t,m)]

M(!, dt, dm, dz) =

ZZZ

R>0⇥M⇥R
1A(t,m)1(0,�(!,t,m)](z)M(!, dt, dm, dz)

is well defined for all ! 2 ⌦ and that N(·, A) is a random variable (see

Subsection 5.3).

Second, let ! 2 ⌦. For any finite family of disjoint sets A1, . . . , An in

B(R>0 ⇥M ), n 2 N, we clearly have that N(!,
S

in
Ai) =

P
in

N(!, Ai),

which means that N(!, ·) is finitely additive. To prove that N(!, ·) is count-

ably additive, invoke finite additivity and apply the monotone convergence

theorem. These first two steps show that N is indeed a random measure.

Third, to show that N is F-adapted, first consider processes of the form

� : ⌦ ⇥ R>0 ⇥M ! R�0, �(!, t,m) = 1F (!)1(s,u](t)1C(m) where F 2 Fs,

s, u 2 R>0, s < u, C 2 B(M ). For any t 2 R>0, any A 2 B(R>0) such that

A ⇢ (0, t] and any B 2 B(M ), we obtain that

N(!, A⇥ B) = 1F (!)M(!, A \ (s, u]⇥ B \ C ⇥ (0, 1]),

which is Ft-measurable since M is F-adapted by Lemma 7.7.2. Hence, N is
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F-adapted. To extend this result to any F-predictable process �, one can use

a monotone class argument like in the proof of Proposition 8.7.8 for example.

Fourth, let ! 2 ⌦. By the definition of N and by the linearity of the integral,

for all simple non-negative functions f on R>0 ⇥M , we have that

ZZ

R>0⇥M
f(t,m)N(!, dt, dm) =

ZZZ

R>0⇥M⇥R
f(t,m)1(0,�(!,t,m)](z)M(!, dt, dm, dz).

Then, by Lemma 1.11 in Kallenberg [74, p. 7] and the monotone conver-

gence theorem, we have that the above equality holds for any B(R>0 ⇥M )-

measurable non-negative function f . In particular, we have that, for all

! 2 ⌦,

ZZ

R>0⇥M
H(!, t,m)N(!, dt, dm) =

ZZZ

R>0⇥M⇥R
H(!, t,m)1(0,�(!,t,m)](z)M(!, dt, dm, dz).

Fifth, using Lemma 7.7.2 and Theorem 5.5.3, we deduce that

E
ZZ

R>0⇥M
H(t,m)N(dt, dm)

�

= E
ZZZ

R>0⇥M⇥R
H(t,m)1(0,�(t,m)](z)M(dt, dm, dz)

�

= E
ZZZ

R>0⇥M⇥R
H(t,m)1(0,�(t,m)](z)dtµM (dm)dz

�

= E
ZZ

R>0⇥M
H(t,m)�(t,m)µM (dm)dt

�
.

Remark 7.7.4. Similar results are given by Brémaud and Massoulié [21,

Lemma 3, p. 1571], Massoulié [91, Lemma 1, p. 3] and Torrisi [119, Lemma

2.1, p. 4]. They refer to Lewis and Shedler [83] and Ogata [99] for proofs.

The fifth part of our proof follows Daley and Vere-Jones [41, Proposition

14.7.I, p. 427], but we could not find the first four parts anywhere. For the
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special case M = {0} (i.e., for univariate point processes), a similar proof

is given by Çinlar [30, Theorem 6.11, p. 303] while an alternative proof is

given by Chevallier et al. [29, Theorem B.11]. Besides, our version of this

lemma does not impose any local integrability condition on � and, thus, does

not say if the obtained random measure N is boundedly finite. Finally, note

that (7.4) can be rewritten using the compact notation of Massoulié [91] as

N(dt, dm) = M(dt, dm, (0,�(t,m)]), t 2 R>0.

We can now prove the final statement in Thoerem 7.4.1, which we restate

here as a corollary.

Corollary 7.7.5. Let N : ⌦ ! N
#g

R⇥M be a solution to the Poisson-driven

SDE (Definition 7.2.1) under either Assumptions A, B, C, or Assumptions

A, D, E. Then, N admits  as its intensity functional on R>0.

Proof. Let G 2 F be the almost sure event that (7.3) holds. Consider the

following modifications of N and �, where � is defined as in (7.3):

Ñ(!) := N(!)1G(!), ! 2 ⌦, and �̃(!, t,m) := �(!, t,m)1G(!),

for all ! 2 ⌦, t 2 R>0, m 2M . Then, Ñ and �̃ satisfy (7.4) and, using either

Assumptions B.(i) and C or Assumptions D.(i) and E.(ii), one can check that

�̃(!, t,m) < 1 for all ! 2 ⌦, t 2 R>0, m 2 M . Moreover, by Lemma

6.4.4, � is FN -predictable, and, thus, F-predictable as N is F-adapted. Since
the filtration F is complete, this implies that �̃ is also F-predictable. Now,

consider any non-negative FN -predictable process H : ⌦⇥ R>0 ⇥M ! R�0

and apply Lemma 7.7.3 to obtain

E
ZZ

R>0⇥M
H(t,m)N(dt, dm)

�
= E

ZZ

R>0⇥M
H(t,m)Ñ(dt, dm)

�

= E
ZZ

R>0⇥M
H(t,m)�̃(t,m)µM (dm)dt

�

= E
ZZ

R>0⇥M
H(t,m)�(t,m)µM (dm)dt

�
.

We conclude that N admits  as its intensity functional using Lemma 6.4.2.
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Given a non-explosive point process N on R ⇥M that solves (7.3) or is

defined through a Poisson embedding as in Lemma 7.7.3, one can ask when

N is in fact a non-explosive marked point process. To this end, it is useful to

define the following random measures induced by the driving Poisson process

M :

Ln(!, ·) := M(!, ·⇥M ⇥ (0, n]), ! 2 ⌦, n 2 N.

We are then able to find the following su�cient condition on �.

Lemma 7.7.6 (Simple ground measure). Let � : ⌦ ⇥ R>0 ⇥M ! R�0 be

an F-predictable process and let N be the F-adapted integer-valued random

measure on R>0 ⇥M defined by (7.4). Then, if Assumption A holds and if

sup
m2M �(t,m) <1 for all t 2 R>0, a.s., we have that N({t}⇥M )  1 for

all t 2 R>0, a.s.

Proof. Each Ln is a Poisson random measure on R in the sense of Çinlar [30,

Chapter 6, p. 249] with boundedly finite parameter measure nµM (M )dt.

Applying Theorem 2.17 in Çinlar [30, Chapter 6, p. 256] for each n 2 N,
there exists a set B 2 F such that P(B) = 1 and such that, for all ! 2 B

and n 2 N, Ln(!) 2 N
#g

R (i.e., Ln, n 2 N, are simultaneously simple). Next,

let A be the almost sure event that sup
m2M �(t,m) <1 for all t 2 R>0. Fix

! 2 A \ B and use the assumption on � to find that

N(!, {t}⇥M ) =

Z

{t}

Z

M

Z

(0,�(!,s,m)]

M(!, ds, dm, dz)

M

✓
!, {t}⇥M ⇥

✓
0, sup

m2M
�(!, t,m)

�◆

M (!, {t}⇥M ⇥ (0, p(!, t)]) = Lp(!,t)(!, {t})  1,

where p(!, t) 2 N is such that sup
m2M �(!, t,m)  p(!, t).
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7.7.2 Strong existence: pathwise construction via Poisson em-

bedding

Existence under Assumptions A, B, C

We begin by proposing a construction of a candidate solution N : ⌦! N
1
R⇥M

to (7.3). We proceed in a pathwise fashion. Under Assumption A, using the

definition of a Poisson process, it is not di�cult to see that, given n 2 N,
Ln 2 N

#
R a.s. This implies that

F1 := {! 2 ⌦ |Ln(!) 2 N
#
R , n 2 N} 2 F

is an almost sure event, which plays a key role in our pathwise construction.

Algorithm 7.7.7. Construct the mappingN : ⌦! N
1
R⇥M as follows. For all

! = (!0,!>0) 2 F1, set N0(!) := N0(!0), T0(!) := 0, M0(!) := ?, and

�0(!, t,m) :=  (m | ✓tN0(!)<0) for all t 2 R>0, m 2 M . Define recursively

the sequences (Nn)n2N, (Tn)n2N, (Mn)n2N, and (�n)n2N as follows. For all

n 2 N,

• if Tn(!) <1, then

Tn+1(!) := (7.5)

sup

⇢
u > Tn(!) :

ZZ

(Tn(!),u)⇥M

Z

(0,�n(!,t,m)]

M(!, dt, dm, dz) = 0

�
;

– if Tn+1(!) <1, then

Mn+1(!) :=

{m 2M :

M(!, {Tn+1(!)}⇥ {m}⇥ (0,�n(!, Tn+1(!),m)]) > 0} ;

Nn+1(!) := (7.6)
n+1X

i=1

X

m2Mi(!)

M(!, {Ti(!)}⇥ {m}⇥

(0,�i�1(!, Ti(!),m)])�(Ti(!),m) ;
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�n+1(!, t,m) :=  (m | ✓tNn+1(!)
<0), t 2 R>0,m 2M ; (7.7)

– if Tn+1(!) =1, then

Mn+1(!) := ? ;

Nn+1(!) := Nn(!) ;

�n+1(!, t,m) := �n(!, t,m), t 2 R>0,m 2M ;

• if Tn(!) =1, then

Tn+1(!) :=1 ;

Mn+1(!) := ? ;

Nn+1(!) := Nn(!) ;

�n+1(!, t,m) := �n(!, t,m), t 2 R>0,m 2M .

For all ! = (!0,!>0) 2 ⌦ \ F1, set Nn(!) := N0(!0), Tn(!) := 1,

Mn(!) := ? , �n(!, t,m) := 0, t 2 R>0, m 2M , for all n 2 N. Then, for all
! 2 ⌦, for all n 2 N, define N(!) on (�1, Tn+1(!)) by

✓Tn+1(!)N(!)<0 := ✓Tn+1(!)Nn(!)
<0.

Define also the explosion time T1(!) := limn!1 Tn(!). If T1(!) < 1,

extend N(!) to [T1(!),1) by ✓T1(!)N(!)�0 := 0. This is equivalent to

defining N(!) as

N(!) := lim
n!1

Nn(!) =

1X

n=1

X

m2Mn(!)

M(!, {Tn(!)}⇥ {m}⇥

(0,�n�1(!, Tn(!),m)])�(Tn(!),m)1{Tn(!)<1}.

Algorithm 7.7.7 would be ill-defined if the set in (7.5) were empty. This

would mean that there are infinitely many events just after the time Tn.

The following proposition shows that this actually never happens and, thus,
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ensures that Algorithm 7.7.7 is well-defined. We also need to prove that the

set Mn is finite and that Nn(!) 2 N
#
R⇥M for all n 2 N, because otherwise

�n(!, t,m) might be ill-defined ( is a functional on M ⇥N
#
R⇥M ).

Proposition 7.7.8. In Algorithm 7.7.7, under Assumptions A, B.(i) and

C, we have that, for every ! 2 F1, card(Mn(!)) < 1, Nn(!) 2 N
#
R⇥M ,

k�ik(!) := sup
t>0,m2M �i(!, t,m) <1, for all n 2 N, and

⇢
u > Tn(!) :

ZZ

(Tn(!),u)⇥M

Z

(0,�n(!,t,m)]

M(!, dt, dm, dz) = 0

�
6= ?

for all n 2 N s.t. Tn(!) < 1. Hence, Algorithm 7.7.7 is well-defined under

these assumptions.

Proof. We show the desired result by induction. Fix ! = (!0,!>0) 2 F1.

Let n 2 N and for all i 2 N such that i < n and Ti(!) <1, assume that

⇢
u > Ti(!) :

ZZ

(Ti(!),u)⇥M

Z

(0,�i(!,t,m)]

M(!, dt, dm, dz) = 0

�
6= ?. (7.8)

For all i 2 N such that i  n, assume that Ni(!) 2 N
#
R⇥M and that

k�ik(!) := sup
t>0,m2M �i(!, t,m) < 1. If Tn(!) = 1, then, by construc-

tion, this is also true for n+ 1.

Now, assume that Tn(!) <1. We first show that (7.8) holds also for i = n.

Take any " > 0. We have that

ZZ

(Tn(!),Tn(!)+")⇥M

Z

(0,�n(!,t,m)]

M(!, dt, dm, dz)

M(!, (Tn(!), Tn(!) + ")⇥M ⇥ (0, k�nk(!)])

 Lpn(!)(!, (Tn(!), Tn(!) + ")) =: Un(!, ") <1,

where pn(!) 2 N is such that k�nk(!)  pn(!) and we used the fact that

Lpn(!)(!) 2 N
#
R . If Un(!, ") = 0, then clearly (7.8) is satisfied for i = n. If

not, M(!) has a finite number of points in the set

(Tn(!), Tn(!) + ")⇥M ⇥ (0, k�nk(!)]
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and there exists 0 < "0 < " such that Un(!, "0) = 0, in which case (7.8) is

again satisfied for i = n. Note that the integral in (7.8) is well-defined since

�i(!, ·, ·) is a measurable function on R>0 ⇥M for all ! 2 ⌦. To see this,

consider the composition (t,m) 7! (m, ✓tNi(!)<0) 7!  (m | ✓tNi(!)<0) and

use Lemma 8.7.4, the measurability of  and Lemma 1.8 in Kallenberg [74].

Second, we show that card(Mn+1) <1 and Nn+1(!) 2 N
#
R⇥M . If

Tn+1(!) =1, then this is immediate. If not, using again that

Lpn(!)(!) 2 N
#
R ,

X

m2Mn+1

M(!, {Tn+1(!)}⇥ {m}⇥ (0,�n(!, Tn+1(!),m)])

M(!, {Tn+1(!)}⇥M ⇥ (0, k�nk(!)])

 Lpn(!)(!, {Tn+1(!)}) <1,

which implies that the set Mn+1(!) is finite and, in view of (7.6), that

Nn+1(!) 2 N
#
R⇥M . Note that this also proves that

Nn+1(!, (0, Tn+1(!))⇥M ) <1.

Third, we show that k�n+1k(!) <1. If Tn+1(!) =1, then this is immedi-

ate. If not, by (7.7) and using Assumptions B.(i) and (7.6), we have that for

all t > 0, m = (x, e) 2M ,

�n+1(!, t,m)  a (Nn+1(!, (�1, t)⇥M ))

= a (Nn+1(!, (�1, 0]⇥M ) +Nn+1(!, (0, t)⇥M ))

 a (N0(!0, (�1, 0]⇥M ) +Nn+1(!, (0, Tn+1(!))⇥M )) .

(7.9)

Since Nn+1(!, (0, Tn+1(!))⇥M ) <1 and, by Assumption C,

N0(!0, (�1, 0]⇥M ) <1,

this implies that k�n+1k(!) <1.

Regarding the basis of this induction, it is immediate that

N0(!) = N0(!0) 2 N
#
R⇥M . To see that k�0k(!) < 1, simply set n = �1
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in (7.9).

We show that the constructed mapping N : ⌦! N
1
R⇥M satisfies indeed (7.3)

up to each event time.

Proposition 7.7.9. Under Assumptions A, B.(i) and C, the mapping

N : ⌦ ! N
1
R⇥M given by Algorithm 7.7.7 is such that N(!) solves (7.3) on

(�1, Tn(!)) for all n 2 N, for all ! 2 F1.

Proof. Define the process �(!, t,m) :=  (m | ✓tN(!)<0), ! 2 ⌦, t 2 (0, T1(!)),

m 2 M . Take any ! = (!0,!>0) 2 F1. By construction, we have

N(!)0 = N0(!) = N0(!0) and, thus, N satisfies the strong initial condi-

tion N0. Take any n 2 N such that Tn+1(!) < 1 in Algorithm 7.7.7 and

consider the time interval (Tn(!), Tn+1(!)]. By construction, we have that

Nn+1(!, dt, dm) = M(!, dt, dm, (0,�n(!, t,m)]) (7.10)

for all t 2 (Tn(!), Tn+1(!)]. But, by definition, on (�1, Tn+1(!)], we have

N(!) = Nn+1(!) and thus, for all t 2 (0, Tn+1(!)], m 2M ,

�(!, t,m) =  (m | ✓tN(!)<0) =  (m | ✓tNn+1(!)
<0) =  (m | ✓tNn(!)

<0)

= �n(!, t,m),

by the definition (7.7) of �n, since Nn+1(!) and Nn(!) can only di↵er by a

mass at time Tn+1(!). Consequently, (7.10) can be rewritten on the interval

(Tn(!), Tn+1(!)] as

N(!, dt, dm) = M(!, dt, dm, (0,�(!, t,m)]). (7.11)

This shows that the constructed N(!) solves (7.3) on (�1, Tn(!)] for all

n 2 N such that Tn(!) < 1. Now, if there is n 2 N such that Tn(!) < 1

and Tn+1(!) = 1, then clearly the constructed N(!) is null on (Tn(!),1)

and by similar arguments, (7.11) holds on (Tn(!),1). This now allows us to

conclude that N(!) solves (7.3) on (�1, Tn(!)) for all n 2 N in both cases

Tn(!) <1 and Tn(!) =1.
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It will also be crucial for the strong existence proof to show that, for all

n 2 N, Nn is adapted to the filtration F and �n is F-predictable.

Proposition 7.7.10. In Algorithm 7.7.7, for all n 2 N, �n is F-predictable,
Nn is an F-adapted non-explosive point process and Tn is an F-stopping time.

Proof. We proceed by induction. Regarding the basis, as the filtration F
is complete, clearly N0 is F-adapted and T0 is an F-stopping time. Now

assume that Nn is F-adapted and Tn is an F-stopping time for some n 2 N.
First, observe that this implies that �n is F-predictable by simply using the

identity �n(!, t,m) =  (m | ✓tNn(!)<0)1F1(!) and invoking Lemma 6.4.4,

the fact that F
Nn
t ⇢ Ft, t 2 R, and the assumption that F is complete.

Second, let t 2 R and notice that

{Tn+1  t} = (7.12)
⇢ZZZ

R⇥M⇥R
1(Tn,t](s)1(0,�n(s,m)](z)M(ds, dm, dz) > 0

�
\ {Tn  t} \ F1.

Because Tn is an F-stopping time, we have that (1(Tn,t](s))s2R is F-adapted
and left-continuous, implying that it is F-predictable, see for example Lemma

25.1 in Kallenberg [74, p. 491]. Adapting the arguments of the third part of

the proof of Lemma 7.7.3, we deduce that the first event on the right-hand

side of (7.12) belongs to Ft and so Tn+1 is an F-stopping time. Third, using

Proposition 7.7.9 and looking at Algorithm 7.7.7, notice that Nn+1 satisfies

8
<

:
Nn+1(!, dt, dm) = M(!, dt, dm, (0,�n(!, t,m)1{tTn+1(!)}]),

N0(!) = N0(!0).

for all ! = (!0,!>0) 2 ⌦, t 2 R>0, where �n(t,m)1{tTn+1} is F-predictable
as a product of F-predictable processes, note that 1{tTn+1} is F-adapted
and left-continuous since Tn+1 is an F-stopping time. Now, applying Lemma

7.7.3, it follows that Nn+1 is indeed F-adapted.

We are now in a position to prove Theorem 7.4.1 under Assumption A, B
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and C for the following intensity functional:

 0 : M ⇥N
#
R⇥M ! R�0 [ {1}

(m, ⇠) 7!  0(m | ⇠) := a (⇠((�1, 0)⇥M )) .

Still, note that the first step of the following proof remains true for general

intensity functionals  that satisfy Assumption B and will be reused in other

parts of the proof of Theorem 7.4.1.

Proof of Theorem 7.4.1, Part 1. Let N : ⌦! N
1
R⇥M be given by Algorithm

7.7.7 under Assumptions A, B and C, which is well-defined by Proposition

7.7.8, and consider here the special case  =  0. We will prove that N admits

a version that solves the Poisson-driven SDE. We proceed in four steps.

First, notice that for all ! 2 ⌦, t < T1(!), there exists n 2 N such that

✓tN(!)<0 = ✓tNn(!)<0, which implies by Proposition 7.7.8 that the process

�(!, t,m) :=  (m | ✓tN(!)<0)1F1(!)1{t<T1(!)}, ! 2 ⌦, t 2 R>0,m 2M ,

is well-defined and finite, and that, for all ! 2 ⌦, t 2 R>0, m 2M ,

�(!, t,m) = lim
n!1

 (m | ✓tNn(!)
<0)1F1(!)1{t<T1(!)}

= lim
n!1

�n(!, t,m)1{t<T1(!)}.

By Proposition 7.7.9, and because of the way we constructed N , we have

that N and � satisfy (7.4). By Proposition 7.7.10, for all n 2 N, �n is

F-predictable and Tn is an F-stopping time. Since T1 = limn!1 Tn, we

have that T1 is an F-predictable time, which implies by Lemma 25.3.(ii)

in Kallenberg [74, p. 492] that 1{t<T1} is F-predictable. As � is a limit of

F-predictable processes, we have that � is also F-predictable by Lemma 1.9

in Kallenberg [74, p. 6]. Consequently, we can apply Lemma 7.7.3 to obtain

that N is an F-adapted integer-valued random measure. The main goal of

the next steps is to show that T1 =1 a.s.

Second, following Proposition 7.7.8, we can see that sup
m2M �(!, t,m) <1

for all t 2 R>0, ! 2 ⌦. Hence, by Lemma 7.7.6, there exists and almost sure
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event G 2 F on which N({t} ⇥M })  1 for all t 2 R. Let Ñ , (Ñn)n2N,

(T̃n)n2N and T̃1 coincide with N , (Nn)n2N, (Tn)n2N and T1 on G. Outside

G, set Ñ := 0, Ñn := 0, T̃n := 1, for all n 2 N, and T̃1 := 1. Define the

random measures on R

ÑM (·) := Ñ(·⇥M ), ÑM ,n(·) := Ñn(·⇥M ), n 2 N,

and define the process

�̃(!, t) : = lim
n!1

a(ÑM ,n(!, (�1, t)))1{t<T̃1(!)}

= a(ÑM (!, (�1, t)))1{t<T̃1(!)}, ! 2 ⌦, t 2 R>0.

Since {T̃n  t} = {ÑM ((0, t]) � n}, T̃n is in fact an FÑM -stopping time and,

thus, reusing the argument in the first step, we have that 1{t<T̃1} is FÑM -

predictable. Moreover, by Lemma 6.4.4, we have that (a(ÑM ,n((�1, t))))t>0

is FÑM,n-predictable and, thus, FÑM -predictable. Hence, using again Lemma

1.9 in Kallenberg [74, p. 6], we have that �̃ is also FÑM -predictable. Next,

because Ñ = N a.s. and �̃(t) = �(t,m) for all t 2 R>0, m 2 M , a.s., and

because Lemma 7.7.3 applies to N and �, we have that, for any non-negative

FÑM -predictable process H : ⌦⇥ R>0 ! R�0,

E
Z

R>0

H(t)ÑM (dt)

�
= E

ZZ

R>0⇥M
H(t)N(dt, dm)

�

= E
ZZ

R>0⇥M
H(t)�(t,m)µM (dm)dt

�

= E
Z

R>0

H(t)�̃(t)µM (M )dt

�
.

Consequently, ÑM , or equivalently (T̃n)n2N, defines a simple point process

on R>0 with FÑM -predictable projection (µM (M )
R

t

0 �̃(s)ds)t>0 in the sense

of Jacod [68].

Third, by Lemma 6.4.1, F
ÑM
t = F

ÑM
0 _ F

Ñ
>0
M

t , and, thus, Assumption

A.1 of Jacod [68] holds, see also the proof of Theorem 7.5.2 and Remark

7.7.14. Then, by Proposition 3.1 in Jacod [68], we have that, conditional on
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N0((�1, 0]) = n0 2 N, Sn := T̃n+1� T̃n, n 2 N, follows an exponential dis-

tribution with parameter a(n+n0)µM (M ) and the (Sn)n2N are independent.

Thanks to Assumption B.(ii), by Example 3.1.4 in Jacobsen [67, p.20], we

deduce that, conditional on N0((�1, 0]) = n0, T̃1 = limn!1 T̃n = 1 a.s.,

see also Proposition 12.19 in Kallenberg [74, p.240]. Consequently, it holds

that T̃1 =1 a.s. unconditionally.

Fourth, following these first three steps, we have proved that there exists a

version of N such that N 2 N
#g

R⇥M , i.e., this version of N is a non-explosive

marked point process, see Proposition 5.5.1, and such that N solves the

Poisson-driven SDE. We conclude by Corollary 7.7.5.

To prove Theorem 7.4.1 under Assumptions A, B and C in the general case,

we will use a solution to the special case  =  0 to show that the constructed

mapping N : ⌦ ! N
1
R⇥M actually takes values in N

#g

R⇥M . First, we need

to define what we mean for a marked point process N to be dominated by

another marked point process N .

Definition 7.7.11. Let ⇠, ⇠ 2 N
1
R⇥M . We say that ⇠ is dominated by ⇠ and

write ⇠ � ⇠ if, for all A 2 B(R⇥M ), ⇠(A)  ⇠(A). Let T 2 R. We say that

⇠ is dominated by ⇠ on (�1, T ] if ✓T ⇠0
� ✓T ⇠

0
. Consider two mappings

N : ⌦ ! N
1
R⇥M and N : ⌦ ! N

1
R⇥M . We say that N is dominated by N if

N � N a.s.

When N � N a.s., one could also say that N is a thinning of N . Indeed,

notice that ⇠ � ⇠ implies that all the atoms of ⇠ are also atoms of ⇠.

We will now show that the constructed mapping N : ⌦ ! N
1
R⇥M is domi-

nated by any solution to the special case  =  0.

Proposition 7.7.12. Let N 0 : ⌦ ! N
#g

R⇥M be a solution to the Poisson-

driven SDE with intensity functional  0. Then, under Assumptions A, B.(i)

and C, the mapping N : ⌦! N
1
R⇥M obtained from Algorithm 7.7.7 satisfies

N � N 0 a.s.

Proof. Fix ! = (!0,!>0) 2 A \ F1, where A 2 F is the almost sure event

that N 0 solves (7.3), where  is replaced by  0. Clearly, N(!) � N 0(!)
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on (�1, 0]. Now take any n 2 N such that Tn(!) < 1 and assume that

N(!) � N 0(!) on (�1, Tn(!)]. If Tn+1(!) = 1, then N(!) is null on

(Tn,1) and we have N(!) � N 0(!). If Tn+1(!) < 1, we have that for all

t 2 (Tn(!), Tn+1(!)], m 2M ,

�(!, t,m) =  (m | ✓tN(!)<0)

(by construction) =  (m | ✓tNn(!)
<0)

(by Assumption B.(i))   0(m | ✓tNn(!)
<0)

  0(m | ✓tN
0(!)<0) =: �0(!, t,m),

where the last inequality holds by the definition of  0, Assumption B and

since Nn(!) � N 0(!). By Proposition 7.7.9 for N(!) and by assumption for

N 0(!), we have that N(!) and N 0(!) both satisfy (7.3) on (�1, Tn+1(!)],

where � is replaced by �0 for N 0(!). Consequently, we have N(!) � N 0(!)

on (�1, Tn+1(!)]. As, by construction, N(!) has mass on R>0 only at the

times T1(!) < T2(!) < . . . < 1, we have shown that N(!) � N 0(!). This

implies that N � N 0 a.s.

This allows us to conclude the proof of Theorem 7.4.1 under Assumptions A,

B and C.

Proof of Theorem 7.4.1, Part 2. Repeat the first step of Part 1. Then, by

Proposition 7.7.12, we deduce that N 2 N
#g

R⇥M and T1 = 1 a.s. We then

conclude by repeating the fourth step of Part 1.

Existence under Assumptions A, D, E

To prove Theorem 7.4.1 under Assumptions A, D and E, we will also use

Algorithm 7.7.7 to construct a candidate solution, but the almost sure event

F1 needs to be replaced by another almost sure event F2 that guarantees that

the algorithm is well-defined under these new assumptions. Whereas under

Assumptions B and C, we were able to first construct the candidate solution

and then dominate it by a solution to the special case  =  0, here we

will dominate the candidate solution while constructing it. The dominating
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non-explosive marked point process is nothing else than a solution to the

Poisson-driven SDE with the Hawkes intensity functional

 : M ⇥N
#
R⇥M ! R>0 [ {1}

(m, ⇠) 7!  (m | ⇠) := �0 +

ZZ

(�1,0)⇥M
k(�t0,m0,m)⇠(dt0, dm0),

where �0 and k are as in Assumption D. Indeed, by applying the results of

Massoulié [91] and Lemma 7.7.6, we can prove Theorem 7.4.1 under Assump-

tions A, D and E for the special case  =  .

Proof of Theorem 7.4.1, Part 3. Clearly,  satisfies the Lipschitz condition

(7.1) with the kernel k. Under Assumptions A, D.(ii) and E.(i), by Theorem

2 of Massoulié [91], we know that there exists a non-explosive point process

N : ⌦ ! N
#
R⇥M that solves (7.3), where  is replaced by  , and such that

N(· ⇥M ) 2 N
#
R . Moreover, applying Assumptions D.(iii) and E.(ii), we

obtain that

�(!, t,m) :=  (m | ✓tN(!)<0)

= �0 +

ZZ

(�1,t)⇥M
k(t� t0,m0,m)N(!, dt0, dm0)

 �0 + �̃0(!0, t) +

ZZ

(0,t)⇥M
sup

m002M
k(t� t0,m0,m00)N(!, dt0, dm0)

<1, ! 2 ⌦, t 2 R>0,m 2M ,

which proves that sup
m2M �(t,m) < 1, for all t 2 R>0, a.s. Hence, by

Lemma 7.7.6, we conclude that N admits a version such that N(!) 2 N
#g

R⇥M ,

! 2 ⌦, meaning that this version solves the Poisson-driven SDE. Conclude

by Corollary 7.7.5.

From now on, denote by N a solution to the Poisson-driven SDE in the

special case  =  and by F2 2 F the almost sure event that N solves

(7.3), where  is replaced by  . The following statement is the analogue of

Proposition 7.7.8 and ensures that Algorithm 7.7.7 is well-defined under this

di↵erent set of assumptions.
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Proposition 7.7.13. In Algorithm 7.7.7, where F1 is replaced by F2, under

Assumptions A, D and E, we have that, for every ! 2 F2, card(Mn(!))  1,

Nn(!) � N(!), for all n 2 N, and
⇢
u > Tn(!) :

ZZ

(Tn(!),u)⇥M

Z

(0,�n(!,t,m)]

M(!, dt, dm, dz) = 0

�
6= ?

for all n 2 N s.t. Tn(!) < 1. Hence, Algorithm 7.7.7 is well-defined under

these assumptions.

Proof. We show the assertion by induction. Take any ! = (!0,!>0) 2 F2.

Let n 2 N and, for all i 2 N such that i < n and Ti(!) <1, assume that

⇢
u > Ti(!) :

ZZ

(Ti(!),u)⇥M

Z

(0,�i(!,t,m)]

M(!, dt, dm, dz) = 0

�
6= ?. (7.13)

For all i 2 N such that i  n, assume that Ni(!) � N . If Tn(!) =1, then,

by construction, this is also true for n+ 1.

Now, assume that Tn(!) <1. We first show that (7.13) holds also for i = n.

By adapting the proof of Proposition 7.7.12 and using Assumption D.(i), we

get that �n(!, t,m)  �(!, t,m), for all t > Tn(!), m 2M . Hence, for any

" > 0, we have that

ZZ

(Tn(!),Tn(!)+")⇥M

Z

(0,�n(!,t,m)]

M(!, dt, dm, dz) 

ZZ

(Tn(!),Tn(!)+")⇥M

Z

(0,�(!,t,m)]

M(!, dt, dm, dz)

= N(!, (Tn(!), Tn(!) + ")⇥M ) =: Un(!, ") <1,

since N(!, ·⇥M ) 2 N
#
R . If Un(!, ") = 0, then clearly (7.13) is satisfied for

i = n. If not, N(!, ·⇥M ) has a finite number of points in (Tn(!), Tn(!)+")

and there exists 0 < "0 < " such that Un(!, "0) = 0, in which case (7.13) is

again satisfied for i = n.

Second, we show that card(Mn+1)  1 and Nn+1(!) � N(!). If

Tn+1(!) =1, then this is immediate. If not, as �n(!, t,m)  �(!, t,m), for
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all t > Tn(!), it is enough to notice that

Mn+1(!) :=

{m 2M : M(!, {Tn+1(!)}⇥ {m}⇥ (0,�n(!, Tn+1(!),m)]) > 0}

⇢
�
m 2M : M(!, {Tn+1(!)}⇥ {m}⇥ (0,�(!, Tn+1(!),m)]) > 0

 

=
�
m 2M : N(!, {Tn+1(!)}⇥ {m}) > 0

 
 1,

since N(!) 2 N
#g

R⇥M . As we already know that Nn(!) � N(!), looking at

(7.6) and observing that Nn+1(!) and Nn(!) only di↵er by a mass at time

Tn+1(!), we further deduce that Nn+1(!) � N(!).

Regarding the basis of this induction, it is immediate that N0(!) � N(!)

since N0(!) = N0(!0) = N
0
(!).

We are now in a position to finish the proof of Theorem 7.4.1 under Assump-

tion A, D and E.

Proof of Theorem 7.4.1, Part 4. Let N : ⌦! N
1
R⇥M be given by Algorithm

7.7.7 under Assumptions A, D and E, where F1 is replaced by F2. By Propo-

sition 7.7.13, this mapping is well defined. Moreover, we notice that Propo-

sitions 7.7.9 and 7.7.10 still hold under the present assumptions. Hence,

we can repeat the first step of Part 1 of the proof. By Proposition 7.7.13,

we know that Nn(!) � N(!) for all ! 2 F2, which implies by construc-

tion that N(!) � N(!) on R>0 for all ! 2 ⌦. Consequently, we have that

N(!) 2 N
#g

R⇥M and T1(!) = 1 for all ! 2 ⌦, which implies that N solves

the Poisson-driven SDE. We conclude again by Corollary 7.7.5.

7.7.3 Strong and weak uniqueness

Proof of Theorem 7.5.1. Let ⌦̃ 2 F be the almost sure event that both N

and N 0 solve (7.3). Let (Tn,Mn)n2N and (T 0
n
,M 0

n
)n2N be the enumerations

in (0,1] ⇥ M to which N and N 0 are respectively equivalent. Now fix

arbitrary ! 2 ⌦̃. We show by strong induction that Tn(!) = T 0
n
(!) and

Mn(!) = M 0
n
(!) for all n 2 N.
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Let n 2 N and assume that Ti(!) = T 0
i
(!) and Mi(!) = M 0

i
(!) for all

i = 1, . . . , n�1. By contradiction, assume that Tn(!) 6= T 0
n
(!) and, moreover,

without loss of generality, that Tn(!) < T 0
n
(!). Then, this implies that

N(!, (0, Tn(!)]⇥M ) =

Z

(0,Tn(!)]

Z

M

Z

(0,�(!,t,m)]

M(!, dt, dm, dz) = n,

N 0(!, (0, Tn(!)]⇥M ) =

Z

(0,Tn(!)]

Z

M

Z

(0,�0(!,t,m)]

M(!, dt, dm, dz) = n� 1,

where �(!, t,m) =  (m | ✓tN(!)<0) and �0(!, t,m) =  (m | ✓tN 0(!)<0). But

since N(!)0 = N 0(!)0 and also Ti(!) = T 0
i
(!) and Mi(!) = M 0

i
(!) for all

i = 1, . . . , n � 1, we have that ✓tN(!)<0 = ✓tN 0(!)<0 for all t  Tn(!) and,

thus, �(!, t,m) = �0(!, t,m) for all t  Tn(!),m 2 M . This implies that

n = n� 1 which is a contradiction and, thus, necessarily, Tn(!) = T 0
n
(!).

Similarly, if we assume that Mn(!) 6= M 0
n
(!), then this implies that

N(!, {Tn(!)}⇥ {Mn(!)}) =

Z

{Tn(!)}

Z

{Mn(!)}

Z

(0,�(!,t,m)]

M(!, dt, dm, dz)

= 1,

N 0(!, {Tn(!)}⇥ {Mn(!)}) =

Z

{Tn(!)}

Z

{Mn(!)}

Z

(0,�0(!,t,m)]

M(!, dt, dm, dz)

= 0.

But again, since �(!, t,m) = �0(!, t,m) for all t  Tn(!),m 2M , this leads

to the contradiction 1 = 0 and, thus, it follows that Mn(!) = M 0
n
(!). The

same reasoning allows us to prove the basis of the strong induction (i.e., to

show that T1(!) = T 0
1(!) and M1(!) = M 0

1(!)).

Proof of Theorem 7.5.2. Consider the canonical measurable space

(N#g

R⇥M ,B(N#g

R⇥M )), where B(N#g

R⇥M ) = N
#g

R⇥M \B(N
#
R⇥M ), and the canonical

non-explosive marked point process N defined by N(!) = !, ! 2 N
#g

R⇥M .

Under both P
N1 and P

N2 (they only charge N
#g

R⇥M ), N satisfies the weak

initial condition N0 and admits an intensity given by (5.2). We will now

apply Theorem 3.4 in Jacod [68, p. 242] to show that PN1 = P
N2 . By Lemma
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6.4.1, we have that

F
N

t
= F

N

0 _ F
✓0N

>0

t = F
N

0

0 _ F
N

>0

t
, t 2 R�0,

and thus, Assumption A.1 of Jacod [68] is satisfied (see Remark 7.7.14).

To apply Theorem 3.4 in Jacod [68], it remains to verify that the restrictions

of PN1 and P
N2 coincide on F

N

0 . Note that FN

0 is generated by the ⇡-system

C of sets of the form

{N 2 N
#g

R⇥M : N(A1 ⇥M1) � n1, . . . ,N(Ak ⇥Mk) � nk},

n1, . . . , nk 2 N, k 2 N,

where A1, . . . , Ak,2 B(R0) and M1, . . . ,Mk 2 B(M ). For any such set

F 2 C, setting Bi := Ai⇥Mi for i = 1, . . . , k and invoking the fact that both

N1 and N2 satisfy the weak initial condition N0, we deduce that

P
N1(F ) = P

N1(N(B1) � n1, . . . , N(Bk) � nk)

= P
N1(N0(B1) � n1, . . . , N

0(Bk) � nk)

= P
N0(N0(B1) � n1, . . . , N

0(Bk) � nk)

= P
N2(N0(B1) � n1, . . . , N

0(Bk) � nk)

= P
N2(N(B1) � n1, . . . , N(Bk) � nk) = P

N2(F ).

Hence, PN1 and P
N2 coincide on C, a ⇡-system that contains N

#g

R⇥M . As a

consequence, PN1 = P
N2 on F

N

0 , see for example Lemma 1.17 in Kallenberg

[74, p. 9], and we can apply Theorem 3.4 in Jacod [68, p. 242] to deduce that

P
N1 = P

N2 on (N#g

R⇥M ,B(N#g

R⇥M )).

Remark 7.7.14. Let us clarify the relationship between our notations and

those in Jacod [68]. Our canonical measurable space (N#g

R⇥M ,B(N#g

R⇥M ))

plays the role of his measurable space (⌦,F1). Our marked point process

N>0 corresponds to his marked point process µ. Our probability measures

P
N1 and P

N2 are the counterparts of P and P 0, respectively. Our filtrations

FN and FN
>0

correspond to his filtrations (Ft)t�0 and (Gt)t�0, respectively.
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8
On the weak-hash metric

As already mentioned in Chapter 5, it is known that the space of boundedly

finite integer-valued measures on a complete separable metric space becomes

itself a complete separable metric space when endowed with the weak-hash

metric. It is also known that convergence under this topology can be char-

acterised in a way that is similar to the weak convergence of totally finite

measures. However, the original proofs of these two fundamental results as-

sume that a certain term is monotonic, which is not always the case as we

show by a counterexample. We manage to clarify these original proofs by

addressing the parts that rely on this assumption and finding alternative

arguments.

The results of Chapters 6 and 7 relied on some lemmas and propositions that

derive from these fundamental properties of the weak-hash metric and that

we prove in the last section of this chapter.

8.1 Notations and problem

Let U be a complete separable metric space and x0 2 U be a fixed origin.

Let Br(x) denote the open ball with radius r 2 R�0 and centre x 2 U ; write
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Br := Br(x0) for the open balls centred at x0. For any subset A ⇢ U and

" 2 R>0, the "-neighbourhood of A is defined by A" :=
S

a2A B"(a), the

boundary of A is denoted by @A and the closure of A is denoted by A. For

any Borel measure ⇠ on U and any r 2 R�0, we use the notation ⇠(r) to refer

to the restriction of ⇠ to the open ball Br, that is ⇠(r)(A) = ⇠(A \ Br) for

all A 2 B(U). A Borel measure ⇠ on U is called totally finite if ⇠(U) < 1.

Let MU denote the space of totally finite measures on U , and define the

Prohorov distance d on MU by

d : MU ⇥MU ! R�0

(µ, ⌫) 7! d(µ, ⌫) := inf{" 2 R�0 : µ(A)  ⌫(A") + " and

⌫(A)  µ(A") + ", for all closed A ⇢ U}.

It is known that d makes MU a complete separable metric space, see for

example Section A2.5 in Daley and Vere-Jones [40, p. 398–402].

In this chapter, we are interested in boundedly finite integer-valued measures.

Recall that a Borel measure ⇠ on U is called boundedly finite if ⇠(A) < 1

for all bounded Borel sets A 2 B(U) and that we denote by N
#
U the space

of boundedly finite measures on U with values in N [ {1}. Note that such

measures are always atomic (i.e., a superposition of Dirac measures), see

for example Proposition 9.1.III.(ii) in Daley and Vere-Jones [41, p. 4]. One

might ask if the Prohorov distance d on the space MU has a counterpart

on the space N
#
U . Daley and Vere-Jones [40, p. 403] tackle this question by

considering the distance function

d# : N#
U ⇥N

#
U ! R�0

(µ, ⌫) 7! d#(µ, ⌫) :=

Z 1

0

e�r
d(µ(r), ⌫(r))

1 + d(µ(r), ⌫(r))
dr. (8.1)

The core idea is to use the Prohorov metric on the restrictions to the open

balls and compute a weighted average. They name the corresponding topol-

ogy the w#-topology (“weak-hash”) and refer to d# as the w#-distance. They

then obtain the following two fundamental results. The first one is a charac-

terisation of convergence under this metric.
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Theorem 8.1.1 (Characterisation of convergence). Let (µk)k2N be a sequence

in N
#
U and µ 2 N

#
U . Then, the following statements are equivalent:

(i) d#(µk, µ)! 0 as k !1;

(ii)
R
U f(x)µk(dx) !

R
U f(x)µ(dx) as k ! 1 for all bounded continuous

functions f on U vanishing outside a bounded set;

(iii) there exists an increasing sequence (rn)n2N with rn ! 1 as n ! 1

such that

d(µ(rn)
k

, µ(rn))! 0 as k !1 for all n 2 N;

(iv) µk(A) ! µ(A) as k ! 1 for all bounded sets A 2 B(U) such that

µ(@A) = 0.

The second result confirms that d# is indeed the counterpart of d, that is N#
U

inherits the completeness and separability properties of U under the metric

d#. This second result also provides us with a characterisation of the Borel

�-algebra B(N#
U ).

Theorem 8.1.2 (Metric properties of N#
U ).

(i) The space N
#
U is a complete separable metric space when it is equipped

with the distance function d#.

(ii) The corresponding Borel �-algebra B(N#
U ) is the smallest �-algebra that

makes all mappings �A : N#
U ! N[{1}, A 2 B(U), measurable, where

�A(⇠) = ⇠(A).

Theorem 8.1.1 and Theorem 8.1.2 in this chapter are Proposition A2.6.II and

Theorem A2.6.III in Daley and Vere-Jones [40, p. 403–405], respectively.

Regarding the motivation of this chapter, we have seen that the metric space

(N#
U , d#) is a stepping stone to the theory of point processes as presented by

Daley and Vere-Jones [41], who define a point process as a random element in

N
#
U . Moreover, the above theorems are crucial in our framework and proofs,

in Chapters 5, 6 and 7.
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We now turn to the precise purpose of this chapter. To argue that the

integrand in (8.1) is measurable and prove the above properties of the metric

d#, Daley and Vere-Jones [40, p. 403–405] assume that d(µ(r), ⌫(r)) is non-

decreasing as a function of r 2 R�0. Example 8.1.3 below shows that this

need not necessarily be true.

Example 8.1.3. Set U = R, x0 = 0, µ = �0 and ⌫ = �0.5, where, for

any x 2 U , �x denotes the Dirac measure at x. Then, as long as r < 0.5,

d(µ(r), ⌫(r)) = 1. However, as soon as r > 0.5, d(µ(r), ⌫(r)) = 0.5.

Consequently, our goal is to clarify the original proofs of Theorems 8.1.1 and

8.1.2 given in Daley and Vere-Jones [40] by addressing specifically the parts

that rely on the assumed monotonicity of d(µ(r), ⌫(r)). Note that Daley and

Vere-Jones [40] consider the larger space M
#
U of boundedly finite measures,

i.e., not necessarily integer-valued. The proofs we develop here (except in

Section 8.3) are specialised to the subspace N
#
U and take advantage of the

discrete nature of its elements. Besides, we should add that an alternative

metrization ofM#
U , leading to the same properties, is presented in Kallenberg

[75, Section 4.1, p. 111–117]. According to Kallenberg [75, Historical and

bibliographical notes, p. 638], this extension from totally finite measures to

boundedly finite measures under this alternative metric was first developed

by Matthes et al. [92].

The chapter is organised as follows. Section 8.2 gives some preliminary results

on the Prohorov metric. Section 8.3 shows that the distance function in (8.1)

is well defined. Section 8.4 deals with the proof of Theorem 8.1.1. Sections

8.5 and 8.6 address the proof of Theorem 8.1.2.

Remark 8.1.4. We would like to stress that this chapter focuses on the parts

of the original proofs that assume that r 7! d(µ(r), ⌫(r)) is non-decreasing

(with the exception of Section 8.6). Our main objective is to find alternative

arguments for these parts specifically. To understand the proofs of Theorems

8.1.1 and 8.1.2 in their entirety and the details of the other parts that are

not treated here, we refer the reader to the original text [40, p. 403–405].
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8.2 Preliminaries on the Prohorov metric

As the Prohorov metric d is the main building block of the w#-distance d#,

it is not surprising that we need to study its behaviour. In particular, we

will apply the following lemmas.

Lemma 8.2.1. Let µ 2 M
#
X and p, r 2 R�0 be such that p  r. Then

d(µ(p), µ(r))  µ(Br \Bp).

Proof. Let " > µ(Br \Bp). Let F 2 B(U) be a closed set. Then, clearly

µ(p)(F ) = µ(F \ Bp)  µ(F "
\Br) + " = µ(r)(F ") + ".

Moreover, we have that

µ(r)(F ) = µ(F \Bp) + µ(F \ Br \Bp)

 µ(p)(F ) + µ(Br \Bp)

 µ(p)(F ") + ".

This means exactly that d(µ(p), µ(r))  µ(Br \ Bp) by definition of the Pro-

horov distance d.

Lemma 8.2.2. Let µ, ⌫ 2 N
#
U be such that µ(U) < 1, ⌫(U) < 1. Let

r, r̄, " 2 R>0 be such that r < r̄ and " < (r̄� r)/2 < 1. If µ(Br̄ \Br) = 0 and

⌫(Br̄�" \Br+") > 0, then d(µ, ⌫) � ".

Proof. Let 0  � < " and u 2 Br̄�" \Br+" be such that ⌫({u}) � 1. Then,

⌫({u}) � 1 > � = µ({u}�) + �,

which implies that d(µ, ⌫) � � by definition of the Prohorov distance. Con-

sequently, d(µ, ⌫) � ".

Lemma 8.2.3.

Let r 2 R�0 and µ, ⌫ 2 N
#
U . Then d(µ(r), ⌫(r)) � |µ(Br)� ⌫(Br)|.
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Proof. Without loss of generality, we can assume that µ(Br) > ⌫(Br). Let

" 2 [0, µ(Br) � ⌫(Br)) and let � 2 [0, µ(Br) � ⌫(Br) � "). By Proposition

A2.2.II in Daley and Vere-Jones [40, p. 386], there exists a closed set F ⇢ Br

such that µ(r)(Br \ F ) < �. Then,

µ(r)(F ) = µ(r)(Br)� µ(r)(Br \ F ) > µ(r)(Br)� �

> µ(r)(Br) + "+ ⌫(Br)� µ(Br) � ⌫(r)(F ") + ".

Again, this implies that d(µ(r), ⌫(r)) � |µ(Br) � ⌫(Br)| by definition of the

Prohorov distance.

8.3 The metric d# is well defined

In this section, we address the proof in Daley and Vere-Jones [40, p. 403]

that shows that d# is indeed a well-defined metric. We have to check that

the integral in (8.1) is well defined and, in particular, that r 7! d(µ(r), ⌫(r)) is

measurable. To achieve this, it su�ces to notice that this function is actually

piecewise constant since µ and ⌫ are atomic with finitely many atoms in

any bounded set. In fact, for any R 2 R>0, as r goes from 0 to R, the

restricted measures µ(r) and ⌫(r) change only a finite number of times and so

does d(µ(r), ⌫(r)). The other arguments in Daley and Vere-Jones [40, p. 403]

are then enough to obtain that d# satisfies all the conditions of a distance

function.

As a side note, for the general case where µ, ⌫ 2 M
#
U , we can prove that

r 7! d(µ(r), ⌫(r)) is measurable by showing that it is of finite variation.

Proposition 8.3.1. Let µ, ⌫ 2M
#
X and R 2 R�0. Then, as a function of

r 2 R�0, the variation of d(µ(r), ⌫(r)) over [0, R] is bounded by µ(SR)+⌫(SR).

In particular, r 7! d(µ(r), ⌫(r)) is of bounded variation and, thus, measurable.

Proof. Let r 2 R�0 and � > 0. Applying the triangle inequality to the

Prohorov distance, we obtain the following two inequalities:

d(µ(r+�), ⌫(r+�))  d(µ(r+�), µ(r)) + d(µ(r), ⌫(r)) + d(⌫(r), ⌫(r+�)) ;
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d(µ(r), ⌫(r))  d(µ(r), µ(r+�)) + d(µ(r+�), ⌫(r+�)) + d(⌫(r+�), ⌫(r)).

This implies that

|d(µ(r+�), ⌫(r+�))� d(µ(r), ⌫(r))|  d(µ(r), µ(r+�)) + d(⌫(r), ⌫(r+�)).

Using Lemma 8.2.1, we can go further and conclude that

|d(µ(r+�), ⌫(r+�))� d(µ(r), ⌫(r))|  µ(Sr+�)� µ(Sr) + ⌫(Sr+�)� ⌫(Sr).

Since µ(Sr) and ⌫(Sr) are non-decreasing in r and always finite (because µ

and ⌫ are boundedly finite), they are of bounded variation, which concludes

the proof.

8.4 Characterisation of convergence in the w#-topology

In this section, we address the proof of Theorem 8.1.1, which characterises

the convergence of boundedly finite integer-valued measures.

Proof of Theorem 8.1.1. We need to show only the implication (i) =) (iii)

because this is the only part in Daley and Vere-Jones [40, p. 403] which relies

on the assumption that d(µ(r), ⌫(r)) is non-decreasing in r 2 R�0. The rest

of the proof of Proposition A2.6.II in Daley and Vere-Jones [40, p. 403-404]

can be used to show that (iii) =) (ii) =) (iv) =) (i).

Let n 2 N and r
n
, r̄n 2 R�0 be such that n < r

n
< r̄n < n + 1 and

µ(Br̄n \Brn
) = 0. Let 0 < " < (r̄n�r

n
)/2. By contradiction, assume that for

any K 2 N, there exists k > K such that µk(Br̄n�" \ Brn+") � 1. Then, by

Lemma 8.2.2, there exists a subsequence (kp)p2N such that d(µ(r)
kp
, µ(r)) � "

for all r � n+ 1, p 2 N. Thus, along this subsequence, we must have

d#(µkp , µ) =

Z 1

0

e�r
d(µ(r)

kp
, µ(r))

1 + d(µ(r)
kp
, µ(r))

dr

�

Z 1

n+1

e�r
"

1 + "
dr =

"

1 + "
e�n�1 > 0,
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which contradicts the assumption that d#(µk, µ) ! 0 as k ! 1. Conse-

quently, there exists a K 2 N such that, for all k � K, µk(Sr̄n�" \Srn+") = 0.

This means that, for all k � K, neither µk nor µ can have any atom in

Sr̄n�"\Srn+", whence there is a constant dk 2 R�0 such that d(µ(r)
k
, µ(r)) = dk

for all r 2 (r
n
+ ", r̄n � "). This implies that, for all k � K,

d#(µk, µ) =

Z 1

0

e�r
d(µ(r)

k
, µ(r))

1 + d(µ(r)
k
, µ(r))

dr �

Z
r̄n�"

rn+"

e�r
dk

1 + dk
dr

�
dk

1 + dk
e�rn�"(1� e�(r̄n�rn�2")),

and, thus, dk ! 0 as k !1. If we set rn = (r
n
+ r̄n)/2, we finally have that

d(µ(rn)
k

, µ(rn))! 0 as k !1.

8.5 Completeness and separability of N
#
U

In this section, we address the proof of the first part of Theorem 8.1.2, which

states that N#
U is complete and separable when it is endowed with the w#-

metric d#.

8.5.1 Completeness

To begin with, we show that if a sequence (µk)k2N in (N#
U , d#) is Cauchy,

then the restrictions along an increasing sequence of balls are also Cauchy

for the Prohorov metric d.

Proposition 8.5.1. Let (µk)k2N be a Cauchy sequence in N
#
U for the w#-

metric d#. Then, there exists an increasing sequence (rn)n2N in R>0 with

rn ! 1 as n ! 1 such that, for each n 2 N, (µ(rn)
k

)k2N is a Cauchy

sequence in MU for the Prohorov metric d.

Proof. Step 1. We show that µk(Br) is bounded in k 2 N for all r 2 R�0.

By contradiction, assume that this is not the case. Then, there exists a

subsequence such that µkp(Br) ! 1. Along this subsequence, for p large
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enough and any fixed q 2 N, we have that

Z
r+1

r

e�s
d(µ(s)

kp
, µ(s)

kq
)

1 + d(µ(s)
kp
, µ(s)

kq
)
ds �

Z
r+1

r

e�s
|µkp(Bs)� µkq(Bs)|

1 + |µkp(Bs)� µkq(Bs)|
ds

�

Z
r+1

r

e�s
µkp(Br)� µkq(Br+1)

1 + µkp(Br)� µkq(Br+1)
ds

! e�r(1� e�1), p!1,

where we used Lemma 8.2.3 and the fact that µkp(Bs) and µkq(Bs) are non-

decreasing in s. But this is incompatible with the Cauchy assumption on

(µk)k2N. Indeed, let " < e�r(1� e�1). Then, the Cauchy assumption implies

that there exists K 2 N such that, for all k, k0
� K,

d#(µk, µk0) =

Z 1

0

e�s
d(µ(s)

k
, µ(s)

k0 )

1 + d(µ(s)
k
, µ(s)

k0 )
ds  ".

But then, for p, q 2 N large enough, we must have

" �

Z 1

0

e�s
d(µ(s)

kp
, µ(s)

kq
)

1 + d(µ(s)
kp
, µ(s)

kq
)
ds �

Z
r+1

r

e�s
d(µ(s)

kp
, µ(s)

kq
)

1 + d(µ(s)
kp
, µ(s)

kq
)
ds > ".

Step 2. Let n 2 N. We show that for k, p 2 N large enough, there is a

subinterval of [n, n+1] on which the functions r 7! d(µ(r)
k
, µ(r)

p ) are constant.

Define M := sup
k2N µk(Bn+1), which is finite by the first step and can be

understood as a bound on the number of points in the ball Bn+1 among

all measures µk. Let "1, "2 2 R>0 be such that "1 < "2 < 1/2(M + 1)

and "1 < "2e�n�1/(1 + "2). Let K 2 N be such that, for all k, k0
� K,

d#(µk, µk0)  "1 (Cauchy assumption). Since µK(Bn+1 \ Bn)  M , we can

find r
n
, rn 2 (n, n+1) such that µK(Brn \Brn

) = 0 and rn�r
n
� 1/(M +1).

Now, by contradiction, assume that µp(Brn�"2 \Brn+"2) � 1 for some p > K.

Then, using Lemma 8.2.2, we obtain that

"1 � d#(µK , µp) =

Z 1

0

e�r
d(µ(r)

K
, µ(r)

p )

1 + d(µ(r)
K
, µ(r)

p )
dr �

Z 1

n+1

e�r
d(µ(r)

K
, µ(r)

p )

1 + d(µ(r)
K
, µ(r)

p )
dr
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�
"2

1 + "2
e�n�1,

which contradicts the original assumption on "1 and "2. Consequently, for

all k � K, µk(Brn�"2 \ Brn+"2) = 0, which implies that r 7! d(µ(r)
p , µ(r)

q ) is

constant on (r
n
+ "2, rn � "2) for all p, q � K.

Step 3. We finally show that when rn =: (r
n
+ rn)/2, (µ

(rn)
k

)k2N is a Cauchy

sequence for the Prohorov metric d. Let " > 0 and set

� := (rn � r
n
� 2"2)e

�n�1 "

1 + "
.

Let J 2 N be such that, for all p, q � J , d#(µk, µk0)  � (Cauchy assumption).

Then, for all p, q � K _ J , we must have

� �

Z
rn�"2

rn+"2

e�r
dpq

1 + dpq
dr �

dpq
1 + dpq

(rn � r
n
� 2"2)e

�n�1,

where dpq := d(µ(rn)
p , µ(rn)

q ), and which implies

dpq 
�

(rn � r
n
� 2"2)e�n�1 � �

=
1

1+"

"
� 1

= ".

Reusing a part of the proof of Theorem A2.6.III in Daley and Vere-Jones [40,

p. 404], the above proposition implies that N#
U is complete. Still, we would

like to mention some points that could deserve a bit more detail. First,

one needs to ensure that the limit of each Cauchy sequence (µ(rn)
k

)k2N in

Proposition 8.5.1 is still integer-valued. This can be done by adapting the

proof of Lemma 9.1.V in Daley and Vere-Jones [41, p. 6]. Second, if we denote

the limit of (µ(rn)
k

)k2N by ⌫n, we can show that ⌫(rn)m = ⌫n when n < m (i.e.,

the sequence of measures (⌫n)n2N is consistent) by using Theorem A2.3.II.(iv)

in Daley and Vere-Jones [40, p. 391] and the fact that ⌫m(@Brn) = 0. Third,

to show that µ(·) := limn!1 ⌫n(·) is continuous from below, one can use the

fact that limi!1 limj!1 aij = limj!1 limi!1 aij for any double sequence

(aij) that is non-decreasing in both i and j.
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8.5.2 Separability

Next, we prove that the space of boundedly finite integer-valued measures

N
#
U is separable. We wish to show that there exists a countable set in

N
#
U that can approximate well-enough any element of N#

U . Let DU be the

separability set of U . It seems natural to expect that the set of totally

finite (hence with a finite number of atoms) integer-valued measures with

atoms only in DU is a good candidate. We denote this set by DN . Notice

that one can define an injection between DN and the finite subsets of N2.

For example, the Dirac measure with mass n 2 N at the mth element of

DU can be represented by the set {(m,n)}. Since the finite subsets of a

countable set form a countable set, we have that DN is countable. The

following proposition coupled with a part of the proof of Theorem A2.6.III

in Daley and Vere-Jones [40, p. 404] allows to conclude.

Proposition 8.5.2. Let µ 2 N
#
U and R, " 2 R>0. Then, there exists µ̃ 2 DN

such that Z
R

0

e�r
d(µ(r), µ̃(r))

1 + d(µ(r), µ̃(r))
dr  ".

Proof. Let (un)n2{1,...,N} be the atoms of µ in BR where N 2 N is their total

number and let (wn)n2{1,...,N} be their corresponding weights. Let "1 > 0 be

such that B"1(un) ⇢ BR for all n = 1, . . . , N . Let 0  r1 < . . . < rN 0 < R be

the radii at which the atoms are located whereN 0
2 N, N 0

 N (r1 = 0 means

that x0 2 (un)n2{1,...,N}). Define "2 :=
1
2 minn<N 0(rn+1� rn) and "3 := "/4N 0.

Define "4 := "/(2c � "), where c = 1 � e�R, and assume that " < 2c (if this

is not the case, then the desired inequality already holds no matter what µ̃).

Finally, set � := min("1, "2, "3, "4) and let (ũn)n2{1,...,N} be such that ũn 2 DU ,

ũn 2 B�(un), n = 1, . . . , N . We will show that µ̃ :=
P

N

n=1 wn�ũn satisfies the

desired inequality.

Let n = 1, . . . , N 0
� 1 and r 2 (rn + �, rn+1 � �). We can check that

d(µ(r), µ̃(r))  �. Indeed, since �  "1 and �  "2, we have that ui 2 Br

if and only if ũi 2 Br. Consequently, for any closed set A 2 B(U)\Br, using
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the fact that ũi 2 B�(ui),

µ(r)(A) = µ(A)  µ̃(A�
\ Br) = µ̃(r)(A�) and

µ̃(r)(A) = µ̃(A)  µ(A�
\ Br) = µ(r)(A�),

which means that d(µ(r), µ̃(r))  �. Similarly, d(µ(r), µ̃(r))  � holds for all

r 2 [0, 0_(r1��)) and all r 2 (rN 0 +�, R]. Using this bound on the Prohorov

distance between the restrictions, we obtain that

Z
R

0

e�rd(µ(r), µ̃(r))

1 + d(µ(r), µ̃(r))
dr =

 Z 0_(r1��)

0

+
N

0X

n=1

Z
rn+�

(rn��)_0
+

N
0�1X

n=1

Z
rn+1��

rn+�

+

Z
R

rN0+�

!
e�rd(µ(r), µ̃(r))

1 + d(µ(r), µ̃(r))
dr



Z
R

0

e�r
�

1 + �
dr +

N
0X

n=1

Z
rn+�

(rn��)_0
e�r

d(µ(r), µ̃(r))

1 + d(µ(r), µ̃(r))
dr

 (1� e�R)
�

1 + �
+ 2�N 0

 (1� e�R)
"4

1 + "4
+ 2"3N

0 =
"

2
+
"

2
= ".

8.6 Characterisation of the �-algebra B(N#
U )

This section proves the second part of Theorem 8.1.2. We show that all

mappings �A : ⇠ 7! ⇠(A), ⇠ 2 N
#
U , A 2 B(U), are measurable with respect

to the Borel �-algebra B(N#
U ) and that B(N#

U ) is actually generated by all

these mappings. This property is very useful to check the measurability of

functionals on N
#
U , such as Hawkes functionals, as demonstrated in Subsec-

tion 8.7.4. Our proof is di↵erent from the original one in Daley and Vere-

Jones [40, p. 405] as we identify a convenient basis for the w#-hash topology

(Proposition 8.6.1). Note however that this last result is directly inspired by

Proposition A2.5.I in Daley and Vere-Jones [40, p. 398], where three di↵erent

bases for the weak topology on MU are given. Besides, our proof of Theorem

8.1.2.(ii) shows explicitly why the mapping �A is B(N#
U )-measurable when

A is a bounded closed set.
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Proposition 8.6.1. Consider the family of sets

{⇠ 2 N
#
U : ⇠(Fi) < µ(Fi) + " for i = 1, . . . ,m, (8.2)

|⇠(Brj)� µ(Brj)| < " and ⇠(@Brj) = 0 for j = 1, . . . , n},

where µ 2 N
#
U , " 2 R>0, m,n 2 N, Fi, i = 1, . . . ,m, is a bounded closed

set of U and rj 2 R>0, j = 1, . . . , n, is such that µ(@Brj) = 0. This family

forms a basis that generates the w#-topology.

Proof. Step 1. We check that this family is a basis. Let µ, µ0
2 N

#
U ,

", "0 2 R>0, let F1, . . . , Fm and F 0
1, . . . , F

0
m0 be bounded closed sets and let

r1, . . . , rn, r01, . . . , r
0
n0 > 0 be such that µ(@Brj) = 0 and µ0(@Br

0
j
) = 0. Con-

sider the sets A and B of the form (8.2) generated by these two collections,

respectively, and let µ00
2 A\B. We will now find a set C, again of the form

(8.2), such that µ00
2 C and C ⇢ A \ B. Set the following parameters:

� := min
i=1,...,m

µ(Fi) + "� µ00(Fi), �0 := min
i=1,...,m0

µ0(F 0
i
) + "0 � µ00(F 0

i
),

� := min
j=1,...,n

"� |µ00(Brj)� µ(Brj)|, �0 := min
j=1,...,n0

"0 � |µ00(Br
0
j
)� µ0(Br

0
j
)|;

and let "00 := min(�, �0, �, �0). Now, consider the set

C := {⇠ 2 N
#
U : ⇠(Fi) < µ00(Fi) + "00 for i = 1, . . . ,m,

⇠(F 0
i
) < µ00(F 0

i
) + "00 for i = 1, . . . ,m0,

|⇠(Brj)� µ00(Brj)| < "00 and ⇠(@Brj) = 0 for j = 1, . . . , n,

|⇠(Br
0
j
)� µ00(Br

0
j
)| < "00 and ⇠(@Br

0
j
) = 0 for j = 1, . . . , n0

}.

Clearly, the set C is of the form (8.2). We now finally check that C ⇢ A\B.

Let ⇠ 2 C. For all i = 1, . . . ,m,

⇠(Fi) < µ00(Fi) + "00  µ(Fi) + ",

because "00  µ(Fi) + "� µ00(Fi). For all j = 1, . . . , n,

|⇠(Brj)� µ(Brj)|  |⇠(Brj)� µ00(Brj)|+ |µ00(Brj)� µ(Brj)| < ",
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because "00  "� |µ00(Brj)�µ(Brj)|. Thus, ⇠ 2 A. A similar argument yields

⇠ 2 B and so C ⇢ A \ B.

Step 2. We check that every element of this basis contains an open ball.

Consider first any set A of the form (8.2) but for which n = 1 (only one ball).

Let � 2 (0, 1) be such that 2� < ", µ(F �

i
) = µ(Fi) for all i = 1, . . . ,m, and

µ

✓
B

�

r1
\Br1

�
◆

= 0,

which means that � is chosen small enough such that there are no atoms

within a distance � of the boundary @Br1 . Let R 2 R>0 be such that F �

i
⇢ BR

for all i = 1, . . . ,m and such that r1 + 2� < R. Consider now the ball

B := {⇠ 2 N
#
U : d#(µ, ⇠) < �} where � := e�R�/(1 + �). Take any ⇠ 2 B

and, by contradiction, assume that ⇠(Fi) > µ(F �

i
) + � for some i = 1, . . . ,m.

Then, this implies that d(⇠(r), µ(r)) � � for all r � R, which in turn implies

that

d#(⇠, µ) �

Z 1

R

e�r
�

1 + �
dr = �.

This contradicts the fact that ⇠ 2 B and, thus, we must have

⇠(Fi)  µ(F �

i
) + � = µ(Fi) + � < µ(Fi) + ", i = 1, . . . ,m.

The same reasoning holds for the closed sets Br1 and @Br1 , finally implying

that

⇠(@Br1) = µ(@Br1) = 0 and ⇠(Br1)� µ(Br1)  � < ".

To obtain that ⇠ 2 A, it remains only to show that µ(Br1) � ⇠(Br1) < ".

Using again the previous reasoning, we also have that

⇠(B
�

r1
)� ⇠(Br1) = ⇠(B

�

r1
\Br1)  ⇠

✓
B

�

r1
\Br1

◆
 µ

✓
B

�

r1
\Br1

�
◆
+ � = �,

and also that µ(Br1)  ⇠(B
�

r1
) + �. This implies the desired inequality

µ(Br1)� ⇠(Br1) = µ(Br1)� ⇠(B
�

r1
) + ⇠(B

�

r1
)� ⇠(Br1)  � + � < ",

and allows us to conclude that the ball B is included in the neighbourhood
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A. Regarding the general case when the set A is defined by multiple balls

(i.e., n > 1), simply view it as an intersection of sets Aj, where each Aj is

defined by one ball (i.e., m = 1). As shown above, for each Aj, we can find

an adequate ball with centre µ and radius �j. Then, the ball with radius

� = min �i must be included in A.

Step 3. We check that every open ball contains an element of this basis.

Let µ 2 N
#
U , " 2 R>0 and consider the ball B := {⇠ 2 N

#
U : d#(µ, ⇠) < "}.

Let R > 0 be such that e�R < 1
2". Let ⇢1 < . . . < ⇢N be all the radii in

(0, R) such that µ(@B⇢j) > 0, j = 1, . . . , N . Set also ⇢0 := 0 and ⇢N+1 := R.

Define

⇢ :=
1

2
min

j=1,...,N+1
⇢j � ⇢j�1,

let � < "/8(N + 2) and set � := min(⇢, �). Define the bounded closed sets

Gj := B⇢j�� \B⇢j�1+� for j = 1, . . . , N + 1 and notice that µ(Gj) = 0. Also,

define the radii rj := (⇢j�1 + ⇢j)/2, j = 1, . . . , N + 1. For all rj, reusing

the last part of the proof of Proposition A2.5.I in Daley and Vere-Jones [40,

p. 399], we know that we can find "̃j 2 (0, 1) and a finite family of closed

bounded sets F1,j, . . . , Fmj ,j such that

Aj :=

{⇠ 2 N
#
U : ⇠(Fi,j) < µ(Fi,j) + "̃j for i = 1, . . . ,mj, |⇠(Brj)� µ(Brj)| < "̃j}

⇢ {⇠ 2 N
#
U : d(µ(rj), ⇠(rj)) < c},

where here we choose c such that (1 � e�R)c/(1 + c) < "/4. Finally, set

"̃ = min "̃j and consider the set

A := {⇠ 2 N
#
U : ⇠(Fi,j) < µ(Fi,j) + "̃ for i = 1, . . . ,mj,

⇠(Gj) < µ(Gj) + "̃,

|⇠(Brj)� µ(Brj)| < "̃ and ⇠(@Brj) = 0,

for j = 1, . . . , N + 1},

which is of the form (8.2) and is such that A ⇢ Aj, j = 1, . . . , N + 1. For

all ⇠ 2 A, this implies that d(µ(rj), ⇠(rj)) < c, j = 1, . . . , N + 1. This also

implies that ⇠(Gj) = 0, and thus r 7! d(µ(r), ⇠(r)) is constant on each interval
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(⇢j�1 + �, ⇢j � �), j = 1, . . . , N + 1. Noting that rj 2 (⇢j�1 + �, ⇢j � �), it

remains to check that

d#(µ, ⇠) <

Z
R

0

e�r
d(µ(r), ⇠(r))

1 + d(µ(r), ⇠(r))
dr +

1

2
"

< 2�(N + 2) + (1� e�R)
c

1 + c
+

1

2
" <

1

4
"+

1

4
"+

1

2
" = ".

Consequently, we have indeed that A ⇢ B, which concludes the proof.

Proof of Theorem 8.1.2.(ii). Step 1. We first show that �A is B(N#
U )-

measurable for all bounded closed set A. Let n 2 N. We prove that

I := {⇠ 2 N
#
U : ⇠(A)  n} is an open set of N#

U , implying that �A is

indeed B(N#
U )-measurable. If A = ;, then I = N

#
U , which is open. From

now on, we assume that A 6= ;. Let µ 2 I (I is clearly not empty). Let

� 2 (0, 1) be such that µ(A) = µ(A�) (this is always possible since µ has

a finite number of atoms in A�
\ A, with � = 1, say). Let R > 0 be such

that A�
⇢ BR. Consider the open ball J := {⌫ 2 N

#
U : d#(µ, ⌫) < "} with

" = e�R�/(1 + �). We then have that J ⇢ I, which implies that I is open.

Indeed, let ⌫ 2 J and, by contradiction, assume that ⌫(A) > µ(A�) + �.

Then, for all r � R, this implies that

⌫(r)(A) = ⌫(A) > µ(A�) + � = µ(r)(A�) + �,

which means that d(µ(r), ⌫(r)) � �. Hence,

d#(µ, ⌫) �

Z 1

R

e�r
�

1 + �
dr = ",

which contradicts the assumption that ⌫ 2 J . Consequently, we have that

⌫(A)  µ(A�) + � = µ(A) + �. Since, ⌫(A) 2 N, µ(A) 2 N and � < 1, this

implies that ⌫(A)  µ(A)  n, and thus ⌫ 2 I.

Step 2. Consider the class C of sets

C := {A 2 B(U) : �A is B(N#
U )-measurable}.

By the continuity of measures [74, Lemma 1.14 p. 8], we have that �An " �A
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for any sequence An " A, and since the limit of measurable functions is

measurable [74, Lemma 1.9 p. 6], C is closed under increasing limits. In

other words, C forms a monotone class. Moreover, consider the class R of

sets of the form
S

n

i=1 Ai \ Bi where n 2 N and Ai, Bi 2 B(U) are bounded

closed sets such that (Ai\Bi)\(Aj\Bj) = ; as soon as i 6= j (i.e., we consider

finite disjoint unions of di↵erences of bounded closed sets). One can check

that R is stable by finite intersections and symmetric di↵erences (perhaps

the most di�cult is to see that, for any bounded closed sets A1, A2, B1, B2,

the di↵erence (A1 \ B1) \ (A2 \ B2) can be written as a disjoint union of

di↵erences of bounded closed sets). This means that R forms a ring. Besides,

for any bounded closed sets A,B 2 U , since ⇠(A) < 1 for all ⇠ 2 N
#
U , we

have that �A\B = �A\(A\B) = �A � �A\B. As A \ B is still a bounded

closed set, by applying the first part of the proof, we obtain that �A\B is

measurable. By the countable additivity of measures, this implies that �A

is measurable for any set A 2 R, and thus R ⇢ C. By the monotone class

theorem [40, p. 369], we then have �(R) ⇢ C. ButR contains all the bounded

closed balls and any open set in U is a countable union of those since U is

separable. Consequently, we must have B(U) = �(R) ⇢ C, meaning that �A

is measurable for all A 2 B(U).

Step 3. To show that B(N#
U ) is actually generated by all mappings �A,

A 2 B(U), consider any �-algebra R on N
#
U such that all mappings �A are

measurable. Then, all the sets of the form (8.2) should belong to R and, by

Proposition 8.6.1, these sets form a basis for the w#-topology. Since N
#
U is

separable, any open set of the w#-topology can be represented as a countable

union of these sets and, thus, B(N#
U ) ⇢ R.

8.7 Applications

8.7.1 The subspace N
#g

R⇥M is Borel

The following result is unlikely to be original, but we could not find it in

Daley and Vere-Jones [41].

Lemma 8.7.1. The set N
#g

R⇥M is a Borel subset of N
#
R⇥M , meaning that

161



N
#g

R⇥M 2 B(N#
R⇥M ).

Proof. For all n 2 N, define the sets

Fn :=
n
⇠ 2 N

#
R⇥M : ⇠([�n, n]⇥M ) <1, ⇠({t}⇥M )  1 for all t 2 [�n, n]

o

and notice that N#g

R⇥M =
T

n2N Fn. Next, let n 2 N. By Proposition A2.1.IV

in Daley and Vere-Jones [40, p. 385], the interval [�n, n] contains a dissecting

system ((Aij)j2{1,...,ji})i2N where Aij 2 B(R) for any j 2 {1, . . . , ji} and i 2 N,
see Definition A1.6.1 in Daley and Vere-Jones [40, p. 382]. We show that

Fn =

(
⇠ 2 N

#
R⇥M : ⇠([�n, n]⇥M ) <1, lim sup

i!1
sup

j2{1,...,ji}
⇠(Aij ⇥M )  1

)

= : Gn.

Let ⇠ 2 Fn. Then ⇠(· ⇥M ) has finitely many atoms t1, . . . , tp in [�n, n]

for some p 2 N and their mass cannot exceed one. A key property of the

dissecting system is that, for each pair of distinct atoms tq1 and tq2 with

q1 6= q2, there exists n(q1, q2) 2 N such that, for all i > n(q1, q2), tq1 2 Aij

implies tq2 /2 Aij. Thus, define

i⇤ := max
q1,q22{1,...,p}, q1 6=q2

n(q1, q2)

and then, ⇠(Aij ⇥M )  1 for all j 2 {1, . . . , ji} and i > i⇤, which implies

that

lim sup
i!1

sup
j2{1,...,ji}

⇠(Aij ⇥M )  1,

which in turn indicates that ⇠ 2 Gn. Now, let ⇠ 2 Gn and t 2 [�n, n]. An-

other salient property of the dissecting system is that there exists a sequence

(ji)i2N such that ⇠({t} ⇥M ) = limi!1 ⇠(Aiji ⇥M ). But since ⇠ 2 Gn, we

have that

⇠({t}⇥M ) = lim
i!1

⇠(Aiji ⇥M )  lim sup
i!1

sup
j2{1,...,ji}

⇠(Aij ⇥M )  1,
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which means that ⇠ 2 Fn. Now that we have shown that Fn = Gn, we invoke

Theorem 8.1.2 to deduce that ⇠ 7! ⇠([�n, n] ⇥M ) and ⇠ 7! ⇠(Aij ⇥M ),

for any j 2 {1, . . . , ji} and i 2 N, are measurable and use Lemma 1.9 in

Kallenberg [74, p. 6] to conclude that

⇠ 7! lim sup
i!1

sup
j2{1,...,ji}

⇠(Aij ⇥M )

is measurable. It then follows that Fn 2 B(N#
R⇥M ), whence we have that

N
#g

R⇥M =
T

n2N Fn 2 B(N#
R⇥M ).

8.7.2 Measurability and continuity properties of shifts and

restrictions

From Daley and Vere-Jones [41, p. 178, Lemma 12.1.I], we know the shift

operators are continuous under the w#-topology. We are able to go further

and show that ✓t⇠ is actually jointly continuous in ⇠ and t. We also prove

that taking the restriction to the positive or negative real line of a boundedly

finite measure is a measurable operation. Moreover, we show that ✓t⇠<0 is

left-continuous as a function of t 2 R for any ⇠ 2 N
#
U , which is crucial in our

proof that an intensity functional applied to the history of a point process

generates a predictable process (Lemma 6.4.4).

Lemma 8.7.2. When N
#
R⇥U is equipped with the w#-distance d# and

N
#
R⇥U ⇥ R is equipped with the product metric, the mapping

N
#
R⇥U ⇥ R! N

#
R⇥U

(⇠, t) 7! ✓t⇠

is continuous.

Proof. Let ⇠ 2 N
#
R⇥U , t 2 R and let (⇠n, tn)n2N be a sequence in N

#
R⇥U ⇥ R

such that d#(⇠n, ⇠) ! 0 and tn ! t as n ! 1. By Theorem 8.1.1, it is

enough to show that ⇠n(A + tn) ! ⇠(A + t) as n ! 1 for any bounded

A 2 B(R ⇥ U) such that ⇠(@(A + t)) = 0. For such a set A, which we can
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assume without loss of generality to be non-empty, there exists � > 0 such

that B2�(an) ⇢ (A + t) and ⇠(@B�(an)) = 0, n = 1, . . . , N , where a1, . . . , aN
are the atoms of ⇠ in A + t, and such that ⇠((A + t)�) = ⇠(A + t) with

⇠(@((A+ t)�)) = 0. Introduce the two bounded sets

S1 := (A+ t)� \ (A+ t) and S2 := (A+ t) \

 
N[

n=1

B�(an)

!

and notice that ⇠(S1) = ⇠(S2) = ⇠(@S1) = ⇠(@S2) = 0. Since d#(⇠n, ⇠) ! 0

as n ! 1, we have that ⇠n(S1) = ⇠n(S2) = ⇠n(@S1) = ⇠n(@S2) = 0 for n

large enough. This implies that, for n large enough, all the atoms of ⇠n in

(A+ t)� actually lie in (A+ t) and their distance to the boundary of (A+ t)

is bigger than � (all the atoms are in the balls B�(an)). This means that,

for n large enough, ⇠n((A + t) \ (A + s)) = ⇠n((A + s) \ (A + t)) = 0 for

all s 2 R such that |t � s| < �, implying that ⇠n(A + t) = ⇠n(A + s) for all

such n and s. But for n large enough, we also have that |tn � t| < � and

⇠n(A+ t) = ⇠(A+ t), which finally gives that, for such large enough n,

⇠n(A+ tn) = ⇠n(A+ t+ (tn � t)) = ⇠n(A+ t) = ⇠(A+ t).

Lemma 8.7.3. The restrictions ⇠<0, ⇠0, ⇠>0 and ⇠�0 are measurable map-

pings from N
#
R⇥U into itself.

Proof. We prove the assertion for ⇠<0, the other three restrictions can be

treated similarly. Consider the function f : N
#
R⇥U 3 ⇠ 7! ⇠<0

2 N
#
R⇥U .

Remember that, by Theorem 8.1.2, the Borel �-algebra B(N#
R⇥U) is generated

by the sets

FA,n := {⇠ 2 N
#
R⇥U : ⇠(A) 2 [n,1]}, A 2 B(N#

R⇥U), n 2 R.

Since

f�1(FA,n) = {⇠ 2 N
#
R⇥U : ⇠(A \ R<0 ⇥ U) 2 [n,1]} 2 B(N#

R⇥U),

we conclude that f is measurable by Lemma 1.4 in Kallenberg [74, p. 4].
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Lemma 8.7.4. Let ⇠ 2 N
#
R⇥U . Then the mapping

R! N
#
R⇥U

t 7! (✓t⇠)
<0

is left continuous when N
#
R⇥U is equipped with the w#-distance d#.

Proof. Fix t 2 R and take any non-decreasing sequence (tn)n2N in R such

that tn " t as n!1. By Theorem 8.1.1, it is enough to show that

(✓tn⇠)
<0(A)! (✓t⇠)

<0(A), n!1,

for all bounded A 2 B(R⇥ U) such that (✓t⇠)<0(@A) = 0. Clearly, it su�ces

to consider bounded Borel sets A such that A ⇢ R<0 ⇥ U . First, consider

the case where @A ⇢ R<0 ⇥ U . This implies that

(✓t⇠)(@A) = (✓t⇠)
<0(@A) = 0.

By Lemma 8.7.2, and using again the characterisation of Theorem 8.1.1, this

implies that

(✓tn⇠)
<0(A) = (✓tn⇠)(A)! (✓t⇠)(A) = (✓t⇠)

<0(A), n!1.

Second, consider the remaining case where @A \ {0} ⇥ U 6= ?. Then,

(✓t⇠)<0(@A) = 0 does not imply anymore that (✓t⇠)(@A) = 0. However,

let ⇠� be the measure ⇠ that omits all atoms with time coordinate t. Then,

for this measure ⇠�, we have again that

(✓t⇠�)(@A) = (✓t⇠)
<0(@A) = 0.

Since tn  t, and adapting the preceding argument for ⇠�, we finally find

that

(✓tn⇠)
<0(A) = (✓tn⇠)(A) = (✓tn⇠�)(A)! (✓t⇠�)(A) = (✓t⇠)

<0(A), n!1.
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8.7.3 Enumeration representation of marked point processes

The following result confirms that a non-explosive enumeration in R>0⇥M

corresponds indeed to a non-explosive marked point process.

Lemma 8.7.5. Let (Tn,Mn)n2N be an enumeration in R>0 ⇥M such that

limn!1 Tn =1 a.s. Let F 2 F be the almost sure event that limn!1 Tn =1

and define

N(!) :=

8
<

:

P
n
�(Tn(!),Mn(!))1{Tn(!)<1}, if ! 2 F,

0, if ! /2 F.

Then, N defines a non-explosive marked point process on R�0 ⇥M .

Proof. By Proposition 9.1.X in Daley and Vere-Jones [41, p. 13], N defines

a non-explosive point process on R�0 ⇥M . Moreover, the monotonicity of

the sequence (Tn)n2N implies that N({t}⇥M ) = 0 or 1 for all ! 2 ⌦. Also,

using that limn!1 Tn = 1 on F , notice that N(!, A ⇥M ) < 1, for every

bounded set A 2 B(R�0), for all ! 2 ⌦. This means that N 2 N
#g

R�0⇥M and,

thus, N defines a non-explosive marked point process.

Conversely, every non-explosive marked point process generates an enumer-

ation.

Lemma 8.7.6. Let N be a non-explosive marked point process on R�0⇥M

such that N({0}⇥M ) = 0 a.s. Define the sequence (Tn)n2N by

Tn := sup{t > 0 : N((0, t)⇥M )  n}.

Then (Tn)n2N is a non-decreasing sequence of random variables in (0,1].

Moreover, for each n 2 N, on {Tn < 1}, one can define Mn as the unique

element in M such that N({Tn} ⇥ {Mn}) > 0. On {Tn = 1}, simply set

Mn = m1 for some fixed m1 2 M . Then, (Tn,Mn)n2N is an enumeration

in R�0 ⇥M such that

N =
X

n2N

�(Tn,Mn)1{Tn<1} a.s. (8.3)
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and limn!1 Tn(!) =1 for all ! 2 ⌦.

Proof. We proceed in several steps.

(i) For each n 2 N, the mapping ! 7! Tn(!) is measurable. Indeed, notice

that {Tn < t} = {N((0, t) ⇥M ) > n}. Then recall that, by Theorem

8.1.2, N
#
R�0⇥M 3 ⇠ 7! ⇠((0, t) ⇥M ) is measurable and, thus, as a

composition [74, Lemma 1.7, p. 5], the mapping ! 7! N(!, (0, t)⇥M ) is

measurable. Consequently, {Tn < t} 2 F . We conclude using Lemma

1.4 in Kallenberg [74, p. 4] that the mapping ! 7! Tn(!) is measurable.

(ii) Using the fact that the ground measure is simple, Tn <1 implies that

Tn < Tn+1. Also, it is easy to check that when Tn =1, then Tn+1 =1.

Hence, (Tn)n2N is sequence of random variables in (0,1] satisfying the

monotonicity of an enumeration.

(iii) For each n 2 N, the mapping ! 7! Mn(!) is well defined (using again

the fact that the ground measure is simple). Also, this mapping is

measurable. Indeed, let A 2 B(M ) and consider the most delicate case

where m1 2 A. Notice that

{Mn 2 A} = ({Tn <1} \ {N({Tn}⇥ A) > 0}) [ {Tn =1}.

Based on what we have seen so far, we know that {Tn = 1} 2 F .

Therefore, it su�ces to show that the set

{Tn <1} \ {N({Tn}⇥ A) > 0}

is measurable. To this end, notice that

{Tn <1} \ {N({Tn}⇥A) > 0} = {Tn <1}\ {✓TnN({0}⇥A) > 0},

where ✓Tn is the shift operator defined in Subsection 5.4. Then, by

Lemma 8.7.2, we know that the mapping

N
#
R�0⇥M ⇥ R�0 3 (⇠, t) 7! ✓t⇠ 2 N

#
R�0⇥M
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is continuous and thus, by Lemma 1.5 in Kallenberg [74, p. 4], measur-

able. Also, by Lemma 1.8 in Kallenberg [74, p. 5], the mapping given

by ! 7! (N(!), Tn(!)) is measurable, and thus, as a composition [74,

Lemma 1.7, p. 5], the mapping ! 7! ✓Tn(!)N(!) is measurable. Using

again Theorem 8.1.2, we conclude that

{Tn <1} \ {✓TnN({0}⇥ A) > 0} 2 F

and, thus, the mapping ! 7! Mn(!) is measurable. So far, these first

three steps establish that (Tn,Mn)n2N is an enumeration. Moreover,

(8.3) holds by construction.

(iv) Since N(· ⇥M ) 2 N
#
R�0

, we have that limn!1 Tn(!) = 1 for all

! 2 ⌦.

Remark 8.7.7. On the one hand, Lemma 8.7.5 gives us a mapping that

generates a non-explosive marked point process out of a non-explosive enu-

meration. One can see that if two non-explosive enumerations are not almost

surely equal, then the corresponding non-explosive marked point processes

cannot be almost surely equal either. In other words, the mapping of Lemma

8.7.5 is injective. On the other hand, Lemma 8.7.6 tells us that this mapping

is surjective. As a consequence, the above two lemmas tell us that non-

explosive enumerations and non-explosive marked point processes are two

equivalent ways of looking at the same object.

8.7.4 Hawkes functionals

One can generalise multivariate linear Hawkes processes by defining Hawkes

functionals as intensity functionals  : M ⇥N
#
R⇥M ! R�0[{1} of the form

 (m | ⇠) = ⌫(m) +

ZZ

(�1,0)⇥M
k(�t0,m0,m)⇠(dt0, dm0), (8.4)

where m 2 M , ⇠ 2 N
#
R⇥M and ⌫ : M ! R�0 and k : R ⇥M ⇥M ! R�0

are non-negative measurable functions. We show that such event functionals

are measurable, so that they are admissible in our framework.
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Proposition 8.7.8. Hawkes functionals of the form (8.4) are jointly mea-

surable in m 2M and ⇠ 2 N
#
U .

Proof. It will be enough to show that the integral term in (8.4), now denoted

by I(m, ⇠), is measurable as a function of m 2 E and ⇠ 2 N
#
R⇥M . First,

consider the functions k that are of the form k(t0,m0,m) = 1S(t0,m0,m)

where S 2 B(R⇥M ⇥M ) and let C be the class of sets S 2 B(R⇥M ⇥M )

such that (m, ⇠) 7! I(m, ⇠) is measurable. By monotone convergence, the

class C is a monotone class (i.e., it is closed under monotonically increasing

sequences). Denote by R the class of sets of the form
S

n

i=1 Ai ⇥M 0
i
⇥Mi

where Ai 2 B(R), M 0
i
2 B(M ), Mi 2 B(M ), n 2 N. This class forms a

ring (i.e., it is closed under finite intersections and symmetric di↵erences).

Indeed, the di↵erence of unions of Cartesian products is a union of Cartesian

product. Moreover, since any union of Cartesian products can be decomposed

as a union of disjoint Cartesian products, we have that R ⇢ C. Indeed, by

Theorem 8.1.2, for any A 2 B(R), M 0
2 B(M ), M 2 B(M ), the function

(m, ⇠) 7!

ZZ

(�1,0)⇥M
1A(�t

0)1M 0(m0)1M(m)⇠(dt0, dm0)

= 1M(m)⇠((�A) \ (�1, 0)⇥M 0)

is measurable. Then, by the monotone class theorem [40, p. 369], we have

that B(R⇥M ⇥M ) = �(R) ⇢ C. The linearity of the integral implies that

(m, ⇠) 7! I(m, ⇠) is measurable for all simple functions k and, by monotone

convergence, for all non-negative measurable functions k [74, Lemma 1.11,

p. 7].

169



9
Outlook

The present thesis addressed the HM dichotomy by proposing a general, flex-

ible and unifying modelling framework: hybrid marked point processes. The

theoretical foundations of these new processes were laid out with, in partic-

ular, the detailed derivation of strong existence and uniqueness results that

dispense with a classical Lipschitz condition. From a more applied perspec-

tive, the relevance of this new toolbox was illustrated with the estimation of

state-dependent Hawkes processes from high-frequency financial data. We

hope that both our theoretical and applied contributions will inspire and

encourage further progress in this direction. As an ending, we outline below

what we think are interesting and challenging research problems to investi-

gate as a follow up.

Stationarity and MLE asymptotics

One challenge is to study the asymptotic properties of the MLE estimator

for hybrid marked point processes. Since such endeavour often requires the

considered process to be stationary and ergodic (as it is the case for the

existing results on Hawkes processes), a complementing problem is to identify
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reasonable stationarity and ergodicity conditions, as discussed in Section 7.6.

Let us also mention that the non-parametric inference techniques for Hawkes

processes do not extend naturally to state-dependent Hawkes processes. Such

extensions will certainly require innovative approaches and breakthroughs.

Linking multiple scales

We discussed in Subsection 1.6.5 our reserve on the ability of Hawkes pro-

cesses to inform us on the actual strategic behaviour of traders, arguing that

such models can only capture the aggregate market reaction to di↵erent sit-

uations. What would in fact shed light on this matter is to understand if and

how agent-based models can generate LOB data that behaves like a (state-

dependent) Hawkes process. In the same spirit, another question is: what are

the price and volatility processes implied by a hybrid-marked-point-process

model of high-frequency data? Can the non-Markovian feedback loop be-

tween events and the state process give rise to low-frequency dynamics that

cannot be generated by simple Hawkes processes and continuous-time Markov

chains?

Model performance and selection

It might be argued that, intuitively, maximising the likelihood of a point

process is equivalent to minimising the distance between the residuals’ dis-

tribution and the exponential distribution. If this is true (and it is an inter-

esting question in itself), the Q-Q plots in Chapter 4 are not really assessing

the goodness of fit but rather the performance of the optimisation algorithm.

Besides, Theorem 3.4.3 does not say that the time change that transforms

the point process to a simple Poisson process is unique. Consequently, it

is not clear that assessing the model performance via the residuals, as it

is currently done in the literature, protects against misspecification. More

generally, it seems that determining the best techniques to assess and rank

di↵erent point-process models remains an open question. We also note that,

at least in the context of LOB modelling, Hawkes processes are very rarely

used to produce forecasts in out-of-sample exercises.
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Trading applications

While Chapter 4 has illustrated the statistical significance of the state-

dependence in Hawkes processes, the added value of modelling this depen-

dence in actual trading applications remains to be demonstrated.

Given that the e↵ects captured by (state-dependent) Hawkes processes have

short e↵ective timescales of typically less than a second (although the exci-

tation kernel can be slowly decreasing), one could expect that these models

generate added value mainly when applied to optimal order placement prob-

lems. For instance, as these models are sensitive to the recent order flow

history, they could maybe output more accurate fill probabilities, or allow

for more e↵ective manners of avoiding adverse selection.

Moreover, these point-process models already embed market impact, as an

order can trigger further orders in response. Consequently, they can perhaps

o↵er a framework where optimal order placement and optimal execution (how

to split a large trade into small orders) are treated as one unique problem.

For example, the market and the execution strategy would be represented by

two coupled point processes that are self- and cross-exciting, e.g., a market

order submitted as part of the execution strategy creates a certain market

reaction. We note that in the classical optimal execution literature, mar-

ket impact is only modelled as price impact and that the impact function

that takes as an input the speed of execution is di�cult to estimate. With

point-process models, market impact would be essentially modelled by the

excitation kernel, which can be naturally estimated from high-frequency data.

Finally, as already pointed out in Subsection 4.9, the two LOB models in-

troduced in this thesis, namely ModelS and ModelQI, are reduced-form, in

the sense that the LOB is described by only one variable. These models

can of course be naturally extended to incorporate more descriptive quanti-

ties of the LOB, but it would interesting to study how hybrid marked point

processes can be used as building blocks of full LOB models.
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Handbook of Financial Markets: Dynamics and Evolution, Handbooks in

Finance, chapter 2, pages 57–160. North-Holland, San Diego.

[16] Bouchaud, J.-P., Gefen, Y., Potters, M., and Wyart, M. (2004). Fluc-

tuations and response in financial markets: the subtle nature of ‘random’

price changes. Quantitative Finance, 4(2):176–190.
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[30] Çinlar, E. (2011). Probability and Stochastics. Springer, New York.

[31] Clinet, S. and Yoshida, N. (2017). Statistical inference for ergodic point

processes and application to limit order book. Stochastic Processes and

their Applications, 127(6):1800–1839.

[32] Cohen, S. N. and Elliott, R. J. (2013). Filters and smoothers for self-

exciting Markov modulated counting processes. Preprint, available at:

http://arxiv.org/abs/1311.6257.

[33] Cont, R. (2001). Empirical properties of asset returns: stylized facts

and statistical issues. Quantitative Finance, 1(2):223–236.

[34] Cont, R. and De Larrard, A. (2011). Price dynamics in a Markovian

limit order market. SIAM Journal on Financial Mathematics, 4(1):1–25.

[35] Cont, R. and Kukanov, A. (2017). Optimal order placement in limit

order markets. Quantitative Finance, 17(1):21–39.

[36] Cont, R., Kukanov, A., and Stoikov, S. (2013). The price impact of

order book events. Journal of Financial Econometrics, 12(1):47–88.

[37] Cont, R., Stoikov, S., and Talreja, R. (2010). A stochastic model for

order book dynamics. Operations Research, 58(3):549–563.

[38] Da Fonseca, J. and Zaatour, R. (2014). Hawkes process: Fast calibration,

application to trade clustering, and di↵usive limit. Journal of Futures

Markets, 34(6):548–579.

[39] Da Fonseca, J. and Zaatour, R. (2015). Clustering and mean reversion

in a Hawkes microstructure model. Journal of Futures Markets, 35(9):813–

838.

[40] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory

of Point Processes. Vol. I. Springer, New York, second edition.

[41] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory

of Point Processes. Vol. II. Springer, New York, second edition.

176



[42] Dassios, A. and Dong, X. (2014). Stationarity of bivariate dynamic con-

tagion processes. Preprint, available at: http://arxiv.org/abs/1405.

5842.

[43] Delattre, S., Fournier, N., and Ho↵mann, M. (2016). Hawkes processes

on large networks. Annals of Applied Probability, 26(1):216–261.

[44] Donier, J. and Bouchaud, J.-P. (2015). Why do markets crash? Bitcoin

data o↵ers unprecedented insights. PLOS ONE, 10(10):1–11.

[45] Eichler, M., Dahlhaus, R., and Dueck, J. (2017). Graphical modeling for

multivariate Hawkes processes with nonparametric link functions. Journal

of Time Series Analysis, 38(2):225–242.

[46] Embrechts, P., Liniger, T., and Lin, L. U. (2011). Multivariate Hawkes

processes: an application to financial data. Journal of Applied Probability,

48 A:367–378.

[47] Engle, R. F. and Russell, J. R. (1998). Autoregressive conditional dura-

tion: a new model for irregularly spaced transaction data. Econometrica,

66(5):1127–1162.

[48] Errais, E., Giesecke, K., and Goldberg, L. R. (2010). A�ne point pro-

cesses and portfolio credit risk. SIAM Journal on Financial Mathematics,

1(1):642–665.

[49] Filimonov, V. and Sornette, D. (2012). Quantifying reflexivity in fi-

nancial markets: toward a prediction of flash crashes. Physical Review E,

85(5):056108, 9 pages.

[50] Gatheral, J., Jaisson, T., and Rosenbaum, M. (2018). Volatility is rough.

Quantitative Finance, 18(6):933–949.

[51] Gonzalez, F. and Schervish, M. (2017). Instantaneous order impact

and high-frequency strategy optimization in limit order books. Market

Microstructure and Liquidity, 03(02):1850001, 33 pages.

177



[52] Gould, M. D. and Bonart, J. (2016). Queue imbalance as a one-tick-

ahead price predictor in a limit order book. Market Microstructure and

Liquidity, 02(02):1650006.

[53] Gould, M. D., Porter, M. A., and Howison, S. D. (2016). The long

memory of order flow in the foreign exchange spot market. Market Mi-

crostructure and Liquidity, 02(01):1650001.

[54] Gould, M. D., Porter, M. A., and Howison, S. D. (2017). Quasi-

centralized limit order books. Quantitative Finance, 17(6):831–853.

[55] Gould, M. D., Porter, M. A., Williams, S., McDonald, M., Fenn, D. J.,

and Howison, S. D. (2013). Limit order books. Quantitative Finance,

13(11):1709–1742.

[56] Grigelionis, B. (1971). On the representation of integer valued measures

by means of stochastic integrals with respect to Poisson measures. Litovskij

Matematicheskij Sbornik, 11:93–108.

[57] Gu, A. Y. (2005). A survey of the world’s top stock exchanges’ trading

mechanisms and suggestions to the Shanghai stock exchange. Preprint

available at http://www.sse.com.cn/aboutus/research/workstation/

c/station20050821.pdf.

[58] Hardiman, S. J., Bercot, N., and Bouchaud, J.-P. (2013). Critical re-

flexivity in financial markets: a Hawkes process analysis. The European

Physical Journal B, 86(10):442, 9 pages.

[59] Harris, T. E. (1963). The Theory of Branching Processes. Springer,

Berlin.

[60] Hasbrouck, J. (1991). Measuring the information content of stock trades.

The Journal of Finance, 46(1):179–207.

[61] Hautsch, N. (2004). Modelling Irregularly Spaced Financial Data : The-

ory and Practice of Dynamic Duration Models. Springer, Berlin.

178



[62] Hawkes, A. G. (1971). Spectra of some mutually exciting point pro-

cesses. Journal of the Royal Statistical Society. Series B (Methodological),

33(3):438–443.

[63] Hawkes, A. G. and Oakes, D. (1974). A cluster process representation

of a self-exciting process. Journal of Applied Probability, 11(3):493–503.

[64] Huang, W., Lehalle, C.-A., and Rosenbaum, M. (2015). How to predict

the consequences of a tick value change? Evidence from the Tokyo Stock

Exchange pilot program. Preprint available at https://arxiv.org/abs/

1507.07052.

[65] Huang, W., Lehalle, C. A., and Rosenbaum, M. (2015). Simulating

and analyzing order book data: the queue-reactive model. Journal of the

American Statistical Association, 110(509):107–122.

[66] Huang, W. and Rosenbaum, M. (2017). Ergodicity and di↵usivity of

markovian order book models: A general framework. SIAM Journal on

Financial Mathematics, 8(1):874–900.

[67] Jacobsen, M. (2006). Point Process theory and Applications: Marked

Point and Piecewise Deterministic Processes. Birkhäuser, Boston.
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