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Abstract

Shifts in cerebral fluid are known to be important in a number of diseases, and in conditions of

microgravity such as space travel. In this work we develop a fluid mechanical model from first-

principles incorporating key features of the flow of both blood and cerebrospinal fluid (CSF) in

the intracranial and spinal spaces.

For the cerebral blood vessels, we model the arteries and veins as symmetric bifurcating trees

with constant geometrical scaling factors between generations, assume one-dimensional flow

in each vessel and account for elastic effects via a pressure-area relationship, and we assume

the capillaries have a constant resistance. We treat the vessel walls as porous media to find

the transmural flux of plasma. We assume flow between the other compartments to be propor-

tional to the pressure difference; additionally, the flow to the outer-dural space is assumed to be

one-way. The set of ordinary differential equations for the evolution of the fluid pressures and

volumes of each compartment can be solved numerically. Additional features include autoreg-

ulation, which we model by ensuring constant pressure at the microcirculation, meaning the

resulting model must be solved iteratively. Also, we can model the effect of postural changes

by including hydrostatic effects in the spinal column.

The results are in accordance with physiological measurements and indicate that the pressure

in the vasculature is highly sensitive to changes in vessel geometry, which also affects the trans-

mural flux, whilst ventricular and spinal subarachnoid spaces are sensitive to compliances. We

investigate transitions from supine to standing and upside down positions and also the effect

of the external pressure surrounding the outer-dural spinal compartment. The model is com-

putationally inexpensive and can be used as a platform for further analysis of cerebrovascular

behaviour.
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Chapter 1

Introduction

In this chapter we provide the foundations of the research undertaken by giving an introduction,

the motivation and objectives, an overview of the anatomical and physiological features relevant

to the cerebral circulation and cerebrospinal fluid, and the background on existing modelling

approaches.

1.1 Overview

Lack of blood flow to the brain at normal body temperature causes a person to lose conscious-

ness within 4 to 5 seconds, followed by permanent tissue damage in 5 to 8 minutes, typically

resulting in some form of physical or mental impairment, and if prolonged death1 (Guyton,

2006). The human brain receives 13–14% of the total cardiac output and 18% of the total

oxygen consumption at rest, a substantial amount considering that for an average body weight

and height, an adult brain typically weighs around 1.3 kg (Hartmann et al., 1994; Levick, 2010;

Guyton, 2006). The brain has a high metabolic demand, however, as seen in the kidney, this

is not necessarily representative of blood flow uptake2. Blood flow to the brain in the healthy

1The brain tissue can survive without blood supply for up to 30 minutes under careful surgical procedure
involving cooling the body to temperatures below 20◦C to restrict the blood supply (Yan et al., 2013).

2The kidneys are approximately one tenth the size of the brain, and yet they have an uptake on a per gram
basis up to twice the oxygen consumption of the brain with seven times as much blood flow, thus far exceeding
their metabolic demand (Boron and Boulpaep, 2016; Levick, 2010).

8
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adult is approximately 750 ml of blood per minute (Linninger et al., 2016). The microcircula-

tion in the brain has specialised tight junctions between the endothelial cells that allow only

very small molecules to pass through i.e. water, oxygen and carbon dioxide, effectively forming

a barrier between the blood and the brain tissue (Fitzgerald, 1998). Local blood flow control

in the brain is not only due to tissue oxygen concentration but also due to concentrations of

carbon dioxide and hydrogen ions. A rise or fall in concentrations of either of these can di-

late or constrict the vessels to reestablish concentration balance and with it tissue homeostasis

(Guyton, 2006).

The brain is surrounded by a fluid composed of mostly water and proteins, the cerebrospinal

fluid (CSF). The CSF provides buoyancy and protection to the brain, and it is also involved in

compensating for hydrostatic effects. In healthy conditions arterial pulsatility causes CSF to

shift outward resulting in brain and spinal cord movement. Arterial pulsatility is also thought

to be involved with CSF movement for aiding venous return (Linninger et al., 2009). The

cerebral circulation has different baseline conditions for subjects living in high altitude and can

adapt for a short period of time to a microgravity environment3. The brain also has its own

immune system aided by glial cells. These glial cells are involved in a number of processes in

the brain predominantly of neurological nature, however, they are also involved in regulation

of local blood flow (Abbott, 2013).

Abnormalities in cerebral physiological features, physical assaults to the brain or an abnormal

interaction between the cerebral circulation and CSF has been associated with pathological

conditions such as hydrocephalus, chiari malformation, and multiple sclerosis (Sweeney et al.,

2018; Czosnyka et al., 2012; Milhorat et al., 1999; Caplan et al., 1990; Alsop et al., 2000; Weller

and Carare, 2018; Elliott et al., 2013; Zamboni et al., 2009). Chronic conditions acquired with

age, e.g. blood vessels stiffening and even lack of sleep, have also been associated with the

development of pathological conditions such as Alzheimer’s disease and other forms of vascular

dementia (Iliff et al., 2012).

Although understanding of the cerebral fluids (blood and CSF) has advanced over the last

3In this context a short period of time refers to a year on average. The longest single stay in space by a
human, 437 days, was achieved by Valeri Polyakov in 1995 (Schwirtz, 2009)
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decades with the introduction of tools such as different imagining techniques4, a concrete knowl-

edge about the interaction of these fluids and their detrimental effects is still lacking.

The intricate interaction between the cerebral circulation and CSF and its effect on the brain

and spinal cord makes the cerebral circulation a very complex and delicate system to study. In

fact, all of the briefly described processes above could deserve a research project in their own

right. Our focus here however, is purely a fluid mechanical one.

In this research we explore the relationship between the cerebral circulation and the CSF in the

cranial and spinal compartments starting from first principles. We do this by constructing a set

of mathematical models that obey fundamental laws of physics to functionally describe how the

two fluids, blood and CSF, interact. The aim is to construct a relatively simple cerebrovascular

model that is functionally accurate and use this to evaluate the effects of CSF spaces in the

cranium and spinal cavity. We also study the effects that some key parameters have on the rest

of the model in order to understand their physiological relevance and potential involvement in

pathology.

1.2 Motivation and objectives

This project is motivated by evidence suggesting that abnormal cerebrovascular and cere-

brospinal fluid dynamics can precede several pathological conditions leading to debilitating

and often permanently impaired outcomes. Anomalous interactions between cerebral blood

flow and CSF distribution have been linked to hydrocephalus, blood brain barrier rupture, sy-

rinxes due to high CSF pressure in the spinal cavity, visual impairment due to high intracranial

pressure in microgravity environments, and even multiple sclerosis (§1.1). Other conditions

that involve chronic behaviour are also being investigated for their potential link to neurode-

generative conditions such as Alzheimer’s disease. These chronic behaviours include high blood

pressure and its effects on cerebral blood flow and autoregulation, effects of stiffening of the

4The first brain ultrasound was taken in 1942 by the Austrian neurologist brothers Karl and Friedrich Dussik,
followed by computer tomography in 1972, and magnetic resonance imaging in 1977 (Woo, 2002; Wijdicks, 2018;
Damadian et al., 1976).
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blood vessels with ageing in the brain, changes in CSF clearance and the accumulation of

amyloid beta, and overall reduction of CSF volume with ageing.

Furthermore, it is generally accepted that the majority of CSF is drained through the arachnoid

villi, however, little has been done to fully understand their role in CSF regulation and the effects

of one or several becoming occluded. This is even more the case with regards on the spinal

arachnoid villi which is consistently neglected in modelling efforts.

A mathematical model of the distribution and flow of fluid in the cranium could help us un-

derstand the normal regulatory mechanisms of the hydrodynamic behaviour of the brain, and

also become a tool that can enhance our understanding of the perfusion of the brain and aid

in the diagnosis of cerebrovascular pathophysiology.

A number of authors have attempted to model cerebral blood flow and CSF movement over

the years (§1.5). The models, however, are often based on overly simplified approaches and

lack key mechanistic features such as the influence of gravity, rectification at the point of the

arachnoid granulations or unrealistic modelling of the ventricles.

Our aim is to construct a model that can address the main mechanistic features of the cere-

brovascular system overcoming, where possible, existing limitations of current modelling efforts.

The primary aim of this research is to develop a mathematical model capable of capturing the

key physiological hydrodynamics of the brain. The focus of this research is to investigate the

effects of pressure and volume fluctuations in the cranium and spinal cavity, assessing CSF exit

routes and effects of hydrostatic pressure with gravitational changes.

1.3 Cerebrovascular anatomy and physiology

1.3.1 The brain and cerebral meninges

At a macroscopic level, the human brain is comprised of the cerebrum, the brain stem and

the cerebellum. Each of these regions (Figure 1.1) is concerned with different activities in the
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human body such as motor control and language processing (cerebellum), nerve connections to

the spinal cord (brain stem) or memory consolidation, vision and hearing (cerebrum).

The cerebrum, the largest part of the brain, can be physically distinguished by its arrangement

of white and grey matter. The grey matter is visible in the cortex, whilst the white matter is

found deep within the brain (the distinction in colour is due to the lining of myelin sheaths

of the neurons which is predominantly lipid tissue). This is where the majority of intracranial

neuronal and non-neuronal cells are found.

Figure 1.1: Gross anatomy of the brain, main regions (Drake et al., 2009)

The brain is protected by a series of layers or meninges (Figure 1.2): the pia mater, the arachnoid

mater and the dura mater. The pia mater is a thin fibrous mesh containing relatively few cells5,

requiring capillary blood supply, that envelops the brain and spinal cord. It is permeable to

CSF, and it forms a continuous space around the vessels entering the brain sulci and fissures,

called the paravascular space (Hladky and Barrand, 2014; Fitzgerald, 1998). The narrow space

formed between the nervous tissue and the pia mater is called the subpial space. The pia mater

is attached to the arachnoid mater via the arachnoid trabeculi, which are elongated sheets of

arachnoid mater. This space between the pia and arachnoid mater is called the subarachnoid

space (SAS) and it is where the majority of CSF is contained6(Gupta et al., 2010; Brinker et al.,

2014).

The arachnoid mater has a similar composition to that of the pia mater. It differs from the pia

in that its location is mostly towards the skull and not around the sulci and fissures, except
5Mainly loose connective tissue composed of collagen, elastin and reticulum fibres.
6The other main site being the cerebral ventricles.
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for the longitudinal fissure separating both hemispheres. The arachnoid mater is considered

avascular. The superior part of the arachnoid mater is attached to the dura mater, though often

a space between the two is cited (Vandenabeele et al., 1996; Schachenmayr and Friede, 1978;

Reina et al., 2002). The arachnoid mater extends continuously towards the spine widening

around the thoracic region and narrowing at the cauda esquina, ending at the level of the

second sacral vertebra (Figure 1.2).

Figure 1.2: Meninges of the brain and
spinal cord (Drake et al., 2009).

The dura mater, shown in Figure 1.2, is a thick fibrous

layer composed of predominantly collagen fibres with

some elastic fibres. The dura mater is considered in-

elastic (Gray, 1989). The cerebral dura mater is com-

posed of two layers, the innermeningeal (facing the

arachnoid mater) and the endosteal (facing the bone

of the skull). The formation of the space between the

two layers is important as it gives rise to the venous

dural sinuses, apart from these the two dura mater

layers are fused together. The inner meningeal dura

mater is considered avascular while the endosteal dura

mater receives blood from the cranial fossa arteries

(Hacking, 2018b).

Deep within the brain we find other structures that are

not part of the nervous tissue but are closely intercon-

nected to the vasculature, these are the ventricular

system and overall the CSF circulation. We review

this in more detail in the following sections.

1.3.2 Cerebral vasculature

Blood supply to the brain is normally through the paired internal carotid arteries (ICA) and

the paired vertebral arteries (VA). Each ICA branches from the common carotid artery (Figure
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1.3a) and enters the cranial cavity traversing the dura mater and arachnoid mater by the carotid

canal before dividing into the middle cerebral artery, the anterior cerebral artery, the posterior

communicating artery and the anterior choroid artery7(Gray, 1989). The VA directed to the

brain rises from the subclavian arteries entering the cranium through the foramen magnum

piercing the dura and arachnoid mater in the region of the medula oblongata where it joins to

form the basilar artery giving rise to the posterior aspect of the Circle of Willis (CoW), as seen

in Figure 1.3a.

(a) (b)

Figure 1.3: Schematic of (a) blood supply to the brain (Drake et al., 2009), and (b) blood-brain
barrier (Davis, 2014).

The CoW is a prominent anastomosis at the base of the skull predominantly supplied by

the ICAs and the basilar artery. This polygon shaped structure with significant anatomical

variations has the main purpose of ensuring uninterrupted blood supply to the brain if one of

the main delivery arteries becomes obstructed. Several smaller arteries branch from the CoW

to cover the brain surface before entering the deep brain to reach the grey matter (Gray, 1989).

Variations account for 60% of the CoW, these include: cerebral and communicating arteries,

anterior and posterior, which may all be absent or repeated. Often the absence of one or more of

these arteries is accompanied by reciprocal enlargement of the other arteries. Cerebral arteries

are typically thinner than in the rest of the body (Cipolla, 2009).

7Variations of the ICA include longitudinal differences depending on the length of the neck and the level of
the carotid bifurcation.
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Capillaries in the brain have endothelial cells with very tight junctions forming a continuous

layer with a reduced permeability of bloodbourne particles to the brain other than water,

lipid-soluble molecules and other actively transported substances. This selective membrane,

shown in Figure 1.3b, called the blood-brain barrier (BBB), has influences from glial cells to

regulate flow and transport across the membrane. It is estimated 85% of the BBB is covered by

glial cell processes (Fitzgerald, 1998). The BBB is absent from the circumventricular organs,

including the posterior lobe of the pituitary gland and the pineal body8 facilitating chemical

exchange and hormonal delivery (thought to be important for the hypothalamus sampling

the chemical composition of blood). Capillaries surrounding the choroid plexuses are also

fenestrated, however, here the ependymal cells in the ventricles have tight junctions forming a

blood-CSF barrier. This is in order to protect the brain tissue from bloodbourne substances

that could be transferred through the CSF (Fitzgerald, 1998). The capillaries in the brain

are surrounded by astrocytic endfeet and pericytes, both thought to be involved in metabolic

vasodilation and vasoconstriction. The space between the astrocytic endfeet and the endothelial

membrane of the BBB form a paravascular space that has long been thought to be involved

in the lymphatic processes in the brain due to its ability to facilitate flow throughout the

vasculature, and thus any excess flow, that can ultimately be drained by the CSF and thorugh

the venous dural sinuses. Although it is well accepted that CSF and interstitial fluid interact

to remove metabolic waste, this aspect of the brain has gathered more attention in recent years

due to the work of Nedergaard and colleagues linking these paravascular pathways to their

potential role in Alzheimer’s disease as a result of accumulation of amiloid beta (Xie et al.,

2013; Iliff et al., 2012). In their research, a connection is also made (in mice) with sleep and an

efficient metabolic clearance. These pathways, which have also been reported by Boulton et al.

(1999) and Guyton (2006), are currently under research with other teams (Abbott et al., 2018;

Taoka et al., 2018; Weller and Carare, 2018). The flow and spaces of CSF have been considered

as The third circulation as early as 1926 (by Cushing) due to their lymphatic-like role in the

brain (Welch and Friedman, 1960).

There is an extensive network of veins inside the cranium, which can be subdivided into three
8The rest of the circumventricular organs are the area postrema, the subfornical organ, the organum vascu-

losum of the lamina terminalis, the median eminence and the subcommissural organ.



16 Chapter 1. Introduction

(a) (b)

Figure 1.4: Schematic of the cerebral veins and dural sinuses (a) relative to the brain tissues, and
(b) to the skull and dura mater Drake et al. (2009).

main regions: cerebral veins, cerebellar veins and veins of the brain stem; and it has unique

features such as the lack of valves to prevent retrograde flow, this is thought to be compensated

for by the skull enclosure and the movement of CSF with the arterial pulse (Linninger et al.,

2016). The cerebral veins are thinner than in the rest of the body, much like the intracranial

arteries. Apart from the veins of the brain stem, in specific those around the medulla oblongata,

that can drain towards the radicular veins, all the other intracranial veins drain to the venous

dural sinuses9. Figure 1.4a shows the main cerebral veins and dural sinuses, whilst Figure

1.4b shows the dural sinuses in relation to the dura mater and cranium. The dural sinuses

are channels in the meninges of the cranium (i.e. between the two layers of the dura mater)

that drain intracranial deoxygenated blood and cerebrospinal fluid10. Their walls are lined by

endothelium with no muscular tissue, and they form a network of flow that ultimately drains

into the prominent extracranial veins, such as the paired internal jugular veins and the paired

vertebral veins. The dural sinuses can be divided into posterosuperior and anteroinferior, with

the most prominent sinus being the superior sagittal sinus (SSS) which sits on the sagittal line

throughout the skull in the middle of both brain hemispheres. Blood is collected either through

the veins connecting directly to them or through the venous lacunae, which are small pools of

blood from one or several veins that directly feed into the dural sinuses. These lacunae are

9We refer to them as simply dural sinuses in further text for simplicity.
10They also drain intermeningeal blood from the diploic veins, and a small portion of extracranial blood via

the emissary veins.
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typically observed in the SSS.

The dural sinuses also collect CSF from the subarachnoid space, this is done through small

granulations or villi located on the arachnoid mater. We review these villi in more detail and

CSF flow in the next section.

1.3.3 Cerebrospinal fluid

The CSF surrounds the brain and spinal cord, it is found in bigger quantities in the cranial and

spinal SAS, but also within the cerebral ventricles and the central canal (depicted simply in

Figure 1.6). CSF has been quantified to have an average volume of 150 ml with approximately

500-600 ml produced every 24 hours (Damkier et al., 2013). CSF is composed of mostly water

(97%) and proteins, similar to blood plasma. Differences with blood plasma include a higher

concentration of sodium, chloride and hydrogen ions, and a smaller concentration of calcium

and potassium (Marieb, 2010). CSF serves several functions including regulation of intracra-

nial pressure, regulation of the chemical environment of the central nervous system and aids

intracerebral transport (Di Terlizzi and Platt, 2006). CSF also provides mechanical protection

of the nervous tissue during physical trauma, and it plays a role in preventing backflow of

the intracranial veins due to the pressure balance effect it has with the arterial pulse and the

enclosed nature of the cranial vault (Gupta et al., 2010; Linninger et al., 2016; El Sankari et al.,

2011).

Disturbed CSF dynamics and the accumulation of metabolites has been thought to be asso-

ciated with Alzheimer’s disease (Nedergaard, 2013; El Sankari et al., 2011; Weller and Nicoll,

2003). Other CSF-related conditions include hydrocephalus (high intracranial pressure which

if left untreated can lead to severe permanent impairment or death) and syringomyelia (highly

pressurised CSF sacs located along the spinal cord, central canal and epidural spaces) (Milhorat

et al., 1994; Czosnyka et al., 2004; Marmarou et al., 1994).

The circulation of CSF is assumed to move from the choroid plexuses to the ventricles to the

SAS, via the lateral aperture, and from there to the spinal cavity and outside the dura through



18 Chapter 1. Introduction

Figure 1.5: Depiction of the cerebrospinal fluid circulation (OpenStax, 2016).

the cranial arachnoid villi, specially that of the SSS. This simplified view of the CSF circulation,

however, does not normally consider spinal exit routes which as we shall see are numerous along

the spinal arachnoid mater.

The choroid plexus is formed of a single layer of cuboidal epithelial cells, and it is cited as the

main source of CSF production, this dates back to experiments done by Dandy (1918). However,

as it was quickly learned, after removing choroid plexuses from infants to stop progression of

hydrocephalus, that these were not the only source of CSF production. It is now accepted that

extrachoroidal CSF production sites and their contribution could be significant, however, the

mechanisms and quantification remains largely underexplored (Hammock and Milhorat, 1976).

The cerebral ventricles are structures of irregular shape formed of ependymal cells. There are

four ventricles, each connected by an aqueduct or canal forming an interconnected network of

distinct CSF spaces, each with its own CSF supply (i.e. choroid plexus). The lateral ventricles,

located one in each hemisphere, are the most prominent ones. They communicate with the third

ventricle via the foramen of Monroe, which in turn communicates with the fourth ventricle via

the interventricular foramen or aqueduct of Sylvious. The fourth ventricle communicates with

the SAS and the spinal cord, as well as the central canal. The ventricles communicate with the
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cranial SAS by the foramen of Magendie or median aperture located on the fourth ventricle.

Figure 1.6: Spinal arachnoid villi at the spinal dural sheath (Tubbs et al., 2007). As in the cranium,
spinal arachnoid villi drain CSF to veins adjacent to the dura mater. Spinal arachnoid villi are found
throughout the spinal cavity (in the spinal dural sheath) in different amounts depending on the regions
i.e. cervical, thoracic and lumbar.

The arachnoid villi are small protrusions communicating the CSF in the SAS to the venous

dural sinuses in the cranium, and in the spinal cavity to in the epidural space (Figure 1.6). The

arachnoid villi are found in the arachnoid mater (intracranial and spinal). They are numerous

in the SSS and in the thoracic and lumbar regions of the spine. Intracranially, the arachnoid

villi act as CSF rectifiers as they balance the pressure between the SAS and the dural sinuses.

It is generally accepted that one, and perhaps the main, route of CSF drainage is through the

arachnoid villi. The exact process of transport, however, has had incompatible views in the

past, in particular when it comes to active or passive transport. Although Cushing, who was

first to discover the arachnoid villi and its role in CSF flow, concluded they must have a valvular

nature due to the ease of passage of flow from the SAS into the sinuses but not the other way

around. This was challenged by Weed who proposed it to be the result of a diverticulum from

which osmosis and pinocytosis were involved. In 1960, Welch and Friedman, following work

from Davson (1956), provided evidence of the arachnoid villi working effectively as a valve.

Welch and Friedman, in a detailed experiment of macaque arachnoid villi, observed that these

arachnoid villi were structurally a series of delicate tubes close together that change in shape

with changes in pressure. The villi arrangement was seen to flatten when the pressure in the

sinuses was greater than the SAS (since the fluid in the dural sinuses would exert pressure on
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the villi), and then relax (i.e. expand) when the pressure in the dural sinuses was reduced,

thus allowing passage from the SAS to the dural sinuses (Figure 1.7). They highlighted the

effects hydrostatic pressure changes and the importance of these valves for keeping an enclosed

environment from which the intracranial fluids are protected against negative pressure11, and

suggested that this communication between the dural sinuses and CSF space was unidirectional

and nonlinear (Welch and Friedman, 1960; Welch and Pollay, 1961).

Figure 1.7: Schematic of macaque arachnoid villi when superior sagittal sinus pressure is high (A) and
low (B), where V.O and V.C. stand for villi open and villi closed, respectively (Welch and Friedman,
1960).

CSF drainage is not exclusive to the arachnoid villi; other sites specially those surrounding the

cranial and spinal nerves i.e. ocular, cochlear, spinal ganglions, have been reported to drain

CSF and mix with extracranial (and extraspinal) lymphatics (Cserr, 1971; Nedergaard, 2013).

However, it is thought that the contribution of CSF drainage through other pathways must

be small in comparison to the numerous arachnoid villi. CSF is also contained in the central

canal, we discuss this and other anatomical features of the spine in the next section.

11The dural sinuses do experience negative pressure in the standing position, as we shall see in §1.4.
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1.4 The spinal cord and spinal cavity

1.4.1 Gross anatomy and spinal fluids

The spinal cord is the nervous tissue extending extracranially along the vertebral column, from

the medulla oblongata to the lumbar region of the spine. It weights on average 30 grams and

has a length12 of approximately 45 cm. Protected by the vertebrae and vertebral discs, it sits

below the brain and provides innervation to different parts of the body. As in the brain, the

spinal cord is formed of grey and white matter, and is protected by the pia, arachnoid and dura

mater13, with the exception of the dura mater which in the spine is single layered. Between

the vertebrae and the spinal dura mater there is an epidural space containing fatty padding, a

network of veins and lymphatic fluid.

Figure 1.8: Gross anatomy of the spinal cord (Drake
et al., 2009).

The spinal cavity14 is divided into five main

regions: cervical, thoracic, lumbar, sacral

and coccyx (Figure 1.8), each with its own

vertebrae. In each of these sections the

spinal cord has differences in its cross sec-

tions, both in area, ratio between grey and

white matter, and size of the central canal.

The central canal is sometimes quoted as

becoming obliterated after the age of 40

years old, however, this has been chal-

lenged by Millorat and colleagues in the

study of several older post-morten speci-

mens with a noticeable central canal (Mil-

horat et al., 1999). Furthermore, the cen-

12Average for European males, data from Barson and Sands (1977).
13We denote spinal to distinguish from intracranial meninges where applicable, e.g. spinal SAS and spinal

dura mater.
14It is common in the literature to denote the spinal cavity as the spinal canal, we use the term cavity here

to avoid confusion with the central canal.
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tral canal has been associated in chiari malformation and abnormal pressure resulting from

syringes. The central canal is filled with CSF and is wider in the superior cervical region as

well as the thoracic region, and extends to the conus medullaris.

The blood supply to the spinal cord is through two major routes that could be described as

longitudinal and transversal from a superior cross-section view: the VA (described in §1.3.2),

and the radicular arteries. The VA supply to the anterior spinal artery and the posterior

spinal arteries (left and right), these spinal arteries run along the spinal cord, however the

blood supply is only sufficient for the cervical region. Therefore, from the lower cervical and

thoracic region, additional arteries (radicular) provide additional blood supply through the

intervertebral foramina15. These spinal branches (segmental and radicular), are ramifications

from the dorsal thoracic aorta. The radicular arteries (anterior and posterior) supply the spinal

cord by passing through the dura mater where they branch further into smaller arteries. A

prominent anterior radicular artery, in terms of calibre, is known as the great anterior radicular

artery or the artery of Adamkiewicz (Figure 1.9a). The posterior radicular artery bifurcates

into two posterior spinal arteries. Drainage from the spinal cord is through the anterior and

posterior spinal veins which then anastomose and drain to the internal and external vertebral

plexuses (Figure 1.9b).

The venous drainage is almost a mirror image of the arterial supply, with the exception of

having only one posterior spinal vein (i.e. unpaired) running along the medial side of the cord.

The medullary capilaries drain to the internal venous plexus and the coronal venous plexus,

enter the sulcal veins and to the anterior and posterior spinal veins. From the spinal veins,

blood passes through the anterior and radicular veins and out through the intervertebral veins

(in the foramina) into the bigger veins and ultimately into the inferior vena cava.

Although there are no dural sinuses in the spine, there are dural sacs in the intervertebral

foramina, which are sheaths of dura mater surrounding the vertebral nerves where arachnoid

villi drains CSF (Figure 1.6). These sacs are different from the epidural space in the sense that

they lie in between the vertebral discs rather than running along the spinal cavity.
15The intervertebral foramina is a transversal section that allows passage of nerves and blood vessels through

the membranes of the spinal canal.



1.4. The spinal cord and spinal cavity 23

(a) (b)

Figure 1.9: Blood supply and drainage of the spinal cord (Campos, 2015).

The central canal is essentially a continuation of the cerebral ventricles, it is structurally similar

with the exception of having a choroid plexus (i.e. only ependymal lining), and it communicates

with the ventricles as it does with the regional capillaries. It is thought that CSF production

in the spine occurs mainly via the ependymal cells of the central canal and from the fourth

ventricle. CSF drainage is through the arachnoid villi and other routes through the cauda

esquina (end of the spinal cord). While there are arachnoid granulations in each region of the

spine (cervical, thoracic and lumbar), it has been found that the lumbar region has a higher

concentration of these granulations. Perhaps suggesting that a gravity factor is involved. The

spinal cavity accounts for a significant proportion of the total subarachnoid CSF (approximately

60%), meaning that CSF in the brain is substantially influenced by the spine (Alperin et al.,

2006).

1.4.2 Postural hydrostatics

We have discussed so far aspects concerning supine healthy adults. In an upright position, the

brain sits above the heart level creating a hydrostatic pressure gradient with respect to the

heart. The distensibility of the veins makes them very susceptible to changes in pressure, and

this is also true in the cerebral veins. As mentioned earlier in the chapter, the intracranial veins

are protected against changes in hydrostatic pressure by the enclosure provided by the skull

and more specifically the pressure balance of the CSF and arachnoid villi. Extracranially, the

cerebral veins are not protected and thus the prominent veins such as the internal jugular veins
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partially collapse in the upright position. In the upright position most of the venous drainage

takes place in the vertebral veins (Guyton, 2006).

Figure 1.10: Gravitational effects on veins and
dural sinuses (Guyton, 2006). In the standing
position veins above the heart level can collapse
due to negative hydrostatic pressure created by
the distance relative to the heart (as shown by
mm).

The venous dural sinuses are not susceptible

to collapse (due to their properties already de-

scribed), however, they do experience negative

pressure. In the standing position (Figure 1.10),

the pressure relative to the cranium can be neg-

ative or positive depending on posture (Guyton,

2006). When passing from supine to standing

position, as gravitational pressure effects become

noticeable, the dural sinuses decrease in pres-

sure. This is critical during brain surgery since

the position of the head can allow for air to be-

come trapped resulting in vascular air embolism.

Similarly, following decompression craniectomy

complications can result in the sinking of the skin

flap of the removed skull to relieve intracranial

pressure, with potentially fatal outcomes (Han

et al., 2008). Furthermore, this is a key prob-

lem during space flight since the lack of gravity

causes the CSF to flow upwardly leading to long

term complications like visual impairment. In a recent study, it was reported that astronauts,

who experience high intracranial pressure during missions, had an upward shift in the brain and

spinal cord which caused blockage of the arachnoid villi at the superior sagittal sinus (Roberts

et al., 2017).

In a sitting position, CSF oscillations between the cranium and spinal canals have also been

observed to decrease by 48% (Alperin et al., 2006). Pressure in the dural sinuses decreases

to zero at a 25 degree angle, and can reach -10 mmHg in the upright position (Iwabuchi

et al., 1983). Intracranial pressure is normally around 11 mmHg in the supine position. When



1.5. Current modelling approaches 25

a person is in an upside-down position, the opposite occurs, pressure in the dural sinuses

increases. Gravity also affects arteries and capillaries, however, since their pressure is not as

close to atmospheric pressure as the veins are, the effects are less pronounced.

1.5 Current modelling approaches

Modelling of cerebral blood flow and CSF has been done for several decades and has gathered

momentum over the last few years. From black box models derived without considering the

physical relationships of the system, to complex 3D models that analyse, often patient-specific,

sections of the brain (e.g. tumour or an arterial bifurcation) rather than the system as a whole.

Compartmental models have been the preferred approach when studying cerebral fluids due to

their simplicity, as it enables information to be elicited without expanding to complex details.

In this context, the compartment represents a particular region, often spatially averaged, and

the variables represent the amounts of certain quantities within the compartment. These 0D

compartmental models are usually represented as lumped electrical analogues, where a vessel

or an entire compartment is expressed in terms of voltage, current and resistance (Ohm’s

law), without detailing spatial features. Although their advantages include less computational

effort and faster information acquisition for analysing the global components of the system, the

main limitation of 0D models is the assumption of spatial uniformity, even when considering

unsteady states. This assumption can limit the ability of the model to evolve into more in-

depth approximations, not to mention higher risk of estimation error in parameter scaling. The

linearity of these models, although easier to compute, can typically describe the system only in

very general terms. One-dimensional (1D) modelling of the cerebrovascular system approaches

apply the Navier-Stokes equations for describing the fluid and vessels in a simplified manner,

making several assumptions (e.g. axisymmetry) to reduce the equations to one dimension.

These models are often a good compromise in that they provide a closer approximation than

0D model to the nature of the cerebrovasculature without demanding high computational efforts

of 2D or 3D models and still providing valuable information upon which higher complexity can

be built. A summary of the main research teams in cerebrovascular and spinal modelling is
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provided next.

Important historical discoveries of intracranial and spinal fluids have led to the progression into

modern day modelling. A selection of these discoveries (prior to the first modelling attempt in

1975) is summarised in Table 1.1.

The doctoral thesis and related publications by Marmarou et al. (1975) is typically regarded

as the first model of intracranial hydrodynamics. Marmarou analysed the CSF distribution

in the cranium and spinal cavity, with focus on the compliance of the compartments and the

outflow resistance. Firstly analysed in cats by a bolus injection method, the compliance was

measured against the volume change over time, which he refers as CSF absorption rate. He

confirmed a nonlinear relationship exists between intracranial pressure and volume, from its

logarithmic form he derived a pressure-volume index (PVI) related to the slope of pressure vs

volume. Since this index is directly related to compliance, he suggested PVI could be used

as an indicator of compliance when intracranial pressure rises. He proposed that disturbances

in volume from a stable intracranial reference pressure can be quantified and assessed for

pathology. Further iterations of the model provide an electrical analogue for CSF formation

and absorption (Czosnyka et al., 2012). Marmarou’s legacy remains as PVI is used (along with

other methods) to assess hydrocephalous (Marmarou et al., 1978, 1987, 1994; Czosnyka et al.,

2012; Shapiro et al., 1980; Relkin et al., 2005).

A decade later Zagzoule and Marc-Vergnes published the first model of the cerebral vasculature

using 34 segments representing the main arteries and veins, with the capillaries lumped into

single compartment (Zagzoule and Marc-Vergnes, 1986), through reduced Navier-Stokes equa-

tions and a pressure-area relationship which is a function of the vessel elastic modulus. By using

a set of estimates of cross-sectional area, length, and elastic modulus relevant to each of the

segments, the differential equations are solved numerically. Results show agreement for blood

flow and pressure for humans at rest. Although a good first approximation, the model does

not take CSF into consideration as it is described to be ‘negligible’ to the cerebral circulation.

Other more recent work by Zagzoule and colleagues involves stenosis, the analysis of pulsatile

flow in the spinal cord and compliance of the dura mater (Najeme et al., 1992; Cassot et al.,
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1664 • Willis T. Cerebri Anatome. First accurate anatomical description of
blood supply to the brain (Rengachary et al., 2008).

1783 • Monro A. Observations on the structure and function of the nervous
system. Analytic description of intracranial volumes of brain, CSF and
blood as a constant relationship (Wilson, 2016).

1824 • Kellie G. Experimental evaluation of Monro’s observations leading to
the Monro-Kellie hypothesis (Wilson, 2016).

1842 • Magendie F. Recherches anatomique et physiologique sur le liquide
cephalo-rachidien ou cerebro-spinal. First detailed description and
naming of cerebrospinal fluid (Magendie, 1842).

1891 • Quincke H. and Winter W. Developed independently the lumbar
puncture method for relieving CSF pressure in the spine (Gray, 1921).

1901 • Cushing H. Developed further on the Monro-Kellie hypothesis, and
performed experiments showing the existence of openings between the
dural sinuses and subdural space (i.e. SAS) with resemblance of
‘valvular action’ (Madsen et al., 2006).

1914 • Weed L. Interpretation of arachnoid villi using a filtration method
(Weed, 1914).

1918 • Dandy W. Extirpation of choroid plexus in an attempt to cure
hydrocephalus (Dandy, 1918).

1925 • Cushing H. Lecture on “The Third Circulation" proposing a
lymphatic-like role of CSF for cerebral drainage pathways (Madsen
et al., 2006).

1952 • Bering E. Studied role of choroid plexus in production of CSF,
transmission of arterial pulsatility to CSF, and ventricular size in
hydrocephalus (Bering, 1952).

1960 • Welch K. and Friedman V. Experimental demonstration of
arachnoid villi functioning as valves (Welch and Friedman, 1960).

1962 • Pappenheimer J. Dye dillution techniques for estimation of
steady-state CSF production and absorption (Madsen et al., 2006).

1970 • Davson H. Consolidated view of arachnoid villi as important CSF
drainage points (Davson et al., 1970).

Table 1.1 Timeline of key cerebrovascular and CSF discoveries prior 1975.
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2000; Cathalifaud et al., 2016).

Sorek et al. (1988) presented a seven-lumped compartmental model with resistances (defined

as fluidity) and compliances to represent the main vascular segments of the brian as well as the

choroid plexus and ventricles. The equations are linearised for solution of the unsteady state.

Monroe-Kellie was enforced through input-output volume flux. Results showed agreement with

literature values. Limitations of the model include globalised parameters and bi-directional

flow betwen the dural sinuses and SAS CSF.

Between 1988 and 2003, Ursino and colleagues presented a set of detailed mathematical models

of intracranial hydrodynamics with the use of electrical analogues, including low-pass filters for

changes from bigger to smaller vessels and diodes to account for the arachnoid villi. Ursino

and colleagues provides the first blood-CSF integrated model. The team incorporates the ICA

pulse wave as input to the model and assumes a parallel arrangement of vessels giving a total

resistance which is computed with the rest of the parameters. The model also attempts to

model autoregulation by means of a feedback loop that changes the cerebrovscular resistance.

The model is further improved providing good evidence of modelling capabilities using com-

partmental models for cerebral hydrodynamics. Limitations include assumption of uniformity

and vessel arrangement thus disregarding the complexity of the CoW and capillary network, as

well as neglecting a source of CSF production dependent of blood flow. The models, however,

have provided insight for other modelling efforts and are regarded as key due to the ease of

study of intracranial interactions (Ursino and Lodi, 1997; Ursino, 1988a; Ursino et al., 2000;

Ursino and Lodi, 1998; Ursino and Di Giammarco, 1991; Loth et al., 2001).

Compartmental modelling has also been adopted by Czosnyka and colleagues, where they apply

clinical information readily available on the bigger arteries entering the cranium as input and

use a compartmental model of two main vascular compartments (arteries and capillary-veins)

with a compartment of the CSF with formation and absorption points. Here the model assumes

CSF is formed in the arterial compartment, thus providing a more realistic representation of

the physiology. Limitations include the joint compartment of capillaries and veins and the

potential reversible flow at the dural sinuses (Piechnik et al., 2001; Czosnyka et al., 2012).
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Detailed work by Linninger and colleagues provides a foundation for one-dimensional cere-

brovascular models, as well as a precedent for 3D models of the cranial and spinal cavities for

fluid-structure interaction. With focus on hydrocephalus, Linninger and colleagues analysed

CSF flow using a reconstructed pulsatile arterial input and adding 1D compartments for each

vascular and CSF segment, including a spinal component of CSF. Further models include the

use of patient-specific microvasculature reconstruction with a separate mesh representing the

CSF space. As with other models of higher complexity, these type of models pose their own

limitations when it comes to computational expense (Linninger et al., 2005, 2007, 2009, 2016;

Gould et al., 2017).

Other higher order models include those presented by Muller and colleagues where they detail

the cerebral vasculature with special focus on the venous output for both intracranial and

extracranial veins in order to asses a potential role of venous abnormalities in multiple sclerosis

(Müller et al., 2013; Müller and Toro, 2014; Toro, 2016; Toro et al., 2019). Other teams have

focused on the brain tissue, modelling it as a poroelastic medium (Tully and Ventikos, 2011),

or in specific 3D features of tumours or other pathological conditions (Radaelli et al., 2008), or

whole body models with special focus on the cerebrovasculature (Blanco et al., 2015). Emerging

research indicates a potential increase in models mimicing the role of paravascular space in CSF

movement (Aldea, 2017).

Regarding the spinal cord, models have been more limited. Current modelling techniques

typically treat the spinal cavity as a concentric cylinder closed on one end and open on the

other with input and output on the open-ended end, using either 1D fluid mechanical models

or finite element approaches to analyse stresses in pathology (e.g. syringomyelia) and postural

changes (Bertram et al., 2005; Bertram, 2009). Postural changes have been studied in detail by

several teams (Alperin et al., 2006; Blomqvist and Stone, 2011; Michael and Marshall-Bowman,

2015; Lawley et al., 2017), some of which have involved data collected from NASA missions.

However, models on postural changes remain scarce.

A good example of modelling postural changes is presented by Olufsen et al. (2004) where

a model of eleven compartments is tested from sitting to standing position and compared to
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physiological data obtained from a subject using an index finger probe. The model incorpo-

rates autoregulation by means of a piece-wise linear function and dynamical features through

Kirchoff’s law. It provides agreement with measured data and shows the decrease in venous

pressure when transitioned to the standing position. Limitations include no information about

the dural sinuses.

Lakin et al. (2007) present a model on microgravity also accounting for averaged values in a

compartmental arrangement. The model, resembling closely that of Sorek et al., incorporates

features like BBB permeability changes and osmotic pressure gradients. However, it ignores

important gravitational aspects such as those involved with the intracranial veins and dural

sinuses. It is also unclear how the gravitational terms are included in the model, although the

hydrostatic effect mentioned can be interpreted as having adapted hydrostatic terms to the

governing equations.

A recent model by Sánchez et al. (2018) provides a detailed analysis of idealised flow in a

concentric spinal cord and its movement with arterial pulsations. It solves numerically a large

set of two-dimensional differential equations to estimate upward and downward flow of a vertical

spine and the effects of bolus injection in the CSF dynamics. Limitations include the lack of

compliance for the spinal region and a spinal cord of same diameter throughout the spinal

cavity.

Linninger et al. (2016) also gives detail of a spinal cavity dynamics, highlighting the effects of

the arachnoid trabercula mesh in the spinal SAS on the CSF dynamics (Linninger et al., 2007).

These last two studies are examples of distributed fluid dynamics models of the spine. Other

teams have also started to explore the spinal cord using computational fluid dynamics (Cheng

et al., 2014). However, further work is required if postural changes are to be included. The

pursuit of understanding the nature of craniospinal fluid mechanics requires a more holistic

approach.
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1.6 Thesis outline

This thesis is organised in a series of self-contained but linked chapters each pertaining to a

different model, with an introductory chapter (Chapter 1), and a discussion and future work

chapter (Chapter 5). Chapter 2 presents a vascular model of the cerebral circulation which

can be used as a standalone or in combination with the models developed in Chapters 3 and

4. Chapter 3 presents a model of the intracranial spaces including the vasculature (model

from Chapter 2), the venous dural sinuses, the cerebral ventricles and the subarachnoid space.

Chapter 4 builds on the intracranial model (Chapter 3) by incorporating spinal compartments,

the central canal and spinal subarachnoid space, to account for hydrostatic effects and the

changes in CSF when interacting with intracranial and arachnoid villi.
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Vascular model

In this chapter we develop a detailed model of the cerebral vasculature as a set of two symmetric,

self-similar, bifurcating trees describing the arteries and veins. This model is intended to be

self-contained as well as to play an important part in our model of the cerebrospinal fluid

circulation which will be developed in later chapters. We explore in this model: (1) scaling

factors and the number of generations; (2) pressures along the vasculature; (2) volumetric fluxes

between generations in bifurcating trees; (3) cerebral autoregulation; and (5) sensitivity to a

selection of parameters.

2.1 Introduction to the model

The cerebral circulation is large and complex. The number of vessels, their distribution, and

the presence of at least one key loop (i.e. Circle of Willis) makes it difficult to model. Attempts

to model the cerebrovasculature typically focus on anatomical accuracy, and whilst this can be

achieved to an acceptable level for the larger vessels, the opposite is true for the microcircula-

tion and in particular the smaller vessels connecting the two (§1.5). One of the reasons for this

is the limited knowledge of the smaller vessels in the brain. We know the name, location, and

to some extent the anatomical variation of the big arteries and veins in the brain, however, we

know much less about the smaller vessels. We accept that arterioles can be identified region-

32
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ally, e.g. periventricular arterioles, but we do not know their number and density estimates

vary depending the region and local demand (Cavaglia et al., 2001; Kuschinsky and Paulson,

1992). We also do not know to how many capillaries a single high resistance artery1 or venule

connects to, which makes anatomical modelling difficult. However, our focus on this model is

not anatomical accuracy but rather functionality.

As seen in Chapter 1, the blood supply to the brain is achieved through the internal carotid

arteries (ICA) and the vertebral arteries (VA). The VAs join to form the basilar artery which

connects to the Circle of Willis as do the two ICAs. Circulation after the Circle of Willis

(CoW) branches out through several conduit arteries (e.g. middle cerebral artery, posterior

and anterior cerebral arteries) reaching the arteries that sit on the surface of the brain before

branching further into smaller arteries (e.g. pial arteries).

Figure 2.1: Example of small cerebral arteries supplying blood to the region of the brain adjacent to
the lateral wall of the lateral ventricle (Queens University at Kingston, 2005).

It is often convenient to model the cerebral circulation from the ICA, the VA or both, since it

is possible to obtain experimental data (i.e. velocity, cross-sectional area) that can feed into

the model. The interaction of this arterial input with the CoW however would require another

level of complexity to support the multiple inputs and outputs, curvature and possibly non-

laminar flow. This could be overcome by assuming the CoW as a lumped parameter, or by

integrating good examples of existing models dedicated to the CoW (Alastruey et al., 2007;

Hillen et al., 1986). There are fewer examples of distributed models post CoW. Interestingly,
1We use the term of high resistance arteries to avoid confusion regarding arterioles.
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it is in the smaller vessels where the effects of vascular resistance are most important and

complications such as blood clots, hypoxia or breakdown of the blood-brain barrier (BBB) can

have a significant impact on the brain (Obermeier et al., 2013). Figure 2.1 shows one of the

structural patterns that conduit arteries and smaller vessels form after the CoW. The neglect in

cerebral modelling of the smaller vessels is unsurprising when considering limited clarity on the

quantification of smaller vessels and their plasticity over time (Maguire et al., 2006; Johansson,

2000).

Modelling the veins in the brain is also challenging and it is only recently that there have been

firm efforts to explore this (Müller and Toro, 2014). As seen in Chapter 1, the cerebral veins

lack valves and forward flow in the veins is probably augmented by the changes in arterial

volume due to the arterial pulse which, in the constant volume cranium, must interact with the

venous volume. The cerebral veins drain to several epimeningeal compartments that ultimately

drain to the confluence of sinuses before exiting to the internal jugular veins or the vertebral

veins. Modelling attempts on the small veins and venules are to our knowledge nonexistent.

In this model we focus on the cerebral circulation of the smaller vessels including high resistance

arteries and venules, and how they interact with the capillaries (§2.2.2) and surrounding CSF.

The interaction of the vasculature with the cerebral ventricles, subarachnoid space and venous

dural sinuses is explored in Chapter 3. The interaction of the intracranial system with the

spinal CSF compartments is explored in Chapter 4.

2.1.1 Model description and assumptions

The complexity of the cerebral vasculature can be reduced by modelling blood flow in each

vessel as one dimensional (1D). We simplify the analysis further by assuming self-similarity in

the smaller vessels governing the relationships between generations.

The model is formed of two symmetrical bifurcating trees, one for the arteries and one for

the veins, where all the vessels within a generation are geometrically identical. Both trees

bifurcate, so the nth generation has 2n vessels and up to a maximum number of generations
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N − 1, as seen in Figure 2.2. We assume that both the arterial and venous tree has the same

number of generations. The root vessel of the arterial tree, generation 0, is represented as the

effective arterial input feeding the bifurcating tree. The arterial input is assumed as a single

starting point for all superficial and penetrating arteries, that is the arteries surrounding the

brain tissue before entering the deeper brain to become smaller arteries and high resistance

arteries. The arterial root vessel should be seen as an effective root vessel that incorporates the

major arteries entering the cranium and the CoW. Similarly, the root vessel of the venous tree

represents the effective venous output that exits the bifurcating tree to connect to the bigger

veins and subsequently to the venous dural sinuses which will be covered in Chapter 3. We

again emphasise the model is not an attempt of anatomical accuracy, but one of functionality.

Figure 2.2: Schematic of the cerebral vascular model and its interaction with cerebrospinal fluid spaces
and dural sinuses. Subarachnoid space, cerebral ventricles and venous dural sinuses are introduced as
part of the intracranial model (Chapter 3).

The last arterial generation of the tree, N−1, becomes the input to the capillary generation N .

We do not attempt to model the capillaries as a bifurcating tree as they have a wider structural

variation, we instead assume the capillary bed results in an arrangement of effective parameters

(e.g. resistance, pressure) which we then use to connect both the arterial and venous trees.

The output of generation N becomes the input of the venous tree, generation N − 1, which

then follows a binary convergence until reaching the output of the entire vascular tree in the
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venous generation 0.

Blood flow is pulsatile in nature due to the contraction and relaxation of the heart muscle

with each cardiac cycle. Pressure fluctuations from systolic to diastolic cause the vessel to

distend and contract creating a quasi-periodic wave of blood with specific velocity characteristics

throughout the arteries. Vascular wave propagation analysis is complex and in the brain is

further complicated by the interaction with surrounding CSF, and the confined spaced of the

skull and spinal cord. This presents a level of complexity beyond that intended for this initial

simple model. As we aim to model the main parameters in the smaller vasculature, a simpler

yet rigorous option is to assume the flow in the model can be first approximated as steady state

flow. This means the parameters derived from the model will describe a mean value over several

cardiac cycles. This is an acceptable approach in cerebrovascular modelling and one that has

been taken in modelling efforts over time (Czosnyka et al., 2012; Linninger et al., 2009; Ursino,

1988a).

The compliance of the blood vessels can also introduce considerable complexity into the model.

However, in this model we deal with this by first analysing a reference, rigid case (§2.2), where

we construct the cerebral vasculature assuming no changes in cross-sectional area (CSA) due

to pressure. The behaviour of the compliant case is then analysed using the rigid case as a

reference, and introducing a pressure-area relationship to allow for distensibility and compliance

in the vasculature (§2.4).

In the brain, the fluid interacting outside the vasculature is crucial to cerebral blood flow. In

this chapter we account for this interaction by means of transmural flux from the blood towards

extravascular tissue. We assume this fluid is transferred transmurally throughout the smaller

vasculature and effectively becomes part of the CSF feeding into the CSF spaces (i.e. cerebral

ventricles and the subarachnoid space). We investigate in the following chapter the effect of

this interaction with the rest of the intracranial space.

The pressure external to the vasculature and the global cerebral blood flow is assumed to be

constant in this model. We set the external pressure, input arterial pressure, and cerebral blood

flow as boundary conditions in the model. We describe the full list of parameters used in this
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model in §2.3.

The following sections describe the reference and compliant cases of this vascular model and

the governing equations.

2.2 Rigid reference case

We first describe the mathematical relationship of the model parameters when changes in CSA

are accounted for by means of a scaling law and self-similarity only, meaning the changes in

pressure do not cause the vessels to distend or contract, i.e. rigid vessels. We describe the

formation for the arterial tree, the capillaries, and the venous tree.

2.2.1 Arteries

Bifurcation and self-similarity

The arterial tree is self-similar with respect to CSA and length, meaning the characteristics

related to CSA and length of a vessel in a given generation n will be a scaled version of the

preceding generation n− 1.

We introduce the scaling factors γ for vessel CSA Ax, and λ for vessel length l. The rest of the

parameters in the model are derived from these two fundamental parameters, values which we

discuss in §2.3.2.

Given ln = λ ln−1 and the length of the 0th generation l0, it can be shown by induction that

ln = λnl0. Similarly, it can be shown that Axn = γnAx0 .

We use the notation in Table 2.1 to describe the parameters of the model2. For example, Âsan

denotes the net arterial surface area in generation n, whereas Asan denotes the arterial surface

area in a single vessel in generation n. The arterial tree has generations n = 0, 1, 2, · · · , N − 1

2The full nomenclature list can be found at the beginning of the thesis.
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Parameter Subscript Superscript Other

A area a arterial ave average ̂ net in a generation
d diameter c capillaries in input
h thickness e external out output
η no. of vessels n generation n s surface
k permeability v venous tot total
l length 0 generation 0 (root) trans transmural
p pressure x cross section
Q volumetric flux
R resistance
S transmural flux
V volume

Table 2.1: Notation conventions.

where generation 0 is the root vessel and generation N−1 connects to the the capillaries, which

we denote as generation N noting that we do not assume it to be a binary generation.

Based on the above scaling and notation conventions, the parameters for the arterial tree are:

η = 2n, (2.1)

Axan = γnAxa0, (2.2)

Âxan = (2γ)nAxa0, (2.3)

lan = λnla0, (2.4)

dan = γn/2da0, (2.5)

Asan = (γ1/2λ)nAsa0, (2.6)

Âsan = (2γ1/2λ)nAsa0, (2.7)

Van = (γλ)nVa0, (2.8)

V̂an = (2γλ)nVa0, (2.9)
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where,

Axa0 = πd2a0/4, (2.10)

Asa0 = πda0la0, (2.11)

Va0 = Axa0la0. (2.12)

We assume the vessel wall thickness scales in proportion to the diameter, so that han = γn/2ha0.

Mass and momentum conservation

For a given generation, treated as a control volume, mass cannot be created or destroyed, so the

rate of change of mass in the control volume equals the net mass flux entering that generation.

Assuming blood is incompressible (a very good approximation), conservation of mass for the

arterial tree of N generations is governed by

dV̂an
dt

= Q̂an − Ŝan. (2.13)

We assume quasi-steady flow of blood ignoring the effects of the arterial pulse. That is, the

cerebral blood flow Q is the time averaged flow rate over a time that is long compared to the

period of the cardiac cycle. We also assume that S << Q, so that, to first order Qin = Qout.

For a single vessel in generation n we have Qan = Qan−1/2, then

Qan = 2−nQa0, (2.14)

Q̂an = Qa0, (2.15)

where Qa0 = Q, and Qv0 = Q−
∑
Ŝvn, where Ŝvn << Q.

We assume each vessel is approximated as an axisymmetrical cylindrical tube with a cross-

sectional area perpendicular to its centreline and uniform thin walls. We assume flow inside the

vessels is laminar, incompressible and Newtonian. As seen in Chapter 1, this first approximation
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is acceptable for modelling one-dimensional flow in the vasculature. Furthermore, Reynolds

number in the smaller vessels is very small and well below transitional or turbulent flow (Fung

and Zweifach, 1971; Lew and Fung, 1969).

Given the assumptions above and neglecting gravity effects3, we can apply the steady Navier–

Stokes equations to describe the fluid motion inside a vessel,

ρ(u.∇)u = −∇p+ µ∇2u, (2.16)

where u is the displacement of the fluid, p the pressure, and µ the viscosity. We know from the

continuity equation (and our incompressibility assumption) that ∇.u = 0. Assuming steady,

unidirectional and fully-developed flow, we can reduce Equation (2.16) to

0 = −∆p

l
+
µ

r

∂

∂r

(
r
∂w

∂r

)
, (2.17)

where r is the radial coordinate, w the axial velocity component, and ∆p the pressure difference

along the cylinder. Solving Equation (2.17) gives

w = −∆pr2

4µl
+ c1lnr + c2, (2.18)

where c1 and c2 are constants to be defined by the boundary conditions. At r = 0, we require

w to be finite, which implies c1 = 0. We apply a no-slip boundary condition at the walls of

the cylinder, w = 0 at r = d/2 which sets c2 = ∆pd2/16µl, thus, w = ∆p((d/2)2 − r2)/4µl.

Integrating the axial velocity over the cross-sectional area to obtain the volumetric flux, gives

the classic Hagen–Poiseuille equation,

∆p =
128µl

πd4
Q. (2.19)

We find the resistance across a vessel in terms of cross-sectional area as R = 8πµl/(Ax)2.

3Gravity effects are addressed in Chapter 4.
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Substituting Equations (2.2) and (2.4) into the resistance equation to incorporate the scaling

factors, we obtain the arterial resistance of a single vessel in generation n, as

Ran =

(
λ

γ2

)n
Ra0, (2.20)

where Ra0 = 8πµla0/(A
x
a0)

2 is the arterial resistance of the root vessel. We assume the vessels

are connected in parallel, hence the net resistance of generation n is R̂an = 2−nRan, thus

R̂an = ξnRa0, (2.21)

where ξ = λ/2γ2 is the resistance scaling.

Substitution of Equation (2.21) into (2.19) gives the pressure difference across generation n

pinan − poutan = ξnQRa0. (2.22)

The nature of the vascular tree implies the output pressure in one generation is the input

pressure in the successive generation, that is for poutan = pinan+1, as visualised in Figure 2.3.

Figure 2.3: Schematic of arterial branching. Interconnection between blood vessels and related
pressures.

Letting the root pressure be the input pressure of the arterial tree (pina0 = proot) and consid-
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ering the generations are in series whilst neglecting energy losses at bifurcations, we obtain

the pressure difference across the arterial tree as the sum of the pressure differences in each

generation,

poutan = proot −Ra0Q
n∑
i=0

ξi, (2.23)

= proot −Ra0Q

(
ξn+1 − 1

ξ − 1

)
, (2.24)

where ξ 6= 1, and for the entire arterial tree n = 0, 1, 2, · · · , N − 1.

Similarly, we find the input pressure for generation n,

pinan = poutan +RanQ

= proot −Ra0Q
n−1∑
i=0

ξi (2.25)

= proot −Ra0Q

(
ξn − 1

ξ − 1

)
. (2.26)

We assume the average arterial pressure in generation n, pavean , is given by the arithmetic mean

of the input and output pressures, which substituting with Equations (2.24) and (2.26) gives,

pavean = proot −Ra0Q

(
ξn − 1

ξ − 1
+
ξn

2

)
. (2.27)

From Equation (2.24) we can obtain the pressure at the outlet of the arterial tree, by setting

n = N − 1,

poutaN−1 = proot −Ra0Q
ξN − 1

ξ − 1
. (2.28)

Transmural flux

The fluid transferred from the circulation to outside the vasculature is composed generally of

plasma, water-soluble molecules, and metabolites excluding the formed elements of blood and
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large proteins (Guyton, 2006), and we assume it ultimately forms part of the CSF. To model the

transmural flux throughout the circulation, we treat the blood vessel wall as a porous medium.

We assume this porous medium to be homogeneous and isotropic, and the vessel wall large

compared to a single pore. The flow in the porous medium can be described by the Darcy

equation,

u = − k

µcsf

∇p, (2.29)

where u is the volumetric flux per unit area in the medium, k is the permeability of the medium,

µcsf the shear viscosity of the CSF (µcsf 6= µblood), and ∇p the fluid pressure difference across

the wall. We are interested in the flux across the vessel, u · nA, and we assume this area to

be the surface area of the vessel As. This implies the pressure difference ∆p through the wall

thickness h, is that between the lumen and the outside the vessel,

S = −kA
s∆p

µh
, (2.30)

where S is the transmural flux, k is the permeability of the vessel, and h the vessel thickness.

Rewriting Equation (2.30) in the adopted arterial notation we obtain

San =
kaA

s
an

µcsfhan
(pavean − pe), (2.31)

where we assume the vessel thickness han scales in proportion to the diameter, that is han =

γn/2ha0 as denoted in Equation (2.5).

We find the net transmural flux from generation n by substituting Equations (2.7) and (2.27)

into (2.31),

Ŝan =
kaÂ

s
an

µcsfhan
(pavean − pe)

=
(2λ)nkaA

s
a0

µcsfha0
(proot −Ra0Q

(
ξn − 1

ξ − 1
+
ξn

2

)
− pe), (2.32)

Notice that whilst we assume a constant wall permeability for this model, the scaling factor
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allows for the transmural flux to change as a function of the surface area, wall thickness, and

change in transmural pressure. In other words, although we assume constant permeability

throughout the tree the transmural flux varies from generation to generation due to the scaled

nature of the tree.

To find the transmural flux in the entire arterial tree we solve for the cumulative transmural

flux,

Ŝtot
an =

kaA
s
a0

µcsfha0

N−1∑
n=0

(2λ)n
(
proot −Ra0Q

(
ξn − 1

ξ − 1
+
ξn

2

)
− pe

)
=

kaA
s
a0

µcsfha0

[(
(2λ)N − 1

2λ− 1

)(
proot − pe +

Ra0Q

(ξ − 1)

)
−
(

(2λξ)N − 1

2λξ − 1

)
Ra0Q(ξ + 1)

2(ξ − 1)

]
. (2.33)

2.2.2 Capillaries

The capillaries form a complex network of vessels sufficiently challenging that previous attempts

to model it have limited accuracy (Peyrounette et al., 2018). In the capillaries, several common

modelling assumptions break down and complications include (but are not limited to): (1) ide-

alisation of blood as a homogeneous fluid is difficult to sustain due to the packed arrangements

of erythrocytes inside each capillary, (2) physical arrangement varies between regions of an

organ, e.g. capillary density around the hippocampus, (3) the BBB forms a protective layer in

the capillaries that does not expand to every part of the microcirculation, as it is the case on

the circumventricular organs (Gray, 1989), and (4) metabolic effects, aquaporin channels, glial

cells and overall osmotic pressure differences can have a significant effect (Papadopoulos et al.,

2004).

Modelling the capillaries is further complicated by the defining properties of a capillary itself

and the boundaries that separate them from high resistance arteries and venules. Visualising

every capillary in the brain is difficult and current methods to quantify them rely on density

approximations and scaling4 (Duvernoy et al., 1981). Furthermore, the capillary density changes

change over time, and what is considered average for a healthy range of individuals might not

4We explore this further in §2.3.
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be applicable to the rest of the population even within a similar age group (Zatorre et al., 2012;

Maguire et al., 2006). An increase in size of an organ demands delivery of more oxygen and

nutrients and with it the proximity to a blood vessel. One can hypothesise about angiogenesis

in growth of brain regions with high plasticity. It is now established that the human brain

keeps growing new neurons throughout our lifetime (Eriksson et al., 1998). It could be argued

that the indirect effect of this would have to be supported by physical characteristics such as

the proliferation of blood vessels (Greenberg and Jin, 2005).

Figure 2.4: Representation of the capillaries connecting the arterial and venous trees.

These are only a few of the challenges of modelling the capillaries. Exploring each of these and

by extension all of them, represents a level of complexity beyond the scope of this work. We

therefore do not attempt to model the capillaries, but rather assume its mesh-like structure will

result in an overall resistance that combined with the output pressure of the last generation

of the arterial tree will give rise to an output pressure where the venous tree can begin its

converging branching.

We could make assumptions regarding the number of high resistance arteries connecting to a

capillary and therefore obtain CSA and other important parameters from the number of high

resistance arteries in generation N − 1. However, doing so would imply that we assume a

parallel arrangement of capillaries which, as pointed out before, would be difficult to sustain

due to their complex network. For the purposes of simplicity we assume only the pressure and
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transmural flux in the capillaries can be estimated.

In our model the arterial and venous trees are connected through a lumped capillary segment

that we treat as a set of vessels with fixed net resistance Rc (Figure 2.4). We assume laminar

flux and thus the pressure drop across the capillaries is described by

pinc − poutc = RcQ, (2.34)

where we assume pinc = poutaN−1 and poutc = pinvN−1.

The transmural flux is described by

Ŝc = kc(p
ave
c − pe), (2.35)

where kc is the global capillary permeability, and pavec = (pinc + poutc )/2.

2.2.3 Veins

Binary convergence and self-similarity

Mirroring the arterial vessel tree, the blood vessels in the venous circulation converge pairwise

in successive generations, meaning each successive generation in the venous forward direction

(N − 1 to 0, as per Figure 2.4) has half the number of vessels, i.e. 2−n.

We assume the same scaling factors γ and λ apply to the venous vessel tree. The self-similar



2.2. Rigid reference case 47

parameters for the venous tree are,

Axvn = γnAxv0, (2.36)

Âxvn = (2γ)nAxv0, (2.37)

lvn = λnlv0, (2.38)

dvn = γn/2dv0, (2.39)

Asvn = (γ1/2λ)nAsv0, (2.40)

Âsvn = (2γ1/2λ)nAsv0, (2.41)

Vvn = (γλ)nVv0, (2.42)

V̂vn = (2γλ)nVv0, (2.43)

where

Axv0 = πd2v0/4, (2.44)

Asv0 = πdv0lv0, (2.45)

Vv0 = Axv0lv0. (2.46)

As in the arteries, we assume the vessel wall thickness scales in proportion to the diameter,

then hvn = γn/2hv0.

Mass and momentum conservation

Analysing the venous tree from generation 0 to generation N − 1, we can apply the same

considerations from the arterial tree regarding mass and momentum conservation. We thus

have

dV̂vn
dt

= Q̂vn − Ŝvn, (2.47)
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Figure 2.5: Schematic of venous branching. Interconnection between blood vessels and related
pressures.

where

Qvn = 2−nQv0, (2.48)

Q̂vn = Qv0, (2.49)

and Qv0 = Q−
∑
Ŝvn, where Ŝvn << Q.

The momentum conservation equation gives the resistance Rvn of a single venous vessel and

the venous net resistance R̂vn of all the vessels in generation n,

Rvn =

(
λ

γ2

)n
Rv0, (2.50)

R̂vn = ξnRv0, (2.51)

where Rv0 = 8πµlv0/(A
x
v0)

2 is the venous resistance in the root vessel. The pressure difference

across generation n is then

pinvn − poutvn = R̂vnQ. (2.52)
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Working out the pressure difference from the capillaries to the venous root vessel (Figure 2.5),

that is from generation N − 1 to 0, we sum the pressure drop across previous generations to

obtain the output venous pressure5

poutvn = poutc −Rv0Qξ
N−1

N−1−n∑
i=0

ξ−i

= poutc −Rv0Qξ
N−1

(
1− ξ−(N−n)

1− ξ−1

)
, (2.53)

the input pressure,

pinvn = poutc −Rv0Qξ
N−1

N−n−2∑
i=0

ξ−i,

= poutc −Rv0Qξ
N−1

(
1− ξ−(N−n−1)

1− ξ−1

)
, (2.54)

and the average pressure, which as in the arteries, is defined as the arithmetic mean between

input and output pressures,

pavevn = poutc −Rv0Qξ
N−1

(
1− ξ−(N−n)

1− ξ−1
+
ξ−1

2

)
. (2.55)

Relationship of scaling factor ξ with vasculature

We can obtain the venous output pressure from the input pressure proot by expanding the

capillary pressure in terms of the arterial input, which gives

poutv0 = proot −Q
(
Rc + (Ra0 +Rv0)

(
ξN − 1

ξ − 1

))
. (2.56)

Multiplying Equation (2.56) by (ξ − 1)/Q(Ra0 +Rv0), gives,

ξN −
(
proot − poutv0

Q
−Rc

)
ξ

Ra0 +Rv0

+

(
proot − poutv0

Q(Ra0 +Rv0)
− Rc

Ra0 +Rv0

− 1

)
= 0. (2.57)

5A more detailed working of this derivation can be found in Appendix A.1.
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Letting

κ =

(
proot − poutv0

Q
−Rc

)
1

Ra0 +Rv0

,

we can rewrite Equation (2.56) as the polynomial

ξN − κξ + κ− 1 = 0, (2.58)

which emphasises the importance of ξ in our calculations. When ξ = 1 the factored form of the

finite partial sum cannot be used to find a solution. The value of ξ is reviewed and determined

in §2.3.

Transmural flux across the vasculature

Similar to the arteries, we use the simplified Darcy Equation (2.30) to model the transmural

flux across to the venous circulation. The venous transmural flux Ŝvn in generation n is then

Ŝvn =
kvA

s
v0(2λ)n

µcsfhv0
(pavevn − pe). (2.59)

where kv is the venous vessel permeability, Asv0 the venous surface area in generation 0, and

hvn the venous vessel thickness. The total transmural flux in the venous tree is,

Ŝtot
vn =

kvA
s
v0

µcsfhv0
(2λ)N−1

N−1∑
n=0

(2λ)−n
(
poutc −Rv0Qξ

N−1
(

1− ξ−(N−n)

1− ξ−1
+
ξ−1

2

)
− pe

)

=
kvA

s
v0

µcsfhv0
(2λ)N−1

[(
1− (2λ)−N

1− (2λ)−1

)(
poutc − pe −Rv0Qξ

N−13ξ − 1

2ξ − 2

)
− Rv0Q

ξ − 1

(
( ξ
(2λ)

)N − 1

( ξ
(2λ)

)− 1

)]
.

(2.60)

We can now find the transmural flux in the entire cerebrovascular network from the sum of the

arterial and venous vascular trees plus the capillary transmural flux,

Ŝtot
vasculature = Ŝtot

an + Ŝc + Ŝtot
vn . (2.61)
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We expand on the interaction of Equation (2.61) with the CSF spaces in Chapter 3.

2.3 Determination of parameters

We determine the parameters to use in the model by describing their connectivity with other

parameters as well as their estimates from experimental data where available. We first deter-

mine the diameter of the arteries and veins in generation 0. Equation (2.5) gives the following

relationship for the arterial diameter of the root vessel

da0 = γ−n/2 dan. (2.62)

Since the arterial tree reaches the capillaries at generation N , as a first approximation we can

assume that

da0 = γ−N/2 dc, (2.63)

where dc is the capillary diameter. We choose a value of dc = 6×10−6 m as it is the approximate

diameter of an erythrocyte (Guyton, 2006). By knowing the number of generations in the tree

N and the scaling factor of CSA γ, we can thus obtain a value for the diameter of the root

vessel. We formulate the number of generations in §2.3.1 and give the value for this diameter

in §2.3.3.

Generally veins have a larger diameter than their equivalent arteries, so we assume that

dv0 = ν da0, (2.64)

where ν is the arterovenous diameter ratio. We assume this value is in the range of 1 < ν < 3

based on the averaged value of the diameter between the ICA and IJV and that of smaller

arteries and veins (Levick, 2010; Caro et al., 2012). We analyse ν in combination with the

scaling factors in §2.3.3 to establish its value.
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To determine a value for the arterial wall thickness in generation 0, ha0, we assume this is 10%

of the diameter as per Caro et al. (2012), then ha0 = 0.1da0. For the venous wall thickness in

generation 0, hv0, we assume this can be approximated by half that of the arterial vessel wall,

hv0 = ha0/2. This is an estimation based on the smaller thickness of bigger veins with respect

to arteries (Levick, 2010; Caro et al., 2012).

For the vessel length, we assume the length of the root vessel for the arterial and venous tree

is the same. We assign a value of la0 = lv0 = 0.085 m based on half the value of the common

carotid artery (Levick, 2010).

In our model we assume that the larger arteries and veins are almost impermeable. Due to the

lack of experimental data, we assign a very small permeability value as a proof of concept for

the arterial permeability in generation 0, ka0 = 1×10−21, and we assume its venous counterpart

has a smaller permeability, kv0 = ka0/2.

To estimate the capillary resistance, we assume the pressure drop in our model does not exceed

15 mmHg, which when factored by the cerebral blood flow we obtain a capillary resistance of

0.02 mmHg.min/ml. Table 2.2 shows a summary of the estimated parameters, excluding N, ν, γ

which we define in §2.3.3. We adopt the following convention for significant figures: up to two

significant figures for values less than 10, up to one decimal place for values above 10. For

values smaller than two decimal places, scientific notation is adopted with up to two significant

figures.

Value Units

la0 8.5× 10−2 m
lv0 8.5× 10−2 m
ka0 1× 10−21 m2

kv0 0.5× 10−21 m2

Rc 0.02 mmHg.min/ml

Table 2.2: Estimated parameter values.

The Fahraeus-Lindqvist effect is important when studying flow in small blood vessels due to the

greater concentration of erythrocytes as the diameter changes from bigger to smaller diameter

(Barbee and Cokelet, 1971). However, for simplicity we assume this change in viscosity is
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minimal and allow for a constant viscosity throughout the vasculature.

We take the following values from the literature (Table 2.3): viscosity of blood µblood, viscosity of

CSF µcsf , arterial Young’s modulus Ea, venous Young’s modulus Ev, and capillary permeability

kc. We use the arterial input pressure proot, external pressure pe and the cerebral blood flow Q

as our boundary conditions which we also take from the literature.

Value Units Reference

Ea 9× 105 N/m2 (Caro et al., 2012).
Ev 7× 104 N/m2 (Caro et al., 2012).
µblood 3.5× 103 Pa.s (Guyton, 2006).
µcsf 7.3× 103 Pa.s (Gupta et al., 2010).
pe 11 mmHg (Steiner and Andrews, 2006).
proot 90 mmHg (Guyton, 2006).
Q 750 ml/min (Linninger et al., 2009).
dc 6× 10−6 m (Guyton, 2006).
kc 1.9× 10−11 ml/mmHg.min (Guyton, 2006).

Table 2.3: Parameter values from literature.

2.3.1 Number of generations

To determine the number of generations N , we need to estimate the number of capillaries in

the brain.

The number of capillaries in the entire human body are estimated as 10 billion (Guyton, 2006).

If we assume variation in the number of capillaries in the entire body is negligible compared to

their absolute number, and that the number of capillaries in an individual organ is proportional

to the fraction of the cardiac output that perfuses the organ, we can estimate the number of

capillaries in the brain based on this estimate. The brain obtains approximately 13% of the total

cardiac output, which means the cerebral capillaries are in the region of 130 million capillaries

or approximately 227, thus giving 27 generations.

We can also estimate the number of vessels by capillary density. Literature reports an average

capillary density in the human brain of 1500 vessels per mm3 (Gray, 1989). Assuming a brain

volume of 1.5× 10−3m3, we obtain 231 capillaries, resulting in N = 31.
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If we assume a volume fraction of capillaries in the brain, we can relate the CSA of a capillary

to the area occupied in the cross-section, that is πd2c/4D2, where d2c is the capillary diameter

and D the distance between capillaries. If we now relate this proportionality to the volume

ratio between the brain and that of the capillaries, we can obtain the number of vessels,

πd2c
4D2

c

=
ηcπd

2
clc

2Vb

=⇒ ηc =
Vb
lcd2c

, (2.65)

where ηc is the number of capillaries in the brain, and Vb the brain volume. For a capillary

length of 0.6 mm, a brain volume as before, and a distance between capillaries of approximately

the diameter of a capillary (6×10−6 m), we obtain a approximate value of 233 number of vessels,

resulting in N = 33.

We can start seeing a pattern emerging about the number of generations, even when the num-

ber of capillaries varies substantially from one approach to another. The approach we select

however, is based on functionality. This is a simpler yet a reasonable approximation since mea-

surement for flow velocity through a capillary uc and total cerebral blood flow Q are widely

reported (Levick, 2010). Relating the ratio between the total cerebral blood flow and the

volumetric flux through a single capillary with velocity uc, we obtain

ηc =
4Q

ucπd2c
. (2.66)

Assuming uc = 1× 10−3 m/s and Q = 750 ml/min, we obtain an estimate of 228 capillaries and

therefore N = 28 generations.

In Equation (2.5) we defined the diameter of the arterial root vessel as a function of the

number of generations. From the value chosen for the capillary diameter, we can see how our

first approximation for this diameter is an overestimation. If we now consider that the number

of generations above is representative of the root vessel upon entry to the cranium as it is

to the smaller vasculature, we can see how an effective root vessel for the bigger vasculature

could emerge. However, the branching will start with the root vessel, therefore, our effective
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root vessel for the smaller vasculature must be a fraction of this estimation. We can solve this

by assuming this initial estimation of effective root vessel diameter is applicable to the larger

arteries such as those upon first entry to the cranium. If we take the ratio between a large

cerebral artery and a small one, we can approximate the value of this ratio. We denote this

root vessel ratio as % and we assume it is in the range of 0.6-0.8 as based on the average value

of an internal carotid artery and a small artery (Levick, 2010; Caro et al., 2012).

To test our choice on the number of generations, in §2.3.3 we investigate its interaction with

the scaling factors γ and λ, the arterovenous ratio ν, and the ratio of the root vessel %. In the

next section we determine the bounds for the scaling factors γ and λ.

2.3.2 Scaling factors

To determine the values of the CSA scaling factor γ, and the length scaling factor λ, we analyse

the bifurcating tree behaviour within the physical constraints of a finite volume.

Minimum and maximum bounds

Physically both scaling parameters have to be greater than zero and less than one. Less than one

since the vessel length and CSA decrease with increasing generations. This gives the minimum

and maximum boundaries

0 < γ, λ < 1. (2.67)

The CSA of an individual vessel is limited by

2γ > 1, (2.68)

since the velocity in generation n is observed to decrease as n increases which means that

the net CSA in generation n must increase with every generation. This gives γ > 1/2 a new
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minimum constraint.

Similarly, if the total surface area of the vasculature, defined as Âsn = (2γ1/2λ)nAs0 in Equations

(2.7) and (2.41), increases as the individual vessel surface area decreases, then the surface area

scaling relationship must be greater than one,

2γ1/2λ > 1, (2.69)

which implies λ > 1/(2γ1/2).

The total resistance of the vasculature, defined as R̂s
n = ξnRs

0 in Equations (2.21) and (2.51),

increases as the vessel diameter decreases, meaning the resistance scaling relationship must be

greater than one

ξ > 1, (2.70)

which is consistent with Equations (2.24)–(2.28), (2.53)–(2.58).

The volume scaling between generations is defined as V̂ s
n = (2γλ)nV0 as per Equations (2.9)

and (2.43). It seems intuitive to assume the total volume grows with increasing generations

since the total CSA grows. However the cerebral vasculature is within the boundaries of a finite

volume, the skull. We could think of this cranial space as an ultimate constraint, however a

better approach is to consider that the small vasculature must be close enough to the brain

tissue for adequate perfusion. As a result, the space for the vasculature must become more

and more restrictive as the vessels bifurcate. This makes sense since the smaller the vessels

the closer they need to be to the tissue in order to facilitate diffusion and metabolic transport.

This also makes sense from the perspective of the bounds already established. If the volume

scaling were greater than one and we were to substitute the scaling in Equation (2.68) to this

volume boundary, we would obtain that λ > 1 which would invalidate our assumption that

length must decrease with increasing generations, i.e. Equation (2.67).
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Therefore we assume the model obeys a volume scaling less than one,

2γλ < 1, (2.71)

resulting in λ < 1/(2γ), which along with Equation (2.68) implies 1/2 < γ, λ < 1.

Cohn’s volume filling model

There is an additional volume consideration, this is described by Cohn in his volume filling

theory (Cohn, 1954). Cohn states that in geometric bifurcations of blood vessels, these must

occupy a given volume by filling the space efficiently. Assuming the volume of a cube, the cube

can be split in half on each of its axes resulting in eight distinct cubes (Figure 2.6a). If we

bisect the cube again, we would obtain eight cubes for every initial cube, i.e. 8i where i is the

number of splits. If we now assume a blood vessel located at the centre of the cube bifurcates

with every split, we can deduce lvessel = 1/2i. To determine the scaling of this bifurcation to

the root vessel l0, Cohn estimates the length would halve in size every three splits, and so

lvessel = l0/2
i/3.

(a) (b) (c)

Figure 2.6: Cohn’s model of space filling. (a) cube split in half on each plane forming eight symmet-
rical cubes with root vessel in centre of the main cube, (b) illustration of vessel bifurcating within a
cube, (b) further bifurcations following centred bifurcations filling available space. Source: reproduced
with permission from Prof Kim H Parker.

If we take this approach and assume Cohn’s scaling for length as a minimum boundary in our
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model, we obtain that

λ ≥ 1

21/3
. (2.72)

In the next subsection we assess the constraints for γ and λ together to form a region of

acceptable values.

Region of acceptable values

The defined bounds for the scaling factors result in a reduced region where a suitable combi-

nation of values for γ and λ can be found. This region is shown in Figure 2.7 where we set λ

as an independent variable of γ.
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Figure 2.7: Region of acceptable values for γ and λ delimited within 0.5 and 1. Colour code:
constraint for surface area (2γ1/2λ > 1) is marked in green, the constraint for resistance (λ/2γ2 > 1)
in orange, the volume constraint (λ/2γ2 > 1) in red, and Cohn’s space filling constraint in magenta,
which results in the shaded area in blue where combinations of γ and λ can be determined.

Delimited within 0.5 and 1, in this figure we see the constraint for surface area (2γ1/2λ > 1) in

green, the constraint for resistance (λ/2γ2 > 1) in orange, the volume constraint (λ/2γ2 > 1)

in red, and Cohn’s space filling constraint in magenta, which results in the shaded area in blue

where combinations of γ and λ can be determined.

The choice of values for γ and λ is interconnected with the number of generations N , the
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root vessel ratio %, and the arterovenous ratio ν, meaning the change in one will affect the

others. In the next section we analyse these parameters in combination and determine the set

of acceptable values to use in our vascular model.

2.3.3 Interaction between ratios and scaling factors

To investigate the interaction between ratios and scaling factors and thus select an acceptable

combination of values, we perform a numerical analysis between the ranges of these parameters

as defined in the previous sections. A recap of the range of values for each parameter is given

in Table 2.4.

Value range

N 20 - 36
γ 0.5 - 0.64
λ 0.79 - 1
ν 1 - 3
% 0.6 - 0.8

Table 2.4: Value range for ratios and scaling factors.

This results in a five-dimensional set of parameters. To estimate an appropriate set of combi-

nations we set an acceptance criteria based on pressure values, since these are well documented

in the literature. We select a pressure range of the smaller arteries between 20-40 mmHg, and

a venous pressure range between 0-20 mmHg for a healthy recumbent subject.

We use Matlab 2015a with a series of nested loops and the equations described in sections

§2.1-§2.2 with the parameter values in Table 2.2 and Table 2.3. We tested a total of 41,923

combinations using a step size of 1× 10−3 and an accuracy of four significant figures.

Given the acceptable values, we select the combination of parameters in Table 2.5. We make an

exception for the notation convention of significant figures since the model is highly sensitive

to the scaling factors and ratios below, in particular regarding the CSA scaling factor γ.

We can now calculate the properties of the arterial and venous root vessels da0, dv0, ha0, hv0,

these are included in Table 2.6 together with the rest of the model parameters.
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Value

N 28
γ 0.5547
λ 0.805
ν 1.85
% 0.75

Table 2.5: Ratios and scaling factors for the vascular model.

Value Units Reference

da0 1.7× 10−2 m §2.3.3.
dc 6× 10−6 m (Guyton, 2006).
dv0 3.2× 10−2 m §2.3.3.
Ea 9× 105 N/m2 (Caro et al., 2012).
Ev 7× 104 N/m2 (Caro et al., 2012).
γ 0.5547 – §2.3.3
ha0 1.7× 10−3 m §2.3.3.
hv0 8.6× 10−4 m §2.3.3.
ka0 1× 10−21 m2 §2.3.3.
kc 1.9× 10−11 Pa.s/m3 §2.3.3.
kv0 0.5× 10−21 m2 §2.3.3.
λ 0.805 – §2.3.3.
la0 8.5× 10−2 m §2.3.
lv0 8.5× 10−2 m §2.3.
µblood 3.5× 10−3 Pa.s (Guyton, 2006).
µcsf 7.3× 10−4 Pa.s (Gupta et al., 2010).
N 28 – §2.3.3
ν 1.85 – §2.3.3
proot 90 mmHg (Guyton, 2006).
pe 11 mmHg (Steiner and Andrews, 2006).
Q 750 ml/min (Linninger et al., 2009).
Rc 0.02 mmHg.min/ml §2.3.
% 0.75 – §2.3.3

Table 2.6: Parameter values for vascular model.

2.4 Compliant case

In the previous section we considered rigid cylindrical vessels. We know this to be physiolog-

ically unrealistic since the blood vessels dilate and constrict with changes in pressure. In this

section we address this issue by including a constitutive relation (§2.4.1) to describe the vessel

distensibility to pressure changes relative to the rigid case (§2.4.2). We analyse the impact of

this pressure-area relationship in the results section (§2.6) by comparing the stress-free state
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(i.e. rigid case) and the complaint case.

The composition of blood vessels (in dry mass) consists of fibres and cells that have different

degrees of elastic behaviour, these are: elastin, collagen, and smooth muscle. Elastin and

smooth muscle are relatively compliant when compared to collagen, but the elasticity of smooth

muscle depends upon its tone which is determined by many neural and hormonal factors and is

difficult to control or to quantitate (Matsumoto and Nagayama, 2012). The small arteries are

composed of 60% smooth muscle and the rest by roughly equal amounts of elastin and collagen.

Typically the more peripheral the vessel the more smooth muscle is contained. The small veins

have a similar composition with respect to elastin and collagen but to a smaller extent (0.3),

they also contain less smooth muscle and are thinner than the arteries. Vessels in the brain

are typically thinner than arteries of similar diameter in the rest of the body (Cipolla, 2009),

as mentioned in Chapter 1.

The blood vessel walls exhibit a viscoelastic behaviour. This is important specially in larger

arteries where they need to withstand relatively high pressures and the vessel wall needs to

accommodate for the peaks and recoils that high and low pressures can cause with each cardiac

cycle.

For simplicity, and given the fact that this model only considers the small vessels in the brain

which fall within a physiological pressure range where viscoelastic effects are small (Tardy

et al., 1991), we assume the blood vessel walls are linearly elastic. Also, although the vessels

are unlikely to be homogeneous or isotropic, we make this assumption as a first approximation

and assume incompressibility of a very thin vessel wall (hn = 0.1dn) where we relate the effects

of stress and strain with an effective elastic modulus relative to an equilibrium state. This

effective elastic modulus we assume remains constant within the boundaries of the smaller

vasculature.

The pressure-area relationship presented here assumes there is no collapse of the cerebral vessels

as it is applicable only to non-collapsible tubes. This is appropriate in our model since we

work under the assumption that vessels in the brain do not tend to collapse. Under healthy

conditions the cerebral blood vessels are in constant interaction with surrounding CSF which is
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likely to prevent collapse. Any excess of CSF typically drains into the venous dural sinuses thus

preventing vessel collapse from excessive CSF pressure on the vasculature, and any low pressure

driving lower cerebral blood flow which could also lead to vessel collapse is compensated for by

the cerebral autoregulation6. Furthermore, hydrostatic changes can induce negative pressure

in the dural sinuses but not in the blood vessels due to the effect of the arachnoid villi and

the cranium enclosure (Guyton, 2006), thus CSF (along with the ararchnoid villi) effectively

function as safeguards for preventing intracranial vessel collapse7.

2.4.1 Pressure-area relationship

For small deformations, of a stress-free state (i.e. reference case), where the stress-strain curve

of a radially tensioned vessel can be considered linear, we find that Hooke’s law can be applied

(Fung, 2013)

τ = Eε (2.73)

where τ is the wall tensile stress, E the elastic modulus, and ε the wall strain. We assume

the blood vessels are axisymmetric and cylindrical (as mentioned in §2.2). We also assume the

blood vessel wall is thin, homogeneous and isotropic with linearly elastic behaviour. We are

interested in the circumferential stress departing from a reference state, we can apply Laplace’s

law relating transmural pressure to circumferential wall stress to Equation (2.73) to obtain

(pi − pe)d
2h

=
E

1− σ2

d− d0
d0

, (2.74)

where pi − pe is the transmural pressure, pi the pressure inside the vessel (luminal presure), pe

the pressure outside the vessel (external pressure), d the luminal diameter of the vessel, d0 the

luminal diameter of the vessel of the stress-free state (i.e. pi = pe), h the vessel wall thickness,

and σ the Poisson’s ratio. The term (1-σ2) is included to account for the Poisson effect on the

wall as it is strained. Assuming the vessel wall is incompressible, i.e. σ = 0.5, and that 1/d can
6We address autoregulation for this model in §2.5.
7We assess effect of the arachnoid villi and hydrostatic changes in Chapters 3 and 4, respectively.
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be approximated by 1/d0 (Alastruey et al., 2011), we solve Equation (2.74) for the transmural

pressure

pi − pe =
4
√
πEh

3A0

(√
A−

√
A0

)
,

=
β

A0

(√
A−

√
A0

)
, (2.75)

where β = 4
√
πEh/3 is a term describing the elastic behaviour of the vessel, A = πd2/4 the

deformed CSA, and A0 = πd20/4 the CSA of the stress-free state.

2.4.2 Changes due to wall compliance

Arteries

We introduce calligraphic letters to distinguish compliant from rigid parameters, i.e. A , V ,

S , P denote compliant area, volume, transmural flux and pressure, respectively. Rewriting

Equation (2.75) in this notation,

Ptrans
an =

βan
Axan

(√
A x

an −
√
Axan

)
, (2.76)

where βan = 4/3
√
πEahan is a constant term describing the elastic behaviour of the arterial

wall, Ptrans
an = Pave

an −Pe is the compliant transmural pressure in the nth arterial generation,

and Pave
An = (P in

An + Pout
An )/2 is the compliant average pressure in the nth arterial generation.

Solving for the compliant arterial CSA we obtain,

A x
an = Axan

(
1 +

Ptrans
an

√
Axan

βan

)2

. (2.77)
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Expanding βan,
√
Axan, and substituting of ha0 = 0.1 da0 reduces Equation (2.77) to

A x
an = Axan

(
1 +

15Ptrans
an

4Ea

)2

= Axan (1 + φan)2 , (2.78)

where φan = 15Ptrans
an /4Ea is the transmural pressure to elastic modulus ratio. Equation

(2.78) implies that changes in CSA from the reference8 are only dependent on the changes in

transmural pressure and elastic modulus.

One of the assumptions in deriving the pressure-area relationship included the vessel tethering

in the axial direction with changes in cross-section large compared to longitudinal ones, meaning

the compliant length is assumed to be constant. We also assume the parameters of the root

vessel are the same for both rigid and compliant case.

We can now derive the rest of the parameters,

Â x
an = Âxan(1 + φan)2, (2.79)

A s
an = Asan(1 + φan), (2.80)

Â s
an = Âsan(1 + φan), (2.81)

Van = Van(1 + φan)2, (2.82)

V̂an = V̂an(1 + φan)2, (2.83)

San =
kaA

s
an

µcsfhan
Ptrans

an (1 + φan), (2.84)

Ŝan =
kaÂ

s
an

µcsfhan
Ptrans

an (1 + φan). (2.85)

The compliant resistance is given by R̂an = 8πµblan/(Â x
an)2, which when linearised (to reduce

the fourth power relation for the compliant CSA) reduces to

R̂an = R̂an (1− 4φan) , (2.86)

8N.B. The calculations for the rigid case are done to provide a reference for what would be observed if we
constrained the model to its unstressed reference values.
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with error of order O(15∆ptransa /4Ea).

The compliant pressure difference in the nth arterial generation of the compliant case is

P in
an −Pout

an = R̂anQ (1− 4φan) . (2.87)

We assume P in
a0 = pina0 = proot, and that the compliant pressure for a given generation follows

Pout
an+1 = P in

an. Expanding φan in Equation (2.87) and letting ψan = 15RanQ we find that for

n = 0, 1, 2, · · · , N − 1,

−Pout
a0 + ψa0P

ave
a0 = −proot + R̂a0Q (1− 15Pe) ,

P in
a1 −Pout

a1 + ψa1P
ave
a1 = R̂a1Q (1− 15Pe) ,

...

P in
aN−1 −Pout

aN−1 + ψaN−1P
ave
aN−1 = R̂aN−1Q (1− 15Pe) . (2.88)

We can then find the compliant pressures on each generation by solving Equation (2.104), which

in matrix form can be written as

Apa = a, (2.89)

where A is the coefficient matrix of the compliant arteries, pa the vector of pressures, and a

is a vector of constants resulting from the rigid case and the compliant external pressure. Full

matrix details can be found in Appendix A.2.
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Capillaries

The capillary pressures in the compliant case are defined by

P in
c = Pout

aN−1, (2.90)

P in
c −Pout

c = RcQ, (2.91)

Pout
c = P in

vN−1, (2.92)

Ŝc = kc (Pave
c −Pe) , (2.93)

where the capillary resistance and the capillary permeability are the same as in the rigid case.

Veins

We apply the same considerations to the veins as we do for the arteries, and obtain the following

relationships,

A x
vn = Âxvn(1 + φvn)2, (2.94)

Â x
vn = Âxvn(1 + φvn)2, (2.95)

A s
vn = Asvn(1 + φvn), (2.96)

Â s
vn = Âsvn(1 + φvn), (2.97)

Vvn = Vvn(1 + φvn)2, (2.98)

V̂vn = V̂vn(1 + φvn)2, (2.99)

Svn =
kvA

s
vn

µcsfhvn
Ptrans

vn (1 + φvn), (2.100)

Ŝvn =
kvÂ

s
vn

µcsfhvn
Ptrans

vn (1 + φvn), (2.101)

R̂vn = R̂vn (1− 4φvn) , (2.102)

P in
vn −Pout

vn = R̂vnQ (1− 4φvn) . (2.103)
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where φvn = (15Ptrans
v /4Ev)2.

We assume P in
vN−1 = Pout

c , and that the compliant pressure for a given generation follows

Pout
vn = P in

vn−1. Expanding φvn in Equation (2.103) and letting ψvn = 15RvnQ we construct

the converging venous tree by setting n = N − i where i = 1, 2, · · · , N .

−Pout
vN−1 + ψvN−1P

ave
vN−1 = −Pout

c + R̂vN−1Q (1− 15Pe) ,

P in
vN−2 −Pout

vN−2 + ψvN−2P
ave
vN−2 = R̂vN−2Q (1− 15Pe) ,

...

P in
v0 −Pout

v0 + ψv0P
ave
v0 = Rv0Q (1− 15Pe) . (2.104)

We solve for the compliant pressures vector pv,

Vpv = v, (2.105)

where V is the venous coefficient matrix, and v is the venous vector of constants resulted from

the reference case and the compliant external pressure. Full matrix details can be found in

Appendix A.3.

2.5 Cerebral autoregulation

The brain is very sensitive to a shortage of oxygen and nutrients and must therefore maintain

uninterrupted blood supply in a regular and uniform manner. Acute changes in arterial blood

pressure, low or high concentrations of oxygen, carbon dioxide, nitric oxide, sudden changes in

temperature and muscle activation can all cause vessel dilation or constriction (Panerai, 2008).

The cerebral circulation has developed anatomical and physiological adaptations to ensure

uninterrupted blood delivery to the brain. Anatomically, examples include the circle of Willis

which allows for collateral flow in the case of one connecting vessel becoming obstructed, and

the large surface area of the microcirculation9 that ensures oxygen and nutrients are delivered
9Approximately 100 cm2/g of tissue (Pardridge, 2012).
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within a relative short distance to the brain tissue. Physiologically, the vessels dilate and

constrict to changes in pressure and metabolic demand.

Autoregulatory mechanisms maintain relatively constant blood flow despite pressure changes,

typically in the range of 60-160mmHg (Levick, 2010). In addition to metabolic and myogenic

factors, the cerebral circulation is also controlled by the sympathetic nervous system. The latter

can constrict large and medium size arteries during heavy exercise to prevent high pressure

reaching the microcirculation, although to a lesser extent as this can be overruled by the

autoregulatory mechanisms (Guyton, 2006). These mechanisms are triggered within 4 seconds

or less of increased arterial pressure (Aaslid et al., 1989). In cases where changes in pressure

are prolonged (chronic), long-term regulation adapts to a wider range of pressure (e.g. 50-

250mmHg) without significantly impacting blood flow. An effect of this includes increased or

decreased vascularity relative to tissue demand.

Cerebral autoregulation in humans was first described by Lassen (1959) in a review of studies

conducted on cerebral blood flow10 (Lassen, 1959, 1964). In his review, Lassen found that

extreme levels of cerebral hypotension, such as less than half the baseline mean arterial blood

pressure would cause critically low cerebral blood flow (CBF) which could lead to hypoxia

(Figure 2.8a). Hypertension on the other hand, did not cause a further increase in CBF in the

studies. He concluded that CBF was independent of changes in mean arterial blood pressure

and that only at very low pressure levels would CBF be compromised. Subsequent studies

found that an increase in pressure over 150 mmHg (above the limit studied by Lassen) was

indeed detrimental for CBF where it could increase to twice its baseline (Figure 2.8b).

Current cerebral autoregulation curves deviate from Lassen’s constant cerebral blood flow at

high pressures. In Figure 2.8b, Guyton presents an updated version of Lassen’s curve where it

can be seen that in acute autoregulation CBF increases mildly between 50 mmHg and approx-

imately 180 mmHg after which CBF becomes critically high, in long-term autoregulation CBF

does not significantly exceed these values.

Modelling efforts in autoregulation typically involve changes in cerebral blood flow to induced

10Autoregulation in animals had been studied by Fog two decades earlier (Fog, 1938).
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(a) (b)

Figure 2.8: Cerebral autoregulation curves. (a) Lassen autoregulation curve on the review of 11
studies on cerebral blood flow and changes with mean arterial pressure, source: Cerebral blood flow
and oxygen consumption (Lassen, 1959). (b) Guyton autoregulation curve, updated version of Lassen
curve (Guyton, 2006).

metabolic conditions e.g. arterial reactivity to CO2 where the vascular resistance is calcu-

lated and analysed in conjunction with what is known as static and dynamic autoregulation

where several key patterns have emerged (i.e. autoregulation index) for assessing the level of

autoregulation in a given subject.

The exact mechanism of cerebral autoregulation is complex and we do not attempt to investigate

it as part of this work. Instead, we focus on the effects autoregulation has on the vessels directly

and what this means for the rest of the cerebrovasculature.

2.5.1 Autoregulation function

Irrespective of the specific mechanisms driving autoregulation, it seems clear that from the

fluid mechanical point of view that the resulting effect is the expansion and contraction of the

blood vessels to promptly accommodate abrupt changes in pressure, to avoid disruption of the

smaller vessels and microcirculation.

If the vascular resistance is the key parameter in autoregulation, it seems appropriate to analyse
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further the effect of the resistance scaling ξ to changes in pressure. In §2.2 we defined ξn =

(λ/2γ2)n as this is the resistance scaling of the nth generation. However we assumed in §2.4

that changes in the length of a vessel are negligible compared to changes in its diameter, we

can then deduce that the changes due to autoregulation in our model must be solely expressed

by changes in γ.

To define the autoregulation function, we analyse the behaviour of γ at different input pressures,

dγ/dproot. By setting the acceptance criteria based on the output pressure of the small high

resistance arteries, capillaries and venules, it is possible to find the acceptable values of γ and

thus we can analyse the behaviour γ has when changing proot.

We use the same acceptance criteria set for the combination matrix in §2.3.3 with the following

differences: we keep all other scaling and factor parameters fixed (i.e. we use the values for

λ, ν and % as in Table 2.6); and we now extend this criteria to the compliant case as well.

We run the code with input pressure proot equal to 40 to 200 mmHg in steps of 5 mmHg and

record the values of suitable γ for which the pressures are within the acceptance criteria. Where

more than one value of γ is found, an average is taken for that inlet pressure. The results are

shown in Figure 2.9, where we observe the acceptable value of γ decreases as the input pressure

increases. This is reasonable since the CSA will be more restrictive at greater pressures.
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Figure 2.9: Changes in cross-sectional area scaling factor γ with respect to input pressure proot.

Suitable values for γ beyond 145 mmHg were not found directly and an extrapolation had

to be performed from the previous pressures. It can be seen in Figure 2.9 that even without
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those points the behaviour of γ with respect of proot closely resembles a power fit. We therefore

approximate the behaviour of γ with a power function,

γ = apbroot, (2.106)

where the coefficients are a = 0.6399 mmHg−1 and b = −0.03131. The model is highly sensitive

to changes in γ and the use of large number of significant figures is preferable.

In Figure 2.10 we observe the behaviour of the pressures throughout the vasculature with

this autoregulation function when run for a range of input pressures (Figure 2.10a), and the

behaviour of the CSA in (Figure 2.10b). Whilst this is a first approximation, we can observe

the effect of the autoregulation function for a range of input pressures in Figure 2.10a and the

effect in cross-sectional area in Figure 2.10b.
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Figure 2.10: Autoregulation function on, (a) pressure across the cerebral vasculature (b) CSA across
the vasculature. Here we see the arterial tree represented in red from generation 0 to generation N −1,
the capillaries in green (for the pressures only) in generation N , and the venous tree in blue from
generation N − 1 to generation 0.

We see that the functional consequences of the highly complex mechanism of cerebral au-

toregulation can be modelled reasonably well in our model by assuming that the area scaling

parameter γ is a function of proot.

In the next section (§2.6) we see the full set of results of the model for both rigid and compliant

cases, and we test the changes in different parameters on the model in §2.7. We discuss the
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significance of these results §2.8.

2.6 Results

We present the results for the rigid and compliant case for CSA, surface area, volume, resistance,

pressure through the small vasculature, transmural pressure, and transmural flux. The figures

describe the rigid case on the left and the compliant case on the right. The net value for each

generation is presented from the arterial generation 0 to generation N − 1, and for the venous

generation N − 1 to generation 0. In the case of resistance and pressure, we also add a data

point for the capillaries in generation N . This is consistant with the equations introduced in

§2.3–§2.4.

We use the boundary conditions for cerebral blood flow Q = 750 ml/min, arterial input pressure

proot = 90 mmHg, and external pressure pe = 11 mmHg. We use these and the rest of the

parameter values in Table 2.6. We give a brief description of the results in this section and

discuss them further in §2.8.

Cross-sectional area and transmural pressure

In Figure 2.11 we observe the net CSA increases with increasing generations, as we expect due

to the scaling boundaries introduced in §2.3.3. We notice that the net CSA for each generation

does not change significantly for the arteries, whilst in the veins it does, particularly for the

innermost generation (N − 1), i.e. smallest venules. Here we are assuming that the input

pressure is constant, we explore the effect of changing the input pressure in the next section

(§2.7).

The pronounced changes on the venous side (21% larger for the compliant terminal venule than

for the rigid case) is due to the smaller transmural pressure to elasticity ratio, φvn, which we

introduced in §2.4. From Equation (2.95) we can deduce that even if the veins have a smaller

transmural pressure than the arteries, the elastic modulus is one order of magnitude smaller
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Figure 2.11: Total cross-sectional area per generation for the rigid case (left), and the compliant case
(right).

than the arterial one, thus φvn will be sufficiently big thus allowing the veins with the smallest

transmural pressure to increase the most.

In Figure 2.12 we observe that the venous transmural pressure is smaller than 10 mmHg for

all generations, whilst that of the arteries is ≈ 60 mmHg in total. Between generations the

arterial transmural pressure can be up to a maximum of 15 mmHg (in the case of generation

N − 1), however, the arterial elastic modulus is still greater which results in φvn > φan. Taking

generation N − 1 for the arterial and venous case, we find that Ptrans
vn /Ev ≈ 10−1Ptrans

an /Ea.

The fact that the transmural pressure is negative in the rigid case makes no difference in the

rigid CSA since this is solely defined by the scaling law.

Assuming the high resistance arteries are found between generation 14 and generation N − 1,

we find that their CSAs are between 1 × 10−3 and 4 × 10−3 m2 for both rigid and compliant

cases. This is in agreement with values reported in literature where a range of 7 × 10−3 to

1.3× 10−3 m2 has been reported (Levick, 2010; Guyton, 2006; Caro et al., 2012).
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Figure 2.12: Net transmural pressure per generation for the rigid case (left), and the compliant case
(right).

Taking the same approach on the venous tree and assuming the venules are found between

generation N − 1 and generation 14, we find that their CSAs are between 3.5 × 10−3 and

1.4× 10−3 m2 for the rigid case, and between 1.8× 10−2 and 3.8× 10−3 m2 for the compliant

case. This is also in agreement with values reported in the literature where a range of 1.2×10−3

to 5.7× 10−2 m2 has been reported (Levick, 2010; Guyton, 2006; Caro et al., 2012).

Regarding the transmural pressure, as we keep a constant external pressure, the transmural

pressure curve is simply the vascular pressure minus the external pressure. We evaluate the

vascular pressure in detail later on this section.

Surface area

In Figure 2.13 we observe an increase in total surface area from generation 0 to generation

N − 1 for both arteries and veins, also as expected from the scaling law. Since the surface

area is related to the CSA, we see a similar behaviour between arteries and veins. We again
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see a more pronounced change in the small venules for the compliant case (an increase of 0.148

m2 in generation N − 1) due to the implications of the pressure-area relationship previously

mentioned.
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Figure 2.13: Total surface area per generation for the rigid case (left), and the compliant case (right).

Vascular surface area is typically measured in the microvascular region and when reacting to

certain metabolic agents (Pardridge, 2012; Rosen et al., 1991). Limitations of these measure-

ments include the extrapolation of a given area (typically in grey or white matter) to the entire

brain, the consideration of blood vessels only within the brain tissue when blood vessels are

found elsewhere in the cranium, or when measurements are made under certain pathological

conditions e.g. vascular surface area of a brain tumour.

To compare our results, we calculate first the estimated surface area of an individual small

artery and vein, and then scale to the total surface area with an approximate number of vessels

in the small vasculature. According to Levick (2010)11, the estimated number of blood vessels

in the small arteries and high resistance arteries is around 1,380,000 whilst that in the small

veins and venules is between 180,000-2,100,000 (Levick, 2010; Guyton, 2006). This gives a value

11Although this is an estimate taken from an animal model (dog mesentary), we take this data as a rough
estimate until more accurate measurements emerge.
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of 0.16–0.69 m2 for the total surface area of the small arteries and high resistance arteries, and

0.04–2.2 m2 for the total surface area of the small veins and venules. We observe that in both

cases our results are within this range.

Volume

Generation no
0 14 N 14 0

V
o
lu

m
e
 (

m
3
)

×10
-5

0

1

2

3

4

5

6

7

8

9

Generation no
0 14 N 14 0

V
o
lu

m
e
 (

m
3
)

×10
-5

0

1

2

3

4

5

6

7

8

9

Arteries
Veins

Figure 2.14: Net volume per generation for the rigid case (left), and the compliant case (right).

In Figure 2.14 we observe that the generational volume decreases with increasing generation

number, again as expected given the set of bounds we see the decrease in volume with increasing

generations. In the compliant case we also notice a mild increase in both arteries and veins from

the rigid case, with a more pronounced increase on the veins (0.54× 10−5m3) than the arteries

(0.18 × 10−5m3). This is a milder response than in the CSA which can only be attributed to

the normalising effect the length has on the volume.

To compare our results we take the same approach as in the surface area to obtain a range of

1.1 × 10−7–1.4 × 10−5m3 for the smallest arteries and high resistance arteries, and a range of
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1.7× 10−7–1.6× 10−4m3. We see the venous tree results are well within this range, and so are

the arterial tree with a mildly larger volume for the arterial root vessel (+0.77 ×10−5m3).

Resistance

In Figure 2.15 we see the generational resistance in the arteries is significantly greater than

their venous counterpart (over one order of magnitude) in both the rigid and compliant cases.

The compliant arterial resistance is mildly reduced from the rigid case (0.09 × 108 Pa.s/m3),

while in the veins the decrease in resistance is more pronounced (0.53 × 107 Pa.s/m3). We

also observe that the introduced constant capillary resistance is very close to the last arterial

generation (N − 1). This is physiologically desirable since it is commonly accepted that the

majority of the vascular resistance occurs on the small high resistance arteries and capillaries.
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Figure 2.15: Total resistance per generation for the rigid case (left), and the compliant case (right).

Values for vascular resistance in the brain are reported with respect to the resistance to outflow

(Czosnyka et al., 2012). This is not comparable to this vascular model as the outflow in the
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brain relates to that on the venous dural sinuses, which we introduce in the intracranial model

(Chapter 3). In this vascular model we are interested in the smaller vasculature.

Pressure in the vasculature has a pronounced drop across the small arteries and high resistance

arteries. In the brain, in addition to the smooth muscle activation there are metabolic influences

that guide the arterial wall to dilate or contract according to local tissue demand. Since vascular

resistance is related to the fourth power of the radius (in laminar flow by Hagen–Poiseuille),

we can expect that a decrease in radius will result in a significantly increased resistance.

Given the pressure drop between arteries and high resistance arteries in the rest of the body,

which is comparable to that in the brain, and knowing the cerebral blood flow, we can estimate

that for the last arterial generation N−1, this would be in the range of 1.3×10−2 to 2.7×10−2

mmHg.min/ml (1.1×108–2.1×108 Pa.s/m3), which is what we find. For the veins the pressure

drop is very small and thus we find the resistance in generation N − 1 very small (1× 10−3 to

2× 10−3 mmHg.min/ml) and that of generation 0 close to zero (≈ 1.2× 10−6 Pa.s/m3).

Pressure

The characteristic pressure curves can be seen in Figure 2.16. We observe how the high resis-

tance arteries cause the majority of the pressure drop, confirming what we saw in the resistance

results (Figure 2.15). We also see that the pressure drop between the the arterial generation

N − 1 and the capillaries is smaller in the compliant case than in the rigid case, this is reason-

able since the resistance in the arterial generation N − 1 decreased for the compliant case thus

allowing for a smaller pressure drop.

We also notice that the venous pressure drop is small in both cases but even more so in the

compliant case. This is expected since the veins have thinner walls (introduced as 0.1 dvn),

thus the changes in resistance will be very small which is also linked to the compliant CSA

being less pronounced (as we saw in Figure 2.15). In the rigid case the small pressure drop is

due to scaling of the vessel radius (and the small pressure feeding to it from the capillaries).

The values of these pressures are also within those reported in literature (Guyton, 2006).
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Figure 2.16: Net pressure per generation for the rigid case (left), and the compliant case (right).

Transmural flux

The transmural flux, which is the fluid transferred to the space outside the vasculature, can be

seen in Figure 2.17. Here we observe a noticeable difference between the rigid and compliant

cases, specially with respect to the capillaries. The absolute values for the arteries remain

relatively constant, however, in the veins flux is going into the vasculature (negative transmural

flux). The reason for this is due to the negative transmural pressure seen in Figure 2.12.

Negative transmural flux is also possible in the compliant case, but this is relatively small

compared to the changes in the rigid transmural flux.

We see the higher values for transmural flux in the vascular tree occurs in the smaller arterial

vessels which is expected due to the smaller vessel thickness. This arterial transmural flux,

however, is only a small proportion of that in the capillaries, the arterial transmural flux in

generation N − 1 for example, is one fourth that of the capillaries. We also notice that for the

rigid case the capillaries transmural flux is less than half that of the compliant case. The reason

for this is due to a smaller transmural pressure than in the compliant case (Figure 2.12).
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Figure 2.17: Net transmural flux per generation for the rigid case (left), and the compliant case
(right).

If we assume the flux in the arteries is the flux going into the ventricles via the choroid plexuses,

we find a good agreement with the measured CSF production rate of 0.25–0.47 ml/min (Czos-

nyka et al., 2004; Damkier et al., 2013). However neither does a single generation feeds into

the ventricles nor it is exclusively done by the arteries as the capillaries also contribute. We

review this and other details as part of the intracranial model in Chapter 3 where we add the

CSF spaces and analyse them along with the vasculature.

2.7 Parameter sensitivity analysis

We investigate the sensitivity of the model against all the parameters introduced with the

exception of the scaling factors and ratios as these were reviewed in detail as part of §2.3–§2.5.

From here onward we use only the compliant case for our model. We also analyse the sensitivity

of the model to the boundary conditions, that is, to cerebral blood flow Q, input pressure proot,

and external pressure pe.
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The parameters with arterial and venous counterparts, i.e. vessel permeability, elastic modulus

and vessel length, are changed by means of a ratio that is applicable to both arteries and veins

as indicated in their respective sections.

We present the variables most affected by each of these parameters. We use a one-at-a-time

sensitivity analysis method and analyse the effect each of the parameters has on the model

whilst keeping the rest of the parameters fixed. In the case of transmural flux, we show the

results for the arterial and venous trees as we deduce the changes in the capillaries are directly

proportional to the transmural pressure, we thus show only the change in capillary pressure

and discuss if significant changes in capillary transmural flux occur. We discuss here and in the

next section the impact on the model and its physiological relevance.

Permeability

We change the permeability of the root vessel of the arterial and venous trees by a factor of

±50% with respect to their baseline value, represented here as kb. As per Table 2.6, the baseline

permeability for the arteries is 1× 10−21 mm2, and for the veins 0.5× 10−21 mm2. Changes in

permeability affect only the transmural flux on the model, we thus show the arterial and venous

transmural flux only since the lumped transmural flux in the capillaries changes linearly, i.e.

the capillary baseline value of 1.9 ml/min changes by ± 0.94 ml/min.

We observe in Figure 2.18 that the larger the permeability the larger the transmural flux.

We recall the parameters in Equations (2.85) and (2.101) where we see that all, except for

viscosity and elastic modulus, are directly related to the transmural flux. Since pressure remains

unaffected by the change in baseline permeability, and we keep a constant external pressure,

we can deduce that the changes in transmural flux from the baseline will be solely due to the

change in permeability, which is what we find. If we observe the values for generation N − 1

of the arterial and venous trees, their values are exactly ± 50% from the baseline. Further

scenarios tested showed this was the case for all.

We conclude that the vessel permeability affects the transmural flux only, and this change is
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Figure 2.18: Transmural flux sensitivity to vascular permeability, where kb is the baseline perme-
ability.

proportional to the introduced change in permeability, as expected. As mentioned in §2.2.1

and §2.2.3, we assume that S << Q, so the effect of S on the vasculature is negligible.

Elasticity

The model is highly sensitive to changes in the elastic modulus of the root vessel of the arterial

and venous tree. We present here changes of ±15% from their baseline value, denoted as Eb.

As per Table 2.6, the baseline elastic modulus for the arteries is 9× 105 Pa, and for the veins

7 × 104 Pa. Changes in elastic modulus affect most significantly the pressure, CSA, volume,

and transmural flux. The changes in pressure are directly proportional to all the variables (as

per the equations in §2.4), thus it is unsurprising to see an increase in the rest of the figures as

pressure increases.

We observe in Figure 2.19 that the effects are mostly on the venous side, with consistently

higher pressure the lower the elastic modulus. This is consistent with Equations (2.87) and

(2.103), where we can observe that the transmural pressure to elastic modulus ratio φn would

increase the smaller the elastic modulus.

In Figure 2.12 for the compliant case we observed there is a positive transmural pressure for the
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Figure 2.19: Sensitivity to elastic modulus, where Eb is the baseline elastic modulus. (a) Pressure
across vasculature, (b) cross-sectional area, (c) volume, (d) transmural flux.

baseline case, by reducing the elastic modulus whilst keeping a constant external pressure we

can see how we would obtain an increase in pressure. This can also be appreciated in Equation

(2.104) where the pressure terms on the left hand side which are higher than the external

pressure on the right hand side due to the positive transmural pressure, would indeed increase.

If the transmural pressure were negative (i.e. the constant external pressure was higher than

the baseline), the opposite would occur.

In Figure 2.19b we see the CSA has a nonlinear decrease between generation N − 1 and gener-

ation 0 of the venous side, when the elastic modulus is 15% less than the baseline. For a higher

elastic modulus the changes are smaller and closer to the baseline.
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In the case of the volumes (Figure 2.19c), we also see a greater effect when the elastic modulus is

smaller, however, here the effect is more pronounced towards generation 0 rather than towards

the smaller venules (generation N − 1). The reason for this is the balancing effect of the

increasing length towards the bigger veins, which is greater than the change in elastic modulus

as per the scaling factor λ.

In Figure 2.19d we observe the changes in transmural flux are slightly more pronounced in the

case of the smaller elastic modulus but not significantly so. We also see there is small effect

on the high resistance arteries, in particular arterial generation N − 1. This is expected since

the compliant surface area is no longer a quadratic expression with respect to the transmural

pressure to elastic modulus ratio but rather a linear one, as seen in Equations (2.81) and (2.97).

This results in milder effects for the transmural flux. If pressure were more significantly different

to changes in elastic modulus, we would see a greater effect on transmural flux as the latter is

directly affected by them.

We conclude that the model is highly sensitive to changes in the vessel elastic modulus, par-

ticularly on the venous side. The changes are more pronounced when the elastic modulus is

smaller, where we see an increase in all variables.

Length

Due to the scaling relationships, the model is very sensitive to changes in vessel length, even

though we neglect changes in vessel length with changes in pressure. The effects are accentuated

on the venous side due to the pressure-area relationship introduced in §2.4 where the elastic

modulus is smaller than its arterial counterpart. We present here changes of ±10% from their

baseline value, denoted as lb. As per Table 2.6, the baseline length for the arterial and venous

root vessel is 8.5× 10−2 m.

In Figure 2.20a we observe the venous pressure increases as we reduce the length. This makes

sense since we assume Hagen–Poiseuille flow, however, the pressure drop is not changed by the

same factor as the length is being changed.
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Figure 2.20: Sensitivity to length of root vessel, where lb is the baseline length. (a) Pressure across
vasculature, (b) cross-sectional area, (c) volume, (d) transmural flux.

If we re-arrange Equation (2.104) so that all the terms of pressure, except for external pressure,

are on the left hand side, and expand ψvn we obtain

P in
vn −Pout

vn =
ξnRv0Q (Ev − 15Pe)

1 + 7.5ξnRv0Q
. (2.107)

Hence we can see that a change in the length of the root vessel, which is in Rv0, will have a

nonlinear behaviour on the pressure drop, which is what we observe. The pressure difference

for the larger length is greater than that of the small length. This behaviour of the pressure

difference causes the average pressure to change which ultimately affects the transmural pressure

and the rest of the variables.
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In Figure 2.20b we see the effects on the CSA. As we saw in §2.4, the compliant CSA has

a quadratic relationship with respect to the rigid case. This relationship is driven by the

transmural pressure to elastic modulus ratio φ, which as we know, it is greater in the smaller

venules, which is why the effects are more pronounced on this region.

In Figure 2.20c we see that as in the previous case (elastic modulus sensitivity), the volume is

affected more in the bigger veins due to the direct relationship length has with volume, which

is more significant than the transmural pressure to elastic modulus ratio.

We can observe transmural flux in Figure 2.20d, where we appreciate that in the case of an

increase in length, the pressure decreases to below the external pressure causing a negative

transmural flux in the smaller venules. In other words, as we increase the length, the transmural

pressure becomes negative, and flux is transferred into the venules.

We conclude that the model is highly sensitive to length, where we see a nonlinear effect on

pressure which causes the rest of the variables to become significantly affected. As the length is

increased, pressure can fall below the external pressure value allowing flux to enter the venules

transmurally.

Capillary resistance

We present changes of ±25% from the baseline capillary resistance, denoted as Rc. As per Table

2.6, the baseline capillary resistance is 0.02 mmHg.min/ml. Changes in capillary resistance are

more significant in the pressure, which in turn affects CSA, volume, and transmural flux. As in

the previous cases, the changes are noticeable on the venous side for reasons already mentioned.

As we increase the capillary resistance, the capillary pressure drop increases resulting in a

smaller input venous pressure, as expected.

In Figure 2.21a we observe the pressures in generation N − 1 change by 4 mmHg from the

baseline, approximately 25% for each 25% of capillary resistance. This is consistent with

Equation (2.91) where we assume a linear relationship between capillary resistance and capillary

output pressure which then becomes the venous input pressure of generation N − 1. There is a
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Figure 2.21: Sensitivity to capillary resistance, where Rd is the baseline capillary resistance. (a)
Pressure across vasculature, (b) cross-sectional area, (c) volume, (d) transmural flux.

mild pressure drop for the higher capillary resistance between generation N − 1 and generation

14. The pressures however, change linearly between generation 14 and generation 0.

The change in pressure causes the CSA to have changes of approximately ±5 mm2 on the

venous generation N − 1 (Figure 2.21b), that is a change of 28% for each 25% change in

capillary resistance. On volume (Figure 2.21c) the effect is more pronounced in generation 0

(as in previous cases), and we see a change of approximately ±20 cm3, representing the same

percentage change as in the CSA.

Regarding transmural flux, we see that as the capillary resistance increases the pressure de-

creases to below the external pressure, and thus the negative transmural flux forces flux into
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the smaller venules (Figure 2.21d). The changes in transmural flux are approximately ± 0.09

ml/min in the venous generation N − 1. The baseline transmural pressure at the venous gener-

ation N − 1 is approximately 3.4 mmHg; if this transmural pressure increases by 1 mmHg this

translates into a change of 30% in transmural flux, thus a change in over 3 mmHg causes the

transmural flux to change by a factor of 2, as is the case here.

We conclude that changes in capillary resistance have a linearly proportional effect on the venous

pressure, CSA and volume. Transmural flux is very sensitive to changes in transmural pressure,

therefore any change in pressure from the baseline transmural pressure has a significant effect

on the transmural flux. As in previous cases, when the transmural pressure is negative, the

transmural flux is also negative.

External pressure

We present changes of ±5 mmHg from the baseline external pressure, denoted as pe. As per

Table 2.6, the baseline external pressure is 11 mmHg. We observe in Figure 2.22 that changes

in external pressure have a significant effect on the venous pressure drop, and thus the rest of

the variables.

In Figure 2.22a we observe that at lower external pressure, there is an increase in venous

pressure, and an increase in transmural pressure. This is expected as per Equation (2.104),

where we also see that increasing external pressure decreases the transmural pressure. For high

external pressure we see that the transmural flux (Figure 2.22d) becomes negative which means

the transmural pressure has also become negative and therefore the venous pressure is smaller

than the external pressure, which is what we see in Figure 2.22a. A significant increase in

transmural flux is seen when the external pressure decreases, as expected.

In Figures 2.22b and 2.22c we observe the changes in CSA and volume are slightly more

pronounced, which is expected since they are both dependent on changes in transmural pressure.

As the external pressure decreases the transmural pressure increases and the CSA increases from

its baseline case. We see a similar behaviour in the volume Figure 2.22c, although with changes
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Figure 2.22: Sensitivity to external pressure, where pe is the baseline external pressure. (a) Pressure
across vasculature, (b) cross-sectional area, (c) volume, (d) transmural flux.

more pronounced towards the venous root vessel, for reasons already explained.

We conclude that the external pressure has a moderate effect on the model, with particular

emphasis on the venous side due to its small transmural pressure and smaller elastic modulus.

The change in external pressure was over ± 50% the baseline value, however, since the value

of the external pressure is smaller than the arterial, we see there is no effect on the arterial

side. In the case of the venous side, the change represents a noticeable increase and decrease

for the already small transmural pressure which translates into smaller and larger values from

the baseline. We see that the smaller the external pressure, the larger the transmural pressure

which allows the rest of the variables (i.e. venous pressure, transmural flux, CSA, and volume)
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to increase.

Cerebral blood flow

We present the effect of changes in cerebral blood flow, Q, of ±50 ml/min from the baseline.

As per Table 2.6, the baseline value is 750 ml/min. We can observe in Figure 2.23 that the

model is very sensitive to changes in cerebral blood flow, specially on the venous side.
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Figure 2.23: Sensitivity to cerebral blood flow, where Q is the baseline cerebral blood flow. (a)
Cross-sectional area, (b) volume, (c) surface area, (d) pressure, (e) transmural flux.

Changes in cerebral blood flow have a similar effect on the variables as changes in length. The

reason for this can be appreciated in the re-arranged Equation (2.107). There we can see the

qualitative behaviour of cerebral blood flow with changes from the baseline. Quantitatively

however, we see that cerebral blood flow requires only 6% of change from the baseline to have a

significant effect (as opposed to 10% in length changes). This is because by changing Q, which
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is a boundary condition, the pressure changes as per Hagen–Poiseuille equation in the reference

case. In other words, we are setting new boundary conditions in the model and the pressure

needs to accommodate for this.

In this analysis we also present changes in surface area (Figure 2.23c), which, unlike previous

cases, is now affected. As we do not change the resistance but rather the cerebral blood flow

directly, the vascular resistance remains unaffected apart from mild changes on the smallest

venule due to the change in transmural pressure.

We conclude the model is highly sensitive to changes in cerebral blood flow, with the venous

pressure being most affected which in turn affects the rest of the variables.

Input pressure

Here we see the effects that changes in input pressure have on the model. We vary the input

pressure by ±30 mmHg from the baseline, denoted as proot. As per Table 2.6, the baseline input

pressure is 90 mmHg. We observe in Figure 2.24 that changes in input pressure have a more

significant effect on the arterial side than on the venous one, this is expected since proot = P in
a0.

In Figure 2.24a we observe that irrespective of the input pressure, the pressure in the capillaries

and on the venous side remains relatively similar to the baseline (within ≈3–5 mmHg), which

is what the autoregulation function is intended to do. In §2.5 we introduced an autoregulation

function based on scaling factor γ to accommodate for changes in pressure. The changing γ

allows the CSA to change (Figure 2.24b) which in turn changes the arterial resistance (Figure

2.24c) and thus the arterial pressure, which is what we see here.

We distinguish the behaviour from the previous cases (where the majority of the changes were

due to the pressure-area relationship) by noticing that the changes in CSA are not directly

proportional to the change in the pressure. In Figure 2.24b we observe that the arterial CSA

has an opposite effect from the pressure. Since we see that the changes in resistance due to

changes in the input pressure occur almost entirely in the smaller arteries, we observe in Figure

2.24c that the higher arterial CSA results in a lower arterial resistance. This is a nice feature of
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Figure 2.24: Sensitivity to input pressure, where proot is the baseline input pressure. (a) Pressure
across vasculature, (b) cross-sectional area, (c) resistance, (d) transmural flux.

the model since we see the changes in resistance due to changes in input pressure occur almost

entirely in the smaller arteries, as reported physiologically (Guyton, 2006; Levick, 2010).

We also see in Figure 2.24b that autoregulation is taking place in the venous CSA where γ is

allowing the venous CSA to remain relatively close to the baseline, thus having minimal impact

on the resistance and ultimately the pressures.

Lastly, we observe in Figure 2.24d that since the lower input pressure results in a venous

pressure that is below the external pressure value, negative transmural flux occurs in the smaller

venules. For the arterial transmural flux, the changes can be seen to be consistent with changes

in pressures which thus affect the transmural pressure and gives the directly proportional results
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on the arterial transmural flux that we observe.

We conclude that changes in input pressure result in a change in γ, as introduced by the

autoregulation function in §2.5, which results in a change in CSA and vascular resistance that

allows the pressure in the capillaries and venous side to remain very similar to the baseline

values. The changes from input pressure on the transmural flux are directly proportional to

those of the arterial and venous pressure.

2.8 Summary and discussion

In this chapter we developed a one-dimensional steady flow vascular model of the cerebral

circulation, with specific focus of the smaller vessels. From first principles we constructed sym-

metrical bifurcating trees for the cerebral arteries and veins connecting to a lumped-parameter

compartment representing the capillaries. The model assumes mass is conserved within the

vasculature, and simplification of the Navier–Stokes equations leads to the Hagen–Poiseuille

equation to describe flow through the cylindrical vessels. These governing equations work

alongside a set of scaling laws derived from the cross-sectional area scaling factor γ and the

length scaling factor λ for the construction of the vascular trees with N generations. The geo-

metrical series starts from an effective root vessel that incorporates the major arteries entering

the cranium and the circle of Willis, giving rise to the bifurcation of the smaller vessels in the

brain (§2.1–§2.2).

The selection of parameters combines values taken from the literature, along with relationships

between arteries and veins described in the form of the arterovenous diameter ratio ν and the

root vessel ratio %. We select a range of acceptability for ν between 1–3 based on the larger

veins compared to arteries, and for % a range of 0.6–0.8 based on the comparison of an internal

carotid artery diameter and that of a smaller artery.

The size of the trees is defined by the number of generations, which is in turn associated with

the number of capillaries in the brain. Through a volumetric flux argument we select a first
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estimate of 28 generations which we later test, within the limits of ± 8 generations, along with

the scaling factors and ratios (§2.3.3).

The scaling factors follow tight inequalities from physiological assumptions that result in an

acceptable region resembling that of a right angle triangle between a range of values for γ

(0.5–0.635) and those of λ (0.794–1) from which physiologically acceptable combinations of

the two scaling factors can be derived. We use this region in combination with the number

of generations, arterovenous diameter ratio and the root vessel ratio to create a feasible set of

combinations for the model (§2.3).

Once the reference case is constructed, we account for compliance by introducing a constitutive

relation between stress and strain to allow distensibility of the vessel wall with changes in

pressure. This pressure-area relationship uses the reference case from which changes in the vessel

occur. We found that through simplifications of previous assumptions, the cross-sectional area

is directly proportional to the quadratic of the transmural pressure to elastic modulus ratio, φ.

This changes with every generation and it is one order of magnitude greater on the venous side

due to the smaller elastic modulus. From this relationship we find the rest of the parameters

including the compliant pressures, which as mentioned, are relative to the reference case (§2.4).

The simplicity of the vascular trees constructed along the physiological arguments around their

scaling laws offers the detail and robustness of a distributed model at a low computational

expense. This is key when attempting to understand the behaviour of the cerebral circulation,

since important parameters such as the elastic modulus of the vessels or changes in the mean

arterial blood pressure can be analysed easily to study their effects on the rest of the vasculature.

Another key feature in our model is the introduction of autoregulation. The brain uses a

complex set of interactions to regulate blood flow. As we focus on the fluid mechanical features

in this model, we can see that the effects of autoregulation has on the vasculature are in vascular

resistance, primarily in the high resistance arteries. Since in our model the vascular resistance

is a function of γ and λ, and since changes in length are negligible to those of cross-sectional

area, we concluded that we can capture the effects of autoregulation in our model by changes in

γ. We therefore introduced an autoregulation function that allows for changes in cross-sectional
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area regulated by changes in pressure.

This change in γ results in sustained constant cerebral blood flow with minimal or no affect on

the capillaries and veins. The result not only describes the crucial effects of autoregulation in

the cerebral circulation, as seen by the pressure and cross-secitonal area plots, but it highlights

in our model that the complex mechanisms driving autoregulation can be accounted for in this

scaling factor γ. Having a single parameter, γ in this case, that describes a series of processes

is one of the driving features of modelling. By understanding the simple, we can explore the

complex, as is in this case for the processes involved in autoregulation. To our knowledge, this

approach to autoregulation is novel in cerebral modelling before (§2.5).

We present the results for the rigid and compliant case in §2.6 for the baseline boundary condi-

tions previously defined. The model finds the cross-sectional area, length, volume, surface area,

resistance, pressure and transmural flux throughout the vasculature, with detail for individual

vessels and between generations (although we only showed net values). Here it was possible

to see the subtle and yet very important differences the pressure-area relationship makes on

the model. We observed how the total cross-sectional area and surface area of the smallest

venules grows from the rigid case as compliance is introduced, due to the smaller ratio between

transmural pressure and elastic modulus. The compliant volume changed mildly from the rigid

case, and it is only noticeable in the larger veins where a small increase (≈ 5 × 10−6 m3) is

seen due to the small transmural pressure and larger cross-sectional area from the rigid case.

With respect to resistances, we notice a small decrease in the compliant case and how the veins

have close to zero resistance. We also note that the resistance of the last arterial generation is

approximately equal to the capillary resistance, confirming this is a good first approximation.

The characteristic pressure curve from arteries to veins is seen to be more physiologically

reasonable for the compliant case where we observe a greater pressure drop in the high resistance

arteries. We also notice the venous pressure remains higher than the external pressure which

ensures a positive transmural pressure for the compliant case. The transmural flux can be seen

to take place predominantly in the smaller vessels as expected, and that this is significantly

greater on the arterial side than the venous side. In the rigid case the venous transmural pressure
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is negative for the smaller vessels which causes a negative transmural flux. In the compliant

case the transmural pressure is positive and small, which directly translates to the transmural

flux. We also saw the significant difference the compliant case made with the capillary flux

where a value twice that of the rigid case is observed. We find the values produced by the

model are within a physiologically reasonable range.

The model was also tested within a range of parameters finding that the model is highly sensitive

to changes in elastic modulus, length and cerebral blood flow, and moderately sensitive to

changes in capillary resistance, external pressure and input pressure (§2.7). Changes in vascular

permeability only affected transmural flux, and in a relatively proportional manner. This is

rather expected since we have assumed that the transmural flux is much less than the convective

flux of blood through the vasculature and have neglected its effect on the hemodynamics. We

saw early in the chapter how the model was highly sensitive to changes in γ and λ, it is therefore

unsurprising to see the model being significantly affected by changes in the root vessel length,

where we see that an increase in 10% the baseline value is enough to reduce the venous pressure

to values close to zero which then causes the transmural pressure to become negative as this is

below the external pressure value, and thus predicts negative transmural flux.

The elastic modulus is important in describing the compliant behaviour of the model, and given

that the veins have a transmural pressure to elastic modulus ratio one order of bigger than the

arterial one, it is expected that a change in the elastic modulus has a bigger impact on the veins

than the arteries. The sensitivity tests reveal that changes in elastic modulus by ± 15% are

significant on the venous side. The changes appear more significant when the elastic modulus is

decreased than when it is increased, this makes the ratio even smaller which causes the venous

pressure to rise and thereby affects all the other variables as they are directly dependent of the

transmural pressure.

This influence of the elastic modulus is interesting from a physiological point of view since the

blood vessels are thought to get stiffer with age, and blood pressure is also relatively higher

in the older population (Greenwald, 2007). According to our model, blood pressure in the

brain could increase as a result of the vessels becoming stiffer. Interestingly, according to our
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model, the cerebral circulation would accommodate for a change in elastic modulus as long as

the increase is not greater than 15%. As with many things in physiology, this is not the full

picture since the stiffening of the blood vessels would also have an impact on the surrounding

cerebrospinal fluid which would ultimately affect the cerebral veins (we explore this in the next

chapter). However, as far as the vasculature alone is concerned, our model is able to account

for this physiologically relevant behaviour in the brain.

Changes in cerebral blood flow can be compensated for in the cerebral circulation, according

to our model, as long as these are within ± 50 ml/min. This seems like a very tight limit, and

it is possible that this would be the case if no other factors were involved to compensate the

changes, however, as we shall see in Chapter 3, this is also dependent on the interaction with

cerebrospinal fluid.

The model was mildly sensitive to changes in capillary resistance, where it was able to accom-

modate changes up to ± 25% from the baseline. The effect was only noticeable on the venous

side since the capillary resistance affects the capillary output pressure that feeds into the veins.

Here it was observed that the higher the capillary resistance the lower the input pressure, and

thus all the rest of the variables. This is reasonable due to the Hagen–Poiseuille relationship

we established.

The model is, perhaps unsurprisingly, sensitive to external pressure for the compliant veins.

The changes introduced were in the region of ± 50% its baseline which proved to be significant.

However, since this is a boundary condition not involved with any of the scaling laws introduced

(as opposed to the cerebral blood flow and input pressure) and it only relates to the transmural

pressure, the changes are relative to the transmural pressure to elastic modulus ratio.

We analysed further the effects of autoregulation by observing the changes in the rest of the

parameters to different input pressures. We were able to see that unlike the other parameter

tests, changes in input pressure affected both arteries and veins but to a greater extent on the

arterial side. We could see that as the input pressure increases so does the arterial resistance

due to the inverse fourth-power law of the cross-sectional area and associated regulatory γ.

This is a nice depiction of the effects of autoregulation and one that is often reported in the
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literature (Panerai, 2008; Guyton, 2006).

2.9 Concluding remarks

• We constructed a set of bifurcating trees representing the small cerebral arteries and veins,

connected through a lumped-parameter capillary compartment, with the use of two main

scaling factors (γ for cross-sectional area and λ for length).

• The resulted cerebrovascular model is compliant as per a pressure-area relationship based

on a reference (rigid) case.

• Autoregulation is incorporated to the model by means of changes in γ.

• Results show the compliant case adequately models changes in the cerebral vasculature.

• The sensitivity results show the changes in the cerebral circulation when different param-

eters (e.g. pressure, blood flow, elastic modulus, permeability) vary.

• The model neatly captures the main features of the cerebral circulation by means of

simple scaling relationships, from first principles, and at a low computational expense.



Chapter 3

Intracranial model

In this chapter we enhance the vascular model developed in Chapter 2 by introducing the

cerebrospinal fluid spaces and investigating their interaction with the cerebral vasculature. We

explore: (1) dynamics of pressures and fluxes of the cerebrospinal fluid compartments for a range

of parameters; (2) effects of opening and closing the arachnoid villi valve on the intracranial

pressures and fluxes; (3) stability of the solution to perturbations; and (4) effects of changes in

cerebral blood flow and vascular input pressure, on the cerebrospinal fluid.

3.1 Introduction to the model

The primary intracranial fluid compartments outside the vasculature are the cerebral ventricles

and the subarachnoid space (SAS), where most of the cerebrospinal fluid (CSF) resides. The

SAS was introduced in Chapter 1 and defined as the space delimited by the arachnoid mater

at its outermost part, and the pia mater at its inner part (Figure 3.1). Thus the CSF in the

SAS surrounds the brain, cerebral ventricles, and vasculature. This CSF can influence the

vasculature, and the vasculature can also influence the pressure in the SAS, in particular by

the expansion and contraction of the vessels during each cardiac cycle (Wagshul et al., 2011;

Terem et al., 2018). The other major site of localised CSF are the cerebral ventricles. Here,

the choroid plexuses are thought to produce the majority of CSF (Sakka et al., 2011), however

99
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the sources and volume of the CSF production remain under debate (Brinker et al., 2014).

Extrachoroidal CSF production is difficult to quantify; however, studies suggest that the total

CSF turnover from other sources (presumably vascular) could be substantial (Bering Jr and

Sato, 1963; Koh et al., 2005). Globally, CSF production has been estimated between 0.25–0.47

ml/min (mean 0.35 ml/min), with variability dependent on metabolic rate (Czosnyka et al.,

2004).

Figure 3.1: Cerebral meninges. Interaction between blood and CSF, and localisation of arachnoid
villi.

Ventricular CSF communicates with the subarachnoid CSF through the foramen of Magendie

and the foramen of Lushka1, the pressures in the ventricles and SAS are thus related. Similarly,

ventricular and vascular pressures interact with one another via the choroid plexuses. Due

to restrictions on volume expansion of the SAS, and the ability of CSF to flow in response

to pressure gradients, it is likely that CSF pressure in the SAS has a significant influence

in the CSF pressure in the ventricles, more so perhaps than the vascular pressure. Early

experiments on hydrocephalus led surgeons to the removal of the choroid plexuses in order to

stop progression of the condition (Dandy, 1918), as it was believed all CSF was produced in the

choroid plexuses, and hydrocephalus might be the result of overproduction. Not only was the

procedure unsuccessful, but it led to the reassessment of the choroid plexus as a single source

of CSF production and its specific involvement in hydrocephalus.

It has been observed in animal experiments that enlargement of the ventricles can occur when a

blockage is imposed in one of the ventricular pathways e.g. aqueduct of Sylvius (Klarica et al.,
1Also known as the median and lateral apertures, respectively. See Chapter 1 for further anatomical detail.
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2009). In non-stenotic conditions ventricular enlargement can also occur when intracranial

pressure is kept at a constant high pressure (> 15 mmHg), irrespective of CSF production rate

(Børgesen and Gjerris, 1987). This also suggests pressure in the SAS is highly influential on

the ventricles.

Despite the importance of this pressure interaction between ventricles and SAS, in modelling

of the intracranial dynamics it is often assumed that the pressure difference between the two

is negligible (Ursino and Lodi, 1997). In our model we treat them as distinct pressures, and

study them alongside the vasculature.

The venous dural sinuses2 are major sites of drainage for both CSF from the SAS, and de-

oxygenated blood from the cerebral vasculature. The dural sinuses have the characteristic of

being surrounded by a rigid structure, the skull. They are, as it name suggests, enclosed by

the dura mater membranes, where the periosteal dura mater lines the skull, and the meningeal

dura mater is adjacent to the arachnoid mater (Figure 3.1).

The arachnoid mater has small granulations, or villi, and connects the SAS with the venous

dural sinuses. These arachnoid villi essentially act as one-way valves allowing fluid in the

SAS to exit when pressure in the SAS is greater than that in the dural sinuses. It has been

shown experimentally that there cannot be flow from the dural sinuses to the SAS (Welch and

Friedman, 1960). This is important since it allows maintaining a balanced pressure gradient

between the SAS and the cerebral circulation. Furthermore, these valves might also help

overcome the effects of subatmospheric pressure in the venous circulation.

In the standing position, pressure in the head and neck becomes subatmospheric, leading to the

partial collapse of the internal jugular veins (Guyton, 2006). The valve function of the arachnoid

villi prevents blood flowing into the SAS when the hydrostatic pressure difference between the

cranium and the heart is other than zero3. In the supine position, the valve function of the

arachnoid villi also prevents blood flowing into the SAS when the pressure difference between

the SAS and the dural sinuses is positive.

2For simplicity, we refer to the venous dural sinuses as dural sinuses in this document, and to the cerebral
ventricles as ventricles.

3We explore the effects of hydrostatic pressure in the intracranial fluids in Chapter 4.
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We introduce the effects of the arachnoid villi as a one-way valve in our model and study its

effect on the interaction between pressures and fluxes. We assume a supine position in this

model.

In Chapter 2 we covered the cerebral vasculature in detail. We now expand this model by includ-

ing the ventricles, dural sinuses, and SAS. Modelling these three new spaces in one-dimensional

form, can present significant difficulties. For example, the ventricles are not geometrically con-

gruent with simplifications for axisymmetric one-dimensional flow (e.g. not cylindrical, thus

Hagen-Poiseuille flow cannot be assumed), neither is the SAS, although it can be argued the

latter could be represented spherically, however by doing so, we would be scaling up the com-

plexity of the model even further, thus departing from the simplicity we set off to achieve. In

compartmental analysis (a 0D model), we can overcome these challenges. Here the pressures are

assumed to be uniform throughout the compartment but not constant in time, facilitating the

analysis without assuming a particular geometry. We can couple the one-dimensional vascular

model with a compartmental intracranial model of the CSF spaces by taking the averaged effec-

tive pressure of the vasculature interacting with an external CSF pressure (and related fluxes),

whilst retaining the set of parameters affecting the vasculature and assessing the interaction of

the new compartments with the vascular model.

We present a zero-dimensional (0D) intracranial model comprising of four compartments: the

cerebral vasculature (compartment 1), the venous dural sinuses (compartment 2), the cerebral

ventricles (compartment 3), and the intracranial SAS (compartment 4). The model is depicted

in Figure 3.2, where the arterial input is denoted by red arrows, the venous output by blue

arrows, and the CSF flux between compartments by purple arrows.

We define p∗1 as the effective pressure of the vascular model (compartment 1). It can be thought

of as the pressure that if it were the same as in compartments 3 and 4 that would result in

there being no net flux out of the vasculature. We define it mathematically in greater detail in

the following sections.

Pressures in compartments 2, 3, and 4 are denoted p2, p3, and p4 respectively. S13 denotes the

net transmural flux from the vasculature to the ventricles, S14 the net transmural flux from the
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Figure 3.2: Schematic diagram of the intracranial compartmental model.

vasculature to the subarachnoid space, S34 the volumetric flux from the ventricles to the SAS,

and S42 the volumetric flux through the arachnoid villi. We refer to the collective activity of

these microvascular villi as the arachnoid villi valve between the CSF and the venous blood.

In Figure 3.2, compartment 4 can be seen surrounding compartments 1 and 3, and inter-

acting with compartment 2 via the arachnoid villi valve. This type of interconnectivity in

compartmental modelling (one compartment inside another) is innovative and appropriate in

cerebrovascular modelling.

3.2 Derivation of governing equations

3.2.1 Mass conservation

Let each compartment be defined as a control volume i. Conservation of mass requires that

the sum of the rate of change of mass within the control volume and the net mass flux out

of the control volume is zero. Assuming that CSF is incompressible, mass conservation in

compartments 3 and 4 implies

dVi
dt

=
∑
j 6=i

(Sji − Sij) , (3.1)
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where Vi is the volume of compartment i, Sij the volumetric flux from compartment i to

compartment j, and Sji the volumetric flux from compartment j to compartment i. We assume

CSF flow can be in either direction, with the positive direction defined by the order of the

subscripts, except between compartments 4 and 2 where only flow from 4 to 2 can occur due

to the presence of the valve.

We assume volume changes in compartment 1 are the result of the volume flux in the vascular

model when interacting with an external pressure which we now define as the pressure in the

SAS, p4. Compartment 2 represents the venous dural sinuses, and we assume it is rigid, i.e.

dV2/dt = 0.

3.2.2 Fluxes

In order to calculate the flux between compartments, we assume the volumetric flux Sij is

proportional to the pressure drop,

Sij = kij(pi − pj), (3.2)

for i = 1, 2, 3, 4, where pi is the fluid pressure in compartment i, pj is the fluid pressure in

compartment j, and kij is the permeability to fluid movement between compartments i and j.

We define pressure in compartment 1, p∗1, as the effective pressure from the vascular model (as

mentioned in §3.1). We assume the output pressure of the vascular model is the pressure of

compartment 2, p2.

3.2.3 Volume-pressure relationship

We describe the time variation of the compartmental pressure with respect to volume by in-

troducing a compliance C = dV/dp, and assume a linear constitutive relationship between

intracranial volumes and pressures in compartments 3 and 4, which leads to
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Vi = Vi0 + Ci(pi − pei), (3.3)

for i = 3, 4, where Vi is the volume of compartment i, Ci is compliance of compartment i,

pi is the internal pressure of compartment i, pei the external pressure of compartment i, and

Vi0 is the compartmental volume at zero transmural pressure i.e. pi = pei. As mentioned in

§3.1, pressure in the ventricles is influenced by pressure in the SAS, and so we assume volume

changes in compartment 3 are governed by pressure in compartment 4. In other words, the

external pressure of compartment 3 is the pressure in compartment 4.

The vasculature interacts with the compartmental model in different ways: through the effective

pressure p∗1, the transmural flux S1, the volume change V1 and by determining pressure in the

dural sinuses p2.

3.2.4 Monro-Kellie hypothesis

The Monro–Kellie hypothesis, first postulated by Alexander Monro in 1783 and later supported

experimentally by George Kellie (Mokri, 2013), states that the volume inside the cranium can

be divided into three main components: brain tissue volume (Vbrain), blood volume (Vblood),

and CSF volume (VCSF), whose sum is conserved, due to the confinement of the skull, thus

Vbrain + Vblood + VCSF = constant. (3.4)

Due to the near incompressibility of the nervous tissue under healthy conditions (Miller et al.,

2000), we assume Vbrain is constant, thus Vblood+VCSF = constant, and hence V1+V2+V3+V4 =

constant. As mentioned earlier, we also assume the venous dural sinuses volume, V2, is constant.

Thus the changing volumes satisfying the Monro-Kellie hypothesis are those involving the

cerebral circulation (V1), the cerebral ventricles (V3), and the SAS (V4).
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3.2.5 Summary

From §3.2.1–§3.2.4 and the fluxes defined in Figure 3.2, we summarise the governing equations

for the intracranial model as

dV3
dt

= S13 − S34, (3.5)

dV4
dt

= S14 + S34 − S42, (3.6)

V3 = V30 + C3(p3 − p4), (3.7)

V4 = V40 + C4(p4 − pskull), (3.8)

V1 + V3 + V4 = constant, (3.9)

where pskull is the pressure4 outside the arachnoid mater (e.g. epimeningeal).

The intracranial fluxes are defined by,

S13 = k13(p
∗
1 − p3), (3.10)

S14 = k14(p
∗
1 − p4), (3.11)

S34 = k34(p3 − p4), (3.12)

S42 = k42I42(p4 − p2), (3.13)

where I42 is an indicator function of the status of the valve, defined as

I42 =


1 if p4 ≥ p2

0 if p4 < p2,

(3.14)

implying the valve is only open when the pressure in the subarachnoid space, p4, exceeds that

of the dural sinuses, p2, resulting in positive volumetric flux S42.

We can simplify the governing equations to obtain the pressures in compartments 3 and 4, and

4It should be possible to derive a pskull with further assumptions on pressure differences between meninges
of the skull, however, as we shall see in the following derivations this is not essential in our model as we can
find a solution with a simpler approach.
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the related fluxes. We recall from the vascular vascular model, that its volume, here denoted

as V1, is a function of the cerebral blood flow Q and its external pressure, here assumed to

be p4 as mentioned earlier (as well as other parameters). In the vascular model we assumed

quasi-steady flow of blood, ignoring the effects of the arterial pulse. That is, Q is the time

averaged flow rate over long period of time compared to the cardiac cycle. We also assume that

S1 << Q, thus Qin = Qout. This means that changes in V1 are only due to changes in p∗1 and

p4 through the vascular compliance of compartment 1. Taking this into consideration we can

differentiate equation (3.9) leading to

dV1
dt

+
dV3
dt

+
dV4
dt

= 0, (3.15)

dp4
dt

=
−dV3

dt
− dV4

dt

∂V1/∂p4
. (3.16)

Substitution of volume terms from equations (3.5) – (3.8) into equation (3.16), gives the ordinary

differential equations for the pressures for compartments 3 and 4,

dp3
dt

=
S13 − S34

C3

+
−S13 − S14 + S42

∂V1/∂p4
, (3.17)

dp4
dt

=
−S13 − S14 + S42

∂V1/∂p4
. (3.18)

3.3 Estimation of model parameters

We start by estimating parameters k13 and k14. In the vascular model we obtained the trans-

mural flux from the microcirculation to the space outside the vasculature S1 from Equation

(2.61), we have

S1 = Ŝtot
vasculature = Ŝtot

an + Ŝtot
c + Ŝtot

vn . (3.19)



108 Chapter 3. Intracranial model

We can assume this flux is divided between the ventricles (compartment 3) and the SAS (com-

partment 4), by means of S13 and S14 respectively, thus

S1 = S13 + S14, (3.20)

where S13 and S14 are defined in equations (3.10) and (3.11), respectively.

As we saw in the previous chapter, external pressure has a significant effect on the total trans-

mural flux S1. We thus investigate the behaviour of dS1/dp4 for a given range of pressures.
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Figure 3.3: Changes in S1 with respect to p4 (solid line), piecewise linear approximation (dotted line)
in two pressure intervals 0-15 mmHg (red), 15-30 mmHg (blue).

We observe in Figure 3.3 that S1 behaves nonlinearly with respect to p4 primarily because of

the nonlinear axial pressure drop in the blood vessels. However, we can approximate S1 as a

piecewise linear function of p4, which we define over the following pressure intervals,

S1(p4) =


Region I : S1I(p4) for 0 ≥ p4 ≥ 15

Region II : S1II(p4) for 15 ≥ p4 ≥ 30

(3.21)

where S1I , S1II are linear functions of S1 at each pressure interval. The healthy physiological

range for intracranial pressure lies between 5–15 mmHg, and so S1 will likely be in region I.
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We add a wider pressure range for robustness.

Based on conditions in Equation (3.21), we can thus find the vascular volumetric flux for region

I as

S1I = S10I − k1I∆p4I , (3.22)

where S10I is the volumetric flux at zero transmural pressure in region I, and k1I is the vascular

permeability in region I. We do the same for region II. If we now assume that permeabilities

between compartments 1 & 3, and 1 & 4, are proportional to the vascular permeability k1I ,

then

k13I = αk1I , (3.23)

k14I = (1− α)k1I , (3.24)

where α is is the fraction of the vascular flux that goes to compartment 3, which is assumed to be

constant. To estimate the value of α, we assume the permeability of the vascular compartment

k1, is proportional to the volume of the CSF between the ventricles and the subarachnoid space.

Therefore by finding the volume ratio, we can find a permeability ratio. We thus define

α =
V3
Vcsf

, (3.25)

where Vcsf is the total intracranial CSF volume, that is Vcsf = V3 + V4. Values for total CSF

volume have been reported between 90–258 ml (Alperin et al., 2006; Brinker et al., 2014), of

which between 16–25 ml correspond to the ventricles and the rest to the cranial and spinal

SAS (Alperin et al., 2006; Sakka et al., 2011). Spinal SAS has been reported between 77-81

ml (Alperin et al., 2006; Edsbagge et al., 2011). Taking an averaged value of 20.6 ml for the

ventricles and 104.9 for the intracranial CSF, thus giving a total intracranial CSF of 125.5, we

obtain a rounded value of α = 0.16. Given the wide range of reported volumes, this value of α

must be taken with caution.
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We also calculate the effective pressure in compartment 1, p∗1. Based on the above analysis for

S1, we can assume a transmural flux proportional to the pressures in compartments 1 and 4,

thus

S1 = k1(p
∗
1 − p4). (3.26)

Substitution of Equation (3.22) into (3.26) gives,

p∗1 =
S10

k1
, (3.27)

where p∗1 is independent of p4 for the calculated initial flux S10.

We now focus on the value for p2, which is the output pressure of the vascular model. We

evaluate dp2/dp4 in the vascular model for a range of p4.
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Figure 3.4: Changes in p2 with respect to p4 (solid blue line), and a linear fit (dashed red line).

We observe in figure 3.4 that p2 changes linearly with respect to p4, then,

p2 = p20 −Hp4, (3.28)
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where p20 is the initial pressure in compartment 2, and H the rate of change of p2 with respect

to p4. The calculated values give p20 = 22.3 mmHg and H = 0.87. Note this value will change

for a different range of p4, while the range selected for the intracranial model (0 to 30 mmHg)

is slightly wider than the average of a healthy person in the supine position (Czosnyka et al.,

2004), this is likely to change during postural5 changes where intracranial pressures can become

negative (Michael and Marshall-Bowman, 2015)

Another unknown parameter in our model is the change in V1 with respect to external pres-

sure p4, i.e. ∂V1/∂p4. We know from the analysis in the vascular model that volume in the

vasculature changes nonlinearly with respect to external pressure.

As ∂V1/∂p4 is dependent on p4, we must defer to numerical methods, where we iterate the

value of p4 from our set of ordinary differential equations (3.17) and (3.18), with a range of

pressure values (in this case 0 to 30 mmHg for consistency). Its value is therefore found during

the unsteady state analysis (§3.6).

To estimate the value of the valve permeability k42, we investigate the resistance to CSF outflow

in the literature, and assess its appropriateness for use in our model. Studies by Ekstedt (1978)

and Albeck et al. (1991), suggest this resistance must be in the range of 6–10 mmHg/ml/min.

However, measured values are readings taken from the lumbar puncture outflow of healthy

subjects when saline is infused at a constant rate in the supine position. It is unknown whether

the arachnoid villi opens at any point and if the measured value is representative of this flow,

or a complement of it, or neither. We therefore do not make a direct comparison of the two

flows, but rather assume that the permeability of the arachnoid villi must be similar or greater

than other permeabilities in order to ensure an intracranial pressure balance. For the purposes

of a proof-of-concept of this model, we assume the resistance to CSF outflow in the arachnoid

villi is 0.5 mmHg/ml/min, thus the permeability of the valve is k42 = 2.5× 10−10 m3/s/Pa.

Values for the flow in the foramen of Magendie and the foramen of Luschka, that is S34 in our

model, are inconclusive; some estimates suggest this can be up to 18 ml/min, which is 50 times

greater than the CSF production rate (Gupta et al., 2009). The aqueduct of Sylvius however,

5Postural changes will be covered in detail in Chapter 4.
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which is a distinct channel proximal to the fourth ventricle, has been measured routinely,

perhaps because it can be measured using magnetic resonance imaging (MRI). The value for

this flow is approximately 3.44 ml/min, one order of magnitude greater than the production

rate. If we assume the flow in the aqueduct of Magendie is of a similar scale, we can approximate

k34 by taking the ratio between the production flow and the flow at the aqueduct of Sylvius

and apply it to the ratio between permeabilities k13 (permeability of production rate) and k34.

Since flow in the aqueduct of Sylvius is one order of magnitude greater than the production

rate, we estimate k34 ≈ 10× k13.

To estimate V30 and V40, we assume that these volumes are related to the cerebral blood volume

V1 in the same ratio as S13 and S14 are related to the cerebral blood flow Q

V30 = V1 (1 : 100 = S13 : Q) (3.29)

V40 = V1 (1 : 100 = S14 : Q) , (3.30)

where V1 is the total volume of the cerebral vasculature.

To estimate the volume in the dural sinuses V2, we need to account for the volume of blood as

well as the volume of CSF going into the dural sinuses. We then have

V2 =
Vv0
%

+ υV4, (3.31)

where 1/% is the increase in volume from the small veins to the dural sinuses, % is as defined

in Chapter 2 (i.e. radii ratio between the lumped entry vessel and the model root vessel), Vv0

the volume in the last venous generation (generation 0), and υ is the fraction of volume in the

SAS that goes into the dural sinuses. If we assume as a first approximation that a fifth of the

volume in the SAS is at any one time in the dural sinuses, we obtain υ = 1/5.

Lastly, we expect the compliance of the ventricles to be related to the compliance of the

ependyma, since the ventricles are essentially sacs formed from ependymal cells. This how-

ever, is difficult to measure, and to our knowledge no measurements have been attempted.

Cranial and ventricular compliance is routinely tested in intensive care units following trau-
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matic brain injury (TBI), subarachnoid haemorrhage or in hydrocephalous or tumour patients.

Sites for monitoring intracranial pressure (ICP) via a pressure probe include the parenchyma,

the subarachnoid, and the ventricles. Recording of changes in volume vs changes in pressure to

calculate the compliance consists in either manual CSF bolus injection to the ventricles (gold

standard) or through the Spiegelberg compliance device (Yau et al., 2002, 2000). The latter

method quantifies the ventricular compliance by measuring the change in intraventricular vol-

ume (via a double lumen balloon as a pressure probe) and the cerebral perfusion pressure6 when

automatically increasing the volume to a zero reference ICP. One of the issues with measure-

ments of intracranial compliance and in particular ventricular compliance is the fact that the

studies conducted typically involve pathological conditions. In these cases the ICP is typically

already elevated and thus the reading of volume changes, and by extension the calculation of

compliance, is based on potentially already stretched ventricles. A way to address this problem

is by accounting for the difference in the measured pressure (gauge pressure) and the initial

ICP to obtain an absolute pressure, that is pabsolute = pgauge + p0, where pgauge is the measured

pressure and p0 the initial ICP. In Yau et al. (2002), if we take an averaged value between the

sampled TBI and tumour patients groups we obtain 0.865 ml/mmHg within the 0-10 mmHg

range, if we assume this is valid for pgauge =5 mmHg, and the initial ICP p0 =20 mmHg, then

we can estimate a compliance of 4.3 ml/mmHg, that is if we assume compliance is linearly

related to the ICP for a healthy case. In both studies a linear relationship can be seen be-

tween compliance and ICP for a range of 0-10 mmHg of gauge ICP, after this range it is very

clearly nonlinear but we can assume that for a lower gauge pressure a linear approximation is

reasonable. We take a rounded value of 4 ml/mmHg as a first estimate in our model and assess

further a different value of ventricular compliance (i.e. ± one order of magnitude) as part of

the sensitivity analysis.

The values to use in the intracranial model are summarised in Tables 3.1 and 3.2. We specify

the values for S1 for region I only in Table 3.2, however values for region II are similar though

not shown.

6Cerebral perfusion pressure is defined in clinical literature as the difference between mean arterial pressure
and intracranial pressure.
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Value Units

α 0.16 –
C3 3.01× 10−9 m3/Pa
H 1.10 –
k42 2.51× 10−10 m3/Pa.s
p20 24.63 mmHg

Table 3.1: Parameter values for the intracranial model.

Value Units

k1 3.8× 10−11 m3/Pa.s
k13 6.1× 10−12 m3/Pa.s
k14 3.2× 10−11 m3/Pa.s
k34 6.1× 10−11 m3/Pa.s
p∗1 21.6 mmHg
S10 6.6 ml/min

Table 3.2: Estimated parameter values for pressure region I.

As in Chapter 2, we adopted the following convention for significant figures: up to two significant

figures for values less than 10, up to one decimal place for values above 10. For values smaller

than two decimal places, scientific notation is adopted with up to two significant figures.

3.4 The steady state solution

In steady state, equations (3.5) and (3.6), imply that

0 = S13 − S34, (3.32)

0 = −S13 − S14 + S42. (3.33)

Expanding terms, using equations (3.10)–(3.13),

0 = k13(p
∗
1 − p3)− k34(p3 − p4), (3.34)

0 = −k13(p∗1 − p3)− k14(p∗1 − p4) + k42I42(p4 − (p20 −Hp4)), (3.35)
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which can be rewritten as a matrix equation,

−(k13 + k34) k34

k13 k14 + k42I42(1 +H)


p3
p4

 =

 −k13p∗1

k13p
∗
1 + k14p

∗
1 + k42I42p20

 , (3.36)

where we find,

p3 =
p∗1(k13(k14 + k34 + k42I42(1 +H)) + k14k34) + k34k42I42p20
k13(k14 + k34 + k42I42(1 +H)) + k34(k14 + k42I42(1 +H))

, (3.37)

p4 =
p∗1(k13(k14 + k34) + k14k34)− k42I42p20

k13(k14 + k34 + k42I42(1 +H)) + k34(k14 + k42I42(1 +H))
. (3.38)

For the valve in a closed position, I42 = 0, equations (3.37) and (3.38) reduce to,

p3 = p∗1, (3.39)

p4 = p∗1, (3.40)

which results in no flux as all the pressures balance to the value of p∗1. This means the equi-

librium pressures for the ventricles and SAS is that of the vasculature, and no net CSF flux is

expected intracranially.

When the valve is open there will be a steady state solution which depends on the interaction

of all of the boundary conditions and parameters. This solution is interesting in itself but it

also provides a basis for the solution of the dynamic problem which will be discussed in detail

in the next section.

Using the values in Table 3.1, Table 3.2 for the appropriate pressure range (as mentioned in

§3.3), the baseline values of the vascular model, and boundary conditions Q = 750 ml/min

(cerebral blood flow) and proot = 90 mmHg (input vascular pressure), we solve equations (3.37)

and (3.38) for the valve in an open position, i.e. I42 = 1. The results are summarised in Tables

3.3–3.5, where p∗1 and V1 are included for completeness.
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Steady state value (mmHg)

p∗1 21.6
p2 10.9
p3 13.2
p4 12.4

Table 3.3: Pressures.

Steady state value (ml/min)

S13 0.41
S14 2.4
S34 0.41
S42 2.4

Table 3.4: Fluxes.

Steady state value (ml)

V1 614.9
V2 145.8
V3 30.8
V4 144.1

Table 3.5: Volumes.

We can observe the pressures and CSF volumes are consistent with those found in the literature,

as well as the volumetric flux S13 which we relate to the CSF production rate in the choroid

plexuses (Czosnyka and Pickard, 2004; Piechnik et al., 2001).

We do not have experimental values for extrachoroidal CSF production, S14, however part

of our assumptions included the volume proportionality ratio α. Since the pressures in the

ventricles and SAS are similar but not equal, we see that S14 is close to six times the flow in

S13. Similarly, we do not have values for the overall flow between the ventricles and SAS, S34,

but we know that in equilibrium this must be equal to S13 as per equations (3.32) and (3.33),

which is what we find.

Vascular volume V1 represents the volume of blood in the vasculature prior to entering the

venous dural sinuses. Literature values for cerebral blood volume usually describe the relative

blood volume to white and grey matter (Hacking, 2018a; Krieger et al., 2012). Since our model

also accounts for the vasculature outside the brain tissue (i.e. superficial pial arteries and veins),
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we can expect to have a greater volume, especially since the vessels immediately outside the

brain tissue are bigger than the ones inside.

Literature giving quantitative data for the venous dural sinuses is limited. Poor imaging visibil-

ity of the dural sinuses makes it difficult to assess them regarding volume and volumetric flux.

As a result, our model values V2 and S42 remain without a literature comparison. However,

we know the volumetric flux through the arachnoid villi in equilibrium, S42, is the sum of the

input flux, S13 + S14, agreeing with conservation of volume.

In the next sections we explore the changes to the equilibrium values under perturbations, and

the dynamic behaviour under different conditions.

3.5 Linear stability analysis

The steady state solution found in §3.4 will only be observed in reality if the system is stable,

and so in this section we evaluate the effect of perturbations on the system.

Expanding Equations (3.17) and (3.18), we obtain

dp3
dt

=
k13(p

∗
1 − p3)− k34(p3 − p4)

C3

+
−k13(p∗1 − p3)− k14(p∗1 − p4) + k42I42(p4(1 +H)− p20)

∂V1/∂p4
,

(3.41)

dp4
dt

=
−k13(p∗1 − p3)− k14(p∗1 − p4) + k42I42(p4(1 +H)− p20)

∂V1/∂p4
, (3.42)

which we rewrite in vector form7 as

dp
dt

= Mp + q, (3.43)

7Note the system is not truly linear since ∂v1/∂p4 is in function of p4.
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where

p =

p3
p4

 , q =

k13p∗1
C3
− p∗1(k13+k14)+k42I42p20

∂V1/∂p4

−p∗1(k13+k14)+k42I42p20
∂V1/∂p4

 , (3.44)

and

M =

−k13−k34C3
+ k13

∂V1/∂p4

k34
C3

+ k14+k42I42(1+H)
∂V1/∂p4

k13
∂V1/∂p4

k14+k42I42(1+H)
∂V1/∂p4

 . (3.45)

The valve indicator function I42 = 1 if p20−Hp4 6 p4, i.e. if p4 > p20/(1 +H) = 10.83 mmHg.

We introduce a small perturbation δp,

p = p0 + δp, (3.46)

where p0 is the steady solution. Since p0 is at steady state, Equation (3.43) gives

0 = Mp0 + q. (3.47)

The time evolution of δp can then be found by

dδp
dt

= Mδp. (3.48)

To find the eigenvalues and eigenvectors of the system, we solve the characteristic equation,

det(M− λI) = 0, (3.49)
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where I is the identity matrix, and λ the eigenvalues. We obtain the following

λ =
−(k13 + k34)∂V1/∂p4 + (k13 + k14 + k42I42(1 +H))C3

2 C3 ∂V1/∂p4
±[(

−
(
k13 + k34

)
∂V1/∂p4 +

(
k13 + k14 + k42I42(1 +H)

)
C3

)2
+ 4
(
k13 + k34

)(
k14 + k42I42(1 +H)

)
C3 ∂V1/∂p4

]1/2
2C3 ∂V1/∂p4

.

(3.50)

Using the eigenvalues λ, we find the nonzero vectors, i.e. the eigenvectors, that satisfy

Mv = λv. (3.51)

In the case of the open valve, i.e. I42 = 1, we compute the eigenvalues and eigenvectors using

the parameter values given in Table 3.1 and Table 3.2 for the appropriate pressure range (as

mentioned in §3.3), we obtain the results shown in Table 3.6. We adopt the notation for

eigenvectors as vip where i is the associated eigenvalue and p the pressure corresponding to the

eigenvector component.

λ1 = −1.1× 10−3 λ2 = −2.2× 10−3

v13 = −0.63 v23 = −0.99
v14 = −0.78 v24 = −0.01

Table 3.6: Eigenvalues and eigenvectors for I42 = 1.

We find tr(M) < 0, det(M) > 0, and both eigenvalues to be real and negative, thus p converges

to a stable solution. That is, the solution decays exponentially to a stable equilibrium. We also

find tr2(M)− 4 det(M) > 0, with a value of 1.2× 10−6 when the valve is open, meaning that

the solution to the system is a stable node.

The general solution to equation (3.43), can be written in the form

p(t) = c1e
λ1tv1 + c2e

λ2tv2, (3.52)

where c1 and c2 are constant values which depend on the initial conditions, v1 the eigenvector

corresponding to λ1, and v2 the eigenvector corresponding to λ2.
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We observe that |λ2| > |λ1|, therefore eλ2t → 0 converges faster than eλ1t → 0. We thus refer

to λ2 and v2 as the fast eigenvalue and eigenvector, and to λ1 and v1 as the slow eigenvalue

and eigenvector.

Visualisation of the behaviour of the system when it is perturbed from the steady state is shown

in the phase portrait Figure (3.5a), and trajectories in Figure (3.5b).
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Figure 3.5: Phase portrait when the valve is open showing the flow vectors near the steady state
point (marked in green). (a) Eigenvectors (blue and red arrows) and flow vectors (light blue arrows)
near the fixed point (p3eq, p4eq). (b) Trajectories (blue solid lines) in a pressure range of 11–25 mmHg.

We observe in Figure 3.5a the eigenvectors for each eigenvalues, centred at the fixed point,

where p3 and p4 are in equilibrium, denoted as p3eq and p4eq respectively. From §3.4, we found

the equilibrium for p3 and p4 at 13.2 mmHg and 12.4 mmHg, respectively, meaning the system

will converge to (13.2, 12.4) in mmHg. In this figure we can observe the flow vectors are heavily

influenced by the fast eigenvector. Once the pressures approach the slow eigenvector, they

move more slowly towards the fixed point. This can be better visualised in Figure 3.5b, where

we see the trajectories of solutions with different initial conditions.

For initial conditions where p40 is above the equilibrium, where p40 is the initial condition of

p4, we see there are mild overshoots and undershoots in p3. For cases where p40 ≥ 20 mmHg

and p30 ≥ 18 mmHg, where p30 is the initial condition of p3, we can see a more linear descent

to the fixed point, after an initial mild undershoot of p3. This means the initial condition for

p4 is important for dictating the behaviour in the system when the valve is open. We see the
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behaviour of the system for a wider range of initial conditions in Figure 3.7.

In the case of the valve closed, that is I42 = 0, the results are shown in Table 3.7.

λ1 = −7.5× 10−5 λ2 = −2.2× 10−3

v13 = −0.67 v23 = −1.0
v14 = −0.74 v24 = −5.6× 10−3

Table 3.7: Eigenvalues and eigenvectors for I42 = 0.

We again find both eigenvalues to be real and negative, and tr2(M)− 4 det(M) = 4.6× 10−5,

meaning that for the valve closed, the solution to the system is also a stable node. We also find

the second eigenvalue λ2 to be the fast eigenvalue, and the first eigenvalue λ1 to be the slow

eigenvalue.

The fast eigenvalues are virtually identical for both cases (valve open and valve closed). This

suggests that the rapid response of the system is determined by interactions between the com-

partments with little dependence on the rate of CSF out of the cranium.
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Figure 3.6: Phase portrait when the valve is closed showing the flow vectors near the steady state
point (marked in green). (a) Eigenvectors (blue and red arrows) and flow vectors (light blue arrows)
near the fixed point (p3eq, p4eq). (b) Trajectories (blue solid lines) in a pressure range of 15–35 mmHg.

Figure 3.6a shows the phase portrait for the valve closed case, and Figure (3.6b) shows the

trajectories for different initial conditions. We can observe on Figure 3.6a that most of the

behaviour takes place along the fast eigenvector, that is, the flow vectors align in the direction
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of the fast eigenvector (depicted by the blue vector) to quickly approach the slow eigenvector

(depicted by the red vector), from which a significantly slower flow can be seen to reach the

fixed point.

When the valve is closed, p3eq = p4eq = p∗1, therefore in this case the system converges to the

fixed point (21.6, 21.6) mmHg. In Figure 3.6b, trajectories are shown with different initial

conditions, and we can appreciate the impact of the eigenvectors on the solutions. We see very

fast overshoots and undershoots for p3, specially as p30 is farther away from the slow eigenvector.

In this case, whether p40 is above or below the equilibrium makes very little difference to the

behaviour of p3.

There are several differences between the open-valve and the closed-valve cases. Although we

find a stable node in both cases, and the fast eigenvector is almost identical, the slow eigenvector

of the closed-valve case is 15 times smaller in magnitude than the open-valve one, making the

flow vectors significantly slower to reach the fixed point, and having a significant impact on

the trajectories at different initial conditions, as can be appreciated in their phase portraits. In

the open-valve case, we see some influence from the slow eigenvector, specially when the initial

conditions are above the equilibrium. In the closed-valve case, however, the slow eigenvector

has a very small influence, allowing for the majority of the behaviour to be guided by the

fast eigenvector, until approaching the asymptote of the slow eigenvector. The overshoots and

undershoots of p3 can also be appreciated in the closed-valve case, though in a more pronounced

manner than in the open-valve case.

Up to now, we have considered cases where the valve is always open or always closed. However,

there are two fixed points, and a valve state associated with each fixed point. We now consider

the valve changing from a closed position to an open one which is the solution that is found

when the valves are free to open or close8. We do this by setting the initial conditions where

p40 ≤ p2 (i.e. ≤ 10.9 mmHg) and observe its behaviour to reach equilibrium, where as we know

from the steady-state results, the valve will have to be in an open position.

8In the next chapter we explore cases where a transition from open to closed is possible due to the influence
of the spinal cavity.
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Figure 3.7: Phase portrait when the valve changes from closed to open showing the flow vectors near
the steady state point (marked in green). (a) Eigenvectors (blue and red arrows) and flow vectors
(light blue arrows) near the fixed point (p3eq, p4eq). (b) Trajectories (blue solid lines) in a pressure
range of 5–25 mmHg, and regions where the valve is open and closed (magenta dash line).

In Figure 3.7, we observe solutions for cases where the initial conditions are below p2, and

can observe the transition from the valve closed to open. We observe that before the valve

opens, the solutions follow the behaviour seen in Figure 3.6, they are heavily influenced by the

first eigenvector and significantly less so by the slow eigenvector, there are fast overshoots and

undershoots for p3, followed by a slow linear ascent towards the fixed point. Immediately after

the valve opens (≥ p2), we observe a faster convergence to the fixed point due to a greater

influence from the slow eigenvector, overshoots and undershoots are still visible for p3 but less

pronounced. Once the valve is open, we observe the same behaviour seen in Figure 3.5, where

the trajectories for p3 follow a milder overshoot or undershoot than for initial conditions below

the equilibrium, and a significantly faster convergence of solutions. We see that as t → 0,

all trajectories become parallel to the fast eigenvector on both cases, as it is the one with a

numerically bigger eigenvalue. This also means it will take longer for the valve to open the

farther below the initial conditions are from the fixed point, this is because the steady state

is reached shortly after the opening of the valve. For the case when the initial conditions are

above the fixed point, we observe a faster convergence to the fixed point. In this case the valve

remains open throughout the trajectory.
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We can conclude that in the cases of I42 = 1 (valve open), and I42 = 0 (valve closed), the

system of equations finds a stable equilibrium in the form of a stable node. This means that

as the eigenvalues λ1 6= λ2, there will be an eigenvector greater in magnitude (we denoted it

here as the fast eigenvector) that will influence the initial behaviour of the system depending

on the initial conditions. We identified that for initial conditions below the fixed point and

I42 = 1, two behaviours can occur: (1) if p30 > p40 an undershoot occurs in p3 before following

the behaviour of p4 along the slow eigenvector to approach the fixed point; and (2) if p30 ≤ p40

an overshoot occurs in p3 before following the behaviour of p4. For initial conditions above

the equilibrium and I42 = 1, we again observe the overshooting and undershooting of p3 with

respect to p4 though milder, and we see the convergence to the fixed point is much quicker. For

I42 = 0, the behaviour appears the same whether the initial conditions are above or below the

equilibrium, here we can also see overshooting and undershooting of p3 with respect to p4 in a

more pronounced manner due to a greater difference between the fast and the slow eigenvalue.

For transitional cases, where the valve starts in a closed position and changes to open to reach

the steady state, the system behaves as described in the closed-valve case for the region where

the valve is closed, and as the open-valve case where the valve opens (i.e. p4 ≥ p2).

We explore the behaviour of the system further by analysing the changes with respect to time

in the next section.

3.6 The unsteady state solution

The phase plane analysis in the previous section reveals the nature of the dynamic behaviour of

the system. To determine the true dynamics we must solve the ordinary differential equations

(ODEs). For the unsteady state solution, we computed Equations (3.17) and (3.18) using

Matlab ODE solver, ODE45. We use the parameter values in Table 3.1, Table 3.2 for the

appropriate pressure range (as mentioned in §3.3), the baseline values of the vascular model,

and boundary conditions Q = 750 ml/min (cerebral blood flow) and proot = 90 mmHg (input

vascular pressure). Here, we also find the value of ∂V1/∂p4 by iteration, as detailed in §3.3. We
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present four combinations of initial conditions for analysis:

• Case 1: p30 = p40, and (p30, p40) < (p3eq, p4eq);

• Case 2: p30 = p40, and (p30, p40) > (p3eq, p4eq);

• Case 3: p30 6= p40, p30 < p3eq, and p40 > p4eq;

• Case 4: p30 6= p40, p30 > p3eq, and p40 < p4eq;

where p30 is the pressure in compartment 3 at t = 0, p40 is the pressure in compartment 4

at t = 0, p3eq is the pressure in compartment 3 at equilibrium, and p4eq is the pressure in

compartment 4 at equilibrium.

For each case, we highlight the time it takes for the valve to open (where applicable), the

behaviour of the pressures and fluxes before and after the valve opens, the time at which they

approach equilibrium within a given accuracy, and other behaviours observed on the time-

dependent plots.

We define a pressure or flux has reached9 equilibrium at the time when

x− xabs
xabs

< ε, (3.53)

where x is the variable of interest (p2, p3, p4, S13, S14, S34, or S42), xabs its absolute steady-

state value, and ε the accuracy limit, which we set as 0.01 mmHg for pressure and 0.001 ml/min

for flux.

Case 1: p30 = p40, (p30, p40) < (p3eq, p4eq)

Figure 3.8a shows the pressures for case 1, where we set the initial condition p30 = p40 =

5 mmHg, for a time span of 6 hours.

9N.B. We use the term reach to denote the variable is within a given accuracy of the steady-state value,
however we acknowledge the term should be used with care as in reality the variable can only approach the
asymptote, meaning x(t)→ xeq as t→∞.
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Figure 3.8: Intracranial pressures for initial condition p30 = p40 = 5 mmHg, (a) pressure in the dural
sinuses p2, pressure in the ventricles p3, and pressure in the SAS p4 for 0 < t < 6; (b) p3 for 0 < t < 0.5.
The dashed line indicates the opening of the valve.

We observe that under these initial conditions, the valve changes from closed (p4 < p2) to open

(p4 ≥ p2) at t = 2.3 hours. Before the valve opens, pressure in the dural sinuses, p2, decreases

linearly from its initial value, and pressure in the SAS, p4, increases linearly from its initial

condition p40, until p4 = p2.

Ventricular pressure p3 can be seen to have two responses before the valve opens. First it has

a steep rise from its initial condition p30 in the time interval 0 < t < 0.5 hours (this is better

visualised in Figure 3.8b), followed by a linear increase quasi-parallel to p4. This behaviour can

be explained by referring back to the linear stability analysis, where we see that whilst both

p3 and p4 are heavily influenced by the fast eigenvector, the change in p3 is more pronounced

than in p4, specially if p30 is far from the equilibrium.

When the valve opens, p3 and p4 continue to increase nonlinearly and monotonically, whilst

p2 decreases nonlinearly and monotonically. We find that it takes on average one hour for

the pressures to reach equilibrium from the moment the valve opens. Pressure p2 reaches

equilibrium (10.9 mmHg) at t = 3.3 hours, p3 reaches equilibrium (13.2 mmHg) at t = 3.2

hours, and p4 reaches equilibrium (12.4 mmHg) at t = 3.3 hours. We find the time constant

for p3, τp3 = 1.3 hours, and the time constant for p4, τp4 = 1.5 hours.
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We assess the behaviour of the volumetric fluxes in Figure 3.9, where we see that flux from

the vasculature to the ventricles, S13, and flux from the ventricles to the SAS, S34, behave

nonlinearly when the valve is closed (0 < t < 2.3 hours). In the same time interval, flux from

the vasculature to the SAS, S14, decreases linearly, and flux from the SAS to the dural sinuses,

S42 is zero (indicating a closed valve).

We can observe the effect of the initial response of p3 on S13 and S34, particularly in S34,

where an overshoot occurs from t = 0.1 hours onwards. Flux S34 becomes greater in magnitude

than S13 from t = 0.7 hours until reaching equilibrium (Figure 3.9b shows a closer look at

S13 and S34 as they approach equilibrium after the valve is opened). The compliance of the

ventricles defines the curvature of S34, however the overshoot can be seen even at higher values

of compliance. This will be explored further in the sensitivity analysis section (§3.7).
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Figure 3.9: Intracranial fluxes for initial condition p30 = p40 = 5 mmHg, (a) flux from the vasculature
to the ventricles S13, flux from the vasculature to the SAS S14, flux from the ventricles to the SAS S34,
flux from the SAS to the dural sinuses S42 (flux passing through the arachnoid villi valve); (b) detail
of fluxes S13 and S34 for a time interval of 2 < t < 4 hours. The dashed line indicates the opening of
the valve.

At t = 2.3 hours, the valve opens and we observe in figure 3.9a the flux through the valve (S42),

has the most prominent change increasing rapidly for 2.3 < t < 3.4 hours, before reaching

equilibrium (2.8 ml/min) at t = 4.6 hours. S13 reaches equilibrium (0.41 ml/min) at t =

3.9 hours, S14 (2.4 ml/min) at t = 3.9 hours, and S34 (0.41 ml/min) at t = 4.1 hours. We know

from the steady state analysis, that S13 = S34 upon reaching equilibrium, thus when the valve
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opens S42 reaches equilibrium when S42 = S13 + S14, and by the timings above, this must be

equal or greater than the last flux to reach equilibrium, in this case S34, which is what we find.

Case 2: p30 = p40, (p30, p40) > (p3eq, p4eq)

For Case 2 we set p30 = p40 = 15 mmHg. In Figure 3.10a we observe that pressures reach the

steady state much faster than in Case 1 where the initial conditions are below the equilibrium

(faster on average by 2 hours), and at no time is the valve in a closed position. Pressures p3 and

p4 decrease nonlinearly and monotonically until reaching equilibrium at 1.2 hours and 1.27 hours

respectively. Pressure p2 decreases nonlinearly until reaching equilibrium at 1.3 hours. We find

the time constant for p3, τp3 = 0.24 hours, and the time constant for p4, τp4 = 0.22 hours.
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Figure 3.10: Intracranial (a) pressures and (b) fluxes starting from initial pressure of 15 mmHg.

This rapid response in the system is due to the proximity to the steady state when the pressures

are above the fixed point when the valve is open (as is the case since p40 > p2). In the stability

analysis we see that for initial conditions above the equilibrium, a faster convergence would

indeed occur. We also observe that p3 follows the behaviour of p4, confirming what we find in

the stability analysis.

In Figure 3.10b we observe the behaviour of the fluxes under these initial conditions. We see

that they also reach the steady state much faster than in Case 1 (average 2 hours faster). Flux
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S34 is zero at t = 0, it then follows a nonlinear increase at 0 < t < 0.5 hours, and continues

to increase at a slower rate to reach equilibrium at t = 1.9 hours. A very mild increase is

seen in S13 and S14 (quantified as 0.05 ml/min and 0.5 ml/min respectively), before reaching

equilibrium at t = 1.8 hours. Flux S42 can be seen with a rapid nonlinear decrease to reach

equilibrium in exactly 2 hours.

There is a significant impact on S42 at t = 0 when the initial conditions are above the equilib-

rium. At high intracranial pressure (i.e. high p4), flow from the vasculature to the ventricles

and SAS must be very small, similarly, flow from the ventricles to the SAS, thus we see small

changes in flux S13, S14, and S34. Conversely, flux S42, must allow flow to exit the cranial space

to allow pressures to drop and reach equilibrium, which we can see is accomplished quickly.

Case 3: p30 6= p40, p30 < p3eq, p40 > p4eq
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Figure 3.11: Intracranial (a) pressures and (b) fluxes when p30 = 5 mmHg and p40 = 15 mmHg.

When setting p30 = 5 mmHg and p40 = 15 mmHg, we observe in Figure 3.11a a sharp increase

followed by a subtle overshoot in p3 between 0 < t < 1 hours, before reaching equilibrium

at t = 1.2 hours. Again in this case the valve remains open throughout. Pressures p2 and p4

behave similarly as in Case 2 (Figure 3.10a), reaching equilibrium at t = 1.3 hours, respectively.

In Figure 3.11b, we see flux S34 also behaves similarly to Case 2, but with a more pronounced

increase from a significantly smaller value. We see that since pressure is much smaller in the
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ventricles than in the SAS, flux from the SAS will go into the ventricles, rather than out of

the ventricles to the SAS, thus S34 is negative until p3 stabilises after the initial response.

Flux S34 reaches equilibrium at 1.9 hours. Flux S13 decreases 0.20 ml/min nonlinearly between

0 < t ≤ 0.30 hours, and reaches equilibrium at t = 1.8 hours. Fluxes S14 and S42 behave as

they do in Case 2, and reach equilibrium at t = 1.8 and t = 1.9 hours, respectively.

Case 4: p30 6= p40, p30 > p3eq, p40 < p4eq

For case 4, we set p30 = 15 mmHg and p40 = 5 mmHg. In figure 3.12a we observe the valve

opens at t = 2.3 hours, as in Case 1. Pressure p3 drops sharply at 0 < t ≤ 0.30 hours, before

following the behaviour seen in Case 1. Equilibrium is reached at the same time as in Case 1

for all pressures. In Figure 3.12b, we see S34 decays rapidly between 0 < t ≤ 0.30 hours, and it
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Figure 3.12: Intracranial (a) pressures and (b) fluxes when p30 = 15 mmHg and p40 = 5 mmHg. The
dashed line indicates the opening of the valve.

is kept again just above S13 before reaching equilibrium, thus behaving similar to Case 1 after

t = 0.30 hours. Fluxes S14 and S42 also behave in a similar manner to Case 1. Equilibrium is

reached at the same time as in Case 1 for all fluxes.

We see in the stability analysis that the initial condition for p4 dictates the behaviour of the

system to a great extent. In this case, we observe it more clearly since it is only when p40 < p4eq
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that the valve opens, and p3 has a more pronounced undershoot since p30 > p40. This is expected

as both the valve and p3 are in function of p4.

3.6.1 Summary

We summarise the findings in three subsections: valve activation, pressure changes under dif-

ferent initial conditions, and flux changes with different initial conditions.

Valve activation

We notice the valve only opens when p40 < p4eq. Since p2 is a linear function of p4 (see §3.3),

we can expect that an initial higher p4 will result in an initial lower p2. Furthermore, the closer

p4 is to p4eq without surpassing it, the faster the valve opens. This can be observed in Figure

3.13, where we see the behaviour of S42 for different initial conditions below the equilibrium.

For the cases where p40 > p4eq, the valve is in an open position already, we observe this in Case

2 and 3 (Figures 3.10 and 3.11).
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Figure 3.13: Valve opening under different initial conditions.

The valve can take more than 3 hours to open (Figure 3.13) when the initial condition is well

below the equilibrium, and can open immediately if p40 is close to the equilibrium, as it is the

case for 12 ≤ p40 < 12.4 mmHg.
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Pressure behaviour

Pressure in the dural sinuses, p2, has a rapid linear drop when p40 < p4eq, which becomes

nonlinear after the valve opens (p2 = p4). When p40 > p4eq, p2 increases nonlinearly until

reaching equilibrium, here the valve remains open throughout. Pressure in the SAS, p4, has

a monotonic behaviour opposite to that of p2, meaning it increases linearly as p2 decreases

linearly (although at different rates), and it has a nonlinear decrease when p2 has a nonlinear

increase. Pressure in the ventricles, p3, has a similar behaviour to p4, but only after its initial

response at t ≥ 0.5 hours.

For 0 < t < 0.5 hours, p3 has the following behaviour:

• steep increase when p30 = p40, and (p30, p40) < (p3eq, p4eq);

• follows behaviour of p4 when p30 = p40, and (p30, p40) > (p3eq, p4eq);

• mild overshoot when p30 6= p40, p30 < p3eq, and p40 > p4eq;

• undershoot when p30 6= p40, p30 > p3eq, and p40 < p4eq.

The time at which the pressures reach equilibrium is greater when the initial conditions are far

from the equilibrium. We show cases p30 = p40 = 5 mmHg vs p30 = p40 = 15, where the second

case exhibits a faster response. We conducted more scenarios at different initial conditions (not

shown) that further confirms this. This agrees with what we see in the linear stability analysis,

where the flow vectors were greater the greater the initial conditions.

Flux behaviour

As with the pressures, the fluxes reach equilibrium faster when the initial conditions are close to

the equilibrium. This is expected as flux depends on the pressure drop. We observe that for the

given permeability k42 and initial conditions, flux through the valve, S42, takes ≈ 2.30 hours to

reach equilibrium (from the moment the valve opens) for initial conditions where p40 < p4eq, and

faster (≈ 0.3 hours) for initial conditions p40 ≥ p4eq (Figure 3.13). Flux from the vasculature
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to the SAS, S14, decreases monotonically when p40 < p4eq, and increases monotonically when

p40 > p4eq.

We observe flux from the vasculature to the ventricles, S13, and from the ventricles to the SAS,

S34, have different behaviour depending on the time interval.

For 0 < t < 0.5 hours:

• S13 decreases nonlinearly, and S34 overshoots, when p30 = p40, and (p30, p40) < (p3eq, p4eq);

• S13 and S34 increase nonlinearly (S34 more pronounced than S13) when p30 = p40, and

(p30, p40) > (p3eq, p4eq);

• S13 decreases nonlinearly, and S34 increases nonlinearly, when p30 6= p40, p30 < p3eq, and

p40 > p4eq;

• S13 overshoots, and S34 decreases steeply nonlinearly, when p30 6= p40, p30 > p3eq, and

p40 < p4eq.

For t > 0.5 hours:

• S13 and S34 decrease nonlinearly until reaching equilibrium when p30 = p40, and (p30, p40) <

(p3eq, p4eq), and when p30 6= p40, p30 > p3eq, and p40 < p4eq;

• S13 and S34 mildly increase nonlinearly when p30 = p40, and (p30, p40) > (p3eq, p4eq), and

when p30 6= p40, p30 < p3eq, and p40 > p4eq.

3.7 Parameter sensitivity analysis

We analyse the sensitivity of the model against all the parameters introduced in this chapter,

the boundary conditions, and two key parameters from the vascular model.

The parameters introduced in this chapter are closely related to those introduced as part of

the vascular model. The three parameters that are not derived from the vascular model are:
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choroid plexuses constant of proportionality, α, ventricular compliance, C3, and arachnoid villi

permeability, k42. Changing α results in complementary effects between flux S13 and S14 (as

per Equations 3.23 and 3.24), but with no other effects on the rest of the system. We thus only

focus on changes to C3 and k42 in the rest of this section.

The parameters directly related to the vascular model are: permeability between the vasculature

and ventricles k13, permeability between the vasculature and SAS, k14, permeability between

the ventricles and SAS, k34, effective vascular pressure, p∗1, initial pressure at the dural sinuses,

p20, slope of pressure changes between dural sinuses and SAS, H, initial vascular flux, S10, and

local vascular permeability, k1. We do not change these parameters directly but rather use

the boundary conditions and parameters from the vascular model to change them according to

their vascular relationship equations derived in §3.3. The boundary conditions are as defined

in previous sections.

The parameters from the vascular model which are tested are: vascular permeability and vas-

cular elastic modulus. We choose these parameters as they are highly sensitive to changes, as

seen in Chapter 2.

We define the change in percentage from the baseline, and subscript b to denote the baseline

parameter, for example 1.15 Eb denotes an increase of 15% change from the baseline vascular

elastic modulus. In the case of the vascular parameters, the percentage change applies equally

to both arteries and veins.

We use the initial conditions of Case 1 in §3.6, which we define as the baseline initial conditions.

These are p30 = p40 = 5 mmHg, where p30 is the ventricular pressure p3 at t = 0, and p40 is the

pressure in the SAS p4 at t = 0.

We present the variables most affected by each of these parameters10. We use a one-at-a-time

sensitivity analysis method and analyse the effect each of the parameters has on the model

whilst keeping the rest of the parameters fixed. We discuss here and in the next section the

impact on the equilibrium points, what this means for the valve activation, and its physiological

10The plots on this section use red-based colours to denote vascular-related outputs and blue-based colours
for CSF-related outputs.
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relevancy.

The sensitivity analysis has a linearised behaviour around the equilibrium point so that re-

sponses are symmetrical about that point. It follows that if a positive change in a parameter

causes a negative change in a variable, then a negative change will cause a positive change in

that variable. This is implicit on the discussion about sensitivity.

Ventricular compliance

The variables most affected by a change in ventricular compliance, C3, are those directly related

to compartment 3: ventricular pressure, p3, flux from the vasculature to the ventricles, S13, and

flux from the ventricles to the SAS, S34. We set a variation range of ± 1 order of magnitude

from the baseline value (3.1× 10−8 m3/Pa).
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Figure 3.14: Sensitivity to ventricular compliance, C3, when p30 = p40 = 5 mmHg, (a) ventricular
pressure, p3; (b) flux from vasculature to the ventricles, S13, and flux from ventricles to the subarachnoid
space S34.

Figure 3.14a shows the time frame where the change in ventricular compliance affects the ven-

tricular pressure most significantly. We see that at the smaller compliance the initial response

is steeper and at the bigger compliance the initial response is less steep, it meets the origi-

nal p3 curve at approximately 1.7 hours. This behaviour is reasonable since a less compliant

compartment (i.e. stiffer), will lead to an increase in pressure.
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The valve activation is not significantly affected, with changes of up to 3 minutes, and neither

are the times at which the pressures p2 and p4 reach equilibrium, with changes between 1 to

2 minutes, or p3 with changes on reaching equilibrium of up to 7 minutes from the baseline.

There is an increase of 2 mmHg in p∗1 when increasing C3 as we require a change in the range of

p4 region, as denoted in §3.3. This change however has a negligible impact on the equilibrium

pressures and fluxes, with a variation of 0.19 mmHg and 0.10 ml/min, respectively.

In Figure 3.14b we observe the affected fluxes, where a more pronounced curvature of S34

and a smoother downwards curvature for S13 can be seen the larger the compliance. The

overshooting of S34 with respect to S13 seen on the baseline case, takes longer to occur and it

is more pronounced as the compliance increases. Equilibria for both fluxes are not significantly

affected when the compliance is smaller, however, when the compliance is larger, S13 reaches

equilibrium 30 minutes faster than the baseline, and S34 reaches equilibrium 1.85 hours slower

than the baseline.

We can conclude that changes in ventricular compliance will not significantly affect the valve

behaviour, pressure in the dural sinuses, pressure in the SAS, volumetric flux from the vascu-

lature to the SAS or volumetric flux from the SAS to the dural sinuses. However, it will affect

pressure in the ventricles, volumetric flux from the vasculature to the ventricles and flux from

the ventricles to the SAS. The larger the compliance, the slower the response of pressure in the

ventricles, it nevertheless reaches equilibrium at a similar time as the baseline. In the case of

the fluxes, the larger the compliance the larger the flux from the vasculature to the ventricles

and the small the flux from the ventricles to the SAS.

Arachnoid villi valve permeability

We assess the sensitivity of the model to the permeability of the valve (arachnoid villi), k42. We

set a variation range of ± 1 order of magnitude from the baseline value (2.5× 10−10 m3/Pa.s).

We see in Figure 3.15 that the changes occur after the valve is opened, obviously. In Figure

3.15a we see a significant increase in pressure in the SAS, p4, as we decrease k42. This is

reasonable since the smaller the permeability the longer the SAS will take to ‘drain’ CSF into
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the dural sinuses. In consequence, pressure in the dural sinuses, p2, decreases significantly as

permeability k42 gets smaller and pressure in the SAS increases. We observed in the previous

section that the rate at which p2 drops is greater than the rate p4 increases, therefore we observe

a more pronounced nonlinear decrease in p2 than the increase in p4.

Figure 3.15b shows a similar behaviour for pressure in the ventricles, p3, as that observed in

p4, however, as it is in the baseline case, pressure in the ventricles reaches equilibrium at a

higher pressure than in the SAS. We can also appreciate from these figures that decreasing the

permeability by a factor of 10, increases the time to reach equilibrium to over 13 hours for the

fluxes, an increase of almost 9 hours from the baseline.

In Figure 3.15c we can observe flux through the valve, S42, reaches equilibrium much faster the

higher the permeability, resembling almost a step response from the moment the valve opens

to the equilibrium. A faster behaviour for a higher permeability is also seen in the rest of the

fluxes.

A higher permeability k42 will thus lead to faster equilibria for all pressures and fluxes, even

though there is no change in the activation of the valve.

In Figure 3.15d we see minimal changes in S13 and S34 when permeability k42 is higher. When

k42 is one order of magnitude smaller, a more noticeable effect can be seen in S13 and S34.

We conclude that when decreasing the arachnoid villi permeability we can then expect an in-

crease in pressure in the subarachnoid space and a decrease in pressure in the dural sinuses.

This in turn will result in smaller flux through the valve, and a delayed equilibrium on all pa-

rameters. When increasing arachnoid villi permeability, pressures and fluxes reach equilibrium

much faster from the moment the valve opens than in the baseline case (approximately 1 hour

faster for pressures, and approximately 1.5 hours faster for fluxes).

Vascular permeability

We now assess the changes the vascular permeability has on the compartmental model. In

Figure 3.16 we observe the changes when the vascular permeability is changed equally in arteries
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Figure 3.15: Sensitivity to arachnoid villi permeability, k42, when p30 = p40 = 5 mmHg, (a) pressures
p2 and p4, (b) pressure p3, (c) fluxes S14 and S42, and (d) fluxes S13 and S34.

and veins by ±50 % from their baseline value.

In Figure 3.16a we observe that the lower the vascular permeability the longer it takes for the

valve to open (p4 ≥ p2) and thus to reach equilibrium. We can also observe that at a lower

permeability, the lower the equilibrium pressure for p4 and the higher equilibrium pressure

for p2. Conversely, the higher the permeability the faster the valve opens, the higher the

equilibrium pressure for p4 and the lower equilibrium pressure for p2. The rate at which they

reach equilibrium after the valve opens remains similar (approximately 1 hour) for both cases.

In Figure 3.16b we observe that whilst p3 is affected in a similar manner as p4, its initial response

(at 0 < t < 0.5 hours) does not change significantly from the baseline.
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Figure 3.16: Sensitivity to vascular permeability, k42, when p30 = p40 = 5 mmHg, (a) pressures p2
and p4; (b) pressure p3; (c) fluxes S14 and S42; (d) fluxes S13 and S34.

In Figure 3.16c, we see the different times at which the valve opens (i.e. S42 > 0). The shape

of the curves for S14 and S42, as in the pressures, do not change significantly, though they

do become steeper the higher the permeability, thus bringing the valve opening and equilibria

forward. We can observe this behaviour as well for fluxes S13 and S34 in Figure 3.16d.

We can conclude that vascular permeability affects all parameters of the CSF compartments,

especially pressures in the SAS and the dural sinuses, which in turn affects the opening of the

valve and the equilibria time for both pressures and fluxes. At a smaller vascular permeability,

the longer it takes for the valve to open and for the parameters to reach equilibrium. At

a small permeability, pressure in the dural sinuses is slightly higher than the baseline, and
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pressure in the SAS is slightly lower than the baseline. Fluxes decrease the smaller the vascular

permeability. The opposite occurs when vascular permeability is high.

Vascular elasticity

We vary the elastic modulus of the vasculature by changing the elastic modulus of the arteries

and veins equally by ±25 % from their baseline value11. The results are shown in Figure 3.17.

In Figure 3.17a we see that the larger the elastic modulus (i.e. the stiffer the vessels), the faster

the valve opens and the faster the pressures reach equilibrium. The smaller the elastic modulus

(i.e. the more compliant the vessels), the longer it takes for the valve to open, and the longer

it takes the pressures to reach equilibrium.

The equilibrium pressures change in value with a change in elastic modulus. Equilibrium

pressures for p2 and p4 have a small increase (approximately 1.5 mmHg) if the elastic modulus

is larger and a small decrease (approximately 2.4 mmHg) if the elastic modulus is smaller. We

notice that p2 at t = 0, p20, is higher the smaller the elastic modulus. The reason behind

this initial behaviour is due to the effect the elastic modulus has on the vascular model. As

seen in Chapter 2, the smaller the elastic modulus, the greater the pressure inside the vessel.

This in turn gives a larger output pressure which becomes p20. The pressure external to the

vasculature in this intracranial model, i.e. p4, now counteracts this effect in the vasculature to

achieve equilibrium. This interaction can be seen by the pressure drop in p2 as p4 increases until

the valve opens and equilibrium is reached. Equilibrium for pressures, as mentioned before, is

farther from the reference case (rigid) the more compliant the vessels and closer to the reference

the stiffer the vessels, as expected.

Figure 3.17b shows the changes in p3, which again are similar to those in p4 with the exception

of the initial response where p3 at 0 < t < 0.5 hours remains close to that of the baseline. In

other words, the initial response of p3 remains unchanged irrespective of elasticity changes for

the given initial conditions.

11We use the terms vessel stiffness and vessel compliance for simplicity.
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Figure 3.17: Sensitivity to vascular elastic modulus, Egen, when p30 = p40 = 5 mmHg, (a) pressure
in the dural sinuses p2, and in the SAS, p4 , and (b) ventricular pressure p3.

The changes on the fluxes can be seen in Figures 3.17c and 3.17d, where we see the fluxes reach

a similar equilibrium as the baseline despite their initial response to changes in elastic modulus.

In Figure 3.17c we see a more pronounced effect on S14 and S42 the more compliant the vessels,

as a consequence of the changes in pressures p4 and p2. We observe in Figure 3.17d, the fluxes

dependent on p3 are more mildly affected due to the initial response of p3 being similar to the

baseline.

We conclude that as the vessels get more compliant (smaller elastic modulus), the equilibrium

pressures increase significantly, while the equilibrium fluxes remain similar to the baseline, and

as the vessels get stiffer (larger elastic modulus), the equilibrium pressures decrease, while again
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the fluxes remain close to the baseline. We also see the interaction between the elastic modulus

and the input pressure to the dural sinuses dictates to a great extent the behaviour of the valve

and this in turn affects the behaviour of the fluxes. The prolonged activation of the valve for

a low elastic modulus allows for flux in the ventricles to increase to twice its equilibrium value

while p4 reaches p2.

Input pressure

The input pressure, proot, is the pressure to the vascular model which ultimately is the input

to the intracranial model as well. It is varied within a range of ±30 mmHg from the baseline

(90 mmHg) to assess sensitivity on the intracranial parameters.

We observe in Figure 3.18a that the higher the input pressure, the pressure drop is more

pronounced in p2. Equilibrium pressures are relatively the same (up to 0.5 mmHg) for all when

input pressure is high.

In Chapter 2 we introduced an autoregulation function where pressures in the microcirculation

and subsequent venous tree remain unaffected for different input pressures. To test whether the

autoregulation function has an effect on the intracranial model, we applied a fixed γ instead of

a dynamic one and changed again proot. This confirmed that the autoregulation function does

have a strong effect on the intracranial model.

We observe that at higher input pressures, the equilibrium pressure is higher and vice versa.

However, this does not explain why the autoregulation function, which is designed to work on

the microcirculation, can be playing a role in the rest of the compartments. There are two

behaviours taking place: (1) the autoregulation function allows the output pressure (i.e. p20)

to be dampened, e.g. an input pressure 30 mmHg higher than the baseline will result in only

a subtle increase (approximately 5 mmHg increase); and (2) the linear relationship between p2

and p4 (as defined in §3.3), allows p2 to change as its input is changed. When input pressure

increases, the slope of p2 is affected, as per Equation (3.28), the higher the input pressure, the

steeper the slope of p2. It is the combination of these two factors that allows for p2 to have
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Figure 3.18: Sensitivity to vascular input pressure, proot, when p30 = p40 = 5 mmHg, (a) pressure in
the dural sinuses p2, and in the SAS, p4 , and (b) ventricular pressure p3.

a higher pressure drop from an initial value that is higher than the baseline to an equilibrium

value that is smaller than the baseline (by 3 mmHg). When input pressure is reduced, we see

the opposite effect.

Figure 3.18b shows the changes in p3, which as in p4, are small in comparison to the change in

input pressure. We again see very small variation at 0 < t < 0.5 hours.

In Figures 3.18c and 3.18d we see the flux curves shift upwards as the input pressure increases.

In Figure 3.18c we can see more clearly the opening of the valve which occurs between 1 and 4

hours. As with the pressures, the fluxes reach equilibrium shortly after the valve opens. This

means as input pressure increases, fluxes will increase.
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We conclude that a change in input pressure will have a more significant impact on the equilib-

rium fluxes (±1.5 ml/min), and not as significantly on the equilibrium pressures (±1 mmHg).

The valve activation time is affected more noticeably when the input pressure is small, where

we see a longer time for the valve to open and thus for parameters to reach equilibrium.

Cerebral blood flow

Cerebral blood flow, Q, is varied within a range of ±100 ml/min from the baseline of 750

ml/min. The changes in pressure and fluxes can be seen in Figure 3.19.
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Figure 3.19: Sensitivity to cerebral blood flow, Q, when p30 = p40 = 5 mmHg, (a) pressure in the
dural sinuses p2, and in the SAS, p4 , and (b) ventricular pressure p3.

In Figure 3.19a we see that the valve is initially closed when Q is 750 ml/min or less. Further
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scenarios explored (not shown), confirmed the limit for Q at which the valve changes from closed

to open is 825 ml/min, above this value the valve remains open throughout. In this figure, we

see that as Q decreases, the pressures increase, as expected since we have fixed compartmental

permeabilities. This increase is approximately 10 mmHg for each 100 ml/min decrease in Q.

Figure 3.19b shows the behaviour of p3 where we see that its initial response is in the form of

an overshoot when Q is 750 ml/min or less, and no overshoot when Q is 850 ml/min. We also

see a similar difference in pressure for every 100 ml/min.

In Figures 3.19c and 3.19d we see that as Q decreases, so do the fluxes, the equilibrium val-

ues however are not too dissimilar from the baseline. This means the interacting fluxes will

accommodate for the changes in Q, while the pressures change significantly with Q. This is

reasonable since we have fixed permeabilities, thus a change in Q will result in an inversely

proportional change in pressure.

We conclude that a change in Q of 100 ml/min or more will have a significant impact on the

intracranial pressures, with the activation of the valve taking almost twice as long when Q is

100 ml/min less than the baseline, and remaining open when Q ≥ 825 ml/min.

3.8 Summary and discussion

In this chapter we present a compartmental model of the intracranial fluid spaces that interact

with the vascular model from Chapter 2. The coupling takes place by means of an effective

vascular pressure and its interconnectedness with the venous dural sinuses, cerebral ventricles,

and SAS (§3.1), and their related fluxes. The interaction is described mathematically by a

system of ordinary differential equations for the interacting compartmental fluxes and pressures.

A novel feature of this model is the inclusion of a one-way valve to denote the action of the

arachnoid villi, this allows us to analyse the role the arachnoid villi may play in intracranial

dynamics. Another feature is the inter-compartmental arrangement where compartment 4

(subarachnoid space) surrounds and interacts with the rest of the compartments. We also
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incorporate the Monro-Kellie hypothesis and assess the behaviour of the system accordingly

(§3.2). A detailed review of the parameters chosen and their rationale is given (§3.3).

We find a steady state when the valve is open. At rest, in a supine position, and with the

assumed parameter values, the open-valve steady state found the effective vascular pressure to

be 21.6 mmHg, the dural sinuses pressure 10.9 mmHg, the ventricles 13.2 mmHg and the SAS

12.4 mmHg. All of these are consistent with clinical data as reported in the literature (Gupta

et al., 2010; Brinker et al., 2014). The fluxes are in the range of 0.40–2.8 ml/min. The flux from

the vasculature to the ventricles, which is analogous to that of the choroid plexus, is as reported

in the literature (Czosnyka et al., 2004). As mentioned in §3.3, literature on the quantification

of extrachoroidal CSF production is limited and a consensus is yet to be reached. Similarly, no

data are available for flux from the ventricles to the SAS. In our model, we find extrachoroidal

CSF production to be 2.4 ml/min and flux from the ventricles to the SAS to be 0.40 ml/min.

Flux from the SAS to the dural sinuses has not, to our knowledge, been quantified. In our

model, the flux through the valve is 2.8 ml/min, which is not insignificant.

When the valve is forced to be closed, we find that another steady state is reached, where

the pressures equal the effective pressure of the vascular compartment, resulting in no net flux

from the vasculature into the CSF compartments (§3.4). When the valve is free to open, this

equilibrium is not a steady state solution because p4 > p2 causing the valve to open.

We find the solution to the system of equations to be a stable node, both when the valve is

open and when it is closed. The eigenvector associated to the eigenvalue which is bigger in

magnitude, which we identify as the fast eigenvector, dictates the majority of the behaviour

in the open-valve case, with some influence of the slow eigenvector the higher the pressure in

the SAS. Pressure in the ventricles overshoots when the pressure in the SAS is smaller than

that of the ventricles, and undershoots when larger. The overshoots and undershoots are less

pronounced when the initial conditions are above or closer to the fixed point. In the closed-

valve case, the fast eigenvector is several orders of magnitude bigger than the slow eigenvector,

thus the overshooting and undershooting of pressure in the ventricles is more noticeable, and

the approach to the steady state is slower. In this case, the behaviour is the same irrespective
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of whether the initial conditions are above or below the fixed point. The transitioning case,

where the valve is initially closed and then opens to approach the fixed point, combines these

two behaviours (open and closed valve), meaning the closer the initial conditions are to the

opening of the valve or to the fixed point, the faster the convergence (§3.5), and the farther

below the opening of the valve, the slower the convergence.

The dynamic behaviour of the system reveals that the valve will only open when the initial

pressure in the SAS is below the equilibrium. When the initial pressure in the SAS is above the

equilibrium, the system converges to the equilibrium without the need to activate the valve.

The valve opening time changes depending on the initial conditions. In the baseline case, the

valve opens at approximately 2 hours. However, the time extends if the initial conditions are

very small and reduces if the initial conditions are large. For values close to the equilibrium,

the valve opens immediately, and for values above the equilibrium, the valve remains open

throughout. Behaviour of pressure in the ventricles and the SAS confirms what was seen in

the stability analysis. Here, overshoots and undershoots for the pressure in the ventricles and

related fluxes (flux from vasculature to ventricles, and from ventricles to SAS), are visible.

There is limited literature on the functioning of the arachnoid villi, however, our results and

analysis suggest the valve must be an integral part in keeping balanced pressures inside the

cranium (§3.6). It was also observed that the time scales for changes in the compartmental

model are consistently on the order of 1 hour or more. This justifies our use of a quasi-steady

cardiovascular model that ignores the arterial pulsations with a time constant close to 1 second.

The fast time constant is the same for both the open and closed valve cases implying that the

fast adjustment of the model is determined by intra-compartmental exchanges whilst the slow

adjustment is related to balancing the fluxes into and out of the model as a whole.

In the sensitivity analysis section (§3.7), we see the larger the ventricular compliance, the longer

it takes for the ventricular pressure and related fluxes to reach equilibrium, even though the

valve opening time remains similar to the baseline case. This is due to the ventricular com-

pliance not significantly affecting the pressure in the dural sinuses and the SAS. This means

that, as long as the arachnoid villi valve functions well, pressure in the SAS will not be af-

fected since the change in ventricular pressure is relieved by the valve. To test this we ran the
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compliance cases with a very small valve permeability (two orders of magnitude smaller), mim-

icking a partially blocked arachnoid villi, and we found that under these conditions both the

ventricular pressure and pressure in the SAS find an equilibrium greater than 20 mmHg, and

pressure in the dural sinuses becomes negative. Physiologically, this is important for the follow-

ing reasons: (1) intracranial pressure of 20 mmHg or higher, is considered pathologically high

and requires medical intervention; (2) enlargement of the ventricles is often seen in pathologies

involving high intracranial pressure; (3) negative pressure in the dural sinuses is experienced

in the standing position due to hydrostatic pressure, but rarely so in a supine position. This

negative pressure can cause partial or total collapse of the jugular veins thus restricting blood

flow back to the heart. Our model has the capability to explore similar vascular abnormalities

and related pathologies, in order to investigate potential underlying causes.

The sensitivity to permeability of the arachnoid villi shows that increasing its value by one

order of magnitude leads to a faster convergence to equilibrium, and when decreasing its value

by the same magnitude, equilibrium is reached significantly later than the baseline value (>

11 hours later). Further testing confirms that a 50% decrease in the permeability, results in

> 4 hours delay in reaching equilibrium. Interestingly, the valve opening time remains the

same (±0.001 hours) irrespective of permeability variations. Blockage of the arachnoid villi

has been researched extensively in traumatic brain injury (TBI) (Massicotte and Del Bigio,

1999; Ellington and Margolis, 1969), and more recently also in space travel (Roberts et al.,

2017). It was observed that when astronauts experience microgravity, the brain and spinal

cord is moved upwards blocking the superior sagittal sinus (SSS), which is the most prominent

venous dural sinus. The effects of this is hypothesised to induce long-term visual impairment

(Lawley et al., 2017). In the case of TBI, it depends on the specific lesion and the chain

of events immediately after injury, however, it has been observed that a damaged pathway

to the dural sinuses can contribute to swelling and mortality can be high as a result of the

increased intracranial pressure (Parikh et al., 2007). As discussed in the ventricular compliance

case, when analysed in combination with reduced permeability of the arachnoid villi, this can

highlight the issues previously stated.

The vascular permeability has a significant impact on the intracranial model. The smaller the
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vascular permeability, the longer it takes the valve to open (approximately twice the time for

half the baseline permeability) and the longer the pressures and fluxes take to reach equilibrium.

The larger the vascular permeability, the faster the valve opens (approximately 1 hour before

the baseline) and the faster the convergence to equilibrium. The equilibrium pressures are

similar to those of the baseline (±1 mmHg in the SAS and ±0.2 mmHg in the ventricles),

however, change in the equilibrium fluxes was more noticeable with ±1 ml/min difference

depending on the smaller or larger vascular permeability, i.e. the larger vascular permeability

the larger the flux. This is important since chronically increased vascular permeability could

have implications for the intracranial fluxes. We again see that the valve helps regulating

increases in permeability by allowing the increased flux to exit quickly. In the event of an

acute increase in vascular permeability and a blocked or damaged arachnoid villi, the increased

intracranial pressure could indeed be significant. We test this in the model and confirm that an

increased vascular permeability of 50% combined with a decreased arachnoid villi permeability

can result in intracranial pressure of ≥ 20 mmHg, again borderline critical.

The intracranial model is very sensitive to changes in vascular elastic modulus. Changes of

25% less than the baseline elastic modulus were shown to be enough to increase the pressure in

the dural sinuses leading to a delay in the opening of the valve, and thus reaching equilibrium.

The valve has a delay of over 2 hours when elastic modulus was smaller (i.e. more compliant

vessels), the equilibrium pressures are closer to the reference case (rigid). The opposite was

true for the larger elastic modulus, though in a more subtle manner. When combining the

effects of elasticity with a reduced arachnoid villi permeability, not only were the pressures in

the high intracranial pressure range, but it took over 10 hours to reach equilibrium. When the

elastic modulus is larger (i.e. stiffer vessels), there is a decrease in intracranial pressure and

the equilibrium pressures approach the reference. This effect is greater than with changes in

permeability. An elastic modulus slightly different from the baseline, combined with a partly

blocked arachnoid villi can quickly evolve into an undesired physiological range.

Sensitivity to input pressure is mild in comparison to cerebral blood flow (CBF). We found

that this is in part due to the autoregulation function of the vascular model which helps to

keep a smoother or more constant pressure in the microcirculation, and in part due to the
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linear relationship between the pressure in the dural sinuses and the pressure in the SAS.

This relationship dictates the valve opening which thus also helps to keep pressures and fluxes

relatively constant. Extending the input pressure range further, we found that the average

change in pressure was still ±1 mmHg, and in flux again approximately ±1.5 ml/min. An

impaired autoregulation function would indeed affect both the pressure and flow. Our model

is able to cope with both cases.

Lastly, the model is observed to be very sensitive to changes in CBF, with changes of ±100

ml/min being sufficient to delay the valve opening time by three hours when CBF was low,

or remaining open throughout when high. Pressures have average changes of ±10 mmHg

for each 100 ml/min, and the initial response of the ventricular pressure is only moderately

disturbed. All fluxes, however, remain close to the baseline values. Further testing with a

reduced arachnoid villi permeability reveals that with a smaller CBF, the intracranial pressure

will increase further (to approximately 25 mmHg) and the intracranial fluxes will reduce slightly

further. When CBF is larger, the pressure in the ventricles and SAS are on average 7 mmHg,

however, the dural sinuses experience a negative pressure. This again highlights that the

arachnoid villi valve may have a key role in balancing intracranial dynamics.

3.9 Concluding remarks

• We constructed a compartmental model of the main intracranial CSF spaces and coupled

it with the vascular model from Chapter 2. The two models interact by means of the

vascular volume, effective vascular pressure, pressure in the dural sinuses and transmural

flux into the ventricles and subarachnoid space.

• Important parameters from the vascular model were able to be tested such as cerebral

autoregulation. The model also integrates the Monro-Kellie hypothesis.

• The compartmental arrangement as well as the inclusion of a one-way valve to mimic

the effect of the arachnoid villi proved to be key to the adequate functioning of the CSF

distribution.
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• The steady state results show the pressures, fluxes and volumes are as described in the

literature.

• The stability analysis shows the system is a stable node with the fast eigenvalue having

an eigenvector for the subarachnoid space that dictates the majority of the behaviour of

the system, meaning the ventricular pressure is secondary to that of the subarachnoid

space.

• Two steady states were shown to be possible, one with the valve open and one with the

valve closed, though the latter resulted in all intracranial pressures balancing resulting in

no net flux.

• The unsteady state results show the dynamics of the system confirming what was shown

in the stability analysis. It is observed how the valve opens when the initial pressure in

the subarachnoid space is less than that of the dural sinuses.

• The sensitivity results show the behaviour of the valve can be affected by changes in

vascular permeability, vascular elastic modulus, cerebral blood flow and mildly by changes

in input pressure. The latter minimised by the effects of autoregulation.

• The model captures the intricate behaviour between the cerebral circulation and the

CSF compartments and the effects the arachnoid villi and autoregulation have on CSF

distribution.



Chapter 4

Craniospinal model

In this chapter we augment the intracranial model developed in Chapter 3 by introducing the

spinal fluid spaces and investigating their interaction with the intracranial fluids. We explore:

(1) dynamics of pressures and fluxes of the craniospinal compartments for a range of parameters;

(2) effects of opening and closing of the arachnoid villi valves; (3) stability of the solution to

perturbations; and (4) effects of postural changes on the intracranial and spinal pressures and

fluxes.

4.1 Introduction to the model

The bony structure of the spinal cavity1 encases the spinal cord along the vertebral column. As

in the cranium, the spinal nervous tissue, which extends from the intracranial nervous tissue

via the medulla oblongata, has a set of protective layers or meninges. These meninges are the

same as in the cranium (Figures 1.2 and 3.1), with the exception of the dural spaces2 which

now instead of forming dural sinuses with their two layers (meningeal and endosteal), they form

small sacs encasing blood vessels, nerves, and drained CSF from spinal arachnoid villi as well

1As mentioned in Chapter 1, we use the term spinal cavity instead of spinal canal to avoid confusion with
the central canal.

2The spine also has epidural spaces filled with CSF and lymphatic fluid in addition to the dural sacs. In this
model we avoid the complexity of distinguishing these two spaces by assuming a single space outside the dura,
which we will call the dural space.
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Figure 4.1: Coupled craninospinal compartmental model with CSF fluxes. Compartments (repre-
sented by black boxes): 1 represents the cerebral vasculature (i.e. generational model), 2 the venous
dural sinuses, 3 the cerebral ventricles, 4 the intracranial SAS, 5 the central canal, and 6 the spinal
SAS. Fluxes on figure: S13 flux from vasculature to the ventricles, S14 flux from vasculature to the
intracranial SAS, S42 unidirectional flux to the venous dural sinuses, S35 flux from cerebral ventricles
to central canal, S56 flux from central canal to spinal SAS, S46 flux from intracranial SAS to spinal
SAS, Sc5 net flux from the spinal vasculature to the central canal, S6e unidirectional flux from spinal
SAS to external spinal space (here, to spinal venous output).

as lymphatic fluid from outer dural spaces. These cranial and spinal structures were reviewed

in detail in Chapter 1.

The spinal arachnoid villi are also present along the spinal arachnoid. These, as intracranially,

allow CSF to exit the subarachnoid space3 (SAS) into the dural sacs. Arachnoid villi can also

drain into epidural spaces but for simplicity we assume a single outer dural space.

Another CSF space is that of the central canal which, in this model, we assume to be a very

thin vessel filled with fluid extending along the spinal cord. The blood supply and drainage to

the spinal cord is accounted for as a single input and output for simplicity.

In this model, we incorporate the vascular model developed in Chapter 2, the intracranial

spaces developed in Chapter 3 and add two additional compartments of CSF space and an

input and an output of blood to the spine. The model is represented schematically in Figure

4.1. We treat the spinal cavity as a cylinder concentric to the spinal cord and the central canal.

Communication between intracranial and spinal spaces is as follows: the ventricles, in addition
3We distinguish SAS by denoting their location as spinal or intracranial, i.e. spinal SAS or intracranial SAS.
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to communicating with the cerebral vasculature and the intracranial SAS, communicate directly

with the central canal (compartment 5); and the intracranial SAS communicates directly with

the spinal SAS (compartment 6). We represent the spinal arachnoid villi as a single one-way

valve governed by the pressure difference between the spinal SAS and the spinal outer-dural

space, denoted as spinal external pressure. As in the intracranial model, we delimit the spinal

SAS by the dura mater.

In Figure 4.1 we observe the compartmental interaction between the two previous models

(vascular generational model discussed in Chapter 2 and the intracranial model discussed in

Chapter 3) and the spine. We note that whilst the intracranial fluxes S13, S14, and S34 are

the same as in the intracranial model, the overall volume is affected by the fluxes between

compartments 3 and 5 (S35), compartments 4 and 6 (S46), and compartments 5 and 6 (S56).

We introduce a vascular component to the spinal compartments, Sc5, by means of a net flux

source to compartment 5. This is analogous to the cerebral vascular compartment 1, with the

exception that all of the vascular flux in this case is directed towards one CSF compartment (5)

rather than two. Contributions of CSF flux from the vasculature to the spinal SAS are accounted

by S56. The unidirectional flux of the arachnoid villi is denoted by S6e. We assume the spinal

vasculature contributes to the production of CSF in the spine through the microcirculation in

the spinal cord, thus adding to the CSF in the central canal. This is consistent with literature

noting that CSF production in the spine is achieved through the ependyma of the central canal,

which as in the intracranial ventricles, they are dense in capillaries (Gray, 1989).

We give special attention to the gravitational effects these spinal compartments provide to the

intracranial ones. In this model we assume the zero reference pressure is at the heart level. We

describe each of the fluxes, pressures and gravitational terms in the following section.

4.2 Governing equations

We build on the derived equations from Chapters 2–3 and apply the same principles to construct

the spinal compartments. We adopt the same notation convention as in the intracranial model
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where a variable Xij denotes X between compartments i and j, e.g. S35 is the volumetrix flux

between compartments 3 and 5. In addition to subscripts 5 and 6 to denote compartments 5 and

6, respectively, in this model we add the subscript c to denote circulation contributing to CSF

production in the spine, subscript s to denote spinal, subscript b to denote brain, and subscript

e to denote external to the arachnoid-dura meninges or, in other words, the outer-dural space.

For the hydrostatic terms we also add a first subscript h before s, b or compartment numbers as

second subscripts. As in the vascular model, we also use the subscript words csf to a variable

pertaining to CSF spaces, blood to a variable pertaining to blood spaces, and cord to a variable

pertaining to the spinal cord, e.g. phcsf is the hydrostatic pressure for CSF spaces.

Conservation of mass applies to compartments 5 and 6, thus changes in volume depends on the

net sum of its fluxes. From Equations (3.1) and (3.3) we obtain,

dV5
dt

= S35 − S56 + Sc5, (4.1)

dV6
dt

= S46 + S56 − S6e, (4.2)

V5 = V50 + C5 (p5 − p6) , (4.3)

V6 = V60 + C6 (p6 − pe) , (4.4)

where the fluxes between compartments are proportional to the pressure difference between

them. From Equation (3.2) we obtain

Sc5 = kc5(pc − p5), (4.5)

S56 = k56(p5 − p6), (4.6)

S35 =
p3 − p5 + ph35

R35

, (4.7)

S46 =
p4 − p6 + ph46

R46

, (4.8)

S6e = k6eI6e(p6 − pe), (4.9)
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where I6e is the indicator function of the status of the spinal valve, defined as

I6e =


1 if p6 ≥ pe

0 if p6 < pe,

(4.10)

implying the valve is only open (and flux S6e is greater than zero) when the pressure in the

spinal SAS, p6, exceeds that of the external pressure, pe.

4.2.1 Interconnectivity with cranial compartments

Adding the two spinal compartments has an impact on the volume conservation equations

intracranially. Rewriting Equations (3.5) and (3.6) to include fluxes to the spinal compartment,

dV3
dt

= S13 − S34 − S35, (4.11)

dV4
dt

= S14 + S34 − S42 − S46. (4.12)

As mentioned previously, we assume the fluxes S13, S14, S34, and S42 are as defined in the

intracranial model. We assume compartment 5 is an extension of compartment 3, and com-

partment 6 is an extension of compartment 4, thus compartment 3 and 5 are directly connected,

as are 4 and 6.

We modify the Monro–Kellie hypothesis to include the changes made from the inclusion of the

spinal compartments to the intracranial compartments. We can thus obtain the intracranial

pressure, p4, by differentiating Equation (3.9),

dp4
dt

=
−S13 + S35 − S14 + S42 + S46

∂V1/∂p4
, (4.13)

where ∂V1/∂p4 is found iteratively as done so for the intracranial model in Chapter 3.
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4.2.2 Gravitational terms

In hydrostatic equilibrium, balance of forces in any fluid space requires

∂ph = −ρg∂z, (4.14)

where z is the vertical axis, ph is the hydrostatic pressure, ρ the density of the fluid of interest

(CSF or blood), and g the acceleration due to gravity. Hydrostatic pressure affects all compart-

ments and vasculature in the model. Here we assume the distance between the ventricles and

the heart is the same as that between the intracranial SAS and the heart, as we consider the

same distance (Figure 4.2). Similarly, we assume the hydrostatic pressure between the central

canal and the heart is the same as that between the spinal SAS and the heart.

Figure 4.2: Hydrostatic ref-
erence in the vertical position
(θ = π

2 ).

Assuming that the axis of the body forms an angle θ with respect

to a horizontal reference, and there is a linear distance hb between

the heart and the mid-brain and a distance hs between the heart

and the mid-spine, the hydrostatic pressure for the intracranial

CSF compartments is

ph3 = ph4 = ρcsfghbsinθ. (4.15)

ph5 = ph6 = ρcsfghssinθ. (4.16)

Then the hydrostatic pressure between intracranial and spinal

CSF compartments is

ph35 = ph46 = ρcsfg(hb + hs)sinθ, (4.17)

The cerebral circulation is also affected by changes in posture, its

hydrostatic pressure is

phblood = ρbloodghbsinθ. (4.18)
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To derive the resistances along the spinal cavity, we consider the geometry shown in Figure 4.3,

where d5 denotes the diameter of the central canal (compartment 5), dcord the diameter of the

spinal cord, and d6 the diameter of the spinal cavity (compartment 6).

We assume Hagen–Pouiseuille flow in the central canal, and thus the resistance between com-

partments 3 and 5 is

R35 =
8πµl35
(A5)2

, (4.19)

where l35 = hb+hs is the length between the central canal and the ventricles, and A5 = π(d5)
2/4

the cross-sectional area of the central canal.

Figure 4.3: Concentric spinal cord schematic.

For flow in compartment 6 we use the Hagen–Poiseuille relationship for annular flow4 between

the spinal cord and the spinal cavity

Q =
πG

32µ

(
(d6)

2 − (dcord)2
)(

(d6)
2 + (dcord)2 − (d6)

2 − (dcord)2

ln(d6/dcord)

)
. (4.20)

Hence, we find that the resistance between compartment 4 and 6 is

R46 =
32µcsf l46

π ((d6)2 − (dcord)2) ((d6)2 + (dcord)2 − ((d6)2 − (dcord)2) ln(d6/dcord)
, (4.21)

which simplified further gives

R46 =
32µcsf l46
πΩ

, (4.22)

where Ω = (((d6)
2 − (dcord)2) ((d6)

2 + (dcord)2 − ((d6)
2 − (dcord)2) ln(d6/dcord)).

4That can be derived from Equation (2.18) when the axial velocity w = 0 at r = dcord, and w = 0 at r = d6.
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4.2.3 Summary of the governing equations

The equations governing the craniospinal model are

dV3
dt

= S13 − S34 − S35, (4.23)

dV4
dt

= S14 + S34 − S42 − S46, (4.24)

dV5
dt

= S35 − S56 + Sc5, (4.25)

dV6
dt

= S46 + S56 − S6e, (4.26)

V3 = V30 + C3(p3 − p4), (4.27)

V4 = V40 + C4 (p4 − pskull) , (4.28)

V5 = V50 + C5 (p5 − p6) , (4.29)

V6 = V60 + C6 (p6 − pe) , (4.30)

V1 + V2 + V3 + V4 = constant. (4.31)

The craniospinal fluxes are defined by,

Sc5 = kc5(pc − p5), (4.32)

S56 = k56(p5 − p6), (4.33)

S35 =
p3 − p5 + phbs

R35

, (4.34)

S46 =
p4 − p6 + phbs

R46

, (4.35)

S6e = k6eI6e(p6 − pe), (4.36)
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where

R35 =
8πµl35
(A35)2

, (4.37)

R46 =
32µcsf l46
πΩ

, (4.38)

ph35 = ph46 = ρcsfg(hb + hs)sinθ, (4.39)

phblood = ρbloodghbsinθ, (4.40)

Ω =
((

(d6)
2 − (dcord)2

) (
(d6)

2 + (dcord)2 −
(
(d6)

2 − (dcord)2
)

ln(d6/dcord
))
. (4.41)

and

I6e =


1 if p6 ≥ pe

0 if p6 < pe.

(4.42)

Substitution of the volume terms gives the following set of ordinary differential equations for

the compartmental pressures which, assuming pe is constant, gives

dp3
dt

=
(S13 − S34 − S35)

C3

+
(−S13 + S35 − S14 + S42 + S46)

∂V1/∂p4
, (4.43)

dp4
dt

=
(−S13 + S35 − S14 + S42 + S46)

∂V1/∂p4
, (4.44)

dp5
dt

=
(S35 − S56 + Sc5)

C5

+
(S46 + S56 − S6e)

C6

, (4.45)

dp6
dt

=
(S46 + S56 − S6e)

C6

. (4.46)

4.3 Estimation of model parameters

In this model we introduce the following additional parameters5: C6, k56, k6e, kc5, hb, hs, d5, d6,

dcord, pc, and pe. For simplicity, as a first approximation we assume the following relationships

5We also introduce the acceleration due to gravity g = 9.81m/s2.
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exist between intracranial and spinal permeabilities

k56 ≈ 20 k34, (4.47)

k6e ≈ k42, (4.48)

kc5 ≈ 3 k1, (4.49)

C5 ≈ C3. (4.50)

The increase in permeability for k56 and kc5 is due to the assumption that spinal fluids span

throughout the spinal cavity thus increasing their surface area. For the valves we assume they

are both lumped into a single compartment and that they have the same permeability. We test

the effects of differences from these baseline values as part of the sensitivity analysis (§4.7). For

the compliance of the spinal cavity, we assume a value of 9× 10−8 m3/Pa, also similar to that

of C3 (3 × 10−8 m3/Pa). Although the value of the spinal cavity, which relates to the spinal

dura, is unlikely to be similar to that of the ventricles, we assume that to be the case in this

first approximation. We discuss further the effects of different values of C6 on the model in

§4.8. The central canal varies in size along the spinal cord and it has been observed to be very

small (Milhorat et al., 1994; Storer et al., 1998; Saker et al., 2016). In this model we assume

it has a diameter of approximately 2 × 10−3 m. The resistance between compartment 4 and

6, R46, in addition to the annular flow parameters, we assume it has a factor of two orders of

magnitude higher than its calculated to account for the arachnoid trabeculae and the crossing

of the spinal nerves.

For input and output vascular pressures, we make the following assumptions

pc = p∗1 + p35, (4.51)

pe = p60 −Hp6, (4.52)

where p60 = p20 + p46.

It is important to note that values for p∗1, k13, k34, k14, S10, H, and p20 will change due to the
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introduction of phblood to the vascular model input pressure proot, and the wider pressure range

for finding the intracranial coefficients first described in §3.3. This will also be the case for the

numerical iteration to find ∂V1/∂p4.

The parameter values taken from literature are summarised in Table 4.1.

Parameter Value (units) Reference

hb 0.35 (m) (Blinkov, 1968)
hs 0.15 (m) (Watson et al., 2009)
dcord 12× 10−3 (m) (Frostell et al., 2016)
d6 34× 10−3 (m) (Kim et al., 2013)

Table 4.1: Parameter values for craniospinal model.

4.4 The steady state solution

In steady state, Equations (4.23)–(4.26) become

0 = S13 − S34 − S35, (4.53)

0 = S14 + S34 − S42 − S46, (4.54)

0 = S35 − S56 + Sc5, (4.55)

0 = S46 + S56 − S6e. (4.56)

This in turn implies that −S13 − S14 + S42 − S35 + S46 = 0.

Expanding terms in Equations (4.53)–(4.56)

0 = k13(p
∗
1 − p3)− k34(p3 − p4)−

(p3 − p5 + ph35)

R35

, (4.57)

0 = k14(p
∗
1 − p4) + k34(p3 − p4)− k42I42(p4(1 +H)− p20)−

(p4 − p6 + ph46)

R46

, (4.58)

0 =
(p3 − p5 + ph35)

R35

− k56(p5 − p6) + kc5(pc − p5), (4.59)

0 =
(p4 − p6 + ph46)

R46

+ k56(p5 − p6)− k6eI6e(p6 − pe). (4.60)
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There are two valves in the system, if we assume they are either open or closed at any one

point in time (as in the intracranial model), we can linearise the system and find the pressures

for each valve combination. We can then solve Equations (4.57)–(4.60) to find the pressures by

p = A−1b, (4.61)

where,

p =



p3

p4

p5

p6


, b =



−k13p∗1 + ph35
R35

−k14p∗1 − k42I42p20 + ph46
R46

−ph35
R35
− kc5pc

−ph46
R46
− k6eI6ep20


, and

A =



−k13 − k34 − 1
R35

k34
1
R35

0

k34 −k14 − k34 − k42I42(1 +H)− 1
R46

0 1
R46

1
R35

0 − 1
R35
− k56 − kc5 k56

0 1
R46

k56 − 1
R46
− k56 − k6eI6e(1 +H)



We observe that the permeability matrix A is symmetric, which simplifies analytical calcula-

tions.

Pressure in compartment 3 is6

p3 = p∗1

(
−k13

A11

|A|
− k14

A21

|A|

)
+
ph35
R35

(
A11 − A31

|A|

)
+
ph46
R46

(
A21 − A41

|A|

)
− kc5pc

A31

|A|
− k42I42p20

A21

|A|
− k6eI6epe

A41

|A|
, (4.62)

In the previous section we established ph35 = ph46 and k42 = k6e, substituting these terms we

6Where we define Aij as the cofactor of element aij in A.
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simplify Equation (4.62) and similarly find the rest of the pressures,

p3 = p∗1

(
−k13

A11

|A|
− k14

A21

|A|

)
+ ph35

(
A11 − A31

R35|A|
+
A21 − A41

R46|A|

)
− kc5pc

A31

|A|

− k42
(
I42p20

A21

|A|
− I6epe

A41

|A|

)
, (4.63)

p4 = p∗1

(
−k13

A12

|A|
− k14

A22

|A|

)
+ ph35

(
A12 − A32

R35|A|
+
A22 − A41

R46|A|

)
− kc5pc

A32

|A|

− k42
(
I42p20

A22

|A|
− I6epe

A42

|A|

)
, (4.64)

p5 = p∗1

(
−k13

A13

|A|
− k14

A23

|A|

)
+ ph35

(
A13 − A31

R35|A|
+
A23 − A41

R46|A|

)
− kc5pc

A33

|A|

− k42
(
I42p20

A23

|A|
− I6epe

A43

|A|

)
, (4.65)

p6 = p∗1

(
−k13

A14

|A|
− k14

A24

|A|

)
+ ph35

(
A14 − A34

R35|A|
+
A24 − A44

R46|A|

)
− kc5pc

A34

|A|

− k42
(
I42p20

A24

|A|
− I6epe

A44

|A|

)
. (4.66)

We see that the first term in each equation describes the dependency on p∗1 (i.e. intracranial

vascular term), the second the gravitational terms, the third the spinal vascular term, and the

last term depends on the behaviour of the valves.

When the valves are in a closed position (I42 = I6e = 0) and the assumed posture is supine

(θ = 0), we see Equations (4.63)–(4.66) reduce to only two terms, the intracranial and spinal

vascular terms. We can also observe that p3 = p5 when A11 = A13, A21 = A23, A31 = A33 and

A41 = A43. Similarly, p4 = p6 when A12 = A14, A22 = A24, A32 = A34 and A42 = A44.

In the intracranial model we observed that when I42 = 0, p3 = p4 = p∗1. In the craniospinal

model, when either or both the valves are closed, the pressures may reach a different steady state

for each valve condition and for each posture change. It can be seen that complexity has already

escalated significantly from the intracranial model by the adding only two compartments and

the gravitational terms.

To test each valve in their different states we adopt a binary notation 11, 10, 01, 00, where

1 denotes open, 0 closed, and the first digit corresponds to the intacranial valve I42 while

the second corresponds to the spinal valve I6e. Note that for each valve combination the
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permeability matrix A changes. We test a range of postures, from supine to upright position

(θ = 90◦) and upside down position (θ = −90◦), using the values7 in Tables 2.6, 3.1, 3.2 for

the appropriate pressure range, and Table 4.1. We solve numerically to keep the nonlinearity

introduced by the valves and obtain the baseline condition from the solver, we do this by using

the Matlab function fsolve. Results for steady state pressures and fluxes are given in Tables

4.2 and 4.3.

θ -90◦ -45◦ 0◦ 45◦ 90◦

Valves 10 10 11 01 01

p∗1 29.6 26.2 23.8 16.8 13.4
p2 5.7 8.7 10.3 13.8 12.7
p3 16.7 15.4 13.9 5.3 2.3
p4 15.4 14.3 12.9 4.2 1.3
p5 -20.2 -10.7 13.9 31.4 39.2
p6 -21.4 -11.7 12.9 30.3 38.2

Table 4.2: Pressures (mmHg) for different postures where θ = −90◦ denotes upside down position,
θ = 0 supine position, and θ = 90◦ upright position. Valve status denotes 1 for open and 0 for closed,
where the first digit corresponds to the intracranial valve and the second to the spinal valve.

θ -90◦ -45◦ 0◦ 45◦ 90◦

Valves 10 10 11 01 01

S13 0.75 0.44 0.42 0.60 0.60
S14 4.4 2.6 2.4 3.4 3.5
S34 0.74 0.43 0.39 0.56 0.56
S42 19.4 11.4 5.3 0.00 0.00
Sc5 14.2 8.3 7.8 11.2 11.3
S56 14.3 8.4 7.8 11.3 11.3
S6e 0.00 0.00 5.3 15.3 15.4
S35 0.02 0.02 0.02 0.04 0.04
S46 -14.3 -8.4 -2.5 4.0 4.0

Table 4.3: Fluxes (ml/min) for different postures where θ = −90◦ denotes upside down position,
θ = 0 supine position, and θ = 90◦ upright position. Valve status denotes 1 for open and 0 for closed,
where the first digit corresponds to the intracranial valve and the second to the spinal valve.

Comparing the results with the analytical solution we were able to confirm the values and the

valve statuses. Solving analytically we can evaluate all valve cases for each of the postures. The

analytical solution however, confirmed that only one steady state can be reached for a given

posture and each has a specific valve combination as shown above.
7Baseline values for vascular model (Chapter 2) and intracranial model (Chapter 3).
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There is an interesting pattern in the values as well as the valve statuses with respect to posture.

In the supine position both valves are open, matching the intracranial model where the valve

was in an open position. In the positive angles (towards upright position) the intracranial valve

closes and the spinal valve opens, and in the negative angles (towards upside down position)

the spinal valve closes and the intracranial valve opens. This is reasonable since in the upright

position the cranium is above the heart level thus creating a negative hydrostatic pressure

which can result in the closure of the intracranial valve. In the upside down position the

opposite must occur. This implies the main CSF exit route in the standing position according

to our model is through the spinal arachnoid villi. This coincides with the extracranial blood

pathways in the standing position being that of the vertebral veins instead of the jugular veins

due to hydrostatic pressure effects, as mentioned in Chapter 1, due to the partial collapse of

the jugular veins.

In Table 4.2, we observe that in the supine position, steady state pressure between ventricles

p3, and the central canal p5, is the same, as is the pressure in the intracranial SAS pressure

p4, and the spinal SAS pressure p6. This makes sense since these compartments are in direct

communication and in the supine position they are also at the heart level so their pressures

balance.

In the upright position we see the intracranial pressures decrease whilst the spinal pressures

increase, and in the upside down position (−90◦) the opposite occurs. The intracranial vascular

pressure p∗1 appears less affected than the pressures in the ventricles p3 and intracranial SAS

p4. This is perhaps unsurprising given the larger pressure that the vasculature withstands,

however, it is possible that autoregulation is aiding this compensation. The spinal pressures, p5

and p6, are the most sensitive to postural changes, reaching very high pressures in the upright

position and negative pressures in the upside down position.

We notice the pressure in the dural sinuses p2 increases slightly in the upright position. This

is counter intuitive since the dural sinuses, specially the superior sagittal sinus, can become

negative due to their location relative to the heart. We analyse this behaviour further. In the

intracranial model we established that p2 decreases linearly from an initial p20 with increasing
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p4 until reaching equilibrium. In this model the same occurs. In the upright position there is

a decrease in p20, however since p4 also decreases, the overall p2 increases slightly despite the

positive angle.

There is another factor in this model that can also influence the dural sinuses, the interaction

of the valves. We observe this in more detail in Table 4.3, where we see flux through S42 and

S6e. The increase in pressure in the dural sinuses in the upright position is small (+3 mmHg)

compared to the rest of the pressure changes, it is possible that the closure of the intracranial

valve prevents a rapid decline in pressure. From supine to a 45◦ angle we see the biggest change,

at this point no flux goes into the intracranial SAS and the sinuses receive a reduced flux from

the vasculature. From 45◦ to 90◦, p2 starts to decrease since p∗1 has decreased more significantly.

This is reasonable since for blood and CSF to drain in the upright position a positive pressure

gradient is required to allow for forward flow to extracranial pathways.

The results for fluxes, as those of the pressures, are physiologically realistic. Our results for

ventricular pressure agree with those as measured by Lawley et al. (2017), where their findings

(denoted in their study as intracranial pressure measured from the ventricles) are in the range

of 2–6 mmHg in the upright position and 15–22 mmHg in the upside down position8. Similar

detailed studies would be required to confirm the rest of the pressures in our model. We notice

in the case of the fluxes, that there is a greater influx of CSF into the spine. Spinal flux in our

model considers the entire spinal cavity which, as mentioned earlier, can account for up to 60%

of the total CSF. Considering the input flux of the intracranial compartments, we see that it

is less than half of the spinal influx which is reasonable.

We investigate further the dynamics of the system before reaching these steady states in §4.6.

Before that however, we evaluate the stability of the system.

8(Lawley et al., 2017) does not measure upside down position but rather a change from zero to 1G to simulate
microgravity and a head down tilt of -6◦, both of which give this range of intracranial pressure.
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4.5 Linear stability analysis

We analyse the effects of perturbations on the system by first finding the eigenvalues and

eigenvectors. Expanding Equations (4.43)–(4.46) and rewriting them in matrix form9 we obtain

dp
dt

= Mp + q, (4.67)

where

p =



p3

p4

p5

p6


, q =



−p∗1
(
k13
C3
− k13+k14

∂V1/∂p4

)
+ ph35

R35
+ kc5pc+k42I42p20+k6eI6ep20

∂V1/∂p4

p∗1

(
k13+k14
∂V1/∂p4

)
+ kc5pc+k42I42p20+k6eI6ep20

∂V1/∂p4

− ph35
C5R35

− kc5pc
C5
− ph46

C6R46
− k6eI6ep20

C6

− ph46
C6R46

− k6eI6ep20
C6


,

and

M =



−k13−k34−1/R35

C3
+ k13

∂V1/∂p4
k34
C3

+ k14+k42I42(1+H)
∂V1/∂p4

1
C5R35

+ kc5
∂V1/∂p4

k6eI6e(1+H)
∂V1/∂p4

k13
∂V1/∂p4

k14+k42I42(1+H)
∂V1/∂p4

kc5
∂V1/∂p4

k6eI6e(1+H)
∂V1/∂p4

1
C5R35

1
C6R46

− (kc5+k56+1/R35)
C5

+ k56
C6

k56
C5
− (k56+k6eI6e(1+H)+1/R46)

C6

0 1
C6R46

k56
C6

− (k56+k6eI6e(1+H)+1/R46)
C6


.

We solve the characteristic equation to find the eigenvalues, det(M − λI) = 0, where I is

the identity matrix, and λ the eigenvalues, and use these to find the eigenvectors that satisfy

Mv = λv.

We compute the eigenvalues and eigenvectors using the same parameter values as in §4.4 and

obtain the results in Table 4.4 for the supine position and its respective valve status. As in

Chapter 3, we adopt the notation for eigenvectors as vip where i is the associated eigenvalue

and p the pressure corresponding to the eigenvector component. The solution to the system is

a stable node.
9N.B. As in the intracranial model, the system is not truly linear since ∂v1/∂p4 is in function of p4.
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λ1 = −0.01 λ2 = −0.02 λ3 = −0.09 λ4 = −3.12

v13 = 0.38 v23 = 0.67 v33 = −0.72 v43 = 0.69
v14 = 0.57 v24 = −0.51 v34 = −0.25 v44 = 0.69
v15 = 0.44 v25 = 0.16 v35 = 0.59 v45 = −0.13
v16 = 0.57 v26 = −0.50 v36 = −0.27 v46 = −0.13

Table 4.4: Eigenvalues and eigenvectors for θ = 0 and valve status 11.

We can observe that the magnitude of the last eigenvalue is significantly greater (by one order

of magnitude) than the rest. This means the system will be influenced by this fast eigenvalue.

Eigenvector components v45 and v46 in this fast eigenvalue are much greater than eigenvector

components v43 and v43. This indicates the behaviour of p3 and p4 will be relatively unaffected

by this fast eigenvalue, whereas p5 and p6 will be heavily influenced by it.

If we take a projection of p3 and p4 onto the p5 − p6 plane, we can see their convergence to a

stable node. Figure 4.4 shows the 3D phase portrait in the p3, p4, p5 space (Figure 4.4a), and

a projection of the p3–p4 plane (Figure 4.4b). We choose p5 for convenience as it appears to

have the greatest eigenvector component between v45 and v46.
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Figure 4.4: Phase portrait in supine position (θ = 0) when both valves are open (I42 = I6e = 1).
(a) 3D phase portrait of p3, p4 and p5 with flow vectors (light blue arrows) near the fixed point (red
circle). (b) Projection of the flow vectors on the p3–p4 plane about the stable point (red circle).

The system is not a star node since the eigenvalues are different, otherwise we would see perfectly

aligned flow vectors, instead we see flow vectors rotating slightly meaning p3 will experience
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mild overshoots or undershoots. The behaviour is less pronounced than in the intracranial

model indicating a subtle influence from the spinal pressures.

It is difficult to visualise solutions in three dimensions but we can assert from this analysis that

the behaviour of the intracranial pressures will be influenced by the behaviour of the spinal

pressures, and that p3 can experience mild overshoots and undershoots with respect to p4 as

can p5 with respect to p6. Therefore, as we saw in Chapter 3, the solutions will converge to the

fixed point following the flow vectors.

We found the eigenvalues for the other postures and valve statuses to be very similar to the one

in Table 4.4, as will be seen in the next section on the dynamic solutions in different postures.

We therefore conclude that the behaviour of the system at all postures will be similar to the

one shown. That is, irrespective of posture and their corresponding valve status, the system

will be influenced by the fast eigenvalue and in particular by the spinal pressures which account

for the eigenvector components of these fast eigenvalue with greatest magnitude.

4.6 The unsteady state solution

We compute Equations (4.43)–(4.46) using Matlab ODE solver ODE15s. Using the same pa-

rameter values as in the previous sections we test three different cases:

• Case 1: supine position θ = 0 with the initial condition of 5 mmHg for all pressures;

• Case 2: changing from the steady supine conditions to an upright position θ = 90◦;

• Case 3: changing from the steady supine conditions to an upside down position θ = −90◦.

Tolerances for reaching equilibrium values are the same as applied in Chapter 3. The colour

code in the figures is the same for the intracranial pressures and fluxes in Chapter 3. For spinal

pressures we introduce dark green for p5, light green for p6 and orange for external (epidural)

spinal pressure pe. For spinal fluxes Sc5, S56 and S6e we use the same shades of green and

orange, and for craniospinal fluxes S35 and S46 we use orchid and steel blue respectively.
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Case 1: Supine position

In Figure 4.5a we observe the intracranial and spinal pressures for the supine position when

the initial pressure is 5 mmHg. The first thing to notice is that the behaviour is very similar to

that which we observed in the intracranial model (Case 1 §3.6). The one significant difference

is the time scale. In the intracranial model we had a time scale of 6 hours, with the spinal

compartments the time scale is reduced to half hour. This might be due in part to the difference

in magnitude of the fast eigenvalues, in the intracranial model we have a fast eigenvalue of

−0.002 for the equivalent valve case, whilst in the craniospinal model the fast eigenvalue is

-0.45. Recalling Equation (3.52) we can see how the eigenvalue with largest magnitude will

result in a fast convergence, and as we see in this case to a significant extent.
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Figure 4.5: Dynamic craniospinal pressures and intracranial fluxes in the supine position (θ = 0)
with an initial pressure of 5 mmHg in all compartments. (a) Intracranial pressures: pressure in the
dural sinuses p2, ventricular pressure p3, intracranial SAS pressure p4. (b) Intracranial fluxes: flux
from the vasculature to the ventricles S13, flux from the vasculature to the intracranial SAS S14, flux
from the ventricles to the intracranial SAS S34, flux from the intracranial SAS to the dural sinuses S42.
The dashed line indicates the opening of the intracranial and spinal valves.

In the figure we see overlapping of pressures, external spinal pressure pe overlaps with pressure

in the dural sinuses p2, pressure in the central canal p5 overlaps with the ventricular pressure

p3, and the spinal SAS pressure p6 overlaps with the intracranial SAS pressure p4. This is due

to the relationships established in §4.2 and §4.3. We also notice the opening of both valves at

the same time (≈ 6 min) and the pressures reaching equilibrium at approximately 15 min.
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In Figure 4.5b we see the the intracranial fluxes have a similar behaviour to the intracranial

model with the exception that the flux from the ventricles to the cranial SAS S34 the overshoot

is not as pronounced. There is also slightly higher flux going through the intracranial valve, S42

which, as mentioned earlier, has to do with the larger influx through the spinal compartments.
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Figure 4.6: Dynamic craniospinal fluxes in the supine position (θ = 0) for the same initial conditions
as Figure 4.5. (a) spinal fluxes: flux from the vasculature to the central canal Sc5, flux from the central
canal to the spinal SAS S56, flux from the spinal SAS S6e. (b) Craniospinal fluxes: flux from the
ventricles to the central canal S35, flux from the intracranial SAS to the spinal SAS S46. The dashed
line indicates the opening of the intracranial and spinal valves.

In Figure 4.6a we see the behaviour of the flux from the spinal vasculature to the central

canal Sc5 and the flux from the central canal to the spinal SAS S56, which is very similar

to the behaviour seen in S13 and S34 of the intracranial model, though as mentioned with

larger flux. This is reasonable since S13 and S34 are analogous to Sc5 and S56. Flux S56 has

a significant overshoot when the spinal valve is closed and stabilises after it opens. The flux

through the spinal valve S6e is proportionally smaller to the other spinal fluxes in comparison to

the intracranial valve S42. This is likely due to the larger influx through the spinal vasculature

in combination with the release of flux through the intracranial valve. We review this further

in the following two cases.

We observe in Figure 4.6b that the craniospinal fluxes S35 and S46 have a fast overshoot and

undershoot, respectively, before the valve opens. Since there is higher influx through the spinal

vasculature, CSF initially flows from the central canal to the ventricles, thus creating negative
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flux, before stabilising. It is possible that this flux then becomes part of compartment 4 creating

a positive overshoot of flux before steadily decreasing. Flux S35 starts to increase around the

time S56 and Sc5 have reached approximately 60% of their total behaviour, as expected due to

the influence of p5. Flux S46 decreases significantly when the valve opens as expected.

We conclude that the supine case of the craniospinal model is substantially faster than the

intracranial model. The time constants for pressures p3 to p6 are approximately 3 minutes.

The intracranial pressures and fluxes behave qualitatively similar to the intracranial model,

however the values for spinal fluxes are significantly higher than the intracranial ones. Spinal

pressures p5 and p6 are analogous to intracranial pressures p3 and p4, respectively, thus behaving

very similar in this supine case. The craniospinal fluxes S35 and S46 have a changing dynamic

with respect to the input pressure and fluxes between the spinal and intracranial compartments,

with both stabilising fully after the valves open. Equilibrium is reached at approximately 20

minutes for all pressures and fluxes.

Case 2: Supine to upright position

λ1 = −8× 10−4 λ2 = −0.02 λ3 = −0.10 λ4 = −0.57

v13 = 0.47 v23 = −0.90 v33 = 0.48 v43 = −0.16
v14 = 0.53 v24 = 0.02 v34 = 0.045 v44 = −0.11
v15 = 0.47 v25 = −0.43 v35 = −0.88 v45 = 0.72
v16 = 0.52 v26 = 0.003 v36 = 0.02 v46 = 0.66

Table 4.5: Eigenvalues and eigenvectors for θ = 90 and valve status 01.

We now set the initial conditions to the supine steady state and change to an upright position.

We can see in Table 4.5 that the eigenvalues are almost identical to the supine case, with the

exception that the eigenvalue with smallest magnitude (i.e slow eigenvalue) is one order of

magnitude smaller than the slow eigenvalue of the supine case. We again see the eigenvector

components for pressures p5 and p6 for the eigenvalue of largest magnitude (i.e. fast eigenvalue)

are dominant over the eigenvector components for pressures p3 and p4, indicating the spinal

pressures will have a very fast response in comparison to the intracranial pressures.

In Figure 4.7a we see this is the case as we observe the spinal pressures p5 and p6 have a
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significant overshoot from the initial conditions whilst the spinal external pressure pe also

undershoots significantly. This is expected since pe is a function of p6 as per Equation (4.52).

After this initial response pressures p5 and p6 decrease monotonically until reaching equilibrium

at around 2 hours. The spinal external pressure pe has the opposite behaviour increasing steadily

to equilibrium after it undershoots.
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Figure 4.7: Dynamic craniospinal pressures changing from the steady supine position to the upright
position (θ = 90◦): pressure in the dural sinuses p2 (red line), ventricular pressure p3 (light blue line),
intracranial SAS pressure p4 (darker blue line), spinal external pressure pe (orange line), pressure in
the central canal p5 (darker green line), spinal SAS pressure p6 (light green line). (a) Time scale of 3
hours indicating valve status for intracranial valve I42 and spinal valve I6e, where 1 denotes open and
0 denotes closed. (b) Time scale of 10 seconds with the time of changes in the status of the valves
indicated by the dashed lines.

The intracranial pressures p3 and p4 have no overshoot or undershoot but rather start to

decrease monotonically at the same time as p2 increases. As we saw in the steady state, spinal

pressures increase in the upright position, whilst the intracranial pressures decrease. We see

the dural sinuses pressure increases slightly stabilising after the valve closes to an equilibrium

value not far from its supine baseline value, thus confirming the analysis in §4.4.

It appears in Figure 4.7a that the spinal valve remains open and the intracranial valve remains

closed throughout their time span, however, on closer inspection we can see this is not the case.

In Figure 4.7b we see the behaviour of the pressures in the first 10 seconds of this change in

posture and can distinguish three different valve states taking place. In the steady state supine

position both valves are open. Upon changing to a positive θ the hydrostatic pressure changes
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immediately, causing a change in the valves, in this case we see a valve status of 10 at t = 0,

changing to 11 at t = 1.8 seconds, finally changing to 01 at t = 2.5 seconds. Since the response

of the spinal pressures is fast, we see the spinal valve status change earlier than that of the

intracranial valve.

Note that since the behaviour is fast, in Figure 4.7b it appears as if the pressures increase or

decrease in an opposite manner as to Figure 4.7a, however, upon zooming out to a greater time

scale, we start seeing the behaviour of Figure 4.7a.
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Figure 4.8: Dynamic intracranial fluxes changing from the steady supine position to the upright
position (θ = 90◦): flux from the cerebral vasculature to the ventricles S13 (red line), flux from
the ventricles to the intracranial SAS S34 (light blue line), flux from the cerebral vasculature to the
intracranial SAS S14 (pink line), flux through the intracranial valve S42 (darker blue line). (a) Time
scale of 3 hours indicating valve status for the intracranial valve I42, where 1 denotes open and 0
denotes closed. (b) Time scale of 10 seconds with the time of changes in the status of the valves
indicated by the dashed lines.

The intracranial flux (Figure 4.8b) from the vasculature to the ventricles S13, has negligible

changes whilst flux from the ventricles to the intracranial SAS S34, has a more pronounced

change which is is driven by the very mild undershoot of p3 in Figure 4.7b between 2 and

10 seconds. Flux from the vasculature to the intracranial SAS S14 increases steadily to reach

equilibrium at around 2 hours, which is driven by the decrease in p4. In the previous case we

saw S14 decreasing until the valve opened, after which point it stabilised to equilibrium. In

this case S14 continues to increase even after the valve closes, suggesting the influence of p4 is

greater than that of the valve. Pressure p4 reaches equilibrium significantly faster when the
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valve goes from open to closed, but from closed to open p4 takes a longer time to reach the

lower equilibrium thus S14 continues to increase. In other words, the change in the valve status

has a faster response in p4 when it goes from open to closed than going from closed to open,

which in turn affects the related flux S14.

The most prominent change is in the flux through the intracranial valve S42, where a significant

drop occurs between 0 and 2 seconds until it reaches 0 at the valve closure. Flux through S42

at t = 0 is very high (12 ml/min, shown only to 6 ml/min), this is due to the high spinal flux

coming from the vasculature Sc5.
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Figure 4.9: Dynamic spinal fluxes changing from the steady supine position to the upright position
(θ = 90◦): flux from the spinal vasculature to the central canal Sc5 (light green line), flux from the
central canal to the spinal SAS S56 (darker green line), flux through the spinal valve S6e (orange).
(a) Time scale of 3 hours indicating valve status for the spinal valve I6e, where 1 denotes open and 0
denotes closed. (b) Time scale of 10 seconds indicating with the time of changes in the status of the
valves indicated by the dashed lines.

In Figure 4.9 we see flux through the spinal valve S6e overshooting significantly when changing

from supine to upright position, this is expected as per the undershoot of pe in Figure 4.7.

Conversely, flux S56 undershoots before increasing monotonically to its equilibrium, this is due

to the behaviour seen in pressures p5 and p6. Flux Sc5 first overshoots followed by an undershoot

and then a steady increase towards equilibrium, this is due to the undershoot of pc (not shown)

as it is dependent on hydrostatic pressure, hence the sudden change. It is then influenced by

the overshoot of p5 which causes the undershoot of Sc5. The value of the flux through the spinal

valve S6e is substantially large, however the change in spinal pressures is also very large which
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accounts for the relatively large flux of CSF out of the system in the upright position.

We conclude that the initial response of the spinal pressures and intracranial pressures in the

upright position allow the valves to change status from 10 to 11 and to 01 after which the

variables reach equilibrium. The fast response of the spinal pressures is in agreement with the

stability analysis and corresponding eigenvalues. The overshoot of the spinal pressures p5 and

p6, and the undershoot of pe due to the change in hydrostatic pressure, has a significant effect

on the spinal fluxes, particularly that of the valve S6e. The intracranial pressures and fluxes are

only mildly affected, with p3 having a very subtle undershoot around the time the intracranial

valve closes. The slower response of the intracranial pressures allows for a longer time for the

valve to close.

Case 3: Supine to upside down position

λ1 = −6.4× 10−4 λ2 = −0.02 λ3 = −0.09 λ4 = −0.46

v13 = −0.43 v23 = 0.88 v33 = −0.42 v43 = 0.02
v14 = −0.57 v24 = 0.005 v34 = 0.02 v44 = −0.03
v15 = −0.42 v25 = 0.46 v35 = 0.90 v45 = −0.74
v16 = −0.56 v26 = 0.02 v36 = 0.05 v46 = −0.67

Table 4.6: Eigenvalues and eigenvectors for θ = −90 and valve status 10.

We can see in Table 4.5 that in the upside position the eigenvalues are again almost identical

to the previous cases, in particular to that of Case 2 where the slow eigenvalue has a difference

of only 0.005. We can therefore expect similar response times and behaviour for the spinal and

intracranial pressures.

As in the previous case, in Figure 4.10 we see a very fast response of the spinal pressures when

compared to the intracranial pressures. This time it is the spinal valve that closes (as seen in

the steady state solution), and it closes at a very fast rate, in approximately 1 second. We

observe that the external pressure has the biggest change, going from a negative pressure to a

steady state of 46 mmHg. This is the result of a hydrostatic pressure of -36.9 mmHg, which is

increased by p20 as per Equation (4.52). After the spinal valve closes, all pressures stabilise to

equilibrium in less than an hour.
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Figure 4.10: Dynamic craniospinal pressures changing from the steady supine position to the upside
down position (θ = −90◦): pressure in the dural sinuses p2 (red line), ventricular pressure p3 (light
blue line), intracranial SAS pressure p4 (darker blue line), spinal external pressure pe (orange line),
pressure in the central canal p5 (darker green line), spinal SAS pressure p6 (light green line). (a) Time
scale of 1.5 hours indicating valve status for intracranial valve I42 and spinal valve I6e, where 1 denotes
open and 0 denotes closed. (b) Time scale of 10 seconds with the time of changes in the status of the
valves indicated by the dashed lines.
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Figure 4.11: Dynamic intracranial fluxes changing from the steady supine position to the upside
down position (θ = −90◦): flux from the cerebral vasculature to the ventricles S13 (red line), flux
from the ventricles to the intracranial SAS S34 (light blue line), flux from the cerebral vasculature to
the intracranial SAS S14 (pink line), flux through the intracranial valve S42 (darker blue line). (a)
Time scale of 1.5 hours indicating valve status for the intracranial valve I42, where 1 denotes open and
0 denotes closed. (b) Time scale of 10 seconds with the time of changes in the status of the valves
indicated by the dotted lines.

In Figure 4.11 we see a substantial overshoot in flux through the intracranial valve, this is

again due to the uptake of spinal flux as the spinal valve closes and until the pressures reach
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equilibrium. Changes in the rest of the intracranial fluxes are negligible in comparison.
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Figure 4.12: Dyanmic spinal fluxes changing from the steady supine position to the upside down
position (θ = −90◦): flux from the spinal vasculature to the central canal Sc5 (light green line), flux
from the central canal to the spinal SAS S56 (darker green line), flux through the spinal valve S6e
(orange). (a) Time scale of 1.5 hours indicating valve status for the spinal valve I6e, where 1 denotes
open and 0 denotes closed. (b) Time scale of 10 seconds with the time of changes in the status of the
valves indicated by the dashed lines.

The spinal fluxes have a changing dynamic in their initial response. We see in Figure 4.12

that flux through the spinal valve S6e drops rapidly, in agreement with the rapid increase in

pe seen in Figure 4.10. We observe S56 undershoots before and after the valve closes (Figure

4.12b), before steadily increasing with a small overshoot before stabilising to equilibrium. Sc5

is influenced by pressures pc and p5, as in the previous case since pc has a fast response with

respect to hydrostatic pressure, and p5 has also a fast response but in the opposite direction,

the result is an undershoot (from the change in hydrostatic pressure) followed by a nonlinear

increase towards equilibrium as influenced by the nonlinear decay in p5.

We conclude that in the upside down position the changes in the spinal pressures are again

very fast and very significant. In particular that of the spinal external pressure where it goes

from a negative pressure to a very large positive pressure. This causes the spinal valve to

close at around 1 second. The high hydrostatic pressure and the larger spinal flux causes the

intracranial flux through the valve to overshoot significantly, but it is later accommodated in

less than one hour, which is the approximate equilibrium time for pressures and fluxes.
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4.7 Parameter sensitivity analysis

In the previous two chapters, we saw the effects of varying the model parameters on the vascular

and intracranial models. As we have seen similarities in this model in the supine position, we

focus instead on the two new postures, upright and upside down, and analyse the effects on

pressures when their main exit route (i.e. intracranial and spinal valves), according to the valve

statuses seen in §4.4, is either reduced or increased. From the previous sections we have seen

that the effect the pressures have on the fluxes and can therefore deduce the behaviour of the

fluxes from analysing the pressures.

We assess the sensitivity to the permeability of the spinal valve (k6e) in the standing position,

and the permeability of the intracranial valve (k42) in the upside down position.

Supine to upright position with modified k6e

In upright position, starting from supine steady state conditions, we vary the permeability of

the spinal valve k6e by one order of magnitude from its baseline. As established in §4.3, the

baseline value of this permeability is that of permeability k42. The behaviour for the initial

response (< 50 seconds), was the same as the baseline, therefore it is only shown the longer

time response.

We observe in Figure 4.13 that as we increase this permeability the intracranial pressures

p3 and p4 decrease further, resulting in negative pressure, while the pressure in the dural

sinuses p2 increases slightly. The spinal pressures p5 and p6 decrease more significantly than

the intracranial pressures but at no point do they reach the spinal external pressure pe which

increases slightly. We know from the steady state that in the upright position intracranial

pressures decrease from the supine values and spinal pressures increase. A higher permeability

therefore makes this effect more pronounced.

When the permeability of the spinal valve is reduced, the intracranial pressures do not decrease

as significantly from their baseline (≈ 13 mmHg), and the pressure in the dural sinuses does not
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Figure 4.13: Craniospinal pressures changing from the steady supine position to the upright position
position (θ = 90◦) when the spinal valve permeability k6e is changed: pressure in the dural sinuses
p2 (red line), ventricular pressure p3 (light blue line), intracranial SAS pressure p4 (darker blue line),
spinal external pressure pe (orange line), pressure in the central canal p5 (darker green line), spinal
SAS pressure p6 (light green line). Thick solid line denotes the baseline value, think solid line the
value when permeability is increased, and the dotted line when permeability is decreased. The vertical
dot-dash line indicates a change of valve status, where I42 denotes the intracranial valve, I6e the spinal
valve, and where 1 denotes open and 0 denotes closed.

increase from its baseline (10 mmHg) but rather slightly decreases. After the initial response

the intracranial pressures start to slowly increase until reaching the pressure in the dural sinuses

at which point (1.25 hours) the intracranial valve opens to relieve the pressure. Equilibrium is

reached at approximately 2.5 hours.

The spinal pressures p5 and p6 have the same fast response seen in Case 2 of §4.6, with the

difference that the pressures do not decay to equilibrium but rather increase slightly until

reaching equilibrium at the same time as the rest of the pressures. The opposite effect occurs



182 Chapter 4. Craniospinal model

for spinal external pressure pe as expected. Since the pressures are kept relatively constant

after their initial response, we can deduce the fluxes will be minimal after the initial overshoots

and undershoots.

It is interesting to see that the intracranial valve is sensitive to changes in the permeability

of the spinal valve. Physiologically this could mean that in the absence of a functional spinal

valve, the intracranial arachnoid villi would indeed have to do most of the CSF drainage in

order to prevent high intracranial pressure in the upright posture.

We conclude that the permeability of the spinal valve k6e is similarly important to intracranial

pressures, a reduction of its value by one order of magnitude results in p3 and p4 reaching the

value of the dural sinuses p2, thus opening the intracranial valve to relieve the pressure. An

increase in the spinal valve permeability from its baseline value accentuates the behaviour seen

in Case 2 of §4.6 but no valve status change is observed.

Supine to upside down with modified k42

In the case of supine to upside down with a change of one order of magnitude in k42, we see

the effects in Figure 4.14. The behaviour for the initial response (< 50 seconds), was again the

same as the baseline, therefore only the longer time response is shown. In Figure 4.14 we can

see that again as we increased the permeability a more pronounced effect on pressures can be

seen; that is, the pressures that increase have a higher equilibrium value when the permeability

is higher, and those that decrease have a lower equilibrium value.

We observe that when the permeability is higher, intracranial pressures p3 and p4 decrease

to a value very close to that of the dural sinuses pressure p2, although they do not cross to

activate the valve. Further testing revealed that irrespective of the increase in permeability these

pressures continued to approach but never reach each other in order to change the intracranial

valve status.

The spinal pressures p5 and p6 have a similar behaviour to that of p3 and p4, as they decrease

further with a higher permeability and are higher when the permeability is reduced. For the
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Figure 4.14: Craniospinal pressures changing from the steady supine position to the upside down
position position (θ = −90◦) when the intracranial valve permeability k42 is changed: pressure in
the dural sinuses p2 (red line), ventricular pressure p3 (light blue line), intracranial SAS pressure p4
(darker blue line), spinal external pressure pe (orange line), pressure in the central canal p5 (darker
green line), spinal SAS pressure p6 (light green line). Thick solid line denotes the baseline value, think
solid line the value when permeability is increased and the dotted line when permeability is decreased.
The intracranial and spinal valve status, I42 and I6e respectively, shown where 1 denotes open and 0
denotes closed.

higher permeability the pressures are close to their baseline values. The spinal external pressure

pe sees the biggest effect (as p2 does intracranially). At no point is the spinal valve status

changed. For I6e to change to 1, a significant pressure difference would have to be overcome for

pe to reach p6. In our testing no value was found to reach this valve status.

This testing suggests that in the upside down position a reduced intracranial valve permeability

can be physiologically damaging for intracranial pressures since we see both p3 and p4 with

sustained pressure values above 20 mmHg. The pressure in the dural sinuses p2 would then be
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reduced to negative pressure thus preventing the direct return of cranial blood to the heart.

We conclude that in the upside down position a larger permeability of the intracranial arachnoid

villi mildly accentuates the behaviour seen in Case 3 §4.6, whilst a smaller permeability can

be physiologically detrimental since the effects cannot be compensated by the other valve as is

seen in the upright position sensitivity case.

4.8 Summary and discussion

In this chapter we introduced two spinal cerebrospinal fluid (CSF) compartments to the in-

tracranial model, the spinal cavity and central canal, along with a spinal vascular input and

output. The spinal cavity, which we delimit by the spinal dura mater, contains a lumped pa-

rameter arachnoid villi valve, which we denote as the spinal valve. The constructed craniospinal

model effectively integrates the vascular model introduced in Chapter 2 and the intracranial

model introduced in Chapter 3 (§4.1).

The craniospinal model is governed by the equations introduced in the intracranial model

which are now modified to account for the additional compartments and the introduction of

gravitational terms to account for postural changes (§4.2).

The choice of parameter values for permeabilities and compliances is based on similitude with

the intracranial parameters and approximate relationships to the extension of the spinal com-

partments. The model was tested under different sets of values and through different combina-

tions, and concluded that the parameters selected were a sound first approximation, one that

would allow for reasonable results in light of new values becoming available. Similar sensitivity

tests were carried out on the new compliances and although we do not show the results in detail

we can conclude that for a stiffer spinal cavity (i.e. smaller compliance), the fast eigenvalue

was found to be four orders of magnitude greater, resulting in a significantly faster conver-

gence, qualitatively however, the results were not affected. The model proved to be flexible

enough to allow for parameters to be introduced without a compromise on its qualitative be-

haviour and neither modifying its quantitative behaviour substantially other than with respect



4.8. Summary and discussion 185

to convergence times to equilibrium (§4.3).

The steady state shows that only one valve status (i.e. combination of intracranial and spinal

valves state) can be reached for a given posture. We tested five different postures accounting for

each 45◦ in angle referenced to the horizontal, the summarised combinations are: in the supine

position both valves are open (agreeing with what we saw in the intracranial model), in both

upright positions the intracranial valve closes and the spinal valve opens, and in both upside

down positions the intracranial valve opens and the spinal valve closes. This is reasonable since

in the upright position the intracranial compartments experience negative hydrostatic pressure

thus allowing for a closure of the intracranial valve, and in the upside down position the opossite

occurs and the spinal valve closes as a result of the negative hydrostatic pressure acting on the

spinal compartments (§4.4). This suggests that the presence and adequate function of the spinal

arachnoid villi must be crucial in ensuring intracranial pressures are kept relatively constant in

the upright position. The spinal arachnoid villi despite its role in CSF drainage has been given

little attention.

The stability analysis shows that with the choice of parameters selected, the system converges

rapidly into a stable node, with eigenvector components for the spinal pressures having a

more pronounced effect. The overshoots and undershoots of the pressure in the ventricles

was seen to be more subtle than in the intracranial model. Pressure in the central canal has

more pronounced overshoots and undershoots given the greater magnitude of its eigenvector

component in relation to that of the pressure in the spinal subarachnoid space (SAS), both of

which are analogous to the pressures in the ventricles and intracranial SAS. Different postures

had a negligible change regarding stability. The craniospinal model showed a faster convergence

than the intracranial model due to the fast eigenvalue being two orders of magnitude greater

than that of the intracranial fast eigenvalue (§4.5).

The unsteady state solution shows the fast convergence seen in §4.5 with the supine case

reaching equilibrium in less than 30 minutes, and the upright and upside down position in less

than 3 hours. The initial response taking place in the first minute of the upright and upside

down positions shows a changing dynamic, specially in the upright position where the valves
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can be seen to change their state twice respectively, resulting in three different valve statuses

before reaching equilibrium. In the upside down position one valve change was seen. The steady

state and stability behaviour was confirmed (§4.6). The change from supine to upright position

was selected as it may be more relevant to physiology since this change is encountered regularly

on a daily basis. The change from supine to upside down can also be encountered although

with less frequency, although it may be important when studying the effects of of microgravity

on cerebral fluids.

The sensitivity analysis focused on the effect of permeability of the spinal and intracranial

valves under postural changes. An increased spinal valve permeability in the upright position

causes more pronounced effects on the pressures, causing the intracranial pressures to become

negative and the spinal pressures to be reduced as well, while the pressure in the dural sinuses

and the spinal external pressure increase. A reduced spinal valve permeability causes the

spinal and intracarnial pressures to increase whilst the opposite occurs in the dural sinuses and

spinal external pressure. This increase in intracranial pressure continues to rise slowly until

meeting with the pressure of the dural sinuses opening the intracranial valve. This is interesting

physiologically since a change in the funcitonality of the spinal valve activates the intracranial

valve thus relieving the increase in intracranial pressure. In the case of the permeability of

the intracranial valve increasing when in an upside down position, we saw a moderate effect

on the intracranial and spinal pressures, all with more pronounced effects from its baseline

but remaining relatively close to the baseline values. When the spinal valve permeability

was reduced, the intracranial and spinal pressures increased while the pressure in the dural

sinuses and spinal external pressure decreased. None of these changes in permeability of the

intracranial valve caused a change in valve status. Further testing revealed that at no point

did the intracranial valve close or the spinal valve open for this case. This suggests that in

the case of an upside down position, good permeability of the intracranial arachnoid villi valve

is crucial to maintain pressures within a physiologically healthy range. A reduced intracranial

valve permeability in the upside down position sees intracranial pressures above 20 mmHg

which can become detrimental if sustained for prolonged periods (§4.7).

If we translate this into space travel we can see how a reduced permeability in the intracranial
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arachnoid villi could have a long term detrimental effect. Recent evidence suggests the shift

of fluids in microgravity pushes the nervous tissue upwards blocking the arachnoid villi of the

superior sagittal sinus which in turn can accentuate the high intracranial pressure experienced

leading to permanent visual impairment if prolonged (Roberts et al., 2017). Whilst we cannot

claim that our model predicts this, we can certainly see that given a reduced intracranial valve

permeability, a sustained high intracranial pressure follows.

4.9 Concluding remarks

• We built on the intracranial model Chapter 3 to incorporate the spinal subarachnoid

space, central canal and spinal vasculature. The model connects with the intracranial

compartments through shared fluxes and the hydrostatic pressures between them relative

to the heart.

• Important parameters from the vascular and intracranial models were tested though only

showed those of major interest due to gravitational effects. The model also integrates the

Monro-Kellie hypothesis.

• The compartmental arrangement as well as the inclusion of a one-way valve to mimic the

effect of the spinal arachnoid villi are novel and have not been seen in modelling efforts

before.

• The steady state results show there is only one steady state for each posture (supine,

standing and upside down).

• The steady state for each posture is also linked to a specific valve combination: in the

supine position both the intracranial and spinal valve are open, in the standing position

the intracranial valve is closed and the spinal valve open, and in the upside down position

the spinal valve is closed and the intracranial valve is open.

• The stability analysis shows the four-dimensional system is a stable node with the fast

eigenvalue having an eigenvector for the spinal subarachnoid space that dictates the ma-
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jority of the behaviour of the spinal system, meaning the central canal pressure is sec-

ondary to that of the spinal subarachnoid space, much like the ventricular pressure is to

the intracranial subarachnoid space.

• The unsteady state results show the dynamics of the system confirming what was shown

in the stability analysis. It is observed how the valves open at different times, in particular

in the standing position.

• The sensitivity results show the behaviour of the valve can be affected by changes in the

valves permeability. This was noticeable in the upside down position (potential to mimic

microgravity environment) where a decreased intracranial permeability led intracranial

pressures to increase to pathological levels.

• The model captures an interesting behaviour between the intracranial and spinal arach-

noid villi for accomodating CSF during changes in posture. It also highlights the impor-

tance of these exit routes for CSF clearance.



Chapter 5

Conclusions and future work

5.1 Summary

In this work we present three complementary mathematical models concerning cerebral blood

flow and cerebrospinal fluid (CSF) distribution in the cranial and spinal cavities.

In Chapter 2 we introduced a model of the cerebral vasculature as a one-dimensional distributed

model consisting of two symmetrical bifurcating trees, one for the arteries and one for the veins.

These trees were joined together by a lumped parameter compartment of the capillaries. The

model focused on details of the smaller vasculature which is often neglected in cerebrovascular

models. The bifurcations follow a set of scaling relationships related to cross-sectional area

(CSA) and length of the cylindrical vessels with Hagen–Poiseuille flow, which results in a fairly

tight set of inequalities for finding the appropriate range of values. The rest of the variables

were derived from these scaling relationships. We created a reference case which we then used

to account for distensibility of the vasculature. We introduced a pressure-area relationship

for relating the reference CSA to the compliant CSA, and constructed the bifurcating trees

accordingly. The model also incorporates a novel autoregulation function based on the scaling

factor of CSA. The results are physiologically realistic and predict reasonable values for CSA,

volume, surface area, pressure, and transmural flux.

189
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We used the results of the vascular model as input to the intracranial model introduced in

Chapter 3. The intracranial model incorporates the vascular compartment (vascular model),

CSF spaces, ventricles and subarachnoid space (SAS), and the venous dural sinuses where

blood and CSF exit the cranium. All compartments were assumed as averaged over a time

which is long compared to the cardiac period. The Monro-Kellie hypothesis was enforced, and

a one-way valve to describe the behaviour of the intracranial arachnoid villi was introduced.

Two steady states can be reached, one for each valve state, with only the open valve state

resulting in flux interaction. The system was found to be a stable node with a faster response

from the ventricular pressure than the SAS pressure. Results were physiologically realistic and

the unsteady solution shows a compensating dynamics of pressure in the dural sinuses and

ventricles to accommodate for the SAS pressure.

The intracranial model provided the foundation of the craniospinal model introduced in Chap-

ter 4, where we added two spinal compartments and an input and output of spinal vascular

flux. One steady state with a specific valve status was found for each posture. In the supine

position the status of the valves was open for both, in the upright position the intracranial

valve closed, and in the upside down position the spinal valve closed. The four-dimensional

solution converges to a stable node, with subtle changes in the intracranial pressures and more

pronounced changes in the spinal pressures. The stability analysis showed a much faster con-

vergence than the intracranial model, which was also confirmed in the unsteady solution. The

initial response showed a different dynamic for each posture, with the upright position under-

going three changes in valve status before entering the monotonic behaviour to equilibrium.

Results were physiologically feasible and the behaviour of the intracranial and spinal pressures

in different postures was seen to be influenced by the interaction of the two valves.

5.2 Limitations and future work

As with any model, there are limitations to this work. We discuss some of these limitations in

this section and suggest improvements as part of future work.
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Vascular model

In the vascular model we work with steady state flow rather than dynamic. Blood flow is

pulsatile due to the contractions of the heart with every cardiac cycle. This dynamic nature

affects the behaviour of pressure and related variables. The study of wave propagation is

complex, and that in the brain is further complicated by the effect the arterial pulsatility has

on the CSF in the subarachnoid space (SAS). With every cardiac cycle, the arterial pulse causes

intracarnial CSF to shift outwardly and towards the spinal cavity (Wagshul et al., 2011; Madsen

et al., 2006; Alperin et al., 2006; Linninger et al., 2005). Inevitably, the reflection of these

waves, both inside the vasculature and in the SAS, will have an effect on the cerebrovasculature

and CSF spaces. We acknowledge the importance of considering this as the next step in the

presented model.

Anatomically, the arterial and venous branching is not exactly symmetrical, especially if ex-

tended to the bigger arteries (i.e. Circle of Willis). However assuming the given symmetry can

provide good functional models as shown in chapter 2-4 and extensively in literature (Olufsen,

1999; Gabryś et al., 2005). Further anatomical accuracy can be accommodated by adding

segment models of the bigger vessels as highlighted in §2.1, or by the introduction of asymme-

try. Although the latter would have to be assessed on whether the extra anatomical accuracy

provides any further functionality accuracy to justify the increase in complexity.

The cerebral capillaries are modelled as a lumped parameter compartment. This is far from

the complex nature of capillaries, however, as discussed in detail in §2.2.2, we embarked on

first analysing the global behaviour of the capillaries on the rest of the vasculature. Flow in

the capillary bed is difficult to reproduce, the non-Newtonian behaviour combined with the

asymmetries and other forces (e.g. osmotic pressure gradients) can escalate the complexity

of the model significantly. This aspect of the model would therefore require significant future

work if more detail is included for the cerebral capillaries.

In the model we assume the brain to be incompressible. We know this is not entirely the case,

however, assuming negligible compressibility has led to important findings in CSF dynamics
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before (Marmarou et al., 1994, 1978), so although we acknowledge a better approximation is

needed to account for small but finite compliance; the current method is accurate enough to

enhance our understanding of cerebral fluids physiology.

The intracranial volumes being constant is also not necessarily true since the cranial cavity has

an opening through the foramen magnun, and multiple smaller pathways within a non-rigid dura

mater. However, when analysing intracranial volumes it is often convenient to assume constant

volume is the case as it facilitates the analysis, while agreeing with the Monro-Kellie hypothesis.

The Monro-Kellie hypothesis however, is conflicting when adding the spinal compartments since

the cranial space is not fully closed, thus the restriction set by the rigidity of the skull cannot

be sustained for the compliant spinal compartments, it is therefore important this part of the

blood-CSF dynamics is revisited in future work to improve the good but limited hypothesis of

Monro and Kellie.

Intracranial model

The intracranial model was approached as a zero-dimensional model. The spaces within the

cranium other than the vasculature are not in a specific geometry which makes the analysis and

approximations difficult to justify. Modelling the different interconnected CSF compartments in

an anatomically more realistic way would add complexity without necessarily achieving better

understanding. It is possible that the coupling of several smaller models each representing a

specific spatially dimensioned region of the CSF spaces can accommodate for this, however this

requires a greater computational demand conflicting with the simplicity aim we had set on this

model.

In this model, we adopt a piecewise linear calculation of the vascular transmural flux with

respect to an external pressure, i.e. the SAS pressure. This can be improved in the next

iteration of the model with a nonlinear numerical approximation to avoid assuming linearity.

As it stands, the model gives very good approximations, and the linear behaviour of each

segment is reasonable. However, it is an improvement that can be adapted in future work.
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Craniospinal model

We model the spinal compartments without accounting for the different regions of the spine:

cervical, thoracic and lumbo-sacral. Each of these regions can change the ability to deal with

changes in hydrostatic pressure (e.g. curvature, disc elongation). Similarly, these regions have

a different composition when it comes to the dura mater (and hence its elasticity), as well as

different cross sections and number of arachnoid villi. Given the complexity of adding only two

compartments to the intracranial model, the inclusion of further compartments to distinguish

regions would undoubtedly escalate the complexity faster. As our initial aim was to make a

connection between the brain and spinal cavity to enable their interaction, we achieved this

with two compartments. However, future iterations of this model would require the inclusion

of different spinal regions but it would be important to decide if the extra detail offered by the

model is worth the increased complexity of the model.

The craniospinal model assumes perfect concentricity of the spinal cord and the central canal.

The spinal cord has different diameters at different regions of the spine and so does the central

canal. For simplicity we assume this symmetry which as it was seen, gives reasonable results.

Lack of concentricity is another line of research that can be explored as has been incorporated

by other research teams (Sánchez et al., 2018). This could be considered as part of future work,

specially if increasing the dimensionality of the model was considered to be desirable.

As mentioned before, the Monro-Kellie hypothesis is not fully compatible with the spinal com-

partments. Further review of the hypothesis is required either to improve this hypothesis and

its use in cerebral modelling or to create a new one based on the craniospinal interaction and

not just on the cranial volumes.

The choice of parameters for this model are largely based on the intracranial model. Whilst

this is a reasonable first approach, we acknowledge the properties of the spinal meninges and

permeabilities differ and should be adjusted to experimental values whenever available. The

results of our modelling however, are physiologically reasonable. On the emergence of future

experimental studies, it should be easy to incorporate their results into the model. Similarly,
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future experiments may provide results that can be used to test the model. An aim would be

that the current results of the model may stimulate future experimental work.

The model makes assumptions about the spinal vasculature for simplicity, however, it is possible

to construct a model of the spinal vasculature in a similar manner as we constructed the one

for the cerebral vasculature. Future work may require this consideration.

5.3 Conclusions

The work presented here gives a physiologically reasonable model of the cerebral circulation

and CSF distribution in the cranial and spinal spaces, composed of three individual but linked

mathematical models.

The vascular model (Chapter 2) was able to predict realistic intracranial pressures, fluxes,

volumes and related parameters for a distensible cerebral vasculature. The model incorporates

an autoregulation function based on the CSA scaling factor which ensures that changes in

arterial pressure are compensated for in the small arterial vessels by the increase in resistance

as a result of a reduced CSA from this scaling factor.

Sensitivity analysis revealed that an increased elastic modulus results in an increased venous

pressure drop which can in turn contribute to a higher pressure in the dural sinuses thus

restricting the passage of CSF into the dural sinuses. If prolonged, this could result in high

intracranial pressure according to the intracranial model (Chapter 3).

The intracranial model highlights the importance of the arachnoid villi as an exit route and

the behaviour of the intracranial system when their properties are reduced or increased. We

assessed the effects of changes in parameters the vasculature had on the intracranial model

and found that CSF spaces are sensitive to cerebral blood flow changes, external pressure and

elastic modulus. We see the effects of autoregulation in the intracranial dynamics which were

found to be more pronounced when the autoregulation function was absent.

The craniospinal model gives an overview of the behaviour of intracranial and spinal pressures
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and fluxes when subjected to different postures. We were able to show the importance of ad-

ditional CSF pathways to the intracranial, i.e. spinal arachnoid villi, and the effects a reduced

permeability would have in the intracranial and spinal compartments. From the data we can

assess the vasculature, the intracranial and the spinal parameters in combination and indepen-

dently, giving us a good range of information to enhance our understanding of cerebrovascular

and CSF physiology.

We conclude that by combining simple 1D and 0D models of cerebral vasculature and CSF

spaces it is possible to analyse in-depth behaviour of the fluid shifts and spaces inside the cranial

and spinal cavity. In each of the models we learned the importance of certain parameters in the

models and their relevance in physiology, particularly in pathology. We also analysed in detail

their interconnectivity and their interactions, which were frequently non-intuitive. Previous

modelling approaches focus on specific features often with higher dimensionality increasing the

difficulty of the analysis, while others focus on globalised parameters with lack of detail of the

vasculature. We reach a suitable compromise by finding a good model at a low computational

expense with sufficient level of detail to model different cases that can be further explored in

pathology.

Furthermore, our models involve novel features that make them stand out from other models.

In the vascular model, we achieve an accurate model from first principles with simplicity by

including scaling laws without the need to specify values other than those of the root vessel.

In this model we also incorporate the effects of autoregulation of the cerebral vasculature, a

mechanism crucially important in cerebrovascular dynamics, by means of the scaling law of

vessel CSA. In the intracranial model, the combination of having a distributed model coupled

with the compartmental model and their interaction with the arachnoid villi gives a set of

features with which it is possible to test physiologically realistic scenarios, for example by

changing the vessels elastic modulus and assessing the effects on the CSF spaces. Lastly,

the craniospinal model introduces two novel features: the central canal which is often neglected

despite anatomical evidence of its patency and potential role in syriongemella, and the inclusion

of the spinal arachnoid villi which has, to our knowledge, not been modelled before as a potential

drainage route of CSF. The existence of these spinal pathways suggests they should play a role
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in regulating CSF spinally and by extension intracranially. In our model we account for all

of these and achieve physiologically realistic results that can be further explored for different

values and postures.

Our model can serve as a tool in new areas of research and help in several aspects of cerebral

hydrodynamics including:

Arachnoid villi and CSF clearance. Quantification and behaviour of CSF flow through in-

tracranial and spinal arachnoid villi under different pathological conditions (i.e. hydrocephalus,

Alzheimer’s disesase).

Blood-brain barrier. Potential disruption of the blood-brain barrier by one or several of the

following parameters in combination: permeability changes, defective autoregulation response,

or chronic changes (e.g. mimic hypertension or local trauma by inducing a change of parameters

and analysing the effects).

Ageing blood vessels. Further analysis on the effects stiffer vessels have on the dynamics

when in combination with defective arachnoid villi or an absence of the autoregulation response.

Microgravity. Cerebral fluid shifts during space travel can be studied with this model by

inducing postural changes to mimic upward flow and analyse the effects different parameters

have under this condition.

Dura mater. Distensibility of the cranial and spinal dura mater and its effects on fluids in the

subdural and epidural spaces, changes in distensibility with age and potential role in cerebral

dynamics.

Central canal. Assessment of the role of the central canal in the flow and distribution of

CSF, particularly the link between obliteration of the central canal in older age or pathologies

associated with the formation of syrinxes.

In conjunction with clinical experiments these and further aspects of the cerebral fluids dynam-

ics can be explored with the model presented in this thesis in order to advance our understanding

of the cerebral circulation and distribution of cerebrospinal fluid within the cranial and spinal
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cavities.



Bibliography

Aaslid, R., K.-F. Lindegaard, W. Sorteberg, and H. Nornes

1989. Cerebral autoregulation dynamics in humans. Stroke, 20(1):45–52.

Abbott, N. J.

2013. Blood–brain barrier structure and function and the challenges for cns drug delivery.

Journal of Inherited Metabolic Disease, 36(3):437–449.

Abbott, N. J., M. E. Pizzo, J. E. Preston, D. Janigro, and R. G. Thorne

2018. The role of brain barriers in fluid movement in the cns: is there a ‘glymphatic’system?

Acta Neuropathologica, Pp. 1–21.

Adar, E. and S. Sorek

1989. Multi-compartmental modelling for aquifer parameter estimation using natural tracers

in non-steady flow. Advances in Water Resources, 12(2):84–89.

Adeeb, N., M. M. Mortazavi, A. Deep, C. J. Griessenauer, K. Watanabe, M. M. Shoja,

M. Loukas, and R. S. Tubbs

2013. The pia mater: a comprehensive review of literature. Child’s Nervous System,

29(10):1803–1810.

Alastruey, J., A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H.

Parker, and J. Peiró

2011. Pulse wave propagation in a model human arterial network: assessment of 1-d visco-

elastic simulations against in vitro measurements. Journal of Biomechanics, 44(12):2250–

2258.

198



BIBLIOGRAPHY 199

Alastruey, J., K. Parker, J. Peiró, S. Byrd, and S. Sherwin

2007. Modelling the circle of willis to assess the effects of anatomical variations and occlusions

on cerebral flows. Journal of Biomechanics, 40(8):1794–1805.

Albeck, M. J., S. E. Børgesen, F. Gjerris, J. F. Schmidt, and P. S. Sørensen

1991. Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects.

Journal of Neurosurgery, 74(4):597–600.

Aldea, R.

2017. Modelling cerebral interstitial flows and their failure in Alzheimer’s disease. PhD thesis,

University of Southampton.

Alperin, N., M. Mazda, T. Lichtor, and S. H. Lee

2006. From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure

measured by mri flow studies. Current Medical Imaging Reviews, 2(1):117–129.

Alsop, D. C., J. A. Detre, and M. Grossman

2000. Assessment of cerebral blood flow in alzheimer’s disease by spin-labeled magnetic

resonance imaging. Annals of Neurology, 47(1):93–100.

Ambarki, K., O. Baledent, G. Kongolo, R. Bouzerar, S. Fall, and M.-E. Meyer

2007. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac

cycle in healthy volunteers. IEEE transactions on Biomedical Engineering, 54(3):483–491.

Barbee, J. H. and G. R. Cokelet

1971. The fahraeus effect. Microvascular Research, 3(1):6–16.

Barson, A. and J. Sands

1977. Regional and segmental characteristics of the human adult spinal cord. Journal of

Anatomy, 123(Pt 3):797.

Bateman, G.

2008. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia

or altered venous hemodynamics? American Journal of Neuroradiology, 29(1):198–203.



200 BIBLIOGRAPHY

Beggs, C. B.

2013. Venous hemodynamics in neurological disorders: an analytical review with hydrody-

namic analysis. BMC Medicine, 11(1):142.

Bennett, J., J. Basivireddy, A. Kollar, K. E. Biron, P. Reickmann, W. A. Jefferies, and S. Mc-

Quaid

2010. Blood–brain barrier disruption and enhanced vascular permeability in the multiple

sclerosis model eae. Journal of Neuroimmunology, 229(1-2):180–191.

Bering, E.

1952. Water exchange of central nervous system and cerebrospinal fluid. Journal of Neuro-

surgery, 9(3):275–287.

Bering Jr, E. A. and O. Sato

1963. Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the

cerebral ventricles. Journal of Neurosurgery, 20(12):1050–1063.

Berkovitz, B, M. B.

1988. Head and Neck Anatomy. London, England: Wolfe Publishing Ltd.

Bertram, C.

2009. A numerical investigation of waves propagating in the spinal cord and subarachnoid

space in the presence of a syrinx. Journal of Fluids and Structures, 25(7):1189–1205.

Bertram, C., L. Bilston, and M. Stoodley

2008. Tensile radial stress in the spinal cord related to arachnoiditis or tethering: a numerical

model. Medical & Biological Engineering & Computing, 46(7):701–707.

Bertram, C., A. Brodbelt, and M. Stoodley

2005. The origins of syringomyelia: numerical models of fluid/structure interactions in the

spinal cord. Journal of Biomechanical Engineering, 127(7):1099–1109.

Blanco, P., L. M. Alvarez, and R. Feijo

2015. Hybrid element-based approximation for the navier–stokes equations in pipe-like do-

mains. Computer Methods in Applied Mechanics and Engineering, 283:971–993.



BIBLIOGRAPHY 201

Blanco, P. and R. Feijóo

2013. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and

its applications. Medical Engineering & Physics, 35(5):652–667.

Blanco, P. J., S. M. Watanabe, E. A. Dari, M. A. R. Passos, and R. A. Feijóo

2014. Blood flow distribution in an anatomically detailed arterial network model: criteria

and algorithms. Biomechanics and Modeling in Mechanobiology, 13(6):1303–1330.

Blinkov, S., M. L. G. I.

1968. The human brain in figures and tables: a quantitative handbook. Basic Books.

Blomqvist, C. G. and H. L. Stone

2011. Cardiovascular adjustments to gravitational stress. Comprehensive Physiology,

Pp. 1025–1063.

Børgesen, S. E. and F. Gjerris

1987. Relationships between intracranial pressure, ventricular size, and resistance to csf

outflow. Journal of Neurosurgery, 67(4):535–539.

Boron, W. and E. Boulpaep

2016. Medical Physiology: A Cellular and Molecular Approach. Philadelphia, Pensylvannia:

Elsevier Health Sciences.

Boulton, M., M. Flessner, D. Armstrong, R. Mohamed, J. Hay, and M. Johnston

1999. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a csf

tracer in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative

Physiology, 276(3):R818–R823.

Bradley, K.

1970. Cerebrospinal fluid pressure. Journal of Neurology, Neurosurgery & Psychiatry,

33(3):387–397.

Brinker, T., E. Stopa, J. Morrison, and P. Klinge

2014. A new look at cerebrospinal fluid circulation. Fluids and Barriers of the CNS, 11(1):10.



202 BIBLIOGRAPHY

Campos, A., N. A.

2015. Anatomy of spinal blood supply.

Caplan, L., A. Norohna, and L. Amico

1990. Syringomyelia and arachnoiditis. Journal of Neurology, Neurosurgery & Psychiatry,

53(2):106–113.

Caro, C. G., T. Pedley, and R. Schroter

2012. The mechanics of the circulation. Cambridge University Press.

Cassot, F., M. Zagzoule, and J.-P. Marc-Vergnes

2000. Hemodynamic role of the circle of willis in stenoses of internal carotid arteries. an

analytical solution of a linear model. Journal of Biomechanics, 33(4):395–405.

Cathalifaud, P., M. Zagzoule, and M. Maher

2016. Wave propagation into the spinal cavity: a 1d model with coaxial compliant tubes.

Cavaglia, M., S. M. Dombrowski, J. Drazba, A. Vasanji, P. M. Bokesch, and D. Janigro

2001. Regional variation in brain capillary density and vascular response to ischemia. Brain

Research, 910(1-2):81–93.

Cebral, J. R., M. A. Castro, O. Soto, R. Löhner, and N. Alperin

2003. Blood-flow models of the circle of willis from magnetic resonance data. Journal of

Engineering Mathematics, 47(3-4):369–386.

Cheng, S., D. Fletcher, S. Hemley, M. Stoodley, and L. Bilston

2014. Effects of fluid structure interaction in a three dimensional model of the spinal sub-

arachnoid space. Journal of Biomechanics, 47(11):2826–2830.

Cipolla, M.

2009. The Cerebral Circulation. San Rafael, California: Morgan & Claypool Life Sciences.

Cohn, D. L.

1954. Optimal systems: I. the vascular system. The Bulletin of Mathematical Biophysics,

16(1):59–74.



BIBLIOGRAPHY 203

Cserr, H. F.

1971. Physiology of the choroid plexus. Physiological Reviews, 51(2):273–311.

Czosnyka, M., Z. Czosnyka, K. J. Agarwal-Harding, and J. D. Pickard

2012. Modeling of csf dynamics: legacy of professor anthony marmarou. In Hydrocephalus,

Pp. 9–14. Springer.

Czosnyka, M., Z. Czosnyka, S. Momjian, and J. D. Pickard

2004. Cerebrospinal fluid dynamics. Physiological Measurement, 25(5):R51.

Czosnyka, M. and J. D. Pickard

2004. Monitoring and interpretation of intracranial pressure. Journal of Neurology, Neuro-

surgery & Psychiatry, 75(6):813–821.

Damadian, R., L. Minkoff, M. Goldsmith, M. Stanford, and J. Koutcher

1976. Field focusing nuclear magnetic resonance (fonar): visualization of a tumor in a live

animal. Science, 194(4272):1430–1432.

Damkier, H. H., P. D. Brown, and J. Praetorius

2013. Cerebrospinal fluid secretion by the choroid plexus. Physiological Reviews, 93(4):1847–

1892.

Dandy, W. E.

1918. Extirpation of the choroid plexus of the lateral ventricles in communicating hydro-

cephalus. Annals of Surgery, 68(6):569.

Davis, T.

2014. Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders. Elsevier Advances

in Pharmacology.

Davson, H., G. Hollingsworth, and M. Segal

1970. The mechanism of drainage of the cerebrospinal fluid. Brain, 93(4):665–678.

DeVault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernieres, and P. Zhao



204 BIBLIOGRAPHY

2008. Blood flow in the circle of willis: modeling and calibration. Multiscale Modeling &

Simulation, 7(2):888–909.

Di Terlizzi, R. and S. Platt

2006. The function, composition and analysis of cerebrospinal fluid in companion animals:

Part i–function and composition. The Veterinary Journal, 172(3):422–431.

Drake, R., A. W. Vogl, and A. W. Mitchell

2009. Gray’s Anatomy for Students E-Book. Elsevier Health Sciences.

Duvernoy, H. M., S. Delon, and J. Vannson

1981. Cortical blood vessels of the human brain. Brain Research Bulletin, 7(5):519–579.

Edsbagge, M., G. Starck, H. Zetterberg, D. Ziegelitz, and C. Wikkelso

2011. Spinal cerebrospinal fluid volume in healthy elderly individuals. Clinical Anatomy,

24(6):733–740.

Ekstedt, J.

1978. Csf hydrodynamic studies in man. 2. normal hydrodynamic variables related to csf

pressure and flow. Journal of Neurology, Neurosurgery & Psychiatry, 41(4):345–353.

El Sankari, S., C. Gondry-Jouet, A. Fichten, O. Godefroy, J. M. Serot, H. Deramond, M. E.

Meyer, and O. Balédent

2011. Cerebrospinal fluid and blood flow in mild cognitive impairment and alzheimer’s disease:

a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids and Barriers

of the CNS, 8(1):12.

Ellington, E. and G. Margolis

1969. Block of arachnoid villus by subarachnoid hemorrhage. Journal of Neurosurgery,

30(6):651–657.

Elliott, N., C. Bertram, B. A. Martin, and A. Brodbelt

2013. Syringomyelia: a review of the biomechanics. Journal of Fluids and Structures, 40:1–24.



BIBLIOGRAPHY 205

Eriksson, P. S., E. Perfilieva, T. Björk-Eriksson, A.-M. Alborn, C. Nordborg, D. A. Peterson,

and F. H. Gage

1998. Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11):1313.

Fitzgerald, M.

1998. Neuroanatomy: basic and clinical. London, England: W B Saunders Company Ltd.

Fog, M.

1938. The relationship between the blood pressure and the tonic regulation of the pial arteries.

Journal of Neurology and Psychiatry, 1(3):187.

Frostell, A., R. Hakim, E. P. Thelin, P. Mattsson, and M. Svensson

2016. A review of the segmental diameter of the healthy human spinal cord. Frontiers in

Neurology, 7:238.

Fung, Y. and B. Zweifach

1971. Microcirculation: mechanics of blood flow in capillaries. Annual Review of Fluid

Mechanics, 3(1):189–210.

Fung, Y.-c.

2013. Biomechanics: mechanical properties of living tissues. Springer Science & Business

Media.

Gabryś, E., M. Rybaczuk, and A. Kędzia

2005. Fractal models of circulatory system. symmetrical and asymmetrical approach com-

parison. Chaos, Solitons & Fractals, 24(3):707–715.

Gertz, D, T. R.

2007. Lievman’s Neuroanatomy. Austin, Texas: PRO-ED Inc.

Gisolf, J., J. Van Lieshout, K. Van Heusden, F. Pott, W. Stok, and J. Karemaker

2004. Human cerebral venous outflow pathway depends on posture and central venous pres-

sure. The Journal of Physiology, 560(1):317–327.



206 BIBLIOGRAPHY

Gould, I. G., P. Tsai, D. Kleinfeld, and A. Linninger

2017. The capillary bed offers the largest hemodynamic resistance to the cortical blood

supply. Journal of Cerebral Blood Flow & Metabolism, 37(1):52–68.

Gray, H.

1921. History of lumbar puncture (rachicentesis): The operation and the idea. Archives of

Neurology & Psychiatry, 6(1):61–69.

Gray, H, W. P. R. W. D. M. B. L.

1989. Gray’s Anatomy. London, England: Churchil Livingstone.

Greenberg, D. A. and K. Jin

2005. From angiogenesis to neuropathology. Nature, 438(7070):954.

Greenwald, S.

2007. Ageing of the conduit arteries. The Journal of Pathology, 211(2):157–172.

Gupta, S., M. Soellinger, P. Boesiger, D. Poulikakos, and V. Kurtcuoglu

2009. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow

in the subarachnoid space. Journal of Biomechanical Engineering, 131(2):021010.

Gupta, S., M. Soellinger, D. M. Grzybowski, P. Boesiger, J. Biddiscombe, D. Poulikakos, and

V. Kurtcuoglu

2010. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked

mediator of cerebral disease. i. computational model. Journal of the Royal Society Interface,

7(49):1195–1204.

Guyton, Arthur C, H. J. E.

2006. Textbook of medical physiology. Philadelphia, Pensylvannia: Elsevier Health Sciences.

Hacking, C., G. F.

2018a. Cerebral blood volume.

Hacking, C., G. F.

2018b. Dura mater.



BIBLIOGRAPHY 207

Hakim, S. and R. Adams

1965. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal

fluid pressure: observations on cerebrospinal fluid hydrodynamics. Journal of the Neurological

Sciences, 2(4):307–327.

Hammock, M. K. and T. H. Milhorat

1976. The cerebrospinal fluid: current concepts of its formation. Annals of Clinical &

Laboratory Science, 6(1):22–26.

Han, P. Y., J. H. Kim, H. I. Kang, and J. S. Kim

2008. " syndrome of the sinking skin-flap" secondary to the ventriculoperitoneal shunt after

craniectomy. Journal of Korean Neurosurgical Society, 43(1):51.

Hartmann, P., A. Ramseier, F. Gudat, M. Mihatsch, and W. Polasek

1994. Normal weight of the brain in adults in relation to age, sex, body height and weight.

Der Pathologe, 15(3):165–170.

Hillen, B., H. W. Hoogstraten, and L. Post

1986. A mathematical model of the flow in the circle of willis. Journal of Biomechanics,

19(3):187–194.

Hladky, S. B. and M. A. Barrand

2014. Mechanisms of fluid movement into, through and out of the brain: evaluation of the

evidence. Fluids and Barriers of the CNS, 11(1):26.

Iliff, J. J., M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E.

Vates, R. Deane, S. A. Goldman, et al.

2012. A paravascular pathway facilitates csf flow through the brain parenchyma and

the clearance of interstitial solutes, including amyloid β. Science Translational Medicine,

4(147):147ra111–147ra111.

Iwabuchi, T., E. Sobata, M. Suzuki, S. Suzuki, and M. Yamashita

1983. Dural sinus pressure as related to neurosurgical positions. Neurosurgery, 12(2):203–207.



208 BIBLIOGRAPHY

Johansson, B. B.

2000. Brain plasticity and stroke rehabilitation: the willis lecture. Stroke, 31(1):223–230.

Kamiya, A. and T. Togawa

1972. Optimal branching structure of the vascular tree. The Bulletin of Mathematical Bio-

physics, 34(4):431–438.

Kim, K. H., J. Y. Park, S. U. Kuh, D. K. Chin, K. S. Kim, and Y. E. Cho

2013. Changes in spinal canal diameter and vertebral body height with age. Yonsei Medical

Journal, 54(6):1498–1504.

Klarica, M., D. Orešković, B. Božić, M. Vukić, V. Butković, and M. Bulat

2009. New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal

fluid pressure and the size of brain ventricles. Neuroscience, 158(4):1397–1405.

Koh, L., A. Zakharov, and M. Johnston

2005. Integration of the subarachnoid space and lymphatics: is it time to embrace a new

concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Research, 2(1):6.

Krieger, S. N., M. N. Streicher, R. Trampel, and R. Turner

2012. Cerebral blood volume changes during brain activation. Journal of Cerebral Blood

Flow & Metabolism, 32(8):1618–1631.

Kuschinsky, W. and O. Paulson

1992. Capillary circulation in the brain. Cerebrovascular and Brain Metabolism Reviews,

4(3):261–286.

Lakin, W. D., S. A. Stevens, and P. L. Penar

2007. Modeling intracranial pressures in microgravity: the influence of the blood-brain bar-

rier. Aviation, space, and environmental medicine, 78(10):932–936.

Lakin, W. D., S. A. Stevens, B. I. Tranmer, and P. L. Penar

2003. A whole-body mathematical model for intracranial pressure dynamics. Journal of

Mathematical Biology, 46(4):347–383.



BIBLIOGRAPHY 209

Lassen, N.

1964. Autoregulation of cerebral blood flow. Circulation Research, 15:SUPPL–201.

Lassen, N. A.

1959. Cerebral blood flow and oxygen consumption in man. Physiological Reviews, 39(2):183–

238.

Lawley, J. S., L. G. Petersen, E. J. Howden, S. Sarma, W. K. Cornwell, R. Zhang, L. A.

Whitworth, M. A. Williams, and B. D. Levine

2017. Effect of gravity and microgravity on intracranial pressure. The Journal of Physiology,

595(6):2115–2127.

Levick, J.

2010. An introduction to cardiovascular physiology. London, England: Hodder Arnold.

Lew, H. and Y. Fung

1969. On the low-reynolds-number entry flow into a circular cylindrical tube. Journal of

Biomechanics, 2(1):105–119.

Linninger, A. A., K. Tangen, C.-Y. Hsu, and D. Frim

2016. Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annual

Review of Fluid Mechanics, 48:219–257.

Linninger, A. A., C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, and R. Penn

2005. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Transactions on

Biomedical Engineering, 52(4):557–565.

Linninger, A. A., M. Xenos, B. Sweetman, S. Ponkshe, X. Guo, and R. Penn

2009. A mathematical model of blood, cerebrospinal fluid and brain dynamics. Journal of

Mathematical Biology, 59(6):729–759.

Linninger, A. A., M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapalli, and R. D. Penn

2007. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans-

actions on Biomedical Engineering, 54(2):291–302.



210 BIBLIOGRAPHY

Loth, F., M. A. Yardimci, and N. Alperin

2001. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. Journal

of Biomechanical Engineering, 123(1):71–79.

Madsen, J. R., M. Egnor, and R. Zou

2006. Cerebrospinal fluid pulsatility and hydrocephalus: the fourth circulation. Clinical

Neurosurgery, 53:48.

Magendie, F.

1842. Recherches anatomique et physiologique sur le liquide céphalo-rachidien ou cérebro-

spinal. Paris, France.

Maguire, E. A., K. Woollett, and H. J. Spiers

2006. London taxi drivers and bus drivers: a structural mri and neuropsychological analysis.

Hippocampus, 16(12):1091–1101.

Marieb, E, H. K.

2010. Human Anatomy and Physiology. San Francisco, CA: Pearson Education, Inc.

Marmarou, A., G. Hochwald, T. Nakamura, K. Tanaka, J. Weaver, and J. Dunbar

1994. Brain edema resolution by csf pathways and brain vasculature in cats. American

Journal of Physiology-Heart and Circulatory Physiology, 267(2):H514–H520.

Marmarou, A., A. L. Maset, J. D. Ward, S. Choi, D. Brooks, H. A. Lutz, R. J. Moulton, J. P.

Muizelaar, A. DeSalles, and H. F. Young

1987. Contribution of csf and vascular factors to elevation of icp in severely head-injured

patients. Journal of Neurosurgery, 66(6):883–890.

Marmarou, A., K. Shulman, and J. LaMorgese

1975. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid

system. Journal of Neurosurgery, 43(5):523–534.

Marmarou, A., K. Shulman, and R. M. Rosende

1978. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dy-

namics. Journal of Neurosurgery, 48(3):332–344.



BIBLIOGRAPHY 211

Massicotte, E. M. and M. R. Del Bigio

1999. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to

chronic hydrocephalus. Journal of Neurosurgery, 91(1):80–84.

Matsumoto, T. and K. Nagayama

2012. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular

biomechanics. Journal of Biomechanics, 45(5):745–755.

Michael, A. P. and K. Marshall-Bowman

2015. Spaceflight-induced intracranial hypertension. Aerospace Medicine and Human Per-

formance, 86(6):557–562.

Milhorat, T. H., M. W. Chou, E. M. Trinidad, R. W. Kula, M. Mandell, C. Wolpert, and M. C.

Speer

1999. Chiari i malformation redefined: clinical and radiographic findings for 364 symptomatic

patients. Neurosurgery, 44(5):1005–1017.

Milhorat, T. H., R. M. Kotzen, and A. P. Anzil

1994. Stenosis of central canal of spinal cord in man: incidence and pathological findings in

232 autopsy cases. Journal of Neurosurgery, 80(4):716–722.

Miller, K., K. Chinzei, G. Orssengo, and P. Bednarz

2000. Mechanical properties of brain tissue in-vivo: experiment and computer simulation.

Journal of Biomechanics, 33(11):1369–1376.

Mokri, B.

2013. Spontaneous low pressure, low csf volume headaches: spontaneous csf leaks. Headache:

The Journal of Head and Face Pain, 53(7):1034–1053.

Müller, L. O., C. Parés, and E. F. Toro

2013. Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels

with varying mechanical properties. Journal of Computational Physics, 242:53–85.

Müller, L. O. and E. F. Toro



212 BIBLIOGRAPHY

2014. Enhanced global mathematical model for studying cerebral venous blood flow. Journal

of Biomechanics, 47(13):3361–3372.

Murray, C. D.

1926. The physiological principle of minimum work: I. the vascular system and the cost of

blood volume. Proceedings of the National Academy of Sciences, 12(3):207–214.

Najeme, A., M. Zagzoule, and J. Mauss

1992. Numerical analysis of flow in arterial stenoses. Mechanics Research Communications,

19(5):379–384.

Nedergaard, M.

2013. Garbage truck of the brain. Science, 340(6140):1529–1530.

Norman, D., C. M. Mills, M. Brant-Zawadzki, A. Yeates, L. E. Crooks, and L. Kaufman

1983. Magnetic resonance imaging of the spinal cord and canal: potentials and limitations.

American Journal of Roentgenology, 141(6):1147–1152.

Obermeier, B., R. Daneman, and R. M. Ransohoff

2013. Development, maintenance and disruption of the blood-brain barrier. Nature Medicine,

19(12):1584.

Olufsen, M., H. Tran, and J. Ottesen

2004. Modeling cerebral blood flow control during posture change from sitting to standing.

Cardiovascular Engineering: an International Journal, 4(1):47–58.

Olufsen, M. S.

1999. Structured tree outflow condition for blood flow in larger systemic arteries. American

Journal of Physiology-Heart and Circulatory Physiology, 276(1):H257–H268.

Olufsen, M. S., J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz, and V. Novak

2005. Blood pressure and blood flow variation during postural change from sitting to standing:

model development and validation. Journal of Applied Physiology, 99(4):1523–1537.



BIBLIOGRAPHY 213

Olufsen, M. S., C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen

2000. Numerical simulation and experimental validation of blood flow in arteries with

structured-tree outflow conditions. Annals of Biomedical Engineering, 28(11):1281–1299.

OpenStax

2016. Textbook openstax anatomy and physiology.

Orešković, D. and M. Klarica

2014. Measurement of cerebrospinal fluid formation and absorption by ventriculo-cisternal

perfusion: what is really measured? Croatian Medical Journal, 55(4):317–327.

Panerai, R. B.

2008. Cerebral autoregulation: from models to clinical applications. Cardiovascular Engi-

neering, 8(1):42–59.

Papadopoulos, M. C., G. T. Manley, S. Krishna, and A. Verkman

2004. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. The

FASEB Journal, 18(11):1291–1293.

Pardridge, W. M.

2012. Drug transport across the blood–brain barrier. Journal of Cerebral Blood Flow &

Metabolism, 32(11):1959–1972.

Parikh, S., M. Koch, and R. K. Narayan

2007. Traumatic brain injury. International Anesthesiology Clinics, 45(3):119–135.

Patronis, A., R. A. Richardson, S. Schmieschek, B. J. Wylie, R. W. Nash, and P. V. Coveney

2018. Modelling patient-specific magnetic drug targeting within the intracranial vasculature.

Frontiers in Physiology, 9:331.

Petit-Lacour, M., P. Lasjaunias, C. Iffenecker, F. Benoudiba, M. H. Rabia, M. Hurth, and

D. Doyon

2000. Visibility of the central canal on mri. Neuroradiology, 42(10):756–761.



214 BIBLIOGRAPHY

Peyrounette, M., Y. Davit, M. Quintard, and S. Lorthois

2018. Multiscale modelling of blood flow in cerebral microcirculation: Details at capillary

scale control accuracy at the level of the cortex. PloS One, 13(1):e0189474.

Piechnik, S. K., M. Czosnyka, H. K. Richards, P. C. Whitfield, and J. D. Pickard

2001. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.

Neurosurgery, 49(5):1214–1223.

Pollay, M.

2010. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal

Fluid Research, 7(1):9.

Queens University at Kingston

2005. Physiological status of the pre-term infant: Part ii - perfusion of the brain.

Radaelli, A., L. Augsburger, J. Cebral, M. Ohta, D. R fenacht, R. Balossino, G. Benndorf,

D. Hose, A. Marzo, R. Metcalfe, et al.

2008. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm

model—a report on the virtual intracranial stenting challenge 2007. Journal of Biomechanics,

41(10):2069–2081.

Radojicic, M., G. Nistor, and H. S. Keirstead

2007. Ascending central canal dilation and progressive ependymal disruption in a contusion

model of rodent chronic spinal cord injury. BMC Neurology, 7(1):30.

Reina, M. A., O. D. L. Casasola, A. López, J. A. De Andrés, M. Mora, and A. Fernández

2002. The origin of the spinal subdural space: ultrastructure findings. Anesthesia & Anal-

gesia, 94(4):991–995.

Relkin, N., A. Marmarou, P. Klinge, M. Bergsneider, and P. M. Black

2005. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery, 57(suppl_3):S2–

4.

Rengachary, S. S., A. Xavier, S. Manjila, U. Smerdon, B. Parker, S. Hadwan, and



BIBLIOGRAPHY 215

M. Guthikonda

2008. The legendary contributions of thomas willis (1621–1675): the arterial circle and

beyond.

Roberts, D. R., M. H. Albrecht, H. R. Collins, D. Asemani, A. R. Chatterjee, M. V. Spampinato,

X. Zhu, M. I. Chimowitz, and M. U. Antonucci

2017. Effects of spaceflight on astronaut brain structure as indicated on mri. New England

Journal of Medicine, 377(18):1746–1753.

Rosen, B. R., J. W. Belliveau, B. R. Buchbinder, R. C. McKinstry, L. M. Porkka, D. N.

Kennedy, M. S. Neuder, C. R. Fisel, H. J. Aronen, K. K. Kwong, et al.

1991. Contrast agents and cerebral hemodynamics. Magnetic Resonance in Medicine,

19(2):285–292.

Saker, E., B. M. Henry, K. A. Tomaszewski, M. Loukas, J. Iwanaga, R. J. Oskouian, and R. S.

Tubbs

2016. The human central canal of the spinal cord: a comprehensive review of its anatomy,

embryology, molecular development, variants, and pathology. Cureus, 8(12).

Sakka, L., G. Coll, and J. Chazal

2011. Anatomy and physiology of cerebrospinal fluid. European Annals of Otorhinolaryngol-

ogy, Head and Neck Diseases, 128(6):309–316.

Sánchez, A., C. Martínez-Bazán, C. Gutiérrez-Montes, E. Criado-Hidalgo, G. Pawlak,

W. Bradley, V. Haughton, and J. Lasheras

2018. On the bulk motion of the cerebrospinal fluid in the spinal canal. Journal of Fluid

Mechanics, 841:203–227.

Schachenmayr, W. and R. Friede

1978. The origin of subdural neomembranes. i. fine structure of the dura-arachnoid interface

in man. The American Journal of Pathology, 92(1):53.

Schwirtz, M.

2009. Staying put on earth, taking a step to mars.



216 BIBLIOGRAPHY

Shapiro, K., A. Marmarou, and K. Shulman

1980. Characterization of clinical csf dynamics and neural axis compliance using the pressure-

volume index: I. the normal pressure-volume index. Annals of Neurology: Official Journal

of the American Neurological Association and the Child Neurology Society, 7(6):508–514.

Sorek, S., J. Bear, and Z. Karni

1988. A non-steady compartmental flow model of the cerebrovascular system. Journal of

Biomechanics, 21(9):695–704.

Steiner, L. and P. Andrews

2006. Monitoring the injured brain: Icp and cbf. BJA: British Journal of Anaesthesia,

97(1):26–38.

Storer, K., J. Toh, M. A. Stoodley, and N. R. Jones

1998. The central canal of the human spinal cord: a computerised 3-d study. The Journal

of Anatomy, 192(4):565–572.

Støverud, K.-H., H. P. Langtangen, G. A. Ringstad, P. K. Eide, and K.-A. Mardal

2016. Computational investigation of cerebrospinal fluid dynamics in the posterior cranial

fossa and cervical subarachnoid space in patients with chiari i malformation. PloS One,

11(10):e0162938.

Strandgaard, S. and O. B. Paulson

1984. Cerebral autoregulation. Stroke, 15(3):413–416.

Sweeney, M. D., A. P. Sagare, and B. V. Zlokovic

2018. Blood–brain barrier breakdown in alzheimer disease and other neurodegenerative dis-

orders. Nature Reviews Neurology, 14(3):133.

Taoka, T., G. Jost, T. Frenzel, S. Naganawa, and H. Pietsch

2018. Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the

rat brain: observations by dynamic mri and effect of circadian rhythm on tissue gadolinium

concentrations. Investigative Radiology, 53(9):529–534.



BIBLIOGRAPHY 217

Tardy, Y., J. Meister, F. Perret, H. Brunner, and M. Arditi

1991. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic

and photoplethysmographic measurements. Clinical Physics and Physiological Measurement,

12(1):39.

Terem, I., W. W. Ni, M. Goubran, M. S. Rahimi, G. Zaharchuk, K. W. Yeom, M. E. Moseley,

M. Kurt, and S. J. Holdsworth

2018. Revealing sub-voxel motions of brain tissue using phase-based amplified mri (amri).

Magnetic Resonance in Medicine.

Toro, E. F.

2016. Brain venous haemodynamics, neurological diseases and mathematical modelling. a

review. Applied Mathematics and Computation, 272:542–579.

Toro, E. F., B. Thornber, Q. Zhang, A. Scoz, and C. Contarino

2019. A computational model for the dynamics of cerebrospinal fluid in the spinal subarach-

noid space. Journal of Biomechanical Engineering, 141(1):011004.

Tubbs, R. S., A. Hansasuta, W. Stetler, D. R. Kelly, D. Blevins, R. Humphrey, G. D. Chua,

M. M. Shoja, M. Loukas, and W. J. Oakes

2007. Human spinal arachnoid villi revisited: immunohistological study and review of the

literature.

Tully, B. and Y. Ventikos

2011. Cerebral water transport using multiple-network poroelastic theory: application to

normal pressure hydrocephalus. Journal of Fluid Mechanics, 667:188–215.

Ursino, M.

1988a. A mathematical study of human intracranial hydrodynamics part 1—the cerebrospinal

fluid pulse pressure. Annals of Biomedical Engineering, 16(4):379–401.

Ursino, M.

1988b. A mathematical study of human intracranial hydrodynamics part 2—simulation of

clinical tests. Annals of Biomedical Engineering, 16(4):403–416.



218 BIBLIOGRAPHY

Ursino, M. and P. Di Giammarco

1991. A mathematical model of the relationship between cerebral blood volume and intracra-

nial pressure changes: the generation of plateau waves. Annals of Biomedical Engineering,

19(1):15–42.

Ursino, M. and C. A. Lodi

1997. A simple mathematical model of the interaction between intracranial pressure and

cerebral hemodynamics. Journal of Applied Physiology, 82(4):1256–1269.

Ursino, M. and C. A. Lodi

1998. Interaction among autoregulation, co2 reactivity, and intracranial pressure: a

mathematical model. American Journal of Physiology-Heart and Circulatory Physiology,

274(5):H1715–H1728.

Ursino, M., A. Ter Minassian, C. Lodi, and L. Beydon

2000. Cerebral hemodynamics during arterial and co2 pressure changes: in vivo prediction by

a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology,

279(5):H2439–H2455.

Vandenabeele, F., J. Creemers, and I. Lambrichts

1996. Ultrastructure of the human spinal arachnoid mater and dura mater. Journal of

Anatomy, 189(Pt 2):417.

Venton, J., P. Harris, and G. Phillips

2017. Development of a poroelastic model of spinal cord cavities. In Integral Methods in

Science and Engineering, Volume 2, Pp. 275–283. Springer.

Wagshul, M. E., P. K. Eide, and J. R. Madsen

2011. The pulsating brain: a review of experimental and clinical studies of intracranial

pulsatility. Fluids and Barriers of the CNS, 8(1):5.

Wakeland, W. and B. Goldstein

2008. A review of physiological simulation models of intracranial pressure dynamics. Com-

puters in Biology and Medicine, 38(9):1024–1041.



BIBLIOGRAPHY 219

Watson, C., G. Paxinos, and G. Kayalioglu

2009. The spinal cord: a Christopher and Dana Reeve Foundation text and atlas. Academic

press.

Weed, L. H.

1914. Studies on cerebro-spinal fluid. no. iii: The pathways of escape from the subarachnoid

spaces with particular reference to the arachnoid villi. The Journal of Medical Research,

31(1):51.

Welch, K. and V. Friedman

1960. The cerebrospinal fluid valves. Brain, 83(3):454–469.

Welch, K. and M. Pollay

1961. Perfusion of particles through arachnoid villi of the monkey. American Journal of

Physiology-Legacy Content, 201(4):651–654.

Weller, R. O. and R. O. Carare

2018. Lymphatic drainage of the cns and its role in neuroinflammation and neurodegenerative

disease. In Neuroinflammation, Pp. 601–617. Elsevier.

Weller, R. O. and J. A. Nicoll

2003. Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and alzheimer

brain. Neurological research, 25(6):611–616.

Wijdicks, E. F.

2018. The first ct scan of the brain: entering the neurologic information age. Neurocritical

Care, 28(3):273–275.

Wilson, M. H.

2016. Monro-kellie 2.0: The dynamic vascular and venous pathophysiological components of

intracranial pressure. Journal of Cerebral Blood Flow & Metabolism, 36(8):1338–1350.

Woo, J.

2002. A short history of the development of ultrasound in obstetrics and gynecology.



220 BIBLIOGRAPHY

Xie, L., H. Kang, Q. Xu, M. J. Chen, Y. Liao, M. Thiyagarajan, J. O’Donnell, D. J. Christensen,

C. Nicholson, J. J. Iliff, et al.

2013. Sleep drives metabolite clearance from the adult brain. Science, 342(6156):373–377.

Yan, T. D., P. G. Bannon, J. Bavaria, J. S. Coselli, J. A. Elefteriades, R. B. Griepp, G. C.

Hughes, S. A. LeMaire, T. Kazui, N. T. Kouchoukos, et al.

2013. Consensus on hypothermia in aortic arch surgery. Annals of Cardiothoracic Surgery,

2(2):163.

Yau, Y., I. Piper, C. Contant, G. Citerio, K. Kiening, P. Enblad, P. Nilsson, S. Ng, J. Wasser-

berg, M. Kiefer, et al.

2002. Multi-centre assessment of the spiegelberg compliance monitor: interim results. In

Intracranial Pressure and Brain Biochemical Monitoring, Pp. 167–170. Springer.

Yau, Y.-H., I. R. Piper, R. E. Clutton, and I. R. Whittle

2000. An experimental evaluation of the spiegelberg intracranial pressure and intracranial

compliance monitor. Journal of Neurosurgery, 93(6):1072–1077.

Zagzoule, M. and J.-P. Marc-Vergnes

1986. A global mathematical model of the cerebral circulation in man. Journal of Biome-

chanics, 19(12):1015–1022.

Zamboni, P., R. Galeotti, E. Menegatti, A. M. Malagoni, G. Tacconi, S. Dall’Ara, I. Bartolomei,

and F. Salvi

2009. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. Journal

of Neurology, Neurosurgery & Psychiatry, 80(4):392–399.

Zatorre, R. J., R. D. Fields, and H. Johansen-Berg

2012. Plasticity in gray and white: neuroimaging changes in brain structure during learning.

Nature Neuroscience, 15(4):528.



Appendix A

Vascular model

A.1 Detail of arterial and venous trees

This appendix provides further detail into the construction of the venous tree by expanding on

the pressures in series as seen in §2.2.
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In the generational arrangement, we assume poutaN−1 = pinc , and, poutc = pinvN−1, then,

pinvn − poutvn = R̂vnQ,

poutvN−1 = poutc − R̂vN−1Q = poutc −Rv0Qξ
N−1,

and since poutvN−1 = pinvN−2 then,

poutvN−2 = pinvN−2 − R̂vN−2Q,

=
(
poutc −Rv0Qξ

N−1)−Rv0Qξ
N−2,

= poutc −Rv0Q
(
ξN−1 + ξN−2

)
,

...

poutvn = poutc −Rv0Q(ξN−1 + ξN−2 + ξN−3 + · · ·+ ξn)

= poutc −Rv0Qξ
N−1(1 + ξ−1 + ξ−2 + · · ·+ ξn−(N−1))

= poutc −Rv0Qξ
N−1

−(n−(N−1))∑
i=0

ξ−i

= poutc −Rv0Qξ
N−1

N−1−n∑
i=0

ξ−i

= poutc −Rv0Qξ
N−1

(
1− ξ−(N−n)

1− ξ−1

)
. (A.1)

A.2 Arterial compliant matrix

This appendix provides detail of the compliant matrix for the arterial and vascular tree as per

section §2.4.

From Equation (2.104) we have

P in
an −Pout

an + ψanP
ave
an = R̂anQ (1− 15Pe) . (A.2)

For n = 0, 1, 2, · · · , N − 1 we can solve by

Apa = a, (A.3)
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where

p =



P in
a1

P in
a2

...

P in
aN

Pave
a0

Pave
a1

...

Pave
aN−1



, a =



−proot + R̂a0Q (1− 15Pe)

R̂a1Q (1− 15Pe)

...

R̂aN−1Q (1− 15Pe)

−proot/2

0

...

0



, (A.4)

and

A =



−1 0 0 · · · 0 ψa0 0 0 · · · 0

1 −1 0 · · · 0 0 ψa1 0 · · · 0

0 1 −1 · · · 0 0 0 ψa2 · · · 0

...
... . . . ...

...
...

... . . . ...
...

0 0 0 · · · −1 0 0 0 · · · ψaN−1

−1/2 0 0 · · · 0 1 0 0 · · · 0

−1/2 −1/2 0 · · · 0 0 1 0 · · · 0

0 −1/2 −1/2 · · · 0 0 0 1 · · · 0

...
... . . . ...

...
...

... . . . ...
...

0 0 0 · · · −1/2 0 0 0 · · · 1



. (A.5)

A.3 Venous compliant matrix

Similarly for the veins we have from Equation (2.105)

P in
vn −Pout

vn + ψvnP
ave
vn = R̂vnQ (1− 15Pe) . (A.6)
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For n = N − 1, N − 2, · · · , 0 we can solve by

Vpv = v, (A.7)

where

p =



P in
vN−2

P in
vN−3
...

P in
v0

Pave
vN−1

Pave
vN−2
...

Pave
v1



, v =



−Pout
c + R̂vN−1Q (1− 15Pe)

R̂vN−2Q (1− 15Pe)

...

R̂v0Q (1− 15Pe)

−Pout
c /2

0

...

0



, (A.8)

and

V =



−1 0 0 · · · 0 ψvN−1 0 0 · · · 0

1 −1 0 · · · 0 0 ψvN−2 0 · · · 0

0 1 −1 · · · 0 0 0 ψvN−3 · · · 0

...
... . . . ...

...
...

... . . . ...
...

0 0 0 · · · −1 0 0 0 · · · ψv0

−1/2 0 0 · · · 0 1 0 0 · · · 0

−1/2 −1/2 0 · · · 0 0 1 0 · · · 0

0 −1/2 −1/2 · · · 0 0 0 1 · · · 0

...
... . . . ...

...
...

... . . . ...
...

0 0 0 · · · −1/2 0 0 0 · · · 1



. (A.9)


