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Abstract 
 
Malaria control is increasingly being tailored to local needs, this is especially necessary in 

humanitarian settings where resources are poor. Pyrethroids are the most widely used class of 

insecticides for mosquito control. Using them effectively requires measuring their epidemiological 

impact and understanding how this is reduced by the emergence of pyrethroid resistance in 

mosquitoes. In the first two chapters of this thesis, I consider how we could measure the impact of 

pyrethroid vector control tools using the prevalence of infection in pregnant women, a potentially 

cheaper and more reliable alternative to clinical incidence or prevalence in children. In Chapter 2, I fit 

a Bayesian regression model to show that the malaria burden measured at hospitals near internally 

displaced populations is higher than the regional average. In Chapter 3, I demonstrate that the 

prevalence of infection in pregnant women and the clinical incidence in children change together over 

time. Collecting routine data from pregnant women seems promising as a measure for assessing 

malaria burden trends. In the second half of the thesis I explore the impact of different pyrethroid-

based interventions in a variety of contexts. In Chapter 4, I expand an existing mathematical model of 

malaria transmission to predict the impact of distributing emanators (a type of spatial repellent) where 

insecticidal nets are not commonplace. In Chapter 5, I establish how outdoor evening biting could 

sustain transmission in places where insecticidal nets are used but residual transmission remains. In 

Chapter 6, I investigate a sub-lethal effect of pyrethroid bed nets that I call temporary feeding 

inhibition, mosquitoes that are exposed to pyrethroids do not die but are unable to bite humans for a 

short while afterwards. Together the work shows how statistical and transmission dynamics models 

can be used to understand the efficacy of vector control interventions and measure their effectiveness 

in the field. 
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1 Introduction 
 
Malaria is a huge burden on global health, featuring in the “big 3” infectious diseases 

alongside HIV and tuberculosis that cause severe morbidity, mortality and continue cycles of 

poverty (Bhutta et al., 2014). Understanding the epidemiology and drivers of malaria 

transmission is key to reducing the disease burden. This chapter is an introduction to malaria 

epidemiology and the mathematical modelling of malaria, building a foundation for the rest 

of the work in this thesis to expand upon. It will also cover the specific topics of malaria 

during pregnancy and malaria in the Democratic Republic of Congo (DRC) to contextualise 

some of the data used in this thesis. 

 

1.1 Malaria Epidemiology 
 
1.1.1 The Burden of Malaria 
 

Malaria is the disease caused by the Plasmodium parasite, common symptoms include 

intermittent fevers followed by chills and shaking, headaches, nausea, and vomiting (Bruce 

CLJ, 1980). The six species that infect humans and inflict harm are Plasmodium falciparum, 
Plasmodium vivax, Plasmodium ovale wallikeri, Plasmodium ovale curtisi, Plasmodium 
knowlesi and Plasmodium malariae (Calderaro et al., 2013). The two main parasite species 

have a rough geographic divide, with P. falciparum dominating in Africa and P. vivax being 

the most prevalent in South East Asia. These two species have different life cycles, and cause 

different morbidity and mortality rates, which may be due to their adaptation to different 

climates (Bruce CLJ, 1980). In 2016 there were an estimated 216 million clinical cases and 

445,000 deaths due to Plasmodium parasites across the world, with 90% of cases and 91% of 

deaths in Africa (World Health Organization, 2017b). These values nevertheless represent a 

significant improvement since the turn of the century, with the widespread scale-up of 

malaria control programmes beginning in 2000 reducing the incidence of clinical malaria 

episodes by 40% over the next 15 years (Bhatt et al., 2015). 
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1.1.2 Malaria transmission 
 

The intensity of malaria transmission is measured in terms of the entomological inoculation 

rate (EIR), which is the number of infectious mosquito bites that a person receives each year 

(WHO 2013). The EIR at a particular location is estimated by multiplying the daily mosquito 

biting rate on humans by the proportion of mosquitoes that are infectious to humans and then 

multiplying the result by 365 (Kilama et al., 2014). The daily mosquito biting rate is 

measured using human landing catches where a volunteer sits outside during mosquito 

feeding times and counts the number of mosquitoes that attempt to feed upon them (Gimnig 

et al., 2013). The EIR can change throughout the year depending on the seasonal influence in 

the size of the mosquito population, typically rising in the rainy season and falling during the 

dry season (White, Griffin, et al., 2011). The degree of seasonality in a location is determined 

by the proportion of infectious bites or cases each year that fall within a short seasonal 

window (Reiner et al., 2015). In the most seasonal settings the mosquito biting rate becomes 

negligible during the dry season so there is very little malaria transmission (Jawara et al., 
2008). Countries close to the equator can sustain mosquito populations that cause malaria 

transmission all year round, this is known as stable or holo-endemic transmission. Further 

away from the equator, malaria transmission might only be possible when certain drivers of 

malaria transmission change. For example, if there is an unexpectedly large rainfall then there 

could be a resulting malaria epidemic due to the mosquito population size increasing 

(Teklehaimanot et al., 2004). These malaria epidemics happen in areas of unstable 

transmission, in contrast to stable transmission happening constantly. They have particularly 

high mortality because the population have no naturally acquired immunity to malaria, 

meaning that they are more likely to develop serious clinical complications (Checchi et al., 
2006).  
 

Malaria transmission is heterogeneous at all spatial scales: within a country (Okello et al., 
2006), within a province (Bejon et al., 2010; Ahmed et al., 2013), and within a town (Ferrari 

et al., 2016) or village (Creasey et al., 2004). Mosquitoes are predominantly only thought to 

travel a few kilometres in search of a blood meal, meaning that malaria transmission is highly 

clustered in “hot spots” (Kaufmann and Briegel, 2004; Kreuels et al., 2008). People travelling 

in and out of these hot spots transport malaria into other areas when they are bitten by 

mosquitoes in new places (Martens and Hall, 2000; Wesolowski et al., 2012). Human 

migration has moved drug-resistant strains of P. falciparum around the globe and imported 
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cases of malaria into places where the disease had previously been eliminated (Roper et al., 
2004; Cotter et al., 2013). 

 

The environmental factors that have a strong influence on the epidemiology of malaria can 

also interact, for example rainfall and temperature: heavy rain in a hot environment causes a 

much quicker rise in malaria transmission than heavy rain in a cold environment 

(Teklehaimanot et al., 2004). This is because Anopheline mosquito larvae which are capable 

of transmitting malaria develop faster, and adult mosquitoes live longer, in warmer 

temperatures up until around 33 degrees Celsius (Beck-Johnson et al., 2013).  There is also a 

positive, but complex, relationship between temperature and the time that the parasite takes to 

develop in the mosquito (its extrinsic incubation period). In general, the parasite develops 

faster at warmer temperatures, but recent studies have found that the magnitude of the daily 

variance in temperature is also important (Gething et al., 2011; Blanford et al., 2013) with 

daily fluctuations in temperature having a greater impact on the extrinsic incubation period 

when the mean temperature is higher (Paaijmans, Read and Thomas, 2009). Mathematical 

models that predict malaria incidence based on climatic factors have become more feasible in 

recent years due to large, fine-scale remote-sensing satellite data covering Sub-Saharan 

Africa (Gething et al., 2011; Christiansen-Jucht et al., 2015; Zinszer et al., 2015). This has 

made it possible to produce risk maps for malaria at a fine spatial resolution of 1km based on 

the local climate and rainfall (Garske, Ferguson and Ghani, 2013). 

 

Efforts to reduce malaria transmission are categorised roughly into three aims: control, 

elimination, or eradication. Malaria control generally refers to ways of managing malaria 

transmission to reduce the disease burden. A country or region can achieve malaria 

elimination when there is no ongoing within-country malaria transmission, allowing that 

imported cases may occur due to people travelling to and from other countries that have not 

eliminated the disease (J. M. Cohen et al., 2010). Malaria eradication refers to the much more 

complex task of achieving zero incidence of malaria worldwide. It is hotly contested as to 

whether such a goal is possible (Roberts and Enserink, 2007; Feachem et al., 2010; Liu et al., 
2013; Tanner et al., 2015). Malaria elimination has been shown to be theoretically possible in 

many parts of the world, but there remain areas where malaria is so endemic that no 

combination of current tools is predicted to achieve elimination (Griffin et al., 2010). 
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1.1.3 Parasite lifecycle 
 

The malaria parasite has a complex lifecycle, as passing between human hosts and mosquito 

vector requires several specific life-stages. Transmission from an infected mosquito to a 

human occurs when the mosquito takes a blood meal. First, sporozoites in the salivary glands 

are injected into the bloodstream (Figure 1A). The sporozoites travel through the bloodstream 

until they reach the liver where they invade liver cells called hepatocytes (Figure 1.1B). 

Within the hepatocytes the sporozoite generates thousands of merozoites (the asexual stage of 

the parasite) before the hepatocyte bursts and releases the merozoites into the bloodstream. 

This is called the blood stage of the infection (Figure 1.1C). In the blood the merozoites bind 

to and invade red blood cells (erythrocytes), producing around 20 copies of themselves over 

the course of 48 hours in the case of P. falciparum. The parasite causes changes in the 

invaded erythrocyte that make it attach to the endothelial walls of blood vessels and organs 

while it is reproducing, a process called sequestration. The invaded cells generally sequester 

at the same time, causing a periodic pattern in the parasite density in the blood stream, with 

the period varying by Plasmodium species (Hawking, Worms and Gammage, 1968). 

Merozoites being released into the blood causes the same periodic symptoms in the human 

(Bruce CLJ, 1980). Sequestration is advantageous to the parasite because it prevents infected 

red blood cells from circulating to the liver or spleen, where they may be destroyed (White, 

2017).  

 

At some point during the infection a subset of merozoites will switch to producing 

gametocytes, the sexual stage of the parasite (Figure 1.1D). It is unclear exactly what causes 

this behaviour, but various theories have been proposed, including: the density of asexual 

parasites in the blood (Sowunmi et al., 2004), the intensity of the host immune response, and 

the level of anaemia in the human host (Sowunmi et al., 2004; Bousema and Drakeley, 2011). 

High densities of gametocytes in the blood make it more likely that a biting mosquito will 

ingest at least one male and one female gametocyte while taking a blood meal (Churcher et 
al., 2013; Da et al., 2015) (Figure 1.1E). After ingestion, conditions in the mosquito midgut 

prompts gametocytes to prepare for reproduction. The male gametocyte produces up to 8 

motile gametes that move around in the blood meal until they meet a female gametocyte to 

fertilise. After reproduction occurs the newly formed parasite stage pierces the midgut wall of 

the mosquito and forms a sack called an oocyst (Figure 1.1F). The oocyst produces thousands 

of sporozoites until it bursts after a minimum of 10 days. Sporozoites migrate to the salivary 
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gland of the mosquito where they are then ready to infect another human and complete the 

life-cycle (Figure 1.1G). 

 

 
Figure 1.1: The lifecycle of Plasmodium falciparum. (A) Sporozoites enter the human blood stream during a 
mosquito bite. (B) The sporozoites hide in the liver and replicate before re-entering the blood stream as (C) 
merozoites. The merozoites reproduce asexually in the blood stream causing clinical symptoms. (D) some 

merozoites diverge into gametocytes, the sexual stage of the parasite. (E) biting mosquitoes ingest gametocytes 
that reproduce in their midgut. (F) Fertilisation occurs and the gamete forms an oocyst on the wall of the 
mosquito midgut. (G) The oocyst fills with sporozoites until it bursts, the sporozoites migrate to the salivary 
glands to repeat the transmission process. 

 
1.1.4 Malaria morbidity and mortality 
 

In naïve human hosts the number of merozoites in the blood rises quickly, causing symptoms 

around 9-14 days after the infectious bite (Bruce CLJ, 1980). Infected erythrocytes that enter 

the spleen trigger the immune system to start making pro-inflammatory cytokines, which 

prevent infected erythrocytes from binding to endothelial walls but also cause fever, shaking 

and nausea. Infected erythrocytes sequestering in organs and blood vessels can cause blood 

clots and damage to endothelial walls (Bruce CLJ, 1980). In the lungs this damage can lead to 

pulmonary oedema (Taylor, Cañon and White, 2006). As the parasites destroy erythrocytes 

the human host can develop anaemia, as well as acidosis and hypoglycaemia due to renal 

system dysfunction (Trampuz et al., 2003). Cerebral malaria occurs when invaded 

erythrocytes sequestering in the small capillaries of the brain cause clots, leading to seizures, 

coma and a high likelihood of death (Idro et al., 2010). Those who survive cerebral malaria 
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may be left with lasting brain injuries and cognitive impairment (Fernando, Rodrigo and 

Rajapakse, 2010). 

 

Aside from clinical cases of malaria, a significant proportion of individuals in endemic areas 

unknowingly harbour an asymptomatic parasite infection (Bousema et al., 2014; Chen et al., 
2016). These individuals are protected from clinical episodes of malaria by their immune 

response, but long-term chronic infection with P. falciparum is associated with a variety of 

poor health outcomes. Malaria interventions often reduce all-cause mortality even if malaria-

specific mortality is not reduced, suggesting that asymptomatic parasite infections aggravate 

other diseases (Chen et al., 2016). Long-term asymptomatic infections have also been 

specifically linked to anaemia (Looareesuwan et al., 1987), systemic bacterial infections 

(Biggs et al., 2014), and poor school performance (Fernando et al., 2006; Clarke et al., 2008). 

 

1.1.5 Immunity to malaria 
 

Specific anti-sporozoite antibodies are capable of blocking sporozoites from infecting the 

liver, preventing an infection from establishing (Dups, Pepper and Cockburn, 2014). If this 

fails, then the infection will progress to the blood stage with circulating merozoites and the 

corresponding immune response will change. The immune response to the emergence of 

blood stage parasites from the liver is split into the immediate non-specific innate immune 

response and the slower adaptive immune response that is a malaria-specific response. The 

innate immune response aims to quickly stunt parasite development. While this occurs the 

adaptive immune response becomes primed to combat the infection (Stevenson and Riley, 

2004). The adaptive immune response to malaria is much more comprehensive, blocking 

merozoites from invading erythrocytes, preventing infected erythrocytes from sequestering, 

inciting macrophages to consume (phagocytose) infected erythrocytes and merozoites 

circulating in the bloodstream, and inhibiting the inflammatory cytokine cascade that causes 

the clinical symptoms of malaria (Good and Doolan, 1999; Marsh and Kinyanjui, 2006). 

Effective immunity against clinical episodes of malaria is acquired over many parasite 

infections. Where malaria transmission is high this happens quickly; and adults will therefore 

have a well-developed immune response against the asexual stage of the parasite so they 

infrequently have clinical episodes of malaria despite parasitaemia (Doolan, Dobaño and 

Baird, 2009). Where malaria transmission is highly seasonal or unstable individuals may not 

be exposed to parasite infections frequently enough to develop a good clinical immunity, 

hence the majority of infections will lead to a clinical episode of malaria (Rono et al., 2015). 
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Plasmodium falciparum has many genetically distinct strains, which have different 

polymorphisms in parasite surface proteins that the immune system uses to recognise the 

infection (Su et al., 1995). This means that exposure to many different parasite strains is 

needed for adequate protection against future clinical episodes. On top of different parasite 

strains, P. falciparum will also vary the proteins that it expresses on the surface of an infected 

erythrocyte over the course of a single infection (Frech and Chen, 2013). These changeable 

proteins are known as variant surface antigens (VSA). A common VSA is Plasmodium 
falciparum erythrocyte membrane protein 1 (PfEMP-1). At each cycle of parasite replication, 

a proportion of subsequent parasites express a genetically distinct version of PfEMP-1. This 

change delays the hosts immune response since it now has to begin targeting different 

proteins. The combination of different parasite strains and different VSAs within an infection 

mean that an individual’s immune system must learn to recognise a large variety of antigens 

before it can mount a thorough defence against the asexual stage parasites. The accumulation 

of immunity against certain strains and VSAs explains the age patterns of clinical malaria 

episodes, especially where there is high transmission intensity. Building up immunity against 

a wide selection of VSAs takes time because you need to have experienced many previous 

infections, children are therefore the most susceptible to clinical episodes of malaria 

(Drakeley et al., 2006). In high transmission areas of Sub-Saharan Africa, nearly all malaria 

morbidity and mortality associated with malaria is in children under five years old (Murray et 
al., 2012), who have not been exposed to enough infections to have acquired immunity.  

 

1.1.6 Malaria diagnostics 
 

Malaria is difficult to diagnose clinically because many of its symptoms are shared with other 

common but life-threatening diseases. It is therefore important to be able to determine 

whether such symptoms are due to malaria quickly and accurately. The two most common 

malaria diagnostics used in Sub-Saharan Africa are microscopy and rapid diagnostic tests 

(RDTs). Microscopy involves examining stained blood smears under a microscope to look 

for merozoites, gametocytes, or erythrocytes that have been invaded. By counting the number 

of parasites in a given area, a quick assessment can be made of the parasite density. 

Microscopy is inexpensive but requires trained health workers, and is time consuming 

because of the time taken to stain and process each blood sample (Payne, 1988; Ochola et al., 

2006). Microscopy also requires a relatively high parasite density threshold for detection 

compared to other malaria diagnostics (Okell et al., 2012). The precise level depends on the 



 19 

skill of the person performing the microscopy, but it is estimated to be around 50-100 

parasites per microlitre of blood for the average microscopist (Payne, 1988). This is around 

the same level as some brands of RDT but a lot higher than <5 parasites per microlitre for 

molecular diagnostic methods (Tangpukdee et al., 2009). 

 

RDTs detect parasite antigens in the blood, offering an inexpensive, fast method of detecting 

P. falciparum without requiring any laboratory equipment. This allows health workers to 

diagnose malaria in rural settings with minimal training (Carrara et al., 2006). A huge benefit 

of the speed and simplicity of RDTs has been that clinicians can now rule out malaria in 

patients that have malaria-like symptoms, allowing faster diagnosis of other life-threatening 

conditions, saving money on antimalarial drug use, and preventing over-use of drugs (Odaga 

et al., 2014). Since RDTs detect specific antigens on the surface of parasites, only some 

brands are able to also detect other Plasmodium species (Murray et al., 2008). Most RDTs 

use antibodies to detect the antigen Histidine-rich protein 2 (HRP2), although this antigen 

remains in the bloodstream after parasite clearance leading to a false positive test result for a 

median of 35-42 days afterwards (Grandesso et al., 2016).  

 

Polymerase chain reaction (PCR) methods amplify genetic material present only on the 

surface of Plasmodium parasites. Primers determine which genetic material is amplified and 

can be selected to discriminate between species. PCR testing has an extremely high 

sensitivity (Johnston et al., 2006) and low detection threshold (Tangpukdee et al., 2009). 

Unfortunately, the costly equipment, training and stringent laboratory conditions required for 

PCR analysis mean that it can only be undertaken at the wealthiest research institutions. As 

such, PCR is mainly used to estimate the sensitivity of other less expensive diagnostics or to 

perform genetic analysis on parasites. An analysis of data used to compare diagnostic 

methods found that of all infections detected by PCR, RDTs detected 41% of these, and 

microscopy detects 87% of those detected by RDT (Wu et al., 2015). 

 

1.2 Methods for controlling malaria 
 

Malaria interventions broadly belong in two categories, those that target the mosquito vectors 

and those that target the parasite infection in the human host. Vector control methods aim to 

reduce the mosquito biting rate on humans, thereby reducing transmission. The parasite can 

be also be controlled in the human population to prevent infection from occurring, to prevent 

morbidity from infections that occur, and to reduce transmission from human to mosquito. 
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The next section will describe the most widely used and promising malaria control 

interventions. Special consideration is given to the methods used to evaluate vector control 

interventions. 

 

1.2.1 Vector control  
 

1.2.1.1 Contact-based approaches 
 

Insecticide treated nets (ITNs) are a physical and chemical barrier between sleeping humans 

and Anopheles mosquito species that transmit malaria, which predominantly prefer to take 

bloodmeals from humans indoors between dusk and dawn (Bruce CLJ, 1980). ITNs where 

the insecticide is incorporated into the net fabric are referred to as long-lasting insecticidal 

nets (LLINs). The serviceable life of an LLIN is thought to be three years, although some 

evidence suggests that it is closer to two years (Gnanguenon et al., 2014). A huge number of 

LLINs have been distributed since the year 2000 as part of the Roll Back Malaria initiative 

and other public health campaigns (Bhatt et al., 2015). They have been highly effective at 

reducing malaria mortality and clinical episodes of the disease in a range of transmission 

settings across Africa (Lengeler, 2004). Bhatt et al. (2015), estimate that 663 million clinical 

cases of malaria were prevented between 2000 and 2015, and that LLINs were responsible 

for 68% of these. Since LLINs kill mosquitoes that attempt to take a bloodmeal, they are 

responsible for both a personal protection effect for the person sleeping under the net, as well 

as a community-level protection effect, because mosquitoes that are killed cannot then go on 

to infect others (Howard et al., 2000; Maxwell et al., 2002). The major problems associated 

with LLINs for malaria control involve achieving wide-scale and equal coverage (Barat et al., 
2004; Sexton, 2011), incorrect or inconsistent LLIN use (Atkinson et al., 2009; MacIntyre et 
al., 2012; Xu et al., 2014), and mosquitoes developing resistance to pyrethroids, the only 

class of insecticides currently widely used on LLINs (N’Guessan et al., 2007; Strode et al., 
2014; Lindblade et al., 2015).  

 

The public health impact of pyrethroid resistance remains unclear, in part because resistance 

cannot be randomised between sites, preventing its evaluation in randomised control-trials 

(Kleinschmidt et al., 2015). A recent large-scale study across 5 countries found no 

association between the level of resistance (as measured by a discriminating dose bioassay) 

and the incidence of malaria (Kleinschmidt et al., 2018). It also showed that LLINs still 

provide substantial personal protection to those using them. The interpretation of this study 
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on the public health impact of pyrethroid resistance is difficult, as the method of assessing the 

level of resistance has high measurement error and resistance might be associated with the 

endemicity of the disease. The strongest evidence for pyrethroid resistance diminishing the 

effectiveness of LLINs comes from a recent randomised control trial from Tanzania. Here the 

prevalence of malaria was shown to be substantially lower in villages given LLINs which 

contained pyrethroid and the synergist piperonyl butoxide (PBO), compared to similar LLINs 

with pyrethroid only (Protopopoff et al., 2018).  

 

Another widely used method of vector control is Indoor Residual Spraying (IRS), where 

insecticide is sprayed directly onto the walls of houses to kill mosquitoes that rest there 

and/or deter mosquitoes from entering the house. There is a lower level of personal protection 

attributable to IRS than LLINs because there is no actual physical barrier between human and 

mosquito, a vector may still bite before it rests on the walls of the house and dies. If high IRS 

coverage is achieved then the average population density and life-expectancy of the mosquito 

population will decline, reducing transmission. IRS is responsible for an estimated 13% of 

the predicted reduction in cases between 2000 and 2015 (Bhatt et al., 2015). Pyrethroid 

insecticides have historically been used as indoor residual sprays throughout Africa, though 

the fear of pyrethroid resistant mosquitoes has caused the transition to other classes of 

insecticide (Organització Mundial de la Salut Global Malaria Programme, 2012). This move 

towards insecticide resistance management has been easier for IRS than LLINs, as although 

the number of alternative insecticide options available are limited for LLINs, there are a few 

non-pyrethroid IRS products on the market. This is in part because, unlike LLINs, the 

insecticide used in IRS does not have as much direct contact with humans so a wider variety 

of insecticides can be used (Ossè et al., 2012). IRS is applied directly to the walls of 

permanent structures so there is a lower chance of improper use. However, the effectiveness 

of IRS depends heavily on the willingness of populations to tolerate repeated rounds of 

spraying and on the building materials used locally, which can significantly impact how long 

the insecticide remains effective on the wall (Mutagahywa et al., 2015). IRS is also not very 

amenable to mosquito control in areas with refugee or displaced populations as people do not 

live in permanent structures and the logistics of spraying are difficult (Rowland and Nosten, 

2001; Graham, 2004). Alternatives to IRS such as insecticidal wall hangings and blankets 

have been investigated for use by displaced populations (Rowland et al., 1999; Graham et al., 
2002, 2004; Mittal et al., 2011) and as longer lasting alternatives to repeated spraying rounds 

in urban and rural settings (Messenger, Matias, et al., 2012; Messenger, Miller, et al., 2012; 

Ngufor, Tungu, et al., 2014). 
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1.2.1.2 Airborne pyrethroids 
 

While the pyrethroids used in LLINs and IRS act when a mosquito contacts them, an 

alternative route of insecticide delivery is through the air or in the “vapour phase”. This may 

involve burning coils or suffusing a material with a pyrethroid such as transfluthrin, which 

has a low melting point and will be passively released into the air (Ogoma, Moore and Maia, 

2012). At high enough concentrations airborne pyrethroids have been found to induce 

mortality in mosquitoes and deter them from entering the protected area (hereby referred to as 

mosquito deterrence) (Ogoma, Ngonyani, et al., 2014). Volatile pyrethroids have also been 

shown to induce other entomological effects that may reduce mosquito vectoral capacity. 

Mosquitoes exposed to transfluthrin coils showed increased mortality within the next 24 

hours and the ones that survived and managed to feed produced 97% fewer eggs than control 

mosquitoes (Ogoma, Lorenz, et al., 2014). One method of releasing airborne pyrethroids is to 

have them passively evaporate from a material such as hessian cloth soaked in transfluthrin 

(Ogoma et al., 2012). This wider category of interventions are referred to as emanators 

(Ogoma et al., 2017). Emanators require relatively little user interaction to work and can be 

fashioned into decorative wall hangings for use outside homes, bars, or in other places where 

people gather (Masalu et al., 2017). Small-scale trials of emanators have shown them to be 

particularly effective at preventing bites on users sat nearby, even with low concentrations of 

pyrethroids (Ogoma et al., 2017). 

 

Airborne transfluthrin also causes blood feeding inhibition, which is a term routinely used to 

describe the reduction in the percentage of mosquitoes that successfully acquire a blood meal. 

Blood feeding inhibition could be induced by multiple, non-exclusive, distinct processes. For 

example, LLINs might reduce blood feeding by a mosquito preferentially avoiding the 

intervention (i.e. being deterred from entering a house with a net), being killed by the 

insecticide when landing on the net, or by exiting the house without a blood meal due to the 

insecticide or physical barrier of the LLIN. There is evidence that the blood feeding 

inhibition induced by airborne pyrethroids is due to a more pronounced effect than merely the 

mosquito deterrence mentioned above. Around half of mosquitoes exposed to smoke from 

transfluthrin coils remained unable to take up an opportunity for a blood meal 12 hours after 

exposure (Ogoma, Ngonyani, et al., 2014). Airborne pyrethroids interfere with mosquito 

sensory organs, preventing them from responding to host cues that they use to find a blood 

meal (Bohbot and Dickens, 2010). This insecticide-induced sub-lethal morbidity that prevents 
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mosquitoes from blood-feeding for a period of time following exposure will be referred to as 

temporary feeding interruption (TFI) to differentiate it from the broader blood-feeding 

inhibition that it causes. Several other studies have looked at the impact of airborne 

pyrethroids and have had similar findings. For example, in Thailand, vectors of the species 

Anopheles dirus were less likely to land on volunteers inside huts treated with the pyrethroid 

deltamethrin than in control huts (Malaithong et al., 2010). Other studies have found that 

contact with permethrin corresponded with reduced attempts to land on a host in An. gambiae 
s.s (Siegert, Walker and Miller, 2009), and use of metafluthrin reduced mosquito landing 

attempts in Aedes albopictus and Aedes taeniorhynchus (Xue et al., 2012). 

 

This insecticide-induced TFI effect joins an increasing list of other morbidity effects of 

insecticides such as reduced fecundity or delayed mortality (>24 hours after exposure). 

Pyrethroid-resistant mosquitoes that were regularly exposed to pyrethroids on LLINs to 

mimic blood feeding behaviour did not die upon contact with the LLIN, but instead had their 

overall lifespans reduced by over half (Viana et al., 2016). Delayed mortality is posited as a 

reason why LLINs remain effective against pyrethroid resistant mosquitoes that they no 

longer kill (at least immediately upon contact). Combinations of sub-lethal effects could 

exacerbate the impact of interventions and diminish the public health impact of pyrethroid 

resistance. 

 

1.2.1.3 Gene drive 
 

A novel vector control method is mosquito gene drives, which use genetic techniques to 

introduce new genes into wild mosquito populations that eliminate the mosquitoes or make 

them less effective as malaria vectors (Burt, 2003). Mosquito population genetics models 

suggest that it is possible to release mosquitoes with a “selfish” gene that has a greater than 

50% chance of selection during reproduction. These selfish genes can eventually establish 

themselves in the population and completely replace any previous variants (Deredec, Godfray 

and Burt, 2011). Since these selfish genes are so persistent once they are introduced it does 

not matter if they have a corresponding fitness cost for subsequent generations, although such 

a fitness cost would usually cause the eventual extinction of a non-selfish gene. If the selfish 

gene introduced into the population affects the fertility of mosquito offspring, then 

increasingly more mosquitoes with low fertility will be preferentially produced generation 

after generation until the population is eliminated (Hammond et al., 2016). Alternatively, 

modified male mosquitoes may be released that are far more likely to produce male offspring, 
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which again are predicted to eventually cause population collapse (Burt, 2003; Deredec, 

Godfray and Burt, 2011). Another method is to introduce a gene that makes mosquitoes 

resistant to malaria infection, with the aim of making all wild mosquitoes resistant to malaria 

infection (Gantz et al., 2015). Again, even if this resistance gene came with a fitness cost, it 

being preferentially passed down during reproduction would ensure that it eventually 

proliferated throughout the entire mosquito population. Recent mathematical modelling work 

that assessed the potential effectiveness of gene drives as a malaria eradication tool found that 

their effectiveness depends on the lowest level of mosquito density experienced each year 

(Eckhoff et al., 2017). In highly seasonal settings the mosquito population may become 

highly segmented in the dry season, hence pockets of mosquitoes without any gene-driven 

mosquitoes in them will likely remain. These pockets of mosquitoes can then prolong the 

survival of the population for another transmission season.   

 

1.2.1.4 Evaluating vector control interventions 
 

The proscribed development pipeline for vector control tools involves three phases of trials, 

after which the WHO makes recommendations for using the tool in the field (Vontas et al., 
2014). Some institutions that buy and distribute vector control tools adhere strictly to WHO 

recommendations, whereas others are free to do what they perceive is best. Phase I trials 

involve testing the intervention using laboratory-based assays to determine how it affects 

mosquitoes. Phase II trials assess the entomological efficacy against free-flying mosquitoes in 

small semi-field, or field trials. Phase III trials measure the epidemiological impact of a tool, 

ideally using a randomised controlled trial (RCT) to measure the difference in disease 

between control and treatment groups. Phase III RCTs need to be designed and undertaken 

very carefully to make sure that they have sufficient statistical power to detect changes in 

their chosen epidemiological outcome, as well as carefully monitoring that the vector control 

tool is thoroughly distributed and actually used by the population (Wilson et al., 2015). 

 

Experimental hut trials are the most widely used method of evaluating the entomological 

efficacy of interventions that target mosquitoes in the home, such as LLINs or IRS. They are 

a basic representation of the housing style in a broad geographical region of Africa that can 

be built to the same specification across the region, allowing different products to be tested in 

identical huts in different locations. There are currently three main types of experimental hut 

used in Africa: East African (Smith, 1965), West African (Darriet et al., 2002) and Ifakara 

(Okumu et al., 2012) huts. The types of hut differ in their layout and building materials to 
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best represent general differences in the styles of housing across Africa (World Health 

Organization, 2013a). Volunteers sleep in the hut to attract mosquitoes into the structure 

where they become trapped, either through flying through one-way valves in the windows or 

eaves of the house, or through being caught in exit traps. Comparisons between a control hut 

with an untreated bed net and a hut with a LLIN in can show how the intervention deters 

mosquitoes from entering the hut (reduced hut entry), kills mosquitoes (increased mortality), 

and prevents mosquitoes from feeding (reducing blood feeding rates) (Massue et al., 2016). 

Most newly developed insecticides in Phase I evaluation cause high mosquito mortality 

within the first 24 hours following exposure, though some chemistries of insecticide are 

thought to take longer to induce their effect (Agossa et al., 2018). Experimental hut trials try 

to estimate the efficacy of the compound against mosquitoes looking for a blood meal under 

more natural conditions, though here too endpoint measurement may need to be delayed 

according to the mode of action of the insecticide. 

 

1.2.2 Drug treatment 
 

Effective drug treatment clears parasite infections from humans and prevents immediate 

onwards transmission. In many endemic countries most infections are asymptomatic, with 

people carrying low-density infections for long periods of time, so focusing only on treating 

the visible, clinical episodes of malaria will be insufficient to halt malaria transmission 

(Bousema et al., 2014). Mass drug administration (MDA) campaigns circumvent this 

problem by providing everyone in a population with a dose of anti-malarial drugs at the same 

time, regardless of whether they have symptoms of parasite infection. Clearing the entire 

asymptomatic parasite reservoir in humans can potentially end or significantly reduce malaria 

transmission because no humans will be infectious to biting mosquitoes. However, 

observations from previous MDA campaigns (Von Seidlein and Greenwood, 2003; Poirot et 
al., 2013; Newby et al., 2015) and contemporary mathematical modelling work (Gu et al., 
2003; Okell et al., 2011) show that while MDA can have a large impact on parasite 

prevalence in the short term, the prevalence of infection returns to normal levels soon after 

the campaign has finished. This is due to several reasons: no MDA will have 100% coverage 

of the population, so some people will be left untreated; the anti-malarial will not have 100% 

efficacy at clearing infections, so some people will remain infectious to mosquitoes; current 

MDA does not kill mosquitoes that are currently infectious, which will re-infect the 

population after the campaign has finished. These factors mean that an MDA campaign is 

unlikely to permanently interrupt malaria transmission, apart from in very isolated settings 
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with very low transmission (Kaneko et al., 2000), or if MDA is combined with other 

interventions such as LLINs or IRS (Okell et al., 2011).  

 

In areas of seasonal malaria transmission, mass distributing anti-malarial drugs with a long 

prophylactic effect several times at the start of the transmission season may substantially 

delay the build-up in the number of cases and truncate the transmission season (Meremikwu 

et al., 2012). The general administration of anti-malarial drugs for prophylaxis is known as 

Intermittent Preventative Treatment (IPT). When this is performed at the beginning of the 

transmission season it is known as Seasonal Malaria Chemoprevention (SMC). In places 

where malaria transmission is highly seasonal, where the majority of clinical episodes occur 

within a period of a few weeks, SMC has been found to significantly lower disease burden 

(Cissé et al., 2006; Dicko et al., 2008, 2011; Konaté et al., 2011; Wilson, 2011; Meremikwu 

et al., 2012) for a relatively low cost (Ross et al., 2011; Nonvignon et al., 2016). A meta-

analysis of 12 IPT trials that distributed a monthly dose of Sulphadoxine-Pyrimethamine plus 

Amodiaquine (SP+AQ) to children during the transmission season estimated an 83% 

reduction in the incidence of clinical episodes of malaria (Wilson, 2011). The main 

considerations for using SMC are which age ranges to distribute anti-malarial drugs to, how 

to distribute them to ensure good and timely coverage, and when in the year the distributions 

should take place. IPT is usually targeted at infants (IPTi), pregnant women (IPTp), or school 

age children (IPTc).  

 

1.2.3 Vaccine 
 

A more permanent alternative to repeated drug distribution would be a vaccine to induce 

long-lasting immunity in the population. Developing a malaria vaccine has proven difficult 

due to the complexity of malaria immunology and the need for the vaccine to be safe to 

administer at scale (Crompton, Pierce, and Miller 2010). The most advanced candidate, 

RTS,S, initiated an immune response against a circumsporozoite protein, which enabled the 

immune system to target infections at the sporozoite stage before the parasite can enter the 

liver and go on to develop into a blood-stage infection (J. Cohen et al., 2010). Results of a 

recent RCT found that 20 months after administration the vaccine efficacy (the percentage 

reduction in disease in the vaccinated group compared to a control) was 27% in 6-12 week 

old children and 45.1% in 5-17 month old children (Mahmoudi and Keshavarz 2017; The 

RTS,S Clinical Trials Partnership 2015). By 2 years the vaccine efficacy had dropped even 

further, with the drop being slightly reduced if the child received a booster dose of the 
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vaccine at 18 months (The RTS,S Clinical Trials Partnership 2015). The poor longevity and 

efficacy of protection of the RTS,S vaccine means that its mass distribution is unlikely to be 

cost-effective in most transmission settings in Africa (Winskill et al., 2017). 

 

1.2.4 Summary 
 

It is widely regarded that effective malaria control will require a combination of interventions 

(Walker et al., 2016). The most cost-effective intervention package will depend on the 

seasonality of transmission, vector species composition, housing, mosquito and human 

behaviour, and the intensity of malaria transmission. Variation in these factors at a fine 

spatial scale means that province-level intervention strategies are often far more cost effective 

than country-level strategies. Recent mathematical modelling studies have suggested that the 

most cost-effective combination across all settings would be the distribution of LLINs 

combined with IRS or SMC depending on the degree of seasonality at the location (Walker et 
al., 2016; Winskill et al., 2017). This study however assumes that LLINs are working 

optimally and are not influenced by the rise of pyrethroid resistant mosquitoes. In highly 

seasonal settings a short burst of three to four months of SMC across the wet season was 

suggested to be more cost effective than IRS, because SMC only needs to be mobilised for a 

short window of the year. In endemic settings where SMC would be required for a longer 

duration, IRS at high population coverage became more cost-effective.  

 

If malaria elimination is to be achieved, then additional control interventions will be needed. 

Evaluation of potential tools is time consuming and costly as novel interventions need to 

show additional benefit over the current standard-of-care. Mathematical models of malaria 

transmission can be used as a low-cost method to estimate the impact of different 

interventions in different settings and support the evaluation process. These mathematical 

models can vary greatly, so the next section introduces the most widely used models and 

illustrates their potential utility.    

 

1.3 Mathematical models of malaria transmission 
 

Mathematical models have been used for many years to predict the behaviour of malaria and 

to estimate the impact of control interventions. Most mathematical models of malaria 

transmission are both mechanistic, meaning that they try to mathematically represent the 

physical systems that they are approximating, and dynamical, meaning that the states in the 
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model are dependent on time. The canonical model of malaria transmission is the Ross-

MacDonald model, which consists of linked ordinary differential equations explaining the 

proportions of human and mosquito populations that are currently susceptible or infected (D. 

L. Smith et al., 2012). The Ross-MacDonald model was developed in the 1950s, but the main 

form and assumptions of the model can still be seen in many models used today (D. L. Smith 

et al., 2012). Over time mathematical models of malaria have become more complex, 

allowing them to capture different facets of malaria transmission. For example, they may try 

to incorporate seasonal variation of mosquito abundance (Reiner et al., 2013), or how humans 

acquire clinical immunity to the parasite (Filipe et al., 2007). The Bill and Melinda Gates 

Foundation convenes the Malaria Modelling Consortium, with the aim of directing research 

and encouraging collaboration between different modelling groups. The consortium currently 

includes groups from Swiss TPH (Smith, Killeen, et al., 2006; Smith et al., 2008), Imperial 

College London (Griffin et al., 2010) and Intellectual Ventures (Eckhoff, 2011), amongst 

others. These three groups have each developed their own model of P. falciparum malaria 

transmission, each with different mathematical properties, modelling assumptions, and focus 

on particular aspects of malaria transmission and control.  

 

1.3.1 The Intellectual Ventures model 
 

The Intellectual Ventures model began as a mosquito population dynamics model that aimed 

to capture the effects of weather and intervention combinations on vector populations 

(Eckhoff, 2011). The mosquito population varies depending on available habitat, rainfall, and 

temperature, with each of these drivers having their own impact on larval development rates, 

larval mortality, and the maximum mosquito population size that an area can support.  Adult 

female mosquitoes then attempt to take blood meals, which can succeed or fail and result in 

the mosquito dying, feeding on an animal, or being repelled. The complex representation of 

mosquito feeding enables the model to estimate how changes in mosquito behaviour alters 

the success of vector control interventions, such as mosquitoes resting outdoors after a 

bloodmeal or the propensity that a mosquito will bite a human rather than an animal 

(Eckhoff, 2011). Later, the vector dynamics model was coupled with an individual-based 

model of a human population that allows for multiple genetically distinct parasite infections 

and a corresponding immune response that depends on previous exposure to three different 

types of antigenic component of the merozoite (P. A. Eckhoff, 2012; P. Eckhoff, 2012). Each 

infection has a merozoite surface protein (MSP) variant, a current P. falciparum erythrocyte 

membrane protein (PfEMP-1), and variants of minor surface epitopes. Each modelled 
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infection has a repertoire of 50 unique PfEMP-1 variants, which it switches between during 

an infection to evade the host immune response. Over time the individuals in a model 

simulation build up a repository of previously-seen antigenic components, mimicking the 

acquired immunity to clinical disease that is observed in the field (Wenger and Eckhoff, 

2013). The model output has been compared to observed data by showing matching patterns 

of how prevalence of infection varies with age across transmission settings (P. A. Eckhoff, 

2012). The model allows for different quantities of unique antigenic components, which 

produces prevalence-age relationships that are closer to observed data when more 

components are used (P. A. Eckhoff, 2012). The coupled vector and human model has since 

been used to estimate the impact of current and potential malaria vaccines (Wenger and 

Eckhoff, 2013), MDA campaigns with a variety of anti-malarial drug combinations 

(Gerardin, Eckhoff and Wenger, 2015), and the size of the infectious reservoir of malaria 

(Gerardin et al., 2015), amongst other work. 

 

1.3.2 The Swiss TPH model 
 

The model developed by researchers as the Swiss Tropical and Public Health Institute 

incorporates many aspects of the epidemiology of malaria highlighted in the previous section 

and is built out of separate modules that focus on different parts of malaria epidemiology, 

such as: the relationship between the mosquito biting rate on humans and the force of 

infection (Smith, Maire, et al., 2006), human immunity to the asexual stage of the parasite 

(Maire et al., 2006), how infectious humans are to mosquitoes (Killeen, Ross and Smith, 

2006; Ross, Killeen and Smith, 2006), immunity to the pre-erythrocytic stage of the parasite 

(Smith, Maire, et al., 2006), the occurrence of clinical episodes (Smith, Ross, et al., 2006), 

severe disease (Ross et al., 2006) and mortality (Ross and Smith, 2006). The model has been 

used to investigate many aspects of malaria epidemiology. For example, different methods of 

vaccine distribution were also explored, investigating whether it was delivered in a mass 

vaccination campaign or incorporated into the Extended Programme on Immunisation (T. 

Smith et al., 2012).  The team use an ensemble modelling technique, whereby the results of 

many versions of the same model that have different underlying assumptions are run and 

compared to increase the robustness of predictions (T. Smith et al., 2012; Penny et al., 2016). 
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1.3.3 The Imperial College Model 
 

The malaria transmission model developed by researchers at Imperial College London is 

extended and used as part of this thesis, so a greater level of background and detail is 

provided. It is an individual-based, compartmental model that tracks the infection status of 

individuals through time, as they age and acquire exposure-driven immunity.  Each section is 

highlighted in turn. 

 

1.3.3.1 Human population model 
 

At any point in time humans belong to one of six compartments that represent their different 

infection statuses (Griffin et al., 2010) (Figure 1.2). The proportion of the population in each 

compartment gives a measure of the extent of parasite infection in the community. 

Individuals begin in the susceptible compartment (S) and experience a force of infection that 

depends on the current number of infectious mosquito bites per unit of time. Once a person is 

infected, they develop clinical disease or an asymptomatic infection depending on their level 

of blood-stage immunity. Each clinical disease case has a probability of being treated. 

Treatment clears parasite infection and they enter the treated disease compartment (T) before 

entering the temporary prophylaxis compartment (P) and eventually returning to being 

susceptible. If they are not treated they enter the untreated clinical disease compartment (D). 

As the individuals slowly naturally clear the infection they will eventually end up in the 

asymptomatic parasite infection compartment (A), which is thought to form a large part of the 

infectious reservoir in humans (Bousema et al., 2014). An individual with an asymptomatic 

infection can be re-infected and face a new clinical episode, or may lower their parasite 

burden further until it becomes a sub-patent infection, (U), where parasite densities are so low 

that they are difficult to detect using most malaria diagnostics (Okell et al., 2012). An 

individual with a sub-patent infection can be re-infected again or will eventually clear their 

infection, returning to the susceptible compartment.  

 

Individuals in the model have four distinct types of malaria-related immunity (Griffin, 

Ferguson and Ghani, 2014). Newly born babies have maternal immunity from antibodies that 

are passed down to them from their mother, and this immunity wanes quickly after birth. As 

children in the model are exposed to the parasite they develop immunity against clinical 

disease upon being infected (blood-stage immunity), as well as immunity against an infection 

taking hold upon receiving an infectious bite (transmission-blocking immunity). Individuals 
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also develop immunity from parasite exposure, this is modelled as an individual’s ability to 

suppress parasite densities (Griffin, Ferguson and Ghani, 2014). Lower parasite densities are 

harder to detect with microscopy, and the model output can reflect this shortcoming in 

diagnostic sensitivity. It is important to capture this dynamic since low density infections may 

still contribute significantly to onward transmission (Okell et al., 2009).  

 

 
Figure 1.2: Flowchart of the structure of the Imperial College malaria transmission model. Susceptible (S) humans are 

infected at a rate based on the force of infection (L). Infected people develop clinical disease or an asymptomatic infection 

(A) depending on their probability of developing clinical disease (f). If they develop a clinical disease, they either move to 
the treated (T) or untreated disease (D) categories, depending on the proportion of treated cases (fT). Treated cases have a 
prophylactic stage (P) before returning to being susceptible. Asymptomatic cases can either change into being clinical 
episodes or become sub-patent infections (U). Sub-patent infections can either return to being asymptomatic infections, 
become clinical episodes or be cleared by the body and return to being susceptible. 

 
1.3.3.2 Mosquito population model 
 

Mosquitoes have their own population model and there is another separate model for larval 

development. The production of larvae is driven by a location-specific seasonality profile that 

represents rainfall over the course of a year (White, Griffin, et al., 2011). Rain provides 
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breeding grounds for mosquitoes and the larval population will grow until the competition for 

resources curbs population growth. The larvae go through several developmental stages until 

they reach maturity, upon which the female mosquitoes will hatch and begin to take blood-

meals. Like humans, mosquitoes begin life free of infection (susceptible) until they bite an 

infectious human host. The probability that a human infects a mosquito depends on which 

compartment the human is in. Humans in compartments that represent high density parasite 

infections are more likely to transmit the infection (Griffin et al., 2010). After becoming 

infected, mosquitoes remain in a latently infected compartment for 10 days while the parasite 

develops in their midgut. After parasite development, mosquitoes move to an infectious 

compartment where they remain throughout their life-time. Adult mosquitoes are assumed to 

die at a constant background rate.  

 

On average the rate at which humans are bitten is relative to their age as it is assumed that the 

larger their body size the more bites they will receive (irrespective of their use of control 

interventions). This assumption has recently been supported by studies which used genetic 

fingerprinting to link blood-meals to different people within a community (Gonçalves, 

Kapulu, et al., 2017).  In addition the model also incorporates an underlying relative biting 

rate that reflects observed heterogeneity in mosquito biting rates between individuals of the 

same age (Smith et al., 1995). 

 

1.3.3.3 Model fitting 
 

During the initial creation of the Imperial College model by Griffin et al. (2010), the model 

was partly parameterised using independently estimated values collated from relevant 

literature. These parameters are listed in Griffin et al., (2010) and Griffin, Ferguson and 

Ghani (2014).The parameter values that could not be obtained from existing literature were 

estimated by fitting the equilibrium solution of the model to parasite prevalence and clinical 

disease incidence by age through a range of transmission settings (Griffin et al., 2010; 

Griffin, Ferguson and Ghani, 2014). Since the Imperial College model does not explicitly 

model within-host parasite densities, the fitted parameters related primarily to human 

immunity and human infectiousness to mosquitoes and how these change with parasite 

exposure. The equilibrium solution of the compartmental model is the solution where the 

derivative of each of the differential equations is zero, so the population in each compartment 

stays constant. For each transmission setting, EIR estimates were used to construct a prior 

distribution of EIR values. The EIR value changes the mosquito carrying capacity that varies 
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the level of endemicity in the model. After the EIR is set, the values of the fitted parameters 

were chosen to reproduce the corresponding age-prevalence profiles. The fitting process used 

Bayesian Markov chain Monte Carlo methods, producing a posterior distribution for each 

parameter that can then be explored during sensitivity analysis. 

 

1.3.3.4 Vector control interventions 
 

The most widely used control interventions, LLINs and IRS, are incorporated into the model 

by reducing the probability that a mosquito will be able to feed on humans, reducing the 

mosquito population size (as measured by the number of mosquitoes per human), increasing 

the mosquito death rate and increasing the time that mosquitoes spend finding a blood meal 

(Griffin et al., 2010). The proportion of bites taken on humans relative to animals and the 

proportion of bites taken on unprotected humans relative to protected humans both change in 

response to interventions. The effectiveness of LLINs and IRS are calibrated using data from 

experimental hut trials, which is used to predict the probability (per feeding attempt) that a 

mosquito will be deterred from entering, exit the hut without feeding, successfully blood-

feed, or be killed. Mosquitoes that are repelled will go on to try and find another blood meal. 

The overall effectiveness of interventions depends on the coverage in the population, higher 

coverage increases the time that a mosquito spends looking for a meal on an unprotected 

human and increases the probability that a mosquito will encounter a LLIN or IRS and die 

(Le Menach et al., 2007). The correlation between intervention coverage is controlled using a 

multivariate normal distribution. The mean parameters control the probability that each 

individual receives an intervention and the covariance matrix alters the probability that a user 

receives another intervention if they already have one or more. Changing the values in the 

covariance matrix explores how random or highly correlated distributions of multiple 

interventions can alter the overall impact on transmission.  

 

The species composition of the local vector population is specified using local data where 

available, with each species having their own entomological parameters such as susceptibility 

to insecticides, propensity to feed on humans rather than animals and when they prefer to bite 

(i.e. when humans are indoors or in bed). Different mosquito species are assumed to act 

independently of one another. Mosquito pyrethroid resistance is incorporated into the model 

by linking the outcome of a discriminating dose bioassay to the performance of LLINs and 

IRS in experimental hut trials (Churcher et al., 2016). As resistance increases, the maximum 

probability of a newly distributed LLIN killing or deterring a mosquito decreases. The 
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probabilities of an LLIN or IRS killing or deterring mosquitoes decay faster when mosquitoes 

are pyrethroid resistant, the insecticide concentration on the net diminishes and quickly 

reaches a level where it is wholly ineffective on local mosquitoes. As a result, the magnitude 

and length of LLIN impact are greatly reduced by pyrethroid resistance. Malaria prevalence 

and clinical incidence are predicted to rise as the severity of pyrethroid resistance increases, 

unless alternative methods of malaria control can be found. 

 

1.3.3.5 Imperial College malaria model development 
 
The deterministic version of the Imperial College malaria model was previously run in a software 

called Berkeley Madonna, there were two main issues with this: the model could not easily be run 

many times with varying sets of parameters and the model could not be run on the high-performance 

computing cluster. During my thesis I wrote a version of the Imperial College malaria model that runs 

in the statistical software R, this makes working with the model far easier since you can define your 

parameter values, run the model and then plot the output all within R. Although I did not develop the 

actual mathematical structure of the model, writing this updated version of the model involved a 

significant amount of work since it involved translating nearly 1000 lines of code between two 

programming languages. The code is available as an R package for other members of my research 

group, it is now annotated to make it easier to understand and has documentation to help new group 

members get started on working with the model. In the future, I hope to make the R package available 

online so that modelling results published by the Imperial College Malaria group are reproducible for 

anyone. 
 

1.3.4 Model differences 
 
All three models vary in their modelling assumptions and the complexity with which they 

choose to model certain aspects of malaria transmission. The different modelling assumptions 

create slightly divergent incidence-prevalence profiles for each age group (Cameron et al., 
2015). The different way that the models are fitted and run requires different amounts of 

computational power and time. One benefit of the Imperial College model is that it can be run 

on a personal computer and produce predictions several years into the future within a 

reasonable amount of time. This is because the Imperial College model is less complex since 

it does not model blood-stage parasite densities within each individual. Instead, a proportion 

of infected individuals develop clinical disease depending on acquired immunity to blood-

stage infections that develops with age and level of exposure. The probability of a mosquito 

becoming infected after biting a human depends on the proportion of the population in each 

infectious state, with weightings given to each state depending on the likely level of 
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circulating gametocytes (i.e. asymptomatic and sub-microscopic cases have less gametocytes 

and are therefore less likely to infect (Bousema and Drakeley, 2011; Churcher et al., 2013)). 

On the other hand, the Swiss TPH and Intellectual Ventures models explicitly model the 

parasite densities within each individual, the densities respond to host immunity and 

becoming super infected. In these two models humans become sick based on their parasite 

density passing a pyrogenic threshold that is based on age and previous exposure (Rogier, 

Commences and Trape, 1996; Smith, Ross, et al., 2006). Both of these models also explicitly 

model gametocyte density in each individual and this is used to determine the likelihood that 

a biting mosquito becomes infected (Maire et al., 2006; P. Eckhoff, 2012). Modelling within-

host parasite dynamics makes the Swiss TPH and Intellectual Ventures models far more 

complex but does not seem to produce results that are wildly different to the Imperial College 

model when used in real-world modelling scenarios. For example, all three of the models 

summarised here were used in an ensemble modelling project that estimated the health 

impact and cost-effectiveness of the transmission blocking RTS,S malaria vaccine (Penny et 
al., 2016). The authors conclude that “The estimated underlying protection against infection 

was similar across models during the first 18 months, but diverged as the projections 

extended beyond the trial period”. This model divergence is likely to be due to precisely how 

transmission blocking immunity wanes in each model. 

 

The three models also vary in the level of stochasticity that is involved in the modelling 

process. Models that have higher stochasticity will require more model runs to produce a 

prediction since they must account for variation that is introduced during the model run. As 

mentioned in Section 1.3.3.3 the Imperial College model produces uncertainty estimates by 

taking 1000 independent draws from the posterior distributions of each parameter (produced 

during the original model fit to incidence data from 23 sites across Africa) (Griffin et al., 
2010). The model is then run using each of these 1000 parameter sets to produce a range of 

uncertainty around the model prediction, this means that uncertainty in the parameter value is 

incorporated into an uncertainty around the model predictions. The Intellectual Ventures 

model used incremental mixture importance sampling to explore the parameter space and 

selected parameter sets with sufficiently high likelihood when producing model simulations 

for four sites in Tanzania and Nigeria (McCarthy et al., 2015). The Swiss TPH model 

produces uncertainty by combining the results of an ensemble of up to 14 sub-models that 

employ different model assumptions for aspects of transmission such as immune decay, 

transmission heterogeneity, and access to treatment (Smith, Killeen, et al., 2006). 
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1.4 Malaria in pregnancy 
 

This section introduces the epidemiology of malaria in pregnant women, since it differs 

slightly from the epidemiology of the general population. These type of data (specifically the 

prevalence of infection in pregnant women) are used in Chapter 2 and Chapter 3 and are 

referred to throughout the thesis. Ante-natal clinics (ANC) can collect this type of data by 

recording the number of pregnant women that test positive for malaria parasites when they 

attend ante-natal clinic appointments.  

 

Falciparum malaria can utilise particular variant surface antigens on the surface of infected 

erythrocytes to bind to chondroitin sulphate A (CSA), which is only present on tissue in the 

placenta (Feng et al., 2009). These variant surface antigens are unrecognisable to an 

individual’s immune response that has only previously experienced non-placental infections, 

which usually bind infected erythrocytes to the CD36 ligand (Fried and Duffy, 1998; Desai et 
al., 2007). This means that a woman who has not experienced a P. falciparum infection 

during pregnancy before will be unable to prevent the parasite invading the placenta. This 

feature of placental infections mean that placental parasite infections can quickly grow to 

high parasite densities within the placenta and remain this way for a long period of time over 

the pregnancy (Desai et al., 2007; Walker et al., 2014). The prevalence of parasite infections 

during pregnancy is highest in primigravidae (women pregnant with their first child) and 

decreases with subsequent pregnancies because women have had more exposure to the CSA-

binding variant surface antigen (Rogerson et al., 2007). The effect of gravidity upon 

prevalence of infection is most pronounced in endemic settings where women are highly 

likely to have had a placental infection during a previous pregnancy. In low transmission 

settings women of any gravidity will have poorer immunity, predisposing them to high 

density parasite infections and more severe outcomes such as clinical episodes and maternal 

death (Ndam et al., 2017). 

 

Placental malaria infection has been found to be a significant cause of adverse birth 

outcomes. This is concerning given that an estimated 41.2% of women across Africa had a 

placental malaria infection at some point during their pregnancy in the year 2010 (Walker et 
al., 2014). Placental malaria infections have been shown to be responsible for babies with 

low birth weight (LBW), intrauterine growth restriction (IUGR), and in rarer cases pre-term 

delivery or foetal death (Desai et al., 2007). Malaria in pregnancy is responsible for between 

75,000 and 250,000 infant deaths per year (Rogerson et al., 2007), mostly in endemic 
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settings. In areas of high transmission placental parasite infections are the cause of nearly 

20% of all LBW deliveries, 70% of IUGR, and 36% of pre-term deliveries (Desai et al., 
2007). Placental malaria infections are also strongly correlated with maternal anaemia, 

causing an estimated 26% of severe anaemia cases amongst pregnant women in high 

transmission settings (Desai et al., 2007). 

 

Mathematical modelling indicates that pregnancy-specific malaria immunity acts to clear 

placental infections quickly, rather than preventing placental infection from occurring in the 

first place (Walker et al., 2013). Infections that existed before pregnancy that then become 

placental infections around 7-12 weeks into a new pregnancy when the placenta develops, 

have been estimated to account for 70% of cases of malaria in pregnancy (Walker et al., 
2013). In multigravidae women, the pre-existing infections that go on to invade the placenta 

will be cleared more quickly, which may be why there are fewer adverse birth outcomes in 

these women (Kalilani-Phiri et al., 2013).  

 

The timing of placental parasite infections during pregnancy has implications for the 

deployment of the pregnancy-specific malaria intervention intermittent preventative treatment 

during pregnancy (IPTp). Doses of anti-malarial drugs, usually Sulfadoxine-Pyrimethamine 

(SP), are given at regular intervals to clear existing infections and induce a prophylactic 

effect against parasite infection for up to 4-6 weeks (White, 2005). The WHO currently 

recommends a monthly dose of SP from the second trimester onwards within Africa (World 

Health Organization, 2013b). Presumptive IPTp to clear infections and the distribution of 

LLINs to prevent new infections are particularly appropriate methods for controlling malaria 

in pregnancy because they don’t require a diagnosis of placental infection, which requires 

histology and so cannot be done easily before delivery (Kattenberg et al., 2011). There is 

some evidence that RDTs (that detect the surface antigen HRP2) have a higher sensitivity 

than blood smear microscopy on both placental and peripheral blood samples but this has not 

been rigorously tested using placental histology as a standard reference (Kattenberg et al., 
2011; Fried, Muehlenbachs and Duffy, 2012). Pregnant women, especially those pregnant for 

the first time, often have infections with high parasite densities that are likely to be detected 

by RDT or microscopy (Gonçalves, Walker, et al., 2017). The prevalence of infection in 

pregnant women is strongly associated with the prevalence of infection in children under five 

years old, many countries are exploring the routine surveillance of pregnant women as a way 

of monitoring malaria trends  (van Eijk et al., 2015; Willilo et al., 2016).  
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1.5 Malaria in Eastern Democratic Republic of Congo 
 

The data used in Chapter 2 on this thesis is collected in the Democratic Republic of Congo (DRC), 

one of the most malaria-endemic countries in the world (Hay et al., 2010). In 2013 Nigeria and DRC 

accounted for 40% of global malaria cases (World Health Organization, 2014). The natural landscape 

of the DRC is highly variable, prevalence estimates from the 2007 DHS survey ranged from 0% to 

82%, with cases being clustered together spatially (Messina et al., 2011). Data available on malaria 

transmission from the DRC is poor due to the scale of the country and data collection being prevented 

by long-term violent conflict (Messina et al., 2011). A UN peacekeeping mission has been present in 

the country since 1999, but violence continues to prevent the implementation of a robust health 

service in the Eastern part of the country (Ahoua et al., 2006; Kalisya et al., 2015). 

 

The North and South Kivu regions of the DRC lie on the eastern border with Rwanda and Burundi. 

These two regions have been the focal point for decades of ethnic tensions and conflict, with an 

estimated 517,000 refugees and 1.5 million internally displaced peoples (IDPs) in 2015 (IDMC, 

2016). Due to the widespread destruction of healthcare infrastructure (Kalisya et al., 2015; Stasse et 
al., 2015), the majority of healthcare provision for many people in the Kivus is provided by non-

governmental organisations such as Médicines Sans Frontières (MSF). Where ministry of health 

structures do exist they are often supported by NGOs such as MSF. Refugees and IDPs often face 

barriers to healthcare, meaning that they face a higher disease burden. A recent study of an IDP camp 

in Eastern DRC found that the prevalence of infection for P. falciparum was higher there than in a 

nearby town with an indigenous population (Charchuk et al., 2016). National malaria control and 

elimination programmes often neglect refugees and IDPs (Williams, Hering and Spiegel, 2013). 

 

MSF operates in both “open” and “closed” camp settings, this refers mostly to whether the people 

living in them are in their own homes or are living somewhere else temporarily (Schmidt, 2003). 

Open settings are areas where indigenous communities that are living in their own homes (but may 

have IDPs living among them) are affected by conflict and the problems associated with this: poor 

access to healthcare, high insecurity and frequent flight. Closed settings are areas where people are 

living in temporary shelters having fled their homes. Closed settings can be formal, where things like 

settlement layout or food distributions are centrally planned, or informal, where groups of people 

fleeing violence settle in an area that may or may not have services nearby. The MSF sites in the DRC 

referred to in this work are all open settings and informal closed settings unless otherwise specified. 

 

Malaria control in refugee and IDP settings has its own unique set of challenges due to poor security 

and the transient nature of the population. Historically MSF and other humanitarian organisations 

have found it difficult to use systematic control methods of vector control such as IRS, hence they 

have concentrated more on emergency distributions of LLINs, case management and 
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chemoprevention. An MSF survey in 2013 found that in North Kivu 77.62% of households owned an 

LLIN, which corresponded to 28.57% of the population each having their own LLIN (Isidro, Martín 

and Arnold, 2013). The survey found that beyond not owning an LLIN, the most common reasons 

people gave for not using an LLIN were that their LLIN was stolen or missing, or that they were 

unable to hang them (Table 1.1). Notably, 28 people (6.38% of the total) in the ‘Other’ category 

(Table 1.1) gave the reason that they did not have an LLIN because they were fleeing. At the same 

time, IRS is logistically hard to do given security concerns and its residual-efficacy is likely to be 

short given the precarious nature of housing. Humanitarian organisations are therefore seeking to 

invest in novel-low cost vector control interventions that may be more appropriate in some settings in 

which they operate. However, many of the products being considered have not been formally 

evaluated through WHO or other evaluation agencies so there is a need for robust pilot studies to 

build up the evidence base to justify future deployment. 

 

Table 1.1: Reasons given for no LLIN use. Reproduced with permission from “Survey on Knowledge, Attitudes and Practice 
(KAP) survey of Long-Lasting Insecticide-treated bedNets (LLINs), in the Democratic Republic of Congo (DRC)” Martín, 
A., Arnold, M., Ariti, C., Siddiqui, R. MSF August 2013. 

Reason for no LLIN use Number of people (% of total) 

Not enough LLINs 248 (56.49%) 

LLIN is missing/stolen/sold 88 (20.05%) 

LLIN is too difficult to hang 49 (11.16%) 

LLIN is too hot to sleep under 4 (0.91%) 

LLIN used for other things 6 (1.37%) 

Other 44 (9.79%) 

(missing) 1 (0.23%) 

Total 439 (100%) 

 

 

1.6 Conclusion 
 

Malaria transmission is complex and there are many factors that need to be observed and understood 

before deciding the optimum method of control. Many malaria endemic areas also happen to be some 

of the poorest and most politically unstable areas in the world, which makes collecting the data 

needed to inform malaria control difficult.  

 

This thesis will investigate how the epidemiological impact of novel vector control tools can be 

assessed in pilot studies in very low resource environments. The thesis firstly examines how the 

routine testing of pregnant women in IPTp programmes in refugee camp settings in the DRC can be 

used to monitor malaria transmission. It does this by assessing the relationship between the prevalence 
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of malaria in pregnant women and the clinical incidence of disease, a metric central to malaria control 

programmes and cost-effectiveness analysis but rarely reliably recorded in areas of humanitarian 

need. It will then go on to expand an existing mathematical model of P. falciparum malaria to 

investigate the public health impact of volatile pyrethroid emanators. Their utility shall initially be 

assessed in populations that do not own an LLIN (similar to many refugees or IDPs) before examining 

how they could be used to prevent biting during the evening (a time when there are no widely used 

effective vector control tool). This work highlights the potential epidemiological importance of sub-

lethal exposure of mosquitoes to pyrethroids. The importance of this feeding inhibition effect shall be 

further investigated using a meta-analysis of experimental hut trial data to determine how it may 

influence the efficacy of LLINs in areas with pyrethroid resistant mosquitoes. This will have 

important implications for the use of LLINs in humanitarian settings and more broadly across Africa 

as local mosquito populations become increasingly resistant to pyrethroid insecticides.  
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2 Comparing the malaria burden faced by MSF to other data sources 
for eastern Democratic Republic of Congo 

 
2.1 Introduction 
 

Comparison of prevalence of malaria infection estimates allows governments and malaria control 

programmes to assess the malaria burden difference between locations, or at the same location at 

different times. Accurately measuring the prevalence of infection is difficult due to the need to find an 

accessible, unbiased sample of the population who can then be tested using microscopy or RDTs. 

When starting malaria control programmes, measuring the change in the prevalence of infection 

before and afterwards will evaluate how effective the control measures have been. The prevalence of 

infection is a good measure of disease endemicity because it is robust to changes in the population 

size. Estimating the prevalence of infection using rapid diagnostic tests (RDTs) will also detect 

asymptomatic malaria infections in the population as well as clinical episodes. In endemic settings, 

the number of asymptomatic infections is a good indicator of the level of malaria transmission in the 

immediate past. 

 

In the hospitals and health centres in the Democratic Republic of Congo (DRC) where MSF work, the 

only consistent malaria prevalence data available is for pregnant women attending ante-natal clinics. 

Free ante-natal clinic (ANC) appointments are provided to all expectant mothers, anecdotal evidence 

from MSF suggests that most pregnant women around the clinics attend at least one ANC 

appointment.  During each ANC appointment an RDT is used to screen for infection whether the 

woman is symptomatic or not; women that test positive are treated according to the protocols of MSF 

and the country within which they are operating. Those that test negative are given Sulphadoxine 

Pyremethamine (SP).  

 

The usual practice for routine malaria surveillance is to measure the prevalence of infection in 

children between 0 and 5 years old. The prevalence estimates for infants and pregnant women cannot 

be compared directly, since differences in pregnancy and age alter malaria immunology (Sections 

1.1.5 and 1.4). Age correlates strongly with the level of immunity to blood-stage infection when 

transmission is reasonably high, such as in the DRC (Carneiro et al., 2010; Griffin, Ferguson and 

Ghani, 2014). Women who have reached child-bearing age will likely have had many previous 

clinical episodes of malaria that allow them to suppress the parasite density of new infections when 

they are not pregnant, leading to ongoing asymptomatic infections (Doolan, Dobaño and Baird, 2009). 

Pregnant women are particularly susceptible to placental parasite infections, which their immune 

system will not be able to prevent unless they have previously experienced malaria during pregnancy 

(Desai et al., 2007).  On the other hand, young children have low acquired immunity due to fewer 
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previous infections and are therefore more likely to experience clinical episodes of malaria instead of 

ongoing asymptomatic infections. 

 

The goal of this chapter is to ascertain whether the malaria burden, in terms of the prevalence of 

infection in pregnant women, observed by MSF at their sites in North and South Kivu in the DRC, is 

higher than would be expected for the region. This information would support MSF logistical 

planning and inform global distribution maps of malaria burden. There is anecdotal evidence from 

MSF staff that the burden of malaria experienced at their sites is far higher than would be expected for 

North and South Kivu using Demographic Health Survey data (USAID, 2013), the results of this 

chapter will allow MSF to answer this question empirically. This goal is achieved by fitting nested 

statistical models to a dataset comparing the prevalence of infection in pregnant women and 

prevalence of infection in children under 5 years old across Africa. The statistical model allows for 

conversion between the prevalence of infection in pregnant women and children under 5 years old. 

This allows for comparison between the estimates of the prevalence of infection in children produced 

by the model for MSF sites and observations from larger field studies in the North and South Kivu 

region. 

 

A meta-analysis of 18 studies containing 57 sub-studies (where one study has multiple sites or 

sampling times) from across Sub-Saharan Africa that measured prevalence of infection in pregnant 

women and children under 5 simultaneously found that the prevalence of infection in children is 

generally higher than that of pregnant women, with a strong positive correlation between the two 

prevalence measures (van Eijk et al., 2015). This is understandable, since a change in the number of 

infectious bites received by all human hosts will simultaneously increase or decrease the prevalence 

of infection in all sub-populations to differing degrees – dependent upon the immunological factors 

mentioned earlier. However, a measure of correlation does not allow for conversion between the 

prevalence of infection in each group. In this Chapter I build upon the analysis done by van Eijk et al. 

(2015) to fit a flexible Bayesian regression model that predicts the prevalence of infection in children 

under 5 years using the prevalence of infection in pregnant women as an explanatory variable. The 

prevalence of infection in pregnant women observed by MSF in the DRC is converted into an 

estimate of the prevalence of infection in children under 5, which is then compared to Demographic 

and Health Surveys (DHS) data for the corresponding North or South Kivu region of the DRC. This 

will determine whether the malaria burden observed at MSF hospitals and health centres is 

comparable to that found in the DHS data, which has a much wider geographical scope and is widely 

used to assess the impact of malaria control initiatives. 

 

In addition, the estimated prevalence of infection in children under 5 at the MSF site Walikale is then 

compared to a recent estimate of the prevalence of infection in children under 5 years old living in an 

IDP camp in Walikale. The survey aimed to quantify the disparity in malaria burden between children 
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under 5 in an IDP camp and children under 5 living in a neighbouring village, both of which were in 

Walikale (Charchuk et al., 2016). The survey tested 200 children in the IDP camp and 200 children in 

a nearby village, finding that the prevalence of infection was significantly higher in the IDP camp 

(17.5% compared to 7.5% in the village). The main reason for this discrepancy was thought to be lack 

of LLIN use and ownership in the IDP camp, lack of education regarding malaria prevention in the 

mothers in the IDP camp compared to the village, increased vectoral capacity in the IDP camp due to 

standing water providing breeding grounds for mosquitoes, and a lack of shelter leaving children more 

exposed to mosquito biting at night. Walikale is the site of a lot of population movement due to 

conflict, with 7% of the one million IDPs in North Kivu living in Walikale, as well as 10.8% of those 

IDPs living in displacement camps in North Kivu originating from Walikale (MSF, 2017). Due to the 

amount of population displacement, it is interesting to determine whether the malaria burden observed 

by MSF at Walikale is closer to that of the local village or IDP camp. 

 
2.2 Methods 
 
2.2.1 Data 
 
The van Eijk et al. (2015) dataset was collated from a systematic review of studies that 

contemporaneously measured the prevalence of infection in children and in pregnant women. Data 

from the 57 sub-studies were collated between 1983 and 2015 in a range of countries in Sub-Saharan 

Africa. In this analysis the number of women and children tested, as well as the number of tests that 

returned a positive result, were extracted from the manuscript.  

The DHS data used in this analysis refers to the Democratic Republic of Congo Standard DHS survey 

conducted between 2013 and 2014 (USAID, 2013). Households were randomly sampled in each 

province and children under 5 were tested for malaria by microscopy. DHS surveys are repeated 

approximately every 5 years and form the basis of much modelling work that predicts malaria burden 

reduction over time (Bhatt et al., 2015). 

 

The MSF data used in this analysis is collected routinely at ante-natal care clinics at 4 sites in North 

and South Kivu where MSF operate hospitals and health centres (Figure 2.1). At every ante-natal 

clinic visit every pregnant woman is tested by RDT, each month the number of women tested, and the 

number of positive tests is totalled up. The months of data used coincide with the time during which 

the DRC DHS survey 2013-14 was being carried out. 
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Figure 2.1: A map of the Democratic Republic of Congo. Points in blue are the five locations where MSF work that are 
examined in this work (only four are introduced in this chapter, Chapter 3 also uses data from Shamwana). Points in red are 
three large towns in DRC, including the capital Kinshasa, to contextualise the map. 

 
2.2.2 Bayesian log-odds regression 
 
Two flexible, nested, Bayesian models were fitted to the dataset compiled by van Eijk et al. (2015), 

containing the estimates of the prevalence of infection in pregnant women and in children. The first 

model (referred to as the simple model) fitted a linear relationship between the log-odds of the 

prevalence in each group (Sharp and Thompson, 2000; Wu et al., 2015). The log-odds of the 

prevalence of infection in pregnant women in the ith study is denoted !"
#$%  and is given by: 

!"
#$% = '() *

+"
#$%

+"
#$% − -"

#$%.	, 2. 1 

 
where +"

#$%  is the number of pregnant women that tested positive in the ith study and n"
#$%  is the 

number of pregnant women tested. It is assumed that the number of pregnant women that tested 

positive was distributed binomially with an unknown probability of success 5"
#$%,  

 

+"
#$%	~	78-9-"

#$%, 5"
#$%:. 2. 2 
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The log-odds prevalence of infection in children (denoted by superscript INF) can be calculated in the 

same fashion using a parallel assumption about the number of children that tested positive in each 

trial: 

 

!"
;$< = '() *

+"
;$<

+"
;$< − -"

;$<. 	 2. 3 

 
r"
?@A	~	78-9n"

?@A, 5"
?@A: 2. 4 

 
 
The model fits a linear relationship between the log-odds of the prevalence of infection in pregnant 

women (ANC) and children (INF), 

 

!";$< = 	!"
#$% +	D"	. 2. 5 

 
Here, D" is the log-odds ratio that quantifies the difference between the prevalence of infection in each 

group for the ith study. This can be further broken down into: 

 

D" = 	D"F + 	G!"
#$%	 2. 6 

 
The value D"

F is the expected log-odds ratio for the ith study, which is assumed to be normally 

distributed across studies: D"
F	~	I(+JK'(D, M). This means that D is the mean log-odds ratio between 

the two groups over all studies and M is an estimate of much this varies between studies. The variable 

G is the regression coefficient, meaning that changes in !"
#$%  have a linear effect on the log-odds 

ratio between the two groups, which matches previous work comparing malaria diagnostics (Wu et 
al., 2015). The second model (referred as the interaction model) modifies Equation 2.6 to include the 

malaria diagnostic used (denoted J") as a categorial variable and as an interaction effect with 

endemicity: 

 

D" = 	D"F + 	G!"
#$% + GOJ" +	GPJ"!"

#$%	 2. 7 

 

The interaction model uses the same assumptions as the simple model regarding the distributions of 

the number of women and infants testing positive by RDT and the log-odds ratio (Equations 2.1-2.5). 

The additional diagnostic terms show whether the relationship between the prevalence in each group 

changes depending on the diagnostic method used. The models were fit using the statistical software 

WINBUGS, which uses a Markov chain Monte Carlo method to fit Bayesian models (Lunn et al., 

2000). The unknown parameters D, M, G,	GO, and GP were given flat priors (described in Table 2.1) and 
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their final values were estimated by taking the mean of >500 effective posterior samples for each 

parameter thinned from 4 Markov chains run in parallel. 

 

The fit of each model was assessed using a leave one out cross-validation method, whereby the model 

is fit to all data except for one point. This unseen data point is then predicted and the accuracy of all 

of the predictions is recorded. This process is repeated for each data point and the correlation 

coefficient between the predicted and observed values gives an indication of how well the model fits 

the data. Each model run in the leave-one-out analysis ran 4 MCMC chains for 20000 iterations in 

WINBUGs. The two models are also compared using their Deviance Information criterion (DIC), 

which gives a relative score based on the predictive ability of each model. The model with the 

smallest DIC value is the preferred model. 

 

2.3 Results 
 
2.3.1 Relationship between metrics for all data 
 
The two log-odds regression models were fit to 57 studies from 13 different countries in Sub-Saharan 

Africa, where a total of 54,798 children between 0 and 5 years old, and 9,205 pregnant women were 

tested using either diagnostic. Of the tests performed on children, 22,845 of them (41.7%) were 

undertaken by RDT, where the estimated prevalence ranged from 0.5% to 70%. The other 31,953 tests 

on children (58.3%) were undertaken by microscopy, where the estimated prevalence ranged from 

0.4% to 78%. In pregnant women 2,563 of the tests (27.8%) used an RDT, finding an estimated 

prevalence range between 0% and 45.8%. The other 6,642 tests (72.2%) were performed using 

microscopy and estimates of prevalence ranged between 0% and 47.1%.  

 

The simple model (Equation 2.6, no diagnostic terms) found that the prevalence of infection in 

children was higher than that in pregnant women. This was the case across all endemicity levels, with 

the gap between the prevalence in each group growing as the prevalence of malaria increased (Figure 

2.2A). The 95% credible interval calculated from the posterior distributions of the fitted parameters 

did not include the possibility that the prevalence of infection in the two groups could be equal at any 

endemicity level (other than zero). The relatively simple shape of the fitted model broadly captures 

the observed relationship though there is wide variability in the observed data points away from the 

best fit line. 

 

2.3.2 Relationship between metrics for different diagnostic methods 
 
Including the diagnostic used as a variable in the model slightly improved the model DIC from 777.6 

for the simple model to 775.3 for the interaction model, indicating a modest improvement in 

predictive power when stratifying by malaria diagnostic used. The interaction model (Equation 2.7) 
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found that the difference between the prevalence of infection in pregnant women and children was 

larger when studies used RDTs as the diagnostic method (19 trials out of 57, Figure 2.2B). The 

disparity between the prevalence of infection in the two groups was both generally larger when 

measured by RDT (Table 2.1, GO) and this disparity grew larger as endemicity increased (Table 2.1, 

GP). Trials using microscopy as a diagnostic showed a lower difference between the prevalence in 

each group (Figure 2.2C). When using microscopy as a diagnostic, the 95% credible interval of the 

relationship between the prevalence in each group included the possibility that the they might be equal 

at very high endemicity (>50% prevalence in each group).  

 

The estimated values for the model parameters for both models are shown in Table 2.1. In the 

interaction model, the value of GO is negative, showing that the expected log-odds ratio between the 

prevalence in each group (the general difference between the prevalence of infection in each group 

before considering a linear endemicity effect) is higher for studies using RDTs. In the simple model, 

the 95% credible interval for the parameter β contains negative and positive values for the model fit to 

all data or studies that used microscopy. This means that the simple model cannot definitively say that 

the gap between the prevalence of infection in each group grows as the prevalence of infection in 

pregnant women (a proxy for transmission intensity) increases. In the interaction model the value of 

GP + 	G is negative, which explains why in Figure 2.2C the relationship bends downwards as the 

prevalence of pregnant women increases. The interaction model fit for studies that used RDTs does 

find that the difference between the prevalence of infection in each group widens as transmission 

increases. 

 

Both models performed well at leave-one-out cross-validation (Figure 2.3). The Pearson correlation 

coefficient between the values predicted by each model using the unseen data and the actual observed 

data was 0.863 for the simple model and 0.867 for the interaction model. The cross-validation results 

are shown visually in Figure 2.3, comparing the observed prevalence of infection in children with 

their out-of-sample estimate. Both models show a good level of agreement between the model 

prediction and the excluded observations with no significant bias in these data, suggesting that the 

linear relationship (on the log scale) adequately captures the underlying differences.  
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Figure 2.2:  The cross-sectional relationship between malaria prevalence in children under 5 years and pregnant women fit by the simple model (A - red), fit by the interaction model to studies using RDT (B - green), and fit by the 
interaction model to studies using microscopy (C - blue). Points show observed values from the studies and error bars show corresponding 95% confidence intervals. The thick, coloured lines display the best fit log-odds regression 
model fit with the shaded interval around the line denotes the 95% credible interval constructed from posterior samples of the model parameters. The dotted black line shows where the prevalence of infection in each group 
would be equivalent. 
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Figure 2.3: Estimates of the accuracy of model predictions using the leave-one-out cross validation procedure. The x-axis displays the estimated prevalence of infection in pregnant women from the simple model fit (A – 
red), interaction model for RDT (B – green), and interaction model for microscopy (C – blue). The y-axis shows the observed prevalence of infection in pregnant women for the corresponding study. The dotted black line 
denotes where the prediction is equal to the observation, points close to this line are accurate predictions. The fitted models predict the relationships relatively accurately, with points falling either side of the line for the 
whole range of endemicities. 
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Table 2.1: A breakdown of the priors used for each parameter in the three log-odds regression models and the posterior 
mean and 95% credible interval. Credible intervals marked with a * contain the possibility that the parameter value is equal 
to zero. 

Parameter Prior Simple model - 
Equation 2.6  
Posterior mean 
(95% credible 
interval) 

Interaction model – 
Equation 2.7 
Posterior mean 
(95% credible 
interval) 

δ N(0,1000) 0.672 (0.353,1.035) 1.241 (0.579,1.859) 
β N(0,10000) 0.072 (-

0.095,0.246)* 
0.450 (0.143,0.799) 

τ Gamma(0.1,0.001) 2.4996 (1.371,4.084) 2.829 (1.638,4.518) 
!"  
(baseline = microscopy) 

N(0,10000) - -0.820 (-1.588,-
0.074)* 

!#  N(0,10000) - -0.550 (-0.936,-
0.194)* 

 
2.3.3 Comparison between MSF and DHS data  
 
MSF measure their prevalence in pregnant women using RDTs and the DHS surveys measure their 
prevalence of infection in children using microscopy, so the simple model that doesn’t differentiate 
between diagnostic was used to convert the prevalence of infection in pregnant women observed by 
MSF into estimates of the prevalence of infection in children. These predictions can then be directly 
compared with the corresponding regional estimates of the prevalence of infection in children 
collected by the DHS. The DHS data for North and South Kivu were collected between November 
2013 and January 2014, therefore the prevalence of infection in pregnant women for each of these 3 
months measured at each MSF location were used to generate predictions from the simple model. The 
results are shown in Figure 2.4. At all locations the estimated prevalence of infection in children from 
MSF data was significantly higher than that found by the DHS survey. In North Kivu, the prevalence 
of infection in children measured by the DHS was 5.3%, nearly four times less than the 22.3% 
estimated prevalence of infection in children predicted using the MSF data from Walikale (Figure 
2.4A). 
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Figure 2.4: A comparison of the observed prevalence of infection in children from the DHS data (blue bars) and the 
predicted prevalence of infection in children for the refugee camp settings in which MSF operates in the area (using the log-
odds regression model fitted to data from all studies) (red bars). The error bars for the DHS data show 95% confidence 
intervals using a normal approximation method. The error bars around the log-odds regression predictions show 95% 
credible intervals for the prediction (See Figure 2.2A). 

 
2.3.4 Comparing MSF, DHS and IDP camp data 
 
The prevalence of infection in children estimated from MSF aggregated data can also be compared to 
a separate study that tested children living in an IDP camp or local village in the “Walikale district” of 
North Kivu during August 2013. Figure 2.5 shows the estimated prevalence of infection in children 
using the MSF data for August 2013 (red), the DHS estimate for the North Kivu region in 2013 (blue, 
data collected Nov 2013-Jan 2014) and the estimates taken in the IDP camp and neighbouring village 
in August 2013 (purple). The prevalence estimate taken in the village in Walikale is close to the 
province-wide estimate for North Kivu performed by the DHS, whereas the prevalence estimate for 
the IDP camp is higher. Slightly higher than that still is the prevalence estimate calculated using the 
log-odds regression model on the aggregated data for MSF sites in Walikale. 
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Figure 2.5: A comparison of 3 different estimates for the prevalence of infection in children in Walikale. Firstly, the 
estimates from Charchuk et al. (2016) testing children in a local village and an IDP camp and their corresponding 95% 
confidence intervals using the normal approximation method (purple). Secondly, the estimate from the DHS survey in North 
Kivu and corresponding 95% confidence interval using the normal approximation method (blue). Finally, the predicted 
prevalence of infection from the simple log-odds regression with corresponding 95% credible interval for the prediction 
(red). 

 
2.4 Discussion 
 
The estimates of the prevalence of infection in children derived from the MSF clinical data predict a 
substantially higher malaria burden in the areas where MSF work than the corresponding province-
wide estimate calculated from the DHS dataset. The malaria burden faced by MSF could differ from 
the regional average because of spatial heterogeneity in malaria transmission due to environmental 
factors such as land use, and/or because of demographic factors that make the local population 
particularly susceptible to malaria. Local variations in land use support different density mosquito 
populations (per person) due to the availability of suitable breeding sites (Lindblade et al., 2000; Paul, 
Kangalawe and Mboera, 2018), meaning that households in some places face far more infectious bites 
than the region average. Other environmental factors that might give MSF sites higher malaria burden 
than normal could include altitude (Bødker et al., 2003), the amount of rainfall (Okuneye and Gumel, 
2017), and vegetation cover (Ricotta et al., 2014). However, spatial heterogeneity in transmission is 
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unlikely to explain why every MSF location examined here is facing a higher malaria burden that the 
province-wide average, since the MSF locations are also spread around the North and South Kivu 
regions with different environmental factors at each site. Instead, what is common to all of these areas 
is human displacement, with IDPs living in local communities and local communities occasionally 
having to leave their homes for safety reasons (MSF, 2017). 
 
Additionally, the disparity in malaria burden between locations in North and South Kivu could reflect 
different levels of knowledge about malaria prevention (Obol, David Lagoro and Christopher 
Garimoi, 2011; Qayum et al., 2012), or different abilities to afford, maintain and correctly use 
insecticidal bed nets (Brooks et al., 2017). Bed nets are easier to hang and maintain in more 
permanent structures and housing quality has been shown to be a strong predictor for disease 
prevalence (Tusting et al., 2017). It may also be due to how well serviced each community is by 
healthcare providers. At MSF sites, the lack of available healthcare outside of an emergency relief 
NGO means that people attending MSF hospitals are not provided with organised, competent 
healthcare in any other sense. As previously discussed, MSF have previously had to focus on case 
management and emergency LLIN distributions (except for LLINs handed out to pregnant women 
during intermittent preventative treatment in pregnancy). This policy has improved somewhat, MSF 
now study entomology and pyrethroid resistance to guide their LLIN choice and also consider 
larviciding, though the amount of disease prevention in the sites where they work is currently 
unreported and unclear. Some risk factors, such as net ownership and malaria prevention knowledge 
were highlighted as potential explanations for the large difference in the malaria burden between the 
village and IDP camp in Walikale in North Kivu (Charchuk et al., 2016). The MSF Knowledge, 
Attitudes and Practice survey undertaken in North Kivu in 2013 found that 51.3% of people gave 
preventing malaria as their reason for using an LLIN and that 78.1% of people identified sleeping 
under an LLIN as a way of preventing malaria (Isidro, Martín and Arnold, 2013). The MSF burden 
prediction for Walikale is far closer to that observed in the IDP camp in Walikale than the DHS 
estimate for North Kivu as a whole. Combined with the consistent presence of IDP camps around 
MSF locations, this strongly indicates that the reason for the unexpectedly large malaria burden 
observed by MSF is due to the high malaria burden faced by IDPs who access their healthcare 
systems and the impact of conflict on the local communities living in that context. There could be an 
additional, compounding factor in that displaced communities may be forced to settle in undesirable 
locations, which have been historically rejected by indigenous populations due to the high malaria 
transmission potential.  
 
This analysis quantified the relationship between malaria prevalence in children under 5 years and 
pregnant women, in line with the findings of van Eijk et al. (2015) it found that the observed 
prevalence of infection in children is generally higher than that found in pregnant women. A question 
that emerged from fitting the interaction model that stratified by malaria diagnostic is why the gap 
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between the prevalence of infection in each group widens as transmission increases in studies using 
RDTs, but not those which use microscopy. In the meta-regression by van Eijk et al. (2015) the type 
of test used did not significantly affect the pooled prevalence ratio, the ratio between prevalence of 
infection in children and prevalence of infection in pregnant women found in each study. This may be 
because they did not consider an interaction between the type of test used and endemicity in their 

model. In my analysis the slope of the regression (! + !#) in the interaction model is positive and 
significant for studies using RDTs, but not for studies using microscopy. Therefore, when using RDTs 
as a diagnostic, the log-odds ratio between the prevalence in the two groups gets larger as 
transmission intensity increases. It has been found that RDTs are sub-optimal at detecting parasites 
sequestered in the placenta (Fried, Muehlenbachs and Duffy, 2012), which can help explain why the 
observed prevalence of infection in pregnant women is lower than that of children in general, but not 
why the gap between the two prevalence measures increases with transmission intensity, or why this 
effect only occurs when using an RDT since microscopy also struggles to detect placental infections 
(Uneke, 2008). A plausible explanation for why the disparity between the prevalence of infection in 
each group increases with endemicity more noticeably for RDTs could be due to RDTs returning a 
positive result for up to 4 weeks after parasite clearance (Grandesso et al., 2016). As discussed above, 
at different levels of malaria endemicity the types of malaria infection experienced by children and 
pregnant women are likely to be different. At all transmission levels, any new malaria infection is 
more likely to result in a clinical episode for a child, whereas pregnant women are likely to carry 
ongoing, asymptomatic infections or placental infections that last the duration of their pregnancy. 
When transmission is higher, more children will have recently had clinical episodes and many of them 
will have been treated with anti-malarial drugs. These children will test positive by RDT because 
parasite proteins will remain in the bloodstream, but not by microscopy since parasites will have been 
cleared from their blood. Additionally, when the number of infectious bites is high, many pregnant 
women receiving an infectious bite will already have an ongoing infection, so these new infectious 
bites do not translate directly into new detectable infections by RDT or microscopy. This explains 
why the disparity in the prevalence of infection between the two groups grows as transmission 
intensity increases for RDT-based studies only. The improvement in DIC resulting from stratifying by 
diagnostic in the model was only modest, providing limited evidence that it is important to include 
these diagnostic terms. These models could be re-fit in the future when there are more RDT studies 
available, which could help to determine whether stratifying by diagnostic is important. 
 
The results from this chapter agree with the studies performed in the IDP camp in Walikale, finding 
that, at all of the locations where MSF operate in North and South Kivu, the malaria burden 
experienced is far higher than would be expected from DHS data. This stark contrast highlights a 
potential flaw in the data collection methodology of DHS. Visiting randomly chosen villages of 
stable, established communities and testing children there could miss transient populations such as 
IDPs and refugees from other countries (although in the context of this data it is mostly the former). 
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Therefore, when trying to accurately estimate the malaria burden at locations where there are influxes 
of IDPs it is preferable to consult localised, smaller scale data sources such as the MSF clinical data 
rather than province-wide estimates such as the DHS survey data. Sites with IDPs act as pockets of 
intense malaria transmission within endemic regions; which is not just concerning due to the heavy 
burden on IDPs but also jeopardises the wider effort to control malaria. Transmission cannot be 
stopped in local indigenous populations, no matter how much effort is put into malaria control, if they 
are close to an IDP camp that can re-seed transmission endlessly. There have already been calls for 
malaria control programmes to explicitly plan how they are to help displaced populations, since 
failing to do so could prevent them from reaching elimination at the country level (Williams, Hering 
and Spiegel, 2013). The fact that DHS data underestimates the burden at MSF sites is problematic 
because DHS data is the current go-to source for malaria burden information for many inaccessible or 
politically unstable regions of Sub-Saharan Africa, which are likely to experience similar issues to the 
MSF sites used in this analysis. 
 
The work has important implications for MSF. It increases the evidence base that the malaria burden 
in their camps in eastern DRC have a substantially higher malaria burden than the surrounding area. It 
is an indication that organisations working in refugee camp or conflict settings should expect higher 
disease prevalence than that collected by normal routine methodology which is utilised and presented 
by online sources such as the Malaria Atlas Project (Gething et al., 2016) and the World Malaria 
Report (World Health Organization, 2017b). A greater level of intervention will likely be needed in 
these settings to achieve the same level of control even before the difficulties of working in these 
types of settings are considered. One drawback in the models presented in this chapter is that they do 
not consider the number of children that a woman has previously had before the current pregnancy. 
As discussed in Section 1.4, women can develop immunity to placental infections over successive 
pregnancy, which can make it harder for RDTs to detect low density infections (Desai et al., 2007). 
Similarly, in the van Eijk dataset it is not known whether women attending the ante-natal 
appointments are doing so for the first time. If women are attending more than one appointment, they 
may have tested positive and had their infections cleared at the previous appointment. This could 
account for some of the observed variation in the observed prevalence between sites, since at sites 
where women are more likely to attend multiple appointments they would be more likely to have had 
previous treatment and test negative. Ultimately, the reason for the poor accuracy of the model for 
some sites is unknown. Some of the variation in observed prevalence could be due to measurement 
error, there are often large discrepancies between RDT and microscopy measured prevalence at the 
same site (Wu et al., 2015).  
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2.5 Conclusion 
 
The malaria burden faced at the locations that MSF work at in North and South Kivu is 
higher than the province average, sometimes considerably so. This chapter explored the 
evidence that the reason for this higher burden could be due to populations of internally 
displaced people living in North and South Kivu, who have a higher prevalence of malaria 
compared to indigenous populations. It seems likely that this is the case, given that the 
prevalence of infection in children at Walikale estimated from the MSF data is so similar to 
that observed in the IDP camp in a different study. This has implications for those monitoring 
the progress of malaria control efforts in areas where IDPs are living, since DHS has been 
shown to underestimate the true malaria burden. The next chapter builds on how MSF could 
use their own routinely collected data on the prevalence of infection in pregnant women, 
which could be used to inform themselves of malaria transmission trends around their health 
facilities, moving from comparing point estimates generated by the log-odds regression 
model to different statistical models that will capture how the prevalence of infection in 
pregnant women changes along with malaria transmission over time. 
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3 Modelling the temporal relationship between prevalence of 
infection in pregnant women and clinical incidence in children 
under 5 years old 

 
3.1 Introduction 
 
The last chapter derived a non-temporal relationship between the prevalence of infection in children 
and the prevalence of infection in pregnant women. It established that the prevalence of infection in 
the two groups is strongly correlated, with some of the variation between the groups due to different 
levels of host immunity and performance of malaria diagnostics. The prevalence surveys used to 
inform this relationship were infrequent and conducted over long periods of time. This chapter will 
explore the relationship between the prevalence of infection in pregnant women and another malaria 
transmission measure, clinical incidence in children under 5 years old. This will provide an 
understanding of how the prevalence of infection in pregnant women responds to changes in malaria 
transmission on a finer time scale. If the prevalence of infection in pregnant women reflects changes 
in malaria transmission quickly and accurately, this could allow those in charge of malaria control 
programmes to use the prevalence of infection in pregnant women to monitor trends in malaria 
transmission or to evaluate the performance of their control programme. Clinical incidence is also the 
most operationally useful metric for MSFs as it indicates the level of demand seen in the field sites in 
which they operate and will determine logistic requirements. 
 
Currently, Africa-wide estimates of burden reduction primarily utilise cross-sectional survey data 
conducted by the Demographic and Health Surveys Program (USAID, 2013; Bhatt et al., 2015). 
These surveys are undertaken at the province level, usually every 2-3 years, where children are tested 
for malaria in randomly selected clusters. These province-wide estimates can hide substantial spatial 
heterogeneity generated by local healthcare provision or local geographical, demographic or climatic 
differences, therefore populations in some areas face higher malaria burdens than the province-wide 
average (Sturrock et al., 2014; Charchuk et al., 2016). Finer scale estimates of burden can be collated 
passively using the number of malaria cases reported from local health centres. To generate 
meaningful incidence rates requires good estimates of the size of the health catchment population, 
which is unlikely to be available in many parts of Sub-Saharan Africa. The problems are exaggerated 
in humanitarian settings where populations may be highly transient, or size estimates hard to generate 
due to security concerns or resource constrains. This is especially the case in ‘open’ chronic conflict 
settings where displaced populations often live amongst the local population and not in a defined 
enclosed area or are frequently on the move due to insecurity.  In recent years MSF has committed 
substantial resources into recording the number of malaria cases in health facilities in which they 
operate and recording the population size in the catchment their facilities serve. Though both these 
estimates sound simple to collect both are non-trivial and require continued investment. The results 
however remain under-utilised as there is scepticism whether short- and long-term changes in 
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incidence reflect underlying trends. Routinely collected health centre data is notoriously difficult to 
interpret and compare between settings. The underlying issues causing this uncertainty are 
exacerbated in humanitarian settings where numbers of malaria cases diagnosed will be highly 
dependent on the quantity of medical staff in the area, the likelihood that a person reports to the health 
system will depend on immediate security concerns, and treatment and use of chemoprevention will 
fluctuate with the frequency of diagnostic and treatment stock-outs.  
 
A novel method for routine malaria surveillance could be the use of ante-natal care (ANC) data 
(Walker, 2015). Such data are used in sentinel surveillance surveys for HIV, as it corresponds well 
with national HIV survey data of the same catchment areas (Gregson et al., 2015). For malaria, the 
prevalence of infection in pregnant women is strongly correlated with the prevalence of infection in 
children under 5 in cross-sectional survey data from across Africa (van Eijk et al., 2015). During 
standard intermittent preventative treatment during pregnancy (IPTp) programmes, any woman that is 
symptomatic is tested by RDT and given Artemisinin Combination Therapy (ACT) if they test 
positive. Any women who are not symptomatic or are test-negative are given chemoprevention in the 
form of Sulphadoxine pyrimethamine (SP). Since 2011, Médecins Sans Frontières (MSF) has rolled 
out the model of routine Intermittent Screening and Treatment (IST) of all pregnant women combined 
with the IPTp-SP programme described above (the difference between the standard and MSF routines 
is shown in Figure 3.1). The MSF routine entails testing all pregnant women at every ANC 
appointment, women who are test-positive are given ACT and women who are test-negative are given 
SP.  
 
Since all women are tested regardless of symptoms, this reduces under-reporting bias due to the 
presence of asymptomatic infections. ANC programmes run by MSF in malaria endemic countries 
record the number of RDTs administered and the number of positive test results during ANC 
appointments at each health facility or hospital every month. 
 
In this chapter, methods are developed to predict the relationship between the prevalence of infection 
in pregnant women and the clinical incidence in children under 5 years old, using field data collected 
at five MSF field sites in the Democratic Republic of Congo (DRC). There is population denominator 
data available at these five field sites, which is uncommon for many of the sites where MSF work and 
more widely across Sub-Saharan Africa. Nested statistical models are used to investigate the 
relationship between ANC prevalence and clinical incidence and determine whether this association is 
immediate or spread out over time. The utility of routinely collected ANC data for malaria 
surveillance and the evaluation of control interventions is then discussed, with special regard for 
settings where such denominator data are not available. 
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Figure 3.1: The difference between the standard IPTp-SP regimen and the expanded IST+IPTp-SP regime used by MSF in 
their ANC programmes in malaria endemic countries. 

 
3.2 Methods 
 
3.2.1 Clinical time series data 
 
The data comprises time series from 5 different MSF health centres across the DRC for varying 
amounts of time between 2010 and 2016.  These MSF missions vary in size and represent a mixture 
of hospitals, health centres and community clinics in the Great Lakes region (Figure 2.1); from North 
and South Kivu, close to the eastern border with Rwanda and Burundi (Baraka, Kimbi-Lulimba, 
Mweso and Walikale) and from the South-East province of Katanga, bordering Tanzania and Zambia 
(Shamwana, closed by the end of 2016). All sites are considered ‘open’ humanitarian settings, i.e. 
areas of chronic conflict mainly from the ongoing Congolese civil war, including internally displaced 
peoples (IDPs) and with frequent population movement due to fighting.  
 
The ANC prevalence time series is the number of pregnant women tested for malaria using RDTs and 
the proportion of these that tested positive. Data is collated each month and all women that attend 
ANC appointments are tested for malaria regardless of whether they are symptomatic. The second 
time series is the monthly clinical incidence in children under 5 confirmed by RDT (i.e. symptomatic 
cases arriving as outpatients that tested positive by RDT). The size of the under 5 population at 
Mweso, Walikale and Shamwana is estimated by MSF each month using population surveys. The size 
of the under 5 population at Baraka and Kimbi-Lulimba, which cover larger areas, is taken from 
national census data conducted during the period of investigation by the DRC Department of Health. 
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An illustration of how the change in one metric may continue to influence another metric in the future 
(a lagged effect) is shown in Figure 3.2. If one metric can affect another second metric for a long 
period of time, then the value of the second metric will depend on the current and historical values of 
the first metric. 

 
3.2.2 Vector Autoregression models 
 
A causal framework was utilised to characterise the relationship between ANC prevalence and 
clinical incidence, as well as to determine the direction of the association between the two metrics. A 
variable X “Granger causes” Y if including past values of X in a predictive model of Y produces 
better predictions of Y than just using past values of Y alone (Granger, 1969). The analysis follows a 
two-step process. Firstly, a Granger causality test is used to determine the direction of the association 
(whether changes in ANC prevalence can predict future changes in clinical incidence, or vice versa) 
as well as the duration of any lagged effect. Secondly, this relationship is then fully characterised 
using more complex statistical models to determine the magnitude of the lagged effects and how the 
association might change with disease endemicity. 
 
A vector auto-regression (VAR) model is used to test for Granger causality between the two metrics, 
determining the direction and length of potential lagged effects between two or more time series 
(Pfaff, 2008). A VAR model fits linked auto-regressive (AR) models to two or more time series 
variables at the same time, a pth order AR model uses the last p observations of a time series as 
explanatory variables in a linear regression model to predict the current value: 
 

&' = ) +	+"&'," + ⋯+	+.&',. +	/'	 3. 1 
  

Where c is a constant intercept term, +3 is the regression parameter for the observation at time 4 − 6, 
and /' is a white noise term that has a standard normal distribution. An pth order VAR model also 
includes the last p terms of each other time series featuring in the autoregressive model, capturing 
how changes in one of the variables are reflected in the other variables now or in the future. For two 

time series, & and 7, a pth order VAR model has the following model formula: 

 
&' = )" +	+","&'," + ⋯+	+",.&',. + !","7'," + ⋯+	!",.7',. 	+	/",'	 3. 2 

7' = )# + !#,"7'," + ⋯+	!#,.7',. +	+#,"&'," + ⋯+	+#,.&',. +	/#,' (2) 
 
 
The number of past observations that should be used in the VAR model (known as the order or lag 
order) is determined by finding the lag order that optimises some information criterion, usually the 
Akaike information criterion (Ivanov and Killian, 2001). Testing for the goodness-of-fit of a fitted 
VAR model involves performing several hypothesis tests on the model residuals. A multivariate 
Portmanteau test can determine whether the model residuals are correlated through time, e.g the 
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residual at time t is correlated with the residual at time t-l for some value l. An autoregressive 
conditional heteroscedasticity test can rule out whether the variance in the model residuals changes 
over time. The VAR models were fit and tested using the package ‘vars’ in the R statistical software 
(Pfaff, 2008). 
 
To test whether X Granger-causes Y, in Equation 3.2 defined above, is equivalent to using a Wald test 

that has the null hypothesis that !"," = ⋯ =	!",. = 0. If the null hypothesis is rejected, then the 

alternative hypothesis is that X Granger-causes Y because the past values of X significantly improve 
predictions of Y over just past values of Y alone. This method of Granger causality testing only works 
if X and Y are stationary time series. A time series X is considered to be stationary if  
 

;<=>'?@., …	, >'B@.C = 	;<=>'?, …	, >'BC 3. 3 

 

For all p, k and times 4" to 4D. Where ;< is the cumulative distribution function of the unconditional 
joint distribution of X. In practice the stationarity of a time series can be evaluated using an 
Augmented Dickey-Fuller (ADF) test (Lütkepohl, 2005). 

 
3.2.3 Distributed lag non-linear models 
 
Distributed lag non-linear models (DLNMs) are used to fully characterise the relationship between the 
two metrics, these flexible models allow a “lagged effect” as well as a “endemicity effect” of one 
metric upon the other. The “lagged effect” means that the effect of the explanatory metric upon the 
response metric happens over time (with the effect size changing with respect to time), whereas the 
“endemicity effect” enables the relationship between the two metrics to change according to the level 
of disease (the effect size varies with the value of the explanatory metric) (Gasparrinia, Armstrong 
and Kenward, 2010). DLNMs are specified by choosing two “basis” functions, the first basis function 
describes the shape of the association between the two metrics at each point in time (the transmission 
effect basis), the second basis function controls the shape of the lagged effects in the model (the 
temporal lag basis, an example being Figure 3.2B). These two functions are combined into a 
“crossbasis” function that describes the relationship between the value of an observation, how long 
ago it was observed and what its current effect will be on the response variable (Gasparrini, 2014). 
The crossbasis function can vary in shape depending on the two individual functions used to construct 

it. A crossbasis function can be written as E(>',3, 4 − 6; H), where >',3 is the observation of the 
explanatory variable l months ago, t-l is the number of months since the observation, and η are the so-
called “basis parameters” which are the parameters that describe the shape of the two functions 
combined in the crossbasis. The crossbasis function can be included as a predictor in a generalised 
additive model with the following form: 
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P
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	 3. 4 

 
where L(&') is the expected value of the response variable at time t (as determined by the Granger 

causality test outlined above), >',3 is the value of the explanatory variable at time t-l, + is a parameter 

determining mean difference between the two metrics, ℎN is the location-specific modifier of the mean 
difference between the metrics for location i, and L is the optimal lag order found when fitting the 
VAR model (and takes a value of 0 in models with no lagged effects). Different crossbasis functions 

(E(>',3, 4 − 6; H)) made up of the two different basis functions are fit to the observed data and 
compared to determine the most parsimonious model. Two different functions are used to investigate 
how the relationship between metrics changes with endemicity, i.e the transmission effect basis: 

• Linear basis - the simplest model assumes that the endemicity effect varies linearly with the 
explanatory metric 

• Hill function – a function flexible enough to fit the relationship between the incidence and 
prevalence typically observed in non-temporal data (Cameron et al., 2015) 

A choice of three different basis functions are used as the temporal lag basis: 

• No lagged effect 

• Linear basis – the effect of a change in the explanatory metric increases or decreases linearly 
with respect to time 

• Non-linear basis -  a non-linear spline function that is penalised to produce a smooth curve, 
using penalised splines has been shown in simulations to be an effective method of 
reconstructing a variety of lag-exposure relationships when fitting DLNMs (Gasparrini et al., 
2017) 

 
All combinations of endemicity effect and lagged effect basis functions are tested, giving a total of 6 
different models. For clarity, each model is named with an acronym that represents its structure. The 
first two letters of the acronym represent the function used for the transmission effect basis, this can 
be either LE for a linear function or NE for a Hill function. The second two letters indicate the 
function used for the temporal lag basis, this can be LL for linear lagged effects or NL for non-linear 
basis spline lagged effects. If there is only one pair of letters, then the model does not have lagged 
effects. The names of all six models are listed in Table 2. 
 
Models were fit using the ‘dlnm’ package (Gasparrini, 2011) for the R statistical software and the 
most parsimonious model was identified using AIC value. The AIC value is equal to two times the 
number of parameters in the model minus two times the maximum value of the log likelihood 
function. Nested models can be compared using AIC, the model with the lowest AIC value is 
considered the best model. The predictive power of each model (its ability to correctly predict into the 



 63 

future) was compared use a rolling origin cross-validation method. This predicted a year of unseen 
data at a time, with the model being fit using all previous years of data at the given location and all the 
data from every other location. The models can then be compared using the root mean squared error 
of their predictions. 
 
3.3 Results 
 
ANC prevalence and clinical incidence in children under 5 across the five locations are shown in 
Figure 3.3. Visually, it is clear that the temporal trends in the metrics are broadly the same, though the 
association has substantial variability over time and between different locations. Baraka and 
Shamwana show pronounced seasonal patterns in both transmission metrics, whereas the other sites 
do not show obvious seasonal variation in transmission. In Figure 3.3 the sites are ordered from the 
northernmost site to the southernmost site when moving from left to right along the top row and then 
the bottom row, there is a steep gradient in the degree of seasonality of malaria transmission when 
moving from north to south (Cairns et al., 2015). Different sites also have differing levels of ANC 
prevalence despite similar incidence rates in children under 5. For example, Shamwana and Kimbi-
Lulimba have median observed clinical incidence rates in children under 5 of 1.714 and 1.711 
respectively, but their median observed ANC prevalence is 34.6% in Shamwana and 18.5% in Kimbi-
Lulimba (Table 1). A direct cross-sectional comparison of the two metrics each month is shown in 
Figure 3.4.  



 64 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2: Panels A-C depict the concept of a crossbasis function in this context, in (A) the explanatory metric has corresponding effect on the response metric, the function that explains this 
relationship is the transmission effect basis. In (B) for a given value of the explanatory metric, this may have delayed effects on the response metric – in this plot for 3 months afterwards. This 
relationship is characterised by the temporal lag basis. In (C), these two basis functions are combined into a bi-dimensional plot, the shape of the crossbasis function is restricted by the choice 
of functions in (A) and (B). The precise shape of the crossbasis is determined during the fitting of the DLNM model. Panels D-F depict how subsequent changes in one metric (Metric 1) can 
cause unpredictable patterns in another metric (Metric 2). (D) shows the different changes in Metric 1 differentiated by colour (yellow for the change in month 4, green for the change in month 
5 and brown for month 6). (E) Each of these changes in Metric 1 have lagged effect that may differ with the size of the observation in Metric 1 and start at different times. These lagged effects 
are then observed as changes in Metric (2) over multiple months (Panel F) with the lagged effects of three different changes in Metric 1 stacking up to create complex patterns in Metric 2. This 
is illustrated in this example where month 4 saw the greatest increase in Metric 1 whilst Metric 2 peaked in month 6.
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Figure 3.3: Time series data from the five different settings used in the analyses. The solid black line shows the recorded clinical incidence rate in children under 5 years old each month (cases 
per child per year). The dotted black line shows the recorded anti-natal clinic prevalence recorded each month with the red shaded area indicating the 95% confidence intervals using the 
normal approximation method. Data are available for different durations in the different settings.
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Table 3.1: Summary of the time series data collected during the same month from the different DRC settings. The population 
size of the catchment area (used to convert case numbers into clinical incidence rates are and the number of women 
attending anti-natal clinics (ANC visits) are summarised using the median value. The longitudinal timeseries is shown 
graphically in Figure 3.3. 

 

 

Location Number of 
data points 
in time-
series 

Median 
population 
size 

Median 
monthly 
ANC 
visits 

Median 
monthly ANC 
prevalence 

Median incidence in 
children under 5 years 
(minimum, 
maximum) 

Baraka 69 71238 636 17.3% 0.929 (0.199, 5.24) 

Mweso 60 65867 1074 5.7% 0.277 (0.059, 1.854) 

Walikale 23 31536 437 11.3% 2.072 (1.112, 4.986) 

Shamwana 72 36000 455 34.6% 1.714 (0.129, 9.397) 

Kimbi-

Lulimba 

24 15812 582 18.5% 1.711 (0.451, 4.028) 
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Figure 3.4: Cross-sectional relationship between prevalence of infection in pregnant women attending anti-natal clinics 
(ANC) and clinical incidence in children under 5 years reported at the same site. The small circular points show the raw 
monthly values, coloured by location. The large square points show the same data aggregated by calendar year. The 
coloured curves show a simple non-linear relationship between the two metrics with no lagged effects (equivalent to model 
NE) and corresponding 95% confidence interval. 

 
 
3.3.1 DRC Ministry of Health population denominator data 
 
The locations Baraka and Kimbi-Lulimba (also referred to as just Lulimba) cover larger areas, 
meaning that MSF do not conduct monthly population surveys to estimate the size of the local 
population. Therefore, for these two locations, the population denominator data available are 
infrequent census data from the DRC ministry of health. To calculate the incidence rate, the 
population is assumed to be constant over large periods of time, sometimes years, which is contrary to 
the rapid population changes that are observed at other locations. However, there is evidence in the 

wider clinical data that MSF collects that the population size in these locations remains relatively 
stable over the period of investigation. The number of hospital consultations that are not related to 
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malaria does not show the same general upwards trend that malaria consultations do. The conditions 
that form the bulk of non-malaria consultations include: acute watery diarrhoea, acute upper and 
lower respiratory tract infections, eye infections, severe acute malnutrition, intestinal parasites, and 
skin infections. If a large amount of people arrived in the catchment area of hospitals, there should be 

an increase in number of consultations observed for non-febrile patients, not just malaria (Figure 3.5). 
This is especially true if the arriving population are internally displaced people, since they lack access 
to healthcare across the board (Birganie, 2010). In Baraka the number of consultations that do not 
involve using an RDT to confirm whether a febrile patient has malaria does not have an upwards 
trend after 2011. The upwards trend between 2010 and 2011 represents the number of consultations 
increasing as the hospital sets up and people begin to go there. In Kimbi-Lulimba there is a similar 
pattern whereby the number of non-febrile consultations rises for around the first six months but then 
levels out at around 2000 per month. This provides moderate evidence that the population sizes at 

these two locations remains relatively stable. 

 

 
Figure 3.5: The number of RDT tests used to determine whether a febrile patient has malaria is shown in red, the black line 
shows the number of consultations each month that were not related to fevers. 
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3.3.2 Granger causality testing 
 
The optimum lag order for the VAR model fit to the two time series was 3 months, different 
information criterion suggested different values (Table 3.2), but AIC was used since it has been 
shown to work best for selecting the lag order given reasonable sample sizes (Ivanov and Killian, 
2001). The residuals of the VAR model with a lag order of 3 showed no sign of autocorrelation (H0: 
autocorrelations all equal to 0, p=0.191) or autoregressive conditional heteroscedasticity (H0: residual 
variance does not change over time, p=0.691). 

 
Table 3.2: Information criterion values for different lag orders of the VAR model (Section 2.3.2) 

 Lag order = 1 Lag order = 2 Lag order = 3 Lag order = 4 
Akaike 
information 
criterion (AIC) 

-6.53649 -6.55116 -6.58123 -6.57792 

Bayesian 
information 
criterion (BIC) 

-6.33772 -6.33085 -6.29626 -6.232539 

Final prediction 
error (FPE) 

0.00145 0.00143 0.001387 0.001392 

Schwarz 
criterion (SC) 

-6.09881 -6.05512 -6.02684 -5.96516 

 
 
The Granger causality test indicated that past clinical incidence can significantly improve predictions 

of future ANC prevalence compared to past values of ANC prevalence alone (p=0.002). Conversely, 
ANC prevalence was unable to predict future clinical incidence with significantly more accuracy 
compared to using past values of clinical incidence alone (p=0.42). The subsequent analysis therefore 
uses clinical incidence in children under 5 years as the explanatory variable and ANC prevalence as 
the response variable. The optimum lag order chosen by the VAR model, 3 months, determined the 
length of the lagged effect in the DLNM models (how many previous months of clinical incidence in 
under 5s would be used to predict the current ANC prevalence). 

 
3.3.3 DLNM fitting results 
 
The “NENL” model provides the best fit (in terms of both AIC value and out-of-sample predictive 
power) indicating that changes in clinical incidence impact ANC prevalence non-linearly according to 
the level of endemicity, and that these effects manifest themselves (again non-linearly) immediately 
and over the subsequent months (Table 3.3). The 3D relationship (crossbasis function) is shown in 

Figure 6A, while a representation of the temporal lag basis function is depicted for various endemicity 
levels in 6B.  
 
The lagged effects are significant for 3 months, with the effect size being greatest in the month that 
the change in incidence is observed and then decreasing over time. The best fitting model that uses 
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non-linear splines to model lagged effects (NENL) is an improvement, albeit a smaller one, upon the 
similar model the uses a linear function to model lagged effects (NELL). The non-linear lagged 
effects (NENL) estimate that incidence has a bigger effect on ANC prevalence with 1 and 2 months 
lag than the linear model (NELL) predicts (Figure 3.6B). Allowing the relationship between clinical 

incidence and ANC prevalence to be non-linear substantially improves model fit (Table 3.3). A 
graphical representation of the out-of-sample predictive power of the best “NENL” model is shown in 
Figure 3.7. Though the best fit model is unable to predict small changes in prevalence the overall 
trends are well captured. How well the model captures trends in prevalence is demonstrated both 
when the model is fit to all available data and when using the rolling origin cross validation technique, 
where predictions are made using the history of infection from the last year or more. 

 
 
3.3.4 Lag order sensitivity analysis 
 
 
The “NENL” model was also fit using lagged effects lasting 2 or 4 months, to see how this might 
change the shape of the estimated lagged effects. The fitted crossbasis function and lagged effects 
(Figure 3.8) correspond well with the optimum lag order of 3 months. This allows for more 
confidence in the chosen optimum lag order of 3 months, since the conclusions of the analysis would 
not change if the lag order was 2 or 4 months. 
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Table 3.3: Summary of the different distributed lag non-linear models (DLNMs) characterising the relationship between 
clinical incidence and ante natal clinic (ANC) parasite prevalence.  The second and third columns indicate the shape of the 
basis function used to characterise how the relationship is influenced by endemicity and the lagged effect. Models are 
compared using Akaike information criterion (AIC, lowest value in bold indicating most parsimonious model) and root mean 
squared error (RMSE, lowest value in bold indicating most predictive model).   

Acronym Endemicity 

effect 

Lagged 

effect 

Number of 

parameters 

AIC RMSE (rolling 

cross-

validation) 

LE Linear No lagged 

effects 

6 3859.2 0.0667 

LELL Linear Linear 7 3116.6 0.0563 

LENL Linear Non-

linear 

13 3116.0 0.0564 

NE Hill function No lagged 

effects 

8 3499.8 0.1126 

NELL Hill function Linear 9 2982.0 0.05434 

NENL Hill function Non-

linear 

15 2978.9 0.05431 
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Figure 3.6: The best fit “NENL” model showing how clinical incidence over the last three months influences current anti-natal clinic (ANC) prevalence in terms of relative risk when compared 
to an observation of 1 case per child per year. (A) gives the full 3D relationship (the crossbasis function). Values greater than 1 indicate an increase in ANC prevalence whilst values less than 
one signify a decline. (B) Cross-sectional slices through the crossbasis function at three different clinical incidence values denoted by the shape of the points and corresponding lines on (A). 
The red shaded band shows the 95% confidence interval in the fitted lagged effects whilst the blue line and associated band show the lagged effects predicted by the model NELL (allowing a 
comparison between the linear and non-linear lagged effects). 
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Figure 3.7: The results of the out-of-sample prediction for the best fitting “NENL” model. This uses at least one previous year of data as a training dataset before trying to make out-of-sample 
predictions for the subsequent years. (A) The coloured lines show the observed ANC prevalence each month at each location and their corresponding 95% confidence interval. The black line 
shows the model predictions of the ANC prevalence when the model was fit using all data. The grey band shows a 95% confidence interval for the rolling origin cross validation technique.  (B) 
Points show a comparison of observed ANC prevalence and the corresponding out-of-sample predictions, coloured by site. Lines around the points show the 95% confidence interval for the 
observations and out-of-sample prediction. The black line shows a perfect correspondence between observation and prediction. 
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Figure 3.8: A copy of Figure 4 when using 2 or 4 months to fit the model NENL, showing the corresponding crossbasis 
function (left) and lag basis functions (right) 

 
3.4 Discussion 
 
Clinical incidence in children under 5 years old could predict ANC prevalence but not vice versa. This 
matches our current understanding of the epidemiology of malaria. Clinical incidence in children 
under 5 years, who have low levels of malaria immunity, is likely to closely reflect the incidence of 
new infections and thus be a good proxy for the current intensity of transmission. Conversely, in 
pregnant women an infection, and associated HRP-2 antigenemia, can persist asymptomatically for a 
prolonged period of time. Since pregnant women are being tested routinely, regardless of symptoms, 
ANC-based prevalence is likely to be a measure of exposure accumulated in preceding months 
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(Ashley and White, 2014; Grandesso et al., 2016). This is consistent with our analysis where high 
clinical incidence rates in under 5s were associated with an increased risk of a positive RDT in 
pregnant women for the next 3 months, as well as a recent study demonstrating that in areas of 
sustained, seasonal transmission a substantial proportion of women attending ANC appointments 
remain infected throughout the dry season (Berry et al., 2018). The models that assumed a non-linear 
relationship between clinical incidence in under 5s and ANC prevalence were superior in terms of 
AIC value and out-of-sample predictive power. The best fit function produces a curve whereby 
increasing clinical incidence in children under 5 is approximately linearly associated with larger 
effects upon ANC prevalence up until around 3 cases per child per year, where it begins to plateau. 
This shape has been observed in multiple cross-sectional surveys comparing malaria prevalence in the 
overall population with clinical incidence (Cameron et al., 2015). This is likely a product of 
heterogeneity in mosquito biting (some people are bitten substantially more than others) leading to 
repeatedly infected people developing asymptomatic infections (so new infections occur in people 
already infected meaning that there is no change in prevalence).  
 
Due to the changes in the model fit between sites (significantly different h parameter values), the 
model cannot currently be used to predict ANC prevalence from incidence alone. For example, the 
best fitting model systematically under-predicted the level of ANC prevalence in Walikale, which has 
similar rates of incidence in children under 5s as seen in Shamwana but much lower ANC prevalence 
(Figure 3.3). Some of the differences between sites may be accounted for if there was more precise 
ANC data on factors known to affect the epidemiology of malaria in pregnancy such as timing of 
gestation (Walker et al., 2013) and parity. The sensitivity of malaria RDTs are known to vary 
depending on the number of children that a woman has already had, with more children meaning a 
likely history of exposure to the parasite during pregnancy and a developed placental immunity 
(Fried, Muehlenbachs and Duffy, 2012). Alternatively, the variation between sites could be 
attributable to poor incidence estimates at some locations due to sparse health systems, insecurity, 
inaccurate estimates of population size, or short-term population movement into areas of higher risk 
(e.g. forested areas). Analysis of mobile phone data in malaria endemic countries shows large-scale 
population movement within and between countries (Wesolowski et al., 2012; Zu Erbach-Schoenberg 
et al., 2016). The infrequency of national census surveys may therefore limit the accuracy of 
incidence estimates derived from these surveys. However, census data was only used for two of the 
sites in the MSF dataset and the incidence recorded at those two sites (Baraka and Kimbi-Lulimba) 
was not unusual when compared to the other locations. The work needs to be extended to use data 
from more locations where good population data estimates are available to confirm these results. For 
example, Tanzania have been testing all pregnant women attending ante-natal clinics nationally since 
2015 (Willilo et al., 2016). Combining these data with accurate clinical incidence estimates could 
substantially improve the generalisability of results. To redress some of the uncertainty in the data, the 
NENL model was fit using several different maximum lag values (Figure 3.8), with the general results 
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remaining the same for maximum lag values of 2 or 4. However, as is clear from Figure 3.7, there is 
still uncertainty in the data that the current model is unable to capture.  
 
These results have practical implications for the proposed use of ANC prevalence as a tool to monitor 
malaria. This method has established, at these 5 sites at least, that ANC prevalence seems to be a 
promising, simple, and cost-effective measure of recent malaria incidence. This has important 
applications in humanitarian settings and beyond. Good quality population size estimates are difficult, 
expensive to obtain, and are only available in a small number of sites where MSF operate. ANC data 
is much more widely available, and this work suggests it should be used to monitor recent trends in 
malaria endemicity over simple case count data alone. As an illustration of its importance it was 
unclear from hospital case counts data whether malaria transmission was increasing in sites in Eastern 
DRC around Baraka or not. Case counts had risen dramatically, though this may have been because of 
increased investment by MSF (for example the use of mobile malaria teams to diagnose and treat the 
wider population) or a true increase in disease transmission. The spectra of mosquitoes resistant to 
pyrethroid insecticide and the possibility of the spread of drug resistant parasites means that local 
control interventions need to monitor secular trends in transmission regularly and tailor their 
programmes to maintain good levels of control. Examination of ANC data in these sites during this 
period would have provided a simple, unbiased method of raising concerns over recent increases in 
transmission. This method also provides a way of singling out changes in incidence that should be 
matched by a corresponding change in ANC prevalence, but this does not happen. For example, a 
change in reporting capacity or surveillance may induce an increase in incidence, but this would not 
cause an increase in ANC prevalence so those responsible for monitoring malaria can be confident 
that the increase in incidence was not due to increase in overall transmission. 
 
Humanitarian organisations and other bodies are regularly trialling new methods of malaria control in 
specific areas to try and meet local needs. For example, MSF have used mobile malaria teams, 
community-based malaria management and different models of health centre support in different 
areas of the DRC.  They are also considering deploying non-standard vector control tools which are 
thought to be easier to deploy than current methods recommended by WHO. The evidence-base to 
support these interventions is lacking due to the huge expense and infeasibility of conducting large 
RCTs in some areas. The full effect of a sustained decrease in transmission due to an intervention may 
not be observable in ANC prevalence measurements until several months after it begins, therefore 
availability of routine ANC data from a strategy of IST alongside IPTp in area where the intervention 
is introduced, combined with the model outlined here, could provide a low-cost measure of triaging 
new interventions to see which should go on for more thorough investigation. 
 
ANC prevalence was found not to be useful for predicting future short-term changes in clinical 
incidence in children under 5 years old, so there is no evidence to support its use in predicting future 
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malaria trends from this work. However, it may be that combining ANC prevalence with other data 
such as the amount of rainfall may allow for models with better predictive power, though this analysis 
is beyond the scope of this work. In the future, it would be beneficial to invert the relationship used in 
this work to use ANC prevalence to predict past trends in incidence, useful in many of humanitarian 
contexts discussed where cases or denominator populations cannot be reliably recorded.  

 
3.5 Conclusions 
 
The work in this chapter shows that time-series data of clinical incidence in children under 5 years 
predicts future short-term prevalence of infection in pregnant women, but not the other way around. 
Increases in clinical incidence were associated with increased risk of a positive RDT in a pregnant 
woman for the next three months, with the opposite being true for decreases in incidence. This helps 
us to understand the role that ANC prevalence can play as a tool for retrospectively examining how 
malaria transmission has changed in a location over time. Though ANC prevalence derived from 
routinely collected clinical data may not directly reflect clinical incidence rates calculated from 
accurate population data, this analysis establishes that it does correspond to recent trends in malaria 
transmission and provides an easily collected metric in situations where good malaria data is sparse, 
such as chaotic, rapidly changing humanitarian crises. The next chapter will consider why long-lasting 
insecticidal nets might not be a feasible malaria intervention among internally displaced people, and 
how emanators that passively release pyrethroids might provide an alternative. The impact of these 
emanators will be considered in terms of the prevalence of infection in pregnant women. This would 
enable me to explore whether the predicted epidemiological impact of this potentially new vector 
control tool could be evaluated using routine data as organisation such as MSF who are monitoring 
the prevalence of infection in pregnant women each month. This links the performance of 
interventions that have a humanitarian focus to a source of low-cost routine data available in the 
locations where it is likely to be used. 
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4 Modelling airborne pyrethroid emanators as a back-up malaria 
control intervention in humanitarian crises 

 
4.1 Introduction 
 
This chapter explores the impact of pyrethroid emanators used at night in areas of humanitarian crises, 
where long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), usually the mainstay 
of malaria control, are not an option.  
 
LLINs and IRS are less effective or feasible in areas of acute humanitarian crisis for two broad 
reasons. The first reason concerns distribution. Net distribution or house spraying campaigns require 
large amounts of organisation and co-ordination. Many malaria endemic countries have managed, 
over time, to achieve reasonable or high LLIN and IRS coverage in their indigenous populations 
(World Health Organization, 2017b). However, it remains to be seen whether this existing campaign 
infrastructure could procure and distribute a large amount of LLINs or spraying equipment in a 
humanitarian crisis in a timely manner (Rowland and Nosten, 2001; White, Conteh, et al., 2011). 
Irrespective of a country’s capacity to distribute nets, populations of internally displaced people 
(IDPs) and refugees are often not directly considered when planning malaria control programmes and 
are therefore missed out during net distribution or spraying campaigns (Williams, Hering and Spiegel, 
2013). People fleeing conflict are often forced to leave most of their belongings behind, including 
LLINs. There is significantly less LLIN ownership in refugee and IDP camps compared to indigenous 
populations (Spencer et al., 2004; Carrión Martín et al., 2014; Charchuk et al., 2016). The 
combination of all of these factors means that people living in IDP or refugee camps are unlikely to 
already own a net and are unlikely to be given another one.  
 
The second reason concerns correct use. LLINs and IRS are considered by some to be impractical for 
humanitarian crises because the type of housing that IDPs live in is frequently of too low quality to 
allow for proper use of each intervention. Insecticide treated nets need to be hung from the ceiling, 
stored carefully, and kept off the floor to prevent holes (Hakizimana et al., 2014; Kilian et al., 2015). 
Living in tents or cheaply constructed temporary shelter can make it difficult or impossible to meet 
any of these requirements, meaning that nets are either not usable at all or quickly deteriorate and 
become less effective (Spencer et al., 2004; Gnanguenon et al., 2014). In the same manner, IRS relies 
on insecticides soaking into the walls of a house and being released over time. Different building 
materials initially absorb different amounts of insecticide, as well as being able to retain the 
compound for different amounts of time. Therefore, IRS can be far less effective depending on the 
material that is being treated (Mutagahywa et al., 2015). Malaria control campaigns that have focused 
specifically on people in humanitarian crises living in low quality housing have sought ways around 
this problem by impregnating tents (Graham et al., 2004), clothes (Kimani et al., 2006), bed sheets 
(Rowland et al., 1999) and wall linings (Messenger, Miller, et al., 2012; Ngufor, Tungu, et al., 2014; 
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Messenger and Rowland, 2017) with insecticide. None of these alternative methods present a physical 
barrier between the human and mosquito (like an LLIN), but instead rely on mosquitoes contacting 
the insecticide-treated surface at some point before or after biting (like IRS). 
 
A newly emerging method for vector control is the use of emanators. These products constantly 
release sub-lethal doses of pyrethroids into the air around them to deter mosquitoes away from users 
near the emanator and prevent bites from occurring (Ogoma, Moore and Maia, 2012). Various types 
of emanator are currently under development both as commercial products or home-made varieties 
(Matsuo et al., 2005; Ishiwatari et al., 2009). Home-made emanators (from herein simply referred to 
as emanators) do not face the same problems with mass distributions as LLINs do, because they are 
can be manufactured outside of a factory environment (e.g. by soaking hessian cloth in transfluthrin or 
metafluthrin and attaching it to a metal frame) and the materials are easy and inexpensive to procure 
in bulk (Ogoma et al., 2017). Since emanators release insecticides into the air passively, they do not 
require any human compliance to prevent bites and will work in any type of housing situation, 
including outdoors. Field testing of emanators has been undertaken with volunteers sat near emanators 
collecting data outdoors at night in Tanzania (Ogoma et al., 2017). Volunteers sat within a mosquito 
trap between 2 and 40 metres away from the emanator to measure the size of the area of protection. 
The trial found that the transfluthrin treated strips averted between 71 and 91% of bites from An. 

arabiensis mosquitoes for users within one metre of the emanator, as well as providing lesser 
protection for others sat up to five metres away. Emanators still provided statistically significant 
protection after two and a half years of use, averting ~20% of bites within one metre.  
 
When considering the effects of pyrethroids other than mortality, it is important to distinguish 
between spatial repellency (repulsion away from the source of pyrethroid) and a longer-lasting effect, 
where pyrethroids interfere with odorant receptors on the sensory organs of mosquitoes, temporarily 
preventing them from responding to signals that they use to locate humans (Bohbot and Dickens, 
2010; Bohbot et al., 2011). Only in experiments that gave mosquitoes a chance to take a blood meal 
after pyrethroid exposure can researchers distinguish between these two effects. Emanator products 
treated with the volatile pyrethroid metofluthrin almost completely inhibit biting in Aedes mosquitoes 
in laboratory and semi-field conditions (Ritchie and Devine, 2013; Buhagiar, Devine and Ritchie, 
2017). After exposure to smoke from a burning transfluthrin coil (in a small chamber), only 43% of 
anopheline mosquitoes fed 12 hours after exposure when given the opportunity to compared to 81% 
of control mosquitoes (Ogoma, Ngonyani, et al., 2014). This suggests that at least some of the biting 
prevented by airborne pyrethroids is due to mosquitoes being unable to feed after exposure, rather 
than spatial repellency. This effect, which I will be referring to as temporary feeding interruption 
(TFI), is not directly observed during the field trial in Tanzania for the emanator product considered in 
this work. There was no increase in the mosquito biting rate on volunteers sat 80 metres away from 
the emanator user (both sitting outside) (Ogoma et al., 2017). If mosquitoes were only repelled away 
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from the emanator user, we expect that some of the bites would be deflected onto the non-user sat 
nearby, since this is not the case this suggests that mosquitoes were not able seek hosts after 
pyrethroid exposure. Together these studies show that mosquito exposure to enough airborne 
transfluthrin causes a TFI effect, and that airborne transfluthrin released at the concentration given off 
by an emanator does not deflect bites onto nearby users. What remains unclear is whether those free-
flying mosquitoes exposed to emanators in the field trial definitely had a TFI effect and were not 
instead repelled away. 
 
Since the Tanzanian field trial for transfluthrin emanators measured exposure to mosquito biting 
outside, it was not possible to determine whether there was any mosquito mortality. Airborne 
pyrethroids such as burning transfluthrin coils cause considerable mosquito mortality indoors in 
experimental hut trials (Ogoma, Lorenz, et al., 2014). However, the concentration of insecticide, 
which will determine the level of mortality caused, is likely to be far lower for spatial repellents that 
evaporate from the emanator than for other methods such as burning coils. Ogoma et al. (2017) placed 
their emanator in a sealed room for 24 hours and measured the concentration of transfluthrin in the air 

to be 0.13±0.06 µg.m-3. A study monitoring the concentration of transfluthrin released by a burning 

transfluthrin coil in a sealed room was 0.0045 parts per million (ppm), 0.0003ppm and <0.0001ppm 
after 30 minutes, 2 hours and 8 hours (Ramesh and Vijayalakshmi, 2001). Converting these 

measurements to their equivalent values in micrograms per metre cubed gives 68.3 µg.m-3 (30 

minutes), 4.6 µg.m-3 (2 hours), and <1.51 µg.m-3 (8 hours). Therefore, the concentration of 

transfluthrin in experimental huts due to burning coils would be far in excess of that generated by 
using emanators indoors. Hence, I have chosen not to include a mortality effect of transfluthrin 
emanators even when used indoors. 
 
This chapter will explore emanators as an alternative method of malaria control. Special consideration 
shall be given to the use of emanators in humanitarian settings, it is important to predict whether they 
could ease the burden of malaria cases on strained healthcare systems. The potential impact of 
emanators will be estimated using the Imperial College malaria transmission model, which will be 
expanded to include emanators as an intervention method. The vector compartments in the model will 
also be expanded to create a TFI effect on vectors after airborne pyrethroid exposure. This will allow 
me to disentangle the importance of potentially two different actions of the emanator: (1) its ability to 
deter mosquitoes away from those using a device and (2) quantify the impact of any TFI effect. 
Epidemiological impact will depend on how the emanators are used alongside other malaria control 
interventions. Here we will initially investigate the use of emanators as the sole vector control 
intervention as they may be used in settings in which MSF operate. Potential public health benefit will 
be assessed using a sensitivity analysis reflecting the uncertainty in our understanding of the duration 
of the emanator-caused TFI effect. 
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4.2 Methods 
 
4.2.1 Proportion of bites prevented by emanators within their effective range 
 
Evidence indicates that the percentage of mosquito bites averted by an emanator decreases as 
the user moves away from the intervention (Ogoma et al., 2017), since the concentration of 
transfluthrin is likely to be highest nearer the emanator. People are unlikely to remain in close 
proximity to an emanator at all times, so the efficacy at preventing bites (outside of experimental 
conditions) will be determined by how close people stay to the emanator and how effective the 
emanator is at different distances. The size of the radius around the emanator where it prevents 
mosquito bites is termed the effective range. It is characterised on a continuum by assuming that 
efficacy declines at a constant rate as a person moves away from the device. This results in the 
proportion of bites prevented by the emanator (denoted D) being described by the following equation, 

 
!(#) = 	'()*+	, 4. 1 

 
Where x is the distance between the person being protected and the emanator (in metres), Y is the rate 
of decay, and A is the level of protection immediately next to the emanator. This exponential curve 
was fitted to the Tanzanian data of Ogoma et al. (2017) using a simple least-squares method to give a 
smooth, plausible effective range function. Goodness of fit is estimated using a coefficient of 
determination (R2). This study tested emanators outside and is likely to be a conservative estimate of 
efficacy if the emanator is used inside where lower airflow may increase pyrethroid concentration. 
Data were only available for An. arabiensis mosquitoes, since this is the only vector species observed 
in the Tanzanian experiment. 
 
Emanator users will spend different durations of time away from their emanators. I am currently 
unaware of any published data which tracks the proximity of people to homesteads (or places where 
emanators are likely to be placed) either in the Tanzanian site used to parameterise the effective range 
of emanators or in sites in which MSF operate. Since emanators are being used at night while people 
are asleep it is reasonable to assume that the population will spend the majority of their time 
stationary and quite close to an emanator. For simplicity, this analysis assumes an exponential 

distribution 0(#) for the proportion of time a user spends at a distance of x metres from their 

emanator. The parameter l indicates the mean distance a person spends away from an emanator, e.g. 

l = 2 indicates that on average the person spends half of their time within two metres of their 

emanator and half of their time further than two metres from their emanator. Currently, it is also 
assumed that emanator use is consistent between people, i.e. that no person goes near to the emanator 

of another. The two distributions just defined, 0(#) and !(#), are used to estimate the probability that 
a bite will be prevented, considering the combination of emanator effectiveness and time spent at each 

distance from the emanator over all distances (r23), which is given by: 
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456 = 7 0(#)!(#)
8

9
4. 2 

 
 
The parameter 456 is incorporated into the Imperial College malaria transmission model to determine 

the probability that a mosquito successfully bites a person who is using an emanator (Griffin et al., 
2010; White, Griffin, et al., 2011; Griffin, Ferguson and Ghani, 2014; Griffin, 2015). It is assumed 

that 456 decays exponentially over time as emanators becomes less effective. The rate of decay was 

estimated by fitting an exponential curve to the Tanzanian data (Ogoma et al., 2017) which tested 
how many bites emanators prevented within one metre using new (recently dipped) and aged 
emanators (dipped two years ago and hung outside when not in use). 
 
If emanators are being used inside the home, then their overall effectiveness will depend on the 
percentage of bites taken when people are indoors. This will depend on the mosquito biting time (as 

assessed using methods such as human landing catches) and human behaviour. Letting ;< denote the 
proportion of all bites received while indoors, the probability that a mosquito is deterred away from a 

human using an emanator, =56, is given by: 

 
	=56 = 456;< 4. 3 

 
As discussed in the introduction, there was currently no evidence from the experimental site in 
Tanzania to suggest that emanator exposure would cause elevated mortality in mosquitoes (Ogoma et 

al., 2017). The probability that a mosquito feeds on an emanator user and survives is therefore the 

same as the probability that the mosquito feeds, ?56. The probability of a mosquito successfully 

feeding on an emanator user is given by: 
 

?56 = 1 − =56 4. 4 

 
 
4.2.2 Vector temporary feeding interruption modelling framework 
 
The framework outlined above characterises how mosquitoes may be deterred away from biting 
someone protected by an emanator. The following section investigates what would happen if the 
process of being deterred causes a sub-lethal effect on mosquito feeding.  
 
A TFI effect was incorporated into the existing framework of the vector model by introducing three 
parallel compartments that correspond to the original categories (see Section 1.3.3.2): susceptible (Sv), 
latently infected, (i.e. infected but not infectious, Ev) and infectious (Iv). Subscript v signifies a 
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normally biting mosquito. Mosquitoes have a chance of entering these parallel compartments when 
they try to take a blood meal on a human near an emanator (i.e. SvTFI, EvTFI or IvTFI, with subscript TFI 
indicating being in the TFI state). Some mosquitoes will be deterred away from biting by the 

emanator and a proportion of these mosquitoes (ABC<) experience TFI. A value of 0 indicates that 

mosquitoes have no TFI and immediately can go on to start another feeding attempt. A value of 1 
would indicate that all mosquitoes being deterred away from the emanator experience TFI and do not 
immediately attempt to re-feed. While in the TFI compartments mosquitoes continue to age, die at a 
natural background rate, and develop parasites in their midgut if they are latently infected. Crucially, 
no mosquitoes move from the susceptible TFI compartment into the latently infected TFI 
compartment, since they are not biting (due to TFI) and so cannot become infected. Mosquitoes leave 

the TFI compartments at a rate (DBC<) determined by the mean length of the TFI effect. The rate of 
blood-feeding mosquitoes moving into TFI compartments is determined by the following formula: 
 

A = 	;< × FG56 ×	=56 × ABC<	 4. 5 

 
 

where ;< is the proportion of all biting that happens whilst hosts are indoors, FG56 is the average 

mosquito biting rate on emanator users, =56 is the probability that a mosquito is deterred by an 

emanator, and ABC< is the probability that a mosquito goes on to have TFI given that it has been 

deterred. Since the probability =56 decays over time, this also reduces the TFI effect of emanators as 

they age. The actual proportion of the vector population that has TFI at any one time depends on how 

quickly the mosquitoes leave the TFI state (the parameter DBC<). A schematic of the compartment 
structure for the vector model including the TFI effect is shown in Figure 4.1. The differential 
equations for mosquito movement between the compartments are as follows: 
 

IJG
IK

= 		L − 	MJG − 	NJG − AJG + DBC<JGBC<	 4. 6 

 
IQG
IK

= 	ΛJG − Λ(t − 	τ)SV(K − τ)PV − 	NQG − 	AQG 	+ DBC<QGBC< 
 

IXG
IK

= 	Λ(t − 	τ)SV(K − τ)PV − 	NXG − AXG + DBC<XGBC< 
 

IJGBC<
IK

= 		AJG − 	NJGBC< − DBC<JGBC< 
 

IQGBC<
IK

= 		AQG − QGBC<(K − τ)PV − 	NQGBC< − DBC<QGBC< 
 

IXGBC<
IK

= 		AXG + QGBC<(K − τ)PV − 	NXGBC< − DBC<XGBC< 
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where L is the rate of new mosquitoes being born, Λ is the force of infection on mosquitoes, PV is the 

probability that a mosquito survives the time period from latent infection through to becoming 

infectious, τ is the extrinsic incubation period, and N is the death rate of mosquitoes given 
interventions. 

 

 
Figure 4.1: A schematic of the updated vector population structure including a temporary feeding interruption (TFI) effect. 
Compartments and parameters in red are from the original model, compartments and parameters in black are my additions. 
Vectors move from the original susceptible (S), latently infectious (E), and infectious (I) compartments into parallel versions 

(SvTFI, EvTFI and IvTFI) where they do not feed because of the TFI effect. Vectors die from all compartments at a constant 
background rate N. New susceptible vectors are born at a rate β determined by the number of newly maturing larvae, which 

varies with the size of the mosquito population (White, Griffin, et al., 2011). 

 
Table 4.1: Parameter descriptions and values for all new parameters added to the Imperial College malaria transmission 
model as well as the descriptions and values of relevant old parameters not added during this analysis.  

Notation Description Equation/(range of) 
value(s) 

Reference 

456 Probability of an 
emanator preventing a 
bite on someone 
currently using an 
emanator 

Depends on C(x) and 
D(x) 

 

Φ] Proportion of all bites 
that take place indoors 

0.89 (Griffin et al., 2010) 

z23 Probability of a 
mosquito being 
prevented from biting 
someone that owns an 
emanator (in the 
Imperial College 
model) 

r23Φ]  
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?23 Probability that a 
mosquito successfully 
bites someone that 
owns an emanator 

1 − z23  

aV23 Average mosquito 
biting rate on someone 
that owns an emanator 

Depends on number of 
successful bites on 
emanator users 

 

fab] Probability that a 
mosquito that has been 
deterred by an 
emanator goes on to 
develop TFI 

0-100%  

β Birth rate of new, 
susceptible mosquitoes 

Varies depending on 
mosquito population 
density 

(Griffin et al., 2010) 
(White, Griffin, et al., 
2011) 

τ Extrinsic incubation 
period (days) 

10 (Griffin et al., 2010) 

µ Mosquito death rate 0.132 (Griffin et al., 2010) 
f Rate at which 

mosquitoes enter TFI 
compartments  

Φ] × aV23 ×	z23
× fab] 

 

lab] Rate at which 
mosquitoes recover 
from TFI (hours) 

12-72 (Bohbot et al., 2011; 
Ogoma, Ngonyani, et 
al., 2014) 

Λ Force of infection on 
mosquitoes 

Varies depending on 
number of infectious 
humans 

(Griffin et al., 2010) 

Pv Probability that a 
mosquito survives its 
extrinsic incubation 
period 

Calculated using the 
probability of a 
mosquito surviving 10 
days given the current 
rate of death 

(Griffin et al., 2010) 

Sv Susceptible 
mosquitoes 
compartment 

Equation 4.6 (Griffin et al., 2010) 

Ev Latently infected 
mosquitoes 
compartment 

Equation 4.6 (Griffin et al., 2010) 

Iv Infectious mosquitoes 
compartment 

Equation 4.6 (Griffin et al., 2010) 

SvTFI Susceptible 
mosquitoes with TFI 
compartment 

Equation 4.6  

EvTFI Latently infected 
mosquitoes with TFI 
compartment 

Equation 4.6  

IvTFI Infectious mosquitoes 
with TFI compartment 

Equation 4.6  

 
 
4.2.3 Intervention scenarios 
 
In this chapter, the impact of emanators is not modelled in conjunction with LLINs or IRS, as it is 
assumed that emanators are being used in locations where these two interventions are deployed 
separately. Instead, it is imagined that emanators are distributed to users who will sleep near them and 
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use them for personal protection, or that the emanators will be deployed in a communal area providing 
a radius of protection around many people (Masalu et al., 2017). The emanator coverage in the 
population is the percentage of the population that are initially given an emanator during distribution. 
I undertake an intention to treat analysis, assuming that there is no drop out of people using emanators 
over time. 
 
The modelling exercise will first focus on the entomological impacts of TFI, performing sensitivity 
analyses for the proportion of mosquitoes experiencing the volatile pyrethroid, the proportion of 
mosquitoes that go on to have TFI after being experiencing the volatile pyrethroid, emanator 
coverage, and the mean length of the TFI effect. After this, the epidemiological impact of emanator 
distribution in the human population will be explored in two settings with different baseline 
prevalences of infection in under-fives of 30% and 5% respectively. These values are chosen to 
roughly correspond to the minimum and maximum prevalence in under-fives predicted or observed in 
North and South Kivu at locations where MSF work (Figure 3.3). The added benefit of a TFI effect is 
then quantified in terms of how protective it is of the human population. 
 
Finally, the impact of emanator distribution will be measured in terms of the ANC prevalence (the 
prevalence of infection in pregnant women), by converting the mean incidence rate in under-fives into 
a prediction of ANC prevalence using the best fitting DLNM model specified in Chapter 3. This will 
give a monthly prediction of how ANC prevalence will change over the course of emanator impact. A 
simplified hypothesis test will be used to determine whether MSF would be able to detect that 
changes in the ANC prevalence were significant and not due to variance introduced by sampling a 
finite population. Here we assume a very simple study design comparing disease prevalence in a 
community before and after emanators are distributed to a population coverage of 80%. Sampling 

pregnant women in two different months will give two different prevalence estimates, f and f9. For 

given Type 1 and Type 2 error rates a and b, and standard normal quantile function g, the minimum 

sample size required to detect the difference between f and f9 is as follows (Chow, Shao and Wang, 

2008): 
 

h = f(1 − f)i
gj)a kl 	 +	gj)b	

f −	f9
m
k

	 4. 7 

This test makes some simplifying assumptions because MSF are unlikely to sample exactly the same 
number of women each month, but the calculated minimum sample size will give some indication of 
whether MSF sample enough women to have the power to measure changes in ANC prevalence 
caused by emanator distribution. 
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4.3 Results 
 
4.3.1 Emanator deterrence for different distributions of time spent nearby 
 
Emanators provide protection against mosquito bites for on average 5.37 metres around the 

device and the estimated half-life of emanators is 355 days. The exponential function, !(#), 

fitted to emanator effectiveness at different distances from the Tanzanian trial data, describes 
the data well, with an adjusted R2 = 0.926 (Figure 4.2A). Therefore, it is reasonable to 
assume that emanator effectiveness decreases exponentially with increased distance of the 
user from the emanator. Four potential choices of the mean proportion of time spent at each 

distance from an emanator (parameter l in the exponential distribution 0(#)), are shown in 

Figure 4.2B. The distributions !(#) and 0(#) are then combined using Equation 4.2 to give 

the proportion of bites that are successful (or alternatively are prevented) by emanators. The 
proportion of bites that emanators prevent over all distances depends corresponds strongly 

with how close people stay to them (l). Since emanators are most effective at close range 

they avert a higher proportion of bites over all distances when people spend their time closer 

to them (when l is small, Figure 4.2C). In the best-case scenario (l = 1 metre), emanators 

prevent just over 60% of all bites from occurring within its effective radius. If people spend 
more time further away from the emanator this proportion drops. However, some bites would 
still be prevented; emanators would stop a large proportion of bites happening during the 
small amount of time that people were close to the emanator, and a small proportion of bites 
during the larger amount of time that people were further away from the emanator.
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Figure 4.2: (A) The proportion of bites averted at each distance from the emanator (function E(x), shown in red) fitted to data from the Tanzanian trial Ogoma et al (2017) (black points with corresponding 95% confidence 

intervals). Solid red line indicates the best fit exponential function (B) Theoretical relationship charting the percentage of time spent within a certain distance of an emanator. Four different example exponential distributions 

C(x) characterised by their mean parameter l. are shown which are later used in predictions (C) The proportion of preventing a bite (!"#) by an emanator depending on the fitted relationship shown in (A) and different 

predictions of the average distance spent from an emanator (choice of l in the distribution C(x) shown in B) which are plotted on the x-axes. For example, a person with a movement profile of the blue line in (B) is predicted to 

have 35% of mosquito bites averted by the emanator 
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4.3.2 Entomological modelling outcomes of TFI 
 
The proportion of the vector population that have TFI is determined by four key factors. Firstly, the 
movement profiles of people around their emanators, which determines the probability that their 
emanators will prevent bites from occurring. Secondly, the proportion of mosquitoes that develop the 
TFI effect after exposure to the volatile pyrethroids. Thirdly, emanator coverage in the population, 

which changes the number of mosquitoes exposed to volatile pyrethroids. Finally, the duration of the 
TFI effect in mosquitoes. These four factors all change the mean percentage of the mosquito 
population with TFI at any one time over the year following emanator distribution (Figure 4.3). 
 

When people spend more time closer to their emanators (l is small), more mosquitoes have TFI 

because emanators are more likely to prevent bites when users are sat closer to them (Figure 4.3A). 

Varying the mean distance that users spend from their emanators between one metre and ten metres 

causes the probability that a mosquito takes a bite on an emanator user (!"#) to vary between just 

under 30% and just over 75% (Figure 4.2C). Understandably, increasing the likelihood that 

mosquitoes develop TFI after exposure to transfluthrin ($"#) leads to more mosquitoes having TFI in 

general. When a greater percentage of the human population are given an emanator, mosquitoes are 
more likely to try and bite a human sleeping near an emanator and, therefore, are more likely to 
develop TFI. Therefore, when population coverage increases, more mosquitoes have TFI (Figure 
4.3B). Finally, varying the rate at which the TFI effect wanes in mosquitoes causes large changes in 

the percentage of the mosquito population with TFI. If the vectors recover more slowly (%&'( is small), 

then a far higher proportion of mosquitoes have TFI at any one time (Figure 4.3C). 
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Figure 4.3: Impact of (A) distance from emanator (B) emanator population coverage and (C) duration of inhibition effect on 
the mean proportion of the total vector population with temporary feeding interruption (TFI) over the first year following 
emanator distribution. The y-axis in each panel shows the probability that a mosquito goes on to have TFI given that it has 
been dissuaded from biting (fTFI). The resulting value (colour of the panel) is the mean proportion of the total vector 
population that have TFI at any point during the first year after emanator distribution. The 3 linked columns highlighted in 
black denote model runs where the parameter values are equivalent: 80% emanator population coverage, a 24-hour TFI 
effect length, and the value of the mean parameter for the distribution of time spent at different distances from the emanator 
is 2 metres. 
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4.3.3 Epidemiological outcomes of emanator distribution 
 
Emanators deterring mosquitoes away from humans and preventing them from feeding on further 
hosts due to TFI will prevent some new infections from happening. This causes a moderate reduction 
in the prevalence of infection in under-fives as a result of emanator distribution in both of the 

transmission settings considered (Figure 4.4). As expected, emanators cause a modest reduction in 
disease burden compared to LLINs. The reduction in prevalence from a single emanator distribution 
is greatest at around the first year after introduction but has nearly returned to the baseline prevalence 
value by 4 years after introduction. The magnitude of the reduction in prevalence depends greatly on 

the proportion of deterred mosquitoes that go on to have TFI (denoted $"#). Increasing $"# from 0 to 

100% causes nearly double the reduction in prevalence when all deterred mosquitoes have TFI 
compared to no TFI effect (Figures 4.4A & 4.4B). This indicates that the TFI actions of the emanator 
are equally important as its ability to simply deter mosquitoes. Furthermore, emanators cause a 
proportionally greater and longer-lasting reduction in prevalence in the setting with a lower baseline 
prevalence of 5%. In this setting, emanators reduce the prevalence from 5% to a minimum of just over 
2.5% (approximately 50% reduction), whereas in the higher prevalence setting emanators reduce the 

prevalence from 30% to a minimum of 21% (approximately 33% reduction). This pattern of emanator 
impact depending on baseline endemicity is visible in Figure 4.4C. The lines denoting the prevalence 
before and after emanator introduction are slightly curved, meaning emanators (like other methods of 
vector control) cause proportionally bigger reductions in prevalence when the prevalence is lower to 
begin with. Similarly, absolute reductions in malaria prevalence will be higher in a moderate 
transmission setting (Figure 4.4A). 
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Figure 4.4: The impact of emanator distribution reaching 80% population coverage on the prevalence of infection in under-
fives in two different transmission settings with a baseline prevalence of 30% (A) or 5% (B). The red, blue and green lines 
denote different assumptions regarding the probability that a deterred mosquito has TFI for 24 hours. The grey shaded 
areas denote the impact achieved by 80% ITN coverage in each transmission setting. For simplicity it is assumed that 
transmission is perennial with the same baseline prevalence of the disease throughout the year. (C) shows the reduction in 
the prevalence of infection in under-fives after one year due to 80% emanator population coverage expected for all 
transmission settings with a baseline prevalence of infection below 10%, as well as how this reduction changes with the 
assumption about the probability of TFI occurring. Dashed black line indicates where the intervention would have no 
epidemiological impact. 
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Emanator impact is favourable when considering the number of cases that they would prevent from 
occurring that would otherwise have to be treated by health services operating in humanitarian crises.  
The number of cases averted per 1000 under-fives per year increases as the likelihood of TFI 
occurring increases. Estimating the cases averted when the probability of a TFI effect occurring is 0% 

or 100% gives a range within which the true impact of emanators falls. In the 5% baseline prevalence 
scenario, with a baseline of 178 cases per 1000 children per year, achieving 80% emanator population 
coverage prevents between 46 and 70 of these cases per 1000 children in the first year (Figure 4.5B). 
This is between 26% and 39% of total cases in children prevented; the range corresponds to a 

probability of TFI upon deterrence (f*+,) between 0% and 100%. In the 30% baseline prevalence 

scenario there are 1181 cases per 1000 children per year and 80% emanator population coverage 
prevents between 244 and 376 of these, i.e. between 21% and 32% of total cases (Figure 4.5A). As 
with the impact that emanators have on prevalence (Figure 4.4), when emanators are distributed once 
the number of cases prevented is greatly reduced by 3 years after introduction (Figures 4.5A and 
4.5B). When emanators are handed out yearly (Figures 4.5C and 4.5D) rather than once (Figures 4.5A 
and 4.5B), the number of cases prevented per year increases year upon year in the 5% prevalence 
setting but decreases year upon year in the 30% prevalence setting. This is likely because of human 

immunity and interruption of transmission in low transmission settings (discussed further in Section 
4.4). 
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Figure 4.5: The number of cases averted in under-fives in the first 3 years of emanator impact, across 2 different 
transmission settings (A and C a moderate transmission setting, B and D a low transmission setting) and emanators being 
distributed once (A and B) or refreshed yearly (C and D). Line colour denotes emanator coverage, point shape and line type 
denotes the assumption regarding probability of feeding inhibition in deterred mosquitoes, with dashed line indicating lower 
TFI efficacy. 
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4.1.1 Impact measured through routine testing of pregnant women 
 

 
Figure 4.6: Comparison between how the prevalence of infection in children and the prevalence of infection in pregnant 
women change during emanator use. The black line shows the prevalence of infection in children between 0 and 5 years old 
with 80% emanator population coverage at year 0. The coloured lines show the corresponding predicted prevalence of 
infection in pregnant women at each of the MSF locations introduced in Chapter 3. The coloured bands around each line 
shows the 95% confidence interval from the predictions of the best fitting DLNM model in chapter 3. 

 
When measuring the impact of emanators in terms of ANC prevalence (Figure 4.6) instead of the 
prevalence of infection in under-fives (Figure 4.4), the reduction in ANC prevalence caused by 
emanators is predicted to be smaller than for children. This reflects the relationship between the two 

groups assessed in Chapters 2 and 3. For example, in the community of Shamwana there is predicted 
to be a 3.0% reduction in malaria prevalence in children under 5 years old one year after emanator 
distribution at 80% coverage, whereas the prevalence of infection in pregnant women is predicted to 
only reduce by 1.45%. 
 
The relatively small magnitude of the effect size predicted here means that, on their own at least, none 
of the MSF locations introduced in the previous two chapters have sufficient women attending each 

month to have enough statistical power to be able to discriminate between the small, real changes in 
ANC prevalence due to emanators and the monthly fluctuations in observed ANC prevalence caused 
by sampling noise (Table 4.1). For example, the 3.64% reduction in prevalence prediction in the 
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community of Shamwana would require 1232 women before and after the introduction of emanators 
to detect a significant difference. In this location MSF is currently treating 455 women each month, so 
data from multiple months or from different communities combined would be required to have 
enough power to detect the predicted epidemiological impact of the intervention. 

 
Table 4.2: The results of the simplified hypothesis test specified in Section 4.2.3 to determine whether MSF would be able to 
detect small changes in the prevalence of infection with the number of women sampled at ANC centres each month with 95% 
confidence and 80% statistical power. Column 2 shows the maximum difference in true ANC prevalence before emanator 
impact and at the peak of emanator impact (the values correspond to Figure 4.6). Column 3 shows the minimum sample size 
of pregnant women required to detect the effect size shown in column 2. Column 4 shows the median number of pregnant 
women that were actually sampled monthly at each MSF location. 

Location Maximum effect Necessary sample 
size 

Actual median 
sample size 

Baraka 2.33% 1873 636 
Mweso 1.27% 3351 1074 
Walikale 1.48% 2915 437 
Shamwana 3.64% 1232 455 
Kimbi-Lulimba 2.31% 1890 582 

 
4.4 Discussion 
 
The work in this chapter shows that pyrethroid emanators could be used to prevent a considerable 
proportion of malaria cases when used at night in humanitarian settings where IRS or LLINs cannot 
be used. This would reduce the malaria burden on overloaded health care systems, freeing up capacity 
to tackle other public health issues that are often exacerbated during humanitarian crises (Carrión 

Martín et al., 2014). However, my predictions of the public health impact of emanators alone indicate 
that they do not cause substantial enough reductions in the prevalence of infection in a population and 
therefore should not be considered as competing with LLINs or IRS as ways of pushing malaria 
transmission down to zero. The small impact of emanators in terms of ANC prevalence is an issue, 
because it means that MSF would struggle to detect that emanators had reduced malaria burden unless 
they tested a large number of women each month. Meanwhile, the clinical incidence in under-fives 
would be significantly reduced by emanator distribution, but this data is not so easily collected by 
MSF (as discussed in Chapter 3). 

 
The reduction in disease burden associated with emanators is modest compared to LLINs primarily 
because LLINs kill mosquitoes that try to get through the net. This killing effect reduces the 
infectious vector population by killing mosquitoes that are infectious or would have gone on to 
become infectious. Since emanators simulated here only deter mosquitoes temporarily the mosquitoes 
will live on to try and successfully feed again. Adding the temporary feeding interruption (TFI) effect 
to the vector model improves emanator effectiveness substantially because it reduces the size of the 

infectious vector population, even though it does not kill mosquitoes. A complete TFI effect (i.e. all 
mosquitoes deterred away from the emanator develop the TFI effect) on average doubles the 
effectiveness of the intervention compared to the deterrence effect alone in the situations examined 
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here. Susceptible mosquitoes with TFI are prevented from becoming latently infectious, and 
infectious mosquitoes with TFI are prevented from contributing to transmission. The end result is that 
fewer mosquitoes become infectious and less of the infectious mosquito population is able to bite. The 
longer the duration of the TFI effect, the greater the reduction in transmission (Figure 4.3C), with a 

TFI effect that prevents a mosquito from ever feeding again being epidemiologically equivalent to 
having killed the mosquito.  
 
The length of the TFI effect is as important as the likelihood that a mosquito acquires the TFI effect. 
Only a small proportion of the vector population will have TFI at any one time if mosquitoes recover 
from it quickly. Accurately parameterising the TFI effect presents some challenges, since the 
likelihood of a mosquito getting TFI and how long it lasts is likely to depend on the length of 
exposure, concentration of the pyrethroid in the air, level of pyrethroid resistance in the mosquito, and 

the species of mosquito. The pyrethroid concentration in the air will further depend on what is 
releasing pyrethroid and where it is being released. How long the TFI effect lasts varies by mosquito, 
but seems to have finished within 24 hours (Siegert, Walker and Miller, 2009), with some studies 
finding that about half of mosquitoes have recovered within 12 hours after exposure (Ogoma, Lorenz, 
et al., 2014). A mosquito that has TFI for 6 to 8 hours will in effect be prevented from biting for the 
rest of the night and will have to wait even longer until their nightly feeding window begins again. 
Since the Imperial College malaria model does not take into consideration the time of day, the TFI 

effect length parameter should reflect that many mosquitoes will not be able to immediately resume 
feeding after they recover from TFI. If the true TFI effect length is 12 hours, the TFI effect length 
used in the model could well be in the region of 24 hours to incorporate the fact that mosquitoes will 
not be able to feed again until the next night. Further studies that attempt to quantify the length of the 
TFI effect due to pyrethroid exposure would be very welcome, given what a difference the TFI effect 
makes to the number of cases prevented by emanators and presumably other spatial repellents. As 
shown in this chapter, low emanator population coverage with a high likelihood of TFI is preferable 

to high population coverage with a low likelihood of TFI (Figure 4.5). 
 
Emanators caused a larger and more sustained proportional reduction in the prevalence of infection in 
under-fives in the low prevalence setting compared to the high prevalence setting (Figure 4.4). This 
finding corresponds with other modelling work that finds that malaria interventions are associated 
with larger percentage decreases in disease burden for lower pre-intervention prevalence levels 
(Cameron et al., 2015). Emanators reduce the EIR by the same proportion in both transmission 
settings, but this corresponds to a greater proportional decrease in new clinical cases and therefore a 

greater drop in prevalence in the lower baseline prevalence setting. The reduction in prevalence in the 
higher baseline setting lasts a shorter amount of time because there is a higher rate of infectious bites, 
meaning that people who are clear of infection due to cases averted by emanators will quickly acquire 
new infections.  
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Another difference in emanator impact between prevalence settings is that the impact of repeated 
emanator distributions increases year upon year in the low prevalence setting and decreases year upon 
year in the high prevalence setting (Figures 4.5C and 4.5D). The number of cases averted by 

emanators decreases year upon year in the high prevalence setting because much of the population 
have asymptomatic or sub-microscopic infections (in the Imperial College malaria transmission 
model they are in compartments A or U, see Section 1.3.3.1). When emanators prevent bites from 
occurring, some of these infections gradually clear and people move into the susceptible compartment 
over time. This means that the clinical incidence increases slightly year upon year because now more 
people are susceptible to a new infection than before emanators were introduced. Therefore, the 
number of cases averted by emanators (equal to the number of cases that would have happened 
without emanators minus the number of cases that happened with emanators) decreases slightly. This 

effect plateaus when the susceptible, asymptomatic infection, and sub-microscopic infection 
compartments reach a new equilibrium (assuming that emanators keep being handed out each year). 
 
The modelling approach used here has limitations that will prevent the accuracy of the predictions of 
emanator impact. For example, the effectiveness of emanators at different distances is parameterised 
using only one study. Due to this we cannot discern how mosquito responses to emanators using 
volatile pyrethroids would change due to resistance to lethal doses of pyrethroids. The model also 
assumes that human movement patterns around their emanators are homogeneous and that they will 
continue to use them for a long time after distribution. Both of these assumptions could be considered 
slightly unrealistic in the chaotic context of humanitarian crises where people have been displaced and 

are moving from place to place.  

 
4.5 Conclusions 
 
This chapter showed that emanators used near people that are sleeping could avert around a 

quarter to a third of malaria cases. However, they should not be considered an alternative to 

LLINs and should only be considered when it is not feasible to use LLINs. Emanator 

distribution would not cause detectable reductions in ANC prevalence at MSF’s sites unless 

MSF were sampling a large number of women each month. This is therefore something that 

MSF should consider going forward, if they are to use ANC prevalence to ascertain whether 

their malaria control efforts are working. The next chapter will consider how emanators could 

be used in a different context to prevent outdoor biting in the evenings, when LLINs cannot 

prevent biting from occurring. 
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5 Closing the coverage gap: emanator use to prevent outdoor biting 
in the evening 

 
5.1 Introduction 
 
This chapter will build upon the previous chapter by considering whether emanators could be 
distributed alongside LLINs to prevent residual malaria transmission. Residual malaria transmission is 
defined as transmission that takes place even when there is universal coverage of LLINs and IRS, 
such as biting taking place outside the house in the early evening (Durnez and Coosemans, 2013). The 
rate of infectious bites required to maintain ongoing transmission is low enough that in many places 
ITN and IRS campaigns cannot permanently interrupt transmission, even if they do manage to reduce 

the disease burden in the human population (Killeen, 2014). Therefore, to move beyond suppressing 
the disease in humans and towards malaria elimination, control methods must be used that target 
residual transmission. The contribution that residual transmission will make to the local disease 
burden, and the best methods to prevent it, will depend on human behaviour and the interaction with 
the feeding behaviours of local mosquitoes (Kiware et al., 2017). 
 
The mass LLIN distribution campaigns since the turn of the century means there are now many 
countries in sub-Saharan Africa where LLIN use is widespread, thus protecting many people from 

infectious mosquito bites while they are in bed (World Health Organization, 2017b). Studies in 
various countries have observed some mosquitoes biting outdoors in the early evening, before people 
have gone to bed (Bradley et al., 2015; Cooke et al., 2015; Dambach et al., 2018). It is unclear 
whether this is due to differences in the local mosquito population or an evolutionary change induced 
by the selection pressure of LLIN and IRS. Outdoor evening biting is observed in the common 
anthropophagic Anopheles species, which are the primary vectors of malaria, as well as in some 
zoophagic species that are less effective malaria vectors but still contribute to residual transmission by 

biting at different times of the day (Killeen, 2014). In addition to general species-level feeding 
preferences, mosquitoes are less likely to feed indoors when it is hotter and drier relative to outside 
(Ngowo et al., 2017). This Chapter will refer to residual transmission taking place outdoors during the 
evening as “the evening coverage gap”. There is no widespread vector control tool used to prevent 
biting during the evening coverage gap, though alternative control methods are currently being 
developed to target mosquitoes whose feeding behaviour reduces the effectiveness of current vector 
control tools (Müller et al., 2010; Menger et al., 2014; Killeen et al., 2017).  

 
Spatial repellents operate by releasing chemicals into the air that either cause mosquitoes to move 
away from the source of the chemical (excito-repellency), prevent a mosquito from finding a host 
within an area around the source of the repellent (Maia et al., 2018), or kill them. Both of these modes 
of action reduce the amount of mosquito bites on humans near the source of spatial repellents. 
Previous modelling work using the Imperial College malaria transmission model has focused on using 
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LLINs or IRS to prevent people indoors or in bed from being bitten, since this is primarily where 
most malaria transmission happens in countries starting malaria control programmes. Spatial 
repellents such as emanators have only been included in less complex malaria transmission models, 
which have found that outdoor spatial repellents would complement LLIN use to reduce EIR (Killeen 

and Moore, 2012; Kiware et al., 2017). The work in this Chapter builds upon this previous modelling 
efforts by using mosquito biting data to establish an estimate of the amount of biting that takes place 
during the evening coverage gap and what proportion of clinical cases these bites are responsible for. 
This quantifies how much malaria transmission could be reduced by preventing biting during the 
evening coverage gap, and how biting during the evening coverage gap can prevent local malaria 
elimination. Using data on the performance of emanators in the Tanzanian field trial (Ogoma et al., 
2017), the Imperial College malaria transmission model is used to predict the reduction in disease 
burden associated with emanator use. This will give a more detailed picture of the public health 

impact of emanators as the change in disease burden is more complex than simply the change in EIR 
because of the actions of human immunity on the malaria parasite.  
 
 
Finally, emanator use will be explored in scenarios where the local mosquito population is resistant to 
lethal doses of pyrethroids on LLINs. It is currently unclear how pyrethroid resistance in vector 
populations, as measured by bioassay mortality, will mitigate the deterrent effect of spatial repellents. 

Experimental hut trials of LLINs in areas with pyrethroid resistant anopheline mosquitoes show little 
to no deterrence effect from the pyrethroids on LLINs (Strode et al., 2014; Churcher et al., 2016). 
However, a deterrent effect is still maintained when pyrethroid-treated clothing is used against Aedes 
aegypti mosquitoes with genetic mutations that are associated with pyrethroid resistance (Bowman et 
al., 2018). Insensitivity to transfluthrin in the air has been selectively bred in vitro into A. aegypti, and 
has been shown to be associated with reduced insecticide susceptibility (Wagman, Achee and Grieco, 
2015a). Of relevance for this particular analysis is that vector resistance to many pyrethroids is 

widespread in Tanzania, where the field trial for emanators took place (Kabula et al., 2012, 2014; 
Kisinza et al., 2017). Therefore, the emanators added to the Imperial College malaria transmission 
model in the last chapter are based upon data measuring emanator effectiveness in areas with 
reasonable levels of pyrethroid resistance, suggesting that the deterrence effect of volatile airborne 
pyrethroids is maintained against pyrethroid resistant mosquitoes which have reduced susceptibility to 
pyrethroids incorporated into LLINs. If this is the case then they can be explored as a temporary 
solution to the loss of lethality in existing LLINs. This Chapter ends by investigating where using 
emanators during the evening coverage gap could offset the increased malaria burden due to 

pyrethroid resistance. Emanators could be an affordable method of controlling excess malaria cases 
due to pyrethroid resistance, since it may be some time before new non-pyrethroid-based net products, 
such as the Interceptor G2 net that uses chlorfenapyr, will be available for mass distribution 
(Hemingway et al., 2016). 
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5.2 Methods 
 
5.2.1 Amount of outdoor biting in the evening 
 
A systematic search of the published literature was used to identify studies in Africa measuring 
mosquito biting rate using human landing catches placed indoors and outdoors throughout the night. 
For full details of the search terms employed see Skarp 2016 (a copy of the search terms used is 
presented in Table 5.1). This meta-analysis identified twenty-four studies on mosquito biting times for 
predominantly An. arabiensis, An. funestus and An. gambiae s.s, (giving a total of 61 days of 
observation). Results from this analysis were used in this thesis to estimate the proportion of all bites 

that are received during the evening coverage gap, denoted -" (Equation 5.1). The Imperial College 

model has previously only considered when people are indoors or in bed, so the percentage of bites 
received while outdoors in the evening needs to be estimated from available data.  

 
Table 5.1: “Search strings for a systematic meta-analysis of Anopheles mosquito biting behaviour in African countries”. 
Copied from Skarp, Janetta., BSc project Imperial College London (2016) “Investigating the impact of Anopheles 
mosquitoes’ biting time on the efficacy of bednets against malaria.”  

Search Query Items found 
Web of Science search string 

 Search: TOPIC: (Anopheles AND man AND 
biting AND rate AND Africa)  

391 

 Search: TOPIC: (malaria AND (transmission OR 

exposure)) AND TITLE: ((Anopheles OR 

mosquito* OR vecto*) AND (behavio* OR 

outside OR outdoor OR inside OR indoor OR 

patter* OR season*)) 

502 

PubMed search string 

1 anopheles [Title/Abstract] 11313 

2 mosquit* [Title/Abstract] 36776 

3 vector [Title/Abstract]  138515 

4 #1 OR #2 OR #3 168236 

5 transmission [Title/Abstract] 277118 

6 exposure [Title/Abstract] 640631 

7 #5 OR #6 6339591 

8 behavio* [Title/Abstract] 946966 

9 outside [Title/Abstract] 110239 

10 outdoor [Title/Abstract] 13555 
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11 inside [Title/Abstract] 91278 

12 indoor [Title/Abstract] 18354 

13 patter* [Title/Abstract] 1022271 

14 season* [Title/Abstract] 110037 

15 #8 OR #9 OR #10 OR #11 OR #12 #13 OR #14 2153475 

16 malaria [Title/Abstract] 65457 

17 Blood-feed* [Title/Abstract] 2158 

18 Bit* [Title/Abstract] 56120 

19 Feed* [Title/Abstract] 321958 

20 #17 OR #18 OR #19 375578 

21 #4 AND #7 48294 

22 #21 AND #15 6569 

23 #22 AND #16 1227 

24 #23 AND #20 436 

 
Table 5.2: List of the studies used to estimate outdoor biting rates of mosquitoes at over 24 hours (as collated from the meta-
analysis search string presented in Table 5.1). Some of the studies had several sites, rounds, or locations. 

Number Source Location 

1 (Bayoh et al., 2014)  Kenya 

2 (Bradley et al., 
2015) 

Equatorial Guinea 

3 (Cooke et al., 2015) Kenya 

4 (Fontenille et al., 
1997) 

Senegal 

5 (Geissbühler et al., 
2007) 

Tanzania 

6 (Githeko et al., 
1996) 

Kenya 

7 (Huho et al., 2013) Burkina Faso, 

Tanzania, Zambia, 

Kenya 

8 (Kabbale et al., 
2013) 

Uganda 

9 (Killeen et al., 2006) Tanzania 

10 (Mendis et al., 2000) Mozambique 



 103 

11 (Moiroux et al., 
2014) 

Benin 

12 (Moiroux et al., 
2012) 

Benin 

13 (Mourou et al., 

2012) 

Gabon 

14 (Ojuka et al., 2015) Uganda 

15 (Overgaard et al., 
2012) 

Equatorial Guinea 

16 (Owusu et al., 2016) Ghana 

17 (Quiñones et al., 
1997) 

The Gambia 

18 (Russell et al., 2011) Tanzania 

19 (Tchouassi et al., 

2012) 

Ghana 

20 (Tanga and Ngundu, 

2010) 

Cameroon 

21 (Tanga, Ngundu and 

Tchouassi, 2011) 

Cameroon 

22 (Tuno et al., 2010) Ghana 

 
 
Letting .((0) and .2(0) be the rate at which a person is bitten at hour t (0-24) when they are indoors 

or outdoors, respectively. The value of -" relies upon the proportion of the population outside during 

the evening coverage gap, let the proportion of the population outside at time t be denoted 3"(0). The 

formula for -" is as follows: 

-" =
∑ 3"(0).2(0)6

∑ ((1 − 3"(0).((0) +	3"(0).2(0))6
5. 1 

 

This formula gives 61 estimates of -" for a given choice of 3"(0), one estimate for each day of 

observation in the dataset. This range of values for -" captures the variation in observed biting rates 

across different days and different countries. In this analysis I make the simplifying assumption that 

the same proportion of the population are outside continuously between 6pm and 10pm. I do this by 

setting the proportion of people outside at a given time (3"(0)) to a certain value (that I vary between 

10% and 100% for sensitivity analysis) between 6pm and 10pm. The rest of the time the proportion of 
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population outside is set to zero. This choice of 3"(0) then gives corresponding values of Φ> that I 

use in the model. This assumption also implies that people who leave the house early in the morning 
are not protected by emanators as they will be leaving the vicinity of the house to work. 
 

5.2.2 Adding emanators as an intervention in the model 
 
The Imperial College malaria transmission model is expanded to incorporate emanators in a similar 
manner to the previous chapter, except now emanators are used outdoors rather than when people are 
in bed. For a given proportion of the population outside during the evening coverage gap, the model 
calculates the proportion of all bites that take place during the evening coverage gap (Figure 5.1A). 
For these, mosquitoes that attempt to bite an emanator user have a given probability to be deterred and 

subsequently experience a temporary feeding inhibition (TFI) effect (Figure 5.1B). The TFI effect is 
presumed to prevent mosquitoes from biting for an average of 24 hours (see Section 4.4 for why this 
length was chosen). Mosquitoes that have a TFI effect are moved into parallel vector compartments 
where they do not feed, reducing the effective infectious mosquito population because susceptible 
mosquitoes with TFI do not become infectious and infectious mosquitoes with TFI do not bite (Figure 
4.1).  For the bites happening while people are in bed, mosquitoes that try to bite someone using an 
LLIN either die or are deterred, as specified in the original model (see Section 1.3.3).   
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Figure 5.1: (A) Graphical depiction of the time of day being defined as “the evening coverage gap” in this chapter. (B) 
Flowchart of the different effects that LLINs and emanators have on vectors in the expanded Imperial College malaria 
transmission model. 

 
Now that users can have emanators, LLINs, or both, the formulas for the probability of a mosquito 
successfully biting a human has changed (Table 5.2). In this chapter it is assumed that emanators are 
used exclusively during the evening coverage gap and act completely independently from LLINs used 

at night. For an emanator, !"#, is the proportion of bites that will be prevented across all distances 

(see Section 4.2.1). For LLINs, ?@@(A is the probability of a mosquito successfully biting an LLIN 

user and -B is the proportion of bites that happen while a person is in bed.  
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Table 5.3: Probabilities of successful feeding and being repelled for combinations of emanator and LLIN use. 

  Emanator only 
(wEM) 

LLIN only (wLLIN) Emanator and LLIN 
(wEM+LLIN) 

Probability of 
successful feeding 
(wi) (feeds and 
survives) 

1 −	!"#-" 1 − -B +	?@@(A-B 1 −	!"#-" 	−	-B
+	?@@(A-B 

Probability of 
repellency (zi) 

!"#-" !@@(A-B !"#-" +	!@@(A-B 

 
 
5.2.3 Pyrethroid resistance 
 
Pyrethroid resistance is introduced into the vector population in the model using the framework from 
Churcher et al (2016) where resistance is characterised using the proportion of mosquitoes that 
survive a simple pyrethroid bioassay. Increasing pyrethroid resistance reduces the maximum mortality 
and repellent effects of the LLINs, as well as the length of time for which the LLINs are effective. 
The vector species used in the model is An. gambiae sensu stricto. since this is a key vector species in 
Tanzania, where the emanator field trial was undertaken. An. gambiae s.s. also features extensively in 

the mosquito data used to approximate outdoor biting rate (Table 5.1) and the data used to 
parameterise the relationship between pyrethroid resistance on LLIN effectiveness in Churcher et al. 
(2016). There insufficient data available to characterise how emanator effectiveness changes with the 
level of pyrethroid resistance. Therefore, for simplicity it is assume that emanator efficacy is the same 
irrespective of the level of resistance against pyrethroid LLINs. As mentioned above, the data used to 
parameterise emanators in this model was collected in a region with reasonably high pyrethroid 
resistance (Tanzania, 2017) so the effect of moderate pyrethroid resistance on emanator effectiveness 

(should it exist) is already implicit in the data. 

 
5.2.4 Intervention scenarios 
 
Emanator use during the evening coverage gap was modelled in a scenario where 80% of the 
population already uses a LLIN with new LLINs distributed every three years. The LLINs have 
already considerably reduced the number of infectious bites that the population experience, reducing 

the prevalence in children under five from 46.6% to 36.7% and the clinical incidence in children 
under five from  1673 to 928 cases per 1000 child under five per year. Malaria transmission was kept 
constant year round, removing seasonality, to help identify changes in burden associated with 
emanator use. After the model had run for a long enough time to reach equilibrium (see Section 
1.3.3.3), everyone that had an LLIN was given an emanator, which was replaced each year. Including 
the systematic compliance assumption may give more conservative predictions of emanator impact, 
since using emanators and LLINs at the same time may have an antagonistic relationship if the 
emanator-caused TFI effect stops mosquitoes from dying on nets later in the night. 
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In measuring the impact of emanator distribution it is important to distinguish between residual cases 
and remaining cases. Residual cases are those that occur despite 100% LLIN coverage (i.e. initially 
everyone is using a LLIN and there is no drop out over time). Remaining cases are those that occur 

after more realistic coverages of are assumed. Here I assume that 80% LLIN coverage is a more 
realistic target, again assuming that there is no loss in LLIN use over time during the period of 
investigation. Some of the remaining cases would be prevented by higher LLIN coverage, but not all. 
Remaining cases can be split into two components: cases due to 20% of the population lack an LLIN, 
and residual cases (which would still occur even at 100% LLIN coverage). 
 
The proportion of remaining cases that are due to biting during the evening coverage gap is calculated 
by measuring the change in the number of cases averted between a scenario with 80% LLIN coverage 

where no outdoor biting is prevented, and a scenario with 80% LLIN coverage where all outdoor 
biting is prevented. The difference between the number of remaining cases in these two scenarios is 
the number of cases that emanators could hypothetically prevent if they were perfect and prevented all 
biting from taking place during the evening. Emanator impact can then be measured in two ways: the 
proportion of cases due to biting during the evening coverage gap that they prevent, and the 
proportion of remaining cases that they prevent. Measuring the impact in two ways helps to 
distinguish between situations where emanators perform very well at closing a small coverage gap (a 

small number of overall cases prevented) and situations where emanators perform poorly at closing a 
large coverage gap (a large number of overall cases prevented). Throughout the chapter effects of 
emanator use were modelled using two different assumptions regarding the proportion of all biting 

taking place during the evening coverage gap (-"). As described above, choosing a value for the 

proportion of the population that is outdoors during the evening coverage gap provides a range of 

estimates for -". The best guess estimate uses the median of this range of values (Figure 5.2B, solid 

blue line), whereas the optimistic estimate uses the upper 95th percentile (Figure 5.2B, dashed blue 
line). The likelihood of TFI occurring in deterred mosquitoes (fTFI) was set to 100% when the TFI 

effect was included in the model. It is assumed that while people are sat outdoors, they are an average 
of 2.5 metres away from the emanator. 

 

5.3 Results 
 
5.3.1 The proportion of remaining malaria cases due to biting during the evening coverage 

gap 
 
There is a large amount of variation in the observed biting rate between locations and on different 
days, with some locations experiencing no biting outdoors during the evening coverage gap and some 
locations reporting that the outdoor biting rate was comparable to the indoor biting rate by around 
10pm (Figure 5.2A). Examining the median biting rate across all locations and study days, outdoor 
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biting rises steadily from around 6pm through to 10pm, assuming that 10% or 100% of the population 

are outdoors during the evening coverage gap gives a range of estimates of -", with 1.6% to 12.2% of 

all bites happening during the evening coverage gap (Figure 5.2B, black line). The estimates of -" 

are much larger when using the top 95th percentile of observed outdoor biting rates, the value of -" 

changes from 11.2% to 56.9% when 10% or 100% of the population are outdoors during the evening 
coverage gap (Figure 5.2B, green band).  
 
In a population using LLINs, most of the attempted bites will happen at night will be prevented except 
for situations where mosquitoes enter through holes in the net. Even though a minority of attempted 

bites happen during the evening, more of these bites will be successful. As a result, the majority of 
malaria cases occurring will be due to successful bites happening during the coverage gap. Even 
assuming that only 10% of the population are outside during the evening, up to 35% of the remaining 
malaria cases could be due to biting during this time. Assuming that 50% of the population are outside 
at this time, which is not unreasonable, this could account for just over 75% of remaining malaria 
cases after good LLIN coverage (Figure 5.2C). 
 

5.3.2 The amount of remaining cases prevented by emanators 
 
The impact of emanator use depends on the amount of biting happening during the evening coverage 
gap. Emanators are able to prevent a higher proportion of remaining cases if more of the remaining 
cases are due to bites happening during the evening coverage gap. Comparing the best guess estimate 

and optimistic estimate of the percentage of cases occurring in the evening (-") (Figure 5.2B) shows 

how the theoretical impact of emanators on top of LLIN use changes depending on the size of the 
evening coverage gap. Firstly, LLINs cause a smaller reduction in clinical incidence in under-fives 
when more bites happen during the evening coverage gap. This can be seen in the smaller decline in 
malaria cases in Figure 5.3E than Figure 5.3A. Similarly, the percentage of remaining cases after 80% 
LLIN coverage that are due to the evening coverage gap increases with higher evening biting, so there 
are more cases that emanators could prevent (Figure 5.3B&F). In the best guess scenario, emanators 
prevent ~55% of cases due to the coverage gap in the first year, increasing to ~60% in the third year  



 109 

 
 
 

 
Figure 5.2: Observed variation in outdoor biting during the evening coverage gap and how much this biting contributes to residual malaria transmission. In all plots the solid blue line 
represents the best guess estimate (median) and the dashed blue line represents the optimistic estimate (upper 95th percentile, see Section 5.2.4) (A) observed rates of outdoor (blue) and indoor 
(red) biting over the day from the collated mosquito studies. Solid lines denote median observed biting rate over all studies. The intervals show 95% confidence intervals for observed biting rate 
over all studies. (B) the percentage of all bites that happen during the evening coverage gap (!") for different assumptions regarding the proportion of the population that are outside during 
the evening coverage gap combined with the observed biting in (A) (using Equation 5.1) (C) Model estimates of the percentage of all cases remaining after 80% ITN coverage that are due to 
biting happening the evening coverage gap, using the estimates of !" shown in (B).



 110 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 5.3: How emanator effectiveness varies with the size of the evening coverage gap. Top row indicates scenarios where the percentage of bites taken in the evening matches current best 
guess estimates whilst bottom row shows a scenario where a high percentage of bites occur in the evening coverage gap. (A and E) show the reduction in incidence of malaria in under-fives due 
to emanator use. Grey area between the two black lines shows cases that could be averted by emanators. Top black line shows incidence reduction from 80% LLIN coverage alone. Lighter 
coloured orange/purple band shows cases averted by emanators with deterrence effect only, darker coloured orange/purple band shows additional cases prevented by TFI effect. Blue vertical 
lines show yearly boundaries which are used in panels B,C,F and G. (B and F) Proportion of remaining cases due to the evening coverage gap (grey), those prevented by emanator with 
deterrence alone (light orange/purple) or with emanators with TFI (dark orange/purple). (C and G) Impact of emanators as a proportion of the cases during the evening coverage gap, light or 
dark orange/purple as above. (D and H) How proportion of remaining cases prevented by emanators changes with population coverage and assumption about percentage of population outside 
during the evening coverage gap. 
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(Figure 5.3C). In the optimistic scenario, emanators prevent just over 60% of cases due to the 
coverage gap in the first year, decreasing to ~55% in the third year (Figure 5.3G). Finally, in both 
scenarios emanators prevent a higher proportion of remaining cases when emanator population 
coverage is higher and when more of the population are outside during the evening coverage gap 
(Figure 5.3D&H). In summary, emanator use will prevent approximately the same proportion of bites 
during the evening coverage gap irrespective of the size of the coverage gap, though the absolute 
number of cases averted is higher when the coverage gap is larger (when LLINs are less effective).  

 
In low transmission settings my optimistic estimate (with 80% population coverage and 100% 
likelihood of inducing TFI in deterred mosquitoes) is that emanator use can cause around a 30% 
reduction in the entomological inoculation rate, around 20% reduction in the prevalence of infection 
in under-fives, and around 40% reduction in the clinical incidence in under-fives (Figure 5.4). It is 
unlikely that emanators alone will reduce transmission low enough to cause local elimination, except 
for in locations where transmission is already at very low levels. In the scenarios explored, emanators 
were distributed to the 80% of the population already using LLINs. Changing this assumption of full 
correlation between emanator and LLIN use had very little impact on the results shown in this chapter 
(not shown).  

 
5.3.3 Emanator use where vectors are pyrethroid resistant 
 
The impact of LLINs and emanators used in combination in the presence of resistance to lethal doses 
of pyrethroids was compared to the expected impact of LLIN use alone if there were no pyrethroid 
resistance (Figure 5.5A&C). This explores how useful emanators could be at preventing excess 
mortality due to pyrethroid resistance in the event that airborne transfluthrin still maintains a deterrent 
and TFI effect on mosquitoes that are otherwise resistant to lethal doses of pyrethroids on LLINs. 
How well emanators can offset this excess mortality again depends on the size of the evening 

coverage gap. Using the optimistic estimate for !" shows that emanator coverage compensated for 

reduced LLIN effectiveness in settings with up to 80% bioassay survival when it was assumed that 

100% of the population were outside (Figure 5.5D). When using the best guess estimate of !", 

emanators could compensate for reduced ITN effectiveness only when bioassay survival was under 
20% and when over 60% of the population were assumed to be outside during the evening coverage 
gap.  
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Figure 5.4: The impact of additional emanator use on 3 different epidemiological outcomes, where 80% of the population have an LLIN and are then also given an emanator. Solid black line shows 
the epidemiological impact of emanator use when using the best guess estimate for outdoor biting (Figure 5.2A). The purple segment corresponds to the 95% confidence interval for outdoor biting 
rates, showing the variation in emanator impact that would be due to different outdoor biting rates. 
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Figure 5.5: How well emanator use compensates for reduced LLIN effectiveness across a range of resistance settings. Left hand panels indicates scenarios where the percentage of bites taken 
in the evening matches current best guess estimates whilst right panels shows a scenario where a high percentage of bites occur in the evening coverage gap. (A and C) comparison of 80% 
LLIN coverage with no pyrethroid resistance (black), 80% LLIN coverage with 40% bioassay survival (red), and 80% LLIN+emanator coverage with 40% bioassay survival (orange). (B and 
D) Shows scenarios where emanators compensate for resistance-caused reduction in LLIN potency. Orange squares denotes that this is the case (total number of cases over three years is the 
same or greater than LLINs working optimally, orange line is near or below black line as in C), blue squares denote that this is not the case (as in A). Predictions in A and C are directly 
comparable to predictions made in 5.3A and E. All scenarios assume a TFI effect. 



 
5.4 Discussion 
 
In this chapter I have shown that biting occurring during the evening coverage gap could account for a 
large portion of the cases that remain after achieving a reasonable LLIN coverage in the population. 
The precise size of the evening coverage gap will depend on how much of the population is exposed 
during the evening coverage gap and the outdoor evening biting rate. The number of people outside 
during the evening coverage gap will vary geographically and over the course of the year as the 
temperature and weather changes. The number of bites people face during the evening will depend on 
the local mosquito species and when, who, and where they prefer to bite. This work estimated the 
biting rate during the evening coverage gap using data collated from three primary malaria vectors: 
An. arabiensis, An. funestus, and An. gambiae s.s. It is clear from this analysis that even a small 
number of people sitting outside during the evening could be responsible for up to a third of 
remaining cases, depending on the biting rate (Figure 5.2C). The Imperial College malaria 
transmission model has previously assumed that just under 90% of biting happens whilst people are 
indoors, an assumption that is shared more or less with many other malaria transmission models 
(specifically the ones described in Section 1.3). Hopefully this work will encourage a more location-
specific approach to parameterising when and where bites take place in a model, using data on the 
mosquito and human behavioural factors discussed above.  
 
An interesting result emerges when measuring emanator impact in terms of the proportion of cases 
that they prevent out of all cases that are due to biting during the coverage gap (Figure 5.3C&G). 
Emanator impact increases year upon year when using the best guess biting rate estimate but 
decreases when using the optimistic biting rate estimate. This is because of three things that change as 
the LLINs that were handed out at year 0 age and become less effective. When LLINs are less 
effective, due to aging or pyrethroid resistance, the proportion of mosquitoes that are infectious is 
larger. When there are more infectious mosquitoes the TFI effect of emanators has a greater impact 
and the deterrence effect of emanators has a lesser impact. Furthermore, reducing LLIN effectiveness 
changes the proportion of remaining cases due to the evening coverage gap, since now LLINs are 
failing to stop bites at night. These three things: the TFI effect, emanator effect, and proportion of 
bites remaining due to biting due the evening coverage gap, will increase or decrease emanator impact 
separately to create an overall increase or decrease on emanator impact as LLIN potency wanes. 
Whether the overall effect is an increase or a decrease will depend on many factors, including: the 
biting rate during the evening coverage gap, the proportion of the population outside during the 
evening coverage gap, the rate at which the concentration of insecticide on LLINs decays over time, 
and LLIN or emanator population coverage. 
 
In general, the TFI effect causes much smaller reductions in transmission than observed in the last 
chapter, when emanators were used indoors at night. This is because the amount of biting that is 
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estimated to take place when users are near an emanator is usually far smaller than the amount of 
biting taking place indoors, even when using updated mosquito biting data from this analysis. This 
means that far fewer mosquito biting attempts take place near an emanator when they are used 
exclusively during the evening coverage gap, hence despite the fairly strong assumption that all 
deterred mosquitoes experience TFI, only a maximum of around 10% of the vector population will 
have TFI at any one point. The TFI effect in this context also has the added effect of preventing 
mosquitoes from trying to bite users under LLINs later on in the night. This could be a problem when 
LLINs are still potent, since it may prevent mosquitoes from coming into contact with the LLIN and 
dying. However, it is particularly useful when the mortality effect of LLINs has been reduced, 
because it will prevent night time feeding attempts by some mosquitoes that would have successfully 
navigated past the LLIN. In this analysis there was no evidence that the TFI effect preventing some 
mosquitoes from dying on LLINs was a cause for concern. This may have occurred because we 
assumed that people using emanators already had LLINs, so there was perfect correlation between the 
two interventions. 
 
If the TFI effect of an emanator is greater when LLIN potency is reduced, this is of particular 
important where LLIN potency is reduced due to pyrethroid resistance. As discussed earlier, it has not 
been confirmed whether resistance to lethal doses of pyrethroids also confers some protection against 
TFI. However, if the deterrence and TFI effects of emanators can still occur to vectors that are 
unlikely to die due to pyrethroid exposure, as seems to be the case given the results of the Tanzanian 
trial in Kilombero valley where bioassay mortality due to Permethrin is only 58% (Kisinza et al., 
2017), then emanators have the potential to be a cheap, additional malaria control measure in areas 
with mild pyrethroid resistance. Depending on the proportion of bites that occur during the evening 
coverage gap and the level of pyrethroid resistance, emanators could maintain the malaria burden at 
pre-resistance levels and avoid excess deaths and strain on healthcare systems. 
 
There are several assumptions used in the model for this analysis that could significantly alter the 
predicted impact of emanators. Firstly, I assume that the average amount of time that people spend 
close to their emanator during the evenings. In Chapter 4, the mean distance from the emanator was 
big factor in overall emanator effectiveness (Figure 4.2C). I don’t know of any reliable data of how 
close people would remain to their emanator outside. Anecdotal evidence suggests that people outside 
would stay close to their buildings to cook or socialise in chairs beside their houses. If emanators were 
placed in social areas, this could avert a large proportion of bites. This sort of data could be collected 
by giving people a GPS tag or using their mobile phones to track their proximity to their house 
throughout the day. This data would also reveal more about the size of the morning coverage gap, 
there is still some biting taking place between 6-9am (Figure 5.2A) and anyone outside during these 
hours would not be protected by current vector control tools. The model also assumes that exposure 
during the evening is homogeneous across age groups, whereas it is probable that children go to bed 
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earlier than adults. In the future the model could be parameterised so that biting happening at different 
times happens in different places depending on age. This is important since infectiousness to 
mosquitoes and susceptibility to clinical disease is heavily dependent on age.  

 
5.5 Conclusions 
 
Emanators were predicted to reduce the number of cases that were due to biting during the evening 
coverage gap, preventing between 15 and 40% of cases remaining after widespread LLIN coverage. 
This solidifies the place of emanators within a package of vector control strategies aimed at tackling 
residual transmission (Killeen, 2014). Given the observed reductions in EIR, prevalence of infection 
in under-fives, and clinical incidence in under-fives, it is unlikely that emanators alone will eliminate 
malaria (Figure 5.4). This finding is supported by other modelling work that examined packages of 
vector control tools for use after good LLIN coverage has been achieved (Kiware et al., 2017). This 
analysis built upon previous modelling work by utilising the more complex Imperial College malaria 
transmission model, with its age-related immunity structure, and by parameterising emanator impact 
using real data on mosquito biting rates and emanator performance in the field. The next chapter will 
model an extension of the TFI effect for pyrethroid-resistant vectors that contact with LLINs but do 
not die. It is motivated by two observations that emerge from the TFI modelling undertaken so far. 
Firstly, that the TFI effect causes larger decreases in burden when emanators are used at night, 
because this is when the majority of biting still takes places at most locations. Secondly, that the TFI 
effect causes a bigger decrease in burden when LLINs are not as deadly to mosquitoes. Therefore, a 
TFI effect caused by a LLIN used at night in a setting with pyrethroid resistance has the potential to 
cause a large impact on transmission. 
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6 Estimating the epidemiological effects of a sub-lethal temporary 
feeding interruption effect caused by pyrethroid-treated bed nets  

 
6.1 Introduction 
 
This chapter explores the impact of a temporary feeding interruption (TFI) effect caused by 
pyrethroids on long-lasting insecticidal nets (LLINs). Resistant mosquitoes that no longer die upon 
contact with the treated net may be prevented from feeding for a period of time afterwards. I will 
utilise data from experimental hut trials that compared treated and untreated nets to parameterise a 
TFI effect for LLINs that varies by resistance level. The TFI effect could help explain why some 
people believe that the public health impact of pyrethroid resistance has not been as great as initially 
thought (Kleinschmidt et al., 2018). 
 
The severity of pyrethroid resistance in a location is measured in terms of the percentage of local 
mosquitoes that survive exposure to doses of pyrethroid that would be lethal to susceptible 
mosquitoes. This is termed the discriminating dose bioassay and there are three main methods used to 
measure it; the WHO tube susceptibility bioassay (World Health Organization, 2016), CDC bottle 
assay (Cdc, 2012) and the WHO cone test (World Health Organization, 2013a) doses of pyrethroids in 
a bioassay. Bioassay survival is associated with decreased mosquito mortality and deterrence due to 
LLINs in experimental hut trials (Churcher et al., 2016). The Imperial College malaria transmission 
model uses a mixed effects regression model to specify the link between observed bioassay survival 
and the parameters that determine LLIN potency. Greater pyrethroid resistance not only reduces both 
the overall mortality and deterrence probability of a net, but also increases the rate of decay of these 
parameters over time. The regression model captures the strong association between bioassay survival 
and LLIN effectiveness in experimental hut trials, but the relationship between bioassay survival and 
LLIN effectiveness in randomised controlled trials is less predictable (Lindblade et al., 2015; 
Mathanga et al., 2015). Many such trials have found that LLINs continue to function well across a 
range of locations with pyrethroid resistant mosquitoes, suggesting LLINs have an effect on 
mosquitoes beyond merely killing or deterring them (Strode et al., 2014). 
 
Such “sub-lethal” effects of LLINs may not be explicitly observable in the outcomes of pyrethroid 
bioassays or experimental hut trials. For example, a delayed mortality effect has been found in 
mosquitoes that are repeatedly exposed to pyrethroids on LLINs (Viana et al., 2016). Highly resistant 
mosquitoes have significantly shorter lifespans after pyrethroid exposure every few days, which 
would happen as they took blood meals on people sleeping under LLINs. This delayed mortality 
would reduce the vectoral capacity, since it increases the likelihood of them dying before becoming 
infectious to humans. However, this effect would not be observed in an experimental hut trial where 
only immediate 24 hour mosquito mortality is typically recorded. Some studies do record the 
percentage dying after 48 and 72 hours, though this is normally only done for insecticides known to 



 

 

118 

have a slower mode of action (Agossa et al., 2018). Similar circumstances may obscure the 
occurrence of an LLIN-caused TFI effect, which would not be observed directly through measuring 
bioassay survival, the number of mosquitoes killed in experimental huts, or a reduced rate of 
mosquito entry into the hut. 
 
Evidence for an LLIN-caused TFI effect would need to link mosquito willingness to feed to recent 
LLIN exposure. Siegert et al. (2009) counted mosquito landings on a hand under a mitten made of 
treated or untreated nets to monitor whether mosquito landing behaviour changed in the presence of 
insecticides. Mosquitoes initially landed on treated and untreated nets at the same rate, but over time 
the rate of landings on treated nets was severely reduced while remaining constant throughout the 
experiment on the untreated nets. The fact that mosquitoes did not return to the treated nets was taken 
to imply that the mosquitoes were not mere repelled (since then they would try again) but had instead 
stopped responding to host cues for the hand under the net. A similar observation was made by Parker 
et al. (2015) when they tracked mosquito behaviour towards LLINs with people underneath using 
infra-red tracking software. There was no significant difference between mosquito activity at treated 
or untreated nets initially, with activity at the treated nets reduced to almost nothing by around 30 
minutes. Unfortunately, neither of these experiments could offer the recently exposed mosquitoes a 
blood meal to see whether they were willing to feed. Glunt et al. (2018) exposed mosquitoes to 
treated or untreated nets in bottle assays (rather than the free-flying conditions in the experiments 
above), finding that mosquitoes exposed to treated nets were significantly less able to host-seek up to 
24 hours after exposure. The effect was severe 1 hour after exposure, with a 90% reduction in host 
seeking in mosquitoes exposed to treated nets, dropping to a 30% reduction after 24 hours. To 
definitively prove the existence of a LLIN-induced TFI effect, an experiment would need to test the 
willingness to feed of mosquitoes that have been exposed to LLINs in free-flying conditions and had 
subsequently stopped approaching the net after initial contact.The statistical relationship between TFI 
and the level of pyrethroid resistance has never been rigorously characterised nor have the 
epidemiological consequences been explored.  
 
This analysis will use data from experimental hut studies conducted in a range of resistance settings to 
quantify how the excess blood feeding inhibition prevented by treated nets (on top of that observed 
for untreated nets) changes with the level of resistance as measured by LLIN mortality. The excess 
blood feeding inhibition refers specifically to blood feeding prevented by an effect other than the 
physical barrier of the net as both treated and untreated nets are assumed to have physical integrity 
(untreated nets are meant to have the same dernier as the LLIN under investigation and the same 
number of standard man-made holes). Untreated net arms are typically included as a control arm in 
every experimental hut trial. Assuming that this excess blood feeding inhibition is due to an LLIN-
caused TFI effect, adding such an effect to the Imperial College malaria transmission model, in a 
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similar vein to the previous two chapters, will give a clearer picture of any epidemiological role of 
TFI. 
 
In Chapter 4, I showed that the TFI effect from emanators used at night drastically increased emanator 
effectiveness, because the majority of mosquito biting usually happens while people are in bed. An 
LLIN-caused TFI would also benefit from this fact; the loss of LLIN mortality could be offset if most 
mosquitoes that would have died experience a TFI effect instead. The TFI effect reduces the size of 
the infectious mosquito population, causing a community protection effect by preventing mosquitoes 
from biting other people for a short while. Comparing the effects of pyrethroid resistance with and 
without an LLIN-caused TFI effect will show to what extent the expected increase in malaria 
transmission due to pyrethroid resistance will be mitigated by TFI. The adapted model will also be 
used to predict the outcome of a randomised controlled trial in a location with severe pyrethroid 
resistance, demonstrating how modelling TFI as a sub-lethal effect of LLINs can improve the 
predictions of LLIN impact in places with pyrethroid resistance. Finally, there will be a discussion of 
how measuring the severity of pyrethroid resistance could develop beyond bioassay survival, as well 
as the types of data which could be collected from future experimental hut trials to facilitate the 
understanding of the sub-lethal effects of LLINs. 

 
 
6.2 Methods 
 
6.2.1 Measuring excess blood feeding inhibition and how it changes with pyrethroid 

resistance 
 
To characterise the relationship between pyrethroid resistance and the excess blood feeding prevented 
by treated nets, experimental hut trials that directly compared treated and untreated nets were selected 
from a previous systematic meta-analysis of bioassay survival and experimental hut trial outcomes 
(Churcher et al., 2016). The dataset comprised of a selection of studies comparing standard 
pyrethroid-only LLINs and those with pyrethroid and the synergist chemical piperonyl butoxide 
(PBO). Treating nets with PBO is thought to inhibit the enzymes that allow pyrethroid resistance in 
mosquitoes, making the pyrethroid on the net lethal again to resistant mosquitoes (Gleave et al., 
2017). PBO LLINs have recently been recommended for widespread use by the WHO following 
demonstration of public health value over standard pyrethroid only LLINs (World Health 
Organization, 2015; Protopopoff et al., 2018). The actions of TFI can therefore be assessed in the two 
main classes of LLIN currently in use and widely distributed by national malaria control programmes. 

 
Table 6.1: The LLIN studies selected from the meta-analysis of Churcher et al. (2016) used in this analysis, comparing 
standard LLINs and PBO LLINs. 

Country Species Composition Study 
Cote D’Ivoire An. gambiae s.s. (Koudou et al., 2011) 
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Benin An. gambiae s.s. (N’Guessan et al., 2010) 

Benin An. gambiae s.s. (Corbel et al., 2010) 

Tanzania An. gambiae s.s. (Kitau et al., 2014) 

Nigeria An. gambiae s.s. (Adeogun et al., 2012) 

Togo An gambiae s.l. (Kétoh, 2016) 

Tanzania An gambiae s.l. (Malima et al., 2008) 

Tanzania An gambiae s.l. (Tungu et. al. Unpublished) 

Benin An. gambiae s.s. (Ngufor, N’Guessan, et al., 
2014) 

Benin An. gambiae s.s. (Pennetier et al., 2013) 

 
For each trial, the blood feeding inhibition caused by treated nets on top of untreated nets (referred to 
here as the ‘excess blood feeding inhibition’) was calculated as follows: 
 

! = 	
!$ − !&
1 − !&

		 6. 1		 

 

where !$  and !&  are the proportions of alive mosquitoes that had not been able to feed, collected 

from the hut with a treated or untreated net, respectively. The mortality observed in the hut with a 

treated net, *$, is converted into expected bioassay survival, +,-., using the relationship for An. 

gambiae s.s. mosquitoes derived by Churcher et al. (2016): 
 

+,-. = 1 −	/
01234(*$) − 0.634

4.497
< 	 6. 2 

 
A logistic mixed effects regression model was fitted to the data to explain excess blood feeding 
inhibition with other variables as fixed effects: bioassay survival, the number of times that the net has 
been washed, and treatment with PBO. Nets were either not washed or washed 20 times, with the 
number of washes chosen to mimic natural net deterioration. This is based on WHO guidance which 
states that washing a net 20 times is equivalent to reducing the concentration of pyrethroid on the net 
to the level that would be expected at the end of its useful life (Atieli et al., 2010a). The random effect 
component allowed the intercept to vary by study according to a normal distribution with mean zero 
and fitted variance parameter. This accounts for variation in excess blood feeding inhibition between 
studies. The regression model is as follows: 
 

01234(!) = 	>? +	>A+,-. + >BCDE +	>F(CDE × +,-.) +	>HIJ+ℎL+ + MN$&OP 6. 3 
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Where b is the amount of excess blood feeding inhibition, surv is the percentage of mosquitoes that 
survive a discriminating dose bioassay, PBO is an indicator variable for PBO treatment, washes 

indicates the amount of times that a net has been washed (takes the value of 0 or 20), and εRSTUV is the 

random effects term that captures variations in excess blood feeding inhibition between studies. 

 
6.2.2 Feeding inhibition in the malaria transmission model 
 
Experimental hut trials can measure blood-feeding inhibition in mosquitoes which enter the hut. 
However, LLINs prevent susceptible mosquitoes from entering huts with a treated LLIN (here 
referred to as deterrence). It seems likely that these mosquitoes are detecting the presence of the 
pyrethroid in the hut and taking avoidance action, but it is unclear whether the exposure of pyrethroid 
outside of the hut is sufficient to induce TFI. Given the lack of evidence here we make the 
conservative assumption that only those mosquitoes which enter the hut are exposed to high enough 
concentrations of the insecticide to induce TFI and that all mosquitoes being deterred away from huts 
with LLINs are able to refeed immediately. 
  
The probability that a mosquito acquires TFI after trying to bite someone under an LLIN for a given 

proportion of bioassay survival, +,-.WXY, is as follows: 
 
 

Z[[\] = -[[\] × 	! × +,-.WXY × ^L_J`[[\]	 6. 4 

 

Where -[[\]	is the probability that the mosquito is repelled away from biting an LLIN user. This 

probability scales independently with bioassay survival, as parameterised in Churcher et al. (2016). 

The value of ! (i.e. the scale of the TFI effect for a given level of resistance) is determined by the 
regression model in Equation 6.3 above. When the level of resistance is high, fewer mosquitoes will 
die but more mosquitoes will instead acquire the TFI effect. The function is scaled by bioassay 

survival so that when there is no resistance LLIN efficacy will remain unchanged. The ^L_J`[[\] 

parameter reduces  Z[[\] as LLINs age at a rate determined by the regression model. The rate will be 

chosen by setting the effect of 20 washes on excess blood feeding inhibition as occurring 

exponentially over 2 years. If J.aaaa[[\] is the average mosquito biting rate on LLIN users, the rate at 

which mosquitoes move into the parallel TFI compartments is: 
 

Z = J.aaaa[[\] 	×	Z[[\] 	×	bc	 6. 5 
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The equations that determine mosquito movement to and from the TFI compartments are the same as 

in Section 4.2.2, except now the value of the parameter Z is calculated using Equation 6.5 above 

rather than Equation 4.4.  

 
6.2.3 Predicting a randomised controlled trial outcome 
 
The randomised controlled trial used in this analysis was undertaken by Protopopoff et al. (2018) in 
Tanzania. Protopopoff et al. (2018) undertook an RCT in Tanzania with four trial arms of different 
vector control combinations: standard LLINs, LLINs treated with PBO (PBO LLINs), standard LLINs 
in conjunction with a single round of IRS (Actellic), and PBO LLINs in conjunction with single round 
of IRS (Actellic). The primary aim of the study was to test the effectiveness of PBO LLINs compared 
to standard LLINs in a setting with considerable pyrethroid resistance. The local mosquito population 
was sampled used entomological surveys, showing that it was overwhelmingly composed of An. 
gambiae sensu lato (94.5% of all mosquitoes caught). These mosquitoes had considerable pyrethroid 
resistance, with 91.2% mosquito survival in resistance bioassay tests. The Imperial model can predict 
the outcome of this RCT by replicating the trial conditions as closely as possible. Annual EIR in the 
model was scaled to produce the equivalent prevalence of infection observed in the baseline survey 
for the standard LLIN and PBO LLIN trial arms. The LLIN population coverage in each arm was 
adjusted to match the level recorded in the trial, such that the model predictions can be compared to 
the observed prevalence in the four follow-up surveys (collected over 2 years). The model used the 
seasonality profile for Kagera, Tanzania that was previously fitted to rainfall data at the admin 2 
(province) level (Griffin et al., 2010). The model ran 1000 times for each arm, using random draws 
from the previously fitted posterior distributions for other model parameters to account for variability 
in other parts of the model (see Section 1.3.3.3).  

 
6.3 Results 
 
6.3.1 Excess blood feeding inhibition from treated nets 
 
The uncorrected blood feeding rates in the experimental hut trials ranged from 0-56% for standard 
LLINs and 0-46% for PBO LLINs (Figure 6.1). Pyrethroid treated nets prevent a significant amount 
of blood feeding on top of that prevented by untreated nets across all resistance levels (Figure 6.2). 
The proportion of excess blood feeding prevented significantly decreases as bioassay survival 
increases, and this decrease is significantly slower for PBO LLINs than it is for standard LLINs 

(Table 6.2, >A and >F, both p values <0.001). The mean level of excess blood feeding inhibition is 

also slightly higher for PBO LLINs than standard LLINs (Table 6.2, >B). There was no evidence that 
nets that had been washed 20 times prevented less excess blood feeding than nets that had not been 

washed at all (Table 6.2, >H, p value = 0.741). Nets are washed 20 times before use in an experimental 
hut trial to emulate the decay in the concentration of pyrethroid on the net that would be expected 
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over its lifetime. This result suggests that the excess blood feeding prevented by both PBO and 
standard nets does not significantly decay over the life of the net in contrast to the level of induced 
mortality and deterrence which both decrease substantially between unwashed and washed LLINs. 

The value of the ^L_J`[[\] parameter in Equation 6.4 was therefore set to 1 for the rest of the 

analysis.  

 
Figure 6.1: Raw experimental hut data for bioassay test survival and mosquito blood feeding rates split by standard and 
PBO LLINs as well as the number of times that they have been washed. 
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Figure 6.2: The excess blood feeding inhibition caused by treated LLINs at different levels of pyrethroid resistance. Excess 
blood feeding inhibition is the proportion of mosquitoes that did not feed due to the chemical effects of LLINs rather than the 
barrier effect alone, as measured in untreated nets. Points show the observations from experimental hut trials and their 
corresponding 95% confidence intervals. The coloured lines and shaded areas show the model predictions using the mean 
parameter estimates (lines) and 95% confidence intervals (shaded area).  
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Table 6.2: Fitted parameter values for the fixed and random effects in the logistic mixed effects regression model described 
in Section 6.2.1. (*: significant at 95% confidence level) 

Parameter Description Fitted value  Standard error P-value 
>? (Intercept) Mean level of 

excess blood 
feeding inhibition 

3.148 * 0.309 <0.001 

>A (Bioassay 
survival) 

How excess 
blood feeding 
inhibition 
changes with 
bioassay survival 

-4.127 * 0.252 <0.001 

>B (PBO effect) Modifies the 
mean level of 
excess blood 
feeding inhibition 
for PBO LLINs 

Standard 
LLINs: 
baseline 
PBO LLINs: 
-0.486 * 

0.105 <0.001 

>F (PBO-bioassay 
interaction) 

Modifies how 
excess blood 
feeding inhibition 
changes with 
bioassay survival 
for PBO LLINs 

1.433 * 0.229 <0.001 

>H (Washes) Modifies the 
mean level of 
excess blood 
feeding inhibition 
for washed nets 

No washes: 
baseline 
20 washes: -
0.0193 

 
0.229 

0.741 

ε (Normally 
distributed random 
effect) 

Accounts for 
variation in 
observed blood 
feeding inhibition 
between trials 

Mean: fixed at 
0 
Fitted 
variance: 
0.709 

  

 
 
 
The probability of a mosquito acquiring the TFI effect after contact with an LLIN increases with 
pyrethroid resistance (Figure 6.3). At the same time, mosquito mortality and deterrence due to nets 
becomes less likely, while successful blood feeding and the TFI effect become more likely. For PBO 
LLINs the probability of a mosquito acquiring TFI rises only when mosquito bioassay survival is 
around 70%, PBO LLINs still cause significant mortality and deterrence up until this point (Figure 
6.3). Moving from the experimental hut data to the corresponding parameters in the malaria 
transmission model, the probability of the TFI effect occurring is largest at around 50% bioassay 
survival for standard LLINs and 90% for PBO LLINs (Figure 6.4). For both LLINs this is the point 
where the probability of the TFI effect has increased with resistance, but the probability of a mosquito 
being repelled has not been heavily reduced due to resistance yet. In the transmission model, as the 
LLINs age the mortality and deterrence effects decay, but the proportion of mosquitoes that acquire 
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the TFI effect remains the same after 20 washes (equivalent to 3 years of use) (Figure 6.2). This 
means that the TFI plays a bigger role relative to killing and repelling as the LLIN ages (Figure 6.5). 

 
 

 
Figure 6.3: The probabilities of each entomological effect occurring for a mosquito trying to feed on a human using an 
unwashed LLIN at various levels of pyrethroid resistance as characterised by experimental hut trials. Panel (A) shows 
results for a standard pyrethroid only LLIN whilst (B) represents a PBO LLIN. Shaded regions indicate the percentage of 
mosquitoes being killed (blue), deterred (green), exit without blood feeding but able to start another feeding attempt 
immediately (yellow) exiting unfed but having temporary feeding inhibition (TFI, purple) or blood-feeding and surviving 
(red).  

 
 
 
 

 
Figure 6.4: Illustration of how the model parameters change with the level of resistance. Results are similar to Figure 6.3 
but here mosquitoes being deflected from the LLINs and not having TFI are combined (i.e. deterred and exited mosquitoes) 
and the parameters take into consideration that not all mosquitoes successfully take a blood meal when an unprotected 
person is sleeping in an experimental hut. The probabilities that a mosquito will die (^[[\], blue), be repelled (-[[\], 
orange), acquires TFI (Z[[\], purple), or successfully feeds (+[[\], maroon) per feeding attempt.  
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Figure 6.5: How the probabilities of each entomological effect change over the effective lifetime of a net for mosquitoes with 
moderate pyrethroid resistance (25% bioassay survival, top row) or high pyrethroid resistance (75% survival). The 
proportion of mosquitoes that receive a TFI effect is assumed not to decay over time in line with the results of Section 6.3.1. 
The effects are: death (^[[\], blue), repelled (-[[\], green), acquires TFI (Z[[\], purple), or successfully feeds (+[[\], red). 

 
 
6.3.2 Arguments for the excess blood feeding inhibition being caused by a TFI effect 
 
In this analysis, it is assumed that the excess blood feeding inhibition from treated nets is entirely due 
to a TFI effect, as discussed above. Experimental huts are often designed with one-way entry systems 
and veranda traps so that mosquitoes entering the house can be counted, allowing researchers to 
compare house entry rates between different huts. The experimental hut trial data analysed here does 
not specify whether mosquitoes caught in the veranda trap (or not - i.e. caught within the body of the 
hut) are blood fed or not. As discussed in Section 1.2.1.2, it is hard to disentangle the processes that 
are causing blood feeding inhibition in an experimental hut trial. In this case, the excess blood feeding 
inhibition could therefore be explained by mosquitoes entering the house, trying to exit again upon 
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encountering the net, becoming stuck in the veranda trap, and then remaining unfed. However, 
analysing the hut trial data provides several arguments that this is not the case, and that the TFI 
explanation of excess blood feeding inhibition is preferable.  
 
Firstly, if the number of mosquitoes caught in the veranda trap signifies that mosquitoes were trying 
to exit the hut, then we would expect more mosquitoes (of the ones remaining alive) to be caught in 
the trap when LLIN mortality is high. This is because mosquitoes would try to exit the hut because of 
the potent LLIN, or, because the mosquitoes that don’t exit are more likely to die. Either way, more 
mosquitoes should be found alive in the veranda traps when LLIN mortality and deterrence is high. 
However, the proportion of alive mosquitoes caught in the veranda trap actually decreases as LLIN 
mortality increases (Figure 6.6A). Secondly, the proportion of alive mosquitoes caught in the veranda 
trap increases as the proportion of alive mosquitoes that were blood-fed increases (Figure 6.6B). 
Therefore, it seems more reasonable to assume that mosquitoes caught in the veranda trap are trying 
to exit the hut because they have fed, rather than because of an effect from the pyrethroid on the 
LLIN. This is consistent with our TFI assumption: mosquitoes remain in the hut unfed but cannot 
respond to host cues and so cannot take a blood meal. 

 

 
Figure 6.6: Experimental hut trial data showing how the excess proportion of alive mosquitoes caught in veranda traps (in 
treated nets on top of untreated nets) varies with (A) induced mosquito mortality (as assessed by comparing mortality in 
treated and untreated arms) and (B) Blood feeding in huts with treated LLINs (calculated as 1 - the proportion of excess 
blood feeding inhibition in huts with a treated net over an untreated net). Lines show predictions (and 95% confidence 
interval) from fitting a simple linear regression model between the two variables. These values are taken from the same 
dataset used for the mixed effects regression model, the sources are described in Table 6.1. 
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6.3.3 Epidemiological impact of the TFI effect 
 
The Imperial model that has been expanded in this chapter was previously used to predict that 
increasing pyrethroid resistance is a large public health concern that will increase both the prevalence 
and incidence of malaria as the severity of resistance increases (Churcher et al., 2016). When LLINs 
fail to deter or kill mosquitoes, humans will experience more infectious bites that will develop into 
asymptomatic infections or clinical malaria episodes. In a scenario with a 10% baseline prevalence of 
infection in under-fives, mosquito bioassay survival increasing from 0% to 50% will increase the 
under-five prevalence to 25% three years after the arrival of resistance (with LLINs at 80% coverage). 
This translates to approximately 600 extra cases per year per 1000 people across all age groups. 
Introducing the LLIN-caused TFI effect calibrated above prevents some of this increase from 
occurring: the prevalence in under-fives is predicted to increase to 20% instead, i.e. the increase in 
slide prevalence due to resistance is ~150% without TFI and ~100% with TFI (Figure 6.7A). This 
equates to approximately a 33% reduction in cases over the three year life-time of the LLIN (Figure 
6.7B). Though the increase is substantially less than would have been the case if the TFI mosquito 
behaviour did not exist, the rise in malaria burden due to pyrethroid resistance is still considerable. 

 
Figure 6.7: The epidemiological impact of pyrethroid resistance is mitigated by an LLIN-induced TFI effect. In this scenario 
standard LLINs are distributed every 3 years starting at year 0. At year 6 mosquito bioassay survival increases from 0% to 
50% overnight. The black line shows the scenario where resistance never increases. The solid red line shows the predicted 
increase in (A) prevalence of infection in under-fives by microscopy and (B) clinical incidence per 1000 people per year in 
all age groups associated with the bioassay survival increase without a LLIN-induced TFI effect. The dotted red line shows 
the increase in each burden measured when including a LLIN-induced TFI effect in the model. Dotted green line indicates 
the prevalence at the time resistance arrives. 

 
Repeating the same scenario as in Figure 6.7 for bioassay survival between 0-100% and recording the 
mean clinical incidence between years 6 and 7 shows that as pyrethroid resistance increases in 
severity, the predicted rise in malaria burden grows larger (Figure 6.8). The rise in clinical incidence 
happens at a lower level of resistance for standard LLINs than for PBO LLINs. The malaria burden is 
only predicted to increase for a population using PBO LLINs when mosquito bioassay survival 
reaches around 70%. In the scenario considered here the presence of a TFI effect for standard LLINs 
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would cause a relative reduction in the increase in the number of cases in the first year from LLIN 
distribution by 27% in an area where there was 90% survival in a discriminating dose bioassay. 
Similarly, for PBO LLINs a TFI effect would cause a relative reduction in the increase in the number 
of cases by 22%. There is considerable benefit to switching to PBO LLINs between 70% and 100% 
bioassay survival when the LLIN-induced TFI effect is present (Figure 6.8). This range was only 70% 
to 90% when no TFI effect is present (Churcher et al. (2016), Figure 5A). At 100% bioassay survival, 
clinical incidence expected from PBO LLIN use is around half that of standard LLINs (Figure 6.8, 
Standard LLINs). Crucially, inclusion of TFI in the model indicates that PBO LLINs maintain good 
effectiveness, even with very high levels of resistance, whereas previous work suggested that the 
benefit was only at moderate levels of resistance.  

 
 

 
Figure 6.8: Changes in pyrethroid resistance reduces the effectiveness of newly distributed LLINs. Running the scenario in 
Figure 6.7 with bioassay survival ranging between 0-100% being introduced at year 6. Each line shows mean incidence in 
under-fives a year after 80% of the population are given LLINs (year 7). Dashed line denotes LLIN users only, dotted line 
denotes only people without LLINs, solid line denotes population average. Red lines are from the model without the TFI 
effect, blue lines are from the model with the TFI effect. 
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6.3.4 Comparison of model predictions to results of a randomised controlled LLIN trial 
 
Previous work has shown that the Imperial College transmission dynamics mathematical 
model parameterised with experimental hut trial data can broadly recreate the 
epidemiological patterns observed in a recently published RCT comparing standard and PBO 
LLINs. Nevertheless, the model was slightly optimistic in its predictions compared to trial 
results, particularly at the third timepoint (1.5 years following mass distribution). Including 
the LLIN-induced TFI effect in the model moderately reduced the predicted prevalence of 
infection in the follow-up surveys of the Kagera RCT, which improved the accuracy of the 
model predictions (Figure 6.9). The root mean squared error of the model predictions for 
standard LLINs were reduced from 0.070 to 0.014 when including the TFI effect in the 
model. For PBO LLINs, the root mean squared error of the model predictions were reduced 
from 0.034 to 0.004 when including the TFI effect in the model. The maximum difference in 
the predicted prevalence of infection in 0 to 15 year olds with or without the TFI effect was 
9.2% for standard LLINs and 7.8% for PBO LLINs. Now, for PBO LLINs the prediction 
interval for the prevalence over time includes all of the observed prevalence estimates from 
follow-up surveys when accounting for variation in the observation (Figure 6.9B). For 
standard LLINs the observed prevalence estimate third follow-up survey is still much lower 
than the model predictions when including the TFI effect. The additional impact of including 
the TFI effect increases over time, this is because the LLINs the mortality effect of the LLIN 
decays over time whereas the TFI effect does not (see Section 6.3.1). If less mosquitoes die, 
more will instead acquire TFI because there is still a smaller concentration of pyrethroids on 
the net.  
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Figure 6.9: Imperial malaria transmission model predictions for the impact of standard (A) and PBO (B) LLINs in the RCT 
conducted by Protopopoff et al. (2018) in Kagera, Tanzania. The coloured lines show the model predictions with (blue) and 
without (red) a TFI effect. The coloured intervals around the lines are the result of re-running the model using 1000 samples 
from the fitted posteriors of other model parameters. The circular points show the observed prevalence in the surveys 
conducted during the RCT and their corresponding 95% confidence intervals. 

 
 
6.4 Discussion 
 
This analysis found that treated LLINs in experimental hut trials cause considerably lower 
mosquito blood feeding than when evaluating untreated nets. This inhibition is reduced as the 
severity of pyrethroid resistance increases but is still present even at very high levels of 
bioassay survival. Assuming that this blood feeding inhibition was entirely caused by an 
LLIN-induced TFI effect led to modelling predictions that standard LLINs would maintain a 
slightly larger epidemiological impact when pyrethroid resistance increased than would 
otherwise be the case. Comparing the model predictions of the randomised controlled trial 
undertaken in Kagera showed that the TFI effect improved the model predictions but was 
unable to explain all of the discrepancy between observed bioassay survival and LLIN 
impact.  
 
The logistic mixed effects regression model found that PBO LLINs prevent more excess 
blood feeding inhibition than standard LLINs and maintain more excess feeding inhibition as 
resistance increases. For this reason, adding the LLIN-induced TFI effect into the Imperial 
College model predicted that the benefit of switching to PBO LLINs over standard LLINs is 
greater than previously thought (Figure 6.8). Churcher et al., (2016) found previously that 
areas with 40-90% mosquito bioassay survival could benefit from switching to PBO nets. In 
this analysis, when including the TFI effect, this range is extended to 100% bioassay survival. 
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Therefore, PBO LLINs could have a greater role to play as a vector control method for areas 
with extremely high resistance such as Kagera. These results also suggest that PBO increases 
the likelihood of TFI in resistant mosquitoes similar to mosquito mortality.  
 
Washing the nets 20 times, which markedly reduces its ability to kill and deter mosquitoes 
(Atieli et al., 2010b; Sheikhi et al., 2017), did not reduce the mean level of excess blood 
feeding that they prevented. Seemingly, the concentration of pyrethroid on the net needed to 
induce the TFI effect in mosquitoes can be relatively low. The mortality effect of LLINs 
decays more quickly when mosquitoes have pyrethroid resistance, and it is proposed that this 
is because the concentration of pyrethroids on the LLIN is quicker to drop below a level 
where it cannot kill the mosquito, reducing the epidemiological impact (Ochomo et al., 
2013). Further observations of mosquitoes that have acquired the TFI effect of pyrethroid 
contact could determine how the likelihood of TFI interacts with pyrethroid resistance and 
net age. 
 
Including the TFI effect in the model reduced the predicted public health impact of 
pyrethroid resistance, but this should not downplay the serious threat that resistance still 
poses to malaria control efforts (Sougoufara et al., 2017). Even with the TFI effect, there are 
still considerable increases in malaria transmission associated with greater levels of 
pyrethroid resistance. Since excess blood feeding inhibition is reduced as LLIN mortality 
decreases (Figure 6.2), it is possible that there will reach a point where the probability of a 
mosquito being susceptible to the TFI effect is low given the increasing prevalence and 
intensity of pyrethroid resistance. Further work is needed to assess this in mosquito 
populations exhibiting very high levels of resistance. Therefore, any malaria transmission 
currently prevented by the TFI effect on LLINs may eventually not be prevented as resistance 
intensity increases. Instead, these results should be seen as quantifying the epidemiological 
effects of sub-lethal effects of pyrethroids used in vector control. Understanding these effects 
is of particular importance now that it appears the endpoints of high mosquito mortality and 
deterrence are no longer achievable with the LLINs currently on the market. 
 
Sub-lethal effects of pyrethroids have remained underappreciated until now because they 
have a small epidemiological impact when pyrethroids cause significant mortality and 
deterrence. The excess blood feeding prevented by LLINs is greatest when they are the most 
effective at killing mosquitoes, resulting in few mosquitoes actually surviving to acquire the 
TFI effect (Figure 6.2). Sub-lethal entomological effects only become an important 
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consideration when considering malaria control in settings with pyrethroid resistance vectors. 
If there is no resistance, sub-lethal effects add little to the overall impact of pyrethroids. 
Similar results have been found in the modelling of Ivermectin (IVM) by Slater et al. (2014), 
who found that adding in additional sub-lethal effects of IVM to the Imperial College model 
(namely, reduced re-feeding rate and reduced sporogony) caused negligible changes in the 
predicted epidemiological impact of IVM. This makes sense, as the impact of reduced re-
feeding or sporogony cannot be realised; the mosquitoes die before this impact is observed. If 
IVM were to begin to lose its effectiveness at killing mosquitoes it would be interesting to 
see whether it would retain some of its public health impact, assuming that it still causes sub-
lethal effects. This is not a wholly hypothetical scenario, since a family of proteins 
responsible for pyrethroid resistance in anopheline mosquitoes also seems to play a role in 
ivermectin resistance in cattle ticks (Müller et al., 2008; Le Gall, Klafke and Torres, 2018). 
 
The excess blood feeding inhibition, which in this analysis has been fully ascribed to the 
LLIN-induced TFI effect, could be explained through alternative processes. For instance, 
behavioural changes in the mosquito could lead to their avoidance of an LLIN upon entering 
a hut and discovering the net (Sokhna, Ndiath and Rogier, 2013; Killeen and Chitnis, 2014). 
This would provide an alternative explanation as to why more mosquitoes are found alive and 
unfed in huts with treated nets in. Use of infra-red tracking technology found that pyrethroid-
susceptible mosquitoes changed their flight behaviour when approaching treated nets, but that 
mosquitoes stopped interacting with treated and untreated nets after a short period of time 
(Parker et al., 2015). The mosquitoes could not be followed up to determine if they could 
feed or would suffer delayed mortality due to pyrethroid exposure. The hut trial data shown 
in Section 6.3.2 provides some indirect evidence that some of the excess blood feeding 
inhibition is caused by the TFI effect rather than LLIN avoidance. There is also evidence that 
the duration of landings for An. quadrimaculatus are not significantly shorter on nets treated 
with some (but not all) pyrethroids compared to untreated nets, suggesting that these 
mosquitoes do not avoid treated nets (Cooperband and Allan, 2009). However further work 
will be needed to validate this assumption. Untangling the processes that lead to treated nets 
preventing blood feeding would require monitoring mosquitoes during and after experimental 
trials. For instance, repeating the infra-red tracking experiment with resistant mosquitoes 
would determine how, if at all, resistance changes the way that mosquitoes interact with 
LLINs. Future tracking technologies will be able to measure more specific attributes of 
mosquito flight behaviour that are linked to mosquitoes following odour cues, if this is 
possible then it might also be feasible to determine when a mosquito stops following any 
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odour clues and linking this to previous LLIN contact (Spitzen and Takken, 2018). 
Something approaching this has already been performed for Culex quinquefasciatus 
mosquitoes, which flew more slowly and turned more frequently during flight after 
pyrethroid exposure (Cohnstaedt and Allan, 2011). Alternatively, mosquitoes captured alive 
in experimental huts could be given an opportunity to feed as soon as possible to estimate the 
probability of LLINs causing the TFI effect. 
 
Including the TFI effect in the Imperial model improved the accuracy of using bioassay 
survival as way to predict LLIN impact in the field as the root mean squared error of the 
predictions from the Imperial model was greatly reduced, however there were only four 
observations in each arm of the trial. The prediction error was largest for the third follow-up 
survey for standard LLINs (Figure 6.9A). This could be because the Imperial College model 
needs to incorporate more sub-lethal LLIN effects, such as delayed mortality or reduced egg-
laying, to give LLINs a larger or more sustained impact. Future modelling work could 
investigate whether combinations of sub-lethal effects could explain any discrepancy 
between the severity of resistance and the effectiveness of LLIN use. An alternative 
explanation could be that other factors influencing malaria transmission were unobserved and 
different during the trial. For instance, rainfall could have been unusually low around the 
time of the third follow-up survey (mid 2016). Preliminary analysis of satellite rainfall data 
estimated that the rainfall between September and December 2016 in Kagera was around 
66% of the average rainfall in the same period in 2015 and 2017. This could have led to 
lower observed prevalence than the model prediction, since the model uses a rainfall curve 
averaged over many years. Nevertheless, the results presented here come from a single study 
and a broader approach including results from other RCTs is needed before we can determine 
whether including TFI substantially improves the predictive power of the model.  
 

6.5 Conclusion 
 
Given the observation of a LLIN-induced TFI effect in a laboratory setting it is highly likely 
that this effect is at least partially responsible for the considerable additional blood feeding 
prevented by treated nets over untreated nets. This analysis shows how such a TFI effect 
allows LLINs to retain some of their effectiveness that would be reduced by pyrethroid 
resistant vectors. While the TFI effect alone does not cause LLINs to remain effective enough 
to prevent serious increases in malaria burden, studying combinations of the sub-lethal effects 
of pyrethroids can help us to fully understand the implications of pyrethroid resistance on 
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malaria control effects. Characterising the sub-lethal effects of LLINs and how they interact 
with pyrethroid resistance in mosquitoes, will require modifying the protocols of 
experimental hut trials beyond monitor death and deterrence. Seeing as vector control tools 
utilising alternatives to pyrethroids remain some time from reaching approval and being 
distributed, it would be prudent to comprehensively understand how useful pyrethroids will 
be as a malaria control beyond the short-term. 
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7 General Discussion 
 
 
This thesis has investigated methods of estimating and reducing the malaria burden in the context of 
situations encountered by MSF: poor epidemiological data, small geographical scale, and 
considerable pyrethroid resistance. This has required the development of new statistical models 
(previously these methods have only been used twice in malaria epidemiology, looking at associations 
between rainfall and malaria incidence in China (Guo et al., 2015; Wu et al., 2017)), as well as 
extending the Imperial College malaria transmission model. These contexts are of interest because 
after nearly 20 years of renewed effort to control malaria using long-lasting insecticidal nets and 
indoor residual spraying, the decision-making process for those running malaria control programmes 
is moving away from broad top-down recommendations adopted at the country level and towards 
individualised programmes for smaller spatial units. This is for two main reasons. Firstly, the toolbox 
of malaria interventions has expanded to incorporate new ways of interrupting the transmission cycle, 
at different times of day, or against mosquito species with specific feeding behaviours (Hemingway et 
al., 2016; Killeen et al., 2017). How effective these new interventions are will depend on local 
demographic, entomological and geographical factors that are all spatially heterogeneous. Mapping 
malaria risk shows large variability in malaria risk even within communities (Bejon et al., 2014). 
Often, optimising packages of interventions at the province level rather than the country level leads to 
more cost-efficient results (Walker et al., 2016; Drake et al., 2017). Secondly, institutions such as the 
WHO are viewed as having been slow to respond to changes in the malaria landscape, such as the 
malaria parasite developing resistance to treatment or mosquitoes developing resistance to pyrethroids 
used on nets. The rigid and costly testing protocols often mean that the problem develops faster than 
any viable solutions to it. For instance, PBO LLINs have been under testing for nearly 10 years as a 
solution to pyrethroid resistance but have only recently been approved by the WHO (World Health 
Organization, 2015). While this was happening, some countries in Sub-Saharan Africa developed 
severe pyrethroid resistance in their local vector populations (Coleman et al., 2017). 
 
As a result of these two factors, national malaria campaign programmes and other institutions that 
decide upon malaria control strategy are starting to make their own choices using local data to try and 
decide upon the optimum approach to malaria control (malERA, 2017). This requires the ability to 
contextualise the local malaria burden geographically and temporally, as well as being able to 
measure changes in malaria transmission that happen after introducing interventions. In this thesis I 
have developed statistical approaches for both problems. Collecting adequate routine malaria 
surveillance data at a spatial resolution finer than the province level (provided by DHS surveys) is 
challenging, especially in areas with ongoing conflicts. Working in an area with an ongoing 
humanitarian crisis prevented MSF from being able to take cross-sectional surveys of the population 
(which are expensive and hazardous) or knowing up-to-date information about the local catchment 
populations of their hospitals. I showed how their routinely collected data from testing pregnant 
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women with RDTs could be used to a) compare the burden around MSF hospitals to province-wide 
estimates of burden (Chapter 2) and b) analyse trends in malaria burden over time, since ANC 
prevalence follows trends in the clinical incidence in under-fives (Chapter 3). As a direct result of this 
work, MSF have adopted monthly ANC prevalence as their metric for monitoring malaria at their 
field sites in Sub-Saharan Africa. This is an improvement on their previous use of case count data, as 
ANC prevalence is not directly biased by the size of the local population.  
 
Detecting small changes in ANC prevalence is only possible if a large number of pregnant women are 
sampled each month. This provides enough statistical power to rule out variation in the observed 
prevalence due to randomness introduced by finite sample sizes. There are several reasons to think 
that the changes in ANC prevalence caused by new interventions might be fairly small and therefore 
hard to detect. New interventions might target specific pockets of residual transmission that cannot be 
addressed by LLINs and IRS. In Chapter 4 I explored how emanators would fare at protecting people 
while they are in bed when LLINs cannot be used. Emanators have a much smaller impact than 
LLINs, since they are thought to lack the ability to kill mosquitoes. In Chapter 5 I showed that 
outdoor biting during the evenings could be responsible for continued malaria transmission in places 
where LLIN coverage is excellent. New insecticide chemistries are being tested such as pyriproxyfen, 
which reduces the egg-laying capacity of mosquitoes but does not kill them (Mbare, Lindsay and 
Fillinger, 2014). Such effects might have small overall impact on the prevalence of infection but 
could play an important role in a combination of vector control tools. Finally, it is likely that 
pyrethroid resistance in vectors will increase further and the epidemiological impact of pyrethroid-
based interventions will rely more and more upon sub-lethal effects, which can cause decreases in the 
prevalence of infection smaller than would be expected for fully-working LLINs. For instance, the 
impact of an LLIN-induced TFI effect is shown to be at most around a 10% prevalence reduction in 
the Kagera RCT in Chapter 6 (Section 6.3.4).  
 
In order to be realistic, future trials of vector control tools should compare populations using the new 
tool in combination with LLINs against populations using only LLINs (malERA, 2017). The 
additional impact of new tools on top of LLINs is predicted to be fairly small (Kiware et al., 2017). 
However, epidemiological trials are unlikely to be able to disentangle how much of the overall impact 
is due to each individual intervention, unless the trial has an unrealistic number of arms with different 
subsets of intervention combinations. The proposed solution to this is to use modelling to prioritise 
which vector control combinations should be tested against each other. The results presented in this 
thesis lead to several suggestions about how this modelling process could be expanded. 
 
Currently, new intervention methods that fall outside of an existing intervention class require 
empirical proof of their epidemiological impact as well as their entomological efficacy (World Health 
Organization, 2018). Trials demonstrating epidemiological impact make sure that the interventions 
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will be effective in the field, but they also happen to be the most expensive because they involve close 
monitoring of a cohort for a long period of time. They are also the efficacy of the intervention in a 
specific site against a specific vector population which may not be representative of the area the 
intervention will be deployed. However, formulations of interventions in an existing class only need 
to prove entomological efficacy (as well as safety) (World Health Organization, 2017a). If using the 
results of entomological testing could allow transmission models to make trustworthy predictions of 
the epidemiological impact of new classes of interventions, this could lower the financial and 
logistical barriers preventing new interventions from reaching the field in a timely manner. This could 
be supported by local routinely collected data (such as prevalence of infection in pregnant women) in 
places where interventions are trialled. 
 
Using entomological data to predict epidemiological impact accurately would require that 
experimental hut trials capture all of the entomological effects of new interventions on mosquitoes. 
As discussed in Section 6.4, experimental hut trials could be expanded to measure a temporary 
feeding inhibition effect by seeing if mosquitoes can feed in the hours following exposure. The 
mosquitoes caught alive and fed in a hut could also be followed up to see if they go on to lay eggs, 
which could demonstrate reduced egg-laying after exposure to insecticides. Mathematical models of 
malaria transmission would then need to demonstrate their ability to accurately predict the 
epidemiological impacts of interventions. All of the models mentioned in Section 1.3 are fitted to age-
prevalence profiles and have not been tested or built specifically for their ability to predict the results 
of RCTs, past or future. If these models are to be used to choose the optimum intervention 
programme, then further testing of their capability to accurately predict epidemiological impacts is 
required. There are changes that can be made to the Imperial College model in terms of structure and 
parameterisation that would help make its predictions more accurate. I make several suggestions most 
relevant to the work in this thesis below.  
 
In terms of calibrating the model to predict the results of a particular RCT, the model would benefit 
from a way of linking mosquito population density to the actual rainfall and temperature observed 
during the RCT. The model currently uses a curve that represents the shape of average rainfall, 
repeating each year. This is adequate for general predictions but not for trying to replicate the results 
of an intervention that actually happened. There is also room for demographic data collected during 
the trial to inform the values of other parameters in the model. For example, the parameters for the 
proportion of bites taken indoors or in bed were originally chosen based on two mosquito biting time 
studies available eight years ago. As I show in Chapter 4, small changes in the assumptions about how 
much of the population is outside during the evening can lead to big changes in the proportion of all 
bites taken in bed or indoors. Alongside entomological tests for pyrethroid resistance during RCTs, 
there could also be estimates made of the mosquito biting rates at different times of day.  
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Currently, the Imperial transmission model has a limited number of entomological effects, which vary 
with pyrethroid resistance depending upon the results of a simplistic assay. Firstly, mosquitoes 
currently die at a constant background rate based on the mean life expectancy of mosquitoes from the 
literature (Griffin et al., 2010). This life expectancy could instead vary with the level of exposure to 
pyrethroids (mitigated by the level of pyrethroid resistance in the vector). A more complex mortality 
bioassay could be performed in the field that repeatedly exposes to pyrethroids the mosquitoes that 
are not immediately killed. This would measure delayed mortality at the trial site (a simplified version 
of the experiments by Viana et al. (2016)). The delayed mortality test results could translate into a 
new mosquito death rate in the model after the intervention has begun. 
 
The birth rate of mosquito larvae in the model is dependent only on a seasonal carrying capacity, the 
mosquito feeding rate, and the mosquito death rate. The latter two parameters change with the 
introduction of LLINs that stop mosquitoes feeding and kill them. However, it also seems like that 
pyrethroid exposure could cause a separate reduction in mosquito fecundity. This would further 
reduce mosquito egg-laying dependent upon the level of pyrethroid exposure that mosquitoes 
experience. An age-dependent level of pyrethroid exposure could be calculated for a mosquito based 
upon how often they feed and how likely they are to be exposed to pyrethroids at each feed, given the 
current level of coverage for each pyrethroid-based intervention. Similar to the modelling work 
undertaken in Chapter 6, modelling the epidemiological impact of TFI, delayed mortality and reduced 
fecundity both alone and in combination could explain the continued effectiveness of LLINs in areas 
with pyrethroid resistant vectors. It would also be interesting to explore why LLINs may fail in some 
areas with pyrethroid resistance but not others, and how that failure could be understood in terms of 
the importance of these three sub-lethal effects varying across transmission settings.  
 
There is also a pressing need to understand how using volatile pyrethroids in emanators might 
contribute to the development of pyrethroid resistance in vectors. Alternatives to pyrethroids are 
chosen for IRS campaigns so that they do not put selection pressure on the local vectors. This is done 
to preserve the effect of pyrethroids on LLINs (for which there are no alternative chemicals available 
to put on nets) for as long as possible. If the pyrethroids released by emanators caused a similar 
selection pressure, this would bring into question their use alongside LLINs as a way of preventing 
outdoor evening biting. Resistance to the spatial repellent effect of transfluthrin has been artificially 
bred into lab-reared mosquitoes, this resistance also conferred resistance to tranfluthrin toxicity from 
higher concentrations in bioassays (Wagman, Achee and Grieco, 2015b). It remains unclear how 
repeated exposure to low concentrations of pyrethroids in the air will change resistance in the vector 
population. If vectors that are resistant to mortality induced by LLINs retain some sensitivity to 
volatile pyrethroids, emanators could ease selection pressure by reducing the overall level of exposure 
that mosquitoes have to lethal concentrations of pyrethroids. On the other hand, emanators might add 
to the selection pressure since resistant vectors will be more likely to be able to take a blood meal and 



 

 

141 

lay eggs (assuming that humans are the primary feeding target for the local vector population). The 
recommendations set out by the WHO for managing resistance envisage rotating the chemicals used 
for IRS campaigns and moving away from pyrethroid LLINs as soon as alternatives become available 
(Organització Mundial de la Salut Global Malaria Programme, 2012). New IRS chemicals could also 
be tested for their spatial repellent properties at low concentrations, as well as other properties 
required for use on an emanator such as volatility and safety to humans. These new chemicals will 
have new entomological modes of action that will need to be understood and measured, similar to the 
sub-lethal effects of pyrethroids, before they can be added to mathematical transmission models. 
Further work is needed to understand how humans interact with emanators in the field and to 
understand their full entomological impact before more accurate predictions can be made regarding 
their public health value. Evaluating emanators in well recognised assays such as experimental hut 
trials would provide answers to some of these questions even if the primary use case of emanators 
would for them to be used outside in conjuncture with LLINs.   
 
In this thesis I have been motivated to answer the type of questions that could be asked by non-
governmental organisations such as MSF as they begin to take a more preventative approach to 
malaria control. It is important to begin to answer these questions as thoroughly as possible, since it 
seems unfortunately probable that the humanitarian crises that MSF respond to in DRC and 
surrounding countries will continue. Hopefully, the concluding thoughts regarding how to monitor 
vector control impact for tools with new entomological impacts, or in difficult settings, will have 
wider applications in malaria modelling. There is still a lot to learn about the effects of pyrethroids, 
and these will increasingly come into play as resistance worsens. Coming to understand these 
processes better will therefore be beneficial in the future when trying to achieve malaria elimination. 
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Abstract 
Background: The number of clinical cases of malaria is often recorded in resource constrained or conflict settings as 
a proxy for disease burden. Interpreting case count data in areas of humanitarian need is challenging due to uncer-
tainties in population size caused by security concerns, resource constraints and population movement. Malaria 
prevalence in women visiting ante-natal care (ANC) clinics has the potential to be an easier and more accurate metric 
for malaria surveillance that is unbiased by population size if malaria testing is routinely conducted irrespective of 
symptoms.

Methods: A suite of distributed lag non-linear models was fitted to clinical incidence time-series data in children 
under 5 years and ANC prevalence data from health centres run by Médecins Sans Frontières in the Democratic 
Republic of Congo, which implement routine intermittent screening and treatment alongside intermittent preventa-
tive treatment in pregnancy. These statistical models enable the temporal relationship between the two metrics to be 
disentangled.

Results: There was a strong relationship between the ANC prevalence and clinical incidence suggesting that both 
can be used to describe current malaria endemicity. There was no evidence that ANC prevalence could predict future 
clinical incidence, though a change in clinical incidence was shown to influence ANC prevalence up to 3 months into 
the future.

Conclusions: The results indicate that ANC prevalence may be a suitable metric for retrospective evaluations of the 
impact of malaria interventions and is a useful method for evaluating long-term malaria trends in resource con-
strained settings.
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Background
Malaria remains endemic across large portions of the 
world, with an estimated 216 million clinical cases and 
445,000 deaths globally during 2016 [1]. This burden falls 
disproportionately on young children in countries where 
the climate is amenable to endemic malaria transmission 

[2], predominantly sub-Saharan Africa. The increased 
investment in malaria treatment and prevention, along 
with the diverse methods available for malaria control, 
makes the effective measuring of temporal trends in 
malaria burden critically important [3]. The effective-
ness of control interventions varies from site to site due 
to the epidemiology of infection and factors, such as the 
susceptibility of the local mosquito population to insecti-
cides [4]. Local control programmes need to monitor the 
impact of interventions to identify the optimum package, 
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justify future financial investment, and identify changes 
in transmission in a timely manner [5].

Africa-wide estimates of burden reduction have pri-
marily utilized cross-sectional survey data conducted by 
the Demographic and Health Surveys Programme [6, 7]. 
These surveys are undertaken at the province level, usu-
ally every 2–3 years, where children are tested for malaria 
in randomly selected clusters. Province-wide estimates 
can hide substantial spatial heterogeneity generated by 
local healthcare provision or local geographical, demo-
graphic or climatic differences, therefore, populations in 
some areas face higher malaria burdens than the prov-
ince-wide average [8, 9]. Finer scale estimates of burden 
can be collated passively using the number of malaria 
cases reported from local health centres. To gener-
ate meaningful incidence rates requires good estimates 
of the size of the health catchment population, which 
is unlikely to be available in many parts of sub-Saharan 
Africa. The problems are exaggerated in humanitar-
ian settings where populations may be highly transient, 
or size estimates hard to generate due to security con-
cerns or resource constrains. This is especially the case in 
‘open’ chronic conflict settings where displaced popula-
tions often live amongst the local population and not in 
a defined enclosed area or are frequently on the move 
due to insecurity. The prevalence of the malaria parasite 
in refugee and internally displaced populations is often 
higher than in local more stable populations due to ine-
qualities in resources and health provision [10].

A novel method for routine malaria surveillance could 
be the use of ante-natal care (ANC) data [11]. Such 
data are used in sentinel surveillance surveys for HIV, 
as it corresponds well with national HIV survey data of 
the same catchment areas [12]. For malaria, the preva-
lence of infection in pregnant women is strongly corre-
lated with the prevalence of infection in children under 
5 in cross-sectional survey data from across Africa [13]. 
During standard intermittent preventative treatment 
during pregnancy (IPTp) programmes, any woman 
that is symptomatic is tested by RDT and given arte-
misinin-based combination therapy (ACT), if they test 
positive. Any women who are not symptomatic or are 
test-negative are given chemoprevention in the form of 
sulfadoxine-pyrimethamine (SP). Since 2011, Médecins 
Sans Frontières (MSF) has rolled out a model of routine 
intermittent screening and treatment (IST) of all preg-
nant women combined with the IPTp-SP programme 
described above. This entails testing all pregnant women 
at every ANC appointment, women who are test-positive 
are given ACT and women who are test-negative are 
given SP (Fig. 1).

Since all women are tested regardless of symptoms, 
this reduces under-reporting bias due to the presence of 

asymptomatic infections. ANC programmes run by MSF 
in malaria endemic countries record the number of RDTs 
administered and the number of positive test results dur-
ing ANC appointments at each health facility or hospital 
every month.

Here, methods are developed to predict the relation-
ship between the prevalence of infection in pregnant 
women and the clinical incidence in children under 
5  years old, using field data collected at five MSF field 
sites in the Democratic Republic of Congo (DRC). There 
is population denominator data available at these five 
field sites, which is uncommon for many of the sites 
where MSF works and more widely across sub-Saharan 
Africa. Nested statistical models are used to investigate 
the relationship between ANC prevalence and clini-
cal incidence and determine whether this association is 
immediate or spread out over time. The utility of rou-
tinely collected ANC data for malaria surveillance and 
the evaluation of control interventions is then discussed, 
with special regard for settings where such denominator 
data are not available.

Methods
The data comprises time series from 5 different MSF 
health centres across the DRC for varying amounts of 
time between 2010 and 2016. These MSF missions vary 
in size and represent a mixture of hospitals, health cen-
tres and community clinics in the Great Lakes region; 
from North and South Kivu, close to the eastern bor-
der with Rwanda and Burundi (Baraka, Kimbi-Lulimba, 
Mweso and Walikale) and from the South-East province 
of Katanga, bordering Tanzania and Zambia (Sham-
wana, closed by the end of 2016). All sites are considered 
‘open’ humanitarian settings, i.e. areas of chronic conflict 
mainly from the ongoing Congolese civil war, including 
internally displaced peoples (IDPs) and with frequent 
population movement due to fighting.

The ANC prevalence time series is the number of 
pregnant women tested for malaria using RDTs and the 
proportion of these that tested positive. Data is collated 
each month and all women that attend ANC appoint-
ments are tested for malaria regardless of whether they 
are symptomatic. The second time series is the monthly 
clinical incidence in children under 5 confirmed by RDT 
(i.e. symptomatic cases arriving as outpatients that tested 
positive by RDT). The size of the under 5 population at 
Mweso, Walikale and Shamwana is estimated by MSF 
each month using population surveys. The size of the 
under 5 population at Baraka and Kimbi-Lulimba, which 
cover larger areas, is taken from national census data 
conducted during the period of investigation by the DRC 
Department of Health.
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An illustration of how the change in one metric may 
continue to influence another metric in the future (a 
lagged effect) is shown in Fig. 2. If one metric can affect 
another second metric for a long period of time, then the 
value of the second metric will depend on the current 
and historical values of the first metric.

A causal framework was utilized to characterize the 
relationship between ANC prevalence and clinical inci-
dence, as well as to determine the direction of the asso-
ciation between the two metrics. A variable X “Granger 
causes” Y if including past values of X in a predictive 
model of Y produces better predictions of Y than just 
using past values of Y alone [14]. The analysis follows a 
two-step process. Firstly, a Granger causality test is used 
to determine the direction of the association (whether 
changes in ANC prevalence can predict future changes in 
clinical incidence, or vice versa) as well as the duration of 
any lagged effect. Secondly, this relationship is then fully 
characterized using more complex statistical models to 
determine the magnitude of the lagged effects and how 
the association might change with disease endemicity.

A vector auto-regression (VAR) model is used to test 
for Granger causality between the two metrics, determin-
ing the direction and length of potential lagged effects 
between two or more time series [15]. Granger causal-
ity was tested for using a Wald test suitable for station-
ary time series [16]. The number of past observations 

that should be used in the VAR model (known as the lag 
order) is determined by finding the lag order that opti-
mizes some information criterion, usually the Akaike 
information criterion [17]. The VAR model with the 
optimum lag order was assessed for goodness of fit by 
examining the model residuals, performing a multivariate 
Portmanteau test to confirm that they are not correlated 
with each other and an autoregressive conditional het-
eroscedasticity test that looks for changing variance over 
time. The VAR models were fit using the package ‘vars’ in 
the R statistical software [16].

Distributed lag non-linear models (DLNMs) are used 
to fully characterize the relationship between the two 
metrics, these flexible models allow a “lagged effect” as 
well as an “endemicity effect” of one metric upon the 
other. The “lagged effect” means that the effect of the 
explanatory metric upon the response metric happens 
over time (with the effect size changing with respect to 
time), whereas the “endemicity effect” enables the rela-
tionship between the two metrics to change according to 
the level of disease (the effect size varies with the value 
of the explanatory metric) [18]. DLNMs are specified 
by choosing two “basis” functions, the first basis func-
tion describes the shape of the association between the 
two metrics at each point in time (the transmission effect 
basis), the second basis function controls the shape of 
the lagged effects in the model (the temporal lag basis, 

Fig. 1 Flowchart illustrating the difference between the standard intermittent preventative treatment during pregnancy using 
sulfadoxine-pyrimethamine (IPTp-SP) regimen and the expanded intermittent screen and treat plus IPTp-SP (IST+IPTp-SP) regime used by MSF in 
their ANC programmes in malaria endemic countries
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an example being Fig. 2b). These two functions are com-
bined into a “crossbasis” function that describes the rela-
tionship between the value of an observation, how long 
ago it was observed and what its current effect will be 
on the response variable [19]. The crossbasis function 
can vary in shape depending on the two individual func-
tions used to construct it. A crossbasis function can be 
written as s(xt−l, t − l; η), where xt−l is the observation of 
the explanatory variable l  months ago, t−l is the num-
ber of months since the observation, and η are the so-
called “basis parameters” which are the parameters that 
describe the shape of the two functions combined in the 
crossbasis. The crossbasis function can be included as a 
predictor in a generalized additive model with the follow-
ing form:

(1)
logit(E(Yt)) = α + hi +

∑L

l=0
s
(

xt−l , t − l; η
)

,

where E(Yt) is the expected value of the response vari-
able at time t (as determined by the Granger causality 
test outlined above), xt−l is the value of the explanatory 
variable at time t − l, α is a parameter determining mean 
difference between the two metrics, hi is the location-
specific modifier of the mean difference between the 
metrics for location i, and L is the optimal lag order 
found when fitting the VAR model (and takes a value of 
0 in models with no lagged effects). Different crossbasis 
functions (s(xt−l,  t − l; η)) made up of the two different 
basis functions are fit to the observed data and compared 
to determine the most parsimonious model. Two differ-
ent functions are used to investigate how the relationship 
between metrics changes with endemicity, i.e. the trans-
mission effect basis:

  • Linear basis: The simplest model assumes that the 
endemicity effect varies linearly with the explanatory 
metric.
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  • Hill function: A function flexible enough to fit the 
relationship between the incidence and prevalence 
typically observed in non-temporal data [20].

A choice of three different basis functions are used as 
the temporal lag basis:

  • No lagged effect.
  • Linear basis: The effect of a change in the explanatory 

metric increases or decreases linearly with respect to 
time.

  • Non-linear basis: A non-linear spline function that 
is penalized to produce a smooth curve, using penal-
ized splines has been shown in simulations to be an 
effective method of reconstructing a variety of lag-
exposure relationships when fitting DLNMs [21].

All combinations of endemicity effect and lagged 
effect basis functions are tested, giving a total of six dif-
ferent models. For clarity, each model is named with an 
acronym that represents its structure. The first two let-
ters of the acronym represent the function used for the 
transmission effect basis, this can be either LE for a linear 
function or NE for a Hill function. The second two let-
ters indicate the function used for the temporal lag basis, 
this can be LL for linear lagged effects or NL for non-lin-
ear basis spline lagged effects. If there is only one pair of 
letters then the model does not have lagged effects. The 
names of all six models are listed in Table 2.

Models were fit using the ‘dlnm’ package [22] for the 
R statistical software and the most parsimonious model 
was identified using AIC value. The predictive power of 
each model (its ability to correctly predict into the future) 
was compared use a rolling origin cross-validation 
method. This predicted a year of unseen data at a time, 
with the model being fit using all previous years of data at 
the given location and all the data from every other loca-
tion. The models can then be compared using the root 
mean squared error of their predictions.

Results
ANC prevalence and clinical incidence in children under 
5 across the five locations are shown in Fig.  3. Visually, 
it is clear that the temporal trends in the metrics are 
broadly the same, though the association has substan-
tial variability over time and between different locations. 
Baraka and Shamwana show pronounced seasonal pat-
terns in both transmission metrics, whereas the other 
sites do not show obvious seasonal variation in transmis-
sion. In Fig.  3 the sites are ordered from the northern-
most site to the southernmost site when moving from left 
to right along the top row and then the bottom row, there 

is a steep gradient in the degree of seasonality of malaria 
transmission when moving from north to south [23].

Different sites also have differing levels of ANC 
prevalence despite similar incidence rates in children 
under 5. For example, Shamwana and Kimbi-Lulimba 
have median observed clinical incidence rates in chil-
dren under 5 of 1.714 and 1.711 respectively, but their 
median observed ANC prevalence is 34.6% in Shamwana 
and 18.5% in Kimbi-Lulimba (Table  1). A direct cross-
sectional comparison of the two metrics each month is 
shown in Fig. 4.

The Granger causality test indicated that past clini-
cal incidence can significantly improve predictions of 
future ANC prevalence compared to past values of ANC 
prevalence alone (p = 0.002). Conversely, ANC preva-
lence was unable to predict future clinical incidence 
with significantly more accuracy compared to using past 
values of clinical incidence alone (p = 0.42). The subse-
quent analysis therefore uses clinical incidence in chil-
dren under 5 years as the explanatory variable and ANC 
prevalence as the response variable. The VAR model used 
for Granger causality testing also determined the length 
of the lagged effect (how many previous months of clini-
cal incidence in under 5  s are predictive of the current 
ANC prevalence), the VAR model with the optimum AIC 
value had a maximum lag value of 3  months (1  month 
AIC = − 6.544, 2  months AIC = − 6.556, 3  months 
AIC = − 6.581, 4  months AIC = − 6.574). Since the dif-
ference in AIC values between the models with different 
lag values was not large enough to decisively prefer one 
model, the later DLNM model NENL was also fit using 
maximum lag values of 1, 2 and 4 months (see Additional 
file 1).

The “NENL” model provides the best fit (in terms of 
both AIC value and out-of-sample predictive power) 
indicating that changes in clinical incidence impact 
ANC prevalence non-linearly according to the level of 
endemicity, and that these effects manifest themselves 
(again non-linearly) immediately and over the subse-
quent months (Table  2). The 3D relationship (crossba-
sis function) is shown in Fig.  5a whilst a representation 
of the temporal lag basis function is depicted for various 
endemicity levels in Fig. 5b. The lagged effects are signifi-
cant for 3 months, with the effect size being greatest in 
the month that the change in incidence is observed and 
then decreasing over time. The best fitting model that 
uses non-linear splines to model lagged effects (NENL) 
is an improvement, albeit a smaller one, upon the similar 
model that uses a linear function to model lagged effects 
(NELL). The non-linear lagged effects (NENL) estimate 
that incidence has a bigger effect on ANC prevalence 
with 1 and 2  months lag than the linear model (NELL) 
predicts (Fig. 5b).
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Allowing the relationship between clinical incidence 
and ANC prevalence to be non-linear substantially 
improves model fit (Table 2). A graphical representation 
of the out-of-sample predictive power of the best “NENL” 
model is shown in Fig.  6. Though the best-fit model is 

unable to predict small changes in prevalence the over-
all trends are well captured. How well the model cap-
tures trends in prevalence is demonstrated both when the 
model is fit to all available data and when using the roll-
ing origin cross validation technique, where predictions 

Fig. 3 Time series data from the five different settings used in the analyses. The solid black line shows the recorded clinical incidence rate in 
children under 5 years old each month (cases per child per year). The dotted black line shows the recorded anti-natal clinic prevalence recorded 
each month with the red shaded area indicating the 95% confidence intervals using the normal approximation method. Data are available for 
different durations in the different settings

Table 1 Summary of the time series data collected during the same month from the different DRC settings

The population size of the catchment area (used to convert case numbers into clinical incidence rates are and the number of women attending anti-natal clinics (ANC 
visits) are summarized using the median value. The longitudinal time series is shown graphically in Fig. 3

Location Number of data points 
in time-series

Median 
population size

Median monthly 
ANC visits

Median monthly ANC 
prevalence (%)

Median incidence in children 
under 5 years (minimum, 
maximum)

Baraka 69 71,238 636 17.3 0.929 (0.199, 5.24)

Mweso 60 65,867 1074 5.7 0.277 (0.059, 1.854)

Walikale 23 31,536 437 11.3 2.072 (1.112, 4.986)

Shamwana 72 36,000 455 34.6 1.714 (0.129, 9.397)

Kimbi-Lulimba 24 15,812 582 18.5 1.711 (0.451, 4.028)
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Fig. 4 Cross-sectional relationship between prevalence of infection in pregnant women attending anti-natal clinics (ANC) and clinical incidence 
in children under 5 years reported at the same site. The small circular points show the raw monthly values, coloured by location. The large square 
points show the same data aggregated by calendar year. The coloured curves show a simple non-linear relationship between the two metrics with 
no lagged effects (equivalent to model NE) and corresponding 95% confidence interval

Table 2 Summary of  the  different distributed lag non-linear models (DLNMs) characterizing the  relationship 
between clinical incidence and ante natal clinic (ANC) parasite prevalence

The second and third columns indicate the shape of the basis function used to characterize how the relationship is influenced by endemicity and the lagged effect. 
Models are compared using Akaike information criterion (AIC, lowest value in italic indicating most parsimonious model) and root mean squared error (RMSE, lowest 
value in italic indicating most predictive model)

Acronym Endemicity effect Lagged effect Number of parameters AIC RMSE (rolling 
cross-
validation)

LE Linear No lagged effects 6 3859.2 0.0667

LELL Linear Linear 7 3116.6 0.0563

LENL Linear Non-linear 13 3116.0 0.0564

NE Hill function No lagged effects 8 3499.8 0.1126

NELL Hill function Linear 9 2982.0 0.05434

NENL Hill function Non-linear 15 2978.9 0.05431
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are made using the history of infection from the last year 
or more.

Discussion
Clinical incidence in children under 5  years old could 
predict ANC prevalence but not vice versa. This matches 
our current understanding of the epidemiology of 
malaria. Clinical incidence in children under 5  years, 
who have low levels of malaria immunity, is likely to 
closely reflect the incidence of new infections and thus 
be a good proxy for the current intensity of transmis-
sion. Conversely, in pregnant women an infection, and 
associated HRP-2 antigenaemia, can persist asympto-
matically for a prolonged period of time. Since pregnant 
women are being tested routinely, regardless of symp-
toms, ANC-based prevalence is likely to be a measure 
of exposure accumulated in preceding months [24, 25]. 
This is consistent with the findings of this analysis where 
high clinical incidence rates in under 5  s were associ-
ated with an increased risk of a positive RDT in preg-
nant women for the next 3  months, as well as a recent 
study demonstrating that in areas of sustained, seasonal 
transmission a substantial proportion of women attend-
ing ANC appointments remain infected throughout the 
dry season [26]. The models that assumed a non-linear 
relationship between clinical incidence in under 5 s and 
ANC prevalence were superior in terms of AIC value and 

out-of-sample predictive power. The best-fit function 
produces a curve whereby increasing clinical incidence 
in children under 5 is approximately linearly associated 
with larger effects upon ANC prevalence up until around 
3 cases per child per year, where it begins to plateau. 
This shape has been observed in multiple cross-sectional 
surveys comparing malaria prevalence with clinical inci-
dence [20]. This is likely a product of heterogeneity in 
mosquito biting (some people are bitten substantially 
more than others) leading to repeatedly infected people 
developing asymptomatic infections (so new infections 
occur in people already infected meaning that there is no 
change in prevalence).

Due to the changes in the model fit between sites (sig-
nificantly different h parameter values), the model cannot 
currently be used to predict ANC prevalence from inci-
dence alone. For example, the best fitting model system-
atically under-predicted the level of ANC prevalence in 
Walikale, which has similar rates of incidence in children 
under 5  s as seen in Shamwana but much lower ANC 
prevalence (Fig. 3). Some of the differences between sites 
may be accounted for if there was more precise ANC 
data on factors known to affect the epidemiology of 
malaria in pregnancy such as timing of gestation [27] and 
parity. The sensitivity of malaria RDTs are known to vary 
depending on the number of children that a woman has 
already had, with more children meaning a likely history 
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NELL (allowing a comparison between the linear and non-linear lagged effects)
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of exposure to the parasite during pregnancy and a devel-
oped placental immunity [28]. Alternatively, the varia-
tion between sites could be attributable to poor incidence 
estimates at some locations due to sparse health systems, 
insecurity, inaccurate estimates of population size, or 
short-term population movement into areas of higher 
risk (e.g. forested areas). Analysis of mobile phone data 
in malaria endemic countries shows large-scale popula-
tion movement within and between countries [29, 30]. 
The infrequency of national census surveys may there-
fore limit the accuracy of incidence estimates derived 
from these surveys. However, census data was only used 
for two of the sites in the MSF dataset and the incidence 
recorded at those two sites (Baraka and Kimbi-Lulimba) 
was not unusual when compared to the other locations. 
To redress some of the uncertainty in the data, the NENL 
model was fit using several different maximum lag values 
(see Additional file  1), with the general results remain-
ing the same for maximum lag values of 2 or 4. How-
ever there is still uncertainty in the data that the current 
model is unable to capture (Fig.  6). The analysis should 
be repeated as more data become available in order to 
reduce uncertainty in the model and refine predictions 
(Additional file 2).

These results have practical implications for the pro-
posed use of ANC prevalence as a tool to monitor 
malaria. This method has established, at these 5 sites 
at least, that ANC prevalence seems to be a promising, 
simple, and cost-effective measure of recent malaria inci-
dence. This has important applications in humanitar-
ian settings and beyond. Good quality population size 
estimates are difficult, expensive to obtain, and are only 
available in a small number of sites where MSF operate. 
ANC data is much more widely available, and this work 
suggests it should be used to monitor recent trends in 
malaria endemicity over simple case count data alone. 
As an illustration of its importance it was unclear from 
hospital case counts data whether malaria transmission 
was increasing in sites in Eastern DRC around Baraka or 
not. Case counts had risen dramatically, though this may 
have been because of increased investment by MSF (for 
example the use of mobile malaria teams to diagnose and 
treat the wider population) or a true increase in disease 
transmission. The spectrum of mosquitoes resistant to 
pyrethroid insecticide and the possibility of the spread 
of drug resistant parasites means that local control inter-
ventions need to monitor secular trends in transmission 
regularly and tailor their programmes to maintain good 
levels of control. Examination of ANC data in these sites 

a b

Fig. 6 The results of the out-of-sample prediction for the best fitting “NENL” model. This uses at least one previous year of data as a training dataset 
before trying to make out-of-sample predictions for the subsequent years. a The coloured lines show the observed ANC prevalence each month at 
each location and their corresponding 95% confidence interval. The black line shows the model predictions of the ANC prevalence when the model 
was fit using all data. The grey band shows a 95% confidence interval for the rolling origin cross validation technique. b Points show a comparison 
of observed ANC prevalence and the corresponding out-of-sample predictions, coloured by site. Lines around the points show the 95% confidence 
interval for the observations and out-of-sample prediction. The black line shows a perfect correspondence between observation and prediction
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during this period would have provided a simple, unbi-
ased method of raising concerns over recent increases in 
transmission. This method also provides a way of singling 
out changes in incidence that should be matched by a 
corresponding change in ANC prevalence, but this does 
not happen. For example, a change in reporting capacity 
or surveillance may induce an increase in incidence, but 
this would then not be followed by an increase in ANC 
prevalence so those responsible for monitoring malaria 
can be confident that the increase in incidence was not 
due to increase in overall transmission.

Humanitarian organizations and other bodies are 
regularly trialling new methods of malaria control in 
specific areas to try and meet local needs. For example, 
MSF have used mobile malaria teams, community-based 
malaria management and different models of health cen-
tre support in different areas of the DRC. The evidence-
base to support these interventions is lacking due to the 
huge expense and infeasibility of conducting large RCTs 
in some areas. The full effect of a sustained decrease in 
transmission due to an intervention may not be observ-
able in ANC prevalence measurements until several 
months after it begins, therefore availability of routine 
ANC data from a strategy of IST alongside IPTp in area 
where the intervention is introduced, combined with the 
model outlined here, could provide a low-cost measure of 
triaging new interventions to see which should go on for 
more thorough investigation.

ANC prevalence was found not to be useful for pre-
dicting future incidence in children under 5  years old, 
so there is no evidence to support its use in predicting 
future malaria trends from this work. However, it may 
be that combining ANC prevalence with other data such 
as the amount of rainfall may allow for models with bet-
ter predictive power, though this analysis is beyond the 
scope of this work. In the future, it would be beneficial 
to invert the relationship used in this work to use ANC 
prevalence to predict past trends in incidence, useful in 
many of humanitarian contexts discussed where cases or 
denominator populations cannot be reliably recorded.

Conclusions
This work found that time-series data of clinical inci-
dence in children under 5  years predicts future preva-
lence of infection in pregnant women, but not the other 
way around. Increases in clinical incidence were associ-
ated with increased risk of a positive RDT in a pregnant 
woman for the next 3  months, with the opposite being 
true for decreases in incidence. This helps us to under-
stand the role that ANC prevalence can play as a tool for 
retrospectively examining how malaria transmission has 
changed in a location over time. Though ANC prevalence 
derived from routinely collected clinical data may not 

directly reflect clinical incidence rates calculated from 
accurate population data, this analysis establishes that 
it does correspond to recent trends in malaria transmis-
sion and provides a simple to collect metric in situations 
where good malaria data is sparse, such as chaotic, rap-
idly changing humanitarian crises.

Additional files

Additional file 1: Figure S1. A table of the values of four information 
criteria for different lag orders, used to determine the lag order of the VAR 
model. Figures S2–S4. Copies of Fig. 4 whereby the NENL model is fitted 
to data using a lag order of 1, 2, or 4 months. Figure S5. A copy of Fig. 4 
using the NELL model described in the analysis rather than the NENL 
model.

Additional file 2. This dataset contains monthly time series data for all 5 
MSF locations, including ANC visits, ANC prevalence, and clinical incidence 
in children under 5 years old.
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