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Abstract

A virtual childbirth simulator is normally associated with a computer analogue of
mechanical mannequins used for training purposes in obstetrics. Such a simulator
would allow acquiring a deeper understanding of the labour and the necessary
expertise for students in obstetrics. A patient-speci�c childbirth simulator, in
turn, would be capable of predicting di�cult birth scenarios in advance based
on the ultrasound or magnetic resonance imaging scans of the maternal pelvis
and fetus. This would give the midwives time to prepare for the predicted worst-
case scenarios and potentially reduce morbidity and mortality of both babies and
their mothers. The existing virtual childbirth simulator successfully simulates
physiologic labour. This thesis is concerned with taking the software one step
closer towards being a patient-speci�c virtual childbirth simulator and to simulate
di�cult birth scenarios.

The core content of this thesis is concerned with the development of computa-
tional fetal neck models. A number of neck models were developed and tested in
the simulator. The methods used to simulate the fetal neck are the following: ball
and socket joint for intervertebral discs, spring-and-damper systems for ligaments
and six-degrees-of-freedom bushing element to simulate a coupled behaviour of
the discs, ligaments and neck muscles. The latest one-pivot neck model is using
a six-degrees-of-freedom bushing element to simulate the behaviour of the fetal
head. The developed neck model, together with the approximated complete me-
chanical properties of the fetal spine, facilitated running the experiments with a
higher variety of biomechanical parameters such as the neck's length, strength
and a full range of fetal biparietal diameters. The experiments are reported in
this thesis.

An additional simulation software, using haptic devices, was developed specif-
ically for validation of the developed computational neck models. The software
allows manipulating of a virtual fetal head on the screen, using two haptic devices.
It is used to validate the resistance of the fetal head, during �exion, extension
and rotation. It was clinically tested by midwives and obstetricians at the hospi-
tal. The results showed that the software is capable of replicating biomechanical
properties of a newborn's head motion, with the help from the clinicians.

xiv
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Experiments were conducted to validate the accuracy of the Total Lagrangian
Explicit Dynamics (TLED) contact method, used in the software, against Abaqus
software. The validation setup consisted of a �nite element cube and a rigid body
plate, pushing vertically down on the cube with a gravitational force of 9.81N.
Similarly, the experiment was repeated for a rigid body sphere pushing on the
top of the cube. The results showed that TLED is less sensitive to the number
of tetrahedral elements as compared to Abaqus Explicit contact method.

Another set of experiments were conducted for resolving a direct occipito-
posterior position (OP) of the fetal head, which is considered to be a di�cult birth
scenario. In OP midwives advise their patients to tilt their pelvises anteriorly
to help with labour. This method was experimentally tested in the childbirth
simulator and the results showed that tilting a pelvis anteriorly could potentially
ease the dilation during the �rst stage of labour. However, no signi�cant di�erence
was observed as compared to the non-tilted pelvis during the second stage of
labour.

Experiments were run to observe shoulder dystocia in the childbirth simulator.
Initially it was not possible to observe shoulder dystocia due to the rigid fetal
trunk coming into contact with the maternal sacrum. A number of adjustments
were made in order to allow the rigid fetal trunk to follow the fetal head, such as
increasing the fetal shoulders to the averabe width, cutting the trunk in half and
disabling the spring keeping the trunk vertical. Shoulder dystocia was observed
in the simulator even in the absence of the complete birth canal, articulated fetal
shoulders and �exible fetal chest.

Finally, a new maternal pelvis was introduced in the software with a mobile
sacrum. The sacrum was attached to the rest of the pelvis using the six degrees-
of-freedom bushing element. The e�ects of the sacrum mobility on a childbirth
were studied. The results show that a mobile sacrum contributes toward the full
internal rotation of the fetal head during a childbirth, whereas the absence of the
mobility leads to the arrest of the head in the anteroposterior diameter of the
pelvis.



Chapter 1

Introduction

1.1 Background and Motivation

Virtual reality (VR) based forward-engineered1 childbirth simulators can be used

as a training ground for future obstetricians and, more importantly, to predict

di�cult labour in advance. One of the advantages of such a virtual simulator over

a mechanical mannequin2 is that a teacher is not required to be present in order

for a student to observe and learn di�erent birth scenarios. More than that,

the simulator would allow to experiment with a virtual fetus to gain su�cient

experience and, at the same time, to avoid harming real patients and their babies

during labour due to lack of necessary expertise.

The existing simulation software BirthView (see Figure 1.1) includes the fol-

lowing models: rigid body fetal skull, rigid body maternal pelvis, basic neck

(implemented with Hooke's Law), �nite element (FE) deformable cervix, pelvic

�oor muscles and sacrospinous ligaments. It has been developed by Lapeer's

research group at the University of East Anglia (Lapeer et al., 2014).

Currently the simulator is capable of successfully simulating the following

cardinal movements in the way they are described in the mainstream obstetrics

literature: engagement, descent, �exion, internal rotation, extension, restitution

1Reverse engineered simulations use superimposed trajectories of the motion of a simulation
object and are animations rather than simulations. With regard to the reverse engineered
childbirth simulation the trajectory of descent of the fetal head is prede�ned or replicated from
the observed real life scenarios (see Figure 1.2).

2Such as ESP Advanced Childbirth Simulator (https://esp-models.co.uk)

1
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Figure 1.1: UEA virtual childbirth simulator (Lapeer et al., 2019).

and external rotation. However, the obstetrics literature (Chamberlain, 1995) is

not always in line with the underlying research in that area (Dietze, 2001) as

discussed in Section 1.2.5. Thus, visual observance of the cardinal movements as

they are described in the literature is not su�cient to claim that the simulation

occurs in a realistic way. In addition, the simulation has only been validated with

a single gynecoid pelvis, although admittedly it has also been validated with a

few varying parameters of ligaments' tone and head dimensions. The ultimate

purpose of the software is to simulate abnormal scenarios for predicting di�cult

labours and to make the simulator patient-speci�c. Therefore, more validation

and experimental studies are required for both normal and abnormal scenarios.

In this thesis the simulation software will be improved with a better neck

model, a mouldable pelvis and validated for both normal and abnormal scenarios,

namely, persistent occipito-posterior position. By doing so we addressed some

of limitations and future plans mentioned by Gerikhanov (2017) in his thesis.

Contributions of this thesis are discussed in more detail in Section 1.6.1.

To this point the validation of the simulation has been primarily done visu-
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Figure 1.2: An example of an imposed trajectory applied to a fetal head. Image
from Jing et al. (2012).

ally by referencing the description of the cardinal movements in the mainstream

obstetrics books, which in turn can di�er in the way they describe the occurrence

of the cardinal movements. Furthermore some of these books do not provide

references to the conducted research and experiments, which contributed to the

understanding of the labour process and cardinal movements in particular. Con-

sequently, it was deemed necessary to �nd the papers describing these experiments

in pursuit to establish validation criteria.

Borell and Fernström (1957a,b, 1958, 1959) carried out numerous radiographic

studies of human labour using a specially constructed delivery table, which al-

lowed simultaneous x-rays to be taken laterally and antero-posteriorly. As indi-

cated by Dietze (2001) there are certain limitations of the studies such as small

sample size up to 40 women, unusual delivery position, complete restriction of

movement, lack of privacy etc. Nevertheless, according to Dietze (2001) the

radiographic studies by Borell and Fernström (1957a,b, 1958, 1959) are widely

referenced and most of them have not been replicated by other researchers and it

may not be possible to do so due to ethical reasons. Therefore these radiographic

plates would be very useful for validation of the childbirth simulation.

Both Ulf Borell and Ingmar Fernström worked at the Department of Diag-

nostic Roentgenology and the Department of Women's Diseases at Karolinska

Sjukhuset (Hospital), Stockholm, Sweden. As indicated in the paper by Dietze

(2001), the radiographic plates taken by Borell and Fernström were re-examined

by Hans Ohlsen (Ohlsén, 1973), who also worked at the Department of Diagnos-

tic Roentgenology at the same hospital. We contacted Karolinska Hospital and,
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unfortunately, it seems like the plates no longer exist. Nevertheless the reported

results are still used for validation.

Another study by Bamberg et al. (2012) describes the relationship between

the fetus and the pelvis as the fetus travels through the birth canal, using an open

magnetic resonance imaging (MRI) scanner. To the best of our knowledge these

are the only images available for validation purposes. Unfortunately, some critical

parts of the fetus, such as the cervical spine, are not visible on the presented

images in the sagittal plane. Moreover, the study has been conducted for one

labour only, therefore, validation results cannot be generalised. Based on the

results published by Borell and Fernström (1958) (see Figure 1.14) it is fair to

assume that labour can progress in multiple ways and one cannot completely rely

on a single study.

It is worth mentioning that the simulation presented in Lapeer et al. (2019)

is in line with �ndings of Borell and Fernström (1957a).

The following subsections provide information on the process of human child-

birth labour, anatomy of the newborn spine and the maternal pelvis.

1.2 Human childbirth labour

It is important to brie�y cover the fundamentals of human childbirth labour

such as what labour is, stages of labour, presentations, position and cardinal

movements in order to understand the context of this project and the validation

criteria.

1.2.1 Stages of Labour

Human childbirth labour is divided into three stages (Symonds, 1992; Chamber-

lain, 1995):

• During the �rst stage of labour the uterine contractions gradually widen

the cervix until it is fully dilated (see Figure 1.3). In case of a cephalic

presentation, the dilation is followed by the fetal head entering the birth

canal. It is worth mentioning that during the �rst stage of labour the

fetal head may change its shape due to the pressure in the birth canal.
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Figure 1.3: First stage of labour.

This phenomenon is known as the fetal head moulding (Lapeer and Prager,

2001).

Figure 1.4: Second stage of labour.

• The second stage, or stage of expulsion starts when the previous stage

terminates and ends with the birth of the fetus (see Figure 1.4).

• After the fetus is born, the third stage, or placental stage commences and

ends with the delivery of the placenta (see Figure 1.5).

This project is concerned with the second stage of labour only.
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Figure 1.5: Third stage of labour.

1.2.2 Presentation

Presentation of a fetus refers to which anatomical part of the fetus is leading

during human childbirth labour. When the head is the leading part, the pre-

sentation is termed cephalic. If the head is well �exed, the presenting part is

the vertex (sub-occipito-bregmatic diameter1/see Figure 1.6). If the head is fully

extended, there is a face presentation (sub-mento-bregmatic diameter), and if it

is partly extended, there is a brow presentation (vertico-mental diameter). The

brow is de�ned as the area between the base of the nose and the anterior fontanelle

(Chamberlain, 1995; Symonds, 1992).

1.2.3 Position

Position describes the relationship of a denominator of the presenting part to the

right or left side of the maternal pelvis (Chamberlain, 1995). In case of a vertex

presentation, position describes the relationship of the occiput to the maternal

pelvis. Symonds (1992)/see Figure 1.7 describes the following 6 positions for

vertex presentation:

• left occipito-anterior (LOA)

• left occipito-transverse (LOT)

1The diameters of the skull are used to indicate the presenting part
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Figure 1.6: Fetal Head Diameters: OF - occipito-frontal, SOB - sub-occipito
bregmatic, SOF - sub-occipito frontal, SMB - sub-mento bregmatic, MV - mento-
vertical, SMV - sub-mento vertical.

• left occipito-posterior (LOP)

• right occipito-anterior (ROA)

• right occipito-transverse (ROT)

• right occipito-posterior (ROP)

1.2.4 Mechanical View

The developed simulation software approaches labour as a mechanical problem or

to be more precise as a biomechanical one. This means that the laws of physics

are applied to labour to simulate the process as close to reality as possible. This

includes calculation of forces and respective displacements of rigid bodies and

deformation of soft tissues. In addition it is worth mentioning that the fetus is

considered to be passive, i.e. the fetus is compliant with the surrounding bony

structures and soft tissues as it moves down the birth canal. However, the author

must admit that the fetus might be performing certain movements re�exively as

a reaction to external impact (Dietze, 2001).
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Figure 1.7: Positions of the head in vertex presentation

1.2.5 Standard Cardinal movements

Cardinal movements or the mechanisms of labour are the passive movements

of the fetal head, which include change in position and orientation, during its

passage through the birth canal. A number of obstetrics books describe �ve

(Chamberlain, 1995), seven (Gabbe et al., 2012), eight (Symonds, 1992) discrete

cardinal movements:

1. Engagement (Gabbe et al., 2012);

2. Descent (Gabbe et al., 2012; Symonds, 1992);

3. Flexion;

4. Internal rotation;

5. Extension;

6. Restitution (Symonds, 1992; Chamberlain, 1995);

7. External rotation;

8. Explusion/Deliver of the shoulders (Symonds, 1992; Gabbe et al., 2012)
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The mechanisms of labour are extremely important for the validation of the

childbirth simulator.

Before we describe the mechanisms of labour, it is important to keep in mind

that there is no unique way of undergoing cardinal movements as we will see later.

Sometimes one can observe all of them, and sometimes the fetus tends to "skip"

certain movements (Dietze, 2001).

Engagement refers to the entrance of the widest diameter of the fetal head

into the smallest diameter of the maternal pelvis (see Figure 1.8). Engagement

does not always happen before labour, i.e. sometimes it occurs during labour. For

that reason it seems, Symonds (1992) combined engagement with descent.

Figure 1.8: Engagement
Figure 1.9: Descent and �exion

Descent is a measure of progress in labour and it must always happen for

the fetus to be born. It refers to the downwards motion of the fetal head through

the pelvis.

Flexion of the fetal chin onto the chest occurs when the head descends and

meets the soft tissues of the pelvic �oor. It produces a smaller diameter of presen-

tation, changing from the occipito-frontal diameter to the sub-occipito bregmatic

diameter (see Figure 1.6).

Internal rotation refers to rotation of the head when it hits the pelvic �oor

and, in most cases, the occiput rotates from its original position to the pubic

symphysis (Symonds, 1992). Occasionally it moves in the opposite direction

towards the sacrum. It is worth mentioning that Borell and Fernström (1958)

observed that following this rotation of the head the fetal shoulders also rotated

in the same direction.
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Figure 1.10: Internal rotation Figure 1.11: Extension

Extension. There is a di�erence in opinion about when and where the exten-

sion takes place. According to Symonds (1992) �the sharply �exed head descends

to the vulva and the base of the occiput comes into contact with the inferior rami

of the pubi�. He adds that the head then starts extending until it is delivered. In

contrast to Symond's observation, Borell and Fernström (1958) revealed in their

radiographic study that the fetal thoracic spine (back) extends during the ex-

tension stage, following internal rotation, and the fetal head remains �exed until

after delivery.

Restitution refers to the return of the fetal head to the correct anatomic

position in relation to the fetal shoulders. Gabbe et al. (2012) state that this

can happen to either side depending on the orientation of the fetus (see Section

1.2.3). They also refer to the restitution as the external rotation.

Figure 1.12: External rotation Figure 1.13: Expulsion

External rotation refers to the rotation of the fetal shoulders into the an-

teroposterior diameter. This is followed by the further rotation of the fetal head.
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Symonds (1992) claims that the rotation occurs when the shoulders reach the

pelvic �oor same as the internal rotation of the fetal head.

Gabbe et al. (2012) describe the rotation of the shoulders as a part of ex-

pulsion/delivery of the shoulders and Borell and Fernström (1958) refers to the

rotation as the second rotation of the shoulders. According to Gabbe et al. (2012)

after the delivery of the head and restitution, which they refer to as external ro-

tation, the anterior shoulder reaches the level of the symphysis pubis. Then the

anterior shoulder is delivered similar to the internal rotation of the head, with its

rotation under the symphysis pubis (Figure 1.20).

Finally Chamberlain (1995) describes the process as follows:

�As the shoulders descend the right and anterior shoulder is lower and

meets the resistance of the pelvic �oor before the left shoulder. The

right shoulder rotates to the space in front, as did the the occiput...�.

These descriptions complement each other.

Nevertheless, there is another opinion, given by Borell and Fernström (1958)

and supported by their radiographic studies on 40 women. In this study, in

most of the cases, the internal rotation of the fetal head occurred between the

ischial spines and the ischial tuberosities, whilst the second rotation of the fetal

shoulders occur well below that level. In addition according to Sellheim et al.

(1906) the fetal chest is more �exible in the lateral rather than in the dorsal

direction. Therefore, at the time of the passage of the middle part of the chest

through the curved part of the birth canal the second rotation of the shoulders

occurs. This claim has been supported by the radiographic studies by Borell and

Fernström (1958).

Hence, they suggest that the second rotation of the shoulders are not caused

by the same mechanism as the internal rotation of the head, but rather by the

fetal chest, which rotates in order to pass through the curved part of the birth

canal.

Expulsion completes the second stage of labour by delivering the fetal shoul-

ders, trunk and legs. Gabbe et al. (2012) described the second rotation of the

fetal shoulders as part of expulsion.
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1.3 Newborn Spine

For a detailed anatomy of the human spine see Appendix F.

The average length of the newborn vertebral column is 19 or 20 cm (approxi-

mately 40 percent of the total body length), excluding the sacral and coccygeal

vertebrae. The thoracic part constitutes a half of the entire vertebral column

in both newborn and adult and the lumbar part increases from a fourth in the

newborn to nearly a third in the adult (Crelin, 1973).

The vertebral column does not have any curves at birth and is extremely

�exible. According to Crelin (1973) it can be easily bent into a perfect half circle.

1.3.1 Newborn Cervical Vertebrae

1.3.1.1 Size

The cervical vertebrae of the newborn infant constitutes about a fourth of the

entire vertebral column, whereas in the adult the cervical part is reduced to a

�fth or a sixth of the entire column/see Figure 1.15.

1.3.1.2 Ossi�cation Centres

All cervical vertebrae, except the �rst (atlas) and second (axis) one, have similar

structure and are composed of three ossi�cation centres joined by hyaline carti-

lage. The atlas consists of �only two bony centres� and the axis is comprised of

four ossi�cation centres (see Figures 1.17, 1.16 and 1.18).

1.3.1.3 Intervertebral Discs

In contrast to the intervertebral disc of an adult, the nucleus pulposus of a new-

born constitutes the greater part of the intervertebral disc.
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1.4 Maternal pelvis

This section provides background information on di�erent pelvic types, anatomy

of pelvis and range of motion of sacrum and coccyx.

1.4.1 Pelvic types

Normally female pelvises are classi�ed into one of the following four pelvic types:

gynecoid, android, platypelloid and anthropoid.

Caldwell and Moloy (1938) describe them as follow:

• The anthropoid type resembles the long, narrow, oval pelvis of the anthro-

poid ape.

• The gynecoid type shows all the well-known architectural characteristics of

the normal female pelvis.

• The platypelloid type. This pelvis has a wide or transverse oval appearance.

• The android type bears a morphological resemblance to the human male

pelvis. The inlet is wedge-shaped or blunt heart-shaped.

However, according to Caldwell and Moloy (1938) many pelvises are a combi-

nation of the abovementioned pelvic types, when anterior and posterior segments

of a pelvis do not belong to the same type as shown in Figure 1.19.

1.4.2 Bony structure

The pelvis consists of four bones: the right and left hip bones, the sacrum or

sacroiliac (SI) body, and the coccyx (see Figure 1.20).

1.4.3 Mobility of the sacrum

The sacrum is connected to the rest of the pelvis through sacroiliac joints or SI

joints. The sacroiliac body has six-degrees-of-freedom and its origin lies midway

between the left and right posterior superior iliac spines (Goode et al., 2008).
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Smidt et al. (1995) systematically reviewed literature on mobility of the sacroiliac

joint and reported range of motion along three axes of motion. In this review, the

X-axis (transverse axis) accounts for sacral rotation in the sagittal plane, Y-axis

(longitudinal axis) for sacral rotation in the horizontal or transverse plane and

Z-axis (sagittal axis) accounts for sacral rotation in the coronal plane. Rotation

along the X-axis ranged from -1.1 to 2.2 degrees, along the Y-axis -0.8 to 4.0

degrees and along the Z-axis -0.5 to 8.0 degrees. Translations ranged from -0.3

to 8.0 mm along the X-axis, -0.2 to 7.0 mm along the Y-axis and -0.3 to 6.0 mm

along the Z-axis.

1.4.4 Mobility of the coccyx

The physiological movements of the coccyx are restricted to �exion and extension

(Maigne, 2002). Flexion refers to movement in a forward direction and extension

refers to movement in a backward direction. The mobility of the normal coccyx

of 47 volunteers has been reported to range from 0 to 22 degrees both for �exion

and extension (Maigne et al., 1994). Thirteen coccyges had an extension between

5 and 15 degrees and eight a �exion between 5 and 22 degrees. Twenty-four

coccyges had a very limited mobility between 0 and 5 degrees.

1.5 Hypothesis

The null hypothesis (H0) of this research is de�ned as follows:

H0: Variations of the mechanical properties of the fetal neck model and its

implementation should not have a signi�cant e�ect on the computer childbirth

simulation due to weak neck muscles and little resistance of the fetal neck in

general.

H1: Variations of the mechanical properties of a computer model of a fe-

tal neck and the implementation of the model itself can signi�cantly a�ect the

outcome of the virtual childbirth simulation.
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1.6 Thesis Overview

1.6.1 Contributions

1.6.1.1 Development of a virtual reality program to assess strength

and �exibility of a newborn baby's neck

A virtual reality program was developed to assess strength and �exibility of a

computer based model of a term fetus or newborn baby's neck. The software

has a haptic/force feedback user interface which allows clinical experts to adjust

the mechanical properties, including range of motion and mechanical sti�ness

of a newborn neck model, at runtime. The developed software was assessed by

ten clinical experts in obstetrics. The empirically obtained sti�ness and range of

motion values corresponded well with values reported in the literature.

1.6.1.2 Experimental study of resolving persistent occipito-posterior

position of a fetal head

The e�ects of tilting a maternal pelvis on resolving persistent occipito-posterior

position (OP) of a fetal head have been studied and reported.

1.6.1.3 Experimental study of cardinal movements with di�erent di-

mensions of a fetal head, tone of pelvic �oor muscles and new

gynecoid pelvis

The e�ects of varying simulation parameters and models on childbirth have been

studied and reported.

1.6.1.4 Experimental study of pelvic moulding

The e�ects of sacrum and coccyx moulding on childbirth have been studied and

reported.
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1.6.1.5 Improvement of the existing neck model in BirthView

The original previous one-spring neck model could only restrict motion in rotation

and compression/stretch. The improved neck model utilizes a six degrees-of-

freedom spring-damper constraint in order to allow restriction in all three planes:

sagittal, axial, coronal.

1.6.2 List of publications

In (Sadulaev et al., 2017) we developed a virtual reality program to assess strength

and �exibility of a computer based model of a term fetus or newborn baby's

neck. The software has a haptic/force feedback user interface which allows clin-

ical experts to adjust the mechanical properties, including range of motion and

mechanical sti�ness of a newborn neck model, at runtime. The developed soft-

ware was assessed by ten clinical experts in obstetrics. The empirically obtained

sti�ness and range of motion values corresponded well with values reported in

the literature.

In (Lapeer et al., 2019) we presented a virtual reality-based simulation soft-

ware of physiological childbirth. The results con�rm the potential of the simu-

lator as a predictive tool for problematic childbirths subject to patient-speci�c

adaptations. The author of this thesis was involved in validation of total La-

grangian explicit dynamics method used to calculate soft tissue deformation in

the simulation (see Section 4.5). In addition, the author was involved in running

experiments for di�erent positions of the fetal head in vertex presentation (see

Figure 1.7). For the full list of contributions please refer to Section 4.5.2.

1.6.3 Other contributions

1.6.3.1 A device for measuring neck ROM

We developed a device in order to facilitate measuring of the range of motion of

a fetal neck in three planes. The detailed description of the device is provided in

Appendix B.
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1.6.3.2 A clinical study of range of neck movements and muscle re-

sistance in healthy newborn babies

We produced a protocol to measure range of neck movements in healthy newborn

babies. The study was halted due to unforeseeable circumstances, however, the

protocol can be used as a reference for future similar studies.

1.6.3.3 CT scans of a 6 month old baby's skull and neck

We acquired CT scans of a 6 month old baby's neck in order to calculate the di-

mensions of cervical vertebrae and intervertebral discs. The data has been used

in the initial neck model. Since data of a younger baby was acquired later, the

dimensions have not been used in the latest simulation. Nevertheless although

by the age of 6 months a baby's neck is much stronger, considering lack of data

on newborn's CT scans, these obtained scans can be useful for future develop-

ment when a more detailed neck model is required for studying the e�ects of

the simulation on soft tissues around the cervical vertebrae, i.e. to identify neck

traumas.
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Figure 1.14: Diagram showing the positions of the fetal head and shoulders
(bisacromial diameter) in the di�erent stages of descent (Borell and Fernström,
1958). The upper diagram is showing the number of cases when the orientation
of the fetal shoulders was either sagittal, oblique or transverse, at certain stations
(positions), with respect to the pelvis. Similarly, the lower diagram is showing
the orientations of the fetal head with respect to the pelvis.
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Figure 1.15: Infant Spine. Image from Crelin (1969).
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Figure 1.16: Atlas. Image from Crelin (1969).

Figure 1.17: Axis. Image from Crelin (1969).

Figure 1.18: 4th Cervical Vertebra. Image from Crelin (1969).
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Figure 1.19: The four standard or pelvic types (Caldwell and Moloy, 1938).

Figure 1.20: Human pelvis (Drake et al., 2015).



Chapter 2

Literature review

2.1 Introduction to Literature Review

This section reviews the latest research in biomechanical modelling of both an

adult and pediatric cervical spine. It starts with describing the four main methods

of the computational neck modelling and then it looks at the existing biomechan-

ical neck simulation systems of adults. The conducted studies on the mechanical

properties of the fetal spine are then presented followed by the review of existing

computational models of newborn infants. Finally the studies on the range of

motion of a newborn spine are brie�y described.

Literature was primarily found through searches of related keywords in Google

Scholar along with forwards and backwards citation analysis.

The following subsection sets the context of this literature review and gives

an overview of what research has been carried out in the area of simulating the

birthing process.

2.1.1 Virtual childbirth simulators

Virtual childbirth simulators can be potentially used as a planning tool for birth or

an educational tool for students in obstetrics. A trivial example of the simulator

being used in planning the birth, would be taking MRI or ultrasound scans of the

maternal pelvis and the fetus, reconstructing their 3D models and running the

simulator. Alternatively, instead of manually reconstructing the models, there

22
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can be a library of the 3D models in the software, which allows selecting the

pelvic models with dimensions and shapes corresponding to the ones in the MRI

or ultrasound scans.

A more advanced simulator would run a dynamic process using an underlying

model based on the Finite Element Method (FEM) and by varying the uterine

contractions' force and frequency, the initial positions of the fetus and its shoul-

ders as well as modelling its neck's strength, it would be possible to assess the

level of risk for a physiologic birth, which would indicate that an assisted delivery

or a Caesarean section is required. Another example of using a simulator would

be to identify the maximum stretch ratio of the pelvic �oor muscles to indicate

the risk associated with stretch related pelvic �oor injuries during childbirth.

There have been very few studies on simulating the �rst (and the longest)

stage of labour, when the contractions become regular, the cervix dilates and the

baby moves into the birth canal. During the �rst stage of labour, the fetal head

subjected to pressures in the birth canal, may undergo deformation or moulding

into an oblong shape. In one of the studies by Lapeer and Prager (2001) they pre-

sented a non-linear model of the deformation of a complete fetal skull, under the

pressure of cervix. The results were in good agreement with clinical experiments.

On the contrary there are quite a few studies on simulating the second stage

of labour (Li et al., 2010), when the fetus is undergoing the cardinal movements

described in Section 1.2.5.

Li et al. (2008) developed �nite element (FE) models of the female pelvic

�oor muscles and the fetal head to simulate vaginal delivery to test if athletes

involved in high-intensity sports have a higher probability of being engaged in a

prolonged labour as compared to non-athletes. The results had shown that the

athletes required more force to push the fetal head as compared to non-athletes

(45% increase in peak force was observed for athletes). According to the authors

the purpose of the developed framework is to help clinicians assess the risk of

natural versus caesarean birth.

Hoyte et al. (2008) developed a model of female pelvic �oor muscles to study

the levator ani muscle (LAM) stretch during childbirth. The results had shown

that a maximum stretch was seen in the posterior-medial puborectalis. Also

maximum stretch was increased with increasing sti�ness of lateral levator attach-
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ments. A few more studies were done to predict LAM stretch during birth, which

mainly di�er in the representation of the geometry of the LAM and the fetal head

(Lien et al., 2004; Martin, 2007; Parente et al., 2009).

The above studies focused mainly on LAM stretch and by extension on the

di�cult birth scenarios related to the pelvic �oor muscles' overstretch. The mo-

tivation behind the following studies is to develop a generic childbirth simulator,

which is potentially capable of simulating LAM stretch as well as other di�cult

birth scenarios, such as shoulder dystocia, occipito-posterior position of the fetal

head etc. Such a simulator would require to run in real-time, include the pelvic

ligaments and �oor muscles and have articulated shoulders, arms� neck, spine

and chest for the fetus.

Gerikhanov et al. (2013) developed a childbirth simulator using only a rigid

pelvic model and a rigid fetal head model. The mechanical contact interaction was

implemented between the models. A number of experiments were run in the hope

to observe the cardinal movements, which are observed in real life during normal

labour. However only three out of seven cardinal movements were observed and

it was concluded that a more complex geometry of the models is required as well

as presence of the soft tissues, i.e. ligaments and pelvic �oor muscles.

Lapeer et al. (2019) improved the model by Gerikhanov et al. (2013) and in-

cluded the following models into their childbirth simulator: rigid body fetal head,

rigid body maternal pelvis, basic neck implemented as a spring, FE deformable

cervix, pelvic �oor muscles and sacrospinous ligaments. Similarly, a series of ex-

periments were run to test whether the simulator is capable of simulating all seven

cardinal movements. As a result the simulator did successfully display the seven

cardinal movements of the fetal head and trunk, which occur during physiological

labour.

2.2 Four main schemes of the computational neck

model

Finite element and multi-body modelling are the most popular modelling tech-

niques used for development of a computational model of a cervical spine (Jalalian
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et al., 2013). In addition, according to Lopik (2004) there are two more types

of head-neck models, namely, continuum rod and two-pivot models, which are

capable of simulating the general head behaviour, although less accurate than

FE and multi-body models.

2.2.1 Continuum rod model

A one-dimensional continuum model of the spine was created by Cramer et al.

(1976) as a curved homogeneous beam-column, which has in�nite degrees of free-

dom. The model is focusing on the pilot ejection problem, however, it is suitable

for any simulation with an acceleration applied in the midsagittal plane. A 10g

acceleration was applied to the torso to study its dynamic response. The model

predicted the con�guration history, the axial force, shear force, bending moment

and e�ective stress distributions along the spine for the impact situation. The

model predictions are said to agree with pilot ejection injury data.

2.2.2 Two-pivot (three bodies) models

Two-pivot models consist of three rigid bodies, the head, neck and torso. The

neck link represents the lumped properties of the seven cervical vertebrae.

Tien and Huston (1987) developed a three-body model of the head/neck sys-

tem, which simulated the gross motion of the head as accurately as the analogous

nine-body model by Huston et al. (1976). Springs and dampers were used in

order to simulated combined properties of the discs, ligaments and muscles. The

developed model was validated against sled1 experimental data (Ewing et al.,

1977). According to the authors, although the developed neck model is not able

to describe the mechanics of the neck in detail, it is capable of e�ciently predict-

ing global head positions and orientations. Similar two-pivot neck models have

been developed and validated by Bosio and Bowman (1986) and Wismans et al.

(1986, 1987).

1Sled test systems are used in automotive industries to reproduce the dynamic conditions
of a crash event in a controlled environment (Exponent, 2019)



CHAPTER 2. LITERATURE REVIEW 26

2.2.3 Multi-body models

In multi-body or discrete parameter models, head and vertebrae are represented

by rigid bodies, that are connected by massless spring and damper systems, rep-

resenting intervertebral soft tissues and muscles. Ligaments, discs, facet joints

and sometimes muscles are usually lumped together, resulting in computationally

e�cient modelling (Van Lopik and Acar, 2007).

Panjabi (1973) developed a general method for producing a discrete param-

eter model and constructing governing equations of motion of the spine structure.

The anatomic structure is represented by any combination of rigid bodies with 6

degrees of freedom and connecting tissues represented by springs and dampers.

Belytschko et al. (1973) developed a mathematical model for a three-

dimensional force analysis of the human vertebral column. The vertebrae are

represented as rigid bodies, while the discs, ligaments, and connective tissues are

represented by spring elements. An incremental sti�ness method which accounts

for nonlinearities due to large displacements is used.

Deng and Goldsmith (1987) developed a lumped-parameter model of the

human head, cervical vertebrae and upper torso (T1 and T2) with 15 pairs of mus-

cles. These rigid bodies were connected by lumped intervertebral joints, described

by a sti�ness matrix relating the force (moment) and translation (rotation).

De Jager et al. (1994) adapted Deng and Goldsmith (1987)'s head-neck

model and implemented the model in the multibody software package Madymo1.

The new model consisted of a rigid body head, neck (C1-C7) and �rst thoracic

vertebra. These were connected by linear viscoelastic intervertebral joints and

nonlinear elastic Hill type muscle elements.

Lopik (2004) presents development and validation of a detailed multi-body

computational model of the head and cervical spine of an adult in the upright pos-

ture. The model comprises nine rigid bodies: the head, seven cervical vertebrae of

the neck and the �rst thoracic vertebra. These are interconnected by non-linear

viscoelastic intervertebral discs elements, non-linear viscoelastic ligaments and

supported through frictionless facet joints. The model includes eighteen muscle

1Madymo is a worldwide standard software for the analysis of occupant safety in the auto-
motive and transport industries (Tass International, 2019).
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groups and 69 individual muscles.

Discs elements are represented by `bushing elements', which allows sti�ness

and damping properties to be assigned to a joint for every degree of motion.

Ligaments are modelled with spring-damper elements.

Lee and Terzopoulos (2006) introduced a biomechanical model of the hu-

man head-neck system for computer animation. The model consists of 7 cervical

vertebrae coupled by three rotational degrees of freedom (DOF) joints and 72 neck

muscles. A rotational damped spring has been attached to each joint in order to

simulate the sti�ness of the ligaments and disks using the following equation:

τs = −ks(q − q0)− kq q̇ (2.1)

where q is the joint angle, q0 is the joint angle in the natural, rest con�guration,

ks is the spring sti�ness, and kd is the damping coe�cient.

Numerical integration method: explicit Euler integrator.

To simulate the muscles, Lee and Terzopoulos (2006) employed a popular

muscle model in biomechanics research, which is known as Hill's muscle model

(Hill (1938), Zajac (1988)). In addition, a hierarchical neuromuscular control

model has been developed to simulate the biological motor control mechanisms

of the head (head stabilizing).

Luo et al. (2013) presented a similar physical human neck model, partially

based on the work of Lee and Terzopoulos (2006). The cervical vertebrae have

also been modelled as an articulated multibody system (using springs) and the

muscles have been implemented as a Hill-type muscle model as well.

2.2.4 Finite element models

Finite element models of the neck are able to model a highly detailed represen-

tation of a cervical spine geometry. Each anatomical component of the spine is

broken down into a number of deformable elements (�nite elements) with respec-

tive biological properties. However, these models are complex and have many

parameters and, hence, computationally less e�cient and di�cult to validate as

compared to the multi-body models (De Jager et al., 1994).
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2.3 Mechanical properties of the fetal/pediatric

spine

This section provides the most recent investigations of the mechanical properties

of the pediatric cervical spine.

Most of the studies available on the mechanical properties of the neck has been

completed using either full grown adults or juvenile animals. Nevertheless, there

are a few studies that have analysed the newborn spine under tensile, rotational

and bending loading conditions (Ouyang et al., 2005; Luck et al., 2008; Luck, 2012;

Nuckley et al., 2013a). In addition there is unpublished data provided by Prange

and Myers to Coats and Margulies (2008) through personal communication in

2004 describing the bending moment of the C4-5 segment from a 24-day-old

infant.

2.3.1 Luck et al. (2008)

A number of non-destructive and destructive tests under tensile loading con-

ditions, have been conducted by Luck et.al on post-mortem human subjects

(PMHS).

The non-destructive study has been conducted �rst on the osteoligamentous

head-neck complexes of eighteen PHMS infants aged from 20 weeks gestation to

14 years. Any musculature was removed from the cervical spine. Tensile testing

was initially conducted on the whole cervical spine and then it was separated

into three segments (O-C2, C4-C5 and C6-C7). After non-destructive tests were

completed, each segment was loaded until failure. The tensile sti�ness of the

whole spine ranged between 5.3 and 70.1 N/mm for all PHMS subjects and from

5.3 to 7.9 N/mm for infants. The entire cohort of specimen had an ultimate

strength for the upper cervical spine between 173.6 and 2960 N and for the lower

cervical spine from 142 to 1757 N (see Tables 2.1, 2.2, 2.3).

The acquired data supported the usage of juvenile animal surrogates (Pintar

et al., 2000; Ching et al., 2001; Nuckley and Ching, 2006) to fairly accurately

estimate the sti�ness of a paediatric cervical spine (Figure 2.1). However, the

surrogates may not as accurately estimate the spine strength.
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Figure 2.1: Tensile sti�ness (N/mm) of the upper cervical spine (O-C2) segment
from Luck et al. (2008) compared to three previous juvenile animal surrogate
studies

2.3.2 Ouyang et al. (2005)

Ouyang et al. (2005) also studied biomechanics of the paediatric osteoligamentous

cervical spine both on tension and bending. However, the test subjects ranged

from 2-14 years of age. Each specimen was subjected to quasi-static nondestruc-

tive �exion-extension bending tests with subsequent nondestructive tensile tests.

The nondestructive tests followed by tensile distraction loading to failure.

The failure loads from both studies (Luck et al., 2008; Ouyang et al., 2005)

compared well considering the same age group in test subjects. However, both

studies signi�cantly di�ered when compared to the results obtained in the study

by Duncan (1874), where �ve whole PHMS infants were subjected to tensile load

until decapitating. The failure loads of Duncan's study were twice as large as

those seen by Luck et al. This indicates that soft tissue structures in the neck

signi�cantly a�ect load bearing capacity of the newborn cervical spine. Similar

�ndings were found by Chancey et al. (2003) and Van Ee et al. (2000) that

musculature signi�cantly impacts the dynamics and failure properties of the adult

cervical spine in tension.
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2.3.3 Luck (2012)

A number of non-destructive tests under bending (�exion/extension) loading con-

ditions, have been performed by Luck et.al on twenty-two unembalmed cervical

spine cadaver specimens. The ages of the specimens ranged from 29 weeks gesta-

tion to 18 years old. The spines were sectioned into three segments (O-C2, C4-C5

and C6-C7). Each segment was tested under load both in �exion and extension.

The �exion sti�ness for the �rst segment (O-C2) ranged from 0.0033 to 0.0189

Nm/degree, whereas extension was between 0.0218 and 0.0164 Nm/degree for

perinatal, neonatal and pediatric PMHS (see Tables 2.1, 2.2, 2.3).

2.3.4 Nuckley et al. (2013a)

A number of non-destructive tests in tension, compression, �exion, extension, lat-

eral bending and axial rotation were performed on eleven human cadaver cervical

spines aged from 2 to 28 years old (see Tables 2.4, 2.5 and 2.6). The cervical

spines were dissected into segments: C1-C2, C3-C5 and C6-C7. After measuring

their intact biomechanical responses each segment was loaded to failure in order

to measure their tolerance in tension, compression and extension.
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Table 2.1: Biomechanics of pediatric cervical spine's section O-C2 (Luck et al.,
2008; Luck, 2012; Luck et al., 2013). Flexion and extension are given in Nm/de-
grees. Compression and tension are given in N/mm.

Specimen
Age

(month)
Flexion

(Nm/deg)
Extension
(Nm/deg)

Compression
(N/mm)

Tension
(N/mm)

02P 0
07P 0 0.0033 0.0218 4 11.9
08P 0 1.5 10.5
09P 0
10P 0
13P 0 0.0030 0.0050 1.5 12.2
05P 0.03 0.0012 0.0069 2.2 7.4
03P 0.1 1.8 11.2
06P 0.37 0.0180 0.0062 4.1 7.1
11P 0.53
04P 0.8 0.0058 0.0034 0.9 9.3
12P 5 0.0084 0.0180 9.9 14.5
14P 9 0.0084 0.0105 20.7 41.5
15P 11 0.0080 0.0103 36.5 54.4
16P 18
17P 22 0.0091 0.0316 41 64
24P 72 0.0122 0.0174 110.6
19P 84 0.0111 0.0223
18P 108 0.0076 0.0226 71.7 118.1
20P 144 0.0131 0.0234
01P 168 0.0145 0.0221 199
21P 192 0.0138 0.0266
22P 204 0.0150 0.0174
23P 216 0.0189 0.0164
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Table 2.2: Biomechanics of pediatric cervical spine's section C4-C5 (Luck et al.,
2008; Luck, 2012; Luck et al., 2013). Flexion and extension are given in Nm/de-
grees. Compression and tension are given in N/mm.

Specimen
Age

(month)
Flexion

(Nm/deg)
Extension
(Nm/deg)

Compression
(N/mm)

Tension
(N/mm)

02P 0
07P 0 0.0053 0.0754 27.4 46.1
08P 0
09P 0 0.0154 0.0220 18.6 50.6
10P 0 0.0071 0.0233 27.5 35.8
13P 0 0.0115 0.0164 33.1 61.4
05P 0.03 0.0142 0.0236 25.7 50.4
03P 0.1 40.3 54.2
06P 0.37 0.0101 0.0237 20.4 50.5
11P 0.53 0.0141 0.0233 19.2 35.5
04P 0.8 0.0135 0.0274 25.3 42.8
12P 5 0.0302 0.0236 32.8 58.2
14P 9 0.0212 0.0465 100.9 114.4
15P 11 0.0243 0.0599 109.8 141.8
16P 18 138.6
17P 22 0.0263 0.0512 93 153.1
24P 72 0.0294 0.0421 227.7
19P 84 0.0621 0.1388 179.2
18P 108 0.0306 0.1204
20P 144 0.0397 0.1963 180.5
01P 168
21P 192 0.0570 0.2029 202.9
22P 204 0.0463 0.1836 318
23P 216 0.0351 0.0896 235.9



CHAPTER 2. LITERATURE REVIEW 33

Table 2.3: Biomechanics of pediatric cervical spine's section C6-C7 (Luck et al.,
2008; Luck, 2012; Luck et al., 2013). Flexion and extension are given in Nm/de-
grees. Compression and tension are given in N/mm.

Specimen
Age

(month)
Flexion

(Nm/deg)
Extension
(Nm/deg)

Compression
(N/mm)

Tension
(N/mm)

02P 0
07P 0 0.0159 0.0299 21.7 44.4
08P 0
09P 0 0.0216 0.0273 24 36.7
10P 0 0.0083 0.0356 13.6 37.1
13P 0 0.0176 0.0155 22.7 39.4
05P 0.03 0.0451 0.0212 36.4 45.2
03P 0.1 10 42.2
06P 0.37 0.0249 0.0195 30.1 50.8
11P 0.53 0.0149 0.0215 39 61.5
04P 0.8 0.0072 0.0301 38.3 34.2
12P 5 0.0314 0.0224 22 43.5
14P 9 0.0176 0.0403 61.9 103
15P 11 0.0219 0.0291 91.7 107.6
16P 18 125.2
17P 22 0.0290 0.1642 86 93.1
24P 72 0.0279 0.0610 213
19P 84 0.0531 0.1518
18P 108 0.0339 0.0778 192.6 255.9
20P 144 0.0477 0.0790
01P 168
21P 192 0.0727 0.2824 189.6
22P 204 0.0545 0.1128 301.1
23P 216 0.0351 0.0758 282.5
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Table 2.4: Biomechanics of pediatric cervical spine's section C1-C2 (Nuckley et al., 2013b).

Specimen #
Age

(years)
Flexion
(Nm/rad)

Extension
(Nm/rad)

Lateral bend
(Nm/rad)

Axial rot
(Nm/rad)

Compression
(N/mm)

Tension
(N/mm)

C1-C2
01-109 2 � � 28.8 8.8 694.2 155.8
01-103 3 30.5 37.6 50.4 17.7 1031.3 141.8
01-108 5 � � 45.8 17.8 962.7 227.0
01-106 8 37.2 45.6 � � 1254.7 195.8
01-101 9 35.2 33.1 � � 1264.2 205.2
01-102 11 33.1 37.6 43.0 27.2 1778.9 252.9
01-110 13 42.2 48.4 60.7 27.2 1450.5 228.0
01-104 16 38.3 51.2 68.1 29.7 1317.2 211.1
01-111 18 44.2 52.0 71.7 28.7 1805.2 254.6
01-105 22 43.8 38.1 74.5 23.9 1409.1 268.4
01-107 28 � 50.4 65.6 16.1 2103.7 268.0



C
H
A
P
T
E
R
2
.
L
IT
E
R
A
T
U
R
E
R
E
V
IE
W

35

Table 2.5: Biomechanics of pediatric cervical spine's section C3-C5 (Nuckley et al., 2013b).

Specimen #
Age

(years)
Flexion
(Nm/rad)

Extension
(Nm/rad)

Lateral bend
(Nm/rad)

Axial rot
(Nm/rad)

Compression
(N/mm)

Tension
(N/mm)

C3-C5
01-109 2 18.3 12.3 23.7 7.9 393.0 95.0
01-103 3 21.3 22.8 30.8 15.5 585.5 108.1
01-108 5 27.4 16.7 32.0 18.3 682.5 131.5
01-106 8 21.0 21.2 37.3 20.0 916.2 185.5
01-101 9 � 29.6 29.9 18.4 733.5 139.3
01-102 11 31.5 25.7 34.9 16.1 986.2 129.3
01-110 13 31.7 24.1 33.6 18.8 863.7 �
01-104 16 29.6 21.6 39.2 18.1 � 251.2
01-111 18 33.2 29.8 34.7 20.3 1172.6 241.7
01-105 22 30.0 25.5 42.5 15.5 1167.7 229.5
01-107 28 � 24.0 42.1 25.5 1293.6 260.0



C
H
A
P
T
E
R
2
.
L
IT
E
R
A
T
U
R
E
R
E
V
IE
W

36

Table 2.6: Biomechanics of pediatric cervical spine's section C6-C7 (Nuckley et al., 2013b).

Specimen #
Age

(years)
Flexion
(Nm/rad)

Extension
(Nm/rad)

Lateral bend
(Nm/rad)

Axial rot
(Nm/rad)

Compression
(N/mm)

Tension
(N/mm)

C6-C7
01-109 2 10.6 10.0 21.6 15.9 537.3 167.7
01-103 3 45.3 47.5 41.3 30.3 � 178.8
01-108 5 26.4 18.9 42.5 28.2 760.1 264.1
01-106 8 19.4 42.5 55.2 33.2 1410.0 223.9
01-101 9 43.5 25.7 � 38.8 1025.0 240.9
01-102 11 28.7 56.7 51.3 41.6 1013.8 220.8
01-110 13 44.4 47.4 54.4 41.5 1203.0 271.2
01-104 16 41.6 58.2 44.5 30.0 1030.5 322.0
01-111 18 57.1 57.7 62.9 44.9 1418.3 349.0
01-105 22 54.4 � 63.0 39.7 1393.7 255.5
01-107 28 84.2 66.1 79.4 47.9 1498.6 406.9
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2.4 Existing computational models of newborn in-

fants

There are a limited number of computational newborn neck models due to paucity

of paediatric biomechanical data. Up until 2012 the existing computational mod-

els, mainly of anthropomorphic testing devices (ATDs) or crash test dummies,

have been utilizing either scaled adult or animal characteristics.

2.4.1 Q0 ATD �nite-element model

There are three popular newborn Anthropomorphic Test Dummies (ATD), namely

Civil Aeronautical Medical Institution (CAMI) newborn, the P0 and Q0. The

CAMI newborn weighs 3.4 kg and has a standing height of 50.8 cm. It was

designed for testing aircraft restraints. The P0 consists of a head, torso, arms

and legs as a single unit. The torso, arms and legs are a single moulded piece of

polyurethance covered with polyvinyl chloride (PVC) skin. The spine in this ATD

is represented with a steel spring. However, both the P0 and the CAMI newborn

are very simple ATDs and are of little practical value in terms of bio�delity and

subsequent accuracy (Bondy et al., 2014).

The Q0 represents a six weeks old baby weighing 3.4 ± 0.05 kg with a sitting

height of 35.5 ± 0.7 cm (First Technology Safety Systems, 2008). The ATD was

designed to accept impacts from any direction and allows measurement of the

upper neck forces and moments as well as accelerations of head, chest and pelvis.

The neck is a series of rubber and metal discs connected at one end to the head,

which is made of a polyurethane covered with a vinyl skin.

Humanetics has developed a �nite element model of the Q0 (Humanetics ATD,

2017), which according to Bondy et al. (2014) was the only computer model of

a small infant that was known to exist in 2014. The mechanical properties on

the �exion-extension of a neck were scaled from adult data published by Mertz

and Patrick (1971). The scaling factor was based on the study by Yamada et al.

(1970), who determined the calcaneal tendon sti�ness and failure stress for adults

and children.
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2.4.2 Nita infant model

A �nite element/multi-body biomechanical model of a newborn has been devel-

oped by Bondy et al. (2014), which was designed for an analysis of airway

patency for infants in modern automotive child restraints1. The geometry of

the model was derived from a Nita newborn hospital training mannequin, which

weights 1.81 kg and has a height of 40.64 cm. The model consists of 17 parts:

eight upper and lower limb segments, the torso, head, and a seven-segment neck.

The neck is comprised of seven shell rigid bodies using the properties of steel

and is a series of alternating spherical and translational joints. The joint sti�ness

properties of the neck are based on the publications by Luck et al. (2008), Coats

and Margulies (2008) and Ouyang et al. (2005). An initial Nita model incorpo-

rated data from Ouyang et al. to model the sti�ness of the neck under bending.

However, since the youngest subject in the study was 2 years old, the latest model

adapted data from Coats and Margulies (2008) to model the sti�ness of the neck

under bending, i.e. �exion and extension. Also the model directly incorporates

the Luck's force-displacement properties for the translational joints (Luck et al.,

2008). Finally the model has been validated against the studies of the biome-

chanics of shaken baby syndrome (SBS), infant falls and Q0 anthropomorphic

testing device (ATD).

2.4.3 MD Adams infant model

The computational model of a nine-month-old infant was designed for the inves-

tigation of infant head injury by shaking. The geometry of the model was derived

from serial sagittal magnetic resonance images (MRIs) from two infant subjects,

aged 2 weeks and four months. Both images were used to extract detailed dimen-

sions for the anatomical features of the head and scaled accordingly.

The infant spine (C0-L5) of the model is comprised of 24 cylindrical bodies

and 24 joints. Vertebral body heights and intervertebral spaces were selected

based on scaled data acquired from the MRIs. The size of the head is 2.3 kg

with centre of mass at 14.5 mm anterior and 33.5 mm superior to the C0 joint,

1The computer model may be made available ro researchers upon request through the
corresponding author (Bondy et al., 2014).
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in the sagittal plane. The locations of the head, torso and spinal rigid body

models corresponding to the data are derived from the MRI of the four month

old subject.

The cervical spine is attached to the head and torso by �xed joints at C0

and C7 respectively. Cervical spine joints are restricted to a single rotational

degree of freedom (�exion-extension). �Linear relationships are developed for the

quasi-static and rate-dependent vertebral sti�ness properties, in �exion-extension,

across all cervical joints�:

τ = −kθ − cω (2.2)

where k is quasi-static sti�ness, θ is angular displacement, c is rate-dependent

sti�ness or damping and ω is angular velocity.

In other words, a torsional form of a spring-damper model has been employed

in order to simulate the cervical spine.

The quasi-static �exion-extension sti�ness properties for a nine-month-old in-

fant were obtained from the paper describing child neck strength characteristics

using an animal model (Pintar et al., 2000) and is equal to 0.242 Nm/deg. The

rate-dependent sti�ness was identi�ed to be in range of 5-15 Nmm/s/deg, which

resulted in a simulation that conformed to a physiological range of motion de-

scribed in the paper by Jones et al. (2008).

The accuracy of the model was validated against paediatric motion analysis

data, collected from one female infant between 3 and 18 months, which also

included very gentle oscillations (shakes) at 9 months of age. The developed neck

model was assessed against the recorded motion of the head relative to torso.

Discussion Bondy et al. (2014) stated that the �nite element model of the Q0

ATD is the only computer model of a small infant that is known to exist. Q0 is

designed for frontal, side, rear crash con�gurations, which implies the existence of

calculated sti�ness coe�cients for the side rotation, �exion/extension and lateral

bending.

Nevertheless, the biomechanical properties of the newborn neck, was scaled

from the adult data. Also ATDs are designed to be robust and durable devices

that will not be easily damaged, which might a�ect the bio�delity of the model.
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The advantage of an infant model developed by Bondy et al. (2014) is that it

utilized data from the studies on mechanical properties of the pediatric cervical

spine, which obviously makes it more accurate. However, the model is signi�-

cantly smaller than the average newborn (Janssen et al., 2007). Furthermore, the

model is limited to bend in the sagittal plane only (�exion/extension).

2.5 Range of motion of an infant skull

It is essential to have information on range of motion (ROM) of infant skulls to

recognize extraordinary rotations during simulation. Reference values for range

of motion (side rotation and lateral bending) of the neck in infants have been

reported by Öhman and Beckung (2008). ROM was measured in 38 healthy

infants at the ages of 2, 4, 6 and 10 months. For side rotation the mean ROM

was 110◦ and for lateral bending it was 70◦. Mean measurements of rotation and

lateral bending for the abovementioned infant group is presented in Table 2.7.

Surprisingly, the mean ROM in the table tends to increase with age on rotation.

However, a bigger number of tested subjects at an extended range of ages may

lead to observing the opposite.

Table 2.7: Mean Measurements of Rotation and Lateral Flexion at the Ages of
2, 4, 6, and 10 Months

Mean 2 months (◦) 4 months (◦) 6 months (◦) 10 months (◦)
Rotation 105.2 111.8 112.4 111.7
Lateral bending 68.1 69.5 69.2 70

From Öhman and Beckung (2008)

Luck (2012) presented ROM under �exion/extension bending of the cervical

segments (O-C2, C4-C5 and C6-C7) in nine perinatal and neonatal specimens

(29 weeks gestation to 24 days old) and thirteen infant to young adult specimens

(5 month to 18 years old). Total ROM in �exion and extension was observed to

decrease with age as can be seen in Table 2.8 and Figure 2.2.

Note that segments C2-C3 and C5-C6 are not included in the table. Therefore,

the total ROM under �exion/extension bending would be bigger for the presented
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Table 2.8: Flexion and Extension Range of Motion (ROM) for Perinatal, Neonatal
and Pediatric PMHS from the paper by Luck (2012). In order to get the age in
days multiply by factor 30.4167.

.

PMHS
ID

Age
(months)

O-C2 C4-C5 C6-C7
ROM

(degrees)
ROM

(degrees)
ROM

(degrees)
07P 0 92.5 28.3 31.6
13P 0 95.9 25.9 28.9
05P 0.03 114.5 31.4 29.5
06P 0.37 92.0 28.4 21.5
04P 0.8 78.2 21.1 30.5
12P 5 52.7 16.1 15.2
15P 11 53.0 10.4 12.6
17P 22 47.1 12.0 7.6
24P 72 41.0 10.0 7.0
20P 144 28.4 3.5 3.9
21P 192 41.6 2.4 1.8

Figure 2.2: Flexion and Extension Range of Motion (ROM) for Perinatal, Neona-
tal and Pediatric PMHS for the cervical spine's segments O-C2, C4-C5, C6-C7
(Luck, 2012).

osteoligamentous segments. However, the real ROM may be signi�cantly smaller

as all neck musculature, subcutaneous fatty tissue, and skin were removed before

the testing.
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2.6 Conclusion

Several computational neck models and mechanical properties of the pediatric

cervical spine have been reviewed in this section. Firstly, although a few studies

are conducted and validated on the mechanical properties of infants, all of them

were limited to sagittal plane motion only, which corresponds to �exion/extension

bending. Secondly, the only computational neck model which attempts to simu-

late mechanical response of the fetal neck in axial and coronal planes is the Q0

ATD model (First Technology Safety Systems, 2008). However, the mechanical

properties of the neck in the model were scaled from adult data and require fur-

ther validation. To the author's best knowledge a validated computational fetal

cervical spine model suited for all possible rotations does not exist. Therefore,

there is a need for the development of a bio�delic fetal neck model capable of

accurately simulating a fetal neck response in any direction.



Chapter 3

Developing a computational fetal

neck model

3.1 Overview

This chapter covers the methods that have been employed in the validation of the

existing childbirth simulator and the development of a new computational fetal

neck model.

The following section describes the meshes used in the simulator, the sources

of raw data and the software/techniques used to process the models.

Then the methods used to predict the missing sti�ness values for a newborn's

neck are described. The next section describes the validation of a neck's range of

motion and the basic neck model.

The remainder of the chapter describes the developed computational neck

models and the software used to assess strength and �exibility of the newborn's

neck BirthViewH. The software is using two haptics devices (Phantom Omni) to

validate the resistance of the skull, during bending and rotation.

Finally the developed neck models are discussed together with the validation

from experimental studies.

43
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3.2 Methodology

3.2.1 Overview

This section covers the techniques and methods used in the development of the

fetal neck model. First and foremost, the methods used to acquire complete

mechanical properties of the fetal neck are discussed. Then the developed simu-

lation software BirthViewH is described used for the validation of computer neck

models. The methods used to simulate the behaviour of intervertebral discs and

ligaments are then described such as ball and socket joints, spring-damper sys-

tems and 6dof bushing elements. Finally the techniques and software used for

measuring range of motion (ROM) and validating motion of the computer neck

models are presented.

3.2.2 Complete mechanical properties of the fetal neck

3.2.2.1 Overview

This section is concerned with predicting the missing sti�ness values for newborns'

cervical spine segments. To the best of the author's knowledge, the only available

sti�ness data of newborns' cervical spine segments is published by Luck (2012).

The data for 0-18 years old samples are presented in Tables 2.1, 2.2 and 2.3 for the

following segments: O-C2, C4-C5, C6-C7. These tables contain sti�ness values

of the segments in �exion, extension, compression and tension. The only missing

values are for axial rotation and lateral bending. It is worth mentioning that,

although all these values were initially published in Luck's thesis, the �exion and

extension values have never been published anywhere else.

Nuckley et al. (2013a) measured bending sti�ness of the cervical spine seg-

ments (C1-C2, C3-C5 and C6-C7) of 2-28 years old samples in all planes, including

lateral bending and axial rotation (see Tables 2.4, 2.5 and 2.6).

In this section we combined the two datasets Luck (2012); Nuckley et al.

(2013b) in order to �nd the missing axial rotation and lateral bending sti�ness

values.

The initial method for �nding the missing values was multiple imputation
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(Heitjan and Little, 1991) using predictive mean matching, however, this did not

produce the expected results and yielded implausible values.

3.2.2.2 Inconsistency in units

The reported �exion, compression, axial rotation and lateral bending sti�ness

data by Nuckley et al. (2013a) were presented in Nm/rad and, therefore, needed

to be converted to Nm/degrees to correspond to the sti�ness data by Luck (2012).

The following equation is used in order to convert a radian into a degree:

αdegrees =
αradians

π
× 180◦ =

1

3.14159
× 180◦ ' 57.29578◦ (3.1)

In order to convert the sti�ness values from Nm/rad to Nm/degrees the former

needs to be divided by the calculated 57.29578. The values then were rounded

down to two decimal places as in Tables 2.1, 2.2 and 2.3.

3.2.2.3 Inconsistency in segments

Nuckley et al. (2013a) measured sti�ness of the following cervical spine segments:

C1-C2, C3-C5 and C6-C7. Luck (2012) measured sti�ness for O-C2, C4-C5 and

C6-C7. C1-C2 and O-C2 are directly comparable due to occiput being attached

to the �rst vertebra C1. However, C3-C5 and C4-C5 are not directly comparable

due to the fact that the former includes the additional segment C3-C4.

Figure 3.1: Springs in series

In order to �nd the sti�ness of C3-C4, we assume that all the segments,

starting with C3 and going all the way down to C7 are typical and similar to

one another (Bogduk and Mercer, 2000). The cervical spine segments C3-C4 and
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C4-C5 can be represented as two springs connected in series (see Figure 3.1) with

their corresponding sti�nesses equal to each other (k1 is equal to k2).

The following formula is used in mechanics to calculate the spring sti�ness

that is equivalent to a system of two springs in series:

1

keq
=

1

k1
+

1

k2
(3.2)

Assuming that k1 is equal to k2 (k12) we arrive at:

1

keq
=

2

k12
(3.3)

Further simplifying we arrive at the �nal equation for �nding k1 and k2:

k12 = 2keq (3.4)

3.2.2.4 Combining datasets

Once the datasets were combined into a single table, there was a discrepancy

in �exion and extension values. Nuckley et al. (2013a) reported much higher

results for the specimen of the same age as compared to the values reported by

Luck (2012). This is probably due to having applied smaller loads during the

measurements by Luck (2012). Nevertheless Ouyang et al. (2005) also reported

bending sti�ness (�exion) values for 2-18 years old specimen, which are in line

with the data by Nuckley et al. (2013a). Therefore, an assumption was made

that that there is a scaling error in the data by Luck (2012).

For the O-C2 segment the sti�ness is around 57 times smaller than the corre-

sponding values reported by both Ouyang et al. (2005) and Nuckley et al. (2013a).

It seemed to be a conversion error from degrees to radians, i.e. the results were

converted to radians, but reported in degrees.

For the C4-C5 and C6-C7 the sti�ness is around 100 times smaller and, hence,

the previous assumption did not hold.

For that reason it appears to be unreasonable to use these �exion and exten-

sion values to predict the missing lateral bending and axial rotation values. An

alternative approach was taken and is described in Section 3.2.2.5.
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Figure 3.2: Flexion and extension sti�-
ness in O-C2 (Luck, 2012)

Figure 3.3: Flexion and extension sti�-
ness in C4-C5 (Luck, 2012)

Figure 3.4: Flexion and extension sti�-
ness in C6-C7 (Luck, 2012)

3.2.2.5 Logarithmic regression

The data by Luck (2012) produces a logarithmic curve (see Figures 3.5, 3.6, 3.7)

and ideally should not be a�ected by the scaling factor, provided that all the data

was scaled (see Figures 3.2, 3.3 and 3.4).

Therefore, a logarithmic regression was implemented on Nuckley's dataset to

�t the logarithmic curve and �nd the missing values for newborns, including the

excluded �exion and extension.

The produced logarithmic models were used in order to predict the missing

values for newborns. In case of axial rotation in the segment C1-C2, the equation

y = 0.0471ln(x) + 0.1776 was produced by logarithmic regression. Since the

natural logarithm of 0 does not exist, we converted the age of the specimen to

number of days instead of months and made an o�set of the whole data by one.

Hence, for a one day old specimen, by substituting x with 1 in the equation, the
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sti�ness value is calculated to be 0.1776.

The predicted sti�ness values for newborns are summarized in Tables 3.1, 3.2

and 3.3. Sti�ness values for the following segments are still missing: C2-C3, C3-

C4 and C5-C6 due to lack of available data. These values will be approximated

from the known adjacent segments in the neck models. Hence, C2-C3 is set to

be the same as C1-C2, C3-C4 is the same as C4-C5 and C5-C6 is the same as

C6-C7.
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Table 3.1: Complete predicted sti�ness values for the segment C1-C2 in newborns. Compression and tension are
given in N/m. Flexion, extension, lateral bending and axial rotation in Nm/deg.

C1-C2
Age (month) Flexion Extension Compression Tension Lateral bending Axial rotation

0 0.1650 0.2836 4000 11900 0.0201 0.1776
0 0.1500 0.2836 1500 12200 0.0201 0.1776

0.03 0.0600 0.2865 2200 7400 0.026 0.179
0.37 0.9000 0.3140 4100 7100 0.085 0.192
0.53 0.3246 0.108 0.198
0.8 0.29 0.3403 900 9300 0.142 0.205

Table 3.2: Complete predicted sti�ness values for the segment C4-C5 in newborns. Compression and tension are
given in N/m. Flexion, extension, lateral bending and axial rotation in Nm/deg.

C4-C5
Age (month) Flexion Extension Compression Tension Lateral bending Axial rotation
0 0.0007 0.1204 27400 46100 0.2527 0.0029
0 0.0007 0.1204 18600 50600 0.2527 0.0029
0 0.0007 0.1204 27500 35800 0.2527 0.0029
0 0.0007 0.1204 33100 61400 0.2527 0.0029
0.03 0.0061 0.1247 25700 50400 0.2587 0.0067
0.37 0.0586 0.1659 20400 50500 0.3163 0.0437
0.53 0.0789 0.1818 19200 35500 0.3386 0.0581
0.8 0.1089 0.2053 25300 42800 0.3714 0.0791
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Table 3.3: Complete predicted sti�ness values for the segment C6-C7 in newborns. Compression and tension are
given in N/m. Flexion, extension, lateral bending and axial rotation in Nm/deg.

C6-C7
Age (month) Flexion Extension Compression Tension Lateral bending Axial rotation

0 0.2544 0.4784 21700 44400 0.1087 0.1105
0 0.3456 0.4368 24000 36700 0.1087 0.1105
0 0.1328 0.5696 13600 37100 0.1087 0.1105
0 0.2816 0.2480 22700 39400 0.1087 0.1105

0.03 0.7216 0.3392 36400 45200 0.1136 0.1137
0.37 0.3984 0.3120 30100 50800 0.1610 0.1447
0.53 0.2384 0.3440 39000 61500 0.1793 0.1567
0.8 0.1152 0.4816 38300 34200 0.2063 0.1743
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3.2.3 BirthViewH

3.2.3.1 Overview

BirthViewH is a simulation software, which is using a haptic device to provide in-

formation on the e�ort needed to manipulate the fetal skull as well as its hardness

and softness (see Figure 3.8). BirthViewH allows adjustments of the mechanical

properties at runtime, including the sti�ness and damping coe�cients of the neck.

In addition the software facilitates using multiple haptic devices at the same time

making it easier to guide the movements of objects on a scene.

3.2.3.2 Software Engineering

Currently the application has been developed using a code and �x model, but the

plan is to restructure the application to allow having multiple neck models and

di�erent scenes (see Figure 3.9). Also a switch is required to a more advanced

GUI library to provide creation of additional GUI elements such as menus, lists

etc.

3.2.3.3 Phantom Omni

Phantom Omni (currently The Geomagic Touch) is a mid-range professional hap-

tic device (see Table 3.4)). Used in research, 3D modeling and more, Phantom

Omni allows users to freely sculpt 3D clay, enhance scienti�c or medical sim-

ulations, increase productivity with interactive training, and easily maneuver

mechanical components to produce higher quality designs (The Touch Haptic

Device, 2019).

Phantom Omni is a motorized device that applies force feedback on the user's

hand, allowing them to feel virtual objects and producing true-to-life touch sensa-

tions as user manipulates on-screen 3D objects (The Touch Haptic Device, 2019).

3.2.3.4 Libraries

BirthViewH is using CHAI3D framework, GLFW and AntTweakBar GUI li-

braries.
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Figure 3.5: Logarithmic regression of C1-C2 for adults in �exion, extension,
lateral bending and axial rotation



CHAPTER 3. DEVELOPING A FETAL NECK MODEL 53

Figure 3.6: Logarithmic regression of C4-C5 for adults in �exion, extension,
lateral bending and axial rotation

Figure 3.7: Logarithmic regression of C6-C7 for adults in lateral bending and
axial rotation
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Figure 3.8: BirthViewH

Table 3.4: The Geomagic Touch speci�cation

SPECIFICATIONS TOUCH

Workspace
~6.4 W x 4.8 H x 2.8 D in
> 160 W x 120 H x 70 D mm

Range of motion Hand movement pivoting at wrist
Nominal position resolution > 450 dpi~0.055 mm
Maximum exertable force and
torque at nominal position (orthogonal arms)

0.75 lbf/3.3 N

Sti�ness
x-axis > 7.3 lb/in (1.26 N/mm)
y-axis > 13.4 lb/in (2.31 N/mm)
z-axis > 5.9 lb/in (1.02 N/mm)

Force feedback (3 Degrees of Freedom) x, y, z

Position sensing/input (6 Degrees of Freedom)
x, y, z (digital encoders)
[Roll, pitch, yaw
(± 5% linearity potentiometers)]

Interface USB 2.0
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Figure 3.9: BirthViewH class diagram.
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CHAI3D is an open source cross-platform C++ simulation framework for

computer haptics, visualization and interactive real-time simulation. CHAI3D

supports a variety of commercially available haptic devices and makes it simple

to support new custom force feedback devices.

GLFW is an open source, cross-platform library for OpenGL, which provides

a simple API for creating windows, contexts and surfaces, receiving input and

events.

AntTweakBar is a C/C++ library that allows programmers to add a graph-

ical user interface into graphics applications based on OpenGL.

3.2.3.5 Physics

3.2.3.5.1 Physics simulation

Here we are going to describe the motion of objects in BirthViewH. Every rigid

body in the software can translate across the scene and perform rotations.

The process of �nding out the object's translation can be described as follows:

• Calculate the forces acting on the object

• Sum up the forces in order to �nd a single net force

• Use Newton's second law to calculate the object's acceleration due to the

applied forces:

F = ma (3.5)

where m is the object's mass and a is its acceleration.

• Integrate the object's acceleration to �nd its velocity

• Integrate the object's velocity to calculate its position

Similarly for simulating the object's rotation:

• Calculate the torque acting on the object

• Add up the torques to �nd a single resultant torque
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• Use Newton's second law for rotation to calculate the object's angular ac-

celeration:

τ = Iα (3.6)

where I is the object's moment of inertia and α is its angular acceleration.

• Integrate the object's acceleration to �nd its angular velocity

• Integrate the object's velocity to calculate its rotation

3.2.3.5.2 Haptic interaction

CHAI3D provides a class called cGenericHapticDevice that implements a set

of methods to communicate with most common 3D haptic devices. For the model

of the haptic device that has been tested with BirthViewH, namely Phantom

Omni, it implements a class called cPhantomDevice.

The force from a haptic device can be acquired by calling a method getForce().

It is then added to the resultant force and is used to calculate the torque caused

by the device. Equation 3.7 shows the relationship between force, torque and

moment arm, which is the distance from the pivot point to the point where the

force is applied. Torque is de�ned as a cross product between the moment arm

and the force vector.

τ = r × F (3.7)

where r is moment arm and F is force.

3.2.3.6 Integration

3.2.3.6.1 Numerical integration

Numerical integration is an approximate computation of an integral using numer-

ical techniques. BirthViewH is using a semi-implicit Euler integrator1 in order

1Since the discovered sti�ness values for a fetal cervical spine are represented by small
numbers (Luck et al., 2008; Luck, 2012; Coats and Margulies, 2008; Ouyang et al., 2005; Nuckley
et al., 2013a), semi-implicit Euler integration is considered to be su�cient.
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to integrate the object's accelerations and velocities. The following pseudocode

describes the process:

.

while ( true )

{

a c c e l e r a t i o n = a c c e l e r a t i o n + f o r c e /mass

v e l o c i t y = v e l o c i t y + a c c e l e r a t i o n ∗ t imestep

po s i t i o n = po s i t i o n + v e l o c i t y ∗ t imestep

}

3.2.3.7 Clinical study

The following content is based on a published article �A haptic user interface to

assess the mobility of the newborn's neck� (Sadulaev et al., 2017).

The improved neck model, used in the childbirth simulator (BirthView), is

approximated as a number of Hookean springs, which have sti�ness coe�cients

indicating resistance of a head to translation and rotation.

The neck model in the childbirth simulator uses biomechanical properties

described in the handful of studies on postmortem human subjects (PMHS) of

children, adults and animals (Nuckley et al., 2013a; Luck, 2012; Luck et al., 2008;

Ouyang et al., 2005). Nonetheless, these studies for newborns are limited mostly

to the sagittal plane of motion. Therefore, the remaining values can only be

derived by proportionally decreasing the studied values of adult PMHS. Even so

not a single study among the listed provide su�cient information on all three

planes of motion: �exion/extension, lateral bending and side rotation.

The developed BirthViewH software is intended to �ll that void in the above-

mentioned studies and to improve accuracy of simulating a computer-based neck

model.

3.2.3.8 Geometric models

A newborn's head model is an amended model from the childbirth simulator,

which in turn has been obtained from a study on fetal head moulding (see Figure

3.10).
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Figure 3.10: An initial version of the fetal head/skull model from a study on
fetal head moulding (Lapeer and Prager, 2001). The model comprises approx.
64K triangular polygons.

A center of rotation, i.e. pivotal point of the head is at foramen magnum.

3.2.3.9 Neck model

The employed neck model is graphically depicted as a read line segment and is

developed as a collection of spring-damper systems. The model is utilizing the

available sti�ness parameters presented in the research papers by (Luck et al.,

2008; Luck, 2012). There are two types of Hookean springs utilized in order

to simulate resistance of a newborn's head on stretch/compression, bending and

rotation: linear spring, bending and torsional spring.

3.2.3.10 Neck mechanical properties

Masses of the fetal skull, trunk and neck are also in accordance with the data

provided in these papers. Hence, the length of the neck is 3.61 cm and the masses

of a trunk and head are 2.085 kg and 0.665 kg respectively. The linear damping

is equal to 9650 Ns/m and 3650 Ns/m for the head and trunk respectively and

the rotational damping is 3 Ns/degree for both the head and trunk. The sti�ness

values for the tensile and bending springs are directly incorporated from Luck's

data, speci�cally subject 07P, aged 0 months. The tensile sti�ness coe�cient is
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equal to 7900 N/m under load displacement of 0.69mm (musculature was not

considered at the moment). The �exion bending sti�ness is the sum of sti�ness

values of three cervical segments (O-C2, C4-C5 and C6-C7) and is equal to 0.0245

Nm/degree. The extension bending sti�ness is calculated to be 0.1271 Nm/de-

gree. In addition, to avoid extreme bending, the sti�ness values will increase 1000

times

3.2.3.11 Experiments and Results

The developed software has been used in the experiment aimed to assess the

strength and �exibility of the newborn's neck. The experiment has been con-

ducted in the University Hospital in Norwich (NNUH), United Kingdom. 10

midwives and a pediatrician have agreed to participate in the assessment and

been given short training prior to the experiment to get them used to using the

haptic devices. The description of the procedure and instructions are given in

Appendix C.

The professionals were required to apply certain force to the newborn's head

on the screen using two haptic devices and to validate the resistance of the skull,

during bending and rotation, against their real-life experience. The initial prop-

erties were then adjusted according to their feedback (see Figure 3.11).

As a result the ultimate torsional resistance (sti�ness) varies between 4 and

12 Nm/degree and the range of motion ranged between 57.45 and 75.06 degrees

from the initial upright position. Ultimate bending sti�ness ranges between 12

and 18 Nm/degree and ROM for �exion was 50 degrees whereas for extension

it ranged from 36.5 to 50 degrees. It is important to mention that �exion and

extension were grouped together, even though in real life resistance of �exion

would be noticeably lesser than of extension. Also lateral bending resistance and

ROM has not been studied in the experiment.
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Figure 3.11: Two haptic devices (Phantom Omni) are being used in order to
validate the resistance of the fetal skull during bending and rotation. The yellow
sphere on the screen corresponds to the right hand, whereas the red sphere cor-
responds to the left hand. The description of the procedure and instructions for
midwives are given in Appendix C.
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Position RD kT cT Side Rotation kB cB Flexion Extension Comments
consultant 2 12

3

70 12

3

50 50
obstetrician 2 12 70 12 50 50

midwife 2 7 74.03 13 50 -
extension would be

sti�er

doctor 3 - - - -
looser �exion, sti�er

extension

obstetrician 3 4 57.45 19 50 36.5
extension is between 36.5

and 40 degrees
unknown 2/1.5 15 66.22 - 50 40

pediatrician - 27 66.45 - - -
doctor 3 4 70.43 - - -

unknown 2 - - - -
doctor 3 8 75.06 18 50 -

RD � rotational damping of a newborn's head (Ns/degree),
kT � torsion coe�cient (Nm/degree), T � torsional damping coe�cient (Nms/degree),
kB � bending coe�cient (Nm/degree), B � bending damping coe�cient (Nms/degree),
Lateral rotation, �exion and extension correspond to ROM (degrees)
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3.2.3.12 Discussion

The sti�ness values for �exion and extension are much higher than the reported

sti�ness values in the study by Luck (2012). It was expected for them to be

considerably higher since soft tissue structures can increase sti�ness up to two

times. However, the calculated sti�ness values are 100 and 1000 bigger for �exion

and extension respectively. This is possibly due to the fact that during the

experiment only the maximum sti�ness was identi�ed at the maximum angle

whereas the reported values are linear approximations of an average non-linear

sti�ness for non-destructive bending tests.

The acquired results for ROM compare well with Öhman and Beckung (2008)

and studies by Luck (2012). Although at �rst glance the minimum obtained

rotation ROM ranges from 57.45 degrees seems to be larger than the reported

52.6 degrees it is important to note that the heads of the infants in the mentioned

study were not rotated even near to their failure angle so as not to harm them.

However, in the virtual environment one can freely manipulate the newborn's

head to the maximum possible degree without being afraid to cause damage and

consequently adjust it according to what they believe to be its peak angle.

3.2.3.13 Conclusion and Future Work

From the presented results it appears that virtual simulation software is capable

of replicating biomechanical properties of a newborn's head motion within an

acceptable margin of error, with the help from obstetrics, midwives and paedia-

tricians.

A number of assumptions have been made in this experiment: a baby was

considered to be held upright by a second person. In addition the force of gravity

has been omitted for the sake of simplicity of manipulating the head.
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3.2.4 Mechanical models of the fetal neck

3.2.4.1 Bushing element using six degrees-of-freedom spring-damper

system

3.2.4.1.1 Overview

Figure 3.12: Bushing element comprising six degrees-of-freedom springs (Au-
todesk Maya, 2019). The straight green, red and blue arrows correspond to
translations along y-axis, x-axis and z-axis respectively. The curved arrows cor-
respond to rotations around the axes. The linear and torsional springs are used
to resist motion along and around each axis

Bushing elements are widely used in order to simulate intervertebral disc's

behaviour (Bondy et al., 2014; Huynh et al., 2012; Esat and Acar, 2007; Van Lopik

and Acar, 2007; Senteler et al., 2015). Bushing elements restrict both translation

and rotation of two rigid bodies along x, y and z axis by applying restricting

forces and torques respectively.

The implemented bushing element uses four spring-damper systems, i.e. one

translational and three rotational ones (see Figure 3.12).

For the translational forces to be calculated it is necessary to specify transla-

tional sti�ness and initial (resting) length between the rigid bodies. Hence, when
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the �rst rigid body translates relative to the second rigid body in any direction,

the force restricting that motion, i.e. keeping them connected to one another, is

calculated according to the translational form of Hooke's law (see Equation 3.19).

Similarly, three rotational sti�nesses and maximum angles for each axis are

used to calculate torques, exerted by rotational springs around each axis (x,

y and z). These rotational springs only start resisting motion when the angle

between rigid bodies is greater than the speci�ed maximum angle below which

the spring remains inactive. The torque is calculated according to the angular

form of Hooke's law (see Equation 3.8).

3.2.4.1.2 Tensile/compressive spring

Figure 3.13: The detailed representation of a single tensile/compressive spring
attachment in the bushing element.

Figure 3.13 shows how the displacements of springs are calculated in the sim-

ulation software when objects are connected with either a tensile or a compressive

spring. Two objects are connected by a tensile/compressive spring with a resting

length of Lr at the attachment points ~A′1 and ~A′2. The current length of the spring

is denoted by Ls. The attachment points ~A′1 and ~A′2 of the spring are de�ned in

the local coordinates of the objects they are connected to. The world coordinates
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~A1 and ~A2 are calculated by transforming the local attachment coordinates by

the transformation matrices of the corresponding objects. The current length Ls

is calculated as the di�erence of the world vectors: ~A2 − ~A1. Finally, the spring

displacement x is calculated as the di�erence of the current and resting lengths:

Ls − Lr.

3.2.4.1.3 Torsional spring

Implemented torsion springs to approximate the overall resistance of the vertebral

column to side rotations. The torque exerted by the torsion springs onto the

bodies are calculated according to the angular form of Hooke's law:

τ = −kθ (3.8)

where τ - torque, k � torsion coe�cient, θ � angle of twist from an object's

equilibrium position

3.2.4.1.4 Restricting rotational motion around a speci�c axis

By allowing only one rotational degree of freedom, where the other rotational

degrees of freedom are locked, it makes it easy to calculate the angle between

two rigid bodies. Figure 3.14 and 3.15 shows how the angle is calculated for a

lateral bending of a skull, i.e. around Z-axis. ~X ′1 and ~X ′2 are local X unit vectors

along X-axis of the head and body respectively. The angle between the local

unit vectors of the rigid bodies along X-axis is derived from the algebraic and

geometric de�nitions of the dot product.

Algebraic de�nition of the dot product:

a · b =
n∑

i=1

aibi = a1b1 + a2b2 + ...+ anbn (3.9)

where
∑

denotes summation and n is the dimension of the vector space.

Geometric de�nition of the dot product:

a · b = |a||b| cos θ (3.10)
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Figure 3.14: Head in normal po-
sition (front view). Rotation is
around Z-axis.

Figure 3.15: Head is �exed lat-
erally (front view). Rotation is
around Z-axis.

where θ is the angle between a and b, and |a| and |b| are their lengths.
From Equation 3.10 we �nd that:

cos θ =
a · b
|a||b|

(3.11)

θ = arccos
a · b
|a||b|

(3.12)

Finally by substituting the numerator in the last equation with the algebraic

de�nition of the dot product we arrive at the solution for �nding the angle between

two vectors:

θ = arccos
a1b1 + a2b2 + ...+ anbn

|a||b|
(3.13)

In case of all three rotational degrees of freedom available, it is possible that

the object is rotated around the Y-axis, prior to the rotation around the Z-axis.

Figure 3.16 and 3.17 shows the top and front views of a head and torso. Again
~X ′1 and ~X ′2 are unit vectors along the local X-axis and ~Z ′1 and ~Z ′2 are unit vectors
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Figure 3.16: Head in normal po-
sition (front view). Rotation is
around the Z-axis.

Figure 3.17: Head is rotated (top
view). Rotation is around Y-axis.

along the local Z-axis of the head and body respectively. In Figure 3.17 the head

is rotated by 45 degrees and, although, there is no side bending shown in Figure

3.16, the 45 degrees angle of the rotation will be used to calculate torques between

the head and torso both in axial and coronal planes (rotation and side bending).

An additional step is required in order to isolate side bending from a rotation.

In this particular case, by projecting the head's local ~X1 vector to torso's local
~X2 vector, prior to calculating the angle between these vectors, angles around

other axes no longer contribute to the calculation of the torque in side bending.

The projection is calculated with a dot product.

Although, the projection successfully isolates motion around a particular axis,

there is a possibility of a Gimbal lock1 (Hoag, 1963), when the head is rotated

at 90 degrees with a torso at 0 degrees, one of the degrees of freedom is lost and

projection results in zero. The problem can be addressed by using quaternions

1Gimbal lock is the loss of one degree of freedom in a three-gimbal mechanism caused by
the alignment of two of the three gimbals together, "locking" the system into rotation in a
two-dimensional space.
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(Diebel, 2006), however, they are not required at this stage to achieve the aim

and objectives of the project. This will be further discussed in Section 5.3.

3.2.4.2 Ball and Socket Joint

Figure 3.18: Ball and Socket Joint

Ball and Socket joints only allow rotations between two bodies with no transla-

tions. Therefore, the bodies cannot move with respect to one another (Chappuis,

2013).

The joint was implemented in BirthEngine as a Component. The joint is

implemented by calculating both angular and linear impulses required to limit

the translation of the connected bodies. The algorithm is described as follows:

Figure 3.19: Displacement vector from A1 to P1

• Calculate a displacement vector ~D from A1 to P1 (see Figure 3.16).

~D = ~P1− ~A1 (3.14)
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• Take the �rst derivative of the displacement vector and acquire the required

velocity:

~V = ~̇D = lim
t→0

~P1− ~A1

t
(3.15)

where t is time and the overhead dot denotes di�erentiation with respect

to time.

• Calculate linear impulse based on the calculated velocity and the mass m

of the object A:

~P = m~V (3.16)

Figure 3.20: Object's distance from the attachment point

• Calculate angular momentum based on the linear impulse P and r, which is

the position of the object A relative to the attachment point A1 (see Figure

3.20):

~L = ~r × ~P = ( ~A1− ~A)× ~P (3.17)

• Apply the angular momentum to the attachment point A

• Recalculate the displacement vector (see Figure 3.21).

• Recalculate the velocity

• Recalculate the linear impulse

• Apply the linear impulse to the attachment point A1
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Figure 3.21: Displacement vector from rotated point A1 to point P1

Figure 3.22: Mass-Spring-Damper system.

3.2.4.3 Spring-Damper system

The system consists of a spring and a damper (Figure 3.22). There are three

forces involved in this system, namely the applied force and two reaction forces.

The spring reaction force reacts when the object is displaced from its equilibrium,

while the damper reaction force acts only when the object is in motion. Equation

3.18 is used to calculate the force acting on the object.

F = −kx− cv (3.18)

where c - damping coe�cient, v - object velocity

3.2.5 Validation of the fetal neck range of motion

3.2.5.1 Overview

The range of motion of the existing neck model in the BirthView software required

validation to establish the necessity of an improved neck model. The range of

motion of the neck has been measured and validated in a video player for sports
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Table 3.5: Mechanical properties of NM01

Cervical vertebrae
3 linear springs

sti�ness, N/m damping, N s/m
C1

330 10

C2
C3
C4
C5
C6
C7

analysis Kinovea, using goniometer tools.

3.2.5.2 Goniometry

The term goniometry is derived from two Greek words: gonia, meaning "angle,"

and metron, meaning "measure." Goniometry refers to the measurement of angles

created at human joints by the bones of the body. These measurements are

obtained by placing the parts of the measuring instrument, called a goniometer

(see Figure 3.23), along the bones immediately proximal and distal to the joint

being evaluated. Norkin and White (2016).

Figure 3.23: Goniometer. The �xed arm is referred to as a proximal arm,
whereas the non-�xed one is called a distal arm. The base of the goniometer is
called fulcrum.

It is essential to stabilize the shoulder girdle to prevent motion of the thoracic

and lumbar spine while measuring ROM for the cervical spine.
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3.2.5.2.1 Measuring �exion

Flexion occurs in the sagittal plane around a coronal axis.

Goniometer alignment (Norkin and White, 2016):

• Center the fulcrum of the goniometer over the external auditory meatus.

• Align the proximal arm so that it is either perpendicular or parallel to the

ground.

• Align the distal arm with the base of the nostrils.
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Figure 3.24: In the starting po-
sition for measuring cervical �ex-
ion, the examiner aligns the prox-
imal goniometer arm so that it is
perpendicular to the �oor. The
goniometer body is centered over
the subject's external auditory
meatus. The examiner aligns
the distal arm with the base of
the nostrils (Norkin and White,
2016).

Figure 3.25: At the end of the
ROM, the examiner's left hand
aligns the proximal goniometer
arm. The examiner uses her right
hand to maintain alignment of
the distal arm with the base of
the nostrils (Norkin and White,
2016).
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3.2.5.2.2 Measuring extension

The position, stabilization and alignment are the same as for measuring cervical

�exion.

Figure 3.26: In the starting po-
sition for measuring cervical ex-
tension, goniometer alignment is
the same as for measuring cervical
�exion (Norkin and White, 2016).

Figure 3.27: At the end of cervi-
cal extension, the examiner main-
tains the perpendicular alignment
of the proximal goniometer arm
with her left hand. The exam-
iner's right hand aligns the distal
arm with the base of the nostrils
(Norkin and White, 2016).
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3.2.5.2.3 Measuring side rotation

Goniometer alignment (Norkin and White, 2016):

• Center the fulcrum of the goniometer over the center of the head.

• Align the proximal arm parallel to an imaginary line between the shoulders.

• Align the distal arm with the tip of the nose.

Figure 3.28: Starting position for
measuring side rotation.

Figure 3.29: Measuring side ro-
tation with a goniometer.
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3.2.5.2.4 Measuring side bending

Goniometer alignment (Norkin and White, 2016):

• Center the fulcrum of the goniometer over the C-7 vertebra.

• Align the proximal arm with the thoracic vertebrae so that the arm is

perpendicular to the ground.

• Align the distal arm with the midline of the head.

Figure 3.30: Measuring ROM for lateral bending.

3.2.5.3 Kinovea

Kinovea provides tools for capture, observation, annotation and measurement of

human motion (Kinovea, 2016). In particular, among many other functions, it

provides tools for tracking trajectories of points in a video recording, measuring

distances and angles between human joints, with subpixel accuracy, using go-

niometer tools. In addition, it provides grid-based calibration which allows to

perform measurements even when the plane of motion is not aligned with the

camera.
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Figure 3.31: Measuring angles in Kinovea (Kinovea, 2016)

3.3 Computational Neck Models

3.3.1 Overview

This section is concerned with the description of the developed computational

neck models. It is worth mentioning that all of the neck models can be simulated

in real time. Firstly the preliminary neck models are described, which were

utilized in the older simulation software BirthEngine (see Appendix E.1). The

section then follows with a description of the default basic neck model (NM01) and

its validation in the latest childbirth simulation software BirthView (see Appendix

E.2).

NM01 can only resist motion of the head when rotated and, therefore, has

been extended to introduce resistance to motion in other directions. Thus, NM02

complements NM01 by adding resistance in �exion and extension, however, the

sti�ness values can not be set individually for either �exion or extension. NM03

and NM04 are using a 6DOF bushing element, which can restrict motion along

all axes.
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Figure 3.32: Perspective measurements in Kinovea (Kinovea, 2016)

3.3.2 Preliminary experiments in BirthEngine .

3.3.2.1 Spring-Damper model with Ball and Socket Joint (NM00A).

3.3.2.1.1 Overview

The model consists of seven vertebrae interconnected with three ligaments 1 (see

Figures 3.33 and 3.34). The latter is simulated with three simple springs obeying

Hooke's Law. In addition, the motion of a vertebra is restricted by the ball and

socket joint constraint implemented using the heuristic Ball and Socket Joint

Resolver (ball and socket joint is not visible in Figures 3.33 and 3.34). To put it

simply, the only allowed movement for each vertebra is a rotation, so that every

vertebra can only rotate around a certain �xed point with the springs limiting

that rotation.

3.3.2.1.2 Validation in BirthEngine (see Appendix E.1)

A number of experiments were conducted with the integrated dynamic neck model

(NM00A). Mass of both the fetal skull and trunk were set to 1 kg and the linear

1The model was developed in BirthEngine (written in C#) simulation software, which is a
generic medical simulation engine. The screenshot is given in Appendix E.1.
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Figure 3.33: Flexion of the top
vertebra. In this �gure two cervi-
cal vertebrae are connected by the
ball and socket joint. In addition,
the motion of each vertebra is re-
stricted by three compression/e-
longation springs simulating liga-
mentum �avum and supraspinous
ligament (see Figure F.12).

Figure 3.34: Lateral bend-
ing of the top vertebra. In
this �gure two cervical vertebrae
are connected by the ball and
socket joint. In addition, the
motion of each vertebra is re-
stricted by three compression/e-
longation springs simulating liga-
mentum �avum and supraspinous
ligament (see Figure F.12)

and rotational damping were set to 12 Ns/m and 12 Ns/degree each. Finally the

magnitude of the uterine expulsion force was set to 4 N.

The �rst experiment showed certain improvements of the childbirth simu-

lation. As such the cardinal movements have become prominent (engagement,

descent, �exion and internal rotation) compared to the simulation without the

neck model.

Another set of experiments was carried out, but this time there was an ellip-

soid fetal trunk connected to the neck model. The experiment resulted in some

extension and external rotation (see Figure 3.35).

Table 3.6 summarizes the described experimental results.

3.3.2.2 Improved Spring-Damper model (NM00B).

3.3.2.2.1 Improvements

The following improvements were made to the previous model (NM00A):

1. Introduced tensile and compression-only springs to simulate certain liga-

ments (see Figures 3.33 and 3.34). The forces exerted by the springs onto
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1. Engagement.
2.

Flexion.

3. Internal Rotation. 4. Extension with external rotation.

Figure 3.35: Childbirth simulation in BirthEngine software using the neck model
�NM00A�. The numbers correspond to the cardinal movements (see Section 1.2.5).
The simulation resulted in some extension and external rotation.

the bodies that it is connected to are calculated according to Hooke's law:

F = −kx (3.19)

where k � spring sti�ness, x � spring displacement

Figure 3.13 shows how the forces are calculated in the simulation software

when objects are connected with either a tensile or a compressive spring.

Two objects are connected by a tensile spring with a resting length Lr.

The current length of the spring is denoted by Ls. The attachment points

A′1 and A
′
2 of the spring are de�ned in the local coordinates of the objects
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Table 3.6: Experimental results

Cardinal movement
Neck models
No neck NM00 NM00 with trunk

Descent + + +
Engagement + + +
Flexion + + +
Internal rotation ? ? ?
Extension +
External rotation ?
Expulsion

they are connected to. The world coordinates ~A1 and ~A2 are calculated by

transforming the local attachment points by the transformation matrices

of the corresponding objects. The current length S is calculated as the

di�erence of the world vectors: ~A2 − ~A1. Therefore, spring displacement x

is equal to Ls − Lr.

2. Torsion springs were implemented to approximate the overall resistance of

the vertebral column to side rotations. The torque exerted by the torsion

springs onto the bodies are calculated according to the angular form of

Hooke's law:

τ = −kθ (3.20)

where τ - torque, k � torsion coe�cient, θ � angle of twist from an object's

equilibrium position

3. Implemented bending springs to stop the connected objects from sliding

along the transverse plane;

4. Introduced constraints to limit the range of movement of each vertebra in

the neck;

3.3.2.2.2 Validation in BirthEngine (see Appendix E.1)

The conducted experiments with the improved neck model led to a decrease in the

number of observed cardinal movements. Moreover, the simulation became very
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unstable in terms of extreme oscillations due to the force caused by accumulated

large spring constants. The analysis of instabilities is described in the following

subsection.

3.3.2.2.3 Analysis

First of all the instability in behaviour of Hookean springs for large sti�ness

constants were expected. The main cause of the abnormal oscillations of the rigid

bodies connected with springs were allegedly produced by the accumulating errors

of the semi-implicit Euler integration. There were a few solutions available to

improve the accuracy and stability of the springs: either decreasing the timestep

or using a more accurate numerical integration method.

Due to the architecture of BirthEngine software, implementing a more accu-

rate Runge-Kutta integrator was not a trivial task. Therefore, the timestep was

decreased from 0.016 to 0.0016 and that indeed stabilized the springs and simul-

taneously slowed down the simulation. The latter made it possible to identify a

problem with collision response in certain areas between the pelvis and a fetal

skull. In particular, the outer side of the pelvis mesh model in those areas was

slightly damaged and, hence, presumably caused errors in collision response.

The mesh model was smoothed in the Blender software. The repaired pelvic

mesh model solved the instability problem even when using the previous timestep

using Euler integration. However, the neck model itself has not improved the

simulation.

The new complex model consisted of a higher number of various springs and

hence required manually adjusting an increased number of sti�ness/damping val-

ues. The process of calibrating sti�ness values for each spring in the model proved

to be a time-consuming process. In addition, the fact that the adopted sti�ness

coe�cients had been selected randomly1, and had not been based on the real data

led to a decision to simplify the neck model by removing the cervical vertebrae

and connecting the fetal skull directly to its trunk.

1The coe�cients were selected randomly due to lack of data for mechanical properties of
the fetal cervical spine's intervertebral discs and ligaments
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3.3.3 Basic Neck model (NM01)

3.3.3.1 Overview

Due to the complexity of cervical vertebrae and lack of accurate data on the

mechanical properties of the fetal neck, which are necessary to adjust the sti�ness

and damping values of the springs, it was decided to further simplify the neck

model and simulate the whole neck by using one spring only. The newly developed

model combines within itself a compression/tension spring and a torsional spring

and, therefore, it resists compression, elongation and side rotations (see Table

3.7).

Table 3.7: Mechanical properties of NM01 and NM02 (see 3.3.5)

Neck Models

Neck properties
Linear spring Torsional spring Bending spring

compression stretch
k, N/m

active
angle

k, N/m
active
anglek, N/m k, N/m

NM01 9000 10000 100 45 n/a n/a
NM02 9000 9000 100 45 100 45

3.3.3.2 Implementation

It has already been discussed above (see equation 3.19) how the forces are calcu-

lated in the simulation software when objects are connected with either a tensile

or a compressive spring. The following code shows how the torques are calculated

for the two objects connected with a torsional spring.

.

// an auxiliary vector to calculate the angle

glm : : vec3 x { 1 .0 f , 0 . 0 f , 0 . 0 f } ;

// transform the vector above by the rotational matrix only

glm : : vec3 one = Math : : transformNormal (x , m_startXform ) ;

glm : : vec3 two = Math : : transformNormal (x , m_endXform ) ;

// calculate an angle between the vectors

float ang le = Math : : angleBetween ( one , two ) ;

float l im i t = glm : : rad ians ( m_torsionLimitDeg ) ;
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// only apply the torque if the angle is bigger than

// a specified angle (45 degrees have been selected

// in our case as bigger values led to extreme rotations)

// The reason behind specifying such an angle is to avoid

// constant resistance of the fetal neck during rotation

if ( std : : abs ( ang le ) > l im i t )

{

// calculate the axis around which we need to rotate

// an object

auto ax i s = glm : : normal ize ( glm : : c r o s s ( one , two ) ) ;

// calculating an effective angle between the vectors

auto croppedAngle = ( glm : : abs ( ang le ) − l im i t ) ;

// m_kTorsion is the stiffness coefficient

auto torque = croppedAngle ∗ m_kTorsion ∗ ax i s ;

// projecting torque onto the original local direction

// (transverse plane) so as to avoid applying torque

// on bending

torque = m_or ig ina lDi rec t ionLoca l ∗
glm : : dot ( m_or ig ina lDirect ionLoca l , torque ) ;

}

3.3.3.3 Experiments and results (see Appendix E.2)

The developed model was used in the latest birthing simulation software and the

experiments resulted in observation of all the cardinal movements described in

section 1.1, apart from expulsion. The latter may require �exible fetal shoulders

(Dietze, 2001).

The length of the neck was set to 1.2 cm and the masses of a trunk and head

are 2.5 kg and 1.5 kg respectively. The linear damping is equal to 9650 Ns/m and

3650 Ns/m for the fetal skull and torso respectively and the rotational damping

is 3 Ns/degree for both the skull and torso. Finally the periodically changing

uterine expulsion force interpolates between 30 and 150 N (Moreau et al., 2008).

Table 3.8 depicts the results of the experiments with NM01 and one can clearly



CHAPTER 3. DEVELOPING A FETAL NECK MODEL 86

see an increase in the number of cardinal movements if compared to table 3.6,

which represents the results of the experiments with NM00 (see Section 3.3.2.2).

However, it should be noted that NM01 was validated in BirthView (see section

E.2), whereas NM00 was validated in BirthEngine (see section E.1), which di�er

in terms of utilized mesh models, collision detection and response techniques.

Nevertheless the main di�erence between the mentioned simulation software is

that BirthView is comprised of additional explicit FE cervix and pelvic muscle

models. Therefore, it is not necessarily the case that NM01 is more bio�delic or

accurate than NM00B, but rather a combination of both biomechanical properties

of NM01, FE cervix and pelvic models and updated collision response techniques

led to the aforementioned improvements.

Table 3.8: Experimental results with NM01 and NM02 (see 3.3.5)

Cardinal movement
Neck models
No neck NM01 NM02

Descent + + +
Engagement + + +
Flexion + + +
Internal rotation + + +
Extension + +
External rotation + +
Expulsion

3.3.4 Validation of the basic neck model in BirthView

3.3.4.1 Introduction

The default neck model in BirthView (see Figure 3.36) is a basic spring-damper

model and consists of a combined linear (k=10000) and torsional spring (k=100)

which resists rotation, when the fetal head turns by 45 degrees 1 either side.

Although the neck seems to be su�cient for the successful simulation of cardinal

movements in BirthView (Lapeer et al., 2019; Gerikhanov, 2017), it needed to be

validated extensively in order to compare the future neck models. The biggest

145 degrees is the current default value.
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Figure 3.36: Basic Neck in BirthView.

concern about the neck model was its possible incorrect motion of the head while

undergoing forward and lateral �exion. The following experiment demonstrates

the level of accuracy of the basic neck model in BirthView.

3.3.4.2 Head trajectory and ROM in extension

A video of a newborn was used in order to acquire the trajectory of the head

during extension. It can be observed in the video that the head extends until its

occiput comes into contact with the back1. The same seems to be true for �exion,

i.e. head �exes until the baby's chin touches the chest.

The ROM was measured here in accordance with goniometrical methods for

measuring head motion (see Figure 3.27) and was found to range between 72 and

76 degrees in this particular case. The measurement is depicted in Figure 3.37.

This measurement corresponds to the data by Luck (2012).

The basic neck model in BirthView does not have bending springs and, hence,

the head's motion in �exion is only restricted by contact between its occiput and

the back and a tensile spring. However, since the neck is comprised of one spring

only with high sti�ness, the head's bending in extension and �exion occurs mainly

as a rotation around one point, which is the origin of the head (see Figure 3.38).

1Video: newborn_n_16 in the collection �PediNeurologic Exam: A Neurodevelopmental
Approach� (https://library.med.utah.edu/pedineurologicexam/html/home_exam.html). Pub-
lished by Paul D. Larsen, M.D., University of Nebraska Medical Center and Suzanne S. Stensaas,
Ph.D., University of Utah School of Medicine
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Figure 3.37: Measuring exten-
sion from NIPE video in Kinovea.

Figure 3.38: Measuring exten-
sion in BirthView

In Figure 3.39 it can be seen how the trajectory is measured in Kinovea. The

marker was set near the auditory meatus, and the head of the baby followed a

relatively long curve. It can also be observed that the change in the position of

the head and its rotation occur simultaneously.

Table 3.9 summarizes range of motion of the head in extension with and

without the tensile spring in BirthView:

Table 3.9: ROM of the head in extension with and without the tensile spring
(BirthView)

Extension Angle (degrees)
with tensile spring 31

without tensile spring 35.5

Nevertheless, since the tensile spring allows some leeway with regards to the

position of the head, relative to the trunk, the head allows further extension up to

43 degrees (see Figure 3.40). However it is still smaller than the aforementioned

72-76 degrees, acquired from the video.

The aforementioned ROM and trajectory problems can potentially be resolved
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Figure 3.39: A newborn's head trajectory in �exion/extension.

by increasing the height of the neck, i.e. by increasing the gap between head and

trunk.

3.3.4.3 Extreme lateral bending and �exion

The existing basic neck model consists of a tensile/compression and torsional

springs with arbitrary sti�ness values. The tensile sti�ness coe�cient is set to

10000 N/m, whereas the torsional sti�ness is set to 100 Nm/deg at 30deg of axial

rotation. Such con�guration successfully simulated the cardinal movements with

the neck's length of 12 mm as shown in the work by Gerikhanov (2017). However,

the reported values for a fetal neck length, in the literature, are almost three times

higher and around 36 mm on average (Luck et al., 2008).

With the adjusted length of the fetal neck, the simulation leads to the lateral

bending of around 70deg, during internal rotation, which is possible according to

the reported ROM by Öhman and Beckung (2008) (see Figure 3.42). However,

the extreme lateral bending occurs when the head is �exed and rotated, which is

physiologically impossible. There is a possibility that the elevated shoulders are

blocking further lateral bending in real labour, however, this cannot be veri�ed

due to the lack of articulated shoulders in the simulation. Also there is a possibil-

ity that the birth canal itself does not allow the head to undergo extreme lateral

�exion, however, this cannot be veri�ed either due to the absence of a complete
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Figure 3.40: Measuring the extension angle of the fetal head in Kinovea. The
screenshot was taken in BirthView at the peak extension of the fetal head. The
pelvis and soft tissues are hidden for better visibility.

birth canal.

3.3.4.4 Rotation

The external rotation occurs with the improved neck model, however, due to a

small rotational sti�ness, takes a long time to follow a rotating trunk. Such phe-

nomena is believed to take place due to neglecting the passive sti�ness of neck

muscles. The utilized sti�ness values are of intervertebral discs and ligaments

only. Therefore, it is evident that the real combined sti�ness values, including

muscle resistance, are higher than the predicted ones. When the rotational sti�-

ness is increased up to 0.8 Nm/deg, which is 40 times higher that the reported

0.02 Nm/deg, the head rotates faster as expected. In fact, any value higher than

the approximated 0.02 Nm/deg leads to a faster rotation, but 0.8 Nm/deg is

considered to be visually plausible and su�cient.
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Figure 3.41: Extreme lateral bending of the fetal head with a longer neck. While
the head is in �exion and is undergoing internal rotation, the expulsion force,
propagated from the trunk to the head asymmetrically, laterally �exes the head.
The displacements of the soft tissues (cervix, pelvic �oor muscles and ligaments)
are visualised throught a colour legend.
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Figure 3.42: Simulating childbirth with a head width of 8.8cm and using the
neck model NM01.

3.3.5 Improved Neck model (NM02)

3.3.5.1 Overview

The improved model has all the functionality of the previous model (NM01) and

also facilitates resistance on bending movements namely �exion/extension. The

calculation of the torque for the bending resistance has been performed similar

to the torsional spring, but this time the torque is projected to the sagittal plane.

NM02 is utilizing the sti�ness parameters presented in the research papers

by Luck et al. (2008) and Luck (2012). In addition masses of the fetal skull,

trunk and neck have also been changed in accordance with the data provided in

these papers (Table 3.10). Hence, the new length of the neck is 3.61 cm and the

masses of a trunk and head are 2.085 kg and 0.665 kg respectively. The linear

and rotational damping values, for the fetal skull and trunk, are kept the same as

in NM01 (see 3.3.3). The sti�ness values for the tensile and bending springs are

directly incorporated from Luck's data, speci�cally subject 07P, aged 0 months.
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Figure 3.43: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

The tensile sti�ness coe�cient is equal to 7900 N/m under load displacement of

0.69mm (musculature is not considered at the moment). The �exion bending

sti�ness is the sum of sti�ness values of three cervical segments (O-C2, C4-C5

and C6-C7) and is equal to 0.0245 Nm/degree. The extension bending sti�ness

is calculated to be 0.1271 Nm/degree. In addition, to avoid extreme bending,

the sti�ness values will increase 1000 times once the maximum angle has been

reached. Since we do not possess data on torsional and lateral bending sti�ness,

these values will be set to 0 and spring constraints will be introduced to stop

neck at angles speci�ed in the studies of range of motion. Thus, the range of

side rotation and lateral bending for the neck is limited to 52.6 and 34.05 degrees

respectively (Öhman and Beckung, 2008).

3.3.5.2 Validation revisited

Although the previous neck models had both positive and negative e�ects on the

simulation, none of them have actually been validated separately according to the

realistic property values. Furthermore, the newly adopted mechanical properties,

from the studies of Luck et al. and Coats et al., have not improved the childbirth
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Table 3.10: Newborn PMHS Anthropometric Data (Luck et al., 2008)

PHMS ID Age Sex
Whole Body Head Cervical Spine
Mass
(kg)

Height
(cm)

Mass
(kg)

Breadth
(cm)

Length
(cm)

Length
(cm)

05P 1 day F 2.75 - 0.665 9.1 11.7 4.14
03P 3 days M - - 0.492 8.5 10.3 3.61
06P 11 days F 2.02 44.5 0.702 10.4 11.2 3.83

simulation in regards to the prominence of cardinal movements. In other words,

a more accurate bio�delic infant neck model may not be accurately validated by

means of the childbirth simulation. Therefore, a separate application has been

developed speci�cally to allow professional obstetricians to test and validate the

neck models and obtain their expert opinion on the bio�delity of the developed

models (see Section 3.2.3.)

3.3.6 A one-pivot neck model with 6DOF spring constraint

(NM03)

3.3.6.1 Overview

The model is only using a 6DOF spring constraint with the combined sti�ness

values from Section 3.2.2. In order to combine the sti�ness values, we �rst �nd

the mean of the sti�nesses for the whole cohort of newborns. Then we use the

following equation (springs in series) in order to �nd the combined equivalent

sti�ness of the six cervical spine's segments.

1

keq
=

1

k1
+

1

k2
+

1

k3
+

1

k4
+

1

k5
+

1

k6
(3.21)

The acquired values are only approximations and needs to be adjusted in the

simulation software. As reported by Duncan (1874), the tensile sti�ness of new-

borns' neck, including muscles, is twice as bigger than the sti�ness of ligaments

and intervertebral discs. Therefore, we make an assumption that the approxi-

mated values will need to be increased depending on the observed behaviour of

the neck. The model is compared to NM01 and NM02 in Chapter 4.
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Table 3.11: Mean sti�ness values for each cervical spine's segment and the combined equivalent sti�ness of all
segments. Compression and tension are given in N/m. Flexion, extension, lateral bending and axial rotation are
given in Nm/deg.

Segments Flexion Extension Compression Tension Lateral bending Axial rotation
O-C2 0.31 0.37 2540.00 9580.00 0.08 0.23
C2-C3 0.31 0.37 2540.00 9580.00 0.08 0.23
C3-C4 0.03 0.14 24650.00 46637.50 0.29 0.02
C4-C5 0.03 0.14 24650.00 46637.50 0.29 0.02
C5-C6 0.31 0.40 28225.00 43662.50 0.14 0.13
C6-C7 0.31 0.40 28225.00 43662.50 0.14 0.13

Combined 0.01 0.04 1064.51 3361.82 0.02 0.01
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3.3.6.2 Validation

The neck model NM03 is compared to NM01 and NM02 in Sections 4.6 and 4.7.

It is shown that NM01 and NM02 neck models are incapable of resisting lateral

bending and, therefore, the fetal head undergoes extreme lateral �exion especially

with a longer neck. In addition, since both NM01 and NM02 can only simulate

the neck length of around 1.24cm, the fetal head comes into contact with the

chest at 30 degrees.

NM03 resolves both issues by introducing resistance in lateral bending and

allowing for longer necks to be used in the simulation software. However, when

using the approximated sti�ness values (see Section 3.2.2) of the cervical spine

segments, NM03 is not capable of resisting the extreme lateral bending either due.

Hence, to compensate for the unrealistic extreme lateral bending, the sti�ness of

the torsional spring, resisting lateral bending, is increased up to an arbitrary 2

Nm/deg when the head is �exed and rotated1. These adjustments lead towards

successful internal rotation, however, the head undergoes increased �exion due

to the increased length of the neck and gets arrested between sacrum and pelvic

�oor muscles. The forehead is pushing against sacrum and that contributes to

further �exion. In order to de�ex the head the expulsion force is increased up to

180N to widen the pelvic outlet by stretching the pelvic �oor muscles. Increasing

the expulsion force up to 180N leads to a successful delivery of the fetal head

with a longer neck (see Section 4.7).

3.3.7 Two pivot neck model (NM04)

3.3.7.1 Overview

Once the validation of the neck model in Section 3.3.5 has been performed, it was

evident that a more complex neck model is required in order to simulate realistic

motion of the fetal head.

As the next step towards a more realistic neck model, a two-pivot neck model

was developed with an additional cylinder between the skull and torso. The

1When the head is �exed and rotated, the ROM for the side bending drastically decreases
due to the physiology of the cervical spine
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Table 3.12: Combined sti�ness for upper cervical spine

Segments
Flexion

(Nm/deg)
Extension
(Nm/deg)

Compression
(N/m)

Tension
(N/m)

Lateral bend
(Nm/deg)

Axial rot
(Nm/deg)

O-C2 0.3130 0.3665 2540.0000 9580.0000 0.0804 0.2259
C2-C3 0.3130 0.3665 2540.0000 9580.0000 0.0804 0.2259

Combined 0.1565 0.1833 1270.0000 4790.0000 0.0402 0.1130

Table 3.13: Combined sti�ness for lower cervical spine

Segments
Flexion

(Nm/deg)
Extension
(Nm/deg)

Compression
(N/m)

Tension
(N/m)

Lateral bend
(Nm/deg)

Axial rot
(Nm/deg)

C3-C4 0.0319 0.1449 24650.00 46637.50 0.2870 0.0249
C4-C5 0.0319 0.1449 24650.00 46637.50 0.2870 0.0249
C5-C6 0.3110 0.4012 28225.00 43662.50 0.1369 0.1289
C6-C7 0.3110 0.4012 28225.00 43662.50 0.1369 0.1289

Combined 0.0145 0.0532 6579.1608 11275.2483 0.0463 0.0104

cylinder is connected to the skull and torso with two 6DOF spring constraints on

both sides with the combined sti�ness values of the cervical vertebrae.

As mentioned in Section 2.2.2 two-pivot models are capable of e�ciently pre-

dicting global head positions and orientations.

3.3.7.2 Sti�ness of springs in 6DOF constraint

Since the model consists of two pivot points the whole cervical spine needs to

be split into two parts, unlike the one-pivot neck model wherein the whole neck

was approximated by one constraint. Therefore, the acquired sti�ness values in

Section 3.2.2 are combined into two parts: upper and lower cervical spine. This

is done by using the same approach as in the previous section, i.e. by calculating

spring sti�ness that is equivalent to a system of springs in series. The resulting

values are presented in Tables 3.13 and 3.12.

3.3.8 Conclusion

A number of neck models have been presented in this section. The main objective

of the developed neck models is to improve BirthView to arrive at a patient-
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speci�c simulation. Among all the developed models, NM03, in conjunction with

the complete mechanical properties (see Section 3.2.2), has proven to produce

better results and led to successful simulations of childbirth for di�erent lengths

of the fetal neck (see Appendix A). NM03 is su�ciently accurate, customisable

and computationally e�cient. NM03 is capable of simulating di�erent strength

of the fetal neck due to the 6dof bushing element, allowing to specify separate

sti�ness for the motion of the fetal head in any direction. The limitations of the

model are discussed in Section 5.3.



Chapter 4

Optimization of childbirth

simulation

4.1 Mesh Generation

4.1.1 Overview

This section is dedicated to describing the sources of the acquired CT scans, the

techniques used in processing the scans and modelling the meshes of a female

pelvis, infant shoulder complex, ribs and cervical vertebrae, used for validating

the simulation software.

A computer graphics software Blender1 was used for processing of the meshes.

The main techniques employed for the mesh processing in Blender are remesh-

ing, knife/bisect tools, smoothing and decimation (Garland and Heckbert, 1997).

4.1.2 Gynecoid pelvis

The mesh was acquired in STL format from CT scans openly published on Em-

body3D 2.

1Blender is a free and open-source 3D computer graphics software toolset used for creating
animated �lms, visual e�ects, art, 3D printed models, interactive 3D applications and video
games.

2Embody3D is an online library of medical 3D printable models

99
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Figure 4.1: Gynecoid pelvis with
rigid sacrum and coccyx.

Figure 4.2: Gynecoid pelvis with
separated sacrum and coccyx.

The initial mesh consisted of the pelvis, spine and ribs. Since we were in-

terested in the pelvis only, the former was separated from the spine and ribs by

using Bisect tool.

The separated pelvis had around 500K triangles. The high number of triangles

requires more computational power, especially, during collision detection and

response phase. Therefore, the mesh was decimated down to 12K triangles.

For simulating pelvic moulding, the mesh was further cut into separate sacrum,

coccyx, left and right bones using a Knife tool.

Figures 4.1 and 4.2 illustrate the mesh before and after the separation.

4.1.3 Spine, shoulders and rib cage

The anonymized CT scans of 6 months and 15 months old baby girls were ob-

tained from the Department of Roentgenology in Children Hospital No 2, Grozny,

Russia. The scans were used to acquire realistic 3D models of the skull, spine,

shoulders and chest of a newborn.

The volume was segmented in the software 3DSlicer, using thresholding, into

an STL mesh model. Following that the model was decimated in Blender in order

to decrease the number of triangles for the sake of increased computational speed.

The model was used to simulate a shoulder complex.
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Figure 4.3: A CT scan of a 6 months old baby girl rendered in 3D Slicer

4.2 Sacrum mobility

4.2.1 Introduction

Sacroiliac body (SI) or sacrum undergoes an increase in mobility during labour

(Vleeming et al., 2012). Limited mobility of the sacrum may lead to the arrest of

the fetal head during internal rotation due to lack of space in the anterior-posterior

diameter of the pelvic outlet. In this section two experiments are conducted with

the new pelvic mesh model (see Section 4.1.2) to study the e�ects of the pelvic

moulding on labour. The �rst experiment is using a static sacrum (see Figures 4.4

and 4.5), whereas the second experiment is using a mobile sacrum. The coccyx

is de�exed by twenty degrees in both cases to create more space in the pelvic

outlet.
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4.2.2 Experimental setup

The experimental setup is summarized in Table 4.1. FE sacrospinous ligaments

are used in the simulation with the bulk and shear modulus equal to 1MPa and

66kPa respectively. The sacrum is connected to the rest of the pelvis with a

bushing element. The sti�ness values for the bushing element in �exion and

rotation have been set to 0.0125 Nm/degree. These values have been found

experimentally.
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Table 4.1: The experimental setup of BirthView for the experimental study on pelvic moulding

Lin damping Rot damping Mass Positionx,y,z Orientation
Fetal head 9650 3 1.5 kg [0.0133, 0.1, 0.0] LOT*
Fetal trunk 3650 3 2.5 kg [0.0133, 0.2151, 0.0] LOT*
Maternal pelvis 3650 1 1 kg [0.0, 0.0, 0.0] n/a
* LOT - left-occiput transverse position (see Figure)

Bushing element
Lin damping Rot damping Mass

kf ke klb kt k
Sacrum 3650 1 1 kg 0.0125* 0 0 0.0125* 3000
* the spring starts resisting motion only when the rotation is equal to 10 degrees

Bushing element
Length Position on skull

kf ke klb kt k
Fetal neck 1.2 [0.0, 0.0, 0.0]* 0.01 0.04 2 0.1 3600
* origin of the scull is at foramen magnum
kf , ke, klb, kt - sti�ness coe�cients in �exion, extension, lateral bending and rotation
k - sti�ness coe�cient resisting elongation, compression and shear translations

Bulk modulus Shear modulus Number of elements Number of nodes
PF muscles 1MPa 66kPa 18788 6577
Sacrospinous ligaments 1MPa 66kPa 8767 2816
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Figure 4.4: The fetal head is undergoing internal rotation and the sacrum, in-
cluding the coccyx, is static. The yellow highlights represent contacts of the head
with the pelvis. Sacrospinous ligaments are hidden to have a better view of the
contact (red highlights represent contacts with the sacrospinous ligaments). The
coccyx is already de�exed by twenty degrees (see Section 1.4.4). Further rotation
of the head is not possible due to the static coccyx pushing the head toward
ischial spines. The displacements of the soft tissues (cervix, pelvic �oor muscles
and ligaments) are visualised through a colour legend.

4.2.3 Analysis

The results show that with a static sacrum for the smallest reported fetal head of

9.07 cm, the head is unable to complete the internal rotation due to the coccyx and

sacrum obstructing the motion (see Figure 4.6). However, with a mobile sacrum,

the pelvic outlet is capable of accommodating the head due to the increased

anterior-posterior diameter (see Figure 4.7).

The sacrum in the simulation opened by 10 degrees around X-axis, which

is larger than the reported total 3.3 degrees (see Section 1.4.3). However, as
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Figure 4.5: With a bigger expulsion force exerted on the fetal head, the latter
comes into contact with the part of sacrum above the coccyx, which further
restricts the motion of the head. The highlighted yellow area on the fetal face
represents the contact of the face with the sacrum. The displacements of the
soft tissues (cervix, pelvic �oor muscles and ligaments) are visualised through a
colour legend.

reported by Vleeming et al. (2012) there should be an increase in mobility of the

sacrum during labour.

4.3 Expulsion

4.3.1 Introduction

BirthView successfully simulated the majority of the cardinal movements. How-

ever, the last cardinal movement, namely, expulsion was not possible due to the

fetal trunk being stuck in the pelvic �oor muscles.

A number of experiments have been conducted in order to resolve the above-
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Figure 4.6: Graph of simulating labour with a static sacrum. The head is
initially de�exed (the positive orange curve) however after engaging with the
pelvic inlet goes into �exion. While �exing the head simultaneously rotates up to
60 degrees clockwise (the red curve) and halts due to hitting the sacrum and, as a
result, being unable to complete the internal rotation. The blue curve represents
descent. Further de�exion and descent are associated with downward stretch of
pelvic �oor muscles, nevertheless, the rotation is remains the same.

mentioned issue and to successfully simulate expulsion, i.e. delivery of the trunk.

4.3.2 Analysis

From the MRI video (Bamberg et al., 2012) (see Figures 4.8 and 4.9) it is clearly

visible that the fetal body is following the curved birth canal, which is currently

absent in the simulation. Moreover, even if the birth canal was present, the rigid

body cannot possibly �t through the birth canal due to the latter being curved.

Hence, a complete spine with a rib cage is required in order for the fetal body to

be born.

Additionally, currently the fetal trunk is kept upright by a bending spring,

which tries to keep the orientation of the trunk vertical and, therefore, the body
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Figure 4.7: Graph of simulating labour with a mobile sacrum. The head
is initially de�exed (the positive orange curve) however after engaging with the
pelvic inlet goes into �exion. Unlike in the Figure 4.6 the head gradually turns
by 90 degrees (the red curve), thus, completing the internal rotation and is now
in OA position. The jiggling between �exion and extension (the orange curve)
between 94 and 217 seconds corresponds to the motion of the sacrum, rotating
along sagittal and transverse planes.

is not capable of following the fetal head through the birth canal (see Figure

4.10).

It is essential to have the body following the fetal head through the birth canal

in order to simulate di�cult birth scenarios and complications such as shoulder

dystocia.

4.3.3 A�ects of disabling the bending spring after the fetal

head is born

An observation was made from the video that the fetal trunk follows more or

less the same trajectory as the fetal head. For that reason, the bending spring,

keeping the trunk in upright position, was disabled when the head was born.
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Figure 4.8: The fetal head is fully �exed and is about to undergo extension
(Bamberg et al., 2012).

The experiment resulted in the bottom of the trunk coming into contact with

the back side of the maternal pelvis and its subsequent arrest between the bony

pelvis and pelvic �oor muscles.

This result recon�rms the necessity to develop a �exible torso to observe

expulsion and potentially shoulder dystocia.

4.3.4 Expulsion of shoulders

Due to the trunk being rigid and incapable of bending in order to go through the

birth passage, an alternative solution was employed. A new scene was set up with

only the upper half of the trunk to avoid contact with the pelvis while changing

its direction to follow the trajectory of the fetal head (see Figure 4.11). Figures

4.12 and 4.13 show successful delivery of the shoulders and since shoulders are

the widest part of the body, it is fair to conclude that an additional cardinal

movement was observed.
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Figure 4.9: The fetal head is undergoing extension (Bamberg et al., 2012).

4.4 Shoulder dystocia

4.4.1 Introduction

In this section an attempt was made to observe shoulder dystocia by adjusting

the trajectory of the fetal trunk. After running the simulations in the previous

Section 4.3 it was visually evident that the width of the shoulders was too small in

order for the shoulder dystocia to happen. The width of the shoulders was around

7cm for a fetal head with BPD of 8.8cm, whereas average shoulders' width for

newborns is around 12.06-12.76cm (Verspyck et al., 1999; Kastler et al., 1993).

Therefore, the shoulders were initially widened in Blender up to 11cm. This

lead to the shoulders' arrest below and to the left of the pubic bone (see Figure

4.14). This is most likely caused by absence of a complete birth canal to direct

the shoulders to the correct position. Currently we simulate the a�ects of the

curvature of the birth canal by disabling the spring, keeping the body in upright

position. By running the simulation multiple times, a conclusion was made that

the outcome of the simulation depends on the curvature of the birth canal.
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Figure 4.10: The expulsion force Fexp is exerted at the point P . The force Fup is
pulling the trunk in the upwards position to keep the trunk vertical. (Gerikhanov,
2017).

4.4.2 Experiment

In the latest experiment we increased the width of the shoulders up to 12cm,

which lead to the shoulders being arrested behind the pubic symphysis (see Figure

4.15). Currently the only possible way to resolve the problem is by simulating

application of the suprapubic pressure or Rubin maneuver1 due to absence of

articulated shoulders. Potentially a haptic device can be integrated into the

simulation in order to resolve the observed phenomenon.

As mentioned above, the simulation lack mobile fetal shoulders, which are

crucial to deliver the shoulders during expulsion stage (see Section 1.2.5). Artic-

ulated shoulders would facilitate observing di�erent scenarios of shoulder dystocia

and their resolutions.
1Rubin maneuvers are used to deliver the baby in case of shoulder dystocia. The �rst

Rubin maneuver is the rotation of the fetal anterior shoulder under the maternal symphysis
pubis. The second Rubin maneuver is the rotation of the posterior shoulder in a clockwise
direction by pressing on the dorsal surface of the posterior shoulder (Benrubi, 2010)



CHAPTER 4. OPTIMIZATION OF CHILDBIRTH SIMULATION 111

Figure 4.11: Simulation with a trunk cut in half. The displacements of the soft
tissues (cervix, pelvic �oor muscles and ligaments) are visualised through a colour
legend.
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Figure 4.12: Delivery of a fetus, front view. The displacements of the soft tissues
(cervix, pelvic �oor muscles and ligaments) are visualised through a colour legend.

4.5 Validation of the BirthView TLED procedure

4.5.1 Introduction

Total Lagrangian Explicit Dynamics (TLED) BirthView is using an explicit �nite-

element method, also known as the Total Lagrangian Explicit Dynamics (TLED)

to calculate the deformations of the soft tissues, namely cervix, pelvic �oor mus-

cles and sacrospinous ligaments (Lapeer et al., 2019). TLED is coupled with a

modi�ed projection based contact method used to calculate the contact forces

causing the deformation in the aforementioned soft tissues.

A number of experiments were conducted in order to validate the accuracy

of TLED against Abaqus software in BirthView (Gerikhanov, 2017). The valida-

tion setup consisted of a simple �nite element cube, comprised of 244 tetrahedral

elements, with dimensions of 1m x 1m x 1m. The cube had Neo-Hookean hyper-

elastic material properties with a shear modulus of 660 kPa and a bulk modulus

of 1 MPa. The material density was 1000 kg/m3. The cube was encastred at
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Figure 4.13: Delivery of a fetus, side view. The displacements of the soft tissues
(cervix, pelvic �oor muscles and ligaments) are visualised through a colour legend.
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Figure 4.14: Shoulder arrest (shoulder dystocia) below and left to the pubic
symphysis. Shoulder width is 11cm. The displacements of the soft tissues (cervix,
pelvic �oor muscles and ligaments) are visualised through a colour legend.



CHAPTER 4. OPTIMIZATION OF CHILDBIRTH SIMULATION 115

Figure 4.15: Shoulder arrest (shoulder dystocia) behind the pubic symphysis.
Shoulders width is 12cm. The displacements of the soft tissues (cervix, pelvic
�oor muscles and ligaments) are visualised through a colour legend.
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Table 4.2: Comparison of BirthView implementation of TLED with projection
based contact against Abaqus Explicit Contact.

Force (N)
Uy,max(mm) Error

BirthView Abaqus mm %
98.1 5.91 5.795 0.115 1.95
196.2 11.12 11.125 0.005 4.5e-4

Table 4.3: Increasing the number of tetrahedral elements of a Neo-hookean hy-
perelastic cube subjected to distributed force shows that project based contact
method implemented in BirthView is not sensitive to mesh complexity.

# elements Uy,max(mm) Error(mm)
157 24.44 0.06
570 24.46 0.04
2887 24.48 0.02
21588 24.50 0.00

the base. The top face was subjected to compression force of 98.1 N and 196.2

N, replicating the pressure from a pressure plate with masses 10kg and 20 kg

respectively. The results are summarized in Table 4.2.

For 98.1 N there is 1.95% error between the projection based method and

Abaqus Explicit, whereas the error is even smaller for 196.2 N.

The next experiment by Gerikhanov (2017) showed that the project based

contact method is not sensitive to the mesh complexity. The same cube was

subjected to a compressive force of 491 N. The number of tetrahedral elements

ranged from 127 to 21588. Table 4.3 shows the results.

However, the abovementioned validation experiments are not representative

of a real childbirth scenario in BirthView, since both fetal head and pelvic �oor

muscles have curved surfaces. Also, as mentioned earlier, the compression force

above is only a replication of a pressure plate and, therefore, we extended and

combined these experiments to include a real rigid body plate, as well as a sphere,

pushing vertically down by their weight on top of the cube under gravitational

force of 9.81 N. These experiments were run both in BirthView and Abaqus.
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Figure 4.16: Sphere on cube experiment in BirthView.

4.5.2 Sphere on cube experiment

Around 173 experiments have been conducted in total with the following setup.

The same cube, comprised of �rst-order tetrahedral elements, is encastred at the

base. The cube had a Neo-Hookean material properties with a bulk modulus of

1MPa and a shear modulus of 66 kPa. These values needed to be converted to

polynomial coe�cients C10 and D1 for Abaqus, where

C10 = µ/2 = 33kP (4.1)

D1 = 2/k = 0.002kPa−1 (4.2)

where µ - shear modulus, k - bulk modulus

The number of tetrahedral elements were increased from 126 to 12490 in 5

steps. Two spheres, 10 kg and 15 kg, were separately placed on top of the cube's

surface. Table 4.4 shows the results of the experiments.

The results show that the di�erence between TLED/pDN and Abaqus Explicit

for higher number of elements is 5% when a 10 kg sphere is placed on the cube

and only 1% for a 15 kg sphere.

In addition, the results con�rm that, indeed, BirthView implementation of

projection based contact method (TLED/pDN) is less sensitive to a number
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Table 4.4: Comparison of BirthView implementation of project based contact
method against Abaqus explicit.

Masssphere # elements BirthView Abaqus Di�. (%)

10

126 17.86 14.85 -17
558 19.23 16.11 -16
1256 19.53 17.77 -9
5720 20.19 20.40 +1
12490 20.21 21.27 +5

15

126 26.74 20.04 -25
558 27.69 21.53 -22
1256 27.56 24.25 -12
5720 28.77 27.48 -5
12490 28.72 28.42 -1

of tetrahedral elements as compared to Abaqus Explicit contact method. Also

TLED/pDN even with the least number of elements is closer to the exact solu-

tion. We made an educated assumption that de�ection of a cube for a higher

number of elements presents the most accurate solution (20.21mm for BirthView

and 21.27mm for Abaqus).

Moreover, Figures 1 and 2 illustrates that TLED/pDN exhibits more stable

behaviour at around 6000 elements and above for the cube and is closer to the

correct solution even for lower number of elements.

Other contributions to the paper:

• A number of changes had to be done to BirthView software in order to

facilitate the aforementioned experiments. The sphere used to slide o� the

cube while it was in contact due to asymmetrical position of tetrahedrons in

the generated tetrahedral cube. For that reason, we implemented an option

to clamp motion of the sphere vertically by introducing a new member

variable to RigidBody Component class.

• The ExportInp Component is responsible for exporting meshes into Abaqus

INP format. It had to be slightly adjusted to produce clean INP �les of

the cube in BirthView. The component previously used to produce �ve

di�erent copies of elements and nodes and, hence, the generated �le could

not be uploaded into Abaqus to run corresponding experiments.
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Figure 4.17: Comparison of BirthView TLED/pDN against Abaqus Explicit for
a sphere of 10 kg released on a cube.
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Figure 4.18: Comparison of BirthView TLED/pDN against Abaqus Explicit for
a sphere of 15 kg released on a cube.
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Figure 4.19: New mesh models for the fetus and maternal pelvis.

• Mesh adjustments in Blender. The initial fetal head and trunk meshes were

replaced by more visually appropriate meshes (see Figure 4.19).

• Camtasia Studio was used in order to record videos of the childbirth simula-

tion in both LOA (left occipital anterior) and ROA (right occipital anterior)

positions (see Figure 1.7).

• The previous pelvic mesh model was overly simpli�ed and, therefore, was

adjusted accordingly to include a more detailed mesh model (see Figure

4.19).

4.6 Experimental study of OP position

4.6.1 Overview

This section describes childbirth when the head is in a direct occipitoposterior

(OP) position. In direct OP the fetal head's forehead is pointing anteriorly with
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respect to the maternal pelvis (see Figure 1.7). The OP positions prolong labour

and potentially can cause traumas to the pelvic �oor muscles (Biancuzzo, 1993).

In real labour midwives use various techniques in order to facilitate delivery of

a fetus in direct OP position. One of such techniques is tilting the pelvis forward

and arching the spine to facilitate early �exion.

This section covers scenarios with both the basic neck model (NM01) and

6DOF spring constraint neck model (NM03). It is important to cover the case

with the basic spring neck model for the complete picture and to observe how the

updated neck model a�ects the simulation.

4.6.2 Direct OP using the old neck model (NM01)

The head in OP position is slightly above the pelvic brim. The head width

is 8.80cm. The pelvis is in normal orientation, i.e. not tilted anteriorly. The

initial applied expulsion force ranges between 30N and 40N. The expulsion force

was reduced since the default range between 30N to 150N leads to extreme lateral

�exion during internal rotation. On the onset of the simulation, the head descends

into the pelvic inlet and gets engaged with the pelvic brim. The force, propagated

through the neck, contributes towards �exion, which leads to further descent until

the head comes into contact with the pelvic �oor muscles. At this point, the head

is fully �exed and the occiput is in contact with the pelvic �oor muscles. Unless

the expulsion force is increased, the head will remain in this position. Further

increase of expulsion force up to 80N, at around 88 seconds of the simulation,

results in onset of internal rotation of 30 degrees clockwise and results in extreme

lateral bending (see Figure 4.20 and 4.21 ).

4.6.3 Direct OP using the new neck model (NM03)

The head in OP position is slightly above the pelvic brim. The head width

is 8.80cm. The pelvis is in normal orientation, i.e. not tilted anteriorly. The

initial applied expulsion force ranges between 30N and 150N. On the onset of

the simulation, the head descends into the pelvic inlet and gets engaged with

the pelvic brim. The force, propagated through the neck, contributes towards

�exion, which leads to further descent until the head comes into contact with the
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Figure 4.20: Graph of simulating a direct OP with NM01 neck model. The force,
propagated through the neck, contributes towards �exion (descend of the orange
curve), which leads to further descent until the head comes into contact with the
pelvic �oor muscles at around 47 second. At this point, the head is fully �exed
(the peak for NM01 neck model is 40 degrees) and the occiput is in contact with
the pelvic �oor muscles. Unless the expulsion force is increased, the head will
remain in this position. Further increase of expulsion force up to 80N, at around
88 seconds of the simulation, results in onset of internal rotation (red curve going
up) of 30 degrees clockwise and results in extreme lateral bending (yellow curve
going up).

pelvic �oor muscles. At this point, the head is fully �exed and the occiput is in

contact with the pelvic �oor muscles. Once the expulsion force has reached 150N,

this results in onset of internal rotation due to the shape of pelvic �oor muscles

and contact between the fetal trunk and sacrum (see Figure 4.22). However,

maintaining the same amount of force results in extreme stretch of pelvic �oor

muscles and transverse arrest (see Figures 4.23, 4.24, 4.25). Maintaining the same

expulsion force leads to delivery sideways.

In order to avoid the aforementioned overstretch the expulsion force had been

manually controlled and heuristically decreased down to around 80-100N. Then

the head continues internal rotation until it has reached 90 degrees, i.e. forehead
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Figure 4.21: Graph of the increasing periodic expulsion force (red curve).

facing the back of the pelvis. Finally, once the head completed full rotation, the

force needs to be increased up to around 180N in order for the delivery to occur

(see Figures 4.26 and 4.27). This decreasing of expulsion force is in line with

directions being given by midwives to the mother to push less, when a baby is in

OP position (private communication, Kenda Crozier, Professor in Midwifery at

UEA, 2018).

4.6.4 Pelvis tilted by 10 degrees

No particular improvements were observed in case when the pelvis was tilted

anteriorly during the second stage of labour. In both cases the fetal head ends

up completely �exed while in contact with pelvic �oor muscles. However, with

a tilted pelvis the simulation was noticeably faster. The head engaged quicker

in case of the tilted pelvis and the rotation from OP to LOT (see Figure 1.7)

occurred 90 seconds earlier. The latter may be due the manual adjustments of

the expulsion force, which in turn introduced inconsistency in the applied force.

It is worth mentioning that with a tilted pelvis anteriorly by 10 degrees, the

crown of the head enters the pelvis �rst simulating false �exion, although the
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Figure 4.22: The trunk is in contact with sacrum and lower maternal spine (high-
lighted in red). The fetal trunk pushing against the maternal sacrum contributes
to rotation of the fetal head in OP position.

head is de�exed. Having the pelvis rotated anteriorly even more would increase

�exion of the head (see Figure 4.30).

Titling pelvis would arguably contribute toward faster dilation during the �rst

stage of labour due to the crown of the head entering the pelvis inlet �rst when

the pelvis is tilted anteriorly. This requires further investigation and development

of a scene for simulating the �rst stage of labour.

It is di�cult to comment on the observed movements of the fetus due to

absence of variations in maternal pelvises and spines. In addition a number of

maternal spine meshes would be required in order to simulate curled, straight and

arched maternal spines. The curvature of the maternal spine can either cause the

fetal head to �ex or de�ex and by doing so can either facilitate or hinder further

descent of the fetus.
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Figure 4.23: When a high expulsion force is exerted on the head during internal
rotation in OP, the head overstretches the pelvic �oor muscles. The displace-
ments of the soft tissues (cervix, pelvic �oor muscles and ligaments) are visualised
through a colour legend.

4.7 Experimental study of cardinal movements with

di�erent dimensions of the fetal head

4.7.1 Introduction

In the following experiment we present the results of simulations in BirthView

with various head widths of a fetus (biparietal diameters). First and foremost a

cephalic index of the existing head was calculated in order to verify proportions

of the head. Then the width was compared to the measurements presented in

literature (Hall et al., 2006; Ismail et al., 2018). 18 experiments were conducted

with various head widths in order to validate robustness of BirthView and the

results are presented in plots.
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Figure 4.24: Graph of a non-controlled simulation of a direct OP with NM03
neck model.

4.7.2 Cephalic index

A cephalic index is the ratio of the maximum width of the head, multiplied by

100 divided by its maximum length. A cephalic index of a �normal� head of a

child under three years old should fall between 74.39 and 81.45 percent (Likus

et al., 2014).

CI = headwidth ∗ 100/headlength (4.3)

The existing head in the simulation has a width of 8.3cm and a length of

11.83cm, including the mandible. However, in order to calculate a cephalic index,

the length needs to be measured between the glabella1 and the opisthocranion2

(see Figure 4.31 and 4.32) (Hall et al., 2006). Hence, the length was measured to

be 11.01cm (see Figure 4.33)).

1Glabella - the most prominent point on the frontal bone above the root of the nose, between
the eyebrows

2Opisthocranion - the most prominent portion of the occiput, close to the midline on the
posterior rim of the foramen magnum
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Figure 4.25: Graph of the non-controlled increase of periodic expulsion force (red
curve).

Therefore, the cephalic index was calculated as follows:

CI = 8.3 ∗ 100/11.03 = 75.38% (4.4)

The found CI is within the range of a �normal� head of a child under three

years old (Likus et al., 2014).

4.7.3 Biparietal diameter (BPD)

Head width or biparietal diameter of the existing head is 8.3cm, excluding skin

thickness, which has been approximated to be around 0.5mm from Lapeer (1999).

Therefore, the width, including the skin, is around 8.8cm, which corresponds to

the average head width at 36 weeks of gestational age and within 2 standard

deviation of head width at 41 weeks of gestational age (Hall et al., 2006). In

addition, Ismail et al. (2018) reported biparietal diameters in 551 neonates (right

after birth), giving a mean value of 9.4cm (range 9.07 - 9.55cm) which is similar

to the mean head width at 41 weeks (see Figure 4.34).
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Figure 4.26: Graph of controlled simulation of a direct OP with NM03 neck
model. Rotation (red curve) starts at 90 degrees from either LOT or ROT po-
sitions (see Figure 1.7) since the head is initially in OP position. Zero value
corresponds to the head being in LOT position. Further increase up to 90 de-
grees correspond to �normal� internal rotation and the forehead of the fetal head
being facing sacrum. Flexion (orange curve) occurs in the beginning when the
head comes into contact with the pelvic inlet. It then decreases at around 41
seconds due to inability to descend further caused by the trunk being pushed
forward by sacrum.

4.7.4 Experimental setup

Table 4.5 summarizes the experimental setup in BirthView.
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Figure 4.27: Graph of the controlled increase of periodic expulsion force (red
curve). The spikes in the plot at 212, 250 and 345 seconds correspond to manual
adjustments of the expulsion force.

Figure 4.28: Graph of a non-controlled simulation of a direct OP with NM03
neck model.
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Figure 4.29: Graph of the non-controlled increase of periodic expulsion force (red
curve).
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Figure 4.30: Picture of the simulation with a tilted pelvis anteriorly. It can
be seen that with the tilted pelvis, the smaller diameter of the head enters the
pelvis �rst. The displacements of the soft tissues (cervix, pelvic �oor muscles and
ligaments) are visualised through a colour legend.

Figure 4.31: Measuring head
length with calipers.

Figure 4.32: Measuring head
width with calipers.
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Figure 4.33: Measuring the fetal head's length in Blender with a ruler.

Figure 4.34: Head width, both sexes, at birth. From Merlob et al. (1984).
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Table 4.5: The experimental setup of BirthView for the experimental study of cardinal movements with di�erent
dimension of the fetal head.

Lin damping Rot damping Mass Positionx,y,z Orientation
Fetal head 9650 3 1.5 [0.0133, 0.1, 0.0] LOT*
Fetal trunk 3650 3 2.5 [0.0133, 0.2151, 0.0] LOT*
Maternal pelvis 3650 1 1 [0.0, 0.0, 0.0] n/a
* LOT - left-occiput transverse position (see Figure 1.7)

Bushing element
Length Position on skull

kf ke klb kt k
Fetal neck 3.6 [0.0, 0.0, 0.0]* 0.01 0.04 2 0.1 3600
* origin of the scull is at foramen magnum
kf , ke, klb, kt - sti�ness coe�cients in �exion, extension, lateral bending and rotation
k - sti�ness coe�cient resisting elongation, compression and shear translations

Bulk modulus Shear modulus Number of elements Number of nodes
PF muscles 1MPa 66kPa 18788 6577
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The fetus is in left-occiput transverse position (LOT). The fetal head position

is at 0.0133 along x-axis, 0.1 along y-axis and 0.0 along z-axis.

Bulk and shear modulus for the pelvic �oor muscles are equal to 1MPa and

66kPa respectively. Bony sacrospinous ligaments (rigid bodies) were used in order

to speed up the simulation. The length of the neck is around 3.6cm.

Head width was scaled up from initial value of 8.8cm in steps of 0.5 up. The

maximum head width in the table is within the range reported by Ismail et al.

(2018).

Figure 4.35: Simulating childbirth (LOT) with a head width of 9.07cm. Bony
pelvis, FE cervix, FE pelvic �oor and bony sacrospinous ligaments are present.
The head can be seen undergoing all cardinal movements. The �exion (descent
of the orange curve) and the extension (the peak of the orange curve at around
288 sec) are shown. The internal rotation is shown gradually reaching the full
value of around 90 degrees (red curve going up). The external rotation (red curve
goes further up to 170 degrees) occurs after extension (peak on orange curve) and
further descent of the head (blue curve going down).
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Figure 4.36: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

4.7.5 Analysis

From the plots (see Figures 4.35 and Appendix A) in can be seen that BirthView,

with a new neck model (NM03), is capable of simulating childbirth for the whole

range of the reported biparietal diameters. Larger heads require a higher amount

of expulsion force in order for expulsion to occur (see Figure 4.37). Thus, a head

with a width of 9.55cm requires around 220N of expulsion force. In addition,

the minimum force required to deliver the smallest head (8.8cm) increased from

150N, reported by Gerikhanov (2017), to 180N (see Figure 4.36). This is due to

the increased �exion, caused by the longer neck.

The external rotation occurred in the same direction (clockwise) as the inter-

nal rotation, when the fetus is initially in left-occiput transverse position. How-

ever, when the fetus is in right-occiput transverse position (see Figures 4.38 and

4.39), at the onset of the simulation, the internal rotation occurs in the oppo-

site direction (anti-clockwise) (Gerikhanov, 2017), whereas the external rotation

remains the same. This is caused by the asymmetrical shape the of the pelvis

and other factors such as one shoulder coming into contact with the pelvic �oor
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Figure 4.37: Graph of the expulsion force required for successful delivery of the
fetal head with increasing BPDs.

muscles before the another. This has been experimentally veri�ed in BirthView

and the results have shown that more than one factor a�ects the direction of

external rotation.

4.7.6 Additional experiments

4.7.6.1 Neck length of 2.4 cm

Same experiment as in Section 4.7.4 has been rerun this time with the shorter neck

of, randomly selected, 2.4 cm (see Figure 4.41). The shorter neck corresponds

to the lesser expulsion force of 150N required (see Figure 4.42) as compared to

180N for the longer neck (see Figure 4.36). Generally fetuses with shorter necks

required less expulsion force for a successful delivery (see Figure 4.40). As can

be seen in Figure 4.41 the shorter neck only �exed up to 30 degrees, whereas the

longer neck �exed up until 40 degrees in Figure 4.35. The head can only de�ex if

there is su�cient space in the anterior part of the pelvic outlet for the fetal head

to move away from the sacrum, otherwise further pushing contributes to higher

�exion. With smaller �exion the head initially requires more space in the pelvic
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Figure 4.38: Simulating childbirth (ROT) with a head width of 9.15cm. Bony
pelvis, FE cervix, FE pelvic �oor and bony sacrospinous ligaments are present.
The head can be seen undergoing all cardinal movements. The �exion (descent of
the orange curve) and the extension (the peak of the orange curve at around 308
sec) are shown. Rotation starts at 180 degrees since the fetus in ROT position.
The internal rotation is shown gradually reaching the full value of around 90
degrees (red curve going down). The external rotation (red curve goes up to 180
degrees) occurs after extension (peak on orange curve) and further descent of the
head (blue curve going down).

outlet and, hence, it is gradually stretching the pelvic �oor muscles, to �t the

pelvis, even before the completion of the internal rotation. That seems to be the

reason the shorter neck takes longer to complete the internal rotation (compare

Figures 4.35 and 4.41). As a result, with the shorter neck, the pelvic �oor muscles

need to stretch less in order for the extension to commence.

Another possibility, which requires further investigation is that a mobile sacrum

contributes towards the de�exion of the fetal head by moving and rotating back-

wards.

In addition to the above experiments, the following experiments were con-
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Figure 4.39: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

ducted:

• Fetus is in ROT position with the neck length of 3.6 cm.

• Variations in the neck length for LOT position: 1.2, 2.4, 3.6 and 4.2 cm.

4.7.7 Conclusion

It is important to note that the aforementioned experiments were not possible

with the old neck model (NM01). That is due to inability of NM01 to resist

lateral bending with a longer neck, whereas the new neck model (NM03) is us-

ing a 6DOF spring constraint to introduce a combined resistance of the neck in

every direction, including the lateral bending. In addition, NM03 is using the

mechanical properties acquired from the literature (Luck, 2012; Nuckley et al.,

2013b).
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Figure 4.40: Comparison of the expulsion force required for successful delivery
of the fetal head with increasing BPDs for the neck of length 2.4cm and 3.6cm.
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Figure 4.41: Simulating childbirth (LOT) with a head width of 9.07cm and neck
length of 2.4cm. Bony pelvis, FE cervix, FE pelvic �oor and bony sacrospinous
ligaments are present. The head can be seen undergoing all cardinal movements.
The �exion (descent of the orange curve) and the extension (the peak of the orange
curve at around 275 sec) are shown. The internal rotation is shown gradually
reaching the full value of around 90 degrees (red curve going up). The external
rotation (red curve goes further up to 180 degrees) occurs after extension (peak
on orange curve) and further descent of the head (blue curve going down).
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Figure 4.42: Neck length is 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.



Chapter 5

Summary and Conclusions

5.1 Conclusion

In this project a childbirth simulation software BirthView has been validated and

improved to eventually arrive at a patient-speci�c simulation. The existing neck

model in the software was not capable of simulating cardinal movements with an

average height of a cervical spine. Also the model used arbitrary sti�ness values

for the neck motion. The model was improved to incorporate a six degrees-of-

freedom spring constraint to introduce resistance of the spine in various ranges

of motion. In addition the new model is using approximated sti�ness values

from the existing pediatric and adult data. With the improved neck model, the

software is capable of simulating childbirth with a bigger variety of the neck's

mechanical properties such as the neck's length, separate sti�ness values, i.e.

resistance for stretch/compression, lateral bending, �exion, extension and rota-

tion (see Appendix A). Hence, the null hypothesis (H0) was rejected and the

alternative hypothesis (H1) was proven (see Section 1.5). The variations of the

mechanical properties of a computer model of a fetal neck and its implementation

can signi�cantly a�ect the outcome of the virtual childbirth simulation.

Once the neck model was improved, a further validation of BirthView has

been implemented for various biparietal diameters of fetal heads. Also a number

of experiments were done on direct occipito-posterior position of a fetus to test a

heuristic method of resolving direct OP position.

143
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In addition, a simulation software BirthViewH was developed, which is using

a haptic device to provide information on the e�ort needed to manipulate the

fetal skull. This software can be improved and potentially used to estimate the

combined sti�ness of a newborn's head, including muscle resistance. The software

has been clinically tested and the results are published in a conference paper

(Sadulaev et al., 2017).

Another contribution of this research is validation of a projection based con-

tact method with Total Lagrangian Explicit Dynamics in BirthView. The results

have been published in the paper by Lapeer et al. (2019).

5.2 Summary

• A better neck model was developed as part of the childbirth simulator

BirthView, which allowed for running the simulation with a higher vari-

ety of mechanical properties such as neck lengths and rotational sti�ness

parameters.

• An additional simulation software BirthViewH was developed to provide

information on the e�ort needed to manipulate the fetal skull.

• A validation of the TLED method has been implemented.

• A number of experiments were performed for the validation of the neck and

simulation software.

• A heuristic method of resolving direct occiput-posterior (OP) presentation

was validated in BirthView. The results show that tilting a pelvis can

potentially contribute towards faster labour especially during the �rst stage

of labour and possibly contribute towards rotation of the fetal head in direct

OP position.

• A new pelvis model was developed with a mobile sacrum. A number of

experiments were conducted with both static and mobile sacrums. The

results show that the mobile sacrum contributes towards complete internal

rotation by increasing the pelvic outlet.
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• Shoulder dystocia was simulated in BirthView.

• A device for measuring ROM of a fetal head and a protocol was devel-

oped, which can potentially be used in the future studies of newborns' neck

properties

5.3 Limitations and Future work

5.3.1 Limitations

The implemented neck models and BirthViewH have a number of limitations

mainly due to scarcity of available data and partially due to the implementation

itself.

The list of limitations for the neck model:

• The combined sti�ness values, incorporated into the neck models, are only

approximations and ideally should include the e�ects of passive resistance

of the neck muscles.

• The implemented bushing element may lose one of the rotational axes (Gim-

bal lock), when an object is rotated at 90 degrees. The problem can be

addressed by using quaternions (Diebel, 2006), however, they were not re-

quired at this stage to achieve the aim and objectives of the project.

• Measuring ROM from the video with a perspective distortion will a�ect the

accuracy of the measurement.

• The implemented neck model (NM03) is not capable of simulating the cou-

pled motion of the neck, i.e. when the head is either completely rotated

sideways or �exed, the ROM of lateral bending is supposed to decrease.

Similarly when the head is in complete lateral bending, the ROM in �exion

and side rotation decreases.

The list of limitations for BirthViewH:

• Lateral bending and separate �exion from extension needs to be imple-

mented in the software.
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• The spherical proxies should be replaced by animated hands which can grasp

the fetal head for more realistic manipulations. Currently, the spherical

proxies occasionally slip o� the virtual head in particular with users who

are not familiar with using a haptics UI.

• A stylus based interface of the haptic device (Phantom Omni) should also

be extended to have a shape of a hand to make the experience of holding a

baby, in the virtual environment, more realistic. Such a hand stylus could

be made using a 3D printer.

• Another important limitation of the BirthViewH is the maximum force

range of the used haptic devices which is around 3.3 N (see Figure 3.4).

Depending on whether the baby is being held or is lying on the bed in the

software, the maximum force may not be enough to simulate the resistance

of a fetal head. To simulate the gravity of a baby being held in an exper-

imenter's arms, the haptic device should be able to exert force of at least

4.9 N given a head mass of 0.5 kg.

• The current haptic devices only provides 3DoF haptic feedback, however,

when holding and turning a baby's head a 6DoF haptic feedback would be

more appropriate to realistically simulate the resistance of the head.

• More realistic 3D meshes of a newborn's head (rather than a skull model)

and a trunk with shoulders and articulated arms. The legs are not impor-

tant in this particular simulation.

• The e�ect of gravity needs to be improved on as we did not have exact data

of the centre of gravity of the fetal/newborn head at the time we conducted

the �rst series of the experiments.

5.3.2 Future work

5.3.2.1 Neck model

Currently the coupled motion of the neck is simulated by adjusting the sti�-

ness values at runtime and it seems to be the only way with the existing neck
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model. The next logical step in improving the neck model would be identifying

the strength or resistance of the fetal neck as a whole, including the surrounding

muscles and incorporating the found values in the neck model. The provided

protocol for a clinical study of ROM in healthy newborn babies (see Appendix

B), with a few adjustments, could be potentially used to acquire the required

data.

In addition it is essential to have the ROM and sti�ness data on combined

�exion-rotation, �exion-lateral bending, rotation-lateral bending and �exion-rotation-

lateral bending of the fetal head to accommodate for all possible scenarios. These

tests need to be included in the above protocol.

5.3.2.2 First stage of labour

Is it important to be able to simulate the �rst stage of labour to observe various

complicated birth scenarios such as direct OP position. Currently the cervix in

BirthView is always fully dilated and, therefore, it is impossible to make conclu-

sions on whether certain heuristic techniques for resolving direct OP would be

helpful.

5.3.2.3 Additional meshes for maternal spines

The curvature of maternal spines (arched, curled and straight) is believed to have

an e�ect on the childbirth during the �rst stage of labour. The arched maternal

spine can cause the fetal head to �ex and, by doing so, facilitate presentation of

the narrower diameter of the head during the �rst stage of labour.

5.3.2.4 Additional meshes for fetal skulls and trunks

In order to complete the validation of BirthView additional meshes for fetal skulls

and trunks are required. This would involve either gathering CT data of newborns

or adjusting the existing meshes to correspond to the reported dimensions in the

literature.
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5.3.2.5 Complete birth canal

A complete birth canal is necessary to direct the fetal body to a successful delivery.

The complete birth canal is especially important once a �exible fetal torso is

introduced in BirthView. In addition, the birth canal could potentially contribute

to resisting extreme lateral �exion of the fetal head in the simulation.

5.3.2.6 Flexible fetal torso and articulated shoulders

It has been shown experimentally that a �exible torso is essential for the last car-

dinal movement, expulsion, to occur since otherwise the torso would not progress

further into the birth canal (see Section 4.3.3). Articulated shoulders are essential

in order to simulate various scenarios of shoulder dystocia and their resolution.
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Appendix A

Experimental study of cardinal

movements with di�erent dimension

of the fetal head

Figure A.1: Simulating childbirth (LOT) with a head width of 9.15cm.
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Figure A.2: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.3: Simulating childbirth (LOT) with a head width of 9.2cm.
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Figure A.4: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.5: Simulating childbirth (LOT) with a head width of 9.25cm.
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Figure A.6: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.7: Simulating childbirth (LOT) with a head width of 9.3cm.
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Figure A.8: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.9: Simulating childbirth (LOT) with a head width of 9.35cm.
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Figure A.10: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.11: Simulating childbirth (LOT) with a head width of 9.4cm.
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Figure A.12: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.13: Simulating childbirth (LOT) with a head width of 9.45cm.
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Figure A.14: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.15: Simulating childbirth (LOT) with a head width of 9.5cm.
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Figure A.16: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.17: Simulating childbirth (LOT) with a head width of 9.56cm.



APPENDIX A. STUDY OF CARDINAL MOVEMENTS 170

Figure A.18: Graph of the increasing periodic expulsion force (red curve). The
expulsion force is decreased after the delivery of the fetal head.

Figure A.19: Simulating childbirth (LOT) with a head width of 9.15cm and neck
length of 2.4cm.
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Figure A.20: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.21: Simulating childbirth (LOT) with a head width of 9.2cm and neck
length of 2.4cm.
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Figure A.22: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.23: Simulating childbirth (LOT) with a head width of 9.25cm and neck
length of 2.4cm.
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Figure A.24: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.25: Simulating childbirth (LOT) with a head width of 9.3cm and neck
length of 2.4cm.
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Figure A.26: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.27: Simulating childbirth (LOT) with a head width of 9.35cm and neck
length of 2.4cm.
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Figure A.28: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.29: Simulating childbirth (LOT) with a head width of 9.4cm and neck
length of 2.4cm.
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Figure A.30: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.31: Simulating childbirth (LOT) with a head width of 9.45cm and neck
length of 2.4cm.
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Figure A.32: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.

Figure A.33: Simulating childbirth (LOT) with a head width of 9.5cm and neck
length of 2.4cm.
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Figure A.34: Neck length: 2.4cm. Graph of the increasing periodic expulsion
force (red curve). The expulsion force is decreased after the delivery of the fetal
head.



Appendix B

A clinical study of ROM in healthy

newborn babies

B.1 Introduction

The purpose of this study is to �nd out the range of motion of a newborn baby's

neck, its muscle strength, other physical measurements of newborns such as mass,

head circumference as well as acquire the trajectory followed by a newborn's head

during various motions.

The primary aim of this observational study is to collect data for the purpose

of validating a computational neck model used in a childbirth simulator. How-

ever, Range of Motions (ROMs) and the muscle strength can also be used for

development, improvement and validation of computational neck models used in

other applications such as virtual car crash simulations, and whiplash investiga-

tion applications.

There are presently very limited data in the literature regarding the normal

range of movements of the head and neck in infants. It is important to mention

that currently there are data on lateral �exion and side rotation only, acquired by

measuring ROMs of the neck of 38 infants (at the ages of 2, 4, 6, and 10 months)

using a joint protractor (Öhman and Beckung, 2008), however, the data do not

include measurements for newborns. Also there are a few computer neck models

of infants developed by Bondy et al. (2014), Jones et al. (2015), but both focus
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on �exion and extension only.

This study is set to be conducted in Norwich and Norfolk University Hospital.

The study requires 40 newborns of the age up to one week old, with half males

and half females.

B.2 Motivation

Our research team is currently working on a state-of-the-art computer based

virtual childbirth simulator (BirthView). The ultimate purpose of the simulator

is to be used for training midwifery students and predicting di�cult (abnormal)

labour. BirthView is the only forward-engineered simulator capable of producing

seven cardinal movements successfully during physiological (normal) labour.

However, prior to serving its purpose in simulating abnormal labour (e.g.

shoulder dystocia), every component in the simulator needs to be tested and

validated thoroughly. One of the most important elements, i.e. the neck of the

newborn (computer model), is currently represented as a basic spring, whereas in

real life, the neck exhibits more complicated behaviour than a Hookean spring.

For that reason, the neck model in BirthView is being further improved.

Due to scarcity of information on newborns, the developed basic spring neck

model has been validated against the limited data on the range of motion of the

neck in infants, aged 2 to 10 months old (Öhman and Beckung, 2008). Unfortu-

nately there is a possibility that the neck of an infant of 2 months old exhibits

signi�cantly di�erent behaviour to a newborn (Luck, 2012) and therefore more

data is required on ROM of the neck in newborns.

This clinical study is meant to �ll the gap of missing data on ROM of the

neck in newborns.

B.3 Methods

We have developed a device as an extension of the baby mat in order to facilitate

easy measuring of ROMs in three planes: sagittal, axial and coronal (see Figure

B.1). The device is made of plexiglass sheets and is designed to accommodate

for the mat depicted in Figure B.2. The device has a transparent protractor
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Figure B.1: Three planes of ROM.

Figure B.2: Measuring device of ROMs of the neck of a newborn.

on the side which can be easily adjusted vertically to correspond to the selected

rotational point.

With parental consent, a video camera will record the whole process and the

following motions of the head will be performed: �exion, lateral �exion, side

rotation and extension.

Figure B.4 and table B.1 summarise all the measurements that need to be
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Figure B.3:
Accelerometer
BWT901CL

An accelerometer, using Bluetooth to send data to a laptop,
will be used to measure isotonic muscle strength. The
device can be attached to an infant hat with velcro and
transmits data to a laptop using class 2 Bluetooth, which is
considered to be safe ((Hietanen and Alanko, 2005)). The
device is further coated with tinfoil to reduce
radio-frequency (RF) emissions.

performed during the study.

Figure B.4: Range of motion. Accessed February 2018.
<http://arc4life.blogspot.co.uk/2014/02/a-look-at-neck-range-of-motion.html>

Table B.2 summarises all the measurements that are normally recorded after

birth, and are required for the study.

Head weight will be measured using either of the following two methods:

• using a sensitive scale similar to the one in Figure B.6. The baby's head

will be placed on the scale, while the rest of the body will be supported by

the examiner.

• using a dynamometer (see Figure B.7). The baby will be wearing a safety

helmet (see Figure B.5) and the dynamometer will be attached to it. While
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Table B.1: Measurements required for �nding range of motion of a newborn
baby's head (template).

Baby Flexion Hyper-extension Lateral bending Side rotation

Table B.2: Measurements that are normally recorded after birth. Bold items
may have to be measured during the study (template).

Baby
Gestational age
and Age (days)

Gender
Body
Weight

Head
Circumference

Head
Weight

Biparietal
Diameter

baby is lying in supine position, the dynamometer will be slowly pulled up

to slightly lift the baby's head o� the mat.

The biparietal diameters will be measured using calipers.

B.4 Study

Location: Norwich and Norfolk University Hospital.

Newborns: This study requires 40 healthy babies.

Postnatal age of babies: up to a week.

Number and gender: 20 male and 20 female.

Preferred stage of activity (from 1 to 4):

• asleep - 1

• half asleep - 2

• just awake - 4

• normal (fully awake) � 3

If a newborn is tense or uncooperative the measurements will be discontinued.

Duration: a cycle of measurements for a baby is expected to take no longer

than 20 minutes

Parents should be present at all times.
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B.5 Procedures

The following four procedures will be recorded with a video camera to subse-

quently �nd the aforementioned kinematic trajectories of the newborn's head at

�exion/extension, side rotation and lateral bending and to obtain ROM values.

B.6 Measuring ROMs

Lateral bending. A large protractor is

placed �at on a bed and a newborn is in

supine position with its shoulders stabilized

and the head is in the cavity/inner arc of

the protractor. Alternatively, a large

protractor can be drawn on an examination

table similar to the study by Öhman and

Beckung (2008).

The head is carefully bent until moderate

resistance is met and the maximum angle is

measured using the protractor and noted

down.

Side rotation. A newborn is in supine

position on a bed with its shoulders

stabilized and the head over the edge of a

bed, supported by the examiner. A large

protractor is �xed on the side, either on the

left or right side of the newborn so that the

head is in the cavity/inner arc of the

protractor. The head is then carefully

rotated sideways until moderate resistance

is met and the maximum angle is measured

and noted down. The procedure is repeated

for both sides.
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Flexion. A newborn is lying in supine

position on a bed with its shoulders

stabilized. A large protractor is �xed on the

side, either on the left or right side of the

newborn. The head is carefully bent

forward (�exed) until a chin touches a chest

and the maximum angle is measured using

the protractor and noted down.

Hyper-Extension will be measured by

following the common pediatric

examination procedure to evaluate the tone

of a newborn's neck. The procedure will be

recorded and subsequently processed to �nd

out the ROM with causing as little stress as

possible to the baby.

B.7 Analysis

• The obtained video data and accelerations will be used to acquire and val-

idate the following data: ROMs, kinematic curvatures, neck strength.

• The video will be analysed using OpenCV and OpenPose which are libraries

of computer vision functions for image/video processing.

• The acceleration data will be analysed using a custom software.

• ROM data will be validated using both the protractor and computer vision

techniques. Also both accelerations and ROMs can be validated with the

accelerometer and, hence, all three methods can be compared to one another
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to establish the level of accuracy of computer vision methods in �nding

ROMs and accelerations from the recorded video.

B.8 Application

The data will be used to develop another neck model and its validation. Also

the experimenter himself is the perfect candidate to validate the computer neck

model using BirthViewH.

The data can be used in modelling a computational newborn neck model in a

variety of virtual reality simulations: childbirth simulation, car crash simulations,

including assessing safety of a child restraint and investigating whiplash injuries.
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Figure B.5: Safety helmet for in-
fants.

Figure B.6: Scale.

Figure B.7: Dynamometer.



Appendix C

Instructions on BirthViewH for

midwives

C.1 Aim

The aim of this experiment is to assess the strength and �exibility of the new-

born's neck to allow us to create a realistic computer based model. The computer

based neck model will be used as part of our childbirth simulator. Indeed, the

fetal neck is a crucial component of the cardinal movements during childbirth

and to ensure the simulator exhibits the cardinal movements, we require realistic

behaviour of the fetal neck.

C.2 Procedure

We have created a simulation software showing a fetal head, neck and trunk on

the screen. Interaction with the head is facilitated using two haptic devices (See

Figure 3.11). The haptics devices allow you to rotate the displayed fetal head

in 3D. You will also feel resistive moments and forces (force feedback) from the

haptics device whilst doing this. The degree of �exibility or sti�ness that you will

sense depends on mechanical properties of the neck muscles. The aim of the ex-

periment is to validate and adjust the mechanical properties of the computational

fetal neck model so that its rotations and �exibility feel realistic.

188
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C.3 Instructions

These instructions are intended for midwives and professionals in obstetrics to

conduct the experiments on validation of the fetal cervical neck and spine.

The professionals are required to apply certain force to the fetal skull on the

screen (See picture) using two Haptic devices and validate the resistance of the

skull, during bending and rotation, against their real-life experience.

Please follow the instruction below and do not hesitate to approach the ex-

perimenter for further guidance.

C.4 Setting up sti�ness and damping value

Try to rotate the fetal head on the screen using the provided Haptics devices (See

picture) and inform the experimenter if the head is resisting movement realisti-

cally

C.5 Flexion/extension/lateral bending testing

• Try to bend the fetal head and inform the experimenter if the head is

resisting movement realistically

• Allow time to adjust the sti�ness of the neck if necessary

• Bend until the head completely resists further bending and inform the ex-

perimenter about the realism of the maximum bending angle

• Try to �ex further and inform the experimenter whether resistance of the

head feels realistic.

C.6 Side rotations testing

• Try to rotate the fetal head and inform the experimenter if the head is

resisting rotation realistically
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• Allow time to adjust the sti�ness of the neck if necessary

• Rotate until the head completely resists further rotation and inform the

experimenter about the realism of the maximum rotational angle

• Try to rotate further and inform the experimenter whether resistance of the

head feels realistic
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Glossary

Anatomical terms MedicineNet (2019); The Free Dictionary (2019)

• Pelvic �oor: The soft tissues enclosing the pelvic outlet.

• Occiput: The back of the head.

• Pubic symphysis/Symphysis pubis: The area in the front of the pelvis where

the pubic bones meet.

• Fetus: An unborn o�spring, from the embryo stage (the end of the eighth

week after conception, when the major structures have formed) until birth.

• Introitus: The exterior opening to the vagina, the muscular canal that

extends from the cervix to the outside of the female body.

• Symphysis pubis: The area in the front of the pelvis where the pubic bones

meet.

• Anterior: The front, as opposed to the posterior.

• Posterior: The back or behind, as opposed to the anterior.

• Anteroposterior position: From front to back. When a chest x-ray is taken

with the back against the �lm plate and the x-ray machine in front of the

patient it is called an anteroposterior (AP) view. As opposed to from back

to front (which is called posteroanterior).
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• Posteroanterior position: From back to front.

• Cervix: The cervix is the lower, narrow part of the uterus (womb). The

uterus, a hollow, pear-shaped organ, is located in a woman's lower abdomen,

between the bladder and the rectum. The cervix forms a canal that opens

into the vagina, which leads to the outside of the body.

• Uterus: A hollow, pear-shaped organ that is located in a woman's lower

abdomen, between the bladder and the rectum.

• Placenta: A temporary organ that joins the mother and fetus, transfer-

ring oxygen and nutrients from the mother to the fetus and permitting the

release of carbon dioxide and waste products from the fetus.

• Sagittal plane: Plane parallel to the median plane; sagittal planes are ver-

tical planes in the anatomic position.

• Coronal plane: A vertical plane at right angles to a sagittal plane, dividing

the body into anterior and posterior portions, or any plane parallel to the

central coronal plane.

• Axial plane: Transverse plane at right angles to the long axis of the body,

as in CT scanning.

• Occipito-posterior position: A cephalic presentation of the fetus with its

occiput turned toward the sacrum or rotated to the right (right occipito-

posterior, ROP) or to the left (left occipitoposterior, LOP) sacroiliac joint

of the mother.

• Occipito-anterior position: A cephalic presentation of the fetus with its

occiput under the symphysis or rotated toward the right (right occipito-

anterior, ROA) or to the left (left occipito-anterior, LOA) acetabulum of

the mother.

• Shoulder dystocia: Arrest of normal labor after delivery of the head by

impaction of the anterior shoulder against the symphysis pubis.
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• Biparietal diameter: the diameter of the fetal head between the two parietal

eminences.

• Flexion: in obstetrics, the normal bending forward of the head of the fetus

in the uterus or birth canal so that the chin rests on the chest, thereby

presenting the smallest diameter of the vertex.

• Extension: opposite to �exion.

• Lateral: pertaining to a side.

• Suprapubic: above the pubic bone.
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Childbirth simulators

E.1 BirthEngine

The BirthEngine software is a generic medical simulation engine used to simulate

forward-engineered childbirth process (see Figure E.1). The simulator is written

in C# and it is completely cross-platform. In addition, it utilizes modern software

engineering design patterns and practices (Lapeer et al., 2014).

1. The main window.
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E.2 BirthView

BirthView is the current version of the childbirth simulation software written in

low-level C++ language. It is cross-platform and scalable.

E.2.1 Cross-platform

BirthView is using the Simple DirectMediaLayer (SDL), which is a cross-platform

development library designed to provide low level access to input devices (key-

board, mouse), audio and graphics hardware via OpenGL and Direct3D (Simple

DirectMedia Layer, 2016).

E.2.2 Scalability

BirthView is plugin/static libraries based and can be easily extended by creating

a separate project. Each project in the BirthView solution explorer (see Figure

E.1) contain many projects, which represent a static library extending the generic

core project.

E.2.3 Entity Component System

Entity component system (ECS) is an architectural pattern and is mostly used in

game development. The pattern follows the Composition over Inheritance princi-

ple, where every object in a simulation's scene is an Entity, which typically stores

only a container of components. The behaviour of an entity is speci�ed by attach-

ing di�erent Components to the entity and can be done dynamically at runtime.

As shown in Figure E.4 in BirthView the entities do not have identi�cation num-

bers and the components are responsible for rendering (RenderableComponent),

collision detection (CollidableComponent) etc. ECS is described in detail in the

paper by Martin (2007).
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Figure E.1: BirthView solution's list of plugin projects.

Figure E.2: Entity component system used in BirthEngine.
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Figure E.3: Cervix Scene in BirthView.

Figure E.4: Cervix Scene in BirthView.



Appendix F

Human Spine

The spine is a collection of vertebrae connected by vertebral joints, discs, liga-

ments, tendons and muscles.

Figure F.1: Spine regions. Image from Drake et al. (2015).
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F.1 Vertebral Column

There are approximately 33 vertebrae in the human spine (see Figure F.1), which

can be further subdivided into �ve groups (Drake et al., 2015):

1. The seven cervical vertebrae, which are characterized by their small size;

Figure F.2: Cervical Vertebra. Image from Drake et al. (2015).

2. The twelve thoracic vertebrae, which are characterized by their articulated

ribs. All vertebrae embody rib elements into their transverse processes,

whereas only the thoracic vertebrae articulate with the actual ribs in the

thorax region;

Figure F.3: Thoracic Vertebra. Image from Drake et al. (2015).

3. The �ve lumbar vertebrae, which are characterized by their large size, pro-

vide the skeletal support to the posterior wall of the abdominal cavity;

4. The �ve sacral vertebrae, which are fused into one single bone, called the

sacrum, which is a component of the pelvis;
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Figure F.4: Lumbar Vertebra. Image from Drake et al. (2015).

5. The coccygeal vertebrae, which vary in number between three and �ve, also

fused into a single bone, called the coccyx.

F.2 Vertebra

A typical vertebra is formed by a vertebral body and a posterior vertebral arch.

A vertebra also encloses various processes: a spinous process, a transverse process

and an articular process/see Figure F.5.

Figure F.5: Typical Vertebra. Image from Drake et al. (2015).

F.3 Joints

There are two major types of joints between vertebrae: intervertebral discs and

synovial joints. A typical vertebra has six joints with the adjacent vertebrae: four
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synovial joints and two intervertebral discs.

Figure F.6: Intervertebral Disc. Image from Drake et al. (2015).

F.3.1 Intervertebral Discs

Intervertebral discs are formed by an outer anulus �brosus and inner nucleus

pulposus. The arrangement of �ber of the anulus �brosus limits rotation between

vertebrae, whereas the nucleus pulposus, which is in the centre of the disc, absorbs

compression forces/see Figure F.12.

F.3.2 Synovial Joints

The joints between the articular processes are called the zygapophysial joints

(see Figures F.7 and F.8). Depending on the region of the human spine, these

joints have di�erent orientations and, therefore, together with the shape of the

vertebral bodies, either facilitate or limit certain movements: �exion, extension,

lateral �exion and rotation.

F.3.3 Ligaments

The joints are reinforced by various ligaments involved in holding together the

vertebrae and the movements of the vertebral column:

• Anterior and posterior longitudinal ligaments (see Figure F.9)

• Ligamenta �ava (see Figure F.10)
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Figure F.7: Zygapophysial Joints
(Cervical and Thoracic). Image
from Drake et al. (2015).

Figure F.8: Zygapophysial Joints
(Lumbar). Image from Drake
et al. (2015).

Figure F.9: Anterior and Posterior Longtitudinal Ligaments. Image from Drake
et al. (2015).

• Supraspinous ligament (see Figure F.11)
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Figure F.10: Ligamenta Flava. Image from Drake et al. (2015).

Figure F.11: Ligamentum Nuchae and Supraspinous Ligament. Image from
Drake et al. (2015).

• Ligamentum nuchae (see Figure F.11)

• Interspinous ligaments (see Figure F.12)
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Figure F.12: Interspinous Ligaments. Image from Drake et al. (2015).
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