
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Harrison, Joseph Richard (2020) Robust Communications in Erlang. Doctor of Philosophy (PhD)
thesis, University of Kent,.

DOI

Link to record in KAR

https://kar.kent.ac.uk/87484/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/394995646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Robust Communications in Erlang

A thesis submitted to
The University of Kent

in the subject of Computer Science
for the degree of

Doctor of Philosophy

By
Joseph Richard Harrison

January 2020

Abstract

Erlang is a dynamically-typed functional and concurrent programming language lauded by its
proponents for its relatively simple syntax, process isolation, and fault tolerance. The functional
aspect has rich features like pattern matching and tail-call optimisation, while the concurrent
aspect uses isolated processes and asynchronous message passing to share state between system
components. The two meet with pattern matching on mailboxes, which allows for a process to
pick a message from its mailbox — potentially out of order — based on its structure, value, type,
or a mixture thereof.

A strongly and dynamically typed language like Erlang can experiencemany kinds of runtime
errors, such as ill-typed operands to arithmetic operators. The interaction between Erlang’s
type system and process mailboxes can lead to a more subtle runtime error which is harder to
detect: orphan messages. As the types of messages are not checked either at compile time or
runtime, a process can be sent a message which it will never receive. Essentially, non-trivial
type discrepancies in Erlang programs can cause subtle bugs when communication is involved.
These problems can be hard to detect and fix, with current solutions such as extensive testing
and exhaustive model checking.

This thesis reports on work to detect communication-related type discrepancies in Erlang
programs. A fragment of the Core Erlang intermediate format ismodelled formally so that we can
reason about the out-of-order communication in Erlang systems, particularly the dependencies
between sent messages when determining whether orphan messages exist. Afterwards, a sub-
typing relation based on Erlang’s type system is introduced to clearly define the notion of an
orphan message, forming the foundation of a system for automatic detection via a mix of static
analysis and runtime verification. This culminates in automatic tooling to detect certain cases of
communication discrepancies via static analysis, and automatic instrumentation of concurrent
programs to detect and recover from more complicated cases at runtime.

i

Acknowledgements

My deepest appreciation goes to my supervisor throughout my studies, Simon Thompson. You
have provided me with continuous support and feedback which has been vital to the successful
completion of my thesis. I’d also like to extend my appreciation to MengWang, also a supervisor
for part of my studies before leaving Kent for greener pastures. You made a fantastic supervision
team that encouraged me whenever things seemed difficult. Your technical insight and academic
rigour made me reflect on my work to make it better. The friendliness, understanding, and
patience you have shown me will always be remembered.

Secondly, thanks to my examiners Olaf Chitil and Emilio Tuosto. Thank you for all of the time
and effort that you put into reviewing my research. Your keen eyes and insightful contributions
were greatly appreciated. Our discussions and your recommendations helped me to improve
the structure, framing, and presentation of my work.

Furthermore, thank you to the remaining members of my supervision panel, Laura Bocchi
and Sally Fincher. Laura kept a watchful eye on the overall direction of my research whilst Sally
kept a watchful eye on me.

I am also grateful to Sonnary Dearden, the Support Coordinator for research students in
our department. Throughout the years you have kept me on the right side of the University’s
seemingly infinite academic regulations and you have endured my endless procrastination.

Thanks to my parents, Sharon and Richard. You have helped me become the person I am
today. Thank you for guiding me and letting me make my own decisions in life.

Finally, thank you to my partner, Jodie. I will always be grateful for the support you have
given me. You have been here through the good days and the bad, always encouraging me and
providing me your shoulder to lean on. Thank you for sticking by me even when I was irritable
and demotivated. You were there whenever I needed you. You have been my rock.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vii

List of Listings x

List of Tables xi

1 Introduction 1

1.1 Thesis Structure . 4
1.1.1 Main Contributions . 4
1.1.2 Other Publications . 5

2 Background 6

2.1 Erlang . 6
2.1.1 Functional Programming . 7
2.1.2 Concurrent Programming . 18
2.1.3 Writing Servers . 21

2.2 Labelled Transition Systems . 26
2.3 Reduced Ordered Binary Decision Diagrams . 27

2.3.1 Ordering . 29
2.3.2 Reduction . 30
2.3.3 Combining ROBDDs: If-Then-Else . 31

3 Communication Discrepancies in Erlang 38

iii

4 CoErl: A Communicating Fragment of Core Erlang 43

4.1 Syntax . 46
4.1.1 Modules (m) . 46
4.1.2 Literals (l) . 46
4.1.3 Variable Names (v) . 47
4.1.4 Patterns (p) . 47
4.1.5 Guards (g) . 48
4.1.6 Clauses (c) . 48
4.1.7 Expressions (e) . 48

4.2 Clause Selection Procedure . 49
4.2.1 Pattern Matching . 49
4.2.2 Guard Evaluation . 52
4.2.3 Clause Selection . 53

4.3 Processes, Mailboxes, and State . 54
4.3.1 Mailboxes . 54
4.3.2 Processes . 58

4.4 Big-Step Operational Semantics . 58
4.5 Small-Step Operational Semantics . 60

4.5.1 Sending Messages . 63
4.5.2 Concurrent Processes . 64
4.5.3 Reflexive Transitive Closure . 64

4.6 Infinite Computations . 65

5 Behavioural Analysis of CoErl via Traces 66

5.1 Labelled Small-Step Semantics . 67
5.1.1 Labels . 68
5.1.2 Labelled Small-Step Relation . 70
5.1.3 Labelled Transition System . 72
5.1.4 Reflexive Transitive Closure . 72

5.2 Concurrent Labelled Small-Step Semantics . 73
5.2.1 Equivalence to the Operational Semantics 75
5.2.2 Reflexive Transitive Closure . 78
5.2.3 Non-determinism . 79

5.3 Trace Equivalence . 79
5.3.1 Branching Behaviour . 82

iv

5.4 Re-Ordering and Insertion of Arrivals . 83
5.5 Trace Replay . 90
5.6 Orphan Messages in Traces . 92
5.7 Infinite Computations . 93

6 A Sub-Typing Relation for CoErl 94

6.1 Type Syntax . 95
6.2 Denotational Semantics . 97

6.2.1 Sub-Typing . 99
6.3 Sub-Typing Algorithm . 100

6.3.1 Positive Atoms . 101
6.3.2 Disjunctive Normal Form . 104
6.3.3 Canonicalisation . 106
6.3.4 Enhanced Disjunctive Normal Form . 108
6.3.5 Sub-Typing . 108

6.4 Type Inference . 109
6.4.1 Patterns . 110
6.4.2 Guards . 111
6.4.3 Clauses . 115
6.4.4 Clause Sequences . 116

7 Semantic Sub-Typing with BDDs 118

7.1 Representing Types as BDDs . 120
7.1.1 Primitive Types . 121
7.1.2 Union, Intersection, and Negations . 121
7.1.3 Compound Types . 123

7.2 Canonicalisation . 126
7.2.1 Modified Find-Or-Create Algorithm . 128
7.2.2 Modified Restrict Algorithm . 129

7.3 Checking the Sub-Typing Relation with BDDs . 134
7.3.1 Producing Counter-examples for Sub-Typing 135

8 Hybrid Verification of Erlang Communications 136

8.1 Message Compatibility . 137
8.2 Static Analysis . 140

v

8.2.1 Message Compatibility . 140
8.2.2 Dead Clause Detection . 143
8.2.3 Pattern and Guard Refinement . 143

8.3 Runtime Verification . 145
8.3.1 Communication Discrepancies in gen_server 145
8.3.2 Type Checking . 150

8.4 Implementation . 150
8.4.1 Sub-Typing . 151
8.4.2 Type Inference . 152
8.4.3 Metadata Injection . 162
8.4.4 Lightweight Model of gen_server . 163
8.4.5 Callback Type Inference . 165
8.4.6 Analysing Incoming Messages . 166
8.4.7 Extending the Real gen_serverModule . 168

9 Related Work 171

9.1 Formal Models . 171
9.2 Model Checking . 173
9.3 Behavioural Types . 174
9.4 Testing & Fault Injection . 175
9.5 Type Systems . 176
9.6 Runtime Analysis & Profiling . 177

10 Conclusions 178

10.1 Future Work . 179

Bibliography 181

Glossary 186

Acronyms 187

vi

List of Figures

2.1 Naïve conjunction of BDDs . 28
2.2 Different BDD representations of the formula x∧ y 29
2.3 Different OBDD representations of x∧ y . 30
2.4 OBDD representations of (x∨ ¬x)∧ y . 32
2.5 Examples of the Find-Or-Create function . 34
2.6 Reordering nodes in a BDD via Shannon expansion 35

4.1 Syntax of CoErl . 45
4.2 Pattern matching function pmatch : p× val→ Failable ρ 50
4.3 Guard evaluation function geval : g× ρ→ B . 52
4.4 Clause matching function cmatch : c× val× ρ→ Failable ρ 53
4.5 Clause selection function cselect : cs× val× ρ→ Failable (e× ρ) 53
4.6 A mailbox of size n. 55
4.7 Messagemn+1 arriving in a mailbox which already contains nmessages 55
4.8 Receiving messagem2 from a mailbox . 56
4.9 Mailbox selection function mbselect . 56
4.10 Mailbox removal function mbremove . 57
4.11 Mailbox receive function mbreceive . 57
4.12 Big-Step Operational Semantics for CoErl . 59
4.13 Small-Step semantics for single CoErl processes (part 1 of 2) 61
4.13 Small-Step semantics for single CoErl processes (part 2 of 2) 62
4.14 Small-Step send semantics for CoErl . 63
4.15 Small-Step concurrent semantics for CoErl . 64
4.16 Reflexive transitive closure for CoErl small-step semantics 64

5.1 Labelled small-step operational semantics for a single process (part 1 of 2) 71

vii

5.1 Labelled small-step operational semantics for a single process (part 2 of 2) 72
5.2 Reflexive transitive closure of the labelled small-step semantics 74
5.3 Labelled concurrent small-step semantics for CoErl 75
5.4 Reflexive transitive closure of the labelled concurrent semantics 79
5.5 Strong trace equivalence . 80
5.6 Weak trace equivalence . 81
5.7 Traces of branching states . 82
5.8 Commutative properties of arrival events . 88

6.1 Syntax of Types . 95
6.2 Denotational semantics for types . 98
6.3 Positive type atom syntax . 102
6.4 Intersection for atomic types (u∗) . 103
6.5 Sub-typing for atomic types (6∗) . 104
6.6 DNF Grammar for types . 105
6.7 Normalisation rules for T . 105
6.8 Canonicalisation rules for positive type atoms in disjunctive normal form 106
6.9 Type inference for CoErl patterns . 110
6.10 Operators for conjunction of typing environments . 114
6.11 Type inference for CoErl guards . 114
6.12 Type inference for CoErl clauses . 115
6.13 Type inference for CoErl clause sequences . 116

7.1 Decidable type membership . 120
7.2 Example BDD representations of primitive types . 122
7.3 Add-Type function for converting a type to an MRDAG based BDD 124
7.4 Type [atom() | boolean() t integer()] in BDD form 127
7.5 Non canonicalised representations of semantically equivalent types 128
7.6 Canonicalised representations of semantically equivalent types 129
7.7 Incorrect cofactors of number() restricted w.r.t. integer() 130
7.8 Correct cofactors of number() w.r.t. integer() . 131
7.9 Ordering relation for positive type atoms . 132
7.10 BDD for type [integer() | atom()] u ¬ [number() | ¬integer()] 134
7.11 Type BDD for [integer() | atom()] u ¬ [number() | boolean()] 135

viii

8.1 Core Erlang’s position in the Erlang compiler . 152
8.2 Type inference function for Core Erlang clauses . 160
8.3 Type inference functions for Core Erlang receive expressions 160
8.4 Parse Transform in Erlang compiler passes . 162
8.5 State machine model of gen_server_lite . 165
8.6 State machine model of gen_server_litewith type checking 166

ix

List of Listings

1 Erlang module my_math.erl . 8
2 Erlang module my_tests.erl . 10
3 Erlang module my_shapes.erl . 12
4 Erlang module my_numbers.erl . 15
5 Erlang module my_rec.erl . 17
6 Two different implementations of a counter server 22
7 Counter server implemented using gen_server . 25
8 Counter servers with guards for numeric types . 40
9 Messages arriving at different times producing the same output 84
10 Erlang programs with message compatibility ussues 138
11 Counter server and client with communication discrepancies 140
12 Erlang function with a redundant type test in a guard 144
14 Type inference function for Core Erlang patterns 154
15 Function to determine the type of Erlang terms: type_of 155
16 Type inference function for Core Erlang guards . 156
17 Case expression type inference function for Core Erlang guards 157
18 Lightweight implementation of generic gen_server code 164
19 Lightweight implementation of generic gen_server code with type checking . . . 167

x

List of Tables

2.1 Mailbox states for an out-of-order receive . 21

6.1 Observing Erlang’s sub-typing axioms . 100

7.1 Comparing the efficiency of different representations for boolean formulae 119

xi

Chapter 1

Introduction

On 8th September 1998, the following message was posted to the comp.lang.functional news-
group:

Today, Ericsson releases its development environment Erlang/OTP, as Open Source.
Open Source means that the source code is free to the public, and that anyone may
use Erlang/OTP for building commercial applications without restrictions.

Ericsson uses Erlang/OTP (Open Telecom Platform) to build carrier class products.
For instance, Erlang/OTP has been used to develop the Ericsson AXD 301 ATM
Switch, a system supporting mobility between different office sites with one personal
DECT telephone, and a systemproviding 8Mbits bandwidth to the home over twisted
pair copper wires.

[. . .]

Erlang is a programming language which has many features more commonly asso-
ciated with an operating system than with a programming language: concurrent
processes, scheduling, memory management, distribution, networking, etc.

Erlang/OTP makes it easier to build telecommunications products, with their high
requirements for non-stop functionality, speed, distribution, and concurrency. Er-
lang/OTP supports a number of operating systems and processors, and can be
integrated with different development languages.

We want to spread the technology in order to speed development of Erlang/OTP,
ensure a good supply of Erlang/OTP fluent programmers, minimize maintenance
and development costs for the language, and keep the technology up to world class.

1

This message marked the beginning of over two decades of open source Erlang development.
Today, Erlang is used in production by countless organisations: the widely used RabbitMQ
message broker is written in Erlang (Pivotal Software 2019), as is the Riak distributed datastore
(Klophaus 2010). The WhatsApp messaging service which sees over 1.5 billion monthly users
also has backend components written in Erlang (Facebook Inc. 2018). Erlang also appears in
parts of the internet’s core infrastructure: Cisco estimates that 90% of internet traffic passes
through an Erlang controlled node at one point or another (Bevemyr 2018).

To understand why these projects and organisations choose Erlang we should consider what
Erlang/OTP has to offer. First, the language is oriented around its concurrencymodel: lightweight
isolated processes which share memory by message passing. Each Erlang process has its own heap,
stack, and mailboxwhich allows it to independently execute its own code and exchange messages
asynchronously with other processes. This is coupled with the de facto virtual machine – the
BEAM–which has been engineeredwith concurrency at its heart: processes andmessage passing
are a core part of the BEAM, they are not merely userspace concepts. When these features are
combined Erlang developers can create distributed, concurrent, and fault-tolerant applications
with a touted “nine nines” uptime.

Like all other programming languages however, Erlang is not perfect. For starters, Erlang
is dynamically typed: it is easy to accidentally transpose arguments in function calls, or pass
non-numeric data to mathematical operators. Secondly, the language is garbage collected and
the inter-process communication is unbuffered: messages are free to accumulate in a process’
mailbox ad infintum until it either runs out of memory or is noticed by a monitoring system.
To mitigate these perceived shortcomings, Erlang programmers typically rely on extensive test
suites and profiling tools to ensure that their applications behave as expected. With this in mind,
the Erlang/OTP suite has many tools to make the developer’s job easier: testing libraries and
utilities, memory and performance profiling tools, and the virtual machine is instrumented
with real-time tracing tools. Furthermore a set of generic behaviours implement common process
patterns to encourage code reuse: server processes, event handlers, and finite state machines to
name a few.

Despite extensive testing and profiling however, it is easy for certain kinds of bugs to make
it to production as testing and profiling are typically non-exhaustive. Furthermore, Erlang
applications can run on multiple nodes distributed across a network. This opens the door
to network issues where the messages sent between processes can get “lost”, arrive after a
significant delay (where the receiving process may have timed out while waiting), or accumulate
in mailboxes without ever being processed. Experienced Erlang programmers often develop an

2

intuition for the asynchronous communication model, but novices and students can often be left
puzzled by communication related bugs in relatively simple programs.

This thesis aims to explore the kinds of communication discrepancies that can exist in Erlang
programs: messages that are sent and never received and messages which are expected but
which never arrive, for example. Starting with a formal model of Erlang we will explore how
and where discrepancies can occur, and we will use a variety of static analysis and runtime
verification techniques to automatically detect them. The aim of this work is to improve the
robustness of communications in concurrent Erlang programs by analysing their source code at
compile time to detect mismatches in the way processes communicate with each other, and to
automatically instrument programs to protect from such mismatches at runtime.

Another aim of this thesis is compatibility with existing Erlang programs, such as the legacy
code which has accumulated in over two decades of general availability of Erlang/OTP. To
ensure compatibility with existing programs, therefore, the proposed approaches do not require
Erlang programs to be written in a specific style, use specific libraries, or rely on manual code
instrumentation. This approach is entirely transparent to the programmer: we are able to analyse
code without modifying it or requiring any specific programming technique, and runtime
verification can be achieved via automatic instrumentation in the form of compiler extensions
and drop-in replacements for standard libraries. This means that programmers can benefit from
the analyses presented herein using compiler flags and by substituting library dependencies
instead of manually instrumenting or modifying their code.

A central aspect of the thesis is the novel CoErl language and its operational semantics which
are introduced in chapter 4. While other formal models of Erlang exist, the choice to create a
new language was made. There are several reasons for this:

1. We can closely follow theCore Erlang 1.0.3 Language Specification (Carlsson et al. 2004), which
specifies the behaviour of the Core Erlang intermediate representation used in Erlang/OTP.
This language has more consistent syntax, lexical scoping, and less complex operational
semantics than the higher-level Erlang language.

2. We will add only the features necessary for reasoning about Erlang’s concurrency: light-
weight processes, asynchronous and unbounded message passing, and the pattern match-
ing and guard evaluation rules which are used to interact with process mailboxes. We can
therefore put aside the intricacies of Erlang’s many data types and instead focus on a few
representative types which showcase the behaviour of Erlang’s de facto type system as a
whole.

3

1.1 Thesis Structure

The rest of this thesis follows a linear structure, with each chapter building on the work of those
prior:

• Chapter 2 - an introduction to Erlang’s syntax, concurrency primitives, toolchain, and
standard library.

• Chapter 4 - an operational semantics for a communicating fragment of the Core Erlang
intermediate representation, based on the language’s written specification.

• Chapter 5 - a trace based analysis of the operational semantics from chapter 4 in order to
reason about how Erlang processes communicate and how discrepancies can occur.

• Chapter 6 - building a sub-typing system for Erlang which can be used to reason about the
values that Erlang patterns, guards, and clauses will match, which can be used to reason
about the types of messages that a process will receive when communicating.

• Chapter 7 - implementing a sub-typing algorithm for the type system from chapter 6 using
Binary Decision Diagrams (BDDs).

• Chapter 8 - using the principles from chapter 5 and the type system from chapter 6 to
statically analyse Erlang programs with the aim of detecting communication discrepancies,
and automatically instrumenting programs to check the types of messages at runtime.

• Chapter 9 - we compare the work from the previous chapters to existing tooling and related
research.

• Chapter 10 - an overall summary of the work, its relation to existing work, and potential
avenues for future research.

1.1.1 Main Contributions

The main contributions of this thesis are:

• An operational semantics for a communicating fragment of Core Erlang based on the
official language specification. The fragment features pattern matching, guard expressions,
processes, and out-of-order asynchronous communication (chapter 4). This is accompanied
by an analysis of communicating expressions using a labelled version of the operational
semantics (chapter 5).

4

• A Semantic Sub-Typing System for Erlang with union, intersection, and negation types
(chapter 6). This allows us to finely approximate the types of messages that will be received
by a process based on the patterns, guards, and orders of clauses in receive expressions.
A sub-typing algorithm based on Binary Decision Diagrams (BDDs) follows in chapter 7
which canonicalises types to compare them for semantic equality.

• A lightweight hybrid analysis of Erlang communicationswhich uses type inference and
the sub-typing algorithm to detect message passing errors (chapter 8). Static analysis is
used to infer the types of send and received messages. Some communication discrepancies
are automatically detected at compile time, andwe also demonstrate how the same concepts
can be used to protect processes at runtime.

1.1.2 Other Publications

Several contributions presented herein are also detailed in other published work, namely:

• ‘Towards an Isabelle/HOLFormalisation of Core Erlang’ (Harrison 2017) contains an earlier
version of the CoErl language presented in chapter 4, namely its grammar, operational
semantics, and several related theorems. In addition, foundational work for the trace
analysis of CoErl contributed in chapter 5 is presented. This work also made use of the
Isabelle/HOL interactive theorem prover to mechanically verify several theorems.

• ‘Automatic Detection of Core Erlang Message Passing Errors’ (Harrison 2018) presents a
less developed version of the type system from chapter 6, with the notable omission of
negation types. Portions of chapter 8 dedicated to static analysis (namely sections 8.2, 8.4.2
and 8.4.3) are also derived from this work.

• ‘Runtime Type Safety for Erlang/OTP Behaviours’ (Harrison 2019) demonstrates a light-
weight runtime verification mechanism for Erlang programs based on an earlier version of
the type system presented in chapter 6. This work serves as the foundation for chapter 8,
specifically the portion concerning runtime verification (section 8.3).

5

Chapter 2

Background

Themajority of thework in this thesis deals specificallywith the Erlang programming language in
one way or another. For example, code snippets throughout are written in Erlang, chapter 6 uses
Erlang’s datatypes and associated notation, and chapter 4 discusses the operational semantics of
the language in detail. In addition, several contributions rely on an understanding of certain
data structures and associated concepts, namely Labelled Transition Systems (LTSs) in chapter 5
and Reduced Ordered Binary Decision Diagrams (ROBBDs) in chapter 7. It is not intended that this
chapter is read in isolation, but rather as necessary when reading other chapters.

This chapter is intended to serve as an overview for these topics: we start with an introduction
to Erlang and its ecosystem in section 2.1, and then move on to discussions of Labelled Transition
Systems (LTSs) and Reduced Ordered Binary Decision Diagrams (ROBBDs) (sections 2.2 and 2.3
respectively).

2.1 Erlang

Erlang is a language with two distinct aspects: functional programming and concurrent pro-
gramming.

This section is meant to serve as an introduction to Erlang: it is not a complete Erlang tutorial
or language reference. For those unfamiliar with Erlang, the book Learn You Some Erlang for Great
Good!: A Beginner’s Guide by Hebert is a great resource: it explores each aspect of Erlang’s syntax
in turn, and shows how fault tolerantOpen Telecom Platform (OTP) applications can be built using
Erlang’s powerful runtime system and standard libraries (Hebert 2013). The official Erlang/OTP
Documentation serves as a reference for the standard library, compiler, virtual machine, best
design practices, and documentation for the rest of Erlang/OTP.

6

We first introduce the functional aspect, showing how we organise code into functions and
modules, compile our code, and run it on the Bogdan/Bjorn’s Erlang Abstract Machine (BEAM)
virtual machine (section 2.1.1). The concurrent aspect follows, where we examine Erlang’s
concurrency primitives which form the basis of larger applications: lightweight processes and
message passing (section 2.1.1). Afterwards, we look at the basic building block of real-world
Erlang applications: generic behaviours which can be used to separate generic boilerplate code
from application-specific code (section 2.1.3).

2.1.1 Functional Programming

With a syntax consisting of expressions and function declarations, Erlang is a functional pro-
gramming language at heart. There are no looping constructs such as for and while and there
are no global variables or mutable data. In fact, the only way to manipulate state in an Erlang
system is by communicating with other processes, using an in-memory database provided by
the runtime, or I/O. As a basic example, here is a definition of an Erlang function called f which
adds together its two arguments, X and Y:

f(X, Y) -> X + Y.

The part on the left of the arrow (->) is called the head and consists of the function name and
its arguments. On the right hand side is the body, containing one or more comma-separated
expressions which comprise the definition of the function, where the value returned by the
function is the result of evaluating the body’s last expression. For example, this function doubles
both of its arguments and then adds them together:

g(X, Y) ->

XDoubled = X * 2,

YDoubled = Y * 2,

XDoubled + YDoubled.

Expressions are separated by commas, variables start with uppercase letters, and assignment
appears to be performed using =.

In order to run these functions we must place them in a module, which is Erlang’s chosen
method for organising code. Eachmodule starts with a name, then a list of the names of functions
which will be exported (i.e. visible outside the module), followed by the function definitions
themselves. If we do not export a function it will not be visible from outside the module, and it
cannot be called from either the shell or from another module: the only way to access it will be

7

1 -module(my_math).
2 -export([f/2,g/2]).
3
4 f(X, Y) -> X + Y.
5
6 g(X, Y) ->
7 XDoubled = X * 2,
8 YDoubled = Y * 2,
9 XDoubled + YDoubled.

Listing 1: Erlang module my_math.erl

from within the module it’s defined in. For our example we will put the functions f and g in the
module my_math, which is defined in listing 1. The first line is the module attribute which specifies
the name of our module (my_math in this case). On the second line is the export attribute which
specifies that f/2 and g/2 should be visible outside the module. The syntax f/2 means “the
function called f with arity 2”. Afterwards, we have the definitions of f and g as before.

This code should be saved in a file called my_math.erl, i.e. the name of the module followed
by the extension .erl. To run the code in our module we must first compile it; this is because
the BEAM virtual machine does not actually run Erlang code, but an imperative assembly-like
bytecode. We compile Erlang code with the erlc executable included with Erlang/OTP:

joe@laptop:~ $ erlc my_math.erl

which – assuming no error message is printed – will create a file called my_math.beam in the same
directory.

Now that we have compiled our code we can run it from an interactive shell, accessed via the
erl executable. This starts the BEAM virtual machine, loads libraries, starts some background
processes, and adds the current working directory to the module search path:

$ erl

Erlang/OTP 22 [erts-10.6] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]

Eshell V10.6 (abort with ^G)

1>

The syntax we use in the shell is the same as the syntax we use inside function definitions, for
example:

1> 2 + 2.

4

8

2> X = 2.

2

3> Y = 4.

4

4> XDoubled = X * 2, YDoubled = Y * 2, XDoubled + YDoubled.

12

5>

To run the function g in our my_mathmodule with the arguments 2 and 4 we use the name of the
module and function separated by a comma, and then the arguments:

5> my_math:g(2, 4).

12

6>

Finally, we can exit the interactive shell using the special q function:

6> q().

ok

joe@laptop:~ $

These are the basics of programming in Erlang: writing function definitions in modules,
listing them in the export attribute of the modules if desired, compiling them, and running them
from the interactive shell. This gives us a foundation for exploring Erlang’s more interesting
functional programming features: pattern matching, guard expressions, and recursion with tail
call optimisation.

Pattern Matching

Erlang programs typically make heavy use of pattern matching, where control flow decisions
and variable assignments can be determined based on the value and structure of data using an
expressive syntax. For example, the following function returns the value ’true’ if its argument
is the number 0 and ’false’ otherwise:

is_zero(0) -> true;

is_zero(_N) -> false.

The function has two clauses instead of one, each separated by a semicolon. In the first clause we
have used the value 0 instead of a variable name. At runtime, clauses will be tried in order: if the

9

1 -module(my_tests).
2 -export([is_zero/1,is_zero_b/1]).
3
4 is_zero(0) -> true;
5 is_zero(_N) -> false.
6
7 is_zero_b(_N) -> false;
8 is_zero_b(0) -> true.

Listing 2: Erlang module my_tests.erl

function is called with the argument 0 the first clause will match and its body will be evaluated.
If the first clause does not match, the second clause will be tried, and so forth.

Note that the order of the clauses does matter: clauses are tried in the order they appear,
starting from the top. In listing 2 we have the module my_testswith two different versions of
the is_zero function. When we compile this module we get a single warning which hints at
what might happen when we run our functions:

$ erlc my_tests.erl

my_tests.erl:8: Warning: this clause cannot match because a previous clause at line

7 always matches↪→

When we run the function is_zero it behaves as expected:

1> my_tests:is_zero(1).

false

2> my_tests:is_zero(0).

true

3>

The function returns ’true’ onlywhen calledwith the value 0. For the second function is_zero_b

however, we can see that the first clause alwaysmatches, returning ’false’:

3> my_tests:is_zero_b(1).

false

4> my_tests:is_zero_b(0).

false

5>

This happens because a variable in a pattern is (except in certain special cases) always free, i.e. it
will match and then bind to any value. In fact, this is exactly what the = operator is doing: it is

10

not actually assignment, but rather matching. So if we bind the value 2 to the variable X and then
attempt to “reassign” it we will get an error:

1> X = 2.

2

2> X = 4.

** exception error: no match of right hand side value 4

3>

but we find that since X is bound to the value 2, it will pattern match against other instances of 2:

3> X.

2

4> X = 2.

2

Once a variable has been bound by pattern matching (such as with the initial X = 2) it can
be used to match that value in later pattern matches. As an example of how this works the
my_shapes module in listing 3 on the following page shows some functions for handling shapes
represented as tuples, a built-in data type in Erlang. These examples are based on classwork from
the CO545 undergraduate module at the University of Kent (Simon J Thompson and Orchard
2019).

A shape is either a rectangle of the form {rectangle, Height, Width} or a circle of the form
{circle, Radius}. The braces indicate the start and end of a tuple with comma-delimited
elements. In both cases the first element of each tuple is an atom which is a datum - a name equal
only to itself commonly used in Erlang to distinguish between similarly structured data with
different meaning.

The first two functions is_rectangle and is_square return ’true’ if the value passed to
them is a rectangle or a circle respectively. These functions look at the structure and value of their
argument: the first clause of is_rectangle matches only if the argument is a 3 element tuple
whose first element is the atom ’rectangle’, and the first clause of is_circle only matches if
its argument is a 2 element tuple whose first element is the atom ’circle’:

1> my_shapes:is_rectangle({rectangle, 3, 4}).

true

2> my_shapes:is_rectangle({circle, 9}).

false

11

1 -module(my_shapes).
2 -export([is_rectangle/1,is_circle/1,is_square/1,
3 perimeter/1,area/1]).
4
5 is_rectangle({rectangle, _, _}) -> true;
6 is_rectangle(_) -> false.
7
8 is_circle({circle, _}) -> true;
9 is_circle(_) -> false.

10
11 is_square({rectangle, X, X}) -> true;
12 is_square(_) -> false.
13
14 perimeter({rectangle, Height, Width}) -> (2 * Height) + (2 * Width);
15 perimeter({circle, Radius}) -> 2 * math:pi() * Radius.
16
17 area(Shape) ->
18 case Shape of
19 {rectangle, Height, Width} -> Height * Width;
20 {circle, Radius} -> math:pi() * math:pow(Radius, 2)
21 end.

Listing 3: Erlang module my_shapes.erl

3> my_shapes:is_circle({rectangle, 3, 4}).

false

4> my_shapes:is_circle({circle, 9}).

true

5> my_shapes:is_circle(something_else).

false

6>

Furthermore, the function is_square takes advantage of the fact that once a variable is bound
in a pattern match, that variable can then be used to match against that value:

6> my_shapes:is_square({rectangle, 3, 4}).

false

7> my_shapes:is_square({rectangle, 3, 3}).

true

8>

The first clause of the function definition has the variable X twice. The variable ’X’ binds to the
value of the second element because it is not currently bound to any value. Then it is matched

12

against the third element, but because it is already bound to the value from the second element
the pattern match will only succeed if the third element is the same as the second. We can see
what is happening here by using the = operator:

8> {X, X} = {3, 3}.

{3,3}

9> {Y, Y} = {3, 4}.

** exception error: no match of right hand side value {3,4}

10> Y = 3.

3

11> Y = 4.

** exception error: no match of right hand side value 4

12>

Note that in some parts of these functions’ heads we have used underscores. If a variable
name is prefixed with an underscore the compiler will suppress any warnings about that variable
not being used. Furthermore the variable name is _ (the underscore, also called the wildcard
variable) is special because it is deliberately ignored by the compiler: the underscore never
binds and can therefore be used to discard “unimportant” data like in the first three functions in
listing 3, but it can also never be used to check for equality:

12> {_, _} = {2, 3}.

{2,3}

13> _.

* 1: variable '_' is unbound

14> {_Z, _Z} = {2, 3}.

** exception error: no match of right hand side value {2,3}

15>

We can also use a case expression to perform pattern matching on the result of an expression,
as can be seen in the area function in listing 3. Regardless of whether function heads or case
expressions are used for pattern matching, an error is encountered when no clause matches:

15> my_shapes:perimeter({triangle, 10, 20, 30}).

** exception error: no function clause matching

my_shapes:perimeter({triangle,10,20,30})

(my_shapes.erl, line 14)

13

16> my_shapes:area({triangle, 10, 20, 30}).

** exception error: no case clause matching {triangle,10,20,30}

in function my_shapes:area/1 (my_shapes.erl, line 18)

17>

Guard Expressions

Clauses can also have guard expressions: small Erlang expressions which return a boolean value
’true’ or ’false’. The clause with the guard will only match when the pattern match is success-
ful and the guard expression evaluates to ’true’. We cannot use arbitrary expressions in guards,
though: only operators and functions from a whitelist can be used (Erlang/OTP Team 2018,
Expressions). This is because the Erlang compiler makes the assumption that guard expressions
will terminate and that they will not have any side effects. The simplest way of achieving this
was to restrict the syntax of guards to type checks and comparisons.

The module my_numbers in listing 4 on the next page shows some functions which use guard
expressions for control flow. The function sign/1 returns the sign of the number passed to it
and returns the atom ’zero’when passed 0 to avoid any arguments about whether it is positive:

1> my_numbers:sign(-4).

negative

2> my_numbers:sign(0).

zero

3>

The guard expressions appear after the keyword when in each function clause: the first returns
true when N < 0, the second when N is numerically equal to 0 (i.e. it can be either a floating point
number or an integer), and the third when N > 0. In Erlang the == operator means “equal to”
and the =:= operator means “exactly equal to”:

3> 2 == 2.0.

true

4> 2 =:= 2.0.

false

5>

The second function abs/1 returns the absolute value of a number by checking the result of
sign(N): if it is ’negative’ we subtract N from zero, and we return N in all other cases.

14

1 -module(my_numbers).
2 -export([sign/1,abs/1,double/1,triple/1]).
3
4 sign(N) when N < 0 -> negative;
5 sign(N) when N == 0 -> zero;
6 sign(N) when N > 0 -> positive.
7
8 abs(N) ->
9 case sign(N) of

10 negative -> 0 - N;
11 _ -> N
12 end.
13
14 double(N) -> N + N;
15 double(N) when is_float(N) -> N + N.
16
17 triple(N) when is_integer(N) -> N + N + N;
18 triple(N) when is_float(N) -> N + N + N;
19 triple(N) when is_integer(N) or is_float(N) -> N + N + N.

Listing 4: Erlang module my_numbers.erl

Next, the double/1 function doubles any number, but we have a superfluous second clause:
the first clause will always match because the pattern Nwill always bind. The second clause uses
the is_float Built-In Function (BIF)1 which returns ’true’ if its argument is a floating point
number. All floating point numbers will have already been handled by the previous clause
because of its wildcard pattern, though. Luckily the Erlang compiler will catch this and print a
warning, using a simple pattern exhaustiveness check:

$ erlc my_numbers.erl

my_numbers.erl:15: Warning: this clause cannot match

because a previous clause at line 14 always matches

Unfortunately, this exhaustiveness check is quite simple: it doesn’t have a comprehensive un-
derstanding of Erlang’s type system or the relationship between these “type test” BIFs. For
example, the compiler didn’t generate a single warning about the triple/3 function despite the
fact that the third clause is entirely redundant: the first clause handles all integers, the second
clause handles all floats, and the third handles integers and floats — but they have already been
handled.

Guards are useful for distinguishing between different types of input and determining the
range of a value, but excessive use of them can be considered bad practice in Erlang. Programmers

1Several of these Built-In Functions (BIFs) are whitelisted for use in guard expressions

15

are encouraged to not engage in “defensive programming” except at the boundaries of their
application which deal with potentially malicious or malformed input data.

Recursion

Patterns and guards are the core features of Erlang typically used for functional programming:
we can perform a complicated case analysis on function arguments and arbitrary expressions
using a rich pattern and guard syntax.

One thing we have not yet addressed is looping constructs: iterating over some data structure
such as a list, or continuing a computation until some condition is satisfied. The simple answer
is that there is no syntax for writing an imperative loop exactly because Erlang is not imperative:
there would be no way to mutate the current program state so that we could work towards the
terminal case. Instead, Erlang programmers use recursion to write loops. We can call the same
function again and again with different arguments until a base case is reached.

The functions in listing 5 on the following page show how recursion is used to build functions
which loop. We can use sum/1 to sum all of the integers between 0 and N inclusive:

1> my_rec:sum(10).

55

2>

and the fib/1 function returns the Nth number of the Fibonacci sequence:

2> my_rec:fib(12).

144

3>

The rest of the functions in the my_rec module expect their inputs to be lists, one of Erlang’s
most frequently used data structures. A list in Erlang is either an empty (written [] and called
nil) or a cons cell of the form [H|T]. In this case H is the head of the list and T is the tail. Lists in
Erlang can be both proper and improper. A list is proper if it is nil-terminated (i.e. the tail of the
last cons cell is []) and it is improper if the last tail is anything else. Regardless, both of these
types are lists are still considered to be lists by Erlang’s is_list BIF:

1> is_list([3|[]]).

true

2> is_list([3|4]).

16

1 -module(my_rec).
2 -export([sum/1,fib/1,sum_list/1,sum_list_better/1]).
3
4 sum(0) -> 0;
5 sum(N) -> N + sum(N-1).
6
7 fib(0) -> 0;
8 fib(1) -> 1;
9 fib(N) -> fib(N-1) + fib(N-2).

10
11 sum_list([]) -> 0;
12 sum_list([X|Xs]) -> X + sum_list(Xs).
13
14 sum_list_better(Xs) -> sum_list_acc(Xs, 0).
15
16 sum_list_acc([], Acc) -> Acc;
17 sum_list_acc([X|Xs], Acc) -> sum_list_acc(Xs, X + Acc).

Listing 5: Erlang module my_rec.erl

true

3>

For convenience, Erlang offers a comma-delimited notation for specifying proper lists:

3> [1,2,3,4] =:= [1|[2|[3|[4|[]]]]].

true

4>

With this in mind, we’ll look at how the sum_list/1 function behaves. It pattern matches on
its only argument which it expects to be either an empty list or a cons cell. If the list is empty the
function returns 0. But if the list is a cons cell the head of the list is assigned to variable X and
the tail of the list is assigned to Xs through a pattern match. Then, the head of the list is added to
the sum of the tail of the list which is calculated by a recursive call to sum_list:

4> my_rec:sum_list([1,2,3,4]).

10

5> my_rec:sum_list([]).

0

6>

The sum_list function has a drawback, though: it is not tail recursive. In order to return a
result for a cons cell it must hold X in memory while it calculates the sum of Xs, repeating the

17

process until the end of the list is reached. The evaluation looks something like this:

sum_list([1,2,3,4])

= 1 + sum_list([2,3,4])

= 1 + 2 + sum_list([3,4])

= 1 + 2 + 3 + sum_list([4])

= 1 + 2 + 3 + 4 + sum_list([])

= 1 + 2 + 3 + 4 + 0

= 10

As Erlang is a strict language each expression must be evaluated to a value which in this case
triggers repeated calls to sum_list. This requires the BEAM virtual machine to track of all of
these “suspended” computations until all subexpressions have been evaluated.

By contrast, the sum_list_acc function is tail recursive: the final action the function performs
is a call to itself. The sum_list_better function produces the same results as sum_list, but it
does not require any suspended computations which we would need to return to later on:

sum_list_better([1,2,3,4])

= sum_list_acc([1,2,3,4], 0)

= sum_list_acc([2,3,4]), 1)

= sum_list_acc([3,4], 3)

= sum_list_acc([4], 6)

= sum_list_acc([], 10)

= 10

We can see that the expression never grows as we evaluate it, leading to less memory usage and
– due to how the BEAM is designed – faster evaluation.

Now that we have looked at Erlang’s functional aspect we can use what we have learned to
build concurrent and fault-tolerant programs.

2.1.2 Concurrent Programming

Erlang’s concurrency model is based on lightweight processes which communicate by message
passing. A central tenet of this model is strong isolation: each process has its own memory and
state and each of them is preemptively scheduled by the BEAM.

This isolation enables fault-tolerant application design because when one process crashes it
doesn’t cause any other processes to crash unless explicitly configured to do so. Developers can

18

build trees of processes which isolate responsibility so that if one part of the system crashes it
can be restarted independently of the rest of the system.

Processes

Computation in Erlang occurs in processes. To start one of these processes and perform some
computation we call the spawn/3 function from the standard library. Its arguments are the name
of a module, the name of a function, and a list of arguments. So if we want to spawn a function
which runs my_numbers:sign with the argument 4, we do the following:

1> spawn(my_numbers, sign, [4]).

<0.80.0>

The value returned by spawn is the Process Identifier (PID) of the process created; each process in
Erlang has a unique Process Identifier (PID) which can be used to address it.

Our process doesn’t do anything useful at the moment: it is spawned, runs the sign function,
and then exits. In order to do something useful, we will spawn a process which runs an anonym-
ous function which calls sign then prints the result. We will use a variant of spawn which takes
a closure as its argument:

2> F = fun() -> io:fwrite("Sign is ~p~n", [my_numbers:sign(4)]) end.

#Fun<erl_eval.21.126501267>

3> spawn(F).

<0.82.0>

Sign is positive

A process which ran the closure F was spawned, its PID was returned, and the process executed
independently, ultimately printing “Sign is positive” to the shell.

Even the shell itself is a process, and when we spawn another process which encounters a
runtime error we see that the shell continues as normal:

4> G = fun() -> io:fwrite("Result is ~p~n", [2 + hello]) end.

#Fun<erl_eval.21.126501267>

5> spawn(G).

<0.84.0>

=ERROR REPORT====

Error in process <0.84.0> with exit value:

{badarith,[{erlang,'+',[2,hello],[]},

19

[...]]}

6>

The process with PID <0.84.0> crashed in the background while the shell continued to run.

Communication

Erlang processes communicate by message passing: each process has its own queue of incoming
messages called a mailbox. A process can append a message to the mailbox of any process by
sending a message, and a process can dequeue messages from its own mailbox by receiving. This
process is completely explicit and entirely asynchronous: a sending process does not block, and
a receiving process must explicitly access its mailbox to remove a waiting message.

Messages are usually sent with the ! operator, which is an alias to erlang:send/2. The PID
of the process we want to send a message to is placed before the !, and the message is placed
after. For example, we can send the message ’hello’ to ourselves (as self() returns the PID of
the process which called it):

1> self() ! hello.

hello

2>

Note that the printed value ’hello’ is not the message: the ! operator’s return value is the
message that was sent.

We then receive messages using a receive expression which generally follows the same
structure as a case expression: a sequence of clauses which each have a pattern and optional
guard expression. To receive the message we just sent ourselves we can use a receive expression
with a single clause containing a wildcard pattern:

2> receive

2> X -> io:fwrite("Received: ~p~n", [X])

2> end.

Received: hello

ok

These receive expressions will attempt to find the first message in the mailbox which matches
any of the clauses. If no matching message is found then the process waits until a new message
arrives.

20

Expression Mailbox state
- []
self() ! hello [hello]
self() ! 2 [hello, 2]
self() ! world [hello, 2, world]
receive N when is_integer(N) -> expr end [hello, world]
receive Y -> expr end [world]
receive Z -> expr end []

Table 2.1: Mailbox states for an out-of-order receive

The patterns and guards in the clauses of a receive expression can even be used to receive
messages in a different order to which they were sent:

3> self() ! hello, self() ! 2, self() ! world.

world

4> receive N when is_integer(N) -> io:fwrite("Received: ~p~n", [N]) end.

Received: 2

5> receive Y -> io:fwrite("Received: ~p~n", [Y]) end.

Received: hello

6> receive Z -> io:fwrite("Received: ~p~n", [Z]) end.

Received: world

Table 2.1 shows what is happening here: we start with an empty mailbox, populate it with the
messages hello, 2, and world, then use pattern matching to dequeue them in a different order.

2.1.3 Writing Servers

A common task in Erlang is creating a process which acts as a server: it receives messages,
performs computations, and responds to requests while maintaining some state. This is often
achieved by writing a tight loop which uses recursion to update the server’s state.

The code in listing 6a on the following page is an implementation of a small “counter” server.
It maintains a number as its state, looping through receiving messages which either add or
subtract from the current state, request a reply containing the current state, or instruct the server
to stop. The start function spawns the server by passing the name of the current module (via
the ?MODULEmacro), the name of the loop function, and a list of arguments to the spawn function.
The loop function contains a single receive expression which pattern matches against messages
in the mailbox, searching for the first message in the mailbox which matches a clause. If the
message is a 2-tuple whose first element is the atom ’add’, the server loops with the second

21

-module(my_counter).
-export([start/1,loop/1]).

start(N) -> spawn(?MODULE, loop, [N]).

loop(N) ->
receive
{add, M} -> loop(N+M);
{sub, M} -> loop(N-M);
{get, From} ->
From ! N,
loop(N);

stop ->
io:fwrite("stopping.~n"),
ok

end.

(a) my_counter version 1

-module(my_counter_v2).
-export([start/1,loop/1]).
-export([add/2,sub/2,get/1,stop/1]).

start(N) -> spawn(?MODULE, loop, [N]).

loop(N) ->
receive

{add, M} -> loop(N+M);
{sub, M} -> loop(N-M);
{get, From, Ref} ->
From ! {res, N, Ref},
loop(N);

stop ->
io:fwrite("stopping.~n"),
ok

end.

%% API functions

add(Pid, N) -> Pid ! {add, N}.

sub(Pid, N) -> Pid ! {sub, N}.

get(Pid) ->
Ref = make_ref(),
Pid ! {get, self(), Ref},
receive

{res, Res, Ref} -> Res
end.

stop(Pid) -> Pid ! stop.

(b) my_counter version 2

Listing 6: Two different implementations of a counter server

element added to the current state, and similarly for ’sub’ in the second clause. When the
server receives a 2-tuple with a first element of ’get’, the server sends a message to the PID
From containing the current server state, then looping again. The server continues looping like
this until it receives the message stop, at which point it prints a diagnostic message and exits.

We’ll start this server, modify its state several times, and then ask the server to send its state
to us as a message:

1> Server = my_counter:start(0).

<0.80.0>

2> Server ! {add, 20}.

22

{add,20}

3> Server ! {sub, 5}.

{sub,5}

4> Server ! {get, self()}.

{get,<0.78.0>}

5> receive St -> io:fwrite("Received: ~p~n", [St]) end.

Received: 15

ok

While this works, it requires us to know the specific format of every message sent to and
received from the server. An alternative is to write and expose an API which abstracts away all of
the communication. The second version of the counter server in listing 6b does exactly this: we
expose four new functions which can be used to interact with the server: add, sub, get, and stop.
The server is mostly identical, with the exception of how the server responds to get requests:
the client sends a reference in its request which the server includes in its response, which can be
used to distinguish between similar messages in the mailbox. The function make_ref creates one
of these globally unique references (Erlang/OTP Team 2018, Data Types):

6> make_ref().

#Ref<0.4171005631.3277848584.179206>

7> make_ref().

#Ref<0.4171005631.3277848584.179211>

Now we can interact with our server using the exported API:

8> Server2 = my_counter_v2:start(0).

<0.87.0>

9> my_counter_v2:add(Server2, 20).

{add,20}

10> my_counter_v2:sub(Server2, 5).

{sub,5}

11> my_counter_v2:get(Server2).

15

Generic Behaviours

The creators of Erlang/OTP noticed patterns in the way that processes in large applications was
written: apart from specific business logic, many processes behaved identically. For example,

23

some processes behaved like state machines: they would accept inputs in the form of messages,
perhaps respond to the sender, and then transition to a new state. Others would behave like
servers by implementing a tight loop: they would wait for messages, receive them and perform
some action based on the content of the message, and then repeat this process until they were
explicitly stopped.

These common patterns have been implemented as generic behaviours included with Er-
lang/OTP. To implement one of these behaviours two modules are required: the generic code
(included in the standard library) and the specific code (written by the programmer). The gen-
eric code in the standard library is responsible for “running” the process: it sends and receives
messages, contains error handling and logging code, and interacts with the virtual machine as
necessary. The specific code is written by the programmer as part of their application in the
form of an Erlang module containing callback functions.

The generic code is arranged in three modules which are part of the standard library (Er-
lang/OTP Team 2019d):

• gen_event: a generic event handler

• gen_server: a generic server process

• gen_statemgen_fsm: generic state machines.

To see how these behaviours can be used we have rewritten the my_counter_v2 module from
listing 6b using the gen_server library. Our implementation is shown in listing 7 on the next
page. The first difference is the behaviour attribute on line 2, which instructs the Erlang compiler
to check that we have exported all the callbacks required for the gen_server behaviour to work.
Next, the start function now calls the gen_server library’s start function; this will handle all
process spawning and initialisation for us. This is followed by the same API functions as before,
except they again call the gen_server library. We call cast when we want a fire-and-forget
request where we don’t expect a response, and we use callwhen we expect a response. Also,
stopping a server is such a common task that there is a dedicated stop function available in the
library.

We can interact with this server exactly as before, except that a few return values are different:

1> {ok, Server} = my_counter_gen:start(0).

{ok,<0.80.0>}

2> my_counter_gen:add(Server, 20).

ok

24

-module(my_counter_gen).
-behaviour(gen_server).

-export([start/1,add/2,sub/2,get/1,stop/1]).
-export([init/1,handle_call/3,handle_cast/2]).

start(N) -> gen_server:start(?MODULE, [N], []).

%% API functions

add(Server, N) -> gen_server:cast(Server, {add, N}).

sub(Server, N) -> gen_server:cast(Server, {sub, N}).

get(Server) -> gen_server:call(Server, get).

stop(Server) -> gen_server:stop(Server).

%% gen_server callbacks

init([N]) -> {ok, N}.

handle_cast({add, N}, State) -> {noreply, State+N};
handle_cast({sub, N}, State) -> {noreply, State-N}.

handle_call(get, _From, State) -> {reply, State, State}.

Listing 7: Counter server implemented using gen_server

3> my_counter_gen:sub(Server, 5).

ok

4> my_counter_gen:get(Server).

15

The callback functions for the gen_server behaviour come next and this is where the “specific”
code for our server is written. First, the init function is responsible for setting up the server. For
this example we just set the server’s state to the argument passed to us by returning a tuple. The
next function is handle_castwhich is the callback function for handling requests initiated by a
call to cast. The first argument is the content of the message and the second is the current server
state. The expected return value is a tuple indicating how the server should respond and how
its state should be updated. In both cases we specify that a reply should not be sent, and that
the new server state is either added to or subtracted from. The handle_call function is similar,
except it handles requests initiated by call. In this case our return value specifies that we should
send a reply (State in this case) and that the new state of the server is the same as its original

25

state.
When we call gen_server:start a new process is spawned containing all of the necessary

machinery for receiving requests and sending responses, managing the state of the process,
handling errors, and more. On the other side we have the call and cast functions which are
responsible for constructing requests, sending them to the server, and waiting for responses.

These generic behaviours are complementary to Erlang’s communication model and strong
process isolation. Generic code is responsible for handling the process state and communication
while the specific code handles all business logic. Furthermore, by writing and exporting an
API for the server, the entire implementation can be abstracted away so that users of the module
don’t even have to consider how the module is implemented to use it in a concurrent application.

The behaviours also exploit Erlang’s features: callback functions typically exploit pattern
matching and guard expressions to separate clauses based on the “shape” of the request, and
lightweight processes and asynchronous message passing are used to maintain state and isolate
callers from unhandled errors and exceptions in the callees. This is the bedrock of most real-
world Erlang applications: functional programming allows business logic to be implemented
rapidly and relatively explicitly, while concurrent behaviours are used to maintain state and
facilitate co-ordination between associated sub-systems.

2.2 Labelled Transition Systems

Chapter 5 uses transition systems to analyse the communicating behaviour of the CoErl language
from chapter 4. Specifically, the analysis of CoErl relies on labelled transition systems, i.e. transition
systems whose transitions are additionally equipped with labels. This section introduces the
definitions necessary for chapter 5.

We start with the formal definition of a transition system, which is a set equipped with a
binary relation over some subset of its elements:

Definition 2.2.1 (Transition System). A transition system is a pair of the form:

(S,R)

where S is a set of states and R ⊆ S× S is a binary relation.

Furthermore, if two elements of S are related by R, then it is possible to make a transition
from the first to the second:

Definition 2.2.2 (Transition). For any transition system (S,R), a transition is any pair (x,y) ∈ (S×S)

such that (x,y) ∈ R, i.e. R x y.

26

With this definition it is said that x transitions to y.
A related concept to the transition system is the labelled transition system, which is a transition

system extended with a set of labels and the binary relation is replaced with a ternary relation:

Definition 2.2.3 (Labelled Transition System). A labelled transition system is a triple of the form

(S,A,R)

where S is a set of states, A is a set of labels, R ⊆ S× α× S is a ternary relation.

Labelled transition systems therefore have labelled transitions2:

Definition 2.2.4 (Labelled Transition). For any labelled transition system (S,A,R), a labelled trans-
ition is any triple (x,α,y) ∈ (S×A× S) such that (x,α,y) ∈ R, i.e. R x α y.

In this definition, it is said that x transitions to y via (or by) α.
The small-step semantics cannot readily be modelled as an LTS as the semantics is neither

equipped with a set of labels A, nor a ternary relation which labels steps in the system.

2.3 Reduced Ordered Binary Decision Diagrams

In this section we present well known definitions of BDDs, Ordered Binary Decision Diagrams
(OBDDs), and ROBBDs and their associated construction algorithms (Huth and Ryan 2004)
which will serve as the foundation of a specialisation BDD implementation for types.

A BDD is a directed acyclic graph used to represent boolean decision procedures. Figure 2.1
on the following page shows three BDDs: figure 2.1a represents the boolean formula x, figure 2.1b
shows formula y, and figure 2.1c shows the formula x∧ y. Each BDD consists of two types of
node:

Definition 2.3.1 (BDD). A Binary Decision Diagram is a directed acyclic graph with a single root. Each
node in the graph is either:

• 〈x ? hi : lo〉: A “node” containing the name of a boolean variable with 2 labelled outgoing edges:
hi and lo (drawn with a round border, where the hi edge is solid and the lo edge is dashed); or

• #B: A “leaf” containing a boolean value 1 or 0 with no outgoing edges (drawn with a square
border).

2though for brevity these are often just referred to as “transitions”

27

x

0 1

(a) BDD for formula x

y

0 1

(b) BDD for formula y

0

0

1

x

y

(c) BDD for formula x∧ y

Figure 2.1: Naïve conjunction of BDDs

Data: A BDD b representing formula f with assignments ρ
Result: The result of the boolean formula f with assignments ρ
node← b; while node is not a leaf do

v← variable(node)
if value of v in ρ is 1 then

node← hi(v)
end
node← lo(v)
return value of v

end
Algorithm 1: BDD evaluation algorithm

Each BDD has a root node (indicated graphically using a solid arrow with a circular tail
pointing into the top-mode node) and a leaf node is always reachable from any other node. To
“evaluate” a BDD we need an assignment for each boolean variable which occurs in the graph
and proceed as per the algorithm in algorithm 1. Starting at the root, we traverse the graph
according to the assignments of variables: if a variable is assigned to 1 we proceed down the
solid hi path, and if it is assigned to 0we proceed down the dashed lo path. When we reach a
leaf, we return the value contained within it.

For example, to evaluate the BDD in figure 2.1c using variable assignments [x 7→ 1,y 7→ 0],
we start at the root node x. As x is true, we follow the hi edge to reach node y. Checking the
value of y, we note it is false, and we proceed down the lo edge to the leaf #0, and return false.

To check whether a given BDD is satisfiable, we can simply check for the existence of a path
between the root node and a #1 leaf: if no path exists then the formula is unsatisfiable, and if a
path exists then it is satisfiable, and the combination of hi and lo edges along the path yields
an assignment of variables which satisfies the formula. In figure figure 2.1c, the path between

28

0

0

1

y

x

(a) With redundant #0 node and ordering y < x

0 1

x

y

(b) Without redundant #0 node and ordering x < y

Figure 2.2: Different BDD representations of the formula x∧ y

#1 and the root goes via the hi edge of x (hence xmust be 1) and the hi edge of y, yielding the
assignment [x 7→ 1,y 7→ 1].

While figure 2.1c shows a single possible representation of the formula x∧ y, there are other
representations: the x and y nodes could be swapped (figure 2.2a), or one of the two #0 leaves
could be removed (figure 2.2b).

In figure 2.2a we have changed the ordering of variables, and in figure 2.2b we have reduced the
BDD by removing redundant nodes. Both of these cases highlight a shortcoming of the rather lax
definition of a BDD: the ordering and/or repetition of variables might yield different structures,
as might different levels of “optimisation” to remove redundant nodes. Our BDDs are therefore
not canonical: there can be several different representations of semantically equivalent formulas.

2.3.1 Ordering

The first step in making BDDs canonical is to introduce an ordering on the variables which occur
in them. Specifically, we will restrict the order variables occur along any given path in the BDD,
and also disallow more than one occurrence of each. The addition of an ordering creates an
OBDD:

Definition 2.3.2 (OBDD). An Ordered Binary Decision Diagram is a BDD with an ordering on
variables < such that for every path:

• variables occur in the order <; and

• no variable occurs more than once

29

0

0

1

x

y

(a) with ordering x < y

0

0

1

y

x

(b) with ordering y < x

0 1

x

y

(c) with a duplicate #0 leaf re-
moved

Figure 2.3: Different OBDD representations of x∧ y

To see how these rules affect the structure of BDDs, consider the different representations of
x∧y in figure 2.3. In figure 2.3a, the ordering x < y is used, and in figure 2.3b the ordering y < x

is used. Both of these are valid OBDDs, but they use different orderings. As we will see later,
our BDDs will be canonical up to the variable ordering, so BDDs with different orderings should
not be compared for equality. Finally, the BDD in figure 2.3c is not a valid OBDD as it violates
the second restriction: variables must not occur more than once in any path, but x occurs twice.

By adding an ordering on variables we transform BDDs into OBDDs, but there is still a
possibility that two semantically equivalent graphs have different structures: redundant nodes.

2.3.2 Reduction

A common task for optimising compilers is to remove duplicated basic blocks. This is often
achieved by removing all but a single copy of the code and replacing all references to the other
copies with a reference to the single remaining block. With BDDs we can perform a similar
optimisation: if there is more than one node with the same variable name, same hi edge, and
same lo edge, we can remove all but one copy and redirect all incoming edges from the removed
nodes.

Compilers also remove redundant tests - a common headache for those trying to write
compiler benchmarks: if both branches of an if-then-else are identical, then the entire if-then-else
can be replaced one of the two branches. Again, we can perform a similar operation on BDDs: if a
node has a hi and lo edge with the same destination, the test is redundant, and can be removed.

This leads to the definition of a reduced OBDD:

30

Definition 2.3.3 (ROBBD). A Reduced Ordered Binary Decision Diagram is a OBDD where there are
no:

• leaves with the same value; or

• nodes which have the same variable name, hi edge destination, and lo edge destination; or

• nodes where the hi and lo edges point to the same node.

Figure 2.4 on the following page shows three different OBDDs for the formula (x∨ ¬x)∧ y.
The first BDD in figure 2.4a) contains a large amount of redundant information: there are
duplicate leaves and there are two identical subgraphs. In figure 2.4b the duplicate leaves have
been removed: only one copy of #1 and #0 remain. With this optimisation performed, we can
now see that the two y nodes are identical, so we can remove one of them and redirect the
incoming edges (figure 2.4c). Finally, observe that the x node is redundant: both the hi and lo

edges have the same destination, so we remove it (figure 2.4d). This final OBDD satisfies all of
the properties of a ROBBD: there are no duplicate leaves, duplicate nodes, or nodes with edges
which point to the same location. The fact that we can remove x from the BDD entirely hints at
the fact that variable x is redundant in the formula itself: x∨ ¬x is a tautology.

The restrictions imposed on the structure of BDDs by the definitions of OBDDs and ROBBDs
ultimately create a canonical form for any boolean formula up to the variable ordering used (Huth
and Ryan 2004, ch. 6).

2.3.3 Combining ROBDDs: If-Then-Else

We can combine BDDs in various ways. For example, to negate a BDD we can swap all #1 leaves
with #0 leaves, and vice versa. To take the conjunction of two BDDs we could replace all instances
of #1 in the first BDD with the root of (and the rest of) the second; similarly for disjunction,
except replacing all instances of #0.

While this approach is workable, it does not yield reduced or ordered BDDs by construction:
additional work is required to properly order variables and remove redundant nodes.

Another approach uses the knowledge that the ∧, ∨, and ¬ operators in boolean logic can all
be implemented using an if-then-else language construct:

A∧ B⇐⇒ if A then B else 0

A∨ B⇐⇒ if A then 1 else B

¬A⇐⇒ if A then 0 else 1

31

0 01 1

x

y y

(a) with ordering x < y

0 1

x

y y

(b) with duplicate leaves removed

0 1

x

y

(c) with duplicate y node removed

0 1

y

(d) with redundant x node removed

Figure 2.4: OBDD representations of (x∨ ¬x)∧ y

Since each of these logical operators can be represented using an if-then-else construct, we only
require one algorithm for constructing ROBBDs: a function which takes three ROBBDs (the test I,
the true branch T , and the false branch E) and returns a ROBBDs equivalent to if I then T else E.
This is not a novel approach, but it is significantly faster and more memory efficient than other
construction techniques. The rest of this section presents algorithms originally seen elsewhere
(Brace, Rudell and Bryant 1990).

The implementation relies on three key concepts:

1. Using a single Multi-Rooted Directed Acyclic Graph (MRDAG), where outgoing edges from
nodes are pointers to other nodes, and where BDDs are represented by a pointer to a single
node or leaf.

2. Shannon expansion, to restrict BDDs based on whether a variable is true or false.

3. A table of known nodes, to prevent the insertion of duplicate nodes into the MRDAG.

32

Function Find-Or-Create(v, hi, lo, G)
Data: A node 〈v ? hi : lo〉 to add to the MRDAG G
Data: The existing MRDAG G
Result: A pointer to a node equivalent to 〈v ? hi : lo〉
if there is a node n ∈ G such that n = 〈v ? hi : lo〉 then

return pointer to n
end
insert 〈v ? hi : lo〉 into G
return pointer to the inserted node

end
Algorithm 2: Find-Or-Create function for MRDAG based ROBDDs

The first operationwe define for theseMRDAGbased ROBBDs is the Find-Or-Create function
which is responsible for inserting nodes into the Directed Acyclic Graph (DAG) (algorithm 2).
Before inserting any node into the DAG, we check whether an equivalent node already exists,
i.e. we search for another node with the same variable name and outgoing edges. The new node
is only inserted if no equivalent node exists. If all insertions into the graph are performed with
this function, we will never create a DAG where two identical nodes exist, which would violate
one of the properties of ROBBDs.

In practice, the search for existing nodes is performed using a “unique” table which maps
triples of node name, hi edge, and lo edge to pointers in the graph:

• When inserting a node to the graph, store a pointer to it in the hash table, using (v,hi, lo)
as the key

• When searching for a node prior to insertion, look up (v,hi, lo) in the hash table. If a result
is found, return the stored pointer, otherwise proceed to insert the node into the graph.

Figure 2.5 on the following page shows how the Find-Or-Create function operates; figure 2.5a
is our initial MRDAG. In figure 2.5b we attempted to add the node 〈x ? ptr(y) : ptr(0)〉 to the
graph, but as an equivalent node already exists the graph is unmodified, keeping it reduced. In
the case of figure 2.5c however, as no equivalent node 〈z ? ptr(y) : ptr(0)〉 exists we insert the
new node into the graph and return a pointer to it. However, if we use the variable ordering
x < y < z note that the Find-Or-Create function does not maintain the ordering of nodes
required in ROBBDs: in figure 2.5c the z node occurs earlier than the x node. In this case the
graph is still reduced but it is not ordered.

Preserving the order of nodes in the graph requires careful use of the Find-Or-Create function.
To this end the rest of the approach - like many other algorithms for constructing ROBBDs -
relies on Shannon expansion (Shannon 1949):

33

0 1

x

y

(a) initial BDD

0 1

x

y

(b) inserting a duplicate node
〈x ? y : 0〉

0 1

z

y

x

(c) inserting a unique node
〈z ? y : 0〉

Figure 2.5: Examples of the Find-Or-Create function

Theorem 2.3.1 (Shannon expansion). For every boolean function F:

F = (x∧ Fx)∨ (x ′ ∧ F ′
x)

where x is a boolean variable, Fx is the function F with x set to 1, and F ′
x is the function F with x set to 0.

Fx and F ′
x are called the positive and negative Shannon cofactors respectively.

This identity allows us to “lift” any variable out of a boolean function and place it at the
top level, which for BDDs means that we can lift any variable to the root of the graph. By
strategically picking variables and repeatedly performing Shannon expansion on a BDD, nodes
can be re-ordered so that they occur as per the < relation.

In figure 2.6 on the next page we look at how this might be done. The BDD in figure 2.6a
shows a ROBBD with variables ordered y < x. Assuming we want to change the ordering of
variables to x < y, we would pick variable x to “factor out” of the BDD. Figure 2.6b shows the
positive cofactor (where x = 1) obtained by redirecting the incoming edge of x to the destination
of its hi edge and removing the x node, i.e. we set hi(x) to hi(x). Figure 2.6c shows the negative
cofactor (where x = 0) by obtained by performing a similar operation on the lo edge of x: the
incoming hi edge from y is redirected to the 1 leaf, i.e. we set hi(y) to lo(x). Finally, we combine
the positive and negative cofactors in figure 2.6d by a case analysis on variable x: if x is true then
we evaluate the positive cofactor, and if it is false we evaluate the negative cofactor. Although the
BDD is no longer reduced (as we have more than one 0 leaf), we can see how shannon expansion
can be used to re-order the variables.

Shannon expansion forms the basis of the if-then-else algorithm for constructing ROBBDs,
shown in algorithm 3 on page 36. Assume that we want to combine three ROBBDs I, T , and E

34

1 0

y

x

(a) with ordering y < x

0

y

(b) pos. cofactor
w.r.t x

10

y

(c) neg. cofactor
w.r.t x

Pos. cofactor Neg. cofactor

x

y y

0 10

(d) with ordering x < y

Figure 2.6: Reordering nodes in a BDD via Shannon expansion

into a single ROBBD which represents if I then T else E. Also assume that all three BDDs are
part of the same MRDAG, and that all of them use the same variable ordering. The first task is to
deal with base cases:

• If I is a pointer to 1 we are attempting to represent if 1 then T else E which will always
evaluate to T , so return T .

• If I is a pointer to 0 we are attempting to represent if 0 then T else E which will always
evaluate to E, so return E.

• If T and E point to 1 and 0 we are attempting to represent if I then 1 else 0 which is
equivalent to I, so return I.

• If T and E are identical we are attempting to represent if I then T else E which will always
yield the same result regardless of I, so return T or E.

The next step is to check whether we have called If-Then-Else with the same arguments before,
and return the memoised result if we have. As BDD construction often leads to repeated function
calls, memoisation often saves significant amounts of time.

The final case of the algorithm is where I, T , and E are actually combined using Shannon
expansion. Assuming that Ix and I ′x are the positive and negative cofactors for I restricted on
variable x, and likewise for T and E, then:

if I then T else E = if x = 1 then if Ix then Tx else Ex else if I ′x then T ′
x else E ′

x

In If-Then-Else this is done as follows:

1. Find the smallest variable x present in I, T , and E.

35

Data: An ordered and reduced MRDAG G
Function If-Then-Else(I, T , E)

Data: Pointers to nodes I, T , and E
Result: Pointer to a node representing if I then T else E
if I points to #1 then

return T
else if I points to #0 then

return E
else if T points to #1 and E points to #0 then

return I;
else if T = E then

return T
else if If-Then-Else(I, T ,E) is memoised then

r←memoised value for If-Then-Else(I, T ,E)
return r

else
x← smallest variable in I, T ,E as per ordering <

(Ix, I ′x)← Restrict(I, x)
(Tx, T ′

x)← Restrict(T , x)
(Ex,E ′

x)← Restrict(E, x)

F← If-Then-Else (Ix, Tx,Ex)
F ′ ← If-Then-Else (I ′x, T ′

x,E ′
x)

r← Find-Or-Create(v, F, F ′)
memoise If-Then-Else(I, T ,E) = r
return r

end
Algorithm 3: If-Then-Else function for combining MRDAG based ROBDDs

2. Calculate the Shannon cofactors for each of I, T , and E relative to x, noting that the Restrict
function will return pointers to existing nodes in the MRDAG, (i.e. ordering and reduction
will be maintained when restricting).

3. Generate a pointer to the positive cofactor if Ix then Tx else Ex by calling If-Then-Else

recursively.

4. Generate a pointer to the negative cofactor if I ′x then T ′
x else E ′

x by calling If-Then-Else

recursively.

5. Find or create a new node in r the MRDAG for variable x, where the hi edge points to the
positive cofactor and the lo edge points to the positive cofactor.

6. Memoise If-Then-Else(I, T ,E) = r and return r.

36

Function Restrict(v, p)
Data: Name of a boolean variable v to restrict on
Data: Pointer p representing an ROBBD in an MRDAG
Result: Pointers to the positive and negative cofactors of p restricted to v respectively
if p points to a node such that variable(p) = v then

return (hi(p), lo(p))
end
else

return (p,p)
end

end
Algorithm 4: Restrict function for MRDAG based ROBDDs

Special care is taken to ensure the MRDAG remains ordered and reduced at all times. Firstly,
the Shannon cofactors for I, T , and E are calculated using the Restrict function (algorithm 4).
Consider that I, T , and E are all ordered BDDs which use the same ordering: the smallest variable
in each will occur at the root. Therefore if x = min(I, T ,E), for each of the three BDDs variable x
either occurs at the root, or it does not occur at all (as it would violate the ordering if it appeared
anywhere else). This means that the task of the Restrict function is simple: if the root is variable
x, then the positive cofactor is the hi edge and the negative cofactor is the lo edge. If x is not
present at the root however, then x does not occur in the BDD and the positive cofactors are the
same: the original BDD.

The only other places that the graph can be modified (and the constraints violated) are
in the recursive call to If-Then-Else (which is irrelevant if we always return an ordered and
reduced MRDAG from the current call), and the call to Find-Or-Create. As we saw earlier
Find-Or-Create will always keep the graph reduced, but it may create a node which violates
the ordering of variables if given a variable which is larger than any of the variables present in
the hi or lo sub-graphs. Fortunately, we call Find-Or-Create with variable x, which we already
know is the smallest variable present, hence ordering and reduction will be maintained.

Assuming that hash table operations and graph insertion occur in constant time, then
memoisation ensures that If-Then-Else has time complexity O(|I| · |T | · |E|), with a typical
performance close to the size of the resulting boolean function (Brace, Rudell and Bryant 1990).

37

Chapter 3

Communication Discrepancies in Erlang

Despite all of this infrastructure – process isolation, asynchronous message passing, and generic
server behaviours – Erlang programs can still crash or exhibit communications-related bugs.

Crashes tend to originate from the usual sources: I/O errors, unhandled corner cases, and
malformed data. Erlang’s dynamic type system doesn’t make the situation any better: the lack
of a static type system means that arguments of the wrong types are often passed to functions
which cannot handle them properly. For example, we can cause our hand-written counter server
to crash by attempting to add a non-numeric value:

1> Server = my_counter_v2:start(0).

<0.80.0>

2> my_counter_v2:add(Server, hello).

{add,hello}

=ERROR REPORT====

Error in process <0.80.0> with exit value:

{badarith,[{erlang,'+',[0,hello],[]},

{my_counter_v2,loop,1,[{file,"my_counter_v2.erl"},{line,10}]}]}

and similarly with our gen_server version, except that the generic portion of the server means
that we get a more detailed error report:

3> {ok, ServerGen} = my_counter_gen:start(0).

{ok,<0.81.0>}

4> my_counter_gen:add(ServerGen, hello).

ok

=ERROR REPORT====

38

** Generic server <0.81.0> terminating

** Last message in was {'$gen_cast',{add,hello}}

** When Server state == 0

** Reason for termination ==

** {badarith,[{erlang,'+',[0,hello],[]},

{my_counter_gen,handle_cast,2,

[{file,"my_counter_gen.erl"},{line,23}]}

[...]]}

=CRASH REPORT====

crasher:

initial call: my_counter_gen:init/1

pid: <0.82.0>

registered_name: []

exception error: an error occurred when evaluating an arithmetic expression

in operator +/2

called as 0 + hello

in call from my_counter_gen:handle_cast/2 (my_counter_gen.erl, line 23)

in call from gen_server:try_dispatch/4 (gen_server.erl, line 637)

[...]

Note that in both cases the API function add returned a value which suggested the request
was successful because sending a message is asynchronous, so the sender has no way of knowing
the state of the server. When we make a callwith our gen_server implementation things are
more clearly wrong before the generic code in the library first checks whether the process exists
before attempting to send a message:

1> {ok, ServerGen2} = my_counter_gen:start(0).

{ok,<0.80.0>}

2> my_counter_gen:stop(ServerGen2).

ok

3> my_counter_gen:get(ServerGen2).

** exception exit: {noproc,{gen_server,call,[<0.80.0>,get]}}

in function gen_server:call/2 (gen_server.erl, line 215)

This is just one example of a communication discrepancy: data flow analysis of the server’s
codewould show that it expects a numeric value for addition, but any correctly structured tuple is

39

-module(guarded_counter).
-export([start/1,loop/1]).
-export([add/2,sub/2,get/1,stop/1]).

start(N) -> spawn(?MODULE, loop, [N]).

loop(N) ->
receive
{add, M} when is_number(M) ->
loop(N+M);

{sub, M} when is_number(M) ->
loop(N-M);

{get, From, Ref} ->
From ! {res, N, Ref},
loop(N);

stop ->
io:fwrite("stopping.~n"),
ok

end.

%% API functions

add(Pid, N) -> Pid ! {add, N}.

sub(Pid, N) -> Pid ! {sub, N}.

get(Pid) ->
Ref = make_ref(),
Pid ! {get, self(), Ref},
receive
{res, Res, Ref} -> Res

end.

stop(Pid) -> Pid ! stop.

(a) Hand-written server from listing 6b

-module(guarded_counter_gen).
-behaviour(gen_server).

-export([start/1,stop/1,
add/2,sub/2,get/1]).

-export([init/1,
handle_call/3,handle_cast/2]).

start(N) ->
gen_server:start(?MODULE, [N], []).

%% API functions

add(Server, N) ->
gen_server:cast(Server, {add, N}).

sub(Server, N) ->
gen_server:cast(Server, {sub, N}).

get(Server) ->
gen_server:call(Server, get).

stop(Server) ->
gen_server:stop(Server).

%% gen_server callbacks

init([N]) -> {ok, N}.

handle_cast({add, N}, State)
when is_number(N) ->

{noreply, State+N};
handle_cast({sub, N}, State)
when is_number(N) ->

{noreply, State-N}.

handle_call(get, _From, State) ->
{reply, State, State}.

(b) gen_server version from listing 7

Listing 8: Counter servers with guards for numeric types

accepted. There is a discrepancy between the type of message accepted by the receive clause

and the type of value expected by functions which use it.

Even if we added an is_number guard to the relevant clauses in the server code we would still
see problems. The modules in listing 8 show the hand-written and gen_server based counter
servers with guards for the add and sub cases.

40

When we run the gen_server version the server now crashes when we call addwith a non-
numeric value:

1> {ok, ServerGen} = guarded_counter_gen:start(0).

{ok,<0.80.0>}

2> guarded_counter_gen:add(ServerGen, hello).

=CRASH REPORT====

crasher:

initial call: guarded_counter_gen:init/1

pid: <0.80.0>

registered_name: []

exception error: no function clause matching

guarded_counter_gen:handle_cast({add,hello},0) (guarded_counter_gen.erl,

line 23)

↪→

↪→

We could fix this with a catch-all clause on handle_cast but this is hiding the real communication
discrepancy: server processes written using the standard library’s generic behaviours crash

when they receive a request they are not programmed to handle.
At first glance it looks like our other hand-written server might not crash when it’s sent a

non-numeric add message as the receive expression in the loop function will simply “skip over”
these messages in the mailbox because they won’t match any of the function clauses:

3> Server = guarded_counter:start(0).

<0.83.0>

4> % send a string instead of an integer

4> guarded_counter:add(Server, "42").

{add,"42"}

The server hasn’t crashed because the message was never received by the add clause of the receive
expression. But when we repeat this process many times we start to see another problem:

5> process_info(Server, [message_queue_len,total_heap_size]).

[{message_queue_len,1},{total_heap_size,233}]

6> integer_to_list(42). % converts an integer to a string

"42"

7> lists:foreach(fun(N) ->

7> guarded_counter:add(Server, integer_to_list(N))

41

7> end, lists:seq(1, 10000)). % repeat 10000 times

ok

8> process_info(Server, [message_queue_len,total_heap_size]).

[{message_queue_len,10001},{total_heap_size,107801}]

As the messages are being placed on the process’ heap in the BEAM the unreceived messages are
consuming more and more memory: 107801 words instead of the earlier 233. This in turn will
cause the BEAM to allocate more of its memory to the process, which is ultimately requesting
morememory from the host operating system. This essentially constitutes amemory leak because
the messages will never be received and will remain in the process’ mailbox as long as it running,
which may be days, weeks, or months in a real world application. Once the process exits however
the BEAMs garbage collector will recover the memory. These are orphan messages: messages can

be sent to processes which will never receive them, leading to increased memory usage and

decreased receive performance.
These are just a few examples of the types of communication discrepancies that can occur in

concurrent Erlang applications. Some of these discrepancies could be easily detected at compile
time via static analysis. Others are readily apparent at runtime because they cause crashes, which
means they could likely be detected through sufficient testing. Unfortunately, orphan messages
are difficult to detect at compile time or runtime. The out-of-order receive behaviour combined
with Erlang’s expressive pattern and guard syntax makes it difficult to reason about all possible
behaviours of an Erlang program during compilation. In addition, the memory leak at runtime
is silent unless memory usage is being actively monitored, and other programming errors make
it possible for programs continue to behave as designed even when orphan messages linger in
mailboxes.

42

Chapter 4

CoErl: A Communicating Fragment of Core

Erlang

Erlang is a mixture of two programming paradigms: functional and concurrent. The functional
parts of Erlang are relatively unsurprising in the way they behave and are relatively well un-
derstood from a theoretical perspective: the language features pattern matching, higher-order
functions, and data structures such as singly-linked lists and tuples. On the other hand, the
concurrent aspect of the language presents interesting analytical challenges: Erlang allows a
theoretically infinite number of self-contained processes – each with their own state – to commu-
nicate with each other through mailboxes, which allow messages to be received in a different
order to which they are sent.

In order to understand how concurrent Erlang programs communicate, therefore, it will be
useful to formalise the essential parts of the language with the goal of being able to analyse how
each process in an Erlang system comes into existence, how processes send messages, and how
these messages affect the behaviour of the processes which receive them.

Core Erlang will serve as the basis of the formalisation: it is an intermediate representation
used in the Erlang/OTP compiler, in which all Erlang programs can be represented (Carlsson
2001). Core Erlang is chosen as the basis of the formalisation for several reasons:

• The Core Erlang Specification describes the syntax and operational semantics of the lan-
guage in great deftail, although in textual form (Carlsson et al. 2004).

• Core Erlang features a reduced – but more explicit – syntax compared to Erlang

• The = (match) operator is eliminated in Core Erlang in favour of explicit variable bindings
and pattern matching as appropriate

43

• Pattern matching only binds variables in Core Erlang: it never matches against already-
bound variables.

Only a fragment of Core Erlang will be formalised, however: not all features of the language
(and thus Erlang) are required to reason about processes and communication. On the other
hand, enough of the language must be formalised in order to be useful enough to reason about
real Erlang programs.

This chapter presents an operational semantics for a communicating fragment of Core Erlang,
using the Core Erlang specification as a basis, but in two parts: a big-step semantics and a
small-step semantics. These semantics will serve as a formal illustration of the behaviour of Core
Erlang’s communication model while also serving as a foundation for analysing the behaviour of
communicating Erlang processes. Part of the semantics will be provided as function definitions:
pattern matching, guard evaluation, and clause selection are all guaranteed to terminate, and
are therefore easy to model formally. On the other hand, other aspects of the language are more
difficult to model, such as non-termination: a core concept when writing long-lived concurrent
Erlang programs. These aspects of the language will be modelled inductively, in a way which
allows for partial evaluation of non-terminating programs. In the small-step semantics this will
be achieved by the definition itself (where evaluation will be represented by a reflexive transitive
closure over the semantics) and in the big-step semantics, this will be achieved by step indexing.

Overview This chapter begins with the syntax of a fragment of Core Erlang which is repres-
entative of the whole language, covering communication, recursion, pattern matching, and
compound types (section 4.1). Afterwards, the function definitions which perform pattern
matching, guard evaluation, and clause selection are given, accompanied with a full definition
of the behaviour of receive expressions as a function over clause sequences and mailboxes (sec-
tion 4.2). This is followed by definitions of the data structures used in the operational semantics:
mailboxes, contexts, and processes (section 4.3).

We then give a big-step operational semantics for the communicating fragment, serving as
an overview of how mailbox state propagates between sub-expressions (section 4.4). Small-
step semantics follow, again defined inductively, modelling each distinct step in evaluation
(section 4.5).

44

m ::= module lam where laf /n = fun(v1, v2, . . . , vn) → e end; . . .

e ::= l◦ | v | [] | [eh | et] | { } | {e1, e2, . . . , en}
| case 〈e〉 of cs end | e1 ;; e2
| let v = e in eb | call em : ef (ea)

| self | ep ! em | receive cs end

c ::= 〈p〉 when g→ e

cs ::= c | c ; cs

p ::= v | l◦ | p = v | [] | [ph | pt] | { } | {p1,p2, . . . ,pn}

v ::= variable name

g ::= ’true’ | ’false’ | if g then g else g | v is T

T ::= atom | boolean | float | integer | number

| pid | port | reference | list | tuple

l ::= l◦ | [] | [lh | lt] | { } | {l1, l2, . . . , ln}
l◦ ::= li | lf | la

li ::= integer literal
lf ::= float literal
la ::= atom literal

Figure 4.1: Syntax of CoErl

45

4.1 Syntax

The full syntax of the Core Erlang fragment is given in figure 4.1 on the previous page. The
language consists of several distinct components: top-level module definitions (m), expressions
(e), clauses used for pattern matching (c and cs), patterns (p), and literals (i.e. constant values,
l).

4.1.1 Modules (m)

All function definitions are arranged into modules. Each module has an atom as a name (lam)
and one or more function definitions of the form laf /n = fun(v1, v2, . . . , vn) → e end. Function
definitions have a name laf and an arity n (where n > 0), with each name/arity pair occurring
at most once in each module definition. Each function has a head which declares the names of
its arguments (fun(v1, v2, . . . , vn)) where n is equal to the declared arity of the function. Finally,
each function has an expression e as a body.

4.1.2 Literals (l)

Some expressions can contain literal values, i.e. constants. These literals are defined by l and
are either atomic or compound. The atomic literals are defined by l◦ and are either an arbitrary-
precision integer (li), a floating point number (lf), or an atom (la a datum, where each value of
atom is equal only to itself) 1. Integers and floats may be written using an optional sign, while
atoms are delimited by a pair of single quotes, such as ’hello’.

Alternatively, a literal may be a compound data type:

• []: the empty list constructor, called nil.

• [lh | lt]: a cons cell consisting of a head and a tail

• { }: an empty tuple.

• {l1, l2, . . . , ln}: a tuple consisting of any positive number of elements.

Together, these literals represent the most commonly-used data types in Erlang, with lists being
constructed by nesting cons cells on the right-hand side and terminating them with a nil: in
Erlang a programmer might write [1, 2, 3] for a list of the integers 1 through 3, but the syntax in
this fragment (and that of Core Erlang) requires that lists are constructed using the cons/nil
notation of [1 | [2 | [3 | []]]].

1atoms should not be confused with atomic literals

46

Some examples of literals are [], [1 | ’hello’], [1 | [2 | []]], and {’req’, ’save’, . . . ,−2.1}.
Also note that unlike some other languages, Erlang permits both well-formed (proper) and
ill-formed (improper) lists: there is no requirement that last element in right-nested cons cells is
nil.

4.1.3 Variable Names (v)

Variable names start with either an underscore or an upper-case letter. They may contain letters,
numbers, underscores, and an @ symbol. By convention, the Erlang/OTP compiler uses the @
symbol for automatically-generated variable names, though this is not a requirement.

Variables starting with an underscore have a special meaning in Erlang: variables which
are defined but never used generate a compile-time warning, but those which start with an
underscore do not. Therefore, variables which are intentionally never used after being defined are
prefixed with an underscore, which suppresses such compiler warnings. Unlike Erlang, however,
this fragment of Core Erlang will not permit Erlang’s behaviour where the special variable name
_ never binds, unlike all other variables:

1> {_, _} = {x,y}.

{x,y}

No variable names in this fragment will have special meaning, with the @ and _ symbols being
used by solely by convention.

4.1.4 Patterns (p)

Patterns are an essential control flow mechanism for Erlang; they drive the clause selection
process for functions, case expressions, and the receiving of messages.

The syntax of patterns is given in p and follows a similar structure to literals (l), albeit with a
few additions. A pattern may either be any variable name (although variable names must not
appear more than once in a pattern), an atomic literal, an alias of the form p = v, or one of the
previously mentioned compound data types: nil, a cons cell, or a tuple. The alias p = v assigns
the value matched by p to variable v, where v may not occur in p.

The constructors for the compound data types have been replicated in p instead of using
the definition of l to permit patterns to occur inside lists and tuples, while also eliminating any
ambiguity as to whether a compound data type constructor in a pattern refers to the syntax of p
or l.

47

4.1.5 Guards (g)

Guard expressions are used to further restrict the types of values accepted by clauses. A guard
expression always evaluates to either ’true’ or ’false’, where ’true’ represents success.

A guard is either the literal value ’true’ or ’false’, an if-then-else expression allowing for
boolean operations to be performed (e.g. conjunction, disjunction, and negation), and a type
test of the form v is T .

4.1.6 Clauses (c)

Clauses build upon patterns and guards to form a control flow structure which appears in case

and receive expressions. These always appear in semicolon delimited sequences of at least one
clause (cs), and each clause is tried in order, starting with the first.

Each clause consists of a pattern p, a guard g, and a body expression e. Together, the pattern
and guard form the head of the clause.

4.1.7 Expressions (e)

Expressions encapsulate all other definitions of the language. The simplest expressions consist of
either atomic literals or variable names. This is followed by the compound types which are again
placed here to remove ambiguity with the syntax of compound literals, and to allow arbitrary
nesting of expressions inside the compound types.

The rest of the expression syntax is as follows:

• case 〈e〉 of cs end a case expression consisting of one argument expression e and a sequence
of clauses cs.

• e1 ;; e2: sequencing of two expressions e1 and e2.

• let v = e in eb: binding of variable v to e in eb.

• call em : ef (e1, e2, . . . , en): an inter-module function call, where em is the name of the
module, ef is the name of the function, and (e1, e2, . . . , en) are the arguments to use in the
function call.

• self: an expression which evaluates to the unique process identifier for the process evalu-
ating it.

• ep ! em: a concurrent expression, which sends message em to the process represented by
ep (processes are introduced in section 4.3.2 on page 58).

48

• receive cs end: receive a message from the mailbox according to the clause selection
process (section 4.2).

4.2 Clause Selection Procedure

Clause selection uses pattern matching and guard evaluation to determine the next expression
to evaluate. This appears in two forms in Core Erlang: either by evaluating the argument of
a case expression before selecting a clause using the resulting value, or by iterating over the
process’ mailbox to pick a clause for a receive expression.

In both cases, this process consists of testing a value against each clause in a sequence. For
a case expression, this process is performed once. In the case of a receive expression, this
procedure is repeated for each message in the mailbox until a match is found (if there is one at
all).

The first aspect is patternmatching: matching a value against a clause’s pattern, which consists
of various literal values, variable names, and compound data type constructors. Assuming that
pattern matching succeeds, the clause’s guard is then evaluated using any new variable bindings
that were returned from pattern matching. If this succeeds, then the clause is selected; if not, the
next clause is tried.

Each of these operations can fail, so a type must be used which encapsulates possible success
or failure, similar to an option type:

Definition 4.2.1 (Failure Type). The failable type wraps a type a with two constructors: the ok a

constructor represents success and contains a value of type a, while fail represents failure and does not
carry any value:

Failable a
def= ok a | fail

With this failable type, it is now possible to define the pattern matching, guard evaluation,
and clause selection functions.

4.2.1 Pattern Matching

Pattern matching is the process of checking a value for some corresponding structure or values,
optionally binding parts of the matched value to variables. For the purposes of pattern matching
– and for the rest of the chapter – a value is equivalent to some literal defined by l◦ in figure 4.1
on page 45. This is often used to deconstruct compound types such as lists and tuples, or to
check for equality with some specific value (such as base cases in recursive functions), or to

49

pmatch(p, val) def=

ok [v 7→ val] if p = v where v is a variable
ok empty if p ∈ l◦ and p =:= val

pmatch(pa, val) ◦f (ok [v 7→ val]) if p = (pa = v)

ok empty if p = [] and val = []

pmatch(ph, vh) ◦f pmatch(pt, vt) if p = [ph | pt] and val = [vh | vt]

ok empty if p = { } and val = { }
n◦f
i=1

pmatch(pi, vi) if p = {p1,p2, . . . ,pn} and
val = {v1, v2, . . . , vn}

fail otherwise

Figure 4.2: Pattern matching function pmatch : p× val→ Failable ρ

differentiate between data with different meanings to the programmer, such as tagging a tuple
by setting its first element to a specific atom.

The variable binding portion of pattern matching will return a context which maps variable
names to values:

Definition 4.2.2 (Contexts (ρ)). A context is a partial mapping from variable names to values, denoted
by the letter ρ. A variable is added to a mapping using the syntax ρ[x 7→ v], which binds the variable x
to value v in context ρ, overwriting any previous value of x. Alternatively, the syntax ρ ◦ ρ ′ merges ρ
and ρ ′ with any definitions in ρ ′ shadowing those in ρ. Values are looked up via the syntax ρ(x), which
returns the value of variable x in context ρ.

The empty context is written empty.
For example, the following pattern matches a tuple with three elements, where the first

element is the atom ’hello’, with the other two elements assigned to the variables X and Y

respectively:

{'add',X,Y}

The value {’add’, 2, 4}wouldmatch the pattern, returning context ρ such that ρ = [X 7→ 2, Y 7→ 4].
Figure 4.2 gives the definition of the pattern matching function pmatch, which takes as

arguments a pattern p and value val, and returns a Failable ρ, which may be either ok ρ or fail.
As pattern matching does not always succeed, failure is captured using the type Failable, which
is defined in definition 4.2.1 on the previous page.

Definition 4.2.3 (Composition of Failable ρ (◦f)). Two terms x and y of type Failable ρ may be
composed such that if both represent success (via the ok constructor), then x ◦f y = ok (x ◦ y):

50

x ◦f y
def=

ok (x ′ ◦ y ′) if x = ok x ′ and y = ok y ′

fail otherwise

The pmatch function operates by considering the syntax of the pattern p. In the case that
the pattern is simply a variable (p = v), then the pattern match succeeds, binding variable v

to val. For literals, pattern matching succeeds if val is equal to the literal l◦, using Erlang’s
definition of equality (the =:= operator) and binds no variables. Pattern matching of aliases
only succeeds when the sub-pattern pa matches, which then finally binds v to val in the context
returned from pattern matching pa. When matching the empty list, val must also be an empty
list constructor. For a cons cell, however, the function is recursive in the head and tail elements,
requiring that val is a cons cell and that pattern matching succeeds for both the head and tail
elements. Similarly to empty lists, the empty tuple checks that val is an empty tuple, again
returning no bindings. The final successful case of pattern matching is a non-empty tuple: to
succeed, both the pattern and value must have the same size (note that both tuples are of size n),
and that pattern matching succeeds element-wise. The notation n◦f

i=1
pmatch(pi, vi) is equivalent

to pmatch(p1, v1)◦fpmatch(p2, v2)◦f . . .◦fpmatch(pn, vn). In all other cases, patternmatching
fails, with pmatch returning the fail constructor.

The simplest successful pattern match binds a variable to a value by using a pattern which is
a variable name, in this case X:

pmatch(X, 3.14) = ok [X 7→ 3.14]

pmatch(X, {’add’, 2, 4}) = ok [X 7→ {’add’, 2, 4}]

Regardless of the value used, pattern matching will always succeed for a pattern which is a
variable name.

Aliases can be used to bind the “top level” value to a variable name. Without aliases, it is
tedious to check for a certain data type constructor (such as a cons cell) and also bind the value
to a variable, as the original value would have to be reconstructed using a cons cell and the
variables bound during the pattern match. Instead, a pattern of the form p = v allows binding
of the value directly:

pmatch({_X, _Y} = Pos, {2, 4}) = pmatch({_X, _Y} , {2, 4}) ◦f ok [Pos 7→ {2, 4}]

= pmatch(_X, 2) ◦f pmatch(_Y, 4) ◦f ok [Pos 7→ {2, 4}]

= ok [_X 7→ 2] ◦f ok [_Y 7→ 4] ◦f ok [Pos 7→ {2, 4}]

= ok [_X 7→ 2, _Y 7→ 4,Pos 7→ {2, 4}]

51

geval(g, ρ) def=

true if g = ’true’

false if g = ’false’

if geval(i, ρ) then geval(t, ρ) else geval(e, ρ) if g = if i then t else e
x ∈ T if g = vis T and ρ(v) = x

x = l if g = v=:= l and ρ(v) = x

false otherwise

Figure 4.3: Guard evaluation function geval : g× ρ→ B

In this case, each element of the tuple has been assigned a variable name which – by convention
only – indicates we will not use the variable again, and the top-level tuple value has been bound
to variable Pos.

Finally, when pattern matching compound values, it is necessary for the pattern to match the
value element-wise, otherwise the entire pattern match fails:

pmatch({’add’,X, Y} , {’sub’, 2, 4}) = pmatch(’add’, ’sub’) ◦f pmatch(X, 2) ◦f pmatch(Y, 4)

= fail ◦f ok [X 7→ 2] ◦f ok [Y 7→ 4]

= fail

Although pattern matching succeeded for the second and third elements of the tuple, the first
element failed as ’add’ is not equal to ’sub’ using Erlang’s =:= operator.

In summary, the function pmatch implements all necessary pattern matching functionality
for the fragment of Core Erlang given in this chapter. It is capable of deconstructing compound
data types, checking for equality of literals, and aliasing. The function explicitly does not handle
repeated variable names as they are not permitted in the syntax of Core Erlang patterns; this
task is instead deferred to guard evaluation, which is discussed in the following section.

4.2.2 Guard Evaluation

The geval function in figure 4.3 is used to evaluate guard expressions. Each of the ’true’,
’false’, and if-then-else cases are relatively straightforward. For type checks of the form v is T
the function checks whether the value of variable v in the environment ρ is a member of the type
T . Finally, if the guard is an equality check on a literal (v=:= l) the function looks up the value
of variable v and checks for syntactic equality.

Building on the Core Erlang specification, we assume that there are no free variables in the
guard, i.e. the environment ρ contains all the necessary variables:

52

cmatch(〈p〉 when g→ e, val, ρ) def=

ok ρ ◦ ρ ′ if pmatch(p, val) = ok ρ ′

and geval(g, ρ ◦ ρ ′) = true

fail otherwise

Figure 4.4: Clause matching function cmatch : c× val× ρ→ Failable ρ

cselect(cs, val, ρ) def=

ok (expr(c), ρ ′) if cs = c; cs ′ and cmatch(c, val, ρ) = ok ρ ′

cselect(cs ′, val, ρ) if cs = c; cs ′ and cmatch(c, val, ρ) = fail
ok (expr(c), ρ ′) if cs = c and cmatch(c, val, ρ) = ok ρ ′

fail otherwise

Figure 4.5: Clause selection function cselect : cs× val× ρ→ Failable (e× ρ)

Assumption 4.2.1 (Domain of geval). For all contexts ρ passed to geval, it is assumed that vars(g) ⊆
dom(ρ). Note that ρ need not be the smallest ρ such that dom(ρ) ⊆∈ vars(g).

4.2.3 Clause Selection

The clause selection procedure combines pattern matching and guard evaluation from the
previous sections. Clause selection proceeds by testing each clause in order, starting with the
first: a pattern match is attempted against the value provided. If the pattern match succeeds,
then the guard is evaluated in a modified context which contains any new bindings from the
pattern match. If this guard evaluation succeeds, then the clause is selected, with evaluation
continuing with the body of the clause and the updated context. In the case that either the
pattern match or guard evaluation fails, then the next clause is tried, and so forth, until a clause
which matches is found. When no clause in the given sequence matches, the clause selection
fails.

This selection procedure is modelled in two parts: the task of matching a given value against
the pattern and guard of a single clause, and separately the task of repeating this process for each
clause in a sequence.

The cmatch function in figure 4.4 matches against a single clause. It takes as inputs a clause
of the form 〈p〉 when g → e, a value val, and a context ρ which contains any already-bound
variables. First, pattern matching against the clause’s pattern is attempted. If this succeeds, the
guard is evaluated in the context of ρ ◦ ρ ′, which merges the original context ρ with any new
variables bound in the pattern p. No shadowing of variables may occur, however:

53

Assumption 4.2.2 (Domain of ρ in cmatch). For all contexts ρ provided to cmatch, there must not
be any already-bound variable v in ρ such that v appears in the clause’s pattern p:

dom(ρ) ∩ vars(p) = ∅

Instead, all equality checks must be performed in the guard of the clause using the =:=
operator.

Once cmatch succeeds, the clause is selected; when cmatch fails, the next clause is attempted.
This process can fail in the case that no clausematches the value and context. The cselect function
in figure 4.5 on the preceding page iterates over a clause sequence exactly as just described: either
the first clause matches (and the corresponding clause body and updated context are returned),
or the next clause is attempted until either a match is found or there are no more clauses to be
tried. This function takes as arguments a sequence of clauses cs, a value val, and a context ρ
and returns either an ok (e× ρ) or failwhich represent success and failure respectively.

4.3 Processes, Mailboxes, and State

With the clause selection procedure defined, it is now possible to reason about and define
processes and mailboxeswhich lie at the heart of Erlang’s concurrency model.

A mailbox is an unbounded queue of messages sent to a process, where they are ordered
as they arrive, such that the message which arrived most recently is at the “back” or “end”
of the queue, and the oldest message is at the “front” or “start”. Each of these mailboxes is
associated with a process, which evaluates an expression in isolation from other processes except
for communication: the sending and receiving of messages. All processes have their own unique
identifier called a PID which allows processes to communicate with each other by sending
messages to specific PIDs.

4.3.1 Mailboxes

Each Erlang process has a mailbox, which can be represented as a singly-linked list of values.
Figure 4.6 on the next page shows a visual representation of a mailbox: the first messagem1 is at
the front of the mailbox (in position 1), while m2 is in the second position, and so forth.

The size of a mailbox associated with a process is unbounded: the operational semantics of
Core Erlang impose no limit on the size of a mailbox, and in practice the size of mailboxes is
limited only by available memory.

In Core Erlang, mailboxes are not interacted with directly and are not accessible as any kind
of in-language data structure. Instead, two different operations are performed on mailboxes to

54

1 m1

2 m2

3 m3
...

n mn

Figure 4.6: A mailbox of size n.

1 m1

2 m2
...

n mn

→

1 m1

2 m2
...

n mn

n+ 1

mn+1

→

1 m1

2 m2
...

n mn

n+ 1 mn+1

Figure 4.7: Message mn+1 arriving in a mailbox which already contains nmessages

manipulate them: arrival, where new messages are placed at the end of the mailbox, and receive,
where pattern matching and evaluation of guard expressions is used to remove messages from
the mailbox, potentially out-of-order.

Arrival

When a message is sent to a process, perhaps by another process, or as a result of some external
source (the Erlang Runtime System (ERTS), network sockets, etc.), the message will be placed
at the end of the destination process’ mailbox. In practice, the concurrent nature of the BEAM
makes this operation extremely complicated: locks, off-heap allocation, and multiple threads are
used to avoid deadlock situations. For the purposes of exploring the semantics of Core Erlang,
however, it is sufficient to model this operation as a list append operation.

Figure 4.7 illustrates the arrival of messages in a mailbox: assuming that a mailbox already
contains n messages (left), the arrival of the message mn+1 will cause the size of the mailbox to
grow by 1 (centre), and the message is places at the end of the mailbox, in position n+ 1 (right).

Receive Operation

The dual to arrival is receiving: removing a message from a mailbox via clause selection (sec-
tion 4.2 on page 49). Receiving a message takes place in two stages: selecting a message and

55

1 m1

2 m2

3 m3
...

n− 1 mn−1

n mn

(1)

start

→

1 m1

2 m2

3 m3
...

n− 1 mn−1

n mn

(2)

→

1 m1

2 m2

3 m3
...

n− 1 mn−1

n mn

(3)

→

1 m1

2 m2

3 m3
...

n− 1 mn−1

n mn

(4)

end

(a) Selecting message m2 from a mailbox

1 m1

2 m2

3 m3
...

n− 1 mn−1

n mn

t3

→

1 m1

2
3 m3

...
n− 1 mn−1

n mn

m2

t4

→

1 m1

2 m3

3 m4
...

n− 1 mn

n

m2

t5

(b) Removing messagem2 from a mailbox

Figure 4.8: Receiving message m2 from a mailbox

mbselect(cs,mb, ρ) def=

ok ((c, ρ),m)

if cselect(cs,m, ρ) 6= ok (c, ρ)
and mb = [m |mb ′]

mbselect(cs,mb ′, ρ) if cselect(cs,m, ρ) = fail
and mb = [m |mb ′]

fail if mb = []

Figure 4.9: Mailbox selection function mbselect

simultaneously selecting a clause, and removing a selected message from a mailbox.
The selection functionmbselect is responsible for selecting a message from a mailboxmb

using some clauses cs in context ρ. For a given cs,mb, and ρ,mbselect returns either the first
message to match the given clauses cs, or it fails. Each message in the mailbox is tried in order,
starting with the first message: if clause selection succeeds, the result of selection and the first
message is returned. If the first message does not match, successive messages in the mailbox are

56

mbremove(m,mb)
def=

{
mb ′ ifmb = [m ′ |mb ′] and m = m ′

[m ′ |mbremove(m,mb ′)] ifmb = [m ′ |mb ′] and m 6= m ′

Figure 4.10: Mailbox removal functionmbremove

mbreceive(cs,mb, ρ) def=
{
((e, ρ ′),mbremove(m,mb)) if mbselect(cs,mb, ρ) = ((e, ρ ′),m)

fail otherwise

Figure 4.11: Mailbox receive functionmbreceive

tried until either selection succeeds, or no messages remain, in which case fail is returned. Note
that it is a common case for selection to fail, as processes often await messages which have not
yet arrived.

As an example of this mailbox selection process, assume a mailbox mb such that some
messages m1 and m2 are at its head, such that mb = [m1,m2, . . .]. Furthermore, assume that for
some cs and ρ, cselect(cs,m1, ρ) = fail and cselect(cs,m2, ρ) 6= fail. With these assumptions,
mailbox selection proceeds as shown in figure 4.8a on the preceding page:

1. The mailboxmb contains nmessages, with m1 and m2 at the head.

2. Clause selection is attempted withm1, which fails: cselect(cs,m1, ρ) = fail.

3. The next message is chosen (m2) and clause selection is attempted, which succeeds:
cselect(cs,m2, ρ) 6= fail.

4. The message m2 is selected, and the result (cselect(cs,m2, ρ),m2) is returned.

Once a message has been selected, such that mbselect(cs,mb, ρ) = ((c, ρ ′),m), the message
m must be removed from the mailbox. This is performed by mbremove (figure 4.10) which
takesm andmb as arguments, and returnsmb ′ which ismbwith the first messagem ′ (such
that m = m ′) removed. Figure 4.8b on the preceding page shows the mailbox removal function
operating on m2 (which was selected in figure 4.8a on the previous page).

Finally, the functions mbselect and mbremove are combined into a single operation called
mbreceive which both performs clause selection and removes messages from the mailbox
(figure 4.11). In the case that a message is selected from the mailbox, mbreceive returns the
result of clause selection and the original mailbox with the first matched message removed.

57

Again, failure is indicated by returning fail, and is also a common occurrence in real-world
Erlang programs.

The evaluation of thembreceive function is illustrated by figure 4.8 on page 56, which is a
combination of selection (figure 4.8a) and removal (figure 4.8b).

4.3.2 Processes

In Erlang, all expressions are evaluated in lightweight processes. Each process has a globally
unique identifier called a PID and a mailbox which buffers messages sent to it by other processes.
A process’ PID remains constant throughout its existence, while its mailbox changes over time
as messages are sent and received.

Definition 4.3.1 (Process Identifier (PID)). A Process Identifier (PID) ι is a globally unique identifier
used to refer to a process. Not every PID is associated with a process, but each process must have a PID.

4.4 Big-Step Operational Semantics

The big-step operational semantics can be used to reason about terminating computations
of a single process (figure 4.12 on the following page). They relate a triple of expression e,
environment ρ, and mailbox mb with a value v, potentially different environment ρ ′, and
potentially modified mailboxmb ′.

The rule Lit evaluates a literal expression to a literal value and Var looks up the value of v in
environment ρ, returning it as a value. Nil and Cons are responsible for evaluating empty lists
and cons cells respectively, and this is where we see the left-to-right evaluation order we have
chosen for CoErl: the head of the cons cell is evaluated first, then the tail. Similar rules exist for
tuples: TupleNil evaluates empty tuples and TupleCons evaluates tuples from left-to-right.

Note that when we evaluate these sub-expressions from left-to-right we use the original
environment for each sub-expression, but we propagate the changed mailbox state with each
computation.

To evaluate case expressions we use rule Case, which first evaluates the argument of the
expression, then selects a clause, and finally evaluates the expression of the selected clause
using the environment returned from the clause selection procedure. We use the environment
returned by cselect because it may contain variable bindings from the clause’s pattern.

Function application is handled by Call, which evaluates the function m : f/a in the en-
vironment ρ. First, we evaluate the arguments in left-to-right order, making sure to propagate

58

(l, ρ,mb) ⇓ (l, ρ,mb)
Lit

ρ(v) = l

(v, ρ,mb) ⇓ (l, ρ,mb)
Var

([] , ρ,mb) ⇓ ([] , ρ,mb)
Nil

(eh, ρ,mb) ⇓ (vh, ρh,mbh) (et, ρ,mbh) ⇓ (vt, ρt,mbt)

([eh | et] , ρ,mb) ⇓ ([vh | vt] , ρ,mbt)
Cons

({ } , ρ,mb) ⇓ ({ } , ρ,mb)
TupleNil

(e1, ρ,mb) ⇓ (v1, ρ1,mb1)
(e2, ρ,mb1) ⇓ (v2, ρ2,mb2) . . . (en, ρ,mbn−1) ⇓ (vn, ρn,mbn)

({e1, e2, . . . , en} , ρ,mb) ⇓ ({v1, v2, . . . , vn} , ρ,mbn)
TupleCons

(e, ρ,mb) ⇓ (v, ρ ′,mb ′) (eb, ρ[x 7→ v],mb ′) ⇓ (v ′, ρ ′′,mb ′′)

(let x = e in eb, ρ,mb) ⇓ (v ′, ρ,mb ′′)
Let

(e1, ρ,mb) ⇓ (v1, ρ ′,mb ′) (e2, ρ,mb ′) ⇓ (v2, ρ ′′,mb ′′)

(e1 ;; e2, ρ,mb) ⇓ (v2, ρ,mb ′′)
Seq

(e, ρ,mb) ⇓ (v, ρe,mb ′) cselect(cs, v, ρ) = (e ′, ρ ′) (e ′, ρ ′,mb ′) ⇓ (v ′, ρ ′′,mb ′′)

(case 〈e〉 of cs end, ρ,mb) ⇓ (v ′, ρ,mb ′′)
Case

(ea1 , ρ,mb) ⇓ (va1 , ρ1,mb1)
. . . (ean

, ρ,mb(n− 1) ⇓ (van
, ρn,mbn) ρ(m, f,n) = fun(a1,a2, . . . ,an) → e end

(e, ρ[a1 7→ v1,a2 7→ v2, . . . ,an 7→ vn],mbn) ⇓ (v, ρ ′,mb ′)

(call m : f (ea1 , . . . , ean
) , ρ,mb) ⇓ (v, ρ,mb ′)

Call

receive(cs,mb, ρ) = ok (e, ρ ′,mb ′) (e, ρ ′,mb ′) ⇓ (v, ρ ′′,mb ′′)

(receive cs end, ρ,mb) ⇓ (v, ρ,mb ′′)
Receive

Figure 4.12: Big-Step Operational Semantics for CoErl

the mailbox state between each one. Then we apply the function itself, mapping each of the
function’s arguments to the corresponding value in the environment ρ.

The rule Receive handles receive expressions, which block unless a matching message can
be found in the mailbox.

These operational semantics do not represent the full behaviour of a CoErl system and are
instead meant to give a high-level overview of the behaviour of the language. Notably these
semantics cannot model non-terminating computations or concurrent behaviour. Nonetheless
they serve as a useful reference for how expressions are evaluated and how the state of the
mailbox is carried between sub-expressions.

59

4.5 Small-Step Operational Semantics

This section presents a small-step operational semantics for the Core Erlang fragment. While a
big-step semantics shows the order of evaluation and the propagation of mailbox state between
sub-expressions, it does not offer insight into intermediate computational states, nor does it
permit modelling of infinite computations.

Intermediate states and non-terminating computations are important concepts in Erlang:
intermediate states allow for interruption of control flow so mailboxes can be appended to by
other processes, and infinite computation is often used to model servers or other long-lived
processes. In a pure language, infinite computations are not as useful as they are here: Erlang
permits side effects through communication, so infinite computations may produce some useful
result by the way they affect the evaluation of other processes.

The small-step semantics ismodelled using an inductively defined binary relation represented
by the→ operator where both the left and right-hand sides of the relation are processes.

Due to Core Erlang’s lexical scoping, it is necessary to add a scoping mechanism to the
semantics which was not present in the big-step model. This is represented by σ in definitions of
processes:

Definition 4.5.1 (Processes for small-step semantics). In the small-step operational semantics, a
process is a tuple of the form:

(e, ρ,σ,mb, ι)

Where e is either a value (prefixed by val) or an expression (without any prefix), ρ is the current context
of variable bindings, σ is a stack of continuations, and mb and ρ are the mailbox and PID of the process
respectively.

A continuation consists of an expression containing a hole (�) and a context ρ; together
these can be used to resume some “outer” expression in a different context. For example, in
the expression e1 ;; e2, both e1 and e2 must be evaluated using variable bindings from the
current scope: no variables bound in e1 should be visible in e2, hence the current context must
be captured and stored for when e2 is later evaluated. Furthermore, once e1 has been evaluated
to some value, the process must have some way of knowing that e2 must be evaluated next, so it
is also necessary to store information about how to continue evaluation once a value has been
computed.

The small-step rules in figure 4.13 on the next page and on page 62 represent the portion of
CoErl which don’t require a concurrent environment, i.e. where there are no other processes.

60

(l, ρ,σ,mb, ι)→ (val l, ρ,σ,mb, ι) Lit
(var x, ρ,σ,mb, ι)→ (val ρ(x), ρ,σ,mb, ι) Var

([] , ρ,σ,mb, ι)→ (val [] , ρ,σ,mb, ι) Nil

([eh | et] , ρ,σ,mb, ι)→ (eh, ρ, ([� | et] , ρ) :: σ,mb, ι) Cons1

(val v, ρ, ([� | et] , ρ ′) :: σ,mb, ι)→ (et, ρ ′, ([val v | �] , ρ ′) :: σ,mb, ι) Cons2

(val vt, ρ, ([val vh | �] , ρ ′) :: σ, ι)→ (val [vh | vt] , ρ ′,σ, ι) ConsVal

({ } , ρ,σ,mb, ι)→ (val { } , ρ,σ,mb, ι) TupleNil

({e1, e2, . . . , en} , ρ,σ,mb, ι)→ (e1, {�, e2, . . . , en} , ρ) :: σ,mb, ι) TupleN

(val vm, ρ, ({val v1, . . . , val vm−1,�, em+1, . . .} , ρ ′) :: σ,mb, ι)→
(em+1, ρ ′, ({val v1, . . . , val vm−1, val vm,�, . . .} , ρ ′) :: σ,mb, ι)

TupleStep

(val vn, ρ, ({val v1, val v2, . . . ,�} , ρ ′) :: σ,mb, ι)→ (val {v1, v2, . . . , vn} , ρ ′,σ,mb, ι) TupleVal

(let x = e1 in e2, ρ,σ,mb, ι)→ (e1, ρ, (let x = � in e2, ρ) :: σ,mb, ι) Let1

(val v, ρ, (let x = � in e2, ρ ′) :: σ,mb, ι)→ (e2, ρ ′[x 7→ v],σ,mb, ι) Let2

(e1 ;; e2, ρ,σ,mb, ι)→ (e1, ρ, (� ;; e2, ρ) :: σ,mb, ι) Seq1

(val v, ρ, (� ;; e2, ρ ′) :: σ,mb, ι)→ (e2, ρ ′,σ,mb, ι) Seq2

(case 〈e〉 of cs end, ρ,σ,mb, ι)→ (e, ρ, (case 〈�〉 of cs end :: σ,mb, ι) Case1

cselect(cs, v, ρ ′) = ok (e, ρe)
(val v, ρ, (case 〈�〉 of cs end, ρ ′) :: σ,mb, ι)→ (e, ρe,σ,mb, ι) Case2

(call m : f (ea1 , . . . , ean
) , ρ,σ,mb, ι)→

(ea1 , ρ, (call m : f (�, . . . , ean
) , ρ) :: σ,mb, ι)

Call1

(val eam
, ρ, (call m : f (val va1 , . . . , val vam−1 ,�, eam+1 , . . .) , ρ ′) :: σ,mb, ι)→

(eam+1 , ρ ′, (call m : f (val va1 , . . . , val vam−1 , val vam
,�, . . .) , ρ ′) :: σ,mb, ι)

CallStep

ρ(m, f,n) = fun(a1, . . . ,an) → ef end

(val ean
, ρ, (call m : f (val va1 , . . . ,�) , ρ ′) :: σ,mb, ι)→
(ef, ρ[a1 7→ va1 , . . . ,an 7→ van

],σ,mb, ι)
CallVal

Figure 4.13: Small-Step semantics for single CoErl processes (part 1 of 2)
61

mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′)

(receive cs end, ρ,σ,mb, ι)→ (e, ρe,σ,mb ′, ι) Receive

(e1 ! e2, ρ,σ,mb, ι)→ (e1, ρ, (� ! e2, ρ) :: σ,mb, ι) Send1

(val ι, ρ, (� ! e2, ρ ′) :: σ,mb, ι)→ (e2, ρ ′, (ι ! �, ρ ′) :: σ,mb, ι) Send2

(self, ρ,σ,mb, ι)→ (val ι, ρ,σ,mb, ι) Self

Figure 4.13: Small-Step semantics for single CoErl processes (part 2 of 2)

The Lit and Var rules are responsible for transforming expressions that are literals and variable
names respectively into values.

Empty lists and empty tuples are handled by Nil and TupleNil respectively. When we
encounter non-empty compound types however, we use continuations. For example, when a
cons cell is first encountered (rule Cons) a continuation [� | et] and environment ρ is pushed
onto σ so we can return to evaluating the tail later on. Once the head has been evaluated we then
evaluate the tail (rule Cons2), saving the value we computed from the head expression. Finally,
once both the head and tail have been fully evaluated, we create a cons value and populate it
with the head value vh and tail value vt (rule ConsVal).

Similar rules exist for tuples (rulesTupleCons, TupleStep, andTupleVal). Themain difference
is the TupleStep rule which iterates to the next element in a tuple unless it is the final element: we
save the valuewe have computed in the continuation and start evaluating the next sub-expression
in the tuple. At each stepwe restore the original environment ρ ′ from the continuation, discarding
any changes made in the previous sub-expression.

Let1 and Let2 are responsible for evaluating let bindings using a continuation style: Let1
saves the clauses of the let expression so they can be returned to later (by pushing a continuation
onto σ where � is the hole for the value computed by the current expression) and Let2 resumes
evaluation of a let expression once the argument has been completely evaluated.

Function calls are handled similarly to tuples: when they are first encountered we create a
continuation and start evaluating the arguments from left-to-right (Call1 and CallStep). Once
all arguments have been evaluated we look up the function in environment ρ, bind all arguments
to the values we have computed, and start evaluating the function definition (CallVal).

The rule Receive handles receive expressions where there is a message in the mailbox which
can be received, otherwise the process becomes stuck.

62

(val v, ρι, (ι2 ! �, ρ ′
ι) :: σι,mbι, ι)||(eι2 , ρι2 ,σι2 ,mbι2 , ι2)→

(val v, ρ ′
ι,σι,mbι, ι)||(eι2 , ρι2 ,σι2 ,mbι2 ++[v], ι2)

ΠSend1

(val v, ρ, (ι ! �, ρ ′) :: σ,mb, ι)→ (val v, ρ ′,σ,mb++[v], ι) ΠSend2

@p ∈ Π.pid(p) = ι ′

(val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι)||Π→ (val v, ρ ′,σ,mb, ι)||Π ΠSend3

Figure 4.14: Small-Step send semantics for CoErl

The rules Send1 and Send2 are responsible for evaluating send expressions but not the
concurrent behaviour of them. Rule Send1 evaluates the left-hand side of the send operator
and Send2 evaluates the right-hand side, but note that the process then becomes stuck. Finally,
Self gives a process access to its own PID.

4.5.1 Sending Messages

To actually sendmessages in CoErl a concurrent environment is needed, i.e. one ormore processes
running concurrently. The parallel composition operator || is used to represent two or more
processes running concurrently: p||q represents process p running concurrently with process
q. The order of processes does not matter: p||q is the same as q||p, and p||(q||r) is the same as
q||(r||p), etc.

The rules in figure 4.14 operate on these environments and are responsible for sending
messages between processes. There are three possible scenarios when sending messages in a
CoErl system:

• Process ι sends a message v to process ι ′, and ι ′ is part of the system. The message is
appended to the mailbox of ι ′ and process ι continues executing (ΠSend1).

• Process ι sends a message to itself, appending the message to its own mailbox (ΠSend2).

• Process ι sends a message to ι ′ which is not in the concurrent environment, so the message
“disappears” and ι continues to execute (ΠSend3).

Note in ΠSend1 that a message can be sent to ι ′ regardless of its state: the evaluation of ι ′

can be interrupted at any time when delivering a message, and ι ′ cannot affect whether or not
the message is delivered. These rules replicate Erlang’s behaviour: messages can be sent to
any process asynchonously, sends to non-existent processes fail silently, and processes can send
messages to themselves.

63

p→ p ′

p||q→ p ′||q
ΠStep1

p→ p ′ q→ q ′

p||q→ p ′||q ′ ΠStep2

p||q ≡ q||p

p||(q||r) ≡ (p||q)||r

Figure 4.15: Small-Step concurrent semantics for CoErl

p→∗ p
Refl

p→ p ′ p ′ →∗ p ′′

p→∗ p ′′ Trans

Figure 4.16: Reflexive transitive closure for CoErl small-step semantics

Although these rules are effectively a synchronisation point between two processes, it is
important to note that the expressions are not synchronised: the expression of one process is
affecting the state of another process and does not rely on its current expression.

4.5.2 Concurrent Processes

We must also allow evaluation of processes in a concurrent system even when they are not
sending messages to each other. The rules in figure 4.15 permit this behaviour: ΠStep1 allows a
single process to make a step. Repeated applications of this rule represent concurrency through
interleaved execution. On the other hand, ΠStep2 allows us to imitate Erlang’s behaviour on
multiple CPU cores, where two processes actually execute at the same time.

4.5.3 Reflexive Transitive Closure

The final part of the small-step semantics is the reflexive transitive closure, shown in figure 4.16.
We use this operator (→∗) to repeatedly apply the small-step relation→ zero or more times in
succession. This allows us to represent computations which require more than a single step, and
finitely approximate the behaviour of non-terminating computations.

At this point there is a correspondence between the big-step semantics in figure 4.12 and the
small-step semantics presented in this section: all computations which can be represented in the
big-step semantics can be represented in the small-step semantics:

∀(e,mb, ρ), (e ′,mb ′, ρ ′). (e,mb, ρ) ⇓ (e ′,mb ′, ρ ′) =⇒ ∃σ ′, ι. (e,mb, [] , ι)→∗ (e ′,mb ′,σ ′, ι)

64

Unfortunately the big-step semantics does not allow us to interrupt the evaluation of an
expression so messages cannot be appended to mailboxes during execution, and the big-step
semantics cannot model non-terminating computations.

4.6 Infinite Computations

Real world Erlang/OTP systems often contain processes which run ad infinitum. These non-
terminating processes can be useful because they can have side effects in the form of communic-
ation with other processes. This is not to say that these processes cannot terminate, rather that
there is no guarantee that they will. For example, the counter server seen earlier in listing 6a on
page 22 will terminate if it receives the ’stop’message, but it will otherwise loop forever.

The big-step semantics cannot represent non-terminating computations directly because
it associates a process configuration with a final state, i.e. a configuration containing a value
instead of an expression. One option to address this shortcoming is to introduce a counter which
decrements as evaluation progresses, until either the program terminates or the counter reaches
zero. This can be done in two ways: by modifying programs, or by modifying the big-step
relation. If we introduce a counter directly into programs, the non-terminating program will
necessarily terminate after a finite number of steps, but care must be taken to ensure equivalence
with the original program, modulo termination. On the other hand, adding a decrementing
counter to the relation itself allows for finite approximation of non-terminating programswithout
making changes to the program itself.

On the other hand, the small-step semantics can approximate the behaviour of infinite compu-
tations without modification. The reflexive transitive closure (figure 4.16 on the previous page)
does not only associate a process configuration with its final state, but also every intermediate
state. Therefore, we can approximate the behaviour of a non-terminating process by applying
rule Trans a finite number of times, stopping computation by rule Refl.

65

Chapter 5

Behavioural Analysis of CoErl via Traces

As the small-step relation→ from the previous chapter implements Erlang’s communication
model, it can be used to reason about the behaviour of mailboxes over time. Several rules in
the small-step semantics affect the mailbox of one or more processes: the send rules append
messages to mailbox of processes while the receive rules remove them. While the semantics
can be used to reason about communication in an Erlang system by repeated application of
the small-step relation via the reflexive transitive closure, it is a somewhat tedious process. At
each step the entire state of all processes must be considered, including the current variable
assignments and continuation stack.

To make it easier to reason about communication, this chapter presents a useful abstraction
over the small-step semantics in the form of an Labelled Transition System (LTS). LTSs abstract
over the behaviour of a system by tracing the events which occur when transitions (i.e. steps) in
that system are made. By carefully choosing the events which are traced in an LTS, it is possible
to create a separation of concern where events deemed to be “interesting” are traced and the rest
of the system’s behaviour is hidden beneath the abstraction of the traces.

Labelled Transition System (LTS) are often used to reason about the observable behaviour
of a program, for example to determine whether a refactored version of a program behaves
identically, or performs the same I/O operations as it did before the refactoring. For the purposes
of reasoning about communication in CoErl, the definition of an LTS seems ideal: by carefully
labelling rules of the small-step semantics, mailbox behaviour can be isolated from internal
process behaviour such as the variable binding steps and the pushing/popping of continuations.

This chapter contributes a trace-based analysis of CoErl which allows us to reason about
communications separately from the internal behaviour of the concurrent systems being mod-
elled. We can use this approach to identify communication discrepancies in CoErl without using

66

the operational semantics directly. Furthermore, in order to reason about Erlang’s unique asyn-
chronous and out-of-order communication model we introduce an arrival label which allows us
to view message arrivals separately from receives, in contrast to other channel-based languages
and process calculi.

Overview This chapter makes heavy use of Labelled Transition Systems (LTSs), which are de-
scribed in section 2.2 on page 26. We start wich a labelled version of the small-step operational
semantics from section 4.5, where we add labels to each transition of the relation which describe
the communicating behaviour of individual processes (section 5.1.2) and concurrent CoErl
systems (section 5.2). These sections also introduce the concepts of traces: sequences of events
which describe the communicating behaviour of processes and systems

We then define equivalence between traces in both strong and weak forms, where the lat-
ter allows us to compare the communicating behaviour of two processes or systems modulo
non-communicating transitions (section 5.3). Afterwards, we look at how the asynchronous be-
haviour of Erlang communications can be observed in traces, namely that an arrival of a message
can sometimes take place earlier during execution without affecting evaluation (section 5.4).
This is followed by a method of replaying traces which allows us to simulate the behaviour of a
process’ mailbox using its trace (section 5.5), and a techinque for detecting orphan messages in a
trace (section 5.6). Finally, we discuss how these analyses can be applied to infinite computations
(section 5.7).

5.1 Labelled Small-Step Semantics

We can already represent the small-step semantics (section 4.5 on page 60) as a transition system
using definition 2.2.1 on page 26:

(S,→)

where S is the set of all possible process configurations and→ is the binary small-step relation
over some subset of all possible process configurations.

Definition 5.1.1 (Process configurations). The set of process configurations S is the set of all possible
process states consisting of all possible expressions or values (ev), all possible environments ([var×val]),
all possible continuation states (σ), all possible mailboxes (mb), and all possible PIDs (ι):

S = ev× (var 7→ val)× σ×mb× ι

In order to provide an LTS for CoErl, two elements are required:

67

1. a set of labels (A); and

2. a relation R ⊆ (S×A× S)

Both definitions require careful consideration: the chosen labels should be fit for the purposes
of reasoning about communications in CoErl, and the relation should be a faithful representation
of the small-step semantics.

Choosing labels suitable for the analysis depends on exactly what the aim of the analysis is:
if labels capture too much information it could be tedious to reason about the desired properties,
and if labels do not capture enough information then it might be impossible to reason about
interesting behaviour. For the analysis of CoErl, the labels should capture all effects on the
mailbox (arrivals and receiving of messages), but not too broad as to also capture irrelevant parts
of the small-step semantics, again making the analysis tedious. One measure of expressiveness
of the labels is to ensure that any “replay” of a label on a mailbox results in the same mailbox as
seen during a transition in the LTSs. For example, given a function apply(α,mb) which applies
the “effect” of label α to a mailboxmb, then the following should hold:

∀(p,α,p ′) ∈ R.apply(α,mailbox(p)) = mailbox(p ′)

As for the relation R, it can be considered faithful to the original small-step semantics if it is
both sound and complete with respect to them. The new relation Rwill be considered complete if
there is a labelled equivalent of every transition from the small-step semantics in R:

Definition 5.1.2 (Completeness).

∀(p,p ′) ∈ (S× S) : p→ p ′. (∃α ∈ A. (p,α,p ′) ∈ R)

and it will be considered sound if every possible transition in R is also present in the original
small-step relation, albeit without labels:

Definition 5.1.3 (Soundness).
∀(p,α,p ′) ∈ R.p→ p ′

5.1.1 Labels

In CoErl, there are two ways of affecting a mailbox in some part of the system, both of which are
syntax directed, via the following expressions:

1. ι ! v: appends the message v to the end of the mailbox of the process with PID ι (if it exists)

68

2. receive cs end: removes the first message that matches clauses cs from the process’ own
mailbox if possible1

As such the first two labels for the LTS will mirror the effects of these expressions:

1. ι ! v: the message v is sent to process ι

2. ? v the message v is received from process’ own mailbox

When analysing processes in a closed system2, these send and receive labels are sufficient
to reason about the state of all mailboxes in the system. When only observing part of a system
however, these two labels are not sufficient to capture all mailbox behaviour. For example, when
observing a single process in a larger system, any other process in the system could send a
message to the observed process, and no send or receive label would be observed. Ultimately,
the problem is one of perspective: observing the send and receive behaviour of a single process
does not give full insight into the state of that process’ mailbox as other processes can send other
messages to it. Therefore, a third label is required which represents this behaviour:

3. arr v: the message v arrives in the process’ own mailbox

Now, observing the events which occur when observing a single process will represent all
behaviour of that process’ mailbox.

Finally, consider that the final LTS will be of the form (S,A,R)where R ⊆ (S×A× S), which
means that every transition in the system must be labelled. Also consider that not every rule of
the small-step semantics relates to communication, for example variable assignment and lookup.
To meet both requirements, a final label is introduced which represents the “internal” behaviour
of a process, i.e. transitions which do not directly affect the state of a mailbox. In the small-step
semantics, rules such as variable assignment and lookup can be considered internal as they do
not directly manipulate a mailbox. This label is written τ:

4. τ: the process makes an internal transition

Together, these 4 labels complete the definition of A for an LTS which captures the mailbox
behaviour of CoErls small-step semantics:

1will block otherwise
2A closed system is one where there are no external sources of messages and it is always known whether or not a

given PID is associated with a process.

69

Definition 5.1.4. [Labels]
A ::= ι ! v | ? v | arr v | τ

A label is either a send of message v to process ι (ι ! v), a receive of message v from the mailbox (? v),
arrival of message v at the end of the mailbox (arr v) or an internal action unrelated to communication
(τ).

With this, the definitions of S (configurations) andA (labels) are complete. The final element
is R, which will be a labelled version of the small-step semantics with equivalent behaviour to
the original.

5.1.2 Labelled Small-Step Relation

The small-step relation from section 4.5 relates two process configurations via the→ relation.
With respect to process configurations, the small-step semantics relates two process configur-
ations such that (→) ⊆ (S × S). The definition of LTSs requires that a relation of the form
R ⊆ (S×A× R) is used, where A is a set of labels (definition 2.2.3). The most straightforward
way to transform→ into a labelled equivalent is to add the label τ to each rule of the relation.
This approach does not capture the behaviour of mailboxes because the following previously
given property will not hold:

∀(p,α,p ′) ∈ R.apply(α,mailbox(p)) = mailbox(p ′)

By simply labelling each rule of the small-step semantics with τ, mailbox states cannot be
reconstructed by “replaying” events. In general, though, this tactic can be used for most rules in
the small-step semantics as long as special consideration is given to communicating syntactic
constructs.

A labelled version of the small-step relation is α−→, where α ∈ A is a label. Figure 5.1 on the
next page shows this relation, which relates two configurations of a single process: it does not
encapsulate the concurrent behaviour of the language, which will be added later.

All rules are labelled with τ except for ASend, AReceive, and AArrive. The ASend rule is
labelled with ι ′ ! v, where ι ′ and v are derived from the process’ state. In AReceive, the label is
determined by the value of the message v removed from the mailbox. For the purposes of this
rule, assume that remove(v,mb) ismbwith the first instance of value v removed. Finally, the
ruleAArrive allows messages to be arbitrarily appended to the mailbox of the process. From the
perspective of a single process, this rule allows for non-deterministic behaviour derived from
the mailbox, wherein a process may be sent messages by other processes without being aware of

70

(l, ρ,σ,mb, ι) τ−→ (val l, ρ,σ,mb, ι)
ALit

(var x, ρ,σ,mb, ι) τ−→ (val ρ(x), ρ,σ,mb, ι)
AVar

([] , ρ,σ,mb, ι) τ−→ (val [] , ρ,σ,mb, ι)
ANil

([eh | et] , ρ,σ,mb, ι) τ−→ (eh, ρ, ([� | et] , ρ) :: σ,mb, ι)
ACons1

(val v, ρ, ([� | et] , ρ ′) :: σ,mb, ι) τ−→ (et, ρ ′, ([val v | �] , ρ ′) :: σ,mb, ι)
ACons2

(val vt, ρ, ([val vt | �] , ρ ′) :: σ, ι) τ−→ (val [vh | vt] , ρ ′,σ, ι)
AConsVal

({ } , ρ,σ,mb, ι) τ−→ (val { } , ρ,σ,mb, ι)
ATupleNil

({e1, e2, . . . , en} , ρ,σ,mb, ι) τ−→ (e1, {�, e2, . . . , en} , ρ) :: σ,mb, ι)
ATupleN

(val vm, ρ, ({val v1, . . . , val vm−1,�, em+1, . . .} , ρ ′) :: σ,mb, ι) τ−→
(em+1, ρ ′, ({val v1, . . . , val vm−1, val vm,�, . . .} , ρ ′) :: σ,mb, ι)

ATupleStep

(val vn, ρ, ({val v1, val v2, . . . ,�} , ρ ′) :: σ,mb, ι) τ−→ (val {v1, v2, . . . , vn} , ρ ′,σ,mb, ι)
ATupleVal

(let x = e1 in e2, ρ,σ,mb, ι) τ−→ (e1, ρ, (let x = � in e2, ρ) :: σ,mb, ι)
ALet1

(val v, ρ, (let x = � in e2, ρ ′) :: σ,mb, ι) τ−→ (e2, ρ ′[x 7→ v],σ,mb, ι)
ALet2

(e1 ;; e2, ρ,σ,mb, ι) τ−→ (e1, ρ, (� ;; e2, ρ) :: σ,mb, ι)
ASeq1

(val v, ρ, (� ;; e2, ρ ′) :: σ,mb, ι) τ−→ (e2, ρ ′,σ,mb, ι)
ASeq2

(case 〈e〉 of cs end, ρ,σ,mb, ι) τ−→ (e, ρ, (case 〈�〉 of cs end :: σ,mb, ι)
ACase1

cselect(cs, v, ρ ′) = ok (e, ρe)
(val v, ρ, (case 〈�〉 of cs end, ρ ′) :: σ,mb, ι) τ−→ (e, ρe,σ,mb, ι)

ACase2

Figure 5.1: Labelled small-step operational semantics for a single process (part 1 of 2)

71

mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) mb ′ = remove1(v,mb)

(receive cs end, ρ,σ,mb, ι) ? v−→ (e, ρe,σ,mb ′, ι)
AReceive

(e1 ! e2, ρ,σ,mb, ι) τ−→ (e1, ρ, (� ! e2, ρ) :: σ,mb, ι)
ASend1

(val ι, ρ, (� ! e2, ρ ′) :: σ,mb, ι) τ−→ (e2, ρ ′, (ι ! �, ρ ′) :: σ,mb, ι)
ASend2

(self, ρ,σ,mb, ι) τ−→ (val ι, ρ,σ,mb, ι)
ASelf

(val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι) ι′ ! v−−−→ (val v, ρ ′,σ,mb, ι)
ASend

(e, ρ,σ,mb, ι) arr v−−−→ (e, ρ,σ,mb++ v, ι ′)
AArrive

Figure 5.1: Labelled small-step operational semantics for a single process (part 2 of 2)

the existence of these processes. This non-deterministic behaviour becomes more constrained
in the concurrent small-step semantics, where the transition is only permitted when there is a
corresponding send label from another process.

5.1.3 Labelled Transition System

The labelled version of the small-step semantics can be used to complete the definition of a
labelled transition system which represents the behaviour of individual CoErl processes. As
the labelled small-step semantics relates two process configurations via a label, it is a subset of
(S×A× R), which means it can be used as the relation for an LTS. By using the definitions of S
and A as per the earlier unlabelled transition system, the labelled small-step semantics form the
following LTS:

(S,A, α−→)

5.1.4 Reflexive Transitive Closure

The reflexive transitive closure of the labelled small-step semantics is similar to the unlabelled
version (section 4.5.3). The small-step α−→ relates two process configurations via a single label,
representing a single step of computation. As the reflexive transitive closure relates a two process
configurations via zero or more single steps of computation, it will be labelled with a sequence
of zero or more labels, representing the order in which the labels occurred.

72

This sequence of labels forms a trace of events, representing the labelled transitions taken by
a process to reach its new configuration:

Definition 5.1.5 (Trace of individual processes). A trace of an individual process has the syntax of T ,
defined as follows:

T ::= ε | α.T

where ε is the neutral element representing an empty trace, while α.T represents the label α ∈ A preceding
the trace T .

The T−→∗ relation in figure 5.2 on the following page is the labelled reflexive transitive closure
for individual processes, consisting of two rules: either the process takes zero steps and produces
an empty trace (rule Refl), or it takes zero or more steps producing a non-empty trace (rule
Trans). In the transitive case, the label from a single step (via α−→) is concatenated with the trace
from the following steps.

Each trace T describes the sequence of transitions taken by a process during computation,
such that n repeated applications of the labelled small-step semantics of the form:

p1
α1−→ p2,p2

α2−→ p3, . . . ,pn
αn−−→ pn+1

yield the following trace:
α1.α2.αn.ε

The reflexive transitive closure serves as a convenient method for generating traces of pro-
cesses, where the Trans rule generates a head and tail of a trace, and Refl terminates a trace
with the neutral element. As such, the trace above can be derived via repeated application of
these rules:

p1
α1−→ p2

p2
α2−→ p3

pn
αn−−→ pn+1 pn+1

ε−→∗pn+1
Refl

pn
αn.ε−−−→∗pn+1

Trans

···

p2
α2.....αn.ε−−−−−−→∗pn+1

Trans

p1
α1.α2.....αn.ε−−−−−−−−→∗pn+1

Trans

5.2 Concurrent Labelled Small-Step Semantics

The labelled small-step semantics from the previous section only describes the behaviour of
individual processes, with the notable caveat that anymessage can arrive in a process’ mailbox at

73

p
ε−→∗p

Refl
p

α−→ p ′ p ′ T−→∗p ′′

p
α.T−−→∗p ′′

Trans

Figure 5.2: Reflexive transitive closure of the labelled small-step semantics

any time. With respect to an individual CoErl process, themailbox is a source of non-determinism
as the evaluation of receive expressions depends on the mailbox state, and the mailbox state can
be modified by other processes.

In this section, a concurrent semantics is given for CoErl, using the labelled small-step
semantics from the previous section as its foundation. Figure 5.3 on the next page relates two
concurrent system configurations via the ι−→

α
→ relation, where each transition is labelled with

a PID ι and a label α. A concurrent system configuration represents the state of one or more
processes which are running together:

Definition 5.2.1 (Concurrent system configuration). A concurrent system configuration (SΠ) is
one or more process configurations (p,q, r, . . . ∈ S, definition 5.1.1):

SΠ = p ‖ q ‖ . . .

Furthermore, the symbol Π is used to represent zero or more processes.

These configurations should be considered equal regardless of the order in which process
configurations appear within them, such that “p and q running concurrently” is no different
from “q and p running concurrently”. Therefore, configurations can be considered as sets of
process configurations where no PID occurs more than once. With regards to notation, this
means that two system configurations should be considered equivalent if they contain the same
process configurations, regardless of order:

Definition 5.2.2 (Associativity and commutativity of configurations). For all p,q, r ∈ S :

p ‖ q ≡ q ‖ r

p ‖ (q ‖ r) ≡ (p ‖ q) ‖ r

The rules in figure 5.3 on the following page relate two system configurations by a label α
and a PID ι, where x ι−→

α
→ y represents a transition from configuration x to y by the process with

PID making transition α.
The first rule of the concurrent semantics is ΠInternal which permits any process in the

system to freely make an internal transition, allowing for processes to evaluate in any order

74

p
τ−→ p ′ pid(p) = ι

p ‖ Π ι−→
τ
→ p ′ ‖ Π

ΠInternal
p

? v−→ p ′ pid(p) = ι

p ‖ Π ι−→
? v
→ p ′ ‖ Π

ΠReceive

p
ι′ ! v−−−→ p ′ q

arr v−−−→ q ′ pid(p) = ι pid(q) = ι ′

p ‖ q ‖ Π ι−−−→
ι′ ! v
→ p ′ ‖ q ′ ‖ Π

ΠSend1

p
ι ! v−−→ p ′ p ′ arr v−−−→ p ′′ pid(p) = ι

p ‖ Π ι−−−→
ι′ ! v
→ p ′′ ‖ Π

ΠSend2

p
ι′ ! v−−−→ p ′ pid(p) = ι ι 6= ι ′ ι ′ /∈ pids(Π)

p ‖ Π ι−−−→
ι′ ! v
→ p ′ ‖ Π

ΠSend3

Figure 5.3: Labelled concurrent small-step semantics for CoErl

as long as they do not have side effects. The ΠReceive behaves similarly, except that it allows
processes to receive messages from their own mailboxes via the ? v label. The last three rules are
all variations of a process in the system taking a send transition ι ! v, for which there are three
possible scenarios:

1. A process ι sends the message v to a different process ι ′, which exists. This causes the
message to be placed at the end of the latter’s mailbox (rule ΠSend1).

2. A process ι sends the message v to itself, causing the message to be placed in its own
mailbox (rule ΠSend2).

3. A process ι sends a message to ι ′, where process ι ′ does not exist, causing the message to
be discarded (rule ΠSend3).

5.2.1 Equivalence to the Operational Semantics

The labelled small-step semantics are a transliteration of the unlabelled small-step semantics
from section 4.5. As such, the labelled semantics is sound and complete with respect to the
unlabelled semantics:

Theorem 5.2.1 (Completeness of the labelled small-step semantics). The labelled small-step se-
mantics for a single process are complete with respect to the unlabelled small-step semantics (section 4.5):

∀(x,y) ∈ (S× S). x→ y =⇒ ∃α ∈ A. x α−→ y

75

Proof. By induction on the unlabelled small-step relation→ (figure 4.13). The induction has a
case for each rule of the unlabelled small-step semantics, assuming that the premises of the rule
hold in each case. We will look at the significant cases (cases which involve communication)
and then summarise the remaining cases using an example.

• Rule Receive: Assume values for x and y such that x→ y holds via rule Receive:

∀cs, e, ρ, ρe,σ, ι,mb,mb ′.mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) =⇒

(receive cs end, ρ,σ,mb, ι)→ (e, ρe,σ,mb ′, ι)

Now rewrite the theorem using these assumptions:

∀cs, e, ρ, ρe,σ, ι,mb,mb ′.mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) =⇒

(receive cs end, ρ,σ,mb, ι)→ (e, ρe,σ,mb ′, ι) =⇒

∃α ∈ A. (receive cs end, ρ,σ,mb, ι) α−→ (e, ρe,σ,mb ′, ι)

Next, assume that ∃v.α =? v:

∀cs, e, ρ, ρe,σ, ι,mb,mb ′.mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) =⇒

(receive cs end, ρ,σ,mb, ι)→ (e, ρe,σ,mb ′, ι) =⇒

∃v. (receive cs end, ρ,σ,mb, ι) ? v−→ (e, ρe,σ,mb ′, ι)

This holds by rule AReceivewhen ∃v.mb ′ = mbremove(v,mb), which is implied by our
assumption thatmbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) (figure 4.11).

• Rule Send: Assume values for x and y such that x→ y holds via rule Send:

∀v, ρ, ι ′, ρ ′,σ,mb, ι. (val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι)→ (val v, ρ ′,σ,mb, ι) =⇒

∃α ∈ A. (val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι) α−→ (val v, ρ ′,σ,mb, ι)

This holds by rule ASend if we assume α = ι ′ ! v .

• All other rules: trivial via α = τ. For example, in ruleNil: Assume values for x and y such
that x→ y holds via rule Nil:

∀ρ,σ,mb, ι. ([] , ρ,σ,mb, ι)→ (val [] , ρ,σ,mb, ι) =⇒

∃α ∈ A. ([] , ρ,σ,mb, ι) α−→ (val [] , ρ,σ,mb, ι)

This holds by rule ANil when α = τ. Similarly for all remaining cases.

76

The unlabelled small-step semantics (figure 4.13 on page 61) are deterministic due to the
absence of message arrivals. For any process configuration there is at most one rule which can
apply. If we permitted message arrivals however, the unlabelled small-step semantics would be
non-deterministic. Therefore, we can prove soundness up to the arrival of messages, which is
sufficient for subsequent theorems:

Theorem 5.2.2 (Soundness of the labelled small-step semantics). The labelled small-step semantics
for a single process are sound with respect to the unlabelled small-step semantics up to the arrival of
messages:

∀(x,α,y) ∈ (S×A× S).@m.α = arr m =⇒ x
α−→ y =⇒ x→ y

Proof. By case analysis on α, followed by induction on x
α−→ y. The induction has a case for each

rule of the labelled small-step semantics, assuming that the premises of the rule hold in each
case. For the labels ι ! m and ? m, we know that only one rule of the labelled relation can apply
(ASend and AReceive respectively). We consider these two cases in detail and then summarise
all remaining cases (where α = τ) using an example.

• Assume α is a receive label, i.e. ∀v.α =? v:

∀x,y, v. x ? v−→ y =⇒ x→ y

By examining the labelled small-step relation, we know that only rule AReceive can apply.
Choose values for x and y such that the rule still applies:

∀cs, e, ρ,σ, ι,mb,mb ′, v.

mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′) =⇒ mb ′ = mbremove(v,mb) =⇒

(receive cs ende, ρ,σ,mb, ι) ? v−→ (e, ρe,σ,mb ′, ι) =⇒

(receive cs ende, ρ,σ,mb, ι)→ (e, ρe,σ,mb ′, ι)

This holds via rule Receive iff mbreceive(cs,mb, ρ) = ok (e, ρe,mb ′), which is assumed.

• Assume that α is a send label, i.e. ∀ι ′, v.α = ι ′ ! v. By examining the labelled small-step
relation, we know that only rule ASend can apply. Choose values for x and y such that the
rule still applies:

∀v, ρ, ι ′, ρ ′,σ,mb, ι. (val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι) ι′ ! v−−−→ (val v, ρ ′,σ,mb, ι) =⇒

(val v, ρ, (ι ′ ! �, ρ ′) :: σ,mb, ι)→ (val v, ρ ′,σ,mb, ι)

77

This holds via rule Send.

• α = τ x
τ−→ y holds for all rules except AReceive, ASend, and AArrive. For example, in

rule ANil: We rewrite the theorem by substituting x and ywith configurations from the
conclusion of rule ANil:

∀ρ,σ,mb, ι. ([] , ρ,σ,mb, ι) τ−→ (val [] , ρ,σ,mb, ι) =⇒

([] , ρ,σ,mb, ι)→ (val [] , ρ,σ,mb, ι)

The relation x→ y holds via rule Nil. Similarly for all remaining cases.

5.2.2 Reflexive Transitive Closure

The reflexive transitive closure of the concurrent semantics represents multiple execution steps
of a concurrent system, possibly in a non-deterministic way. In the concurrent semantics, traces
take on a slightly different form, as each transition is additionally labelled with the PID of the
process which made the transition. As such, traces will be defined as a sequence of tuples:

Definition 5.2.3 (Concurrent Traces). A concurrent trace TΠ is either empty (via the neutral element
ε) or a label and PID pair (α, ι) composed with another trace:

TΠ ::= ε | (α, ι).TΠ

Traces of a concurrent system represent the events of the entire system, i.e. all transitions
taken by all processes in the system. Therefore, a trace of the form represents behaviour of
processes in a concurrent system over time:

(α1, ι1).(α2, ι2).(αn, ιn).ε

There is no requirement that each action or each PID is different, though. The above trace does
not imply that each PID ι1, ι2, . . . , ιn is different, nor that they are all the same. Traces can also be
viewed as repeated applications of the labelled concurrent small-step relation:

s1
ι1−→
α1
→ s2, s2 ι2−→

α2
→ s3, . . . , sn ιn−−→

αn

→ sn+1

78

p
ε−→→∗p

Refl
p

α−→
ι
→ p ′ p ′ T−→→∗p ′′

p
(α,ι).T−−−−→→∗p ′′

Trans

Figure 5.4: Reflexive transitive closure of the labelled concurrent semantics

The reflexive transitive closure of the labelled concurrent semantics (figure 5.4) can be also be
used to trace behaviour of a concurrent system over multiple steps:

s1
ι1−→
α1
→ s2

s2
ι2−→
α2
→ s3

sn
ιn−−→
αn

→ sn+1 sn+1
ε−→→∗sn+1

Refl

sn
(αn,ιn).ε−−−−−−→→∗sn+1

Trans

···

s2
(α2,ι2).....(αn,ιn).ε−−−−−−−−−−−−→→∗sn+1

Trans

s1
(α1,ι1).(α2,ι2).....(αn,ιn).ε−−−−−−−−−−−−−−−−→→∗sn+1

Trans

5.2.3 Non-determinism

The rules of the small-step semantics are non-deterministic, hence the reflexive transitive closure
is non-deterministic. While each individual process is deterministic with respect to its mailbox
state and the expression being evaluated, the arrival of messages alters the state of the mailbox,
possibly altering the branching behaviour of receive expressions in the body of that process.
In terms of concurrent systems containing multiple process, the order in which events occur
is rather loosely constrained: while sending messages requires some level of synchronisation
between the processes involved in the communication, all other execution may be interleaved in
a non-deterministic way. As such, the traces obtained by using the reflexive transitive closures
may represent one of many possible executions, rather than the only possible execution. There
may be other executions of a system which yield identical traces, but a single trace obtained from
one execution does not necessarily represent all possible behaviours of the system.

5.3 Trace Equivalence

As of yet, there is no way to compare traces with each other: traces can be obtained from the
small-step semantics, but there is no way to check whether two or more traces represent the
same behaviour. There are many well-known techniques for analysing so-called “observational”
traces of a system (Milner 1980; Nicola 1987; Hoare 1985).

79

ε
T= ε

εStrong
α = α ′ T

T= T ′

α.T T= α ′.T ′
αStrong

Figure 5.5: Strong trace equivalence

The most straightforward way to compare two traces is to check whether they are identical:
they must have the same length, and both traces must have the same elements in the same order.
This relationship between two traces is called strong equivalence and is defined in figure 5.5. The
base case for the relation is the εStrong rule, which states that two empty traces are strongly
equivalent. The recursive vase is the αStrong rule which requires that both traces are not empty,
that the heads of each trace are identical, and that the rest of the trace is strongly equivalent.

This definition, however, requires that the internal labels of both traces are identical. For
example, the following two traces are strongly equivalent (T1 T= T2):

T1 ::= (arr v).(? v).ε

T2 ::= (arr v).(? v).ε

but the following two are not:

T3 ::= (arr v).(? v).ε

T4 ::= (arr v).(τ).(? v).ε

Recall that in section 5.1.1 on page 68, τ was introduced to represent “internal” behaviour of
a process, i.e. a transition which does represent sending, receiving, or arriving of messages.
Therefore, the definition of strong equivalence requires that all behaviour is identical, rather
than just the communicating behaviour.

A weaker version of the trace equivalence relation can be used to “step over” these internal
transitions, allowing for two traces to be defined as equivalent based solely on the non-τ labels.
Figure 5.6 on the following page defines a weaker T≈ relation, which extends the definition of
strong equivalence from figure 5.5 with two more rules. The rule εWeak is similar to εStrong
and αWeak is similar to αStrong. The other two rules τLeft and τRight weaken the relation by
allowing a τ label to be ignored in either the left or right traces. No other labels can be ignored,
requiring that both traces must have the same non-τ elements in the same order.

This weaker definition of trace equivalence holds for T3 and T4 (T3
T≈ T4):

T3 ::= (arr v).(? v).ε

T4 ::= (arr v).(τ).(? v).ε

80

ε
T≈ ε

εWeak
α = α ′ T

T≈ T ′

α.T T≈ α ′.T ′
αWeak

T
T≈ T ′

τ.T T≈ T ′
τLeft

T
T≈ T ′

T
T≈ τ.T ′

τRight

Figure 5.6: Weak trace equivalence

Finally, it can be shown that all strongly equivalent traces are also weakly equivalent:

Theorem 5.3.1 (All strongly-equivalent traces are also weakly-equivalent).

∀T1, T2 ∈ T . T1 T= T2 =⇒ T1
T≈ T2

Proof. By induction on T1
T= T2:

• Rule εStrong: The rule only holds when T1 = ε and T2 = ε, hence we rewrite the theorem
accordingly:

ε
T= ε =⇒ ε

T≈ ε

The conclusion ε
T≈ ε holds by rule εWeak.

• Rule αStrong: The rule only holds when both T1 has the form α.T ′
1 and T2 has the form

α ′.T2. Therefore we can rewrite the theorem:

∀T ′
1 , T ′

2 ,α,α ′.α.T1 T= α ′.T2 =⇒ α.T1
T≈ α ′.T2

Assume thatα.T1 T= α ′.T2 by ruleαStrong, henceα = α ′ and T ′
1

T= T ′
2 . Induction hypothesis:

T1
T= T2 =⇒ T1

T≈ T2. Therefore, α.T1
T≈ α ′.T2 holds by rule αWeak.

but that not all weakly equivalent traces are strongly equivalent:

Theorem 5.3.2 (Not all weakly-equivalent traces are also strongly-equivalent).

∃T1, T2 ∈ T . T1
T≈ T2 =⇒ T1 6

T= T2

Proof. Assume that T1 = ε and T2 = τ.ε. Then ε
T≈ τ.ε by rule τRight. But ε T= τ.ε does not hold

by rule εStrong or αStrong.

81

s

s2

s ′2

s3

s ′3

α1

α2

α1

α3

(a) Branching before α1

s

s ′

s ′′2 s ′′3

α1

α2 α3

(b) Branching after α1

Figure 5.7: Traces of branching states

5.3.1 Branching Behaviour

Oneweakness of trace-based analyses is that they cannot be used to determine the exact behaviour
of systems which have multiple execution branches. While traces can capture that a system has
multiple behaviours, they cannot be used to determine with certainty exactly where a system
branches during execution (Milner 1980; Roscoe 1998; Hennessy and Milner 1985).

For example, consider the two state machines in figure 5.7: the state machine on the left
(figure 5.7a) can branch from the initial state, while the state machine on the right (figure 5.7b)
branches after one transition. The state machine in figure 5.7a has two possible traces from an
initial state to a final state: α1.α2.ε by transitioning via state s2, and α1.α3.ε by transitioning via
state s3. Similarly, there are two possible traces for the state machine in figure 5.7b: α1.α2.ε by
following the left-hand path to s ′′2 , and α1.α3.ε. Although the systems branch at different points,
the transitions are labelled in such a way that the set of all execution traces for both systems
is identical. It is not always the case that LTSs are labelled so that the branch point cannot be
determined, but it is important to note that it is always a possibility that a system is labelled in
such a way, and there is no way to tell whether or not a system is labelled so that branch points
can’t be found.

In other words, if it is possible to construct more than one relation and accompanying set of
states which produce the same set of traces, then it is impossible to uniquely determine which
relation and which set of states was originally used to construct the system.

Regardless, traces are a useful way to analyse and compare the behaviour of communicating
CoErl systems, though its limitations must be recognised and taken into account. Specifically,
we should be aware that although multiple programs may exhibit identical communicating

82

behaviour, they do not necessarily have the same control flow diagrams.

5.4 Re-Ordering and Insertion of Arrivals

The non-deterministic behaviour of a CoErl process comes from its mailbox: as the process ex-
ecutes, new messages may arrive in its mailbox, changing how receive expressions are evaluated.
Looking back at chapter 4 on page 43, the execution of a process is entirely syntax-directed,
except when messages arrive during execution. Therefore, assuming that no messages arrive
during execution, the evaluation of a process is deterministic:

Theorem 5.4.1 (The execution of a process is deterministic in the absence of any arrival events).
For all executions of a process p to a final state p1 or p2 (i.e. such that @p ′

1.p1 → p ′
1 and @p ′

2.p2 → p ′
2),

and assuming that t1 and t2 are traces which do not contain any arrive events (∀m.arr m /∈ t1 and
∀m.arr m /∈ t2), then p1 and p2 are the same:

p
t1−→∗p1 =⇒ p

t2−→∗p2 =⇒ p1 = p2

Proof.

• Show that for all p, p ′, p ′′, α.@v.α = arr v, α ′.@v.α ′ = arr v, that where p
α−→ p ′ and

p
α′
−→ p ′′, then p ′ = p ′′ and α = α ′. For each configuration p there is only one rule

which applies, hence p ′ = p ′′ and α = α ′. The rule AArrive can never apply due to the
restrictions on the value of α and α ′.

• Show that T−→∗ is deterministic via induction on the relation, using proof that α−→ is determ-
instic when @v.α = arr v.

This observation is not very useful on its own: a system without communication during
execution is not very representative of Erlang’s communication model. A more interesting
observation is that the precise timing of message arrivals is not always important in determining
the execution of a process. As communication in CoErl is asynchronous, messages can arrive
before they are required. For example, in Erlang, the two programs in listing 9 on the next page
produce the same output.

Both programs have the same client code: the function client/0 first receives the message
’ready’ which indicates the start of the test. Afterwards, the client calls the print_mailbox/0

function which uses debugging functions to directly inspect the state of the mailbox, printing

83

-module(no_preload).
-export([start/0]).

print_mailbox() ->
{_, Msgs} =
erlang:process_info(self(),messages),
io:format("My mailbox: ~p~n", [Msgs]).

client() ->
receive ready ->
io:format("Ready~n")

end,
print_mailbox(),
receive Msg ->
io:format("1: ~p~n", [Msg])

end,
print_mailbox(),
receive Msg2 ->
io:format("2: ~p~n", [Msg2])
end,
print_mailbox().

start() ->
Pid = spawn(fun client/0),
Pid ! ready,
timer:sleep(1000),
Pid ! one,
timer:sleep(1000),
Pid ! two,
ok.

(a) Interleaving of arrivals and receives

-module(preload).
-export([start/0]).

print_mailbox() ->
{_, Msgs} =
erlang:process_info(self(),messages),
io:format("My mailbox: ~p~n", [Msgs]).

client() ->
receive ready ->

io:format("Ready~n")
end,
print_mailbox(),
receive Msg ->

io:format("1: ~p~n", [Msg])
end,
print_mailbox(),
receive Msg2 ->

io:format("2: ~p~n", [Msg2])
end,
print_mailbox().

start() ->
Pid = spawn(fun client/0),
erlang:suspend_process(Pid),
Pid ! ready,
Pid ! one,
Pid ! two,
erlang:resume_process(Pid),
ok.

(b) Messages arriving before execution

Listing 9: Messages arriving at different times producing the same output

it to the shell. The client then receives a message and prints it, checks its own mailbox again,
receives another message, and then prints its final mailbox state.

In listing 9a, the sending start/0 process first spawns the client, sends the ’ready’ message,
then waits before sending the message ’one’, waits again, and sends the message ’two’. The
use of timer:sleep/1 ensures with a reasonable level of confidence that all messages arrive at
and are received by the client process in a serial fashion. When this program is run in an Erlang
shell, the following output is always seen3:

$ erl

1> no_preload:start().

3barring high system loads which would affect the scheduling of the client process

84

Ready

My mailbox: []

1: one

My mailbox: []

2: two

My mailbox: []

2> % return value omitted

From the perspective of the client process, the following events occur:

1. The ’ready’ message arrives.

2. The ’ready’ message is received.

3. The ’one’message arrives.

4. The ’one’message is received.

5. The ’two’message arrives.

6. The ’two’message is received.

On the other hand, the sending process in listing 9b on the previous page behaves very
differently: it “preloads” the mailbox before allowing the client process to execute. In order
to prevent the client process from receiving any messages, it uses the debugging function
erlang:suspend_process/1 to instruct the BEAM to prevent the client process from being sched-
uled for execution. Then, the sending process sends the ’ready’, ’one’, and ’two’ messages
before instructing the BEAM to resume the client process so it can be scheduled once again.
Running the start/0 function for this example yields the following output:

$ erl

1> preload:start().

Ready

My mailbox: [one,two]

1: one

My mailbox: [two]

2: two

My mailbox: []

2> % return value omitted

85

This client observes the following events:

1. The ’ready’ message arrives.

2. The ’one’message arrives.

3. The ’two’message arrives.

4. The ’ready’ message is received.

5. The ’one’message is received.

6. The ’two’message is received.

The first example (listing 9a on page 84) interleaves message arrivals with receives and ends
with an empty mailbox; the second example (listing 9b on page 84) has all arrivals occur before
the receives. Nonetheless, the evaluation of client/0was identical in both cases, and both client
processes ended with an empty mailbox.

The key observation here is that while the order in which messages arrive has not been
changed between examples, they have arrived earlier in the second example. In CoErl, this
equates to the following theorem:

Theorem 5.4.2 (Reordering of arrivals). For all labels α which are not arrivals (∀m.α 6= arr m), if
an arrival is observed to occur after α, then it is possible for the arrival to occur before α without affecting
execution:

p
α−→ p ′ arr m−−−−→ p ′′′ =⇒ p

arr m−−−−→ p ′′ α−→ p ′′′

Proof. First, assume that p = (e, ρ,σ, ι,mb):

(e, ρ,σ, ι,mb)
α−→ p ′ arr m−−−−→ p ′′′ =⇒ (e, ρ,σ, ι,mb)

arr m−−−−→ p ′′ α−→ p ′′′

By rule AArrivewe can determine the value of p ′′:

(e, ρ,σ, ι,mb)
α−→ p ′ arr m−−−−→ p ′′′ =⇒ (e, ρ,σ, ι,mb)

arr m−−−−→ (e, ρ,σ, ι,mb++ v)
α−→ p ′′′

Also assume that p ′ = (e ′, ρ ′,σ ′, ι,mb ′) and repeat the process to determine p ′′′:

(e, ρ,σ, ι,mb)
α−→ (e ′, ρ ′,σ ′, ι,mb ′)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb ′ ++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

α−→ (e ′′′, ρ ′′′,σ ′′′, ι,mb ′′′)

Now, we perform case analysis on α:

86

• Assume α = τ. First, we note that for any process configuration, internal transitions are
determinstic regardless of the mailbox state:

∀e, e ′, ρ, ρ ′,σ,σ ′, ι,mb1,mb2.

(e, ρ,σ, ι,mb1)
τ−→ (e ′, ρ ′,σ ′, ι,mb1)⇐⇒ (e, ρ,σ, ι,mb2)

τ−→ (e ′, ρ ′,σ ′, ι,mb2) (5.1)

This holds by case analysis of the labelled small-step relation. Next, we restate the theorem
using α = τ:

(e, ρ,σ, ι,mb)
τ−→ (e ′, ρ ′,σ ′, ι,mb ′)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb ′ ++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

τ−→ (e ′′′, ρ ′′′,σ ′′′, ι,mb ′′′)

By case analysis on τ−→we also know that e ′′′ = e ′, ρ ′′′ = ρ ′, and σ ′′′ = σ ′.

(e, ρ,σ, ι,mb)
τ−→ (e ′, ρ ′,σ ′, ι,mb ′)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb ′ ++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

τ−→ (e ′, ρ ′,σ ′, ι,mb ′′′)

By equation (5.1), we also know thatmb ′ = mb and mb ′′′ = mb++ v:

(e, ρ,σ, ι,mb)
τ−→ (e ′, ρ ′,σ ′, ι,mb)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

τ−→ (e ′, ρ ′,σ ′, ι,mb++ v) (5.2)

which holds via the definition of the labelled small-step relation.

• Assume ∀ι ′,m ′, .α = ι ′ !m ′. Restate the theorem using α = ι ′ !m ′:

(e, ρ,σ, ι,mb)
ι′ ! m′
−−−−→ (e ′, ρ ′,σ ′, ι,mb ′)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb ′ ++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

ι′ ! m′
−−−−→ (e ′′′, ρ ′′′,σ ′′′, ι,mb ′′′)

Only rule ASend may apply when α = ι ′ ! m ′, so we can determine that e ′ = e, ρ ′ = ρ,
σ ′ = σ, andmb ′ = mb:

(e, ρ,σ, ι,mb)
ι′ ! m′
−−−−→ (e, ρ,σ, ι,mb)

arr m−−−−→ (e, ρ,σ, ι,mb++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

ι′ ! m′
−−−−→ (e ′′′, ρ ′′′,σ ′′′, ι,mb ′′′)

We repeat the process again for e ′′′, ρ ′′′, σ ′′′, and mb ′′′:

(e, ρ,σ, ι,mb)
ι′ ! m′
−−−−→ (e, ρ,σ, ι,mb)

arr m−−−−→ (e, ρ,σ, ι,mb++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

ι′ ! m′
−−−−→ (e, ρ,σ, ι,mb++ v)

which holds by the definition of the labelled small-step relation.

87

p

p ′ p ′′

p ′′′

α

arr m

arr m

α

where ∀m.α 6= arr m

Figure 5.8: Commutative properties of arrival events

• Assume ∀m ′.α =?m ′. Restate the theorem using α =? m ′:

(e, ρ,σ, ι,mb)
? m′
−−−→ (e ′, ρ ′,σ ′, ι,mb ′)

arr m−−−−→ (e ′, ρ ′,σ ′, ι,mb ′ ++ v) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

? m′
−−−→ (e ′′′, ρ ′′′,σ ′′′, ι,mb ′′′)

Only rule AReceivemay apply when α =?m ′, so we can determine that σ ′ = σ, σ ′′′ = σ,
mb ′ = mbremove(m ′,mb), and mb ′′′ = mbremove(m ′,mb++m):

(e, ρ,σ, ι,mb)
? m′
−−−→ (e ′, ρ ′,σ, ι,mbremove(m ′,mb))

arr m−−−−→

(e ′, ρ ′,σ, ι,mbremove(m ′,mb)++m) =⇒

(e, ρ,σ, ι,mb)
arr m−−−−→ (e, ρ,σ, ι,mb++ v)

? m′
−−−→

(e ′′′, ρ ′′′,σ, ι,mbremove(m ′,mb++m))

Finally, we can prove p ′′ = p ′′ by showing that e ′′′ = e ′, ρ ′′′ = ρ, and also:

mbremove(m ′,mb ′)++m = mbremove(m ′,mb++m)

This is possible by proving the following property ofmbreceive:

∀cs, e, ρ, ρ ′, e,mb,mb ′.mbreceive(cs,mb, ρ) = ok ((e, ρ ′),mb ′) =⇒

mbreceive(cs,mb++m, ρ) = ok ((e, ρ ′),mb ′ ++m)

which is true by induction on the definitions of mbreceive, mbselect, and mbremove.
Hence p ′′ = p ′′′.

88

The diagram in figure 5.8 shows how such a re-ordering of events is commutative: if it’s
possible to perform a non-arrival action before the arrival of a message, then it’s also possible to
perform the arrival first and end up in the same state.

Note that both the preceding theorem and the diagram in figure 5.8 on the preceding page
require that the “other event” is not an arrival: if the order of arrivals changed, so would the
order of messages in the mailbox. If the order of messages in the mailbox changed, the result of
receive expressions could change depending on the clauses in them. For example, if we changed
the order of the second and third messages sent in either of the programs from listing 9 on
page 84 (i.e if we swapped Pid ! one and Pid ! two), we would observe the message ’two’

being received before ’one’. In the case of listing 9a on page 84, swapping the order of the
second and third sent messages yields a different output:

$ erl

1> no_preload:start().

Ready

My mailbox: []

1: one

My mailbox: []

2: two

My mailbox: []

2> % return value omitted

Since any arrive event can occur one step earlier (theorem 5.4.2), it can also be shown that
any arrive in a trace can arrive one step earlier:

Theorem 5.4.3. For all traces t and non-arrive labels α (∀m.α 6= arr m), an arrival can occur one step
earlier:

∀p,p ′ ∈ S.p α.arr m.t−−−−−−→∗p ′ =⇒ p
arr m.α.t−−−−−−→∗p ′

Proof. By the transitive rule for −→∗, it is known that there exists a p1 and p2 such that:

p
α.arr m.t−−−−−−→∗p ′ = p

α−→ p1
arr m−−−−→ p2

t−→∗p ′ (5.3)

Therefore, the theorem can be restated as:

p
α−→ p1

arr m−−−−→ p2
t−→∗p ′ =⇒ p

arr m.α.t−−−−−−→∗p ′ (5.4)

89

By theorem 5.4.2 on page 86, we can show there exists a p ′
1 such that p α−→ p1

arr m−−−−→ p2 =⇒

p
arr m−−−−→ p ′

1
α−→ p2. Therefore, we can rewrite (5.4) to:

p
arr m−−−−→ p ′

1
α−→ p2

t−→∗p ′ =⇒ p
arr m.α.t−−−−−−→∗p ′ (5.5)

And applying the transitive rule for −→∗:

p
arr m.α.t−−−−−−→∗p ′ =⇒ p

arr m.α.t−−−−−−→∗p ′ (5.6)

The theorem states that for any individual process, an arrival can take place earlier without
affecting the final state of the process. Importantly, the theorem does not make any assertions
about concurrent CoErl systems, where such a theorem would show that a message could arrive
before it is sent. Instead, the theorem gives a causality between arrivals and receives: each
message must arrive strictly before it is received, the message may arrive arbitrarily early as long
as the order of arrivals is not changed.

5.5 Trace Replay

As discussed in section 5.1 on page 67, a desired property of the LTS model is to be able to replay
a trace on a mailbox, in order to reconstruct a process’ final mailbox state given its initial mailbox
and a trace of its execution. The desired property was stated as:

∀(p,α,p ′) ∈ R.apply(α,mailbox(p)) = mailbox(p ′)

where R is the labelled small-step relation (α−→) from section 5.1 on page 67.

Definition 5.5.1 (Trace Application). Given a mailbox mb, the effects of an event α can be applied to
the mailbox via the apply function:

apply(α,mb)
def=

mb if α = τ

mb if α = ι !m

mb++m if α = arr m

remove(m,mb) if α =? m

Theorem 5.5.1.

∀p,p ′ ∈ S.p α−→ p ′ =⇒ apply(α,mailbox(p)) = mailbox(p ′)

90

Proof. By case analysis of α, there are four possible labels:

• τ – we must prove ∀p,p ′ ∈ S.p τ−→ p ′ =⇒ apply(τ,mailbox(p)) = mailbox(p ′). For all
rules of the form p

τ−→ p ′, the mailbox is not modified, i.e. mailbox(p) = mailbox(p ′).
Therefore, the goal can be rewritten as apply(τ,mailbox(p)) = mailbox(p), which is true
by definition of apply.

• arr m – only one rule has the form p
arr m−−−−→ p ′. The arrive rule appends the message m to

the mailbox of p, such thatmailbox(p)++m = mailbox(p ′). Therefore, the goal can be
rewritten as apply(arr m,maibox(p)) = mailbox(p)++m, which is true by definition
of apply.

• ι ! m – no rule of the form p
ι ! m−−−→ p ′ modifies the mailbox of p, so mailbox(p) =

mailbox(p ′). Therefore similar to τ case.

• ?m – only one rule has the form p
? m−−→ p ′. The receive rule removes the first messagem

from the mailbox of p, such that remove(m,mailbox(p)) = mailbox(p ′). Therefore, the
goal can be rewritten as apply(receive m end,mailbox(p)) = remove(m,mailbox(p)),
which is true by definition of apply.

The ι !m case of the proof might be surprising, as it might be assumed that p is sending a
message to itself (if ι = pid(p)). However, such cases are handled by the concurrent labelled
small-step semantics, where any self-addressed send results in an arrive event immediately
afterwards.

The definition can be extended from a single event to an entire trace, enabling the replay of a
sequence of events upon a mailbox:

Definition 5.5.2 (Trace Replay). Given an initial mailboxmb, the effects of the trace T can be replayed
onmb by the following function:

replay(T ,mb)
def=

mb if T = ε

replay(T ′,apply(α,mb)) if T = α.T ′

This comes with an accompanying theorem:

Theorem 5.5.2.

∀p,p ′ ∈ S.p T−→∗p ′′ =⇒ replay(T ,mailbox(p)) = mailbox(p ′′)

91

Proof. By induction on p
T−→∗p ′′.

• Base case. The trace must be empty by the definition of the reflexive rule, i.e. T = ε. Also,
p = p ′′. Therefore, we must prove p

ε−→∗p =⇒ replay(ε,mailbox(p)) = mailbox(p),
which is true by definition of replay.

• Inductive case. The trace must be non-empty by definition of the transitive rule, i.e. T =
α.T ′. As per the transitive case, assume that p α−→ p ′ and p ′ T ′

−→ ∗p ′′. We must prove
p

α.T ′
−−−→∗p ′′ =⇒ replay(α.T ′,mailbox(p)) = mailbox(p ′′). By induction, also assume that

p ′ T ′
−→∗p ′′ =⇒ replay(T ′,mailbox(p ′)) = mailbox(p ′′). Simplification of replay yields

p
α.T−−→∗p ′′ =⇒ replay(T ′,apply(α,mailbox(p))) = mailbox(p ′′). By theorem 5.5.1, we

also know that apply(α,mailbox(p)) = mailbox(p ′). Substitution of mailbox(p ′) gives
replay(T ′,mailbox(p ′)) = mailbox(p ′′), which is true by assumption.

5.6 Orphan Messages in Traces

The LTS model of CoErl allows the communicating behaviour of processes and concurrent
systems to be considered separately from the internal behaviour of processes. Insight into the
relationship between the arrival and receipt of messages has yielded a normalisation technique
for traces, which allows traces to be modulo the precise timing of arrivals. The normalisation
technique maintains the order of arrivals in relation to oneanother, but does permit an arrival to
appear at earlier positions in a trace.

For the purpose of detecting communication discrepancies in Erlang programs, the theory of
traces must be related to the observed behaviour of orphan messages in real Erlang programs.
Informally, an orphan message is a message which arrives in a process’ mailbox and is never
received. In terms of traces, this can be characterised as an arrival event, and the lack of any
corresponding receive event following it:

simple-orphan(m, T) def=

α = arr m ∧ ?m /∈ T ′ if T = α.T ′

simple-orphan(m, T ′) if T = α.T ′

false otherwise

For the purposes of detecting communication discrepancies, traces of CoErl programs can
be used to formally characterise the notion of an orphan message. With respect to finite traces
(i.e. ε-terminated traces), orphan messages can be readily detected: any message m which

92

arrives but is never received can be considered an orphan. For example, the messagem in the
following trace is an orphan:

arr m.arr n.? n.ε

The messagem arrived, then the message n arrived, after which nwas received. In this case, the
messagem remained in the mailbox at the end of the trace, hence it is an orphan.

5.7 Infinite Computations

In section 4.6 on page 65 we discussed how the operational semantics of CoErl can be used to
model non-terminating computations. The unlabelled small-step operational semantics can be
used to create a finite approximation of the execution of a non-terminating process. By using
the reflexive transitive closure, discrete computational steps can be chained one after another
until the process enters a final state or a finite number of steps have been taken. A similar
principle applies to the labelled small-step operational semantics from figure 5.1 on page 71
and on page 72: the reflexive transitive closure over the labelled relation can be used to create a
finite trace which approximates the communicating behaviour of a non-terminating process.

Theorem 5.4.3 on page 89 can be used to reason about the order of arrivals for finite traces
which approximate the behaviour of infinite computations. Additionally, as theorem 5.4.3 applies
for all traces with tail t, the theorem can even be used to re-order arrivals in an infinite trace. We
cannot, however, use this theory of communication traces to reason about orphan messages in
infinite computations because a message is only an orphan if it is never received. In order to
determine that a message is never received we must have the entire trace available, and it is not
evident from the trace whether a control flow path exists in the program which would receive
the message at an indeterminate point in the future. It may be sufficient to determine that a
particular message is not an orphan by using a finite approximation of a process’ behaviour,
i.e. up until the point at which that message is received, but this may not always be possible and
the number of steps required to receive the message cannot be determined ahead of time.

93

Chapter 6

A Sub-Typing Relation for CoErl

Erlang is a programming language of two parts: functional programming and concurrency. The
functional aspect of the language is driven by the type and structure of data, where programmers
typically make control flow decisions using patterns, guards, and a specific order of clauses. On
the other hand, the concurrent part of the language uses the principles of process isolation and
mailboxes to facilitate highly concurrent applications which can run across multiple machines.
Communication is where the functional and concurrent aspects of the language meet: pattern
matching and guard evaluation determine which messages are removed from the mailbox,
possibly affecting future control flow decisions. In order to facilitate pattern matching and guard
evaluation at runtime, the BEAM uses tagged values, with each tag indicating whether a value
is an atom, an integer, a cons cell, and so forth.

Despite Erlang’s dynamic approach to typing, patterns and guards contain important type
information which can be used to statically determine the types of values they will accept. The
same reasoning can also be used to reason about the types of messages a process will receive
by statically analysing the receive expressions present in its code. The relationship between
multiple receive expressions and even the clauses within an individual receive expression are
complex, and this chapter aims to shed light on their behaviour.

This chapter introduces a static analysis technique to detect orphan messages at compile time.
To achieve this, Erlang’s existing type is extended with intersection and negation types to allow
for more precise modelling of real program behaviour, accompanied by a set-based denotational
semantics. The denotational semantics is then used as a base for a definition of sub-typing,
which characterises the relationship between types in Erlang. This is followed by a sound and
complete sub-typing algorithm for the system. All of this is then used to define a type inference
system for CoErl patterns, guards, and clauses which can be used to statically determine the

94

Tp ::= atom() | boolean() | float() | integer() | number()

| pid() | reference() | port()

| list() | tuple()

| term()

Li ::= any Erlang integer
La ::= any Erlang atom
L ::= ‘Li‘ | ‘La‘

S, T ::= Tp | L

| [] | [Th | Tt] | { } | {T1, T2, . . . , Tn}
| S t T | S u T | ¬T

Figure 6.1: Syntax of Types

types of messages that can be received by a process.
The original work onwhich this work is based presents proofs of soundness and completeness

for the functions DNF and CAN, and also presents a discussion on the time complexity of this
algorithm: it is exponential in the worst case due to the first step of converting the type into DNF,
which can cause an exponential explosion in the size of the type (Pearce 2013).

For CoErl, the main differences to the original work are the primitive types used in the
system, leading to different definitions of positive type intersection (figure 6.4 on page 103)
and sub-typing (figure 6.5 on page 104). The only other change over the original work is the
introduction of cons cells, which behave similarly to tuples.

6.1 Type Syntax

Erlang already has a type syntax used for documentation purposes and as type annotations
for static analysis tools (Erlang/OTP Team 2018, Types and Function Specifications). This
syntax supports each of Erlang’s existing data types, unions of types, and literal values in types.
Furthermore, even though Erlang does not allow the programmer to define any new constructors,
the type syntax supports user-defined types, which are simply aliases for existing types.

The syntax of types is given in figure 6.1. The type syntax consists of primitive types (Tp)
which represent the primitive Erlang data types, literal integers and atoms (Li and La), list types
([], [Th | Tt]), and tuple types ({ }, {T1, T2, . . . , Tn}). Furthermore, the syntax S t T is used to
represent the union of types S and T , the syntax S u T for the intersection of S and T , and ¬T for
the negation of T .

95

The primitive types (Tp) reflect names of type test BIFs in the Erlang/OTP standard library,
where for each type of the form type(), there is a BIF named is_type/1. Therefore, each of these
types is not necessarily distinct: the type boolean() is a subset of atom()1, both integer() and
float() are subsets of number(), and term() represents all Erlang values.

Literal types (L) represent a nuance of Erlang’s type syntax for what are essentially singleton
types, i.e. types of a single value. As Erlang does not support user-defined data types, these
singletons consist of values for existing data types, specifically atoms (La) and integers (Li).
For example, the type ‘2‘ represents “all values which are the integer 2”, and the type ‘’foo’‘
represents “all values which are the atom ’foo’”. Singleton types often appear when writing
type specifications for functions which deal with user-defined data structures:

-module(shapes).

-export([area/1]).

-type shape() :: {'square',number(),number()} | {'circle',number()}.

-spec area(shape()) -> number().

area({'square',X,Y}) -> X * Y;

area({'circle',R}) -> math:pi() * math:pow(R,2).

In the example above we see a user-defined shape type which is a union of two types:
‘{’square’,number(),number}‘ and ‘{’circle’,number()}‘. Here, the atoms ’square’ and
’circle’ are singleton types, i.e. types with a single value.

Lists in Erlang are created using either the empty list constructor [] (also called nil) or by the
cons cell constructor [h | t]which consists of a head h and tail t. Unlike some other functional
programming languages, lists in Erlang may be improper: the tail of a cons cell does not have to
be a list. List types are written using the exact same syntax: [] represents the type of empty lists,
and [Th | Tt] represents the type of cons cells with heads of type Th and tails of type Tt. The
type list() in Tp represents the type of all cons cells and all empty lists.

Tuples are also present in the type syntax: they are either empty ({ }) or they have n > 0
elements ({T1, T2, . . . , Tn}), where each element has a type. Similarly to lists, the tuple() type in
Tp is used to represent all tuples of all sizes.

Finally, three type operators are given: union (t), intersection (u), and negation (¬). A
union of types S t T represents all members of type S and also all members of type T , while the

1as boolean values in Erlang are the atoms ’true’ and ’false’

96

intersection of types S u T represents all members of S which are also members of T . The syntax
¬T represents all Erlang terms which are not members of type T .

6.2 Denotational Semantics

While the syntax of types has been given, the meaning of types is as yet undefined. The meaning
of some types was alluded to in the previous section: the tuple() type contains all tuple values,
and the negation of a type T contains all values not in the type T . One way of giving meaning is
via a denotational semantics: constructing mathematical objects which describe the meaning
of types. As types in Erlang always reflect one or more distinct values, we will use sets as the
mathematical objects which represent types.

The general concept is to associate every possible type T with a set representing the Erlang
values which inhabit the type. Semantic brackets will be used for the denotational semantics of
types: JTK means “the set of values denoted by type T”.

These denotational semantics will serve as the source of truth for any static analysis or typing
algorithm: soundness and completeness will be judged relative to the denotational semantics.

The denotational semantics for types is given via the definition of J·K in figure 6.2 on the next
page.

We start with Erlang’s primitive types, defined via the syntax of Tp in figure 6.1. The type
term() denotes the infinite set of all Erlang values, written U. Other primitives follow, with
atom(), integer(), float(), pid(), reference(), port(), list(), and tuple() each representing the
set of Erlang values which inhabit that type. The exception to the norm is boolean(), which is
a finite set consisting of the atoms ’true’ and ’false’. Literal types (from L in figure 6.1) are
denoted by a singleton set, whose member is the literal itself.

Empty lists are represented by the singleton set containing the [] constructor. Cons cells
of the form [Th | Tt] denote a set of cons cells whose members are every possible pairing of
members from JThK and JTtK, such that if JThK = {a,b} and JTtK = {x,y}, then J[Th | Tt]K =
{[a | x] , [a | y] , [b | x] , [b | y]}. The denotations for tuples are similar, with the empty tuple { }
denoting a singleton set, and the non-empty tuple {T1, T2, . . . , Tn} being represented by element-
wise pairings.

Type operators translate directly into set operators: the union St T is denoted by the union of
the denotations of S and T , the intersection SuT is denoted by the intersection of the denotations,
and the negation of T is denoted by the complement of the denotation of T .

Some theorems about the type operators are available “for free” owing to the direct translation
of the type operators into set theory:

97

Primitive types

Jterm()K def= U

Jatom()K def= the infinite set of all Erlang atoms
Jboolean()K def= {’true’, ’false’}
Jinteger()K def= the infinite set of all Erlang integers

Jfloat()K def= the infinite set of all Erlang floats
Jnumber()K def= Jinteger()K ∪ Jfloat()K

Jpid()K def= the finite set of all Erlang PIDs
Jreference()K def= the finite set of all Erlang references

Jport()K def= the infinite set of all Erlang ports
Jlist()K def= the infinite set of all Erlang lists

Jtuple()K def= the infinite set of all Erlang tuples

Literal types

J‘x‘K def= {‘x‘}

Compound types

J[]K def= {[]}

J[Th | Tt]K
def= {th ∈ JThK , tt ∈ JTtK| [h | t]}

J{ }K def= {{ }}

J{T1, T2, . . . , Tn}K def= {t1 ∈ JT1K , t2 ∈ JT2K , . . . , tn ∈ JTnK| {t1, t2, . . . , tn}}

Type operators

JS t TK def= JSK ∪ JTK

JS u TK def= JSK ∩ JTK

J¬TK def= U \ JTK

Figure 6.2: Denotational semantics for types

98

Theorem 6.2.1 (Associativity of t).

∀S, T ,U. JS t (T tU)K = J(S t T) tUK

Theorem 6.2.2 (Commutativity of t).

∀S, T . JS t TK = JT t SK

Theorem 6.2.3 (Associativity of u).

∀S, T ,U. JS u (T uU)K = J(S u T) uUK

Theorem 6.2.4 (Commutativity of u).

∀S, T . JS u TK = JT u SK

6.2.1 Sub-Typing

A relationship is starting to appear between types in the system: denotations of some types
are subsets of the denotation of other types. For example, Jboolean()K ⊆ Jatom()K (since the
set {’true’, ’false’} is a subset of the set of all atoms). This relationship is not coincidental: it
reflects an observed behaviour of Erlang.

Table table 6.1 on the following page shows the relationships between primitive types by
observing how Erlang’s type test BIFs behave. In each case, assume an arbitrary assignment
for the variable X. If the Erlang expression in the first column evaluates to ’true’, then so does
the expression in the second column. The third column shows the relationship between the
types in the denotational semantics. Walking through the second row: if for some assignment
of X the Erlang expression is_boolean(X) evaluates to ’true’, then so does the expression
is_atom(X). With respect to the denotational semantics, this relationship is represented as
Jboolean()K ⊆ Jatom()K. In the cases when there is no other expression which always evaluates
to ’true’, the tautological expression true is used instead. In the denotational semantics, this
is equivalent to the term() type as all Erlang values are member of term(), and the expression
true returns ’true’ for all assignments of X.

This relationship between types is called sub-typing:

Definition 6.2.1 (Sub-Typing (6)). Type S is a sub-type of type T (S 6 T) if all members of S are also
members of T . Using the denotational semantics, sub-typing is defined using the subset relation:

S 6 T
def= JSK ⊆ JTK

99

This expression implies this expression Denotation
is_atom(X) ’true’ Jatom()K ⊆ Jterm()K
is_boolean(X) is_atom(X) Jboolean()K ⊆ Jatom()K
is_number(X) ’true’ Jnumber()K ⊆ Jterm()K
is_float(X) is_number(X) Jfloat()K ⊆ Jnumber()K
is_integer(X) is_number(X) Jinteger()K ⊆ Jnumber()K
is_list(X) ’true’ Jlist()K ⊆ Jterm()K
is_tuple(X) ’true’ Jtuple()K ⊆ Jterm()K
is_pid(X) ’true’ Jpid()K ⊆ Jterm()K
is_reference(X) ’true’ Jreference()K ⊆ Jterm()K
is_port(X) ’true’ Jport()K ⊆ Jterm()K

Table 6.1: Observing Erlang’s sub-typing axioms

Using this definition of sub-typing, each row of table 6.1 shows part of the sub-typing
relationship, e.g. boolean() 6 atom(), float() 6 number().

Furthermore, this definition of sub-typing is semantic rather than syntactic: the sub-typing
relation is formulated using the denotational semantics of types (which is itself based on the
operational semantics of CoErl), rather than being defined in terms of one or more syntactic
rules.

This set-theoretic interpretation of types ultimately yields some “free” theorems: transitivity
of 6, identity elements for t and u, and involution of ¬.

6.3 Sub-Typing Algorithm

The current definition of sub-typing uses a semantic model of types: the syntax of types is given
meaning by a denotational semantics which associates a type with a set of values. This semantic
model allows us to reason about types and the relationships between them using set theory, such
as being able to represent the intersection of two types as a set, or represent the negation of a
type as a complement of a set.

While this model of types (and sub-typing) is useful as part of an abstract formal model,
it does not lend itself well to a succinct implementation in a general purpose programming
language such as Erlang. Such an implementation would require significant bootstrapping: a
denotational semantics for types, a general model of set theory, and symbolic handling of sets.
An alternative approach is to manipulate the syntax of types directly using knowledge obtained
from the semantic model. For example, the semantic model of types can be used to prove that

100

term() and ¬term() are the identity elements for intersection and union respectively:

T u term() = T

T t ¬term() = T

Essentially, we can use the denotational semantics for types to derive a set of rewrite rules for
the syntax of types which preserve meaning.

Furthermore, we can note from set theory that our definition of sub-typing does not require
the use of a subset judgement at all. Noting that subset is equivalent to checking for the empty
set:

A ⊆ B⇐⇒ A ∩ B = ∅

we can redefine sub-typing using a similar check:

S 6 T ⇐⇒ JSK ⊆ JTK⇐⇒ JSK ∩ JTK = ∅

An important part of this definition is that the equality check is taking place at the semantic
level: we are checking whether the type on the left hand side is semantically equal to the empty
set. This check must occur at the semantic level as our type syntax is not canonical: two types
which are semantically equivalent can have a different syntax:

J¬¬TK = JTK

JS u TK = JT u SK

Pearce presents a method for performing this equality check at the syntactic level by perform-
ing a partial canonicalisation of type syntax. Observing that the sub-typing relation only holds
when JS u ¬TK is equal to the empty set, the method focuses on canonicalising types which are
semantically equal to the empty set, leaving all other types in some partly-normalised form.

In this section we present a variation of the original algorithm using CoErls type hierarchy
and compound data types instead of the originals (Pearce 2013). The algorithm operates by first
transforming all types into an enhanced disjunctive normal form wherein type operators are
“lifted” out of compound types and all unions appear at the top level. Then, noting that it is
relatively straightforward to write sound and complete intersection and sub-typing relations
for a subset of the original type syntax, types are progressively rewritten until they are either
¬term(), or some other type.

6.3.1 Positive Atoms

A central part of the sub-typing algorithm is the positive type atom: a type which does not
contain any unions, intersections, or negations. These types are positive due to the absence

101

S∗, T∗ = Tp | L | nil | [T∗
h | T∗

t] | { } | {T∗
1 , T∗

2 , . . . , T∗
n}

Figure 6.3: Positive type atom syntax

of any negations and they are atomic as they do not contain any unions or intersections. The
presence of these type operators makes it difficult to define sub-typing or intersection using a
purely inductive or syntactically recursive definition, as corner cases such as double negations,
nesting of operators inside compound types, and the commutativity of union and intersection
all require special consideration. By omitting these operators, we can write straightforward
recursive definitions of type intersection and sub-typing which can be easily proven correct with
respect to the denotational semantics.

The syntax of positive type atoms is defined as T∗ in figure 6.3. This is a restriction of the
original syntax of types T from figure 6.1 on page 95. In this restricted syntax types must
be primitive (Tp, e.g. atom(), integer()), singletons (L, e.g. 2.0, ’foo’), or a compound type
constructor consisting of these types (e.g. [integer() | []]).

Intersection

The intersection of two types is the type of values which inhabits both types. For example,
the intersection of atom() and boolean() is boolean(), and the intersection of atom() and
integer() is ¬term() (as there are no values which inhabit both types).

To intersect two positive type atoms, we use the infix u∗ operator from figure 6.4 on the next
page. This should not be confused with the syntactic u seen in types.

First, we consider whether two types are syntactically equal. If they are, then we return
one of the two types (6.1) (as S = T ⇒ JSK = JTK). Next, we encode the axioms of sub-typing:
boolean() is a sub-type of atom() therefore the intersection is boolean() (6.3), integer() is a
sub-type of number() so the intersection is integer() (6.4), and similarly for float() (6.5), []
(6.6), and { } (6.9). Also, any cons cell is a sub-type of list(), so the intersection of the two is
the cons cell (6.7), and similarly for tuples (6.10). When both types being intersected are cons
cells, we intersect the heads and tails of both cells separately. Assuming that both results are not
¬term(), then the intersection of the two cons cells is a cons cell consisting of the intersections
of the heads and tails of the original two cells (6.8). A similar rule applies to two non-empty
tuples: assuming that they have the same number of elements and that each element of the first
intersects with the corresponding element in the second, then the result is a tuple containing all
of the intersected elements (6.11). In all other cases, the intersection of the two types is the empty

102

T u∗ T =⇒ T (6.1)
S u∗ term() =⇒ S (6.2)

atom() u∗ boolean() =⇒ boolean() (6.3)
number() u∗ integer() =⇒ integer() (6.4)

number() u∗ float() =⇒ float() (6.5)
list() u∗ [] =⇒ [] (6.6)

list() u∗ [Th | Tt] =⇒ [Th | Tt] (6.7)
[Sh | St] u∗ [Th | Tt] =⇒ [Sh u∗ Th | St u∗ Tt] (6.8)

tuple() u∗ { } =⇒ { } (6.9)
tuple() u∗ {T1, T2, . . . , Tn} =⇒ {T1, T2, . . . , Tn} (6.10)

{S1,S2, . . . , Sn} u∗ {T1, T2, . . . , Tn} =⇒ {S1 u∗ T1,S2 u∗ T2, . . . , Sn u∗ Tn} (6.11)

All cases are symmetric.

Figure 6.4: Intersection for atomic types (u∗)

type ¬term(), but we must consider that intersection is a symmetric relation: A u B = B uA for
all A and B, hence some rules are symmetric.

Lemma 6.3.1. For all S∗ and T∗:

JS∗ u∗ T∗K = JS∗K ∩ JT∗K

Proof. Straightforward by inspection of figure 6.2 and figure 6.4.

Sub-Typing

Sub-typing can also be defined in a way that is both sound and complete with respect to the
denotational semantics. The sub-typing relation will be defined inductively, making it straight-
forward to encode the transitive property of the relation.

The definition of sub-typing for positive type atoms is given in figure 6.5 on the following
page, and is written using the infix notation 6∗ which should not be confused with the semantic
sub-typing operator which lacks a star (6).

The first two rules represent the reflexivity and transitivity of sub-typing (Refl and Trans).
Next, all types are sub-types of the top type term(): as term() represents the universe of all
values, all other types must be sub-types (Term). The rules Boolean, Float, Nil, and TupleNil
are axioms of sub-typing, similar to those we saw for atomic type intersection.

A cons cell is a sub-type of another cons cell if the head of the first is a sub-type of the head
of the second, and also if the tail of the first is a sub-type of the tail of the second, i.e. the relation

103

S∗ = T∗

S∗ 6∗ T∗ Refl
S∗ 6∗ U∗ U∗ 6∗ T∗

S∗ 6∗ T∗ Trans
S∗ 6∗ term()

Term

boolean() 6∗ atom()
Boolean

float() 6∗ number()
Float

integer() 6∗ number()
Integer

[] 6∗ list()
Nil

[S∗h | S∗t] 6 list()
ConsLeft

S∗h 6∗ T∗
h S∗t 6∗ T∗

t

[S∗h | S∗t] 6
∗ Cons

{ } 6∗ tuple()
TupleNil

n 6= 0
{S∗1 ,S∗2 , . . . , S∗n}

TupleLeft

S∗1 6∗ T∗
1 S∗2 6∗ T∗

2 S∗n 6∗ T∗
n

{S∗1 ,S∗2 , . . . , S∗n} 6∗ {T∗
1 , T∗

2 , . . . , T∗
n}

TupleN

Figure 6.5: Sub-typing for atomic types (6∗)

distributes over the elements of the cell (Cons). Similarly, a tuple of sizen is a sub-type of another
tuple with size n if and only if each element of the first tuple is a sub-type of the corresponding
element of the second tuple (TupleN).

Lemma 6.3.2. For all S∗ and T∗:

S∗ 6∗ T∗ ⇐⇒ JS∗K ⊆ JT∗K

Proof. Straightforward by inspection of figure 6.5 and figure 6.2.

6.3.2 Disjunctive Normal Form

We now have sound and complete definitions of intersection (u∗) and sub-typing (6∗). Unfortu-
nately, these definitions are only sound and complete up to a subset of the original type syntax: only
positive type atoms are supported, i.e. there can not be any unions, intersections, or negations.

Regardless of this limitation, we can use these definitions to simplify some parts of types,
regardless of their overall syntactic structure. For example, if the syntax of a term contains an
intersection of two positive type atoms S∗ u T∗, we can replace it with the result of S∗ u∗ T∗

without changing the semantics of the type (as per lemma 6.3.1).
As we can easily simplify types containing intersections of positive type atoms, it stands to

reason that we could greatly simplify types containing a large number of these intersections. To
maximise the occurrence of themwewill rewrite types into a normal form similar to a disjunctive
normal form. Specifically, we will rewrite all types of syntax T (figure 6.1) into syntax TDNF

(figure 6.6 on the next page): unions at the top level, followed by intersections of (possible

104

Tu ::= T∗ | ¬T∗ | Tu u Tu

TDNF ::= Tu | Tu t Tu

Figure 6.6: DNF Grammar for types

(S∗1 t S∗2) u T∗ =⇒ (S∗1 u T∗) t (S∗2 u T∗) (6.12)
¬¬T =⇒ T (6.13)

[¬T∗
h | T∗

t] =⇒ [term() | T∗
t] u ¬ [T∗

h | T∗
t] (6.14)

[T∗
h | ¬T∗

t] =⇒ [T∗
h | term()] u ¬ [T∗

h | T∗
t] (6.15)

[S∗h op T∗
h | T∗

t] =⇒ [T∗
h | S∗t] op [T∗

h | T∗
t] where op is u or t

(6.16)
[S∗h | S∗t op T∗

t] =⇒ [S∗h | T∗
t] op [T∗

h | T∗
t] where op is u or t

(6.17)
{T∗

1 ,¬T∗
m, . . . , T∗

n} =⇒ {T∗
1 , term(), . . . , T∗

m} u ¬ {T∗
1 , T∗

m, . . . , T∗
n} (6.18)

{T∗
1 ,S∗m op T∗

m, . . . , T∗
n} =⇒ {T∗

1 ,S∗m, . . . , T∗
n} op {T∗

1 , T∗
m, . . . , T∗

n} (6.19)
(6.20)

Figure 6.7: Normalisation rules for T

negations of) positive type atoms. For example, the type (atom() u boolean()) t (integer() u

¬pid()) is in normal form as all unions appear at the top level and all intersections are (perhaps
negations of) type atoms, but (atom()t integer())u reference() is not as there is a union inside
an intersection. In addition, note that TDNF does not permit type operators inside compound
types as per the syntax of positive type atoms: there cannot be any unions, intersections, or
negations inside cons cells or tuples.

The rewrite rules in figure 6.7 are used to transform a type of syntax T into the syntax TDNF

while preserving the semantics of the original type.
The first rule (6.12) relies on the fact that intersection distributes over union:

J(S t T) uUK⇐⇒ (JSK ∪ JTK) ∩ JUK⇐⇒ (JSK ∩ JUK) ∪ (JTK ∩ JUK)⇐⇒ J(S uU) t (T uU)K

Rules (6.14) and (6.15) handle negations in the heads and tails of cons cells. For heads, the
rewrite rule states that any cons cell [¬S | T] is equivalent to an intersection of two cells: where
the head can be any value and the tail must have type T ([term() | T]), and not the cons cells
where the head has type S and the tail has type T . A similar rule exists for tuples which operates
on any element, including the first and last (6.18). Furthermore, operators (u and t) are lifted
out of cons cells and tuples using rules (6.17), (6.16), and (6.19).

105

¬term() u . . . =⇒ ¬term() (6.21)
S∗ u T∗ u . . . =⇒ (S∗ u∗ T∗) u . . . (6.22)

S∗ u ¬T∗ u . . . =⇒ ¬term() if S∗ 6∗ T∗ (6.23)
S∗ u ¬T∗ u . . . =⇒ S∗ u . . . if S∗ u∗ T∗ = ¬term() (6.24)
S∗ u ¬T∗ u . . . =⇒ S∗ u ¬(S∗ u∗ T∗) u . . . if S∗ �∗ T∗ (6.25)

¬S∗ u ¬T∗ u . . . =⇒ ¬S u . . . if S∗ >∗ T∗ (6.26)

All rules are symmetric.

Figure 6.8: Canonicalisation rules for positive type atoms in disjunctive normal form

Finally, we define the function DNF which converts a type with syntax T to one with syntax
T∗:

Definition 6.3.1. The function DNF(T) is the exhaustive application of rewrite rules from figure 6.7 to
the type T .

The rewrite rules form a function via outermost application, starting from the left. Although
the rules are confluent, applying them in arbitrary order could lead to different outputs for
different inputs because of the commutativity and associativity of u and t.

Lemma 6.3.3. For all types T :
JTK = JDNF(T)K

Proof. Sketch:

• Prove that each rewrite rule preserves meaning (any rewrite is semantically equivalent).

• Prove that repeated rewrites also prove meaning (reflexive and transitive).

• Induction on T .

Lemma 6.3.4. For all types T , DNF(T) returns a type of syntax T∗.

6.3.3 Canonicalisation

As mentioned earlier, it is relatively easy to calculate the intersection of two positive types
compared to doing the same with two types of arbitrary syntax (which could contain union,
intersection, and negation in arbitrary locations). By transforming a type into disjunctive normal

106

form using theDNF function from the previous section, we obtain a semantically equivalent type
whose syntax is of the form d⊔

T∗−, where T∗− can be positive type atoms and/or negations
thereof.

At this point we can use the intersection function u∗ and sub-typing operator 6∗ to canonic-
alise types in disjunctive normal form. Exhaustive application of the rewrite rules in figure 6.8
on the previous page will result in a type which is either a union ¬term() types, or some other
type. As we will see, this is enough to implement sub-typing.

Rule (6.21) in figure 6.8 handles an intersectionwith the empty¬term() type: any intersection
with the empty set is itself empty, hence we replace the entire intersection with ¬term(). The
rule (6.22) handles an intersection of two positive type atoms as part of a larger intersection: the
result is the type returned by the application of u∗ from figure 6.4 on page 103.

An intersection where exactly one of the two operands is negative (S u ¬T) requires careful
consideration: if S is a sub-type of T , then there are no elements in Swhich are not also members
of T (6.23). If S is not a sub-type of T , then we must consider how the two types intersect: if there
is no overlap between the two types, then we can discard ¬T entirely, and we do not rewrite it
otherwise. Finally, if we have an intersection of two negative type atoms, we follow the same
scheme as rule (6.22), but with the arguments to 6∗ flipped: if T is a sub-type of S, then ¬S is
superfluous, as ¬T already excludes all members of ¬S (6.26).

Similar to the DNF function, we exhaustively apply these rules to a type until it cannot be
rewritten any further, starting from the top and working from the left. Again, these rules are
confluent with respect to the denotational semantics of types, but we apply an order to the
rewrites so that the syntax produced is canonical. This rewrites every conjunction S u T uU u . . .
to one of two forms:

1. the type ¬term(); or

2. some intersection of (potentially negatated) positive type atoms

By exhaustively rewriting a type that is already in DNF form, we will therefore obtain a type
which is either a union of one or more ¬term() types, or a union of intersections.

Definition 6.3.2. The function CAN(T) is the exhaustive application of rewrite rules from figure 6.8 to
the type T .

Lemma 6.3.5. For all types T :
JTK = JCAN(T)K

Proof. Sketch:

107

• Prove that canonicalisation rules preserve meaning w.r.t. semantics.

• Induction on T

Lemma 6.3.6. For all types T of the form⊔d
T∗−,CAN(T) is either of the form⊔

¬term() or⊔d
T∗−.

6.3.4 Enhanced Disjunctive Normal Form

The final step in normalising types is to convert them into an enhanced disjunctive normal form:
types are first converted into DNF, then canonicalised:

Definition 6.3.3.

DNF+(T) = CAN(DNF(T))

Theorem 6.3.1. For all types T :
JTK = JDNF+(T)K

Proof. Straightforward by lemma 6.3.4 and lemma 6.3.5.

6.3.5 Sub-Typing

Finally, we bring all of these definitions to define sub-typing. First, we recall that sub-typing is
equivalent to a problem of checking whether an intersection is equal to the empty set:

S 6 T ⇐⇒ JSK ⊆ JTK⇐⇒ JSK ∩ JTK = ∅ ⇐⇒ JS u ¬TK = ∅

Therefore, checking whether S 6 T is equivalent to checking whether S u ¬T denotes the empty
set. Previously this check was performed at the semantic level, but we can now perform the same
check at the syntactic level using DNF+, which normalises a type to a union of ¬term() types if
it is semantically equivalent to the empty set:

Definition 6.3.4. For all types S and T , S is a sub-type of T if DNF+(S u ¬T) returns a union of the
type ¬term()

S 6 T ⇐⇒ DNF∗(S u ¬T) =
⊔

¬term()

108

As an example of this algorithm, wewill consider whether term() is a sub-type of integer()t
¬integer(). In the denotational semantics, the sub-typing relation holds:

term() 6 integer t ¬integer()⇐⇒ Jterm()K ⊆ Jinteger() t ¬integerK

= U ⊆ Jinteger()K ∪ Jinteger()K

= U ⊆ U

It also holds using our canonicalisation algorithm:

DNF+(term() u ¬(integer() t ¬integer())) =
⊔

¬term()

= CAN(DNF(term() u ¬(integer() u ¬integer()))) =
⊔

¬term()

= CAN(any() u ¬integer() u integer()) =
⊔

¬term()

= ¬term =
⊔

¬term()

Although this algorithm provides a sound and complete method for determining the sub-
typing relation, it can be slow due to its exponential blowup. To this end, chapter 7 introduces
an alternative (and less complex) algorithm based on Binary Decision Diagrams (BDDs) which
operates using a similar principle: producing a canonical data structure for a type, and checking
whether it is structurally identical to the canonical form of ¬term() in the system.

6.4 Type Inference

To reason about the types of messages a process can receive, static analysis will be performed on
the patterns, guards, and clauses of receive expressions present in the process’s code. Patterns
and guards inherently contain type information about the types of values they accept, a fact
which will be exploited to perform fully automatic type inference on Erlang code.

For example, the following Erlang function calculates the length of a proper list by pattern
matching on its sole argument:

length([]) -> 0;

length([_H|T]) -> 1 + length(T).

By intuition we might assign the type list() to the argument of the length function: the pattern
[] only matches the empty list constructor, and the pattern [_H | T] in the second clause only
matches cons cells. As the function can accept either of these list constructors, we might say that
the argument must have type [] t [term() | term()] (or list() for brevity). Type information is
also contained in guard expressions, where type assertions can be derived from equality checks

109

P JpKΓ
def=

T if p = v and Γ ` v : T

P Jp ′KΓ u T if p = (p ′ = v) and Γ ` v : T

[] if p = []

[P JphKΓ | P JptKΓ] if p = [ph | pt]

{ } if p = { }

{P Jp1KΓ ,P Jp2KΓ , . . . ,P JpnKΓ } if p = {p1,p2, . . . ,pn}

Figure 6.9: Type inference for CoErl patterns

and the use of type test BIFs. This function, for example, requires that its argument is a 2-element
tuple where the first element is the atom ’double’ and the second element is an integer:

do_op({'double',N}) when is_integer(N) -> N + N.

The type of this function’s argument is written {‘’double’‘, integer()}.
Finally, the order of clauses must be considered, as the patterns and guards of prior clauses

affect the types of values accepted by a clause:

foo(N) when is_integer(N) -> "it's an integer!";

foo(N) -> "it's not an integer".

In this example the first clause accepts only integers (integer()), while the second clause accepts
values which are not integers (¬integer()).

Together, these three principles form the basis of type inference for CoErl patterns, guards,
and clauses.

6.4.1 Patterns

Type inference on patterns is performed by recursion over the structure of the pattern, with the
aim of determining the types of values that will match the pattern in question. As defined in
figure 4.1, a pattern p can be a variable v, an alias p = v, a list ([] or [ph | pt]), or a tuple ({ } or
{p1,p2, . . . ,pn}).

The inference is performed in a typing environment Γ which associates every variable with a
type, such that Γ ` v : T means that variable v has type T in environment Γ . The function P JpKΓ
in figure 6.9 performs type inference on a pattern p in typing environment Γ , where the output
of the function is a type.

Starting with the first case, a variable v is inferred to have type T , where T is the type provided
by the typing environment. Variables also occur in aliases (p ′ = v), where a pattern p is associated
with a variable v. In this case, the inferred type is an intersection of the inferred type of p ′ and

110

the type of v from the typing environment: the type of p ′ = v is the inferred type of p ′ and the
type of v from the environment.

Moving on to compound patterns, the inference proceeds by recursing over the structure
of the type. For empty lists ([]), the inferred type is the empty list type which shares the same
syntax. For cons cells of the form [ph | pt], the types of the head and tail are inferred recursively.
Similar rules apply for tuples: the empty tuple { } has an inferred type of { }, and non-empty
tuples have their types inferred recursively.

6.4.2 Guards

Type inference for guards is more complicated than type inference for patterns: the syntax of
guards allows more complex type constraints to be expressed. A guard expression is typically
used to impose additional constraints on the type or value of variables which occur in an
accompanying pattern. For example, a guard expression in Erlang can be used to assert that a
variable is a member of at least one of two types:

f({A,B}) when is_integer(A) or is_atom(A) -> do_stuff.

The syntax of guards in CoErl is more restrictive, instead only permitting four constructs:
the atoms ’true’ and ’false’, an assertion that a variable v has type T (v is T), and an if-
then-else expression which can be used to build logical conjunction, disjunction, and negation
(if g? then gt else gf). The branching evaluation of the if-then-else expression is the source of
complexity for guard type inference due to the presence of multiple control flow paths. Consider
the following guard expression:

if v is T then w is U else w is V

The evaluation of the guard succeeds (i.e. it evaluates to true) if and only if:

1. v has type T and w has type U; or

2. v does not have type T and w has type V .

Considering that a typing environment returned from an inference algorithm should state the
type constraints on variables present in the guard, a reasonable approximation might be:

v 7→ T , w 7→ U t V

Unfortunately, this is a bad approximation: it simultaneously contains type constraints not
present in the guard and also does not correctly constrain the types of all variables. The typing

111

environment over-approximates the type constraints on v, which is asserted to have type T in the
environment. The guard evaluation can succeed, however, even if v does not have type T : when
w has type V . On the other hand, the environment under-approximates the type constraints
on w, where the environment states that w has either type U or V . Assuming that v has type T ,
though, guard evaluation will not succeed unless w has type U.

A single typing environment is not enough to specify the type constraints of multiple control
flow branches. Each branch can have entirely different type constraints: the types of different
variables may be asserted in different branches and some variables may not have type assertions
at all. Instead of a single environment for all control flow branches, an environment will be
created for each branch. As the original guard contains two branches of execution (the true and
false branches of the if-then-else), we will create two typing environments:

1. [v 7→ T , w 7→ U]

2. [v 7→ ¬T , w 7→ V]

The first environment asserts that v has type T and w has type U, while the second asserts that v
does not have type T and w has type V . This corresponds more closely with our intuition about
how the guard evaluates: either the test of the if-then-else succeeds (and the true branch is
evaluated) or it does not (and the false branch is evaluated). In the first case, we know that
v is T is true, and in the second case we know it is not true, so we can assert that v : ¬T . Overall,
the guard type inference algorithm needs to return multiple typing environments: one for each
control flow path which results in the successful evaluation of the guard.

One additional complication is that the test of an if-then-else guardmay also be an if-then-else.
Let’s consider the guard from earlier, but wrapped in another if-then-else:

if (if v is T then w is U else w is V) then x is S else x is S ′

To avoid confusion, the outermost if-then-else (if . . . then x is S else x is S ′) will be called the
outer, and the innermost (if . . . then w is U else w is V) will be called the inner. This guard
expression will evaluate to true if and only if:

1. the inner guard evaluates to true and x is S returns true; or

2. the inner guard evaluates to false and x is S ′ returns true.

Creating type constraints for the first case is straightforward: the type constraints from the
inner if-then-else ([v 7→ T , w 7→ U] and [v 7→ ¬T , w 7→ V]) can be concatenated with the
type constraints from x is S ([x 7→ S]). This concatenation is done with the ∧[Γ] operator from

112

figure 6.10. The operator creates a conjunction of two lists of typing environment based on the
assumption that each list of environments represents a disjunction. For example, this list of
environments:

[[v 7→ T , w 7→ U], [v 7→ ¬T , w 7→ V]]

represents a disjunction of two possibilities: either the typing constraints from the first environ-
ment hold, or those from the second hold. As such, the ∧[Γ] operator from figure 6.10 performs
a task similar to converting a boolean formula into a disjunctive normal form:

(A∨ B)∧ (C∨D) = (A∧ C)∨ (A∧D)∨ (B∧ C)∨ (C∧D)

As for the conjunction of two individual environments (Γ ∧Γ Γ
′), the resulting environment

depends on whether a given variable appears in one or both environments:

[x 7→ T]∧Γ [] = [x 7→ T]

[]∧Γ [x 7→ T]= [x 7→ T]

[x 7→ S]∧Γ [x 7→ T]= [x 7→ S u T]

[x 7→ S]∧Γ [y 7→ T]= [x 7→ S, y 7→ T]

If a variable is present in only one of the environments, it is present in the resulting environment
unchanged. If both environments contain the variable, the intersection of that variable’s type are
used.

Going back to the example on the preceding page: we know the inner if-then-else evaluates
to true when [v 7→ T , w 7→ U] or [v 7→ ¬T , w 7→ V], while the true branch of the outer if-then-else
evaluates to true if [x 7→ S]. The conjunction of these two lists of environments gives the type
constraints for when the true branch evaluates to true:

[[v 7→ T ,w 7→ U], [v 7→ ¬T ,w 7→ V]]∧[Γ][[x 7→ S]] = [[v 7→ T ,w 7→ U, x 7→ S],

[v 7→ ¬T ,w 7→ V , x 7→ S]]

Considering the type constraints for the false branch of the outer if-then-else is less straightfor-
ward: the only way to ever evaluate the false branch is to have followed a control flow path of the
inner if-then-else which evaluated to false. Therefore, we need to know which type constraints
lead to the innermost if-then-else evaluating to false:

if v is T then w is U else w is V

There are two control flow paths where this guard evaluates to false:

113

Conjunction of two environments

Γ ∧Γ Γ
′ def= λx.

Some T u T ′ if Γ(x) = Some T and Γ ′(x) = Some T ′

Some T if Γ(x) = Some T and Γ ′(x) = None
Some T ′ if Γ(x) = None and Γ ′(x) = Some T ′

None otherwise

Conjunction of two lists of environments

[Γ1, Γ2, . . . , Γm]∧[Γ] [Γ
′
1 , Γ ′

2 , . . . , Γ ′
n]

def= [Γ1 ∧Γ Γ
′
1 , Γ1 ∧Γ Γ

′
2 , . . . , Γ1 ∧Γ Γ

′
n,

Γ2 ∧Γ Γ
′
1 , Γ2 ∧Γ Γ

′
2 , . . . , Γ2 ∧Γ Γ

′
n,

...
Γm ∧Γ Γ

′
1 , Γm ∧Γ Γ

′
2 , . . . , Γm ∧Γ Γ

′
n]

Figure 6.10: Operators for conjunction of typing environments

G JgK def=

([λx.Some term()], []) if g = ’true’

([], [λx.Some term()]) if g = ’false’

((g+
? ∧[Γ] g

+
t)++(g−

? ∧[Γ] g
+
f),

(g+
? ∧[Γ] g

−
t)++(g−

? ∧[Γ] g
−
f))

if g = if g? then gt else gf

where
G Jg?K = (g+

? ,g−
?)

G JgtK = (g+
t ,g−

t)

G JgfK = (g+
f ,g−

f)

([[v 7→ T]], [[v 7→ ¬T]]) if g = v is T

Figure 6.11: Type inference for CoErl guards

1. when v is T evaluates to true and w is U evaluates to false; or

2. when v is T evaluates to false and wis V evaluates to false

In other words, these are the typing environments in which the guard evaluates to false:

1. [v 7→ T ,w 7→ ¬U]

2. [7→ ¬T ,w 7→ ¬V]

Note that these typing environments are not simply the negations of the environments from the
true branches.

This insight into the control flow of guard expressions has been used towrite the G J·K function
in figure 6.11, which performs type inference for guard expressions. The function simultaneously

114

C J〈p〉 when g→ eK def= let Γ1, Γ2, . . . , Γn = fst(G JgK) in
P JpKΓ1 t P JpKΓ2 t . . . t P JpKΓn

Figure 6.12: Type inference for CoErl clauses

produces two lists of typing environments: the environments in which the guard evaluates to
true, and the environments in which the guard evaluates to false.

The guard ’true’ returns true regardless of the types of any variables, so the environments
in which it returns true are those where all variables have the term() type; it does not matter
what the type of a variable is. Furthermore, there are no environments in which the guard
evaluates to false. Conversely, the guard ’false’ returns false in all cases, so it returns true for
no environments and returns false regardless of the types of variables.

When an if-then-else is encountered, the function is recursive. First, the true and false
environments for the test g? are inferred, followed by gt and gf. As discussed, the circumstances
in which this if-then-else returns true are when either both the test g? and true branch gt evaluate
to true (g+

? ∧[Γ] g
+
t) or when the test g? evaluates to false and the false branch gf evaluates to true

(g−
? ∧[Γ] g

+
f). The two lists of environments are then concatenated, representing a disjunction.

The if-then-else returns false in two cases: when the test g? returns true and the true branch gt

returns false, or when the test g? returns false and the false branch gf returns false.
The last type of guard is a type assertion of the form v is T . In this case, the guard returns

true if v has type T ([v 7→ T]) and it returns false if v does not have type T ([v 7→ ¬T]).

6.4.3 Clauses

The type of a clause is a combination of the pattern and guard: while the pattern determines the
type of terms the clause will accept, the guard may assert type constraints on variables which
occur in the pattern.

It is easiest to start with the guard: G JgK returns two lists of typing environments: those
in which the guard evaluates to true, and those in which the guard evaluates to false. The
clause will only match a term if the evaluation of the guard succeeds, so we use the first list of
environments. Each environment from the list is then used as an input to P JpKΓ , each instance
of which produces a single type. Afterwards, the union of all of these types is taken: the clause
will match when the pattern match succeeds and the guard evaluates to true via any control flow
branch. The clause’s expression e is unused: it does not affect whether or not the clause matches
a term.

115

C∗ Jc1, c2, . . . , cn−1, cnK def= C Jc1K t
(C Jc2K u ¬C Jc1K) t
. . . t
(C JcnK u ¬C Jcn−1K u . . . u ¬C Jc2K u ¬C Jc1K)

Figure 6.13: Type inference for CoErl clause sequences

6.4.4 Clause Sequences

Clauses typically appear in sequences, where the clauses in the sequence are tried in order until
a matching clause (if any) is found. The type of Erlang values accepted by a sequence of clauses
is a union of all of the types of the individual clauses: if one clause accepts integers and a second
clause accepts booleans, then together the two clauses accept integers and booleans:

case X of % accepts integers and booleans

N when is_integer(N) -> % accepts integers

do_something();

B when is_boolean(B) -> % accepts booleans

do_something_else()

end.

As more clauses are added to a case or receive expression, additional unions are added to the
type: if clauses c1, c2, and c3 accept Erlang values of types T1, T2, and T3 respectively, then the
combination of those clauses accepts values of type T1 t T2 t T3.

This technique is suitable for determining the types of values accepted by a sequence of
clauses, but it often over-approximates the types accepted by any single clause in a sequence.
Consider two clauses where the first accepts values of type S and the second of type T , where
S 6 T :

case X of % accepts numbers

N when is_integer(N) -> % accepts integers

do_something();

N when is_number(N) -> % accepts numbers, but not integers

do_something_else()

As clauses are tried in order, any values of type integer() will match the first clause, while any
other numbers (i.e. those which do not have type integer()) will match the second. Instead of

116

inferring the type number() for the second clause, a better approximation would be number()u

¬integer(): the type of the clause and not the type of any preceding clauses.
This approach is followed in the definition of C∗ J·K in figure 6.13 on the preceding page, the

clause sequence type inference function. The type of a clause sequence is defined as the union
of the type of the first clause, the type of the second intersected with the negation of the first
clause, and so on.

117

Chapter 7

Semantic Sub-Typing with BDDs

In section 6.2 on page 97 types are given meaning via a denotational semantics: each type
represents the set of values which inhabit it. This model is mainly used to define the sub-typing
relation, wherein one type is a sub-type of another if all values of the first type are also values of
the second:

S 6 T ⇐⇒ JSK ⊆ JTK

The denotational semantics can also be used to derive theorems about types, such as identity
elements for union and intersection, and the involution of negation:

Jterm() u TK = Jterm()K ∩ JTK = JTK

J(¬term()) t TK = J¬term()K ∪ JTK = JTK

J¬¬TK = JTK

Unfortunately, this abstract model was not immediately useful for automatically deciding the
sub-typing relation in a programming language such as Erlang. Instead, we adapted an existing
algorithm (Pearce 2013) which checks the sub-typing relation by canonicalising the syntax of a
given type and performing an equality check (section 6.3 on page 100). The algorithm is a step
in the right direction: it dispenses with the semantic model entirely, but relies on it to prove the
correctness of all rewrites and transformations.

Indeed, the algorithm can be implemented in a programming language such as Erlang: sub-
typing and intersection functions for positive type atoms can be written using pattern matching,
and the canonicalisation function could be written recursively, terminating once nomore rewrites
are possible. Again, however, there is a problem: the algorithm can require exponential time in
the worst case due to the use of a disjunctive normal form in an intermediate step.

118

Table 7.1: Comparing the efficiency of different representations for boolean formulae

test for boolean operations
Representation compact? satisfiability validity ∧ ∨ ¬

Propositional formulas often hard hard easy easy easy
Formulas in DNF sometimes easy hard hard easy hard
Formulas in CNF sometimes hard easy easy hard hard
Ordered truth tables never hard hard hard hard hard
ROBBDs often easy easy medium easy easy

This chapter offers an alternative sub-typing algorithm based on BDDs: a graph-like data
structure often used to represent boolean decision procedures. Specifically, we will use Reduced
Ordered Binary Decision Diagrams (ROBBDs) to represent types, which are BDDs with restrictions
on the ordering and duplication of nodes in the graph. ROBBDs offer several advantages when
compared to other representations of boolean formulas, as shown by table 7.1: they are often
more compact, easier to check for satisfiability, and calculating the conjunction, disjunction, and
negation of BDDs1 is relatively straightforward (Huth and Ryan 2004, ch. 6).

Although our types are not propositional formulas in the strictest sense, types do form a
boolean algebra in the denotational semantics: union is disjunction, and intersection is conjunc-
tion.

The main contribution of this chapter is a novel approach for deciding a sub-typing relation
using BDDs, specifically ROBBDs. This requires modifying the standard ROBBD construction
algorithms because BDDs are typically used to represent boolean formulae consisting of inde-
pendent variables, but parts of a type may be related to each other via the sub-typing relation. We
will modify the algorithms to ensure that all BDD encodings of types are canonical; this allows
us to determine whether two types are semantically equivalent (with respect to the denotational
semantics in section 6.2) by checking whether two BDDs are structurally identical. In addition,
by using a multi-rooted graph based approach structural equality checks are further reduced to
checking whether two pointers are equal.

This novel method of deciding a sub-typing relation does not require normalising or rewriting
any type. Instead, types are directly encoded as BDDs by the algorithms presented herein, which
gradually construct a single graph which represents one or more types.

Overview This chapter relies on definitions and standard algorithms for constructing BDDs,
OBDDs, and ROBBDs, which are located in section 2.3 on page 27.

1The terms BDD and ROBBD are often used interchangeably: most implementations of BDD are actually ROBBD
due to the speed and size advantages they offer.

119

v ∈ T
def=

1 if T = term()

erlang:is_T(v) = ’true’ if T is primitive
v = l if T is a literal l
(v ∈ S)∨ (v ∈ U) if T = S tU

(v ∈ S)∧ (v ∈ U) if T = S uU

¬(v ∈ S) if T = ¬S

v = [] if T = []

(v ∈ Th)∧ (v ∈ Tt) if T = [Th | Tt]

erlang:is_list(v) = ’true’ if T = list()

v = { } if T = { }
n∧
i=1

elem(n, v) ∈ Tn if T = {T1, T1, . . . , Tn}
erlang:is_tuple(v) = ’true’ if T = tuple()

0 otherwise

Figure 7.1: Decidable type membership

We start by showing how the types from chapter 6 can be represented as BDDs, starting
with primitive types, then union, intersection, and negation types, followed by compound
types (section 7.1). Afterwards, we modify the standard ROBBD construction algorithms from
section 2.3 so that the BDDs which represent types are canonicalised as they are constructed,
using the sub-typing algorithm for positive type atoms from chapter 6. This canonicalisation
also eliminates semantically redundant nodes from the graph during construction, ensuring
each BDD is as small as possible (section 7.2). Finally, we show how sub-typing can be decided
by constructing a BDD and checking whether it is satisfiable, which is straightforward using the
Multi-Rooted Directed Acyclic Graph (MRDAG) approach used in this chapter (section 7.3).

7.1 Representing Types as BDDs

The denotational semantics for types associates the syntax of a type with the set of values
which inhabit it (section 6.2). Furthermore, determining whether a given Erlang value is a
member of a type is decidable: membership of primitive types can be decided by type test
BIFs, compound type membership by pattern matching, and union, intersection, and negation
type membership can be decided using the boolean operators for disjunction, conjunction, and
negation (figure 7.1).

As type membership can be represented by a boolean decision procedure, it stands to reason
that typemembership can also be represented as some kind of BDD.While the leaves of the BDDs

120

will continue to hold boolean values, the nodes will contain positive type atoms, i.e. primitive
or compound types without any unions, intersections or negations. All type operators will be
handled by the If-Then-Else algorithm instead, as each of them can be represented with an
if-then-else:

v ∈ JS t TK =⇒ (v ∈ JSK)∨ (v ∈ JTK)=⇒ if v ∈ JSK then 1 else v ∈ JTK

v ∈ JS u TK =⇒ (v ∈ JSK)∧ (v ∈ JTK)=⇒ if v ∈ JSK then v ∈ JTK else 0

v ∈ J¬TK =⇒ ¬(v ∈ JTK) =⇒ if v ∈ JTK then 0 else 1

The simplest type to represent with this approach is term(): as all values are members of
this type, it can be represented by the leaf #1:

v ∈ Jterm()K =⇒ 1 =⇒ #1

The rest of the type system will be handled incrementally, starting with primitive types, then
type operators, and finally compound types.

7.1.1 Primitive Types

Primitive types (Tp in section 6.1 on page 95) are relatively straightforward to represent as
BDDs as there are no compound type constructors, conjunctions, disjunctions, or negations.
Furthermore, as all primitive types are also positive type atoms, we can place the primitive type
directly into a node in the BDD.

Therefore, to obtain a pointer to a BDD representing v ∈ Tp in the MRDAG G, we can use
Find-Or-Create (algorithm 2 on page 33):

v ∈ JTpK =⇒ Find-Or-Create(Tp, #1, #0)

As Find-Or-Create only creates a new node if an equivalent one doesn’t exist in G, and both the
hi edge and lo edge point to leaves, the pointer returned by Find-Or-Create will represent a
reduced and ordered BDD for deciding membership of Tp. Figure 7.2 on the following page
shows two examples of how the primitive types atom() (figure 7.2a) and integer() (figure 7.2b)
are represented as BDDs.

For the sake of completeness, Add-Primitive defined in algorithm 5 on the next page will be
used to create ROBBDs for primitive types.

7.1.2 Union, Intersection, and Negations

At the beginning of this section on page 120 we noted that union, intersection, and negation types
correspond to logical disjunction, conjunction, and negation when deciding type membership.

121

0 1

atom()

(a) atom()

0 1

integer()

(b) integer()

Figure 7.2: Example BDD representations of primitive types

Function Add-Primitive(Tp,G)
Data: A primitive type Tp

Data: An MRDAG G
Result: A pointer to a BDD in the MRDAG representing a test for type Tp

r← Find-Or-Create (Tp,ptr(#1),ptr(#0),G)
return r

end
Algorithm 5: Add-Primitive for adding a primitive type to an MRDAG based ROBDD

Furthermore, as each of these logical operations can be represented by an equivalent if-then-else
expression, we can take advantage of the If-Then-Else algorithm discussed in section 2.3.3.

Assuming that Sp and Tp are pointers to the roots of BDDs in an MRDAG representing
decision procedures for v ∈ JSK and v ∈ JTK respectively, then we can create a BDD for any type
operator:

v ∈ JS t TK =⇒ if v ∈ JSK then 1 else v ∈ JTK=⇒ If-Then-Else(Sp, #1, Tp)

v ∈ JS u TK =⇒ if v ∈ JSK then v ∈ JTK else 0=⇒ If-Then-Else(Sp, Tp, #0)

v ∈ J¬TK =⇒ if v ∈ JTK then 0 else 1 =⇒ If-Then-Else(St, #0, #1)

As an example, we convert the type (S u T) tU into a BDD by repeated application of the
above rules:

v ∈ J(S u T) tUK

=⇒ if v ∈ JS u TK then 1 else v ∈ JUK

=⇒ if (if v ∈ JSK then v ∈ JTK else 0) then 1 else v ∈ JUK

=⇒ if (if Sp then Tp else 0) then 1 else Up

=⇒ if If-Then-Else(Sp, Tp, #0) then 1 else Up

=⇒ If-Then-Else(If-Then-Else(Sp Tp, #0), #1, Up)

122

In general, any t, u, and ¬ type can be converted into BDDs by first converting it into
if-then-else form and then applying the If-Then-Else algorithm.

7.1.3 Compound Types

The If-Then-Else algorithm combines existing BDDs into new ones, working from the bottom
up. Therefore, to convert the type (S u T) tU into a BDD, we must start at the deepest part of
the type and work our way towards the top:

1. Create a BDD for types S and T .

2. Create BDDs for types S u T (using the results from step 1) and U.

3. Create a BDD for type (S u T) tU using the result from step 2.

For compound types which form positive type atoms this is not an issue: types such as
[atom() | integer()] and {’req’, integer(), . . . , integer()} do not contain any type operators
and can therefore be placed in nodes. The issue arises when types do not form positive type
atoms: as [atom() | ¬integer()] contains a type operator it is not a positive atom and cannot be
placed in a BDD node.

Instead, we will take advantage of the fact that any compound type can be split into an
intersection where each member of the intersection effectively only checks the type of a specific
element by setting the types of all other elements to term():

J[Th | Tt]K⇐⇒ J[Th | term()] u [term() | Tt]K

J{T1, T2, . . . , Tn}K⇐⇒ J{T1, term(), . . . , term()} u {term(), T2, . . . , term()} u . . .

u {term(), term(), . . . , Tn}K

which, going back to our example, means:

[atom() | integer()]⇐⇒ [atom() | term()] u [term() | integer()]

[atom() | ¬integer()]⇐⇒ [atom() | term()] u [term() | ¬integer()]

This concept lies at the heart of the Add-Type in figure 7.3 on the following page, which
converts any type into a BDD which decides membership of that type. The function relies
on a context function f which represents a hole into which a primitive type, literal, or empty
compound type constructor can be placed to generate a positive type atom. For example, the
context function λx. [x | term()] produces the positive type atom [boolean() | term()]when

123

Add-Type(T , f) def=

Find-Or-Create(f(T), #1, #0) if T = term()

Find-Or-Create(f(T), #1, #0) if T is primitive
Find-Or-Create(f(T), #1, #0) if T is a literal
Add-Type(S, f)∨G Add-Type(U, f) if T = S tU

Add-Type(S, f)∧G Add-Type(U, f) if T = S uU

¬GAdd-Type(S, f) if T = ¬S

Find-Or-Create(f([]), #1, #0) if T = []

Add-Type(Th, fh)∧G Add-Type(Tt, ft) if T = [Th | Tt]

where fh = λx. [f(x) | term()] and
ft = λx. [term() | x]

Find-Or-Create(f({ }), #1, #0) if T = { }

Add-Type(T1, f1)∧G . . .∧G Add-Type(Tn, fn) if T = {T1, T2, . . . , Tn}
where f1 = λx. {f(x), term(), . . . , term()}

f2 = λx. {term(), f(x), . . . , term()}
...
fn = λx. {term(), term(), . . . , f(x)}

A∨G B
def= If-Then-Else(A, #1,B)

A∧G B
def= If-Then-Else(A,B, #0)

¬GA
def= If-Then-Else(A, #0, #1)

Figure 7.3: Add-Type function for converting a type to an MRDAG based BDD

applied to the primitive type boolean(). This context function allows us to descend through the
type while keeping track of which part of a compound type (if any) we are currently inside.

The Add-Type operates on an implicit global MRDAG, similar to how If-Then-Else and
Find-Or-Create behave. To convert a type T into a BDD representing a decision procedure for
membership of type T , we call Add-Type(T , λx.x), where the identity function represents a “top
level” hole. For term(), primitive types, and literals, we attempt to create a new node in the graph
which checks for membership of the primitive type f(T). We cannot simply return the leaf # for
type term(), however, as we might not be at the top-level context: term() 6= [term() | term()],
for example.

We then have the type operators: t, u, and ¬. In each case we make a recursive call to
Add-Type using the relevant operands and the same context function, combining the results using
an appropriate call to the If-Then-Else algorithm. This utilises a theorem from section 6.3 which

124

states that any operator can be “lifted” out of a compound type:

J[Sh t Th | Tt]K⇐⇒ J[Sh | Tt] t [Sh | Tt]K

J[Sh t Th | Tt]K⇐⇒ J[Sh | Tt] u [Th | Tt]K

J[¬Th | Tt]K⇐⇒ J[term() | Tt] u ¬ [Th | term()]K

When a non-empty compound type constructor is encountered by Add-Type it first splits the
constructor into an conjunction, where each member of the conjunction checks the type of a
single element by wrapping the existing hole with a compound type constructor. For example,
with the type [atom() | boolean() t integer()]:

v ∈ J[atom() | boolean() t integer()]K

=⇒ Add-Type([atom() | boolean() t integer()] , λx.x)

=⇒ Add-Type(atom(), λx. [x | term()]) ∧G Add-Type(boolean() t integer(), λx. [term() | x])

=⇒ Add-Type(atom(), λx. [x | term()]) ∧G

(Add-Type(boolean(), λx. [term() | x]) ∨G Add-Type(integer(), λx. [term() | x]))

=⇒ Find-Or-Create([atom() | term()] , #1, #0) ∧G

(Find-Or-Create([term() | boolean()] , #1, #0) ∨G

Find-Or-Create([term() | integer()] , #1, #0))

=⇒ If-Then-Else(Find-Or-Create([atom() | term()] , #1, #0) ,

If-Then-Else(Find-Or-Create([term() | boolean()] , #1, #0),

#1, Find-Or-Create([term() | integer()] , #1, #0)), #0)

which is equivalent to first converting the type into if-then-else syntax and then applying the

125

If-Then-Else and Find-Or-Create algorithms:

v ∈ J[atom() | boolean() t integer()]K

=⇒ v ∈ J[atom() | term()] u [term() | boolean() t integer()]K

=⇒ v ∈ J[atom() | term()] u [term() | boolean() t integer()]K

=⇒ v ∈ J[atom() | term()] u ([term() | boolean()] t [term() | integer()])K

=⇒ if v ∈ J[atom() | term()]K then v ∈ J[term() | boolean()] t [term() | integer()]K else 0

=⇒ if v ∈ J[atom() | term()]K then

(if v ∈ J[term() | boolean()]K then 1 else v ∈ J[term() | integer()]K) else 0

=⇒ if Find-Or-Create([atom() | term()] , #1, #0) then

(if Find-Or-Create([term() | boolean()] , #1, #0) then

1 else Find-Or-Create([term() | integer()] , #1, #0)) else 0

=⇒ If-Then-Else(Find-Or-Create([atom() | term()] , #1, #0) ,

If-Then-Else(Find-Or-Create([term() | boolean()] , #1, #0),

#1, Find-Or-Create([term() | integer()] , #1, #0)), #0)

This will create a BDD similar to the one shown in figure 7.4 on the next page. At the root,
membership of the positive type atom [atom() | term()] is checked, essentially checking that a
given term is a cons cell whose first element has type atom(). The other two nodes represent a
disjunction, checking that the second element of the cons cell is either a member of boolean()
or integer().

7.2 Canonicalisation

We convert the question of type membership (v ∈ JTK) into a BDD by converting types into
if-then-else expressions which can be handled by the If-Then-Else algorithm. Each type is
“flattened” as it is passed to If-Then-Else so that each node in the graph contains a positive type
atom. By rewriting types into this form we move all union, intersection, and negation operators
outside of compound type constructors. This allows us to build a canonical BDD for each type
consisting of unions, intersections, and negations of positive type atoms up to some (as yet
undefined) ordering on types. We will only need to define an ordering for positive type atoms
because nodes in our BDDs will only ever contain positive type atoms.

The If-Then-Else algorithm however assumes that the value contained in each node is
independent of all others on the same path. That is to say that the BDDs created by If-Then-Else

126

0 1

[atom() | term()]

[term() | boolean()]

[term() | integer()]

Figure 7.4: Type [atom() | boolean() t integer()] in BDD form

are canonical up to the boolean algebra they represent. When converting boolean formulas to BDDs
this is perfectly acceptable: we can encode boolean operations such as conjunction, disjunction,
negation, implication, and exclusive or using if-then-else expressions. In all of these situations
the variables are distinct: each variable only has one name and any dependencies between
variables are expressed via if-then-else expressions.

With type based BDDs however the “variables” are not independent. When we convert a
type to a BDD we imagine that we are checking the type of an imaginary variable v:

v ∈ Jboolean() u integer()K

= (v ∈ Jboolean()K)∧ (v ∈ Jinteger()K)

= if v ∈ Jboolean()K then v ∈ JintegerK else 0

This imaginary variable hints at the dependence between type atoms in nodes: if the entire
BDD represents a type test on variable v, then each node on a path through the BDD provides
information about the type of v. Essentially the If-Then-Else algorithm is designed to combine
if-then-else expressions which reason about the values of many distinct boolean variables, while
we are using BDDs to reason about the type of a single Erlang value.

Consider the ROBBDs in figure 7.5 on the following page which all use the same ordering
on types and which all represent a type semantically equivalent to the empty set. Figure 7.5a
and figure 7.5b are structurally identical due to the commutativity of the u operator. Figure 7.5c
is structurally different however, as it represents a semantically different boolean formula. For
example, if we substitute types with variable names (e.g. X is 1 iff v is a boolean(), and Y is true

127

10

integer()

boolean()

(a) boolean() u integer()

10

integer()

boolean()

(b) integer() u boolean()

1 0

term()

(c) ¬term()

Figure 7.5: Non canonicalised representations of semantically equivalent types

iff v is an integer()) we can see that the two “formulas” are semantically different:

boolean() u integer() =⇒ X∧ Y

integer() u boolean() =⇒ Y ∧ X

¬term() =⇒ Z

In order to canonicalise type BDDs we must therefore consider the relationship between types.
The BDD construction algorithm will be modified in two places: we will add a special case

for the Find-Or-Create algorithm handle the term() type, and we will use sub-typing and
intersection of positive type atoms in Restrict.

7.2.1 Modified Find-Or-Create Algorithm

The Find-Or-Create algorithm (algorithm 2) is the only place where nodes can be inserted into
the graph, and only when doing so will not create any duplicates. Unfortunately, it inserts a
node regardless of the value contained within it, including nodes for term(). We however know
that every value is a member of type term() as it is the top type, so any membership of the test
v ∈ Jterm()K will always succeed.

Therefore we will slightly modify the Find-Or-Create algorithm to deal with the term() type
explicitly. Algorithm 6 on the next page shows the new Find-Or-Create-Ty algorithm which is
different to Find-Or-Create in one place: on line 0 we check whether the variable v is term(),
and return the hi edge if so:

if v ∈ Jterm()K then S else T ⇐⇒ S

Find-Or-Create-Ty(term(),S, T)⇐⇒ S

128

Function Find-Or-Create(v, hi, lo, G)
Data: A node 〈v ? hi : lo〉 to add to the MRDAG G
Data: The existing MRDAG G
Result: A pointer to a node equivalent to 〈v ? hi : lo〉

TERM if v is term() then
1 return hi

if there is a node n ∈ G such that n = 〈v ? hi : lo〉 then
return pointer to n

else
insert 〈v ? hi : lo〉 into G
return pointer to the inserted node

end
Algorithm 6: Find-Or-Create-Ty algorithm for Type ROBDDs

0

(a) #0

1 0

term()

(b) Find-Or-Create(term(), #0, #1)

0

(c) Find-Or-Create-Ty(term(), #0, #1)

Figure 7.6: Canonicalised representations of semantically equivalent types

This change allows us to canonicalise occurrences of term()within types by always returning
the hi edge. The BDDs in figure 7.6 show how this canonicalisation occurs. In figure 7.6a we
have the constant BDD 0 which represents the empty type ¬term(), then we have used two
different algorithms to insert the node (term(), #0, #1) (representing the same type ¬term())
into the graph: Find-Or-Create (figure 7.6b) and Find-Or-Create-Ty (figure 7.6c). In the first
case the redundant term() node was created as the type term() is treated like any other variable,
but in the second case the hi edge was returned, avoiding the redundant node (which points to
#0).

7.2.2 Modified Restrict Algorithm

The current Restrict algorithm operates by considering the value of the node at the root of a
BDD. As the graph remains fully reduced and ordered at all times we know that the root node
will either be the variable being eliminated, or it will be another greater variable (according to
the ordering).

This is extremely useful when considering independent variables: if the variable being restric-
ted is at the root, we can create the positive and negative cofactors using the hi and lo edges of

129

1 0

number()

(a) number()

1 0

number()

(b) Positive cofactor

1 0

number()

(c) Negative cofactor

Figure 7.7: Incorrect cofactors of number() restricted w.r.t. integer()

the root, and in all other cases we return the root node itself (algorithm 4).
The BDDs in figure 7.7 show that this method is inadequate for calculating the cofactors of

types, however. The first BDD (figure 7.7a) represents the type number() while the second and
third show the positive and negative cofactors w.r.t. the type integer() (figures 7.7b and 7.7c).
When creating the positive cofactor we are making the assumption that v ∈ Jinteger()K, and in
the negative cofactor we assume that v /∈ Jinteger()K. If we consider the positive cofactor as an
if-then-else expression:

if v ∈ Jnumber()K then 1 else 0

then we start to see an issue when we wrap it in an if-then-else which asserts that v ∈ Jinteger()K

in the true branch::

if v ∈ Jinteger()K then if v ∈ Jnumber()K then 1 else 0 else 0

As the type assertion v ∈ Jnumber()K must be true if v ∈ Jinteger()K as (integer() 6

number()), we should simplify away the type assertion in the true branch of the if-then-else:

if v ∈ Jinteger()K then if v ∈ Jnumber()K then 1 else 0 else 0

= if v ∈ Jinteger()K then if 1 then 1 else 0 else 0 as integer() 6 number()

= if v ∈ Jinteger()K then 1 else 0

Note that the negative cofactor is unchanged: althoughwe know that v /∈ Jinteger()K (contrary
to the positive case) and integer() 6 number(), we also know that number()u¬integer() 6= ∅,
i.e. there are some values which are numbers that are not integers. As this type is inhabited by
some (but not all) values, we cannot eliminate the number() node in the negative cofactor as it is
not redundant. On the contrary, if integer() were at the root node and we were restricting type
number() we could no longer eliminate the root node when calculating the positive cofactor as
number() � integer().

130

1 0

number()

(a) number()

1

(b) Positive cofactor

1 0

number()

(c) Negative cofactor

Figure 7.8: Correct cofactors of number() w.r.t. integer()

In figure 7.7 on the previous page we have three different BDDs: the type number() and
its positive and negative cofactors w.r.t. integer() as per the current Restrict algorithm. As
number() and integer() are syntactically different, each cofactor is identical to the original. The
cofactors here are incorrect however as type assertions on the same value are not independent. For
example, for the positive cofactor in figure 7.7b we are assuming that v ∈ Jinteger()K. Therefore,
the type test v ∈ Jnumber()K will always return true and the correct positive cofactor would
be the hi edge of the root node: #1. Unfortunately we cannot perform the same optimisation
on the negative cofactor (where we assert that v /∈ Jinteger()K) as there are other members of
number() which are not also members of integer().

The first requirement of creating a canonical ROBBD is the ordering. We will use the ordering
from figure 7.9 on the following page. This relation has two important properties:

• for all types S and T such that S 6 T , either S = T or S < T .

• compound types are ordered element-wise.

The first property allows us to optimise the specialised restrict algorithm we will use to
canonicalise types, while the second property ensures that cons cells and tuples are ordered such
that all type tests where the non-term() type is in the same position occur adjacent to oneanother
in the graph. This last point is subtle: recall that we create type atoms in a way that the type
{T1, T2, . . . , Tn} is normalised to:

{T1, term(), . . . , term()} u {term(), T2, . . . , term()} u {term(), term(), . . . , Tn}

The ordering ensures that the type atoms {S1, term(), . . . , term()}, {T1, term(), . . . , term()}, and
{term(), T2, . . . , term()} are ordered as:

{S1, term(), . . . , term()} < {T1, term(), . . . , term()} < {term(), T2, . . . , term()}

131

boolean() <p atom() <p float() <p integer() <p

number() <p pid() <p port() <p reference()

S < T T < U

S < U
Trans

S 6= term()

S < term()
Term

Tp
1 <p Tp

2
Tp
1 < Tp

2
Prim

L1 <l L2
L1 < L2

Lit

L < Tp LitPrim
[] < [Th | Tt]

NilCons
Sh < Th

[Sh | St] < [Th | Tt]
ConsHd

Sh = Th St < Tt

[Sh | St] < [Th | Tt]
ConsTl

[Th | Tt] < list()
ListCons

list() < { }
ListTuple

{ } < {T1, T2, . . . , Tn}
TupleNil

m < n

{S1,S2, . . . , Sm} < {T1, T2, . . . , Tn}
TupleSize

S1 = T1 S2 = T2 . . . Sm−1 = Tm−1 Sm < Tm

{S1, . . . , Sm, . . . , Sn} < {T1, . . . Tm, . . . , Tn}
TupleEq

{S1,S2, . . . , Sn} < tuple()
TupleN

Figure 7.9: Ordering relation for positive type atoms

when S1 6 T1. This has an effect when calculating sub-typing. For example, although the first
and third atoms intersect:

{S1, term(), . . . , term()} u∗ {term(), T2, . . . , term()} = {S1, T2, . . . , term()}

the sub-typing relation does not hold:

{S1, term(), . . . , term()} � {term(), T2, . . . , term()}

By contrast, while the first and second atoms intersect, the sub-typing relation also holds because
the non-term() type appears in the same position (as S 6 T):

{S1, term(), . . . , term()} 6 {T1, term(), . . . , term()}

Therefore this ordering of types ensures that:

∀S, T .S 6 T =⇒ @U.U � T ∧ S < U < T

The final step in canonicalising type ROBBDs is tomodify the restrict algorithm to eliminate
redundant nodes using the sub-typing relation. This modified version shown in algorithm 7

132

Function Restrict-Type(S, p)
Data: Type S to restrict on
Data: Pointer p representing an ROBBD in an MRDAG
Result: Pointers to the positive and negative cofactors of p restricted to type T

respectively
T ← type held in node p
if S = T then

return (hi(p), lo(p))
end
else if S 6 T then

return (hi(p),p)
end
else if S u∗ T 6= ¬term() then

return (p,p)
end
else

return (lo(p),p)
end

end
Algorithm 7: Restrict function for MRDAG based Type ROBDDs

operates specifically on types, not boolean variables. As before, if the two types are syntactically
equal we bypass the root node p entirely, returning the hi and lo edges. There are three more
possible cases to consider:

1. If S 6 T we know that once the type test for S succeeds, then the type test for S will
succeeds, so we can return the hi edge of T as the positive cofactor. The negative cofactor
remains unchanged because the type test for T may still succeed if the type test for S fails
(as we know S 6= T).

2. If Su∗ T 6= ¬term()we know that the two types are not disjoint and the type test for T may
either succeed or fail (but will not always succeed as S � T). We therefore return p as the
positive and negative cofactors.

3. If S and T are disjoint (the else branch) and we know that the type test for S has succeeded,
then we know that the type test for T will always fail, so we return the lo edge as the
positive cofactor.

This modified Restrict algorithm (now called Restrict-Type) canonicalises types beyond
the boolean algebra they represent because it has knowledge of the relationship between positive
type atoms. The remainder of the BDD construction remains unchanged: we do not create
duplicate nodes, we operate on a single MRDAG, and we construct all BDDs using if-then-else
expressions.

133

0

Figure 7.10: BDD for type [integer() | atom()] u ¬ [number() | ¬integer()]

7.3 Checking the Sub-Typing Relation with BDDs

So far in this chapter we have shown how type membership tests of the form v ∈ JTK can be
encoded as ROBBDs. For each semantically equivalent types S and T the Add-Type algorithm creates
structurally identical BDDs: Add-Type(S) = Add-Type(T). Additionally, as these algorithms
operate on a single MRDAG and return pointers to the roots of BDDs within them, we can check
for semantic equality between two types by first converting them to BDDs and then checking
whether the pointers returned by Add-Type are equal.

To check sub-typing using this approach we recall that sub-typing is defined using the subset
relation (definition 6.2.1 on page 99):

S 6 T
def= JSK ⊆ JTK

which is equivalent to:
JS u ¬TK = ∅

meaning that S is a sub-type of T if there is no value in S which is not also in T . As a type
membership question, this is equivalent to the following statement being unsatisfiable:

S 6 T ⇐⇒ @v. v ∈ JS u ¬TK

Therefore we can check sub-typing by constructing a BDD: if the BDD for type S u ¬T is unsatis-
fiable, then S 6 T :

S 6 T ⇐⇒ Add-Type(S u ¬T) = #0

The BDD in figure 7.10 represents the following type:

[integer() | atom()] u ¬ [number() | ¬integer()]

As the BDD in figure 7.10 is unsatisfiable, the sub-typing relation holds.
The modified restrict and if-then-else algorithms use the sub-typing relation to remove

redundant type tests from BDDs as they are constructed, ensuring that semantically equivalent
types are represented by structurally identical BDDs. As S 6 T holds when S u ¬T = ¬term(),
and as ¬term() is represented by a single #0 leaf, the sub-typing relation can be determined by
checking whether the result of Add-Type(S u ¬T) is a pointer to #0.

134

10

{integer(),term()}

{term(),boolean()}

{term(),atom()}

Figure 7.11: Type BDD for [integer() | atom()] u ¬ [number() | boolean()]

7.3.1 Producing Counter-examples for Sub-Typing

The sub-typing relation S 6 T holds when the BDD for S u ¬T is unsatisfiable, i.e. when there is
no path from the root node to the 1 leaf. When the BDD is satisfiable the sub-typing relation does
not hold, and furthermore the path from the root note to the 1 leaf provides a counter-example
to the sub-typing relation.

For example, the BDD in figure 7.11 represents the following type:

[integer() | atom()] u ¬ [number() | boolean()]

The sub-typing relation does not hold in this case, and by following the path from the root to the
1 leaf we obtain the following type (by taking the intersection of the types found along the path):

= [integer() | term()] u ¬ [term() | boolean()] u [term() | atom()]

= [integer() | atom()] u ¬ [term() | boolean()]

This type represents the set of values in S which are not also members of T : 2 element tuples
whose first element is an integer() and whose second element is an atom() but not a boolean().

These counter-examples can be used to give additional diagnostic information wherever the
sub-typing relation is being used: if we expect the sub-typing relation to hold and it does not,
we can provide counter-examples to the programmer to assist them with debugging.

135

Chapter 8

Hybrid Verification of Erlang

Communications

Back in chapter 4 we presented a communicating fragment of Core Erlang called CoErl. The
language was intended to serve as a formal model of Erlang’s pattern matching and guard
evaluation, and as an environment for reasoning about Erlang’s asynchronous message passing
behaviour. In chapter 5 CoErl served as the basis for a trace theory which modelled communica-
tions as a sequence of events, which eventually led to the development of a sub-typing system
for CoErl in chapter 6.

Each of these ideas has been presented in an abstract setting, in isolation from the real Erlang
implementation as seen in Erlang/OTP. Furthermore, we haven’t used these ideas to address
the central topic of this thesis: communication discrepancies in Erlang programs. This chapter
addresses both of these points together in the form of a hybrid analysis of Erlang programs with
the goal of automatically detecting communication discrepancies. The analysis is a combination
of static analysis and runtime verification. Using static analysis we can easily detect some
discrepancies based on violations of the sub-typing relation, while runtime verification allows
us to intercept messages which will crash processes. The two techniques are complementary
because while static analysis enables early detection of errors, runtime verification can be used
where static analysis cannot easily decide whether or not communication is “safe”.

The verification system will be written in Erlang as it offers first-class access to the Erlang
compiler, virtual machine, standard library, and type handling system.

Overview We first present the basis of the hybrid analysis - a notion of message compatibility
which we will use to reason about whether a sent message is compatible with a given receive

136

expression (section 8.1).
Then we consider the two distinct aspects of the hybrid analysis in turn: static analysis

(section 8.2) and runtime verification (section 8.3). With regards to static analysis, we look at
how we can infer types for sent and received messages in a system at compile time. In addition,
we use the sub-typing relation can be used to improve upon the Erlang compiler’s existing
mechanisms for detecting dead clauses and redundant type tests (sections 8.2.2 and 8.2.3).

We then turn our attention to runtime verification. First, we look at how communication dis-
crepancies can occur at runtime in ways that cannot be detected at compile time. Specifically, we
will examine how server processes written using the gen_server library behave when combined
with advanced Erlang/OTP features such as code reloading (section 8.3.1). This is followed by a
description of how runtime type checking can be performed to protect generic server processes
from certain classes of runtime type errors (section 8.3.2).

An overview of an implementation follows, describing how each of the concepts from the
static analysis and runtime verification sections can be implemented in Erlang, including the
sub-typing relation which forms a core part of the analysis (section 8.4). We look at howmessage
types can be inferred at compile time and how this information can be stored for access at
runtime. Finally, we look at a lightweight implementation of gen_serverwhich is then modified
to check the types of incoming messages at runtime in order to protect server processes from
communication discrepancies which could lead to crashes. This is accompanied by a brief report
on modifying the real gen_server module so that it also performs runtime type checking.

8.1 Message Compatibility

In order to detect communication discrepancies in Erlang programs we must consider the
relationship between messages sent to a process and the messages received by that process. For
example, if a message is sent to a process which never receives it, that message will linger in the
mailbox until the process exits. Likewise, if a process attempts to receive a message that was
never sent to it then the process will wait – potentially forever.

These discrepancies are not always as clearly defined as something not being sent or some-
thing not being received because programming errors can lead to a subtle discrepancy where a
message which appears to be receivable is in fact not, perhaps due to a typo or a transposition of
elements in a tuple. For example, the function start/0 in listing 10a on the next page spawns a
server process and then becomes the client. The client sends the message {get, From} to the
server, but the server is expecting a 3-element tuple of the form {get, From, Ref}. When we

137

-module(discrep1).
-export([start/0,server/1,client/1]).

server(State) ->
receive
{get, From, Ref} ->
io:fwrite("Server responding~n"),
From ! {resp, State, Ref},
server(State)

end.

client(Server) ->
io:fwrite("Client sending request~n"),
Server ! {get, self()},
% missing element above
receive
{resp, St, _Ref} ->
io:fwrite("Client got ~p~n", [St])

end.

start() ->
Server = spawn(?MODULE, server, [42]),
client(Server).

(a) Client with wrong request format

-module(discrep2).
-export([start/0,server/1,client/1]).

server(State) ->
receive
{get, From, Ref} ->
io:fwrite("Server responding~n"),
From ! {resp, State, Ref},
io:fwrite("Server sending 'done'~n"),
From ! done

end,
io:fwrite("Server exiting~n").

client(Server) ->
Ref = make_ref(),
io:fwrite("Client sending request~n"),
Server ! {get, self(), Ref},
receive
{resp, S, Ref} ->
io:fwrite("Client received ~p~n", [S])

end,
timer:sleep(1000), % wait a little bit

Key = message_queue_len,
{_, N} = process_info(self(), Key),
io:fwrite(
"~p messages in mailbox ~n", [N]).

start() ->
Server = spawn(?MODULE, server, [42]),
client(Server).

(b) Server sends an unreceived message

Listing 10: Erlang programs with message compatibility ussues

run this program we see that the client never receives a reply from the server because of this
initial communication discrepancy:

1> discrep1:start().

Client sending request

<hangs here>

The client will wait for a response forever. If the client’s receive expression contained a finite
timeout the program would eventually continue executing, but the discrepancy would still exist:
the type of the request send by the client is incompatible with the type of the receive clause in
the server.

138

In listing 10b on the preceding page we have a different problem where the server sends a
’done’ message to the client in addition to the response:

1> discrep2:start().

Client sending request

Server responding

Server sending 'done'

Client received 42

Server exiting

1 messages in mailbox

ok

2> process_info(self(), message_queue_len).

{message_queue_len,1}

The extra ’done’ message will linger in the mailbox until it either exits, or another piece of
code happens to receive a message of the same type (which might interfere with some other
communications).

Both of these discrepancies can be reasoned about using the sub-typing relation from chapter 6.
In listing 10a the type of the sent message by the client is {’req’,pid()} and the type of message
accepted by the the receive clause in the server is {’req’, term(), term()} based on pattern type
inference. Note that the sub-typing relation does not hold here:

{’req’,pid()} � {’req’, term(), term()}

In the case of listing 10a we see that the type of the request is {’req’,pid(), reference()} and
that the type of the receive clause is the same as before. Here, the type of the sent message is a
sub-type of the inferred receive type:

{’req’,pid(), reference()} 6 {’req’, term(), term()}

Therefore, we can approximate whether a message is compatible with a receive expression
via the sub-typing relation: a message is compatible with a receive expression if the type of
the message is a sub-type of the receive type. This will form the basis of the hybrid analysis:
we will use the sub-typing relation to reason about whether sent messages are compatible with
receive expressions both at compile time and runtime.

139

loop(N) ->
receive
{add, M} when is_number(M) ->
loop(N+M);

{sub, M} when is_number(M) ->
loop(N-M);

{get, From, Ref} ->
From ! {res, N, Ref},
loop(N);

stop ->
io:fwrite("stopping.~n"),
ok

end.

(a) Server code

client1(Server) ->
Server ! {add, 10},
Server ! {sub, 5},
Server ! {get, self()}.

client2(Server) ->
Server ! {add, 10},
Server ! {sub, hello},
Ref = make_ref(),
Server ! {get, self(), Ref},
receive

{res, State, Ref} ->
io:fwrite("Got ~p~n", [State])

end.

(b) Client code

Listing 11: Counter server and client with communication discrepancies

8.2 Static Analysis

Certain checks can be performed automatically at compile time. Using the sub-typing system
from chapter 6 we can detect certain kinds of communication discrepancies at compile time.
These checks, however, are somehwat limited due to Erlang’s “open world” communication
model where any process can communicate with any other. For example, a data flow analysis
of PIDs used to ascertain which messages are sent to which process will likely be unable to
track PIDs obtained via a registered name lookup, retrieved from an ETS table, or if the lookup
depends on data provided via runtime configuration. We can nonetheless infer types for sent
and received messages using our sub-typing system.

The sub-typing system can also be used to detect other kinds of “code smell” entirely auto-
matically. Namely, we can detect dead clauses in case and receive expressions, and we can
improve upon the compiler’s ability to detect redundant type tests in guard expressions across
multiple clauses.

8.2.1 Message Compatibility

In chapter 3 on page 38 we considered the different kinds of communication discrepancies
that can occur in Erlang programs. These discrepancies fell into two main categories: messages
sent but never received, and messages received that were never sent. The code in listing 11
exhibits both of these types of communication discrepancy, and we can detect most of them with
sub-typing alone.

140

To determine whether a discrepancy exists we consider each sent message with all of the
receive expressions in the body of the recipient. For each message sent we expect to see a receive
clause capable of matching that message. If there is no such clause we know that the message will
never be received. Likewise, if we see a receive clause and never see a sent message which can
match it, then we can say that clause is “unused”.

In terms of types, we consider the type of each sent message with the type of each receive

clause in the recipient process’ code. For each sent message with type Swe expect to find at least
one receive clause with a type T such that S 6 T . On the other hand for each receive clause
with type T we expect to find a sent message which has a type S such that S 6 T .

We follow with some examples of how we can detect the discrepancies in listing 11:

Messages sent but never received The client1 function sends a 2-element tuple which will
never be received by the server. That is, for the set of all receive clause types in the server:

Ts = [{’add’,number()}, {’sub’,number()}, {’get’, term(), term()}, ’stop’]

there is no clause which will accept the message:

@T ∈ Ts. {’get’, term()} 6 T

There is a similar situation in client2 involving the {sub, hello} message:

@T ∈ Ts. {’get’, ’hello’} 6 T

Messages received but never sent The client1 function never sends a proper get or stop
message to the server. For the set of all message types sent to the server:

Ss = [{’add’, 10}, {’sub’, 5}, {’get’, term()}]

there is no sent message which could ever match either of the clauses:

@S ∈ Ss.S 6 {’get’, term(), term()}

@S ∈ Ss.S 6 ’stop’.

Again, there is a similar discrepancy between client2 and the server where the sub clause of
the receive is never used:

@S ∈ Ss.S 6 {’sub’number()}

Whenever we detect one of these discrepancies it should be presented to the programmer.
These discrepancies often occur in pairs, too: an unreceived message discrepancy is usually

141

accompanied by an unsent message discrepancy. One thing we cannot do however is assign
blame because we do not know which (if any) of the implementations is correct. We have no
type annotation or behavioural contract to work from, so the best thing to do is to report the
discrepancies to the programmer as early as possible so that they can choose the best course of
action. The aim of the analysis is not to reject programs or force a specific programming style
upon Erlang users, but rather to alert them to communication discrepancies in their programs
which are likely to affect behaviour of cause memory leaks.

One important and unresolved question is how to determine which sent message corresponds
with which receive expression, if any. A data flow analysis could be used to track PIDs which
are returned from calls to spawn which would allow us to determine which process a message is
sent to, but it would not allow us to determine exactly which receive expression will receive the
message, if any. An alternative approach would be to only perform analysis on processes with
registered names, i.e. locally or globally registered unique identifiers which map to at most one
PID.

Regardless of the approach used, a data flow analysis combined with type inference must
be used on the sender’s code to determine the types of messages which can be sent, and a call
graph of the receiving code must be constructed to enumerate all receive expressions. This also
presents an interesting question concerning the separation of code into separate modules and
the conceptual boundaries that often accompany them: as both the sender and receiver can
call functions in other modules which perform their own communications, should we consider
message compatibility across all of these modules, even if the programmer did not write them?
With respect to correctness it would perhaps be best to analyse all sent and received messages to
find as many discrepancies as possible. The risk is that we alert the programmer to discrepancies
which they have no ability to correct, or would be unable to analyse modules for which no source
code is available1. On the other hand, if we only consider discrepancies within the programmer’s
own code (i.e. within a single module) our analysis becomes more straightforward, especially as
we are guaranteed to have source code available. The disadvantage is that some communication
discrepancies may go undetected since we do not consider how code in other modules sends or
receives messages which in the latter case may affect the execution of the current process.

This chapter uses the latter approach: only code within a module will be analysed at compile
time. Fortunately, this works well for Erlang modules which follow the convention of abstracting
away all implementation-specific functionality behind a clear API. For example, modules which
implement the gen_server behaviour typically export functions for interacting with the server

1Erlang modules are compiled independently and therefore it is possible to use modules which are only available in
bytecode form.

142

instead of requiring that clients make calls to the gen_server module directly. In addition,
when behaviours like gen_server are used by the programmer the analysis becomes even more
straightforward because we know in advance which callback function corresponds to each
request.

8.2.2 Dead Clause Detection

In section 2.1.1 we noted that the Erlang compiler can already detect some kinds of dead clauses:
those which appear after a “wildcard” clause. We can improve upon this check using our sub-
typing relation by checking whether the intersection of a type’s clause and the negation of the
types of all prior clauses is empty. For example, with the following receive expression we can
use the sub-typing relation to detect that the third clause is dead:

receive

X when is_integer(X) -> e1;

X when is_float(X) -> e2;

X when is_number(X) -> e3

end.

The inferred type of the first clause is integer() based on the is_integer() type test. Likewise,
the inferred type of the second clause is float(). However, we can also say that the type of the
second clause is the inferred type of the second clause and not any of the types of the previous
clauses, i.e. float u ¬integer(). We can do this because in order for a value to match the second
clause it must not have matched the first clause.

When we repeat this process for the third clause we infer the type number() and intersect it
with the negation of float() and integer():

number() u ¬(float() t integer())

= number() u ¬number()

= ∅

By using this technique to analyse Erlang code we can detect dead clauses before we ever get
to the stage of checking for communication discrepancies, allowing us to provide the programmer
with more information at an earlier time.

8.2.3 Pattern and Guard Refinement

143

-module(redundant).
-export([f/1]).

f(X) when is_atom(X) ->
branch_one;

f(X) when not is_boolean(X) ->
branch_two.

(a) Erlang source code

{function, f, 1, 2}.
{label,1}.
{line,[{location,"redundant.erl",4}]}.
{func_info,{atom,redundant},{atom,f},1}.

{label,2}.
{test,is_atom,{f,3},[{x,0}]}.
{move,{atom,branch_one},{x,0}}.
return.

{label,3}.
{test,is_boolean,{f,4},[{x,0}]}.
{jump,{f,1}}.

{label,4}.
{move,{atom,branch_two},{x,0}}.
return.

(b) Compiled to human-readable BEAM bytecode

Listing 12: Erlang function with a redundant type test in a guard

Another optimisation we can perform with our type system is the elimination of redundant
patterns and guards from clauses. As an example, consider the code in listing 12a: the first
clause matches all atoms and the second clause matches all values which are not booleans.
The second clause will always match because all booleans will be handled by the first clause
as boolean() 6 atom(). Therefore, the guard in the second clause is redundant because as
not is_boolean(X) will always return true.

Despite this, the Erlang compiler does not detect the redundant test and it is present in
the BEAM bytecode generated by it. This bytecode (shown in listing 12b) is an imperative
assembly-like version of f. Label 2 represents the first clause of the function: if the test is_atom
fails, then we jump to label 3 otherwise we return ’branch_one’. Label 3 represents the second
clause where we check whether X is a boolean: if it is not a boolean then we return ’branch_two’,
otherwise we raise an exception stating that no function clause has matched.

If we look at the types of the clauses we can see that the second clause makes no change to
the existing type constraints. The first clause has type atom() and the second clause has type
¬boolean(). Therefore, after the first clause we know that the argument X cannot be an atom
because it would’ve matched the first clause:

¬atom()

Thenwhenwe add the type for the second clausewenotice that the type is semantically equivalent

144

to what it was already:

¬boolean() u ¬atom()

= ¬atom() as boolean 6 atom()

As the new clause doesn’t change the type we already have, we know that its patterns and
guards can be removed and replaced with wildcards without affecting which values will match
it. In this example we can remove the not is_boolean() guard from the second clause without
affecting the behaviour of the function.

8.3 Runtime Verification

To address the limitations of static analysis we will complement it with runtime verification
where we will check the types of incoming messages at runtime to ensure they do not consti-
tute a communication discrepancy. This combines compile-time type inference with runtime
instrumentation to intercept messages before they crash a process. We will examine how com-
munication discrepancies can exist in the gen_server library and how advanced features such
as live code reloading can make static analysis an almost futile task. In addition, we look at how
we can perform type checking at runtime rather than compile time.

8.3.1 Communication Discrepancies in gen_server

Servers implemented using the gen_server library are particularly susceptible to communication
discrepancies because their callback functions typically cannot handle unexpected requests,
instead raising a function clause exception.

In chapter 3 on page 38 we saw that server processes such as the one implemented in listing 7
on page 25 will crash when they are sent a message of the wrong format or type:

3> {ok, ServerGen} = my_counter_gen:start(0).

{ok,<0.81.0>}

4> my_counter_gen:add(ServerGen, hello).

ok

=ERROR REPORT====

** Generic server <0.81.0> terminating

** Last message in was {'$gen_cast',{add,hello}}

** When Server state == 0

** Reason for termination ==

145

** {badarith,[{erlang,'+',[0,hello],[]},

{my_counter_gen,handle_cast,2,

[{file,"my_counter_gen.erl"},{line,23}]}

[...]]}

=CRASH REPORT====

crasher:

initial call: my_counter_gen:init/1

pid: <0.82.0>

registered_name: []

exception error: an error occurred when evaluating an arithmetic expression

in operator +/2

called as 0 + hello

in call from my_counter_gen:handle_cast/2 (my_counter_gen.erl, line 23)

in call from gen_server:try_dispatch/4 (gen_server.erl, line 637)

[...]

These crashes occur due to the violation of an implicit behavioural contract between the server
and the client, i.e. that the client will send well-formed requests and that the server will send a
reply when one is expected. When the server violates this implicit contract the client is likely to
block when waiting for a response, but when the client violates the contract the server is likely
to crash, taking all of its state with it.

The nature of these crashes poses an interesting question because although the client violated
this implicit contract, the server crashed. Should the server crash due to the client violating
the contract? As before when we were performing a static analysis, we do not know whether
the client implementation or the server implementation is correct, if any. Once again we will
therefore focus on alerting the programmer to these discrepancies, except this time we will
additionally prevent the server from crashing.

Live Code Reloading

Wewill also be able to detect communication discrepancies which occur due to a live code reload,
where an Erlangmodule is replacedwith a new version at runtimewhile the application is executing.
Discrepancies can occur during a live code reload even if each version of the module has no
communication discrepancies, but where discrepancies in the format and type of messages exists
between the two versions.

146

-module(my_counter_gen).
-behaviour(gen_server).
-vsn(1).

-export([start/1]).
-export([init/1,

handle_call/3,
handle_cast/2]).

start(N) ->
gen_server:start(?MODULE, [N], []).

init([N]) ->
{ok, N}.

handle_cast({add, N}, State) ->
{noreply, State+N};

handle_cast({sub, N}, State) ->
{noreply, State-N}.

handle_call(get, _From, State) ->
{reply, State, State}.

(a) Version 1 of my_counter_gen

-module(my_counter_gen).
-behaviour(gen_server).
-vsn(2).

-export([start/1]).
-export([init/1,

handle_call/3,
handle_cast/2]).

start(N) ->
gen_server:start(?MODULE, [N], []).

init([N]) ->
{ok, N}.

handle_cast({op, Op, N}, State) ->
State1 = case Op of

add -> State+N;
sub -> State-N

end,
{noreply, State1}.

handle_call(get, _From, State) ->
{reply, State, State}.

(b) Version 2 of my_counter_gen

As an example of how code reloading can affect communications in a systemwe will consider
the my_countermodule from listing 7 on page 25 (which has been duplicated in listing 13a for
ease of reference). We interact with the server as before by calling the cast and call functions
in the gen_servermodule. In addition, we now check the version of the module loaded in the
virtual machine, which is taken from the vsn attribute:

1> {ok, Server} = my_counter_gen:start(0).

{ok,<0.80.0>}

2> gen_server:cast(Server, {add, 20}).

ok

3> gen_server:cast(Server, {sub, 5}).

ok

4> gen_server:call(Server, get).

15

5> beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,[1]}}

147

In listing 13b we have a different version of our counter where we have decided that it is
excessive to have two different request formats for adding and subtracting numbers. Instead we
use a single 3-element op request format whose second element is the name of the operation,
and the third is the amount to add or subtract by. Again, we can interact with this server using
call and cast:

% start a new erlang shell

1> {ok, Server} = my_counter_gen:start(0).

{ok,<0.80.0>}

2> gen_server:cast(Server, {op, add, 20}).

ok

3> gen_server:cast(Server, {op, sub, 5}).

ok

4> gen_server:call(Server, get).

15

5> beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,[2]}}

Each of these two versions of the counter work as expected when they are sent messages
of the correct format, but a serious communication discrepancy can occur if we load the new
version of the module at runtime when a counter server is already running.

First, we start a counter using version 1 of the module (listing 13a):

1> code:load_file(my_counter_gen).

{module,my_counter_gen}

3> {ok, Server} = my_counter_gen:start(0).

{ok,<0.82.0>}

4> gen_server:cast(Server, {add, 20}).

ok

5> beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,[1]}}

Then we load the second version of the module (listing 13b) but we continue to use the request
format from the first version, simulating a race condition:

6> % place new version of module in code path

7> code:load_file(my_counter_gen).

148

{module,my_counter_gen}

8> beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,[2]}}

9> gen_server:cast(Server, {sub, 5}).

ok

10> =ERROR REPORT==== 16-Jan-2020::16:38:11.351345 ===

** Generic server <0.82.0> terminating

** Last message in was {'$gen_cast',{sub,5}}

** When Server state == 20

** Reason for termination ==

** {function_clause,[{my_counter_gen,handle_cast,

[{sub,5},20],

[{file,"my_counter_gen.erl"},{line,16}]},

When we loaded the second version of the my_counter_gen module the machinery of the
gen_server library automatically started using the new version of the code. This meant that the
server automatically transitioned from the code in listing 13a to the code in listing 13b with the
request format changing in the process. Then, we sent a message to the server using the old
request format, crashing it.

These race conditions can occur during live code reloads for a variety of reasons:

• the client code might be in a separate module, meaning that malformed requests will be
sent until the client code is also reloaded; or

• the client code and server code might be in the same module, but a request message might
be “in flight” while the code is being reloaded; or

• the client code could be executing during the code reload, meaning that the old request
format will be used even if the new code is loaded.

There are several ways to avoid this race condition such as manually ensuring that the second
version of a module is compatible with the first version, manually flushing the server’s mailbox
during a code reload (and therefore causing clients waiting on responses to time out), or perhaps
simply allow the server to crash.

149

8.3.2 Type Checking

Runtime verification offers a method of automatically verifying whether a message is compatible
with a server process at runtime, allowing us to bypass issues which only exist at compile
time such as determining which version of code will be running, or determining exactly which
processes will be communicating with the server and how. By intstrumenting the gen_server
module we can perform type checking at runtime before the messages are passed to callback
functions, allowing us to reject messages which would definitely crash the server. These generic
behaviours are an ideal candidate for instrumentation because of the separation of concern
between callbacks, the exposed API, and internal functionality. For example, if a bug is fixed
in the gen_server module and the fixed version is loaded into the BEAM, all modules which
implement the behaviour will benefit from the bugfix automatically without being recompiled.

Assuming that the type of an incoming message is S and the inferred type of messages
accepted by the corresponding callback function is T , then the message will be passed to the
callback function if and only if S 6 T . The type S can be determined at runtime by inspecting the
message directly: at runtime the message is a concrete Erlang term, not an expression. To infer
the types of messages accepted by the callback function we use exactly the techniques described
in section 6.4: infer the types of patterns, guards, clauses, and then sequences thereof.

Unfortunately, it is difficult to inspect the source code of a function at runtime and in many
circumstances it may not even be available. To address this we can perform fully automatic
compile-time type inference on the callback functions to determine the types of messages they
will accept, and then we can automatically embed this metadata in the module so that it is
available at runtime.

8.4 Implementation

The remainder of this chapter gives an overview of the implementation of these ideas for hybrid
verification. First, we must implement the sub-typing algorithm chapter 7 by transliterating
the algorithms into Erlang, taking advantage of graph libraries available in Erlang/OTP. Then
we look at how we can statically infer message types from Core Erlang source code, discussing
some quirks of the Core Erlang specification and the Erlang/OTP compiler which complicate the
analysis. These inferred types are then made available at runtime by automatically generating
and injecting a function definition into the module under analysis. This function can be called at
runtime to retrieve the statically inferred message types for a gen_server callback function.

Bringing all of this together, we then look at a lightweight model of the gen_server module

150

and instrument it to perform runtime type checking using a combination of sub-typing and the
inferred callback types. The result is a fully automatic system which infers types of messages
accepted by callbacks at compile time, automatically injects this information into modules during
compilation, and then performs runtime type checking using the sub-typing algorithm to prevent
crashes caused by message incompatibility.

8.4.1 Sub-Typing

In chapter 7 we dispensed with a rewrite-based approach and instead used BDDs to represent
types. An important property of these BDDs is that they are canonical: any two semantically
equivalent types are represented by structurally equivalent BDDs.

The algorithms presented in that chapter were also stateful: they mutated data structures
without returning them. It is easier to implement the Restrict and If-Then-Else algorithms
this way because it avoids having to propagate the state of the MRDAG and memoisation
table between every function call. Unfortunately Erlang does not allow us to mutate variables
nor maintain any global variables, which presents a problem for our implementation of these
algorithms.

The solution is Erlang Term Storage (ETS), a tabular datastore built into the Erlang runtime
system (Erlang/OTP Team 2019b, Tables and Databases). Using ETS we can represent a mutable
global state easily, and we can take advantage of all the optimisations and algorithms used for
efficient insertion and lookup.

ETS tables allow us to represent the memoisation tables used by If-Then-Else easily, but not
the MRDAG which actually contains the BDD. Fortunately, the digraph module in the standard
library does exactly what we need: it allows us to insert, update, and delete nodes and edges
in a directed acyclic graph, returning identifiers of nodes rather than the nodes themselves .
This library even uses ETS tables to represent the graphs it creates, so we get global mutable
state for free. The rest of the sub-typing implementation is a transliteration of the positive type
intersection function, the If-Then-Else algorithm, and the Restrict algorithm.

The result is a function called is_subtype/2which takes two types as inputs and returns a
boolean value:

1> types:is_subtype({cons,integer,atom},{cons,number,boolean}).

false

2> types:is_subtype({cons,integer,atom}.{cons,number,{neg,integer}).

true

151

Erlang
source

Abstract
Format

Core
Erlang . . . BEAM

file
parse compile

Type
Information

Communication
Discrepancies

infer

detect print

Figure 8.1: Core Erlang’s position in the Erlang compiler

8.4.2 Type Inference

To determine message compatibility automatically we will need to infer the types of messages
and receive expressions. In section 6.4 we presented algorithms for inferring the types of CoErl
patterns, guards, and clauses. Here we will operate on real Erlang code, so we will need to
write an Erlang implementation of the type inference algorithms that operates on Erlang abstract
syntax trees.

To make this process easier we will work on the Core Erlang representation of a module
because it removes a large amount of Erlang’s syntactic sugar, normalises function definitions,
and prohibits bound or repeated variable names in patterns.

The Erlang compiler translates the functional syntax of Erlang code into imperative BEAM
bytecode via a number of intermediate formats. Core Erlang is one of these intermediate formats,
originally created for the purposes of making static analysis of Erlang code easier as part of the
HiPE project (Kostis Sagonas et al. 1998). The current version of the Erlang compiler translates
Erlang source code into Core Erlang after expanding macro definitions and before converting to
other low-level formats. The diagram in figure 8.1 shows how we will be using Core Erlang for
our static analysis: we will compile Erlang source code to Core Erlang, infer types of sent and
received messages, and use it to detect communication discrepancies.

We normally compile Erlang source code to BEAM bytecode without outputting any inter-
mediate representations, but command line flags allow us to stop compilation once we reach
Core Erlang:

$ ls

my_module.erl

$ erlc +to_core my_module.erl

$ ls

my_module.core my_module.erl

152

This gives us a textual version of Core Erlang code in the my_module.core file.
For programmatic access though, we can do better: the Erlang standard library includes the

compile module which exposes the required APIs (Erlang/OTP Team 2019a). For example, we
can replicate the behaviour of the erlc command:

$ ls

my_module.erl

$ erl

Erlang/OTP 22 [erts-10.6] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]

Eshell V10.6 (abort with ^G)

1> compile:file(my_module, [to_core]).

{ok,my_module}

2> q().

ok

$ ls

my_module.core my_module.erl

We are however still creating a textual representation of the Core Erlang syntax tree in the
filesystem. To obtain a representation of the Core Erlang AST in Erlang we use the binary option.
Furthermore, debug_info instructs the compiler to maintain debug information such as source
file locations and line numbers as source code annotations:

1> compile:file(my_module, [to_core,binary,debug_info]).

{ok,my_module,

{c_module,[],

{c_literal,[],my_module},

[{c_var,[],{f,0}},

{c_var,[],{module_info,0}},

{c_var,[],{module_info,1}}],

[{{c_literal,[1],file},

{c_literal,[1],[{"my_module.erl",1}]}},

...

If the compilation to core Erlang succeeds then a tuple is returned where the second element is
the name of the module we just compiled, and the third element is the Core Erlang AST for that
module. Each node is a tagged tuple, where the first element of the tuple identifies the type of

153

pattern_type(P,Gamma) ->
case cerl:type(P) of
'var' ->
case Gamma(cerl:var_name(P)) of
{ok, T} -> T;
fail -> term

end;
'literal' ->
Value = cerl:concrete(P),
type_of(Value);

'tuple' ->
Types = [pattern_type(E,Gamma) || E <- cerl:tuple_es(P)],
{tuple, Types};

'cons' ->
HeadT = pattern_type(cerl:cons_hd(P), Gamma),
TailT = pattern_type(cerl:cons_tl(P), Gamma),
{cons, HeadT, TailT};

'alias' ->
PatT = pattern_type(cerl:alias_pat(P),Gamma),
case Gamma(cerl:alias_var(P)) of
{ok, VarT} -> intersection(PatT, VarT);
fail -> PatT

end;
_Ty ->
error({unsupported_pattern_type, P})

end.

Listing 14: Type inference function for Core Erlang patterns

node (e.g. ’c_literal’ for “Core Erlang literal”). Instead of manually deconstructing each of
these tuples when performing type inference we will use the cerl module from the compiler
library (Carlsson 2019):

1> {ok, _, Mod} = compile:file(my_module, [to_core,binary,debug_info]).

{ok,my_module,...}

2> Defs = cerl:module_defs(Mod)

[{{c_var,[],{f,0}},

{c_fun,[4,{file,"my_module.erl"}],

[],

{c_literal,[5,{file,"my_module.erl"}],ok}}},

...

Patterns

154

type_of(X) when is_boolean(X) -> {singleton, X, boolean};
type_of(X) when is_atom(X) -> {singleton, X, atom};
type_of(X) when is_integer(X) -> {singleton, X, integer};
type_of(X) when is_float(X) -> {singleton, X, float};
type_of(X) when is_pid(X) -> {singleton, X, pid};
type_of(X) when is_reference(X) -> {singleton, X, reference};
type_of(X) when X == [] -> nil;
type_of(X) when is_list(X) -> {cons, type_of(hd(X)), type_of(tl(X))};
type_of(X) when is_tuple(X) -> {tuple, [type_of(E) || E <- tuple_to_list(X)]}.

Listing 15: Function to determine the type of Erlang terms: type_of

The pattern_type function in listing 14 on the previous page is a transliteration of the P JpKΓ
function from figure 6.9 on page 110. The function takes a Core Erlang AST P and a typing
environment Gamma and returns an Erlang representation of its inferred type.

We switch on cerl:type(P), which returns an atom describing the type of node P. If the node
is a variable we extract its name from the node and check whether it exists in the environment by
calling it (Gamma is a function). If the variable is in the environment we return its type, otherwise
we return term, representing the top type. When we encounter a literal (i.e. a concrete atom
or integer) we retrieve its value from the node and return a singleton type as determined by
the type_of function in listing 15. Tuples are represented as lists of AST nodes, so we infer the
type of each element separately, bring them together into a list of types via a list comprehension,
and return a tuple type. For cons cells we infer the types of the heads and tails separately, then
create a cons type. Aliases of the form p = v are the only interesting case: we infer the type of
the pattern p and intersect it with the type of v from the typing environment if it exists in the
environment. Note that there is no case for empty lists here because nil is a concrete value and is
therefore represented by literal nodes, which are handled in the second case.

Guards

Core Erlang guards are significantly more complicated to analyse compared to their relatively
clean theoretical counterparts in section 6.4. This is because the Erlang compiler performs several
syntactic transformations to Erlang guards so they can be represented in Core Erlang:

• The boolean operators andalso and orelse are transformed into semantically equivalent
case expressions because these operators do not exist in Core Erlang.

• Expressions are wrapped in try/catch blocks when the compiler cannot guarantee that an
expression will not raise an exception.

155

guard_type(G) ->
case cerl:type(G) of
'literal' ->
case cerl:concrete(G) of
'true' -> {[env_empty()], [env_all(negate(term))]};
'false' -> {[env_all(negate(term))], [env_empty()]};
Lit -> error({unsupported_guard_literal, Lit})

end;
'call' -> guard_call_type(G);
'case' -> guard_case_type(G);
'try' -> guard_type(cerl:try_arg(G));
'let' ->
case let_is_boolean_coercion(G) of
true -> guard_type(cerl:let_arg(G));
false -> error({unsupported_let, G})

end;
_ -> error({unsupported_guard, G})

end.

Listing 16: Type inference function for Core Erlang guards

• Expressions are coerced into boolean values when the compiler cannot guarantee that an
expression always evaluates to a boolean value.

These transformations are necessary to satisfy the Core Erlang specification: guard expressions
must not raise exceptions, and they must always return a boolean value.

The guard_type function in listing 16 performs the type inference for guards, returning the
same data structure as G JGK from section 6.4: a list of typing environments for which the guard
returns true, and another list of environments for which it returns false. In the first case we
handle the guards ’true’ and ’false’ identically to G JgK. We next handle function calls, which
we expect to be one of the following:

• a type test BIF of the form is_T(X) for which we infer the type T for X; or

• a call to the non-short-circuiting boolean functions and and not, which we handle similarly
to G JgK; or

• a call to the =:= function which either checks for equality between a variable and a literal
(e.g. X =:= 2) or performs a boolean coercion

The next clause handles case expressions of the form:

case Exp of

true -> TrueExp;

156

guard_case_type(G) ->
case case_is_if_then_else(G) of
{true, Test, True, False} ->
{TestT, TestF} = guard_type(Test),
{TrueT, TrueF} = guard_type(True),
{FalseT, FalseF} = guard_type(False),
{conj_env_list(TestT,TrueT) ++ conj_env_list(TestF,FalseT),
conj_env_list(TestT,TrueF) ++ conj_env_list(TestF,FalseF)};

false -> error({unsupported_case_expression, G})
end.

Listing 17: Case expression type inference function for Core Erlang guards

false -> FalseExp

end

which are treated similarly to if-then-else expressions from CoErl. Next, we handle try/catch
blocks, and finally we attempt to remove any let bindings injected by the compiler.

For more insight into how these auxiliary functions behave, we consider boolean operator
elision, exception handling, and boolean coercion in separate detail.

Boolean Operator Elision As Core Erlang does not have the short-circuiting andalso and
orelse operators, nor an if-then-else expression like CoErl, the Erlang compiler uses case expres-
sions to mimic their behaviour. For example, the Erlang expression A andalso B is equivalent to
the following case expression:

case A of

true -> B;

false -> false

end

and A orelse B is equivalent to this case expression:

case A of

true -> true;

false -> B

end

The guard_case_type function in listing 17 is responsible for inferring the types of these
expressions. First, we check whether the case AST node looks like an if-then-else: does it have
a true clause and a false clause and nothing else? If so, we perform the same conjunction

157

operation as the G JgK function: we infer the type of the test, true branch, and false branch, then
merge the environments together. Here, the conj_env_list function is equivalent to the ∧[Γ]

operator.

Exception Handling Some of the BIFs whitelisted for use in guard expressions can cause
exceptions, such as the hd function:

1> hd(2).

** exception error: bad argument

in function hd/1

called as hd(2)

As the Core Erlang specification forbids guard expressions to raise exceptions the Erlang compiler
must somehow prevent this from occurring. Therefore, an expression like:

hd(X)

is converted to the following Core Erlang expression if used in a guard:

try

(let <_4> = (call 'erlang':'hd' (X)) in

(call 'erlang':'=:=' (_4,'true'))

|- ['compiler_generated'])

of <Try> -> Try

catch <T,R> -> 'false'

Furthermore, as Erlang guards which raise exceptions are considered failed (i.e. equivalent
to returning false), wrapping the entire guard expression in a try/catch block does not change
its behaviour.

Boolean Coercion Themost significant transformation applied to guard expressions is boolean
coercion. When the Erlang compiler cannot guarantee that an expression will return a boolean
value it will wrap that expression with an equality check on the value true. For example, if we
are not sure that the following function call returns a boolean:

my_mod:my_fun()

then we can wrap it with an equality check:

my_mod:my_fun() =:= true

158

This guarantees that a boolean value is always returned.
To make matters slightly more complicated, the compiler also inserts let expressions where

there previously were none. For example, the Erlang expression:

erlang:is_integer(X)

may be abstracted into the following Core Erlang code:

(let <_4> = (call 'erlang':'is_integer' (X)) in

(call 'erlang':'=:=' (_4,'true'))

|- ['compiler_generated'])

Fortunately, the compiler adds an annotation to the AST node to tell us that it has been generated,
rather than being present in the original source code.

To handle these guards we remove the variable binding by substitution, which is safe to do
because guard expressions do not have side effects

In all cases, the output of the guard_type function is a 2 element tuple of typing environments,
where the first element is the environments in which the guard evaluates to ’true’, and the
second is the environments where it evaluates to ’false’.

Assuming that Node is a Core Erlang AST representing the following Erlang expression:

is_integer(B) orelse is_boolean(B)

then the guard_type function produces the following output:

1> {Xs,Ys} = guard_type(Node).

{...,...}

2> [Gamma('B') || Gamma <- Xs].

[{ok,integer},{ok,{intersection,{neg,integer},boolean}}]

3> [Gamma('B') || Gamma <- Ys].

[{ok,{intersection,integer,{neg,term}}},

{ok,{intersection,{neg,integer},{neg,boolean}}}]

The list Xs represents the successful evaluations of the guard: when ’B’ is an integer, or when
it is not an integer but it is an atom. The list Ys represents the unsuccessful evaluations: when
’B’ is both an integer and not a term (i.e. never), or when it is both not an integer and not an
atom.

159

clause_type(C) ->
G = cerl:clause_guard(C),
{Gammas,_} = guard_type(G),
[Pat] = cerl:clause_pats(C), % only has one pattern
Types = [pattern_type(P, Gamma) || Gamma <- Gammas],
union_list(Types).

Figure 8.2: Type inference function for Core Erlang clauses

clauses_types(Cs) ->
[clause_type(C) || C <- Cs].

receive_type(Rec) ->
Types = clauses_types(cerl:receive_clauses(Rec)),
lists:foldl(fun union/2, {neg,term}, Types).

receive_clauses_types(Rec) ->
Types = clauses_types(cerl:receive_clauses(Rec)),
{Res, _Acc} = lists:mapfoldl(fun(Type,Acc) ->

Ty = intersection(Type,negate(Acc)),
{Ty, union(Ty,Acc)}

end, {neg,term}, Types),
Res.

Figure 8.3: Type inference functions for Core Erlang receive expressions

Clauses

To infer the type of terms a clause accepts we again follow the process of transliterating from
the mathematical definition, in this case C J〈p〉 when g→ eK from figure 6.12 on page 115. The
function clause_type in figure 8.2 performs this task: it infers the typing environments from the
guard, uses the left-hand list of environments as inputs to the type inference function, and then
takes a union of the resulting list.

Clause Sequences & Receive Expressions

The final task is to infer the type of messages accepted by a receive expression. From chapter 6
we know that this type is equal to the union of all of the expression’s inferred clause types. This
approach is covered by receive_type in figure 8.3 which folds over the list of inferred clause
types, using the type ¬term() as the initial accumulator (which is the identity element for union:
(¬term()) t T = T).

The more precise approach is to infer the type of each clause and then intersect the type
of each clause with the union of all prior clause types. Back in chapter 6 we showed that this

160

technique can be used to determine which clause a message will match and it also allows us to
detect dead clauses at compile time. This is implemented by receive_clauses_types (also in
figure 8.3) which returns a list consisting of each clause type successively intersected with the
union of all previous types.

As an example of this type inference implementation, the following Erlang receive expres-
sion:

receive

A when is_atom(A) -> a;

B when is_integer(B) orelse is_boolean(B) -> b;

{C,D} when is_atom(D) -> c

end

is inferred by receive_type to have this type:

{union,{union,{tuple,[term,atom]},{neg,term}},

{union,{union,{intersection,{neg,integer},boolean},

{union,integer,{neg,term}}},

{union,{union,atom,{neg,term}},{neg,term}}}}

which, using the notation from chapter 6, is equivalent to:

{term(),atom()} t ∅ t (¬integer() u boolean()) t integer() t ∅ t atom() t ∅ t ∅

= {term(),atom()} t boolean() t integer() t atom()

= {term(),atom()} t integer() t atom()

Sent Messages

The type of a sent message can be approximated based on its structure by using the pattern
type inference function pattern_type with an empty typing environment. In addition, we infer
the type of any function call to be term() as our type inference system does not aim to type the
functional part of Erlang. For example, we approximate that the send in the following function
has type {’add’, term()}:

add(Server, N) ->

Server ! {add, N}.

We assume that every variable has type term() because we are not performing any data flow
analysis, i.e. we know nothing about the type of N based on its usage or existing type information.

161

Erlang
source

Abstract
Format

. . . BEAM
file

parse

Core
Erlang

Type
Information

compile

infer

inject

Parse Transform

Figure 8.4: Parse Transform in Erlang compiler passes

Data: Metadata mapping
Result: type_info/1 function definition and export attribute in abstract format
function←− new function node;
function.name←− type_info;
function.arity←− 1;
for (name, types) ∈ metadata map do

clause←− new function clause node;
clause.arg[0]←− function name/arity tuple to abstract format;
clause.body←− types converted to abstract format;
append clause to function.clauses;

end
attr←− new module attribute;
attr.name←− export;
attr.value←− [{type_info,1}];
return attr and function;

Algorithm 8: Generation process for type_info/1 function

In this example we know nothing at all about N: any value could be passed to the function, so it
is reasonable to assume that it could be anything. This ultimately leads to an overapproximation
of the types of sent messages because data flow analysis might yield type information which
allows us to refine the types of variables. Despite this it still allows us to detect communication
discrepancies at compile time using the sub-typing relation.

8.4.3 Metadata Injection

With type information for each callback function in hand via compile-time type inference, we
then inject it into the Erlangmodule as it is being compiled. To do this wewill use a parse transform
which can be used to perform arbitrary transformations to an Erlang AST as it passes through the
compiler. The diagram in figure 8.4 shows where this transform occurs: after macro expansion,
but before any other passes. The module is compiled to Core Erlang so we can perform our
type inference, then we generate Erlang AST nodes for a new function called type_info which
contains type information for every callback function. Algorithm 8 gives an overview of how we

162

generate these new AST nodes: create a function AST node, create a new function clause for each
callback which matches against the name of the callback, and generate a new export attribute.

Now we need to merge these new abstract nodes back into the original syntax tree (which
is a list at the top level). The Erlang compiler uses the following approach when it injects the
module_info functions:

add_predefined_functions(Forms) ->

Forms ++ predefined_functions(Forms).

but we cannot do this because the above happens after internal compiler linter checks. If we
attempt to naïvely append the new AST nodes we have generated then we get the following
error from the compiler:

attribute export after function definitions

Instead we will write a comparison function form_leq/2 which orders attribute nodes before
function nodes. This allows us to merge the new function definition and export attribute into
the module without falling foul of the linter:

merge_forms(Forms1, Forms2) ->

lists:merge(fun form_leq/2, Forms1, Forms2).

This process automatically injects a function called type_info into modules which implement
generic OTP behaviours which returns type information about that function when it is called.
Using this transformation on version 1 of our counter module from listing 13a gives us the
following function:

1> my_counter_gen:type_info({handle_call,3}).

[{literal,get,atom}]

2> my_counter_gen:type_info({handle_cast,2}).

[{tuple,[{literal,add,atom},term]},{tuple,[{literal,sub,atom},term]}]

8.4.4 Lightweight Model of gen_server

The real gen_server module is elaborate: it contains hundreds of lines of Erlang code which
deal with error logging, timeout handling, scheduling, debugging features, and other advanced
features. The essence of themodule, though, is a processwhich loops through receivingmessages
from its mailbox, dispatching the requests to callback functions in another module, and sending
replies.

163

-module(gen_server_lite).
-export([start/2,do_start/2]).
-export([call/2,cast/2]).

call(Server, Msg) ->
Ref = make_ref(),
Server ! {'$call', {Ref, self()}, Msg},
receive
{Ref, Reply} -> Reply
end.

cast(Server, Msg) ->
Server ! {'$cast', self(), Msg}.

do_start(Module, InitArg) ->
{ok, State} = Module:init(InitArg),
loop(Module, State).

loop(Module, State) ->
receive
{'$call', {Ref, Who} = From, Msg} ->
{reply, Reply, NewState} = Module:handle_call(Msg, From, State),
Who ! {Ref, Reply},
loop(Module, NewState);
{'$cast', From, Msg} ->
{noreply, NewState} = Module:handle_cast(Msg, From, State),
loop(Module, NewState)

end.

start(Module, InitArg) ->
spawn(?MODULE, do_start, [Module, InitArg]).

Listing 18: Lightweight implementation of generic gen_server code

With this in mind wewill create a lightweight model of gen_server to show the essence of the
changes necessary to perform lightweight type checking and then perform the samemodifications
to the real gen_server library. This will allow us to discuss the principles of runtime verification
in isolation from the intricacies of the real implementation.

Listing 18 contains the entire implementation of the lightweight model. The start function
spawns the server process which first initialises itself using the callback module’s init function
before looping. When an incoming message arrives it dispatches the request in the message to
the corresponding callback function, sends a reply if necessary, then loops again.

The state machine in figure 8.5 on the following page shows how the server behaves: when it
receives a cast message it calls the handle_cast callback function and loops again, and when it
receives a call message it runs the handle_call callback, sends a response, and then loops.

164

initstart

loopcall cast

?{ ′$call ′, From,Msg}

From ! {Ref,Reply}

?{ ′$cast ′, From,Msg}

Figure 8.5: State machine model of gen_server_lite

Data: Core Erlang module definition
Result: inferred message types for known callbacks
if module implements an OTP behaviour then

for function in module do
if function is a known callback then

determine which argument corresponds to message;
for clause in function do

infer type of message argument;
end
create a list of all inferred types for function;

end
end

end
Algorithm 9: Type metadata collection algorithm for Core Erlang modules

This lightweight model is enough to run our original counter:

1> Server = gen_server_lite:start(my_counter_gen, []).

<0.84.0>

2> gen_server_lite:cast(Server, {add, 20}).

ok

3> gen_server_lite:cast(Server, {sub, 5}).

ok

4> gen_server_lite:call(Server, get).

15

8.4.5 Callback Type Inference

The generic Erlang/OTP behaviours rely on a separation of concern where the generic boilerplate
code is separated from the specific application code. These two halves interact with each other via
callback functions written in the specific part. For example, the minimal set of callbacks required
to implement a complete gen_server process are init/1, handle_cast/2, and handle_call/3.

165

initstart

loopcheck1

call

check2

cast

?{ ′$call ′, From,Msg}

type ok

From !
{type_err,Ref}

type error

Fr
om

!

{o
k,R

ef
,Re

pl
y}

?{′$cast′, From,Msg}

type error

typ
e o

k

Figure 8.6: State machine model of gen_server_lite with type checking

The two functions with the prefix handle_ are responsible for handling and responding to
incoming requests. In all cases the first argument is the request made by the client.

We infer the types of requests accepted by the server using the type inference functions in
section 8.4.2. Algorithm 9 on the previous page shows how we do this:

1. Check whether the module has a behaviour attribute containing the name of a generic
OTP behaviour such as gen_server.

2. If so, determine which argument of each callback function corresponds to the client request.

3. Infer the accepted type of requests using clause_type.

4. Collect all inferred types together into a list.

The result is a list of inferred message types for each callback function. For example the
inferred callback types for handle_cast in version 1 of the counter are:

[{’add’, term()}, {’sub’, term()}]

8.4.6 Analysing Incoming Messages

To analyse the types of incoming messages we add intermediate states to the lightweight server
between receiving a request and dispatching to the callbacks, as seen in figure 8.6. After receiving
the message its type will be checked against those inferred at compile time. If the message is a
sub-type of one of the inferred types then the request will proceed as normal, but if the message
is not a sub-type then the callback will never be called and the server goes back to waiting for
another message. Additionally, if the incoming request is a call the client will expect a response,
so we will return an error message to the client when the type check fails.

166

1 -module(gen_server_lite_typed).
2 -export([start/2,do_start/2]).
3 -export([call/2,cast/2]).
4
5 call(Server, Msg) ->
6 Ref = make_ref(),
7 Server ! {'$call', {Ref, self()}, Msg},
8 receive
9 {type_error, Ref} -> {error, type_error};

10 {ok, Ref, Reply} -> {ok, Reply}
11 end.
12
13 cast(Server, Msg) ->
14 Server ! {'$cast', self(), Msg}.
15
16 do_start(Module, InitArg) ->
17 {ok, State} = Module:init(InitArg),
18 loop(Module, State).
19
20 loop(Module, State) ->
21 receive
22 {'$call', {Ref, Who} = From, Msg} ->
23 MsgType = types:type_of(Msg), % get type of message
24 Types = Module:type_info({handle_call, 3}), % retrieve type info
25 case types:is_subtype_list(MsgType, Types) of % check sub-typing
26 true ->
27 {reply, Reply, NewState} = Module:handle_call(Msg, From, State),
28 Who ! {ok, Ref, Reply},
29 loop(Module, NewState);
30 false ->
31 Who ! {type_error, Ref},
32 loop(Module, State)
33 end;
34 {'$cast', From, Msg} ->
35 MsgType = types:type_of(Msg), % get type of message
36 Types = Module:type_info({handle_cast, 2}), % retrieve type info
37 case typse:is_subtype_list(MsgType, Types) of % check sub-typing
38 true ->
39 {noreply, NewState} = Module:handle_cast(Msg, From, State),
40 loop(Module, NewState);
41 false ->
42 loop(Module, State)
43 end
44 end.
45
46 start(Module, InitArg) ->
47 spawn(?MODULE, do_start, [Module, InitArg]).

Listing 19: Lightweight implementation of generic gen_server code with type checking

167

The full implementation of this newmodel is shown in listing 19 on the previous page, which
has a few differences to the code in listing 18 to perform type checking. The first change is that
the message format for calls has changed: the response is now either a type error tuple, or an
“ok” tuple containing the reply from the handle_call function. On the server side we first get
the type of the message (lines 23 and 35), retrieve the injected type information relating to the
callback function (lines 24 and 36), and check whether the sub-typing relation holds for any of
the inferred callback types (lines 25 and 37).

When we try to reproduce the race condition and crash we saw with our counter using the
parse transform and our lightweight gen_server model we see it is now protected from the
malformed request and doesn’t crash:

1> code:load_file(my_counter_gen), beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,"1"}}

2> Server = gen_server_lite_typed:start(my_counter_gen, []).

<0.85.0>

3> gen_server_lite_typed:cast(Server, {add, 20}).

ok

4> code:load_file(my_counter_gen), beam_lib:version(my_counter_gen).

{ok,{my_counter_gen,"2"}}

5> gen_server_lite_typed:cast(Server, {sub, 5}).

ok

6> gen_server_lite_typed:call(Server, get).

20

When the second version of the counter module is loaded the server automatically starts
using the new callback functions. Therefore when we send the old submessage after the reload
the type check fails and the callback is never called, so the server is still running when we call it
to request its state.

8.4.7 Extending the Real gen_server Module

The lightweight version of the gen_server in listing 19 protects server processes from commu-
nication discrepancies by performing runtime type checking. One shortcoming of this model is
due to the way the cast function behaves: it is a fire-and-forget request without a response from
the server. As there is no response from the server any communication discrepancies in casts are

168

handled silently, simply returning the atom ’ok’ to indicate that the message was sent to the
server process.

We address this shortcoming in the modification of the real gen_server library by adding
logging information about type errors. The library consists of several hundred lines of codes
and many modifications are required to data structures and function definitions in order to
propagate type information, handle exceptions, and interact with the virtual machine. At a high
level however, the process is the same as with our lightweight model: add type checks at the
point where messages are received and only run callback functions if the request’s type is a
sub-type of the inferred types.

Whenwe combine the type inference, metadata injection, andmodifications to the gen_server
library we create a runtime verification system which protects servers from communication
discrepancies and produces error reports using the standard library’s logging mechanisms:

1> {ok, Server} = my_counter_gen:start(0).

{ok,<0.85.0>}

2> gen_server:cast(Server, {add, 20}).

ok

3> gen_server:cast(Server, {op, sub, 5}).

ok

=ERROR REPORT====

** Message with incompatible type for my_counter_gen:handle_cast/3 received

** Message with incompatible type: {op, sub, 5}

** Message type: {tuple,[{literal,op,atom},{literal,sub,atom},{literal,5,integer}]}

4> gen_server:call(Server, get).

20

The server has rejected the incompatible request, generated an error report, and continued to
run.

This runtime verification process is entirely automatic: no input from the user is required,
type inference and metadata injection occur as part of the compilation process, and the runtime
type checking is embedded in the generic portion of the gen_server library.

The approach combines the strengths of static analysis and runtime verification by performing
type inference at compile time and then using the sub-typing relation at runtime to increase
the robustness of the client-server interactions. Furthermore, this approach allows Erlang
programmers to remove boilerplate “catch-all” clauses from their receive expressions and

169

callback functions with the knowledge that the typechecking infrastructure in the gen_server
library will intercept incompatible requests before they crash the server.

170

Chapter 9

Related Work

Erlang was created to operate in the presence of software errors: the creators of the language
argue that bugs are a “fact of life”, and that programmers should instead build fault-tolerant
applications by using lightweight processes with strong isolation.

Unfortunately, not all software errors are created equal: some errors in Erlang programs may
emanate from external sources (such as hardware devices or network interfaces) and are best
suited to being dealt with at runtime by a well-designed application, but other errors are easily
detectable (and preventable) at compile time or runtime. As a result, there have been many
efforts over the years to make Erlang a “safer” language through a variety of means: formal
models of the language and its runtime to reason about how specific programs behave, static
analysis tools to detect data type errors, and runtime verification tools to protect applications
from system states which violate some user-defined safety properties. This work has not been
carried out in isolation from the larger academic and industrial communities, however: there is
a significant overlap between techniques used to analyse Erlang programs and the techniques
used with other formal models and real-world programming languages.

In this part of the thesis I explore the work most closely related to that presented in previous
chapters: formal models and type systems for Erlang, techniques for modelling and reasoning
about Erlang’s message passing system, existing software tooling for static analysis and runtime
verification.

9.1 Formal Models

Themost concrete definition of Erlang is the Core Erlang 1.0.3 Language Specification (Carlsson et al.
2004): a written specification of the Core Erlang intermediate format. In chapter 4 we formalised

171

a fragment of the Core Erlang specification in a language named CoErl. The most important
parts relating to communication were formalised there: pattern matching, guard evaluation,
mailboxes, and the send/receive operations. Some liberties were taken in this formalisation:
the specification does not specify an evaluation order (so left-to-right was chosen in line with
the behaviour of Erlang/OTP), and the task of sending messages is explicitly omitted (again,
the behaviour of Erlang/OTP was used). The result of this formalisation was a fragment of the
full Core Erlang language, notably without any exception handling or higher-order behaviour.
Regardless, the model fulfils its purpose: serving as a minimal model of Erlang’s communication
for non-trivial programs.

Perhaps the most complete formal model of Erlang is the small-step operational semantics for
a the Erlang-F (Erlang Fragment) language behind the McErlang model checker (L. Fredlund
and Svensson 2007). The language was based on a version of Erlang which predated the creation
of the Core Erlang intermediate format. Erlang-F – like CoErl presented in chapter 4 – represents
a communicating fragment of the Erlang programming language. Patterns, guards, and mailbox
behaviour are all implemented in Erlang-F. This tool is based heavily on the PhD thesis of
one of the authors which explores an operational semantics for Erlang (L.-Å. Fredlund 2001).
Comparing the operational semantics from chapter 4 with this thesis we note many similarities:
we have chosen a left-to-right evaluation order in the absence of any formal specification and we
have focused on a communicating subset of Erlang’s syntax to avoid large amounts of syntactic
sugar. L.-Å. Fredlund notably models non-local control flow via exceptions, which we have not
formalised.

There are also resemblances between Erlang and other formal systems, notably CSP and the
π-calculus. Communicating Sequential Processes (CSP) is a mathematical model (and arguably
a programming language) for concurrent process-oriented programming similar in vein to
Erlang: lightweight processes send and receive messages to oneanother, and communication
can be directed by “guarded expressions” (Hoare 1985). On the other hand, the π-calculus is
a minimalist process calculus where messages are explicitly sent and received over dedicated
(and named) communication channels (Milner, Parrow and Walker 1992). There are significant
differences between these models and the implementation of Erlang, however: while CSP is
effectively a “usable” programming language it lacks some of the more powerful features of
Erlang’s mailbox behaviour, and the portability of channels in the π-calculus cannot be fully
realised in Erlang as mailboxes are attached to processes and cannot be moved. Despite these
differences the two systems serve as a useful “common denominator”: many Erlang programs
can be written in the π-calculus, for example (Noll and Roy 2005), allowing existing analysis

172

techniques to be used for reasoning about the behaviour of Erlang programs.

9.2 Model Checking

In chapter 5 we analysed the communicating behaviour of CoErl via a labelled version of the
small-step operational semantics from chapter 4. Each transition in the system was given one of
four different labels: send (ι !m), receive (?m), arrive (arr), or internal (τ).

This model is known as a labelled transition system and serves as the foundation for many
analyses of concurrent systems: create a trace of the execution of a system and then analyse that
trace to detect software errors or to check safety properties. The previously mentioned McErlang
model checker operates in part using this technique: it traces the execution of processes under
different schedulings to ensure that the system satisfies properties specified by a model.

Concuerror (Gotovos, Christakis and Konstantinos Sagonas 2011) is a tool which operates in
a similar vein: it takes as inputs an Erlang program and amodel of its behaviour and runs it under
systematically chosen schedulings in order to elicit any race conditions or other concurrency-
related software defects. This analysis is a sound over-approximation: it over-approximates the
behaviour of programs, but proves that all behaviours it explores are safe.

The main difference between the labelled transition system from chapter 4 and these two
tools is that the former serves solely as a useful model to reason about Erlang’s communication
in isolation from other program behaviour, while the latter are used to trace the execution of real
systems at runtime.

In addition, the Soter tool derives a finitely representable over-approximation of Erlang
programs (D’Osualdo, Kochems and Ong 2013). It takes an Erlang module, a specification of a
safety property, generates a Petri net which represents an abstract model of the Erlang module,
and then calls the BFC solver (Kaiser, Kroening and Wahl 2014).

There are many other approaches to model checking, many of them now considered standard
(Clarke et al. 2018). We could use a temporal logic to reason about the communicating behaviour
of Erlang programs (though it would be difficult to represent out-of-order communications),
use a Petri net model of Erlang programs to approximate the behaviour of mailboxes. Using
one of these model checking techniques we would likely be able to detect more communication
discrepancies automatically as wewould be able to reason about the order of events and causality
between communications, which we currently lack. By contrast, our current type-based analysis
is already capable of detecting common communication discrepancies due to the relatively
common use of patterns and guards in Erlang programs.

173

Another way of verifying the behaviour of a program is symbolic execution. There has been
work to reason about the behaviour of Erlang programs using term rewriting and a technique
called narrowing, allowing the behaviour of an Erlang program – including non-deterministic
concurrent behaviour – to be over-approximated without executing it (Vidal 2013). The work
has been iterated upon, allowing for both an under-approximation and over-approximation of
Erlang programs (Vidal 2014). It is the first known attempt to formalise symbolic execution
of Erlang programs which deals with symbolic data, not just possible schedulings. A concrete
semantics for an Erlang fragment is also introduced: it has similar properties to CoErl and the
small-step semantics in chapter 6. In addition, Vidal makes scheduling an explicit part of the
semantics, whereas in CoErl it is implicit via the non-determinism of the concurrent small-step
relation. Ultimately, this adventure into symbolic execution for Erlang has resulted in a causal-
consistent replay-based debugger for Erlang programs which allows users to record executions
of a program and replay only the actions which led to a specific behaviour (Lanese, Palacios
and Vidal 2019). As part of the analysis a labelled “logging semantics” is used which has send
and receive labels which are similar to those seen in CoErl. The main difference however is
that due to the explicit nature of scheduling, a global mailbox is used to co-ordinate message
delivery between processes, which is a stark contrast to the ad-hoc communication used in
CoErl’s labelled small-step semantics.

9.3 Behavioural Types

Behavioural types are a technique for describing the behaviour of software using a type system,
in contrast to the typical use of describing data (Gay and Ravara 2017). Session types are a
popular form of behavioural contract which describes the behaviour of a communicating system
using protocols: a specification which describes the way two or more concurrent components
may communicate with each other. Session types are used in various ways: they can be used as
documentation, for static analysis (where the implementation of a protocol is checked against its
specification), runtime verification (where compliance with a protocol is checked at runtime),
or using a combination thereof.

There have been several adaptations of session types for Erlang. First, session types were
introduced to a “featherweight” version of Erlang with restrictions on the communication model
(Mostrous and Vasconcelos 2011). This was followed by an implementation of multiparty session
actorswhere generic server processes are viewed as actors and compliance with a session type
can be verified at runtime (Fowler 2016). Later work introduced an adapted OTP behaviour
which used a combination of static analysis and a sound recovery algorithm to automatically

174

determine the compile-time dependencies between processes and generate restart strategies for
crashed processes (Neykova and Yoshida 2017).

One area which session types often struggle to address is Erlang’s out-of-order mailbox be-
haviour: while it is possible to extend session types to asynchronous communication and even
model timeouts (Bocchi et al. 2019), session types often do not model Erlang’s ability to select-
ively receive messages in a different order to which they arrived. Specifically, session types rely
on protocol definitions where each send by one party corresponds with a receive by the other,
and vice versa. Instead, the static and runtime analysis methods presented in chapter 8 focus
on detecting real discrepancies instead of forcing a strict communication protocol on all parties.
Furthermore, it is not clear how a session types would apply to the “open world” model of
Erlang applications wherein any process can send a message to another process knowing only
its PID: no explicit communication channel needs to be established in advance.

9.4 Testing & Fault Injection

Model checking tools are exhaustive: they analyse all possible executions of a program to prove
that some specified properties hold. The aforementioned McErlang and Concuerror tools verify
properties of Erlang programs by running them, analysing how they behave, and then forcing
specific schedulings to explore the state space of programs. Unfortunately, model checking can
take a significant amount of time to verify properties (minutes, hours, or more) based on the
size or complexity of programs and properties.

Instead, many Erlang programmers use non-exhaustive testing to give themselves reasonable
confidence that their programs behave as expected. This can take the form of hand-written unit
and integration tests which use the EUnit orCommonTest libraries which shipwith Erlang/OTP,
or via other third party packages. One popular testing library is QuickCheck (QuviqQ A.B.
2019) which performs random property based testingwherein user-defined properties are analysed
to automatically generate and run random test cases (Claessen and Hughes 2000). The library
has been used to test (and find bugs in) Erlang telecom software (Arts, Hughes and Johansson
2006) and find race conditions in concurrent programs (Claessen, Palka, Smallbone et al. 2009).
Furthermore, property based testing can be used to test models of finite state machines written
in Erlang (Seijas 2017).

Another way of analysing concurrent (and even distributed) Erlang programs is via fault
injection: deliberately “losing” messages between networked nodes, crashing critical processes,
deliberately slowing the execution of a process by manipulating the scheduler, and so forth.
The aim of this kind of analysis is to examine how applications deal with error conditions in

175

real-world scenarios. The Partisan library (Meiklejohn 2018) is an extensive suite of software
which can be used to test Erlang applications in this way: it allows users to inject faults into
running applications, trace the execution of entire distributed systems, and also implements a
new distribution protocol for Erlang/OTP aimed at alleviating common issues.

9.5 Type Systems

Although Erlang is a dynamically typed programming language the compiler still performs some
cursory type checks. For example, it can detect when non-numeric arguments are passed to
arithmetic operators if one of the operands can be resolved to a constant value at compile
time, and it can determine that clauses are dead if they appear after a catch-all. Despite many
improvements to the Erlang compiler during its lifetime, programs can still contain bugs that
would be easily detectable with a static type system, for example incorrect types of function
arguments.

There have been attempts to add a static type system to Erlang, however. One of the earliest
endeavours was a practical sub-typing system which supported variable types, clauses, function
types, and even a simple analysis of message types (Marlow and Wadler 1997). This analysis
was performed on Erlang itself, as it predated the creation of Core Erlang; later work investigated
a type system for the functional aspect of Core Erlang (Nyström 2003).

Although its stated purpose is to detect discrepancies in Erlang software, the Dialyzer (Kon-
stantinos Sagonas 2005) tool performs static type checking of Erlang programs using success
typings which approximates the type of variables and functions based on how they are used
(Lindahl and Konstantinos Sagonas 2006). The logic used in Dialyzer has also been extended
to analysing asynchronous communication: certain race conditions and orphan messages can
be detected at compile time (Christakis and Konstantinos Sagonas 2010). More recently, the
Gradualiser tool has brought gradual typing to Erlang, allowing parts of a program to be statically
typedwhile others remain dynamically typed. Gradualiser distinguishes between Erlang’s any()
type and term() type: any() is used for dynamically typed portions of a program, while term() is
used for statically typed portion. The tool explicitly does not perform type inference on entire
programs: it checks whether the provided type specifications match the implementation.

The project is an effort to create the performance of Erlang systems by automatically compiling
parts of a program to native machine code (Kostis Sagonas et al. 1998). The project is closely
related to Core Erlang, which it uses to reason about the behaviour of variables and function
applications. Erlang modules compiled with benefit from the speed of optimised native code,

176

but frequent context switches between BEAM bytecode and native code can cause performance
issues.

In chapter 6 a sub-typing system was created based on Erlang’s existing type system and
the behaviour of CoErl, which in turn is based upon Core Erlang. This relates our work to the
HiPE project via the use of Core Erlang, but the two systems have different goals: HiPE is used
for optimisation purposes and is rather conservative (backing out when it cannot determine
a type), while the type system in chapter 6 and the analysis from chapter 8 specifically seek
these discrepancies. On the other hand, Gradualizer is a promising project with potential for
expansion: our sub-typing relation, guard type inference techniques, and concepts of message
compatibility could be used to improve the quality of Gradualizer’s type checking, or be used in
our analysis to provide data flow information or type information about variables.

9.6 Runtime Analysis & Profiling

To aid in debugging the BEAM has a plethora of built-in diagnostic tools which capture runtime
information about how an Erlang system behaves: scheduler information, process memory
usage, execution tracing, and inter-process communication to name a few. The Percept2 tool
amalgamates several of these information sources into a single tool, allowing Erlang developers
to view information about their systems both online and offline (Li and Simon J. Thompson
2013).

These APIs are also used by other tools to perform runtime verification: extracting information
from a running system and verifying properties of that system. For example, the ELarva tool
(Colombo, Francalanza and Gatt 2012) uses online tracing to verify that safety-critical and
security-critical processes remain compliant with user specified security properties. The detectEr
library (Cassar and Francalanza 2015) operates on a similar principle: it verifies the correctness of
Erlang processes at runtime using automatically generated monitoring code which can monitor
processes either synchronously or asynchronously via automatic instrumentation.

Runtime monitoring tools are motivated by the non-exhaustiveness of test suites and the long
running times of model checkers: it is often quicker (and satisfactory) to defer verification to
runtime in exchange for a relatively small performance loss caused by the overhead ofmonitoring.

177

Chapter 10

Conclusions

In chapter 1 we identified a potential issue with concurrent Erlang programs where mismatches
between the way processes send and receive messages can cause memory leaks and system
crashes. This thesis has presented techniques for reasoning about, detecting, and mitigating
against these communication discrepancies:

• An operational semantics for a communicating fragment of Core Erlang was used to
reason about the behaviour of Erlang processes (chapter 4). In order to reason about
mailboxes in isolation from other computation, chapter 5 presented a labelled transition
system and trace semantics for Erlang communications.

• A semantic sub-typing system for Erlang was created based on Erlang’s semantics, with
union, intersection, and negation types enabling us to reason about the types of values
that patterns, guard expressions, and clauses will accept chapter 6. This was accompanied
by an original BDD based sub-typing algorithm which served as a stepping stone to an
implementation chapter 7.

• A combination of static type inference and runtime verification to automatically detect

communication discrepancies both at compile time and runtime chapter 8. The static type
inference can be used to detect definite discrepancies at compile time while the runtime
verification enables discrepancies to be detected while programs are executing, protecting
them from crashes.

This thesis has presented a formalisation of a communicating Core Erlang which served as
the foundation for a communications analysis of Erlang programs. The model was then used
to create a sub-typing system which can be used to approximate the behaviour of mailboxes

178

which was then used to create a fully automatic hybrid verification system which can detect real
communications discrepancies in Erlang programs.

The objective of this analysis is not to change the way Erlang programmers write their
programs or force them into a specific programming style, but rather to increase the confidence
they have in the way their programs communicate, avoiding memory leaks and preventing
server processes from malformed requests which would otherwise cause them to crash.

We believe that there is a role for lightweight tools for permissive languages such as Erlang.
The expressive syntax of Erlang allows programmers to rapidly develop large and sophisticated
concurrent applications by leveraging Erlang’s unique communication model. Without the
restrictions of a static type system or any requirement of proving the safety of communications,
Erlang programmers are free to use complex programming techniques. We also argue that tools
for languages such as Erlang are more valuable than tools for less permissive languages as there
is more room for error in the absence of a dependent type system or notion of checked exceptions,
for example. Writing tools for languages like Erlang enables programmes to inspect legacy code
without

10.1 Future Work

There are several opportunities for future work that would expand upon the ideas presented in
earlier chapters. Specifically, a desirable goal would be to create a useful software tool for Erlang
developers which automatically analyses and checks communications in their applications to
protect them from discrepancies. With this in mind, the following are some ideas to increase the
scope and impact of the work:

Formalisation The operational semantics for CoErl in chapter 4 only capture the core concepts
of Erlang: patterns, guards, processes, and communication. The model is lacking non-local
control flow (via Erlang’s error and exception handlingmechanisms) and higher-order behaviour.
It would be interesting for formalise a larger part of the Core Erlang specification in order to
understand how these features affect mailbox behaviour, and to discover whether there is room
for improvement on the specification.

Type System The type system and sub-typing relation in chapter 6 contains a representative
subset of Erlang’s built-in types: atoms, numeric types, PIDs, lists, and tuples. One discrepancy
between our system and Erlang’s existing type notation is proper lists: we view lists strictly as
improper (i.e. a list is either a cons cell or the empty list) while Erlang supports a syntax for

179

proper lists (i.e. those which are nil-terminated). Future work could bring our type system into
alignment with Erlang’s notation, possibly extending the type system to support map and binary
types in the process.

Type Inference & Static Analysis The type inference algorithms presented in section 6.4 and
the implementation offered in chapter 8 reason about the types of patterns, guards, and clauses.
Furthermore, no data flow analysis is performed. This naturally leads to an over-approximation
of the types of variables found in patterns and guards as we have no type information for them.
It would be useful to integrate with an existing type inference or type checking tool for Erlang
such as Dialyzer or Gradualiser to provide type information, or perhaps to improve the type
inference mechanisms of those tools. In addition, the current BDD based sub-typing algorithm
is only a proof-of-concept: it does not garbage collect orphan nodes in the graph and it makes
basic use of Erlang’s Erlang Term Storage (ETS) tables for memoisation purposes. Further work
could look at improving the efficiency of the BDD representation and construction algorithms,
or using a different technique to represent types and decide the sub-typing relationship.

RuntimeVerification Finally, the current approach to runtime verification in chapter 8 operates
by receiving messages from a process’ mailbox, checking their types, and passing them on to
callback functions only if their types are deemed compatible. This is a proof of concept of the
practicality of performing type checking at runtime, but it effectively serialises the mailbox,
preventing out-of-order communication. Instead, type checking could be integrated with the
ERTS by modifying the BEAM to perform type checking of messages “in flight”, ensuring that
messages are not placed in mailboxes if they will never be received.

180

Bibliography

Arts, Thomas, John Hughes and Joakim Johansson (2006). ‘Testing telecoms software with quviq
QuickCheck’. In: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang - ERLANG ’06.
ACM Press. doi: 10.1145/1159789.1159792.

Bevemyr, Johan (2018). ‘How Cisco is using Erlang for intent-based networking’. Code BEAM
STO.

Bocchi, Laura et al. (2019). ‘Asynchronous Timed Session Types - FromDuality to Time-Sensitive
Processes’. In: Programming Languages and Systems - 28th European Symposium on Programming,
ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings. Vol. 11423. Lecture Notes in
Computer Science. Springer, pp. 583–610. doi: 10.1007/978-3-030-17184-1_21.

Brace, Karl S., Richard L. Rudell and Randal E. Bryant (1990). ‘Efficient Implementation of a BDD
Package’. In: Proceedings of the 27th ACM/IEEE Design Automation Conference. Orlando, Florida,
USA, June 24-28, 1990. IEEE Computer Society Press, pp. 40–45. doi: 10.1145/123186.123222.

Carlsson, Richard (2001). ‘An introduction to Core Erlang’. In: In Proceedings of the PLI’01 Erlang
Workshop.

— (Mar. 2019). cerl.erl, Erlang/OTP compiler application. url: https://github.com/erlang/otp/
blob/41672f4/lib/compiler/src/cerl.erl.

Carlsson, Richard et al. (Nov. 2004). Core Erlang 1.0.3 Language Specification. Tech. rep. Uppsala
University. url: https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-
1.0.3.pdf.

Cassar, Ian and Adrian Francalanza (Feb. 2015). ‘On Synchronous and Asynchronous Monitor
Instrumentation for Actor-based systems’. In: Electronic Proceedings in Theoretical Computer
Science 175, pp. 54–68. doi: 10.4204/eptcs.175.4.

181

https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1145/123186.123222
https://github.com/erlang/otp/blob/41672f4/lib/compiler/src/cerl.erl
https://github.com/erlang/otp/blob/41672f4/lib/compiler/src/cerl.erl
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.4204/eptcs.175.4

Christakis, Maria and Konstantinos Sagonas (2010). ‘Static Detection of Race Conditions in
Erlang’. In: Practical Aspects of Declarative Languages. Springer Berlin Heidelberg, pp. 119–133.
doi: 10.1007/978-3-642-11503-5_11.

Claessen, Koen and John Hughes (2000). ‘QuickCheck: a lightweight tool for random testing of
Haskell programs’. In: ICFP. ACM, pp. 268–279.

Claessen, Koen, Michal Palka, Nicholas Smallbone et al. (2009). ‘Finding race conditions in
Erlang with QuickCheck and PULSE’. In: Proceedings of the 14th ACM SIGPLAN international
conference on Functional programming - ICFP ’09. ACM Press. doi: 10.1145/1596550.1596574.

Clarke, Edmund M. et al. (Dec. 2018). Model Checking, Second Edition. MIT Press.

Colombo, Christian, Adrian Francalanza and RudolphGatt (2012). ‘Elarva: AMonitoring Tool for
Erlang’. In: Runtime Verification. Springer Berlin Heidelberg, pp. 370–374. doi: 10.1007/978-
3-642-29860-8_29.

D’Osualdo, Emanuele, Jonathan Kochems and Luke Ong (2013). SOTER - Safety verifier fOr The
ERlang language. url: https://mjolnir.cs.ox.ac.uk/soter/ (visited on 15/06/2018).

Erlang/OTP Team (2018). Erlang Reference Manual. v9.3. Ericsson A.B.

— (2019a). compile: Erlang compiler. Ericsson A.B. url: https://erlang.org/doc/man/compile.
html.

— (2019b). Efficiency Guide. 10.3. Ericsson A.B. url: http://erlang.org/doc/efficiency_guide/
introduction.html.

— (2019c). Erlang/OTP Documentation. Ericsson A.B. url: http://erlang.org/doc/.

— (2019d). OTP Design Principles User’s Guide. 10.3. Ericsson A.B. url: http://erlang.org/doc/
design_principles/users_guide.html.

Facebook Inc. (Jan. 2018). Facebook Reports Fourth Quarter and Full Year 2017 Results.

Fowler, Simon (2016). ‘An Erlang Implementation of Multiparty Session Actors’. In: Proceedings
9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece, 8-9 June 2016. Vol. 223.
EPTCS, pp. 36–50. doi: 10.4204/EPTCS.223.3.

Fredlund, Lars-Åke (2001). ‘A framework for reasoning about Erlang code’. PhD thesis. Mik-
roelektronik och informationsteknik.

182

https://doi.org/10.1007/978-3-642-11503-5_11
https://doi.org/10.1145/1596550.1596574
https://doi.org/10.1007/978-3-642-29860-8_29
https://doi.org/10.1007/978-3-642-29860-8_29
https://mjolnir.cs.ox.ac.uk/soter/
https://erlang.org/doc/man/compile.html
https://erlang.org/doc/man/compile.html
http://erlang.org/doc/efficiency_guide/introduction.html
http://erlang.org/doc/efficiency_guide/introduction.html
http://erlang.org/doc/
http://erlang.org/doc/design_principles/users_guide.html
http://erlang.org/doc/design_principles/users_guide.html
https://doi.org/10.4204/EPTCS.223.3

Fredlund, Lars-Åke and Hans Svensson (2007). ‘McErlang: A Model Checker for a Distributed
Functional Programming Language’. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming. ICFP ’07. Freiburg, Germany: ACM, pp. 125–136. isbn:
978-1-59593-815-2. doi: 10.1145/1291151.1291171.

Gay, Simon and António Ravara (2017). Behavioural Types: from Theory to Tools. River Publishers.

Gotovos, Alkis, Maria Christakis and Konstantinos Sagonas (2011). ‘Test-Driven Development of
Concurrent Programs Using Concuerror’. In: Proceedings of the 10th ACM SIGPLAN Workshop
on Erlang. Erlang ’11. Tokyo, Japan: ACM, pp. 51–61. isbn: 9781450308595. doi: 10.1145/
2034654.2034664.

Harrison, Joseph (2017). ‘Towards an Isabelle/HOL Formalisation of Core Erlang’. In: Proceedings
of the 16th ACM SIGPLAN International Workshop on Erlang, Oxford, United Kingdom, September
3-9, 2017. ACM, pp. 55–63. doi: 10.1145/3123569.3123576.

— (2018). ‘Automatic Detection of Core Erlang Message Passing Errors’. In: Proceedings of the
17th ACM SIGPLAN International Workshop on Erlang, ICFP 2018, St. Louis, MO, USA, September
23-29, 2018. ACM, pp. 37–48. doi: 10.1145/3239332.3242765.

— (2019). ‘Runtime Type Safety for Erlang/OTP Behaviours’. In: Proceedings of the 18th ACM
SIGPLAN International Workshop on Erlang, Erlang@ICFP 2019, Berlin, Germany, August 18, 2019.
ACM, pp. 36–47. doi: 10.1145/3331542.3342571.

Hebert, Fred (2013). Learn You Some Erlang for Great Good!: A Beginner’s Guide. No Starch Press.
isbn: 9781593274351. url: https://learnyousomeerlang.com/.

Hennessy, Matthew and Robin Milner (1985). ‘Algebraic Laws for Nondeterminism and Con-
currency’. In: J. ACM 32.1, pp. 137–161.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall. isbn: 0-13-153271-5.

Huth, Michael and Mark Dermot Ryan (2004). Logic in computer science - modelling and reasoning
about systems (2. ed.) Cambridge University Press.

Kaiser, Alexander, Daniel Kroening and Thomas Wahl (2014). ‘A widening approach to multith-
readed program verification’. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 36.4, p. 14.

Klophaus, Rusty (2010). ‘Riak core: Building distributed applications without shared state’. In:
ACM SIGPLAN Commercial Users of Functional Programming. ACM, p. 14.

183

https://doi.org/10.1145/1291151.1291171
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1145/3123569.3123576
https://doi.org/10.1145/3239332.3242765
https://doi.org/10.1145/3331542.3342571
https://learnyousomeerlang.com/

Lanese, Ivan, Adrián Palacios and Germán Vidal (2019). ‘Causal-Consistent Replay Debugging
for Message Passing Programs’. In: FORTE. Vol. 11535. Lecture Notes in Computer Science.
Springer, pp. 167–184.

Li, Huiqing and Simon J. Thompson (2013). ‘Multicore profiling for Erlang programs using
Percept2’. In: Proceedings of the Twelfth ACM SIGPLAN Erlang Workshop, Boston, Massachusetts,
USA, September 28, 2013. ACM, pp. 33–42. doi: 10.1145/2505305.2505311.

Lindahl, Tobias and Konstantinos Sagonas (2006). ‘Practical type inference based on success
typings’. In: Proceedings of the 8th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, July 10-12, 2006, Venice, Italy. ACM, pp. 167–178. doi:
10.1145/1140335.1140356.

Marlow, Simon and Philip Wadler (1997). ‘A Practical Subtyping System for Erlang’. In: Proceed-
ings of the Second ACM SIGPLAN International Conference on Functional Programming. ICFP ’97.
Amsterdam, The Netherlands: ACM, pp. 136–149. isbn: 0-89791-918-1. doi: 10.1145/258948.
258962.

Meiklejohn, Christopher S. (2018). ‘Partisan: Enabling Real-World Protocol Evaluation’. In:
Proceedings of the 2018 Workshop on Advanced Tools, Programming Languages, and PLatforms for
Implementing and Evaluating Algorithms for Distributed systems, ApPLIED@PODC 2018, Egham,
United Kingdom, July 27, 2018. ACM, pp. 45–48. doi: 10.1145/3231104.3231106.

Milner, Robin (1980). A Calculus of Communicating Systems. Vol. 92. Lecture Notes in Computer
Science. Springer.

Milner, Robin, Joachim Parrow and David Walker (1992). ‘A Calculus of Mobile Processes, I’. In:
Inf. Comput. 100.1, pp. 1–40. doi: 10.1016/0890-5401(92)90008-4.

Mostrous, Dimitris and Vasco Vasconcelos (2011). ‘Session Typing for a Featherweight Erlang’. In:
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 95–109. doi: 10.1007/978-
3-642-21464-6_7.

Neykova, Rumyana and Nobuko Yoshida (2017). ‘Let it recover: multiparty protocol-induced
recovery’. In: Proceedings of the 26th International Conference on Compiler Construction, Austin,
TX, USA, February 5-6, 2017. ACM, pp. 98–108. url: http://dl.acm.org/citation.cfm?id=
3033031.

Nicola, Rocco De (1987). ‘Extensional Equivalences for Transition Systems’. In: Acta Informatica
24.2, pp. 211–237.

184

https://doi.org/10.1145/2505305.2505311
https://doi.org/10.1145/1140335.1140356
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/258948.258962
https://doi.org/10.1145/3231104.3231106
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-642-21464-6_7
https://doi.org/10.1007/978-3-642-21464-6_7
http://dl.acm.org/citation.cfm?id=3033031
http://dl.acm.org/citation.cfm?id=3033031

Noll, Thomas and Chanchal Kumar Roy (2005). ‘Modeling Erlang in the pi-calculus’. In: Pro-
ceedings of the 2005 ACM SIGPLAN Workshop on Erlang, Tallinn, Estonia, September 26-28, 2005.
ACM, pp. 72–77. doi: 10.1145/1088361.1088375.

Nyström, Sven-Olof (2003). ‘A Soft-typing System for Erlang’. In: Proceedings of the 2003 ACM
SIGPLANWorkshop on Erlang. ERLANG ’03. Uppsala, Sweden: ACM, pp. 56–71. isbn: 1-58113-
772-9. doi: 10.1145/940880.940888.

Pearce, David J. (2013). ‘Sound and Complete Flow Typing with Unions, Intersections and
Negations’. In: Proceedings of the 14th International Conference on Verification, Model Checking,
and Abstract Interpretation - Volume 7737. VMCAI 2013. Rome, Italy: Springer-Verlag, pp. 335–
354. isbn: 978-3-642-35872-2. doi: 10.1007/978-3-642-35873-9_21.

Pivotal Software (2019). RabbitMQ open source message broker. url: https://www.rabbitmq.com/.

QuviqQ A.B. (2019). QuviQ QuickCheck. url: http : / / www . quviq . com / products / erlang -
quickcheck/.

Roscoe, Bill (1998). The theory and practice of concurrency. isbn: 978-0-13-674409-2.

Sagonas, Konstantinos (2005). ‘Experience from developing the Dialyzer: A static analysis tool
detecting defects in Erlang applications’. In: Proceedings of the ACM SIGPLAN Workshop on the
Evaluation of Software Defect Detection Tools.

Sagonas, Kostis et al. (1998). The High-Performance Erlang Project. url: https://www.it.uu.se/
research/group/hipe/.

Seijas, Pablo Lamela (2017). ‘Model construction, evolution, and use in testing of software
systems’. PhD thesis. University of Kent, Canterbury, UK. url: http : / / ethos . bl . uk /
OrderDetails.do?uin=uk.bl.ethos.754827.

Shannon, Claude E (1949). ‘The synthesis of two-terminal switching circuits’. In: The Bell System
Technical Journal 28.1, pp. 59–98.

Thompson, Simon J and Dominic A Orchard (Jan. 2019). CO545: Functional and Concurrent
Programming. University of Kent.

Vidal, Germán (2013). ‘Towards Erlang Verification by Term Rewriting’. In: LOPSTR. Vol. 8901.
Lecture Notes in Computer Science. Springer, pp. 109–126.

— (2014). ‘Towards Symbolic Execution in Erlang’. In: Ershov Memorial Conference. Vol. 8974.
Lecture Notes in Computer Science. Springer, pp. 351–360.

185

https://doi.org/10.1145/1088361.1088375
https://doi.org/10.1145/940880.940888
https://doi.org/10.1007/978-3-642-35873-9_21
https://www.rabbitmq.com/
http://www.quviq.com/products/erlang-quickcheck/
http://www.quviq.com/products/erlang-quickcheck/
https://www.it.uu.se/research/group/hipe/
https://www.it.uu.se/research/group/hipe/
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.754827
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.754827

Glossary

CoErl A communicating fragment of Core Erlang. 3, 5, 26, 58–60, 63, 66–69, 72, 74, 82, 83, 86, 90,
92–95, 100, 101, 110, 111, 136, 152, 157, 172–174, 177, 179

Core Erlang An intermediate representation of Erlang used in the Erlang/OTP compiler. 3

Erlang/OTP The de facto distribution of Erlang consisting of the compiler toolchain, virtual
machine, runtime system, and supporting libraries. 3, 6, 8, 23, 24, 136, 137, 150, 165, 172

HiPE High Performance Erlang. 152, 176, 177

186

Acronyms

BDD Binary Decision Diagram. 4, 5, 27–32, 34, 35, 37, 109, 119–124, 126–131, 133–135, 151, 178,
180

BEAM Bogdan/Bjorn’s Erlang Abstract Machine. 2, 7, 8, 18, 42, 55, 85, 94, 144, 150, 152, 177, 180

BIF Built-In Function. 15, 16, 96, 99, 110, 120, 156, 158

DAG Directed Acyclic Graph. 33

ERTS Erlang Runtime System. 55, 180

ETS Erlang Term Storage. 151, 180

LTS Labelled Transition System. 6, 27, 66–70, 72, 82, 90, 92

MRDAG Multi-Rooted Directed Acyclic Graph. 32, 33, 35–37, 120–122, 124, 133, 134, 151

OBDD Ordered Binary Decision Diagram. 27, 29–31, 119

OTP Open Telecom Platform. 6, 163, 166

PID Process Identifier. 19, 20, 22, 54, 58, 60, 63, 68

ROBBD Reduced Ordered Binary Decision Diagram. 6, 27, 31–35, 37, 119–121, 127, 131–134

187

This thesis was created with LuaTEX distributed as part of TEX Live 2019 and was edited with
Emacs and Visual Studio Code.
Text is set in TEX Gyre Pagella, source code in Inconsolata, and mathematics in Euler.
Source code highlighting performed via the minted package which uses the Pygments library.
Graphs created with TikZ and Graphviz.

Written: 2018–2020
Submitted: January 2020
Viva: May 2020
Corrected: July 2020–September 2020
Awarded: November 2020
Deposited: April 2021

cba

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
(CC BY-SA 4.0) license.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

