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1 Abbreviations

• NLP: Natural Language Processing

• NLG: Natural Language Generation

• NLU: Natural Language Understanding

• NLM: Neural Language Modelling

• LM: Language Modelling

• MLM: Masked Language Model

• biLM: bidirectional Language Model

• SCB: Statistical Count-Based

• SG: Skip-Gram

• CBOW: Continuous-Bag-of-Words.

• MT: Machine Translation

• ULMFiT: Universal Language Modelling Fine-tuning

• FNN: Feedforward Neural Network

• CNN: Convolutional Neural Network

• RNN: Recurrent Neural Network

• LSTM: Long Short-Term Memory Networks

• ELMo: Embedding from Language Model

• BERT: Bidirectional Encoder Representations from Transformers
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2 Introduction

Static word vector representations, such as word2vec embeddings (Mikolov

et al., 2013b), are widely used in the industry to accelerate the performance

at all kinds of Natural Language Processing tasks, by numerically mapping

the vocabulary. The main limitation of such fixed vector encoding algo-

rithms is that they do not have a way of representing polysemous words, i.e.,

a word that can have multiple meanings in different contexts. Recent lan-

guage modelling approaches solve the polysemy issue by using a transformer

architecture (Vaswani et al., 2017), that is based on an attention mechanism,

to model bidirectional word representations that are context-dependent (De-

vlin et al., 2019). In contrast to word2vec vectors, the contextual embeddings

are dynamically computed as a function of a pre-trained model trained on

extensive collections of data. Therefore, the trend of mapping words to the

fixed vectors starts to be replaced with language models that produce unique

contextual representations on the go. Meaning that, instead of using word

vectors at the input layer to represent the text, we now build on top of a

language model by adding a layer that we fine-tune on a specific task. Since

the recent language models are pre-trained on large datasets, the fine-tuning

layer approaches satisfying performance faster, i.e., thanks to the grammati-

cal and conceptual information captured at the pre-training phase. A recent

successful pre-trained bidirectional language model (BERT) has proven the

power of task-specific fine-tuning by pushing the SuperGLUE1 benchmarks

at eleven Natural Language Understanding tasks. These superior results mo-

tivate us to conduct experiments on the interpretability of contextual word

embeddings from BERT, as well as on sequence generation capabilities.

As it turns out, by analysing the contextual word vectors, it is possible

to perform arithmetic operations on the representations, in order to derive

new and conceptually related words. However, in contrast to word2vec, the

process is more complicated, and the results may not be as reliable because

1Link to SuperGLUE leaderboard: https://gluebenchmark.com/leaderboard
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of the embedding dynamic composition nature. Furthermore, it is not clear

how to use BERT as a generative model because of the bidirectional train-

ing objective function that cannot be reused for output sampling; therefore,

a successful strategy remains as an open research question. Consequently,

we utilise an alternative model called GPT2 to perform further generative

experiments. The GPT2 is based upon the same architecture as BERT, how-

ever, trained with a unidirectional objective that makes the output sampling

strategy sequential, and therefore, straightforward to sample from. Further-

more, in contrast to BERT, the GPT2 model displays a lower performance

at understanding tasks; however, sets strong benchmarks at many generative

tasks2.

Given the ultimate objective of this thesis to explore state-of-the-art mod-

els for text generation, we get inspired by the GPT2 benchmark achievements

and decide to use it to create a conditional lyrics generative model, i.e., by

fine-tuning on lyrics dataset and utilising special tokens to encode the style

of a specific genre. After training, the model can style lyrics to a specific

genre, as well as can be conditioned on any text sequence. Taking this idea

a step further, we train the GPT2 model using lyrics dataset accompanied

by the following features: genre, year, author, and song name. Training the

model using the data mentioned above and a specific input feeding strategy

allows for more fine-grained control over the style of the lyrics. For example,

we can produce a blended output based on a country genre, a rock author

and the ’50 style. Furthermore, given only a subset of conditional metadata,

we can generate lyrics, which we can later use to generate any of the missing

features.

This work presents the following main contributions:

• Experimentally showing how to fine-tune a pre-trained language model

for controllable output generation. This is achieved by an appropriate

input construction strategy, as well as an optimal output sampling

2Link to benchmarks of many different generative tasks:

https://paperswithcode.com/area/natural-language-processing/text-generation
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method.

• Showing that a dataset with additional features (metadata) positively

influences the quality and diversity of the conditional model outputs.

• Confirm that it is not convenient to generate from BERT in a sequential

fashion, given context from left-only, right-only, and both sides.

• Illustrate that manipulating BERT bidirectional token representations

using simple arithmetic operations result in new representations that

conserve common-sense knowledge.

The thesis has the following structure (see Page 2 for the content table).

The background (Section 3) covers the essential knowledge needed to under-

stand the inner-workings of models used for the experiments. In essence, it

starts by introducing recent trends and advances in the Natural Language

Processing field. Then, it dives into the most fundamental concepts and

methods of the field, i.e., what a word embedding is, standard count-based

and neural-based approaches of language modelling. Moreover, it covers the

recent state-of-the-art language modelling algorithms, e.g. ELMo and BERT,

and their composition architectures, that include, LSTM and self-attention.

Throughout the whole section, it is shown how the approaches to language

modelling change in order to produce embeddings that capture more infor-

mation about themselves.

Furthermore, Section 4 contains preliminary experiments on the BERT

model. The tests start by comparing the performance of two BERT distri-

butions, BERT-Base and BERT-Large, at their training Masked Language

Modelling objective. Further experiments focus on the contextual word em-

bedding interpretability. In particular, by inspecting their representations,

performing an arithmetic operations, and seeing how the results relate to the

way human interpret concepts. Lastly, we conduct experiments on language

generation from BERT, using the same objective that was utilised during the

pre-training phase.

In Section 5, we cover the methodology, experiments, and results of using

6



a GPT2 model for conditional lyrics generation. In particular, this Section

involves experiments on different training dataset sizes, input construction

strategies and the most optimal output sampling techniques. Moreover, fur-

ther experiments on a fine-grained generative model contrast the output qual-

ities based upon weights trained using datasets that vary in data diversity

and the dataset size. Also, other experiment compares the output quali-

ties based upon collections generated using different subset of conditional

features.

Lastly, Section 6 examines the limitations of the experiments and tech-

niques discussed in this thesis, and expands upon the future work to be

conducted.

3 Background

Computers are unable to naturally understand words in the way we humans

do, which is because they are fundamentally built to work with numbers.

To create a mapping between the natural language and the way computers

process things, a mechanism that numerically represents words is required.

Differently said, for a system to process, interpret, and disambiguate a textual

input, any different word needs a unique and meaningful representation. A

standard mechanism for representing a textual input is to use a vector of real

numbers - a Word Embedding. Similarly to the way a picture is defined by

pixels; a word is represented by a vector of values that collectively express

a word and the context it is used in. The word embedding should ideally

capture both: complex characteristics of word use (grammar and sentiment),

and how these uses vary across linguistic context, i.e., to model polysemy.

Word embedding is a crucial component for Natural Language Processing

(NLP) tasks, which significantly contributes to the performance of a wide

range of applications by providing fundamental linguistic comprehension. To

name a few domain-specific applications on account of word embedding: lan-

guage translation, sentence classification or text generation. Hence, having
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an effective mechanism of mapping words to meaningful representations, that

capture the context the word is used in, is an essential research area for the

natural language processing field today.

Language modelling algorithms have a long and rich history in the NLP

field, however, they can be classified into two categories: a Statistical Count-

Based and the Neural Language Modelling approach. At the core of both

of these approaches stands a similar Language Modelling objective, i.e., to

predict a word given the probability of the previous word sequence. The sta-

tistical count-based methods, such as the N-Gram, involve estimating prob-

abilities via counting appearance frequency (Cavnar, Trenkle et al., 1994).

Differently put, the model pre-processes a corpus of text by counting the

occurrence frequency of unique n-long sequences (n-grams), and then, using

the n-grams’ occurrence frequency, estimates the probability of a sequence.

The statistical count-based approaches are fast and straightforward. How-

ever, some sequences of words can be poorly estimated due to a Data Sparsity

problem. That is, the chance of same long word sequence to re-appear for

the next word prediction, decreases with the length of n-gram, where longer

n-grams yield better performance.

Motivated by the fact that words with similar meaning tend to appear

in the same context; the neural language modelling approach models the

vectors based on the words’ context co-occurrence using a neural network

(Bengio et al., 2003). This way, a sequence probability can be later mod-

elled based on the individual word vector representations, which solves the

data sparsity problem. Mikolov et al. (2013b) proposed two different forms

of the vector representation modelling, a Continuous-Bag-of-Words and a

Skip-Gram, which at the time of publication were particularly useful. Both

approaches are based on a similar idea of using a shallow feedforward archi-

tecture that learns parameters in the training process by predicting n-many

context words around an index word. After pre-training the model on a large

unsupervised corpus of text, the learnt parameters are used to produce fixed

size and dense word embeddings. The produced word embeddings capture
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grammar and exhibit the property whereby semantically similar words are

similar in the vector space. Furthermore, the model’s learnt space can be ma-

nipulated to find word’s relationships by using simple arithmetic operations,

e.g., vec(“king”)−vec(“man”)+vec(“woman”) is closest to the vec(“queen”)

than to any other vector (Mikolov et al., 2013a). Despite the great success of

accelerating the performance of other neural networks applications, i.e., by

using the word embedding at the input layer to represent words, the word

vectors still suffer from limitations. The major drawbacks are: inability to

represent polysemy; not considering the full contexts of a word; incompe-

tence to represent words that have not been encountered during the training

process; and a lack of subword information (Morphemes) - words like event-

ful, eventfully, uneventful and uneventfully should have structurally related

embedding in the vector space.

The morphological issue is tackled by FastText, which builds on top of

the previous approaches by representing input at the training process in the

form of Character N-Grams (Bojanowski et al., 2017). This way, the vector

space maintains subword structural information, and the model knows how

to assign a meaningful representation to the previously unseen words. Fur-

thermore, the limited context problem gets solved by Peters et al. (2018) who

used Long Short-Term Memory (LSTM) neural network architecture and

named their model ELMo. In more detail, ELMo uses two Long Short-Term

Memory networks to scan context from both directions, which produces two

outputs for each position in the sequence. By combining the two represen-

tations computed in the opposite direction, we derive a Bidirectional Word

Embeddings. ELMo differs from the previous approaches in the sense that

the resulting embeddings are a function of the entire sentence, i.e., the same

word can have numerous different internal representations depending on the

context it is computed in. By improving the accuracy of multiple bench-

mark tasks, this work has revealed the importance of Bidirectional Language

Modelling.

Another impactful work has proposed a Transformer network that is
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solely based on an Attention Mechanism (Vaswani et al., 2017). Similarly to

ELMo, an attention mechanism is capable of producing word vectors, which

are a function of the whole sentence. However, the transformer is natu-

rally more parallel and allows for a much deeper architectural setting than

the Long Short-Term Memory network. Furthermore, the transformer has

a promising future in replacing the Long Short-Term Memory networks for

many tasks since it has shown to maintain long-term dependencies better.

One example is the OpenAI GPT model that has applied a unidirectional lan-

guage modelling objective to the transformer architecture and have improved

the benchmarks over ELMo (Radford et al., 2018). The initial transformer

network is made up of two parts, an encoder, and a decoder. However, the

OpenAI GPT has shown that when using language modelling as a learning

function, it is good enough to only use the encoder; it saves computational

time. Another work, ULMFiT by Howard and Ruder (2018), has proposed

a powerful transfer learning strategy which aims to fine-tune the previously

learned (pre-trained) model that was trained on a large amount of data.

Such an approach benefits applications that have limited learning resources

since the pre-trained model already exhibits the fundamental linguistic prop-

erties and only has to be fine-tuned to a more specific task. In contrast to

word embeddings, fine-tuning does not require building and training a model

from scratch. Furthermore, applying ULMFiT to only 100 labelled examples

matches the performance of training from scratch on 100 times more data

samples, i.e., due to the information captured by the pre-training language

model.

Moreover, a different model named BERT, at the time of publication

has obtained new state-of-the-art results on eleven Natural Language Un-

derstanding tasks (Devlin et al., 2019). BERT takes advantage of multiple

recent ideas that have emerged in the Natural Language Processing field,

namely: OpenAI GPT architecture, ELMo’s emphasis on the bidirectional

context, and the ULMFiT’s fine-tuning strategy. However, to allow BERT

for bidirectional learning, the authors have introduced a new Masked Lan-
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guage Modelling objective. Since the transformer architecture requires to

take a whole sentence as an input, the unidirectional objective in the bidi-

rectional fashion would logically not work. That is, the model could attend

to all of the words it tries to predict, therefore, resulting in mainly coping

the predictions from the input which would not allow for any generalisa-

tion. In greater detail, the Masked Language Modelling objective masks

15% of the input sequence that the network has to predict, based on the

un-masked context. Nevertheless, inspired by the publication of Dai and Le

(2015), BERT uses another objective function to model the learning space

jointly with the language modelling objective. The additional inference task

requires the network to classify an appropriate continuation of a sentence,

given its beginning. The authors claim that the multi-task learning improves

the network’s transfer-learning to tasks requiring a sentence relationship un-

derstanding, e.g., question answering and text summarisation. Furthermore,

BERT not only provides fundamentals to be fine-tuned to other supervised

tasks but also can be used to extract contextualised word vectors.

BERT has proven to be superior over the previous methods for tasks re-

quiring language understanding and has set solid grounds to be widely used

in the industry today. However, despite the BERT’s strong applicability to

tasks requiring knowledge, understanding tasks only stand a subset of prob-

lems people want to use such models for. As of today, it is unclear how

one could successfully sample from BERT for Natural Language Generation

tasks because of the new Masked Language Modelling objective that is tricky

to be re-used for the generation. Thus, the more recent work by Radford

et al. (2019) has filled in the gap by training a transformer-based network

using a standard language modelling objective, but with increased number

of layers, hidden-states, and the training dataset size. The GPT2 model has

achieved the state-of-the-art for many generative tasks while being competi-

tive with BERT at understanding tasks. This work has shown the importance

of enormously large dataset sizes necessary to improve the performance at

transfer-learning tasks.
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Language Modelling Algorithms

Properties: ↓ N-Gram Word2vec FastText ELMo BERT GPT2

Word Rep. Type n-gram vector vector vector FoaM FoaM

Context Modelling 7 partial partial full full full

Polysemy 7 7 7 3 3 3

Morphemes 7 7 3 3 3 3

Bidirectional 7 7 7 3 3 7

Layers Depth ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ • • ◦ • • • • • •
Comp. Power low low low high high high

Table 1: A summary of Language Modelling Algorithms’ properties. FoaM

stands for: the function of a model, and the algorithms with FoaM represen-

tation construction property can also produce fixed word embeddings.

3.1 Fundamentals

This section covers the essential background knowledge that is relevant to

understand the further explained architecture structures and their use cases.

It starts by explaining word embedding, in essence: what it is, what infor-

mation it captures, and how we can make use of it. Furthermore, the section

covers two significant types of training approaches and their hybrid, which

gets used for language modelling. Lastly, it discusses how we approach lan-

guage modelling by setting an objective for an algorithm to capture patterns

within the natural language data.

3.1.1 Word Embedding

The input to any neural network model needs a numerical representation in

order for the computer to be able to process the input. Intuitively, having a

textual input would mean that we need a mechanism which would provide

meaningful representations for the respective words. One of the most effective

ways of representing words is to use word embeddings. Formally speaking, a

word embedding is a mapping between the actual words and their respective
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dense vector representations. For example, a word could be represented by

a vector of length N = 100, [n0, n1, ..., nz], where nz ∈ R between {−1,+1}.
Representing words as vectors allow language modelling models to capture

grammatical and semantic information by theoretically speaking, permuting

the vector values. As a result, vectors with related semantic meaning should

have similar internal distribution. For example, consider the following sen-

tences:

• It is really sunny today.

• It was really cloudy yesterday.

• It will be really rainy tomorrow.

The adjective words describing the weather (sunny, cloudy and rainy) must

have a similar vector distribution because they appear in a similar context,

i.e., between the word “really” and the words indicating a particular day.

Likewise, the words: today, yesterday and tomorrow, must be related since

they occur in the context of words indicating the weather. Generally, a

word representation can be perceived as a combination of all the contexts

it occurred in, for a given textual corpus. Therefore, the more context two

words share, the more similar their internal representation will be. Further-

more, an investigation into word embeddings has shown that it is possible

to capture interesting linguistic characteristics by manipulating the vector

space using linear arithmetic transformations. Meaning, it is possible to use

a distance function, i.e., (cosine similarity), to calculate the nearest neigh-

bours for any word. Nevertheless, it is also possible to perform arithmetic

operations between two words to derive a new related one. For example,

the result of a vector calculation: vec(“Poland”) + vec(“capital”) is close to

vec(“Warsaw”), and vec(“King”)− vec(“man”) + vec(“woman”) is closest

to the vec(“Queen”) than to any other vector (Mikolov et al., 2013a).

fWord embedding is a fundamental idea for the Natural Language Pro-

cessing (NLP) field due to its essential use at the input layer. It is a common

practice to use embeddings to represent a textual input at any other neural
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network, which, as a result, transfers the common knowledge learned at the

word embedding modelling stage to the new model. Furthermore, such a

strategy has shown to hugely enhance the accuracy of the neural network

models while saving the computational training time. If not the presence of

word embeddings, many widely used application today could not provide a

reliable and consistent service. To list a few, Google’s search and translation

services, next word prediction or auto-correction on a mobile device, and

spam detection at the email.

However, as it will be explored in greater detail in the further sections,

the standard modelling techniques have limitations which leave a footprint

on the quality of the final embeddings. One of the primary defects is that

such embeddings are context invariant, meaning that they exhibit the same

internal distribution no matter the meaningful differences in the surrounding

context. To give a better intuition, consider the following two sentences:

• The bank on the other end of the street was robbed.

• We had a picnic on the bank of the river.

Both of the sentences use the word bank, but the meaning of the word

differs entirely in the two different contexts. This phenomenon is known

as polysemy and accompanies the word embedding algorithms since the be-

ginning. The standard embedding algorithms struggle to model polysemy

since they use a single vector to represent the meaning of the word bank.

In contrast, the recent algorithms model the word embeddings as a function

of the entire sentence and thus, representation of a word changes depend-

ing on the words around it. So, the new modelling algorithms would use

the above words robbed and river to disambiguate the meaning of the word

bank. Furthermore, taking context into account has dramatically increased

the performance of many tasks making use of the contextual word embeddings.
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3.1.2 Model Learning Approaches

The NLP models can benefit from two types of data, structured and un-

structured. Depending on the data type, the algorithms require a matching

learning strategy, i.e., a mathematical objective function which calculates

an error required to optimise the network. At a high level, these learning

objectives are split into two groups, supervised and unsupervised.

The unsupervised approach assumes that a network is given a domain-

centred input and is expected to find statistical correlations hidden within

the data without any human supervision. In this approach, the network’s

weights are tuned accordingly to reflect the patterns within the data. A sig-

nificant advantage of this approach is that the data can remain unlabelled

and does not require much human pre-processing. A common belief sup-

ported by recent work (Radford et al., 2019) is that using large training

sets allows the network to learn more patterns and achieve better generalisa-

tion accuracy, and thus, strengthening the significance of unsupervised data

learning objectives.

The supervised approach is when each input has its desired output (la-

bel) that the network is striving to achieve. For example, consider a binary

sentiment classification problem. A network receives sentences as an input

that can either have a positive or negative sentiment label. Thus, in this

scenario, the network’s goal is to recognise whether the input is positive or

negative. Returning an output which is other than the expected label, creates

an error which is then used to adjust the network’s parameters. After back-

propagating the error, the next time the network receives the same input, it

should return an output that is closer to the desired label. In other words,

the supervised approach is like having a teacher who points the network to

the correct output for each input. Models trained on supervised datasets

are generally better since the teacher’s signal allows to learn/solve specific

problems. However, the creation of a labelled dataset is very time consuming

and can lead to an introduction of unwanted human bias into the model.

In contrast, while the supervised approach would classify a sentence pos-
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itive or negative, its unsupervised counterpart would look at inherent simi-

larities between all the sentences and separate them into groups accordingly.

Although both of the learning types sound applicable to this binary classi-

fication problem, the unsupervised method often proves to be less accurate

on complex data (Patterson and Gibson, 2017).

Luckily for us, there is also a self-supervised algorithms’ group, which

combines the two approaches mentioned above. The self-supervised design

benefits from both, using large unlabelled datasets and the teachers signal

(label), which is achieved by automating the labelling process on unstruc-

tured data. Language models belong to the self-supervised group since their

objective function is to predict the next word given the previous sequence

of words. Explicitly speaking, self-supervised objectives use the next word

in the queue as a label for the current prediction. Section 3.1.3 covers lan-

guage modelling task to a greater extent. An important take away is that

algorithms using this learning objective combines the benefits from unsu-

pervised and supervised approaches and form an intersecting group called

self-supervised learning algorithms.

3.1.3 Language Modelling

Most programming languages are deterministic and their expressiveness is

limited, in a sense that, a syntactically correct input will always trigger the

same predetermined scenario. Capturing linguistic properties in that way

is not easy because natural language contains a lot more possible terms, is

ambiguous, and changes over time. For example, natural languages have

many homonym words, i.e., words that have the same spelling but different

meanings and origins. In order to capture the linguistic properties, a model

needs to make use of a Language Modelling (LM) learning objective.

In a high level overview, a LM objective is the task of computing a proba-

bility of a sequence, P (W ) = P (w1, w2, w3..., wn) and using this probability to

predict the upcoming element in the sequence P (w4 | w1, w2, w3). This tech-

nique stands at the core of the NLP field due to its extensive application use.
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Tasks like text summarisation, question answering, and machine translation

require the same predictive objective that the LM provides. Furthermore,

LM is also used to model dense vector representations (word embeddings) by

encoding grammatical and structural information onto them. Models that

take advantage of using word embeddings at the input layer improve the

quality of the downstream tasks by providing linguistic information at the

input level. Thus, despite some networks using a different objective than

LM to learn the parameters, they may still use word embeddings, which is a

product of LM and thus, makes LM an even more critical technique for the

NLP field.

LM models are classified into two categories, a Statistical Count-Based

(SCB) and a Neural Language Modelling (NLM) approach. Since SCB ap-

proaches are simpler to understand, this section will explore the functioning

of the LM objective on behave of the SCB model. The NLM approaches are

explored in section 3.3.

The chosen model for the SCB LM illustration is called n-gram (Cavnar,

Trenkle et al., 1994). The n-gram model introduces different, but very simi-

lar, ways of pre-processing a corpus: uni-gram, bi-gram, tri-gram and n-gram,

where n is a sequence length. Intuitively, the uni-gram pre-processes a given

corpus by identifying all the unique words and counting their occurrence

frequency. Whereas the bi-gram looks at all unique word pairs and counts

their occurrence frequency. Similarly, the tri-gram looks at all the unique

sequences of length 3 and counts their occurrence frequency. In principle,

the length of a unique sequence of words can be of any length. However, the

longer the sequence, the less likely to appear in the dataset again. Having

many unique entries in the look-up table makes it ambiguous, and thus the

next word prediction less accurate. After the corpus n-gram pre-processing

step, the n-gram model will perform a table look-up in order to retrieve the

context co-occurrence frequencies and use it to predict the next word.

The look-up probabilities in the n-gram model are equivalent to a Markov

Chain Probability, which the LM uses as an underlying composition. The
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initial Markov Chain Probability computes a joint probability of a sentence

by only considering pairs of values at the time. More formally, the Markov

Chain Probability rule states:

P (A | B) =
P (A ∩B)

P (B)
−→ P (A ∩B) = P (A | B)P (B) (1)

We can re-write the equation to represent the next word probabilities:

P (w1, w2, w3, ..., wn) = P (w1)P (w2 | w1)P (w3 | w1, w2)...P (wn | w1, ..., wn−1)

P (w1, w2, ..., wn) =
∏
n

P (wn | w1, w2, ..., wn−1)

(2)

Now, using Equation 2 to compute the joint probability of the sentence

“its the cat that”:

P (its, the, cat, that) = P (its)P (the | its)P (cat | its, the)P (that | its, the, cat)

(3)

It is important to note that each of the terms on the right-hand side

of the equations is n-gram count probability that gets estimated from the

corpus. Thus, in order to predict the next word, the algorithm would need

to look-up each part in the conditional probability table. However, note that

when the sentences are long, the required n-gram counts are long. This is

a problem as it makes the equation unscalable because it is not practical to

compute n-grams of every length. For example, consider that we would only

pre-process bi-grams and would try to predict P (cat | a, happy). This would

be impossible since we would not have any tri-grams to see how frequently

the “a happy cat” sentence has occurred. Hence, to cope with this issue, it

is applicable to simplify the equation using the Markov Assumption, which

states that it is enough to only pick one or a couple of previous words for

the history. This assumption means that we can reduce the conditional

probability to be fixed and represented by a specific n-gram. Applying the

Markov Assumption results in the following formula when using bi-gram:
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P (wn | w1, ..., wn−1) ≈ P (wn | wn−m, ..., wn−1)

P (that | its, the, cat) ≈ P (that | the, cat)

(4)

Abstractly speaking, the n-gram can be compared to a sliding window,

which only looks at n most recent words. This also means that the bigger

the window size, the more context will be considered to predict the next

word. However, as previously mentioned, it should not get too big. Now,

consider a 5-gram model and the task of predicting the next two words for

the following sentence: “The black cat went out to the garden”. In this

scenario, the 5-gram model would only consider the last four words (out, to,

the, garden) and would look-up all the 5-grams that contain the given four

words and would filter out the next word using the following formula:

P (wn | wn−m, ..., wn−1) =
count(wn−m, ..., wn−1, wn)

count(wn−m, ..., wn−1)
(5)

The algorithm would choose the next word to come from the 5-gram that

has received the highest probability in equation 5. After this step, the slid-

ing window would shift to the words “to, the, garden, pred(t-1)” and the

processes would be repeated.

Until now, it has been shown how the count-based probabilistic n-gram

model uses the Markov Chain Rule, together with Markov’s Assumption to

generate next-word predictions. However, this model still faces many seri-

ous limitations which come down to the words being represented as context

co-occurrence frequencies. This is referred to as the sparsity problem in the

literature (Cavnar, Trenkle et al., 1994). For example, consider the follow-

ing two major problematic cases. When modelling a joint distribution of a

sequence/history using a pure n-gram model, there are cases where a word

sequence has not been encountered in the corpus; hence the model would not

know what to output. Another problem is that word representations are not

linguistically informed. Meaning the probabilities themselves do not carry

any information about themselves. For example, the words “cat” and a “dog”
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should have a similar representation as both belong to the subset of animals.

The most successful solution to the sparsity problem is to use a neural net-

work with LM objective to model the context co-occurrence frequencies into

a single vector of floating numbers.

The more advanced NLM approaches utilise a neural network for LM,

with the most common architectural choices being: Feed-forward Neural Net-

works (FNN) and Recurrent Neural Networks (RNN), which both naturally

solve the data sparsity problem. The examples of how the aforementioned

models use the LM objective is explored in sections 3.3.1 (FFN) and 3.3.2

(RNN). Furthermore, the most recent work utilises an idea of attention-

based architecture with a modified LM objective to produce contextualised

word embedding. The new embeddings are produced as a function of the

whole sentence, meaning that the same word in two different contexts will

get a different and more suitable internal representation. The new techniques

have proven to be very successful for many deep learning applications and

stand ground to be a replacement to the prior methods. The contextual

word embedding algorithms are explored in section 3.3, and their internal

representations in section 4.
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3.2 Neural Network Architectures

3.2.1 RNN: Recurrent Neural Networks

Whenever humans listen to one another speech, they persist the meaning

of the previously spoken out words in order to correctly understand the

whole sentence. It is not the case that we understand words separately, and

whenever we hear a new word, we start thinking from scratch. It is instead

the case that we have a memory state, which allows us to persist contextual

meaning of a sentence. From the neural network’s point of view, consider a

task of processing a video clip one frame at a time to capture some events

spread across multiple frames. It is unclear how Feedforward Networks could

persist the information from different frames in order to collectively recognise

an event.

Recurrent Neural Networks addresses this issue of an information persis-

tence by introducing a recurrent loop (see Figure 1).

Figure 1: On the left, a schematic representation of a RNN. On the right, an

unrolled representation of the left diagram. Each unrolled module represents

a state h at some point in time t. From Colah (2015).

What FNNs and RNNs have in common is that both take an input xt,

process it through network A, and produce an output ht. However, an im-

portant distinction is that FNN’ output is never fed back into the network,

whereas, in RNNs, the future input gets derived from the past outputs. One

way of interpreting RNNs is to think of them as multiple instances of the

same network, where each module passes its hidden state to the next one in
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the sequence. This structural composition naturally encodes the order of an

input which is very appealing for various applications requiring sequential

processing, i.e., text (Sutskever, Vinyals and Le, 2014), video (Ullah et al.,

2018), and sound (Parascandolo, Huttunen and Virtanen, 2016).

In theory, RNNs can connect previous information to the present task.

In the case of action recognition in video, previous video frames might in-

form the understanding of the present frame. However, in practice, it is

not always the case as RNNs are not so good at keeping long-term depen-

dencies (Vaswani et al., 2017). For example, consider a task of question

answering based upon a paragraph. After processing all the words through

the RNN, questions based on the most recent sentences would most likely

be correct; however, questions on the first sentences would most likely be

answered wrong. Such behaviour is natural since the hidden states get over-

written with the newer information - there is no memory control mechanism.

This problem was addressed by Hochreiter et al. (2001) and Hochreiter and

Schmidhuber (1997), who introduced an LSTM network that improves the

long-term dependency aspect.

3.2.2 LSTM: Long Short-Term Memory Networks

The RNNs’ repetitive internal structure considers the previous knowledge

when computing a new output. However, it does not have any mechanism

to state the “importance” of the previous knowledge, and thus, a piece of

crucial old information often gets overwritten with a new but irrelevant one.

The LSTM network is an extension to RNN which introduces a memory

controlling mechanism whose objective is to persist the more “important”

information (See Figure 2). As a result, the LSTM networks significantly

improve on the information long-term dependency aspect and perform well

at a broad range of applications. To give an intuitive example, consider

predicting next word in the sequence given the following context: “Adrian

speaks fluent Polish... Adrian is visiting England. Adrian speaks fluent [...]”.

Despite the most recent word indicating the nationality being “England”,
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the network would be able to figure out that the correct output is Polish.

In contrast, the RNN would most likely predict English, since the starting

context would be most likely overridden.

Figure 2: A schematic representation of LSTM’s internal structure. From

Colah (2015).

The critical concept differentiating the LSTM networks from the RNNs

is an internal memory controlling mechanism. The mechanism is made up

of a Cell State and three Gating Units. The cell state can be thought of

a relevant “information repository”, or simply “memory” that stores the

most important information captured throughout the entire input sequence

(See Figure 3). Whereas the unit gates are shallow neural networks that

collectively control the information flow to the cell state. Each gate plays its

part in the whole mechanism. However, collectively at each input step, they

create a capability to add and remove “knowledge” from the cell state.
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Figure 3: A schematic representation of LSTM cell state. From Colah (2015).

Now, given the core idea, the interactive process of each unit gate will be

covered to greater detail by dividing the explanation into four logical steps:

forget gate, input gate, cell modification and output gate. Note that, from

the technical point of view, the gates are single neural network layers with

a non-linear activation function whose outputs get point-wise multiplied in

order to pass information to the cell state.

The idea behind the forget gate is to decide what information should be

thrown away or kept from the cell state. In more detail, it is done by an

element-wise addition of the input with the previous hidden state (xt +ht−1)

and then by running it through a sigmoidal activation function. The sigmoid

activation function collapses the weighted output of a neural network into

a vector of values ranging between 0 and 1. Since anything multiplied by

0 is 0, the values in the resulting array closer to 0 mean to forget and the

values closer to 1 mean to keep. (See Figure 4a). To illustrate the forget

gate mechanism, consider a language modelling objective, where the task is

to predict next word in the sequence given the following sentence: “Adrian

is happy because he got a cat for Christmas, however, on the next day the

cat run away and Adrian became sad. Adrian feels ...”. In such a scenario,

the forget gate should remove the information about Adrian being happy

because accordingly to the new information he feels sad. More formally, the
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process looks as follows:

ft = σ(Wf [ht−1, xt] + bf ) (6)

The intuition behind the input gate is to update the cell state with a

new “selected” information. In more detail, the input mechanism is made

out of two gating units with separate weight sets. Similarly to the forget

gate, the first unit is a sigmoid neural function that outputs a vector with

values ranging between 0 and 1, based on a concatenation of the input with

previous hidden state. On the other hand, the second input gating unit uses

a tanh neural function, which squashed the neural output to lay between -1

and 1. Then, given the tanh output, we multiply it by the sigmoid output.

The initiative behind the two units working in collaboration to decide on the

“relevant knowledge” is as follows: the tanh values ranging between -1 and

1 decide on new candidate values that we potentially want to place in the

cell state. Whereas, the sigmoidal values ranging between 0 and 1, decide on

the “degree” of the relevance of the values selected by the tanh output. (See

Figure 4b).

it = σ(Wi[ht−1, xt] + bi)

c̃ = tanh(Wc̃[ht−1, xt] + bc̃)
(7)

The previous two steps have shown how LSTM decides what information

to forget and how it selects the new information to be stored. Now, using

this information, the next major step is to modify the previous cell state

Ct−1 into a new cell state Ct, which gets done in two steps. The first step

is to multiply the previous cell state by the forget gate vector ft × ct−1 to

forget the information decided earlier. Then, the second step is to add the

input gate vector to the cell state after the forgetting stage, ft× ct−1 + it× ct
to update the cell state with the new candidate vector (Illustrated in Figure

4c).
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(a) The forget gate. (b) The input gate.

(c) The cell modification. (d) Output gate.

Figure 4: The information persistence controlling mechanism divided into

four major steps. From Colah (2015).

Lastly, we have the output gate. Its role is to decide what the next

hidden state should be, which is the actual vector used for next prediction.

The hidden state also contains information about the previous outputs since

it is made out of the cell state. In fact, it is a filtered version of the cell state.

The hidden state production is divided into three parts. The first part is to

pass the previous hidden state and the current input into a sigmoid activation

function. Secondly, we run the new cell state through a tanh activation. The

final step multiplies the output of step two against the output of step one,

which derives a new hidden state. See Figure 4d for an illustration and

Equation 8 for mathematical support of the process.
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ct = ft × ct−1 + it × c̃t
ot = σ(Wo[ht−1, xt] + bo)

ht = ot × tanh(ct)

(8)

To summarise, an LSTM network comes from the RNNs family and ex-

tends the basic recurrent loop with an internal memory mechanism. The

memory mechanism selects the more relevant information from the whole in-

put sequence and acts as a “knowledge repository” for the inputs. This way,

at every time step, the current input knows about the previous in the se-

quence. The memory unit is called a cell state which gets linear interactions

from the unit gates, namely: forget, input, output gate, which collectively

control the information flow in and out of the cell state. The internal mecha-

nism provides an information persistence aspect which is beneficial for tasks

requiring long-term information dependency, e.g., question answering, text

summary, or in general, language generation.

3.2.3 Self-Attention Mechanism

The attention mechanism is motivated on the Human’s ability to focus on

particular areas of an image, or similarly, the ability to correlate words in

a sentence. For example, by looking at an image of a cat in a woody back-

ground, we would pay high-resolution attention to the cat while perceiving

the woods in a lower settlement. Hence, when seeing something in high reso-

lution, our brains automatically perceive that particular part to be outstand-

ing. Similarly, we can explain the relationship between words in a sentence,

i.e., we can point out words which give the most information to the meaning

of the whole sentence. From the machine learning perspective, the attention

mechanism output can also be interpreted as an importance vector.

The self-attention is a stand-alone mechanism which can be utilised at

a variety of architectures and problems. In most use cases, it is applied to

the hidden states of RNNs for tasks like language translation (Sutskever,

Vinyals and Le, 2014). However, recent work has proven that the attention
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mechanism can achieve superior results in language translation when applied

without any underlying architecture (Vaswani et al., 2017). Note that, there

is a variety of attention methods proposed in the literature; however, this

section will refer to the self-attention from the publication by Vaswani et al.

(2017).

Abstractly speaking, the self-attention mechanism figures out a relation-

ship between elements in a sequence by producing a unique representation

of that sequence. The idea of building a relationship between different el-

ements makes the attention mechanism applicable to many problems. For

example, it has been successfully applied to the problem involving reading

comprehension (Cheng, Dong and Lapata, 2016), abstractive summarisation

(Paulus, Xiong and Socher, 2018), textual entailment (Parikh et al., 2016)

and more importantly representation learning (Devlin et al., 2019).

To give an intuitive example, consider using an attention mechanism to

create contextual word embeddings, i.e., embeddings that are a function of

the entire sentence. When computing a vector representation for word wi at

a particular position, the presence of all the other words gets reflected in the

embedding. However, some of the words in context should be more related

to wi than others; hence, the attention mechanism decides which words are

more relevant to the specific word’s representation. For example, consider

the following sentence: “The car could not run because it was broken”. What

does the word “it” refers to? For humans, it is a simple answer; however, for

algorithms, this is a difficult question. In this scenario, the attention could

associate the word “it” with the word “car” in order to reflect the word car

in the “it” vector representation.
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Figure 5: A visualisation of attention weights, which show the relation-

ship of the word “it” to the context of the sentence. From an interactive

demo3attached to the publication by Vaswani et al. (2018).

Note, from now on, the self-attention mechanism will be explained from

the representation learning point of view only. Furthermore, in order to

simplify the interpretation, the process will be mostly explained at the level

of vector multiplication. Only after, it will be explained in its pure matrix

form.

The first step in the process is to create a separate set of three vectors

for each input token in the sequence. The three vectors representative of a

particular input position are constructed by multiplying the respective input

token by three matrices that we optimise during the training process (See

Figure 6). The three resulting vectors are called: Query, Key and Value

and should reflect the respective input that they are made from. The size

of the Query, Key and Value vectors should be relatively small in contrast

to the final embeddings since the whole process creates 3 of them for each

input token in the sequence. As it is later explained, those vectors are used

to create the final contextual word embeddings. Vaswani et al. (2017) have

3https://colab.research.google.com/github/tensorflow/tensor2tensor/

blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
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used the dimension of 64, where their encoded output embedding was of

dimension 512. There is no restriction to the dimension of the three vectors;

however, it is an architectural trade-off between the performance and the

computational time.

Figure 6: A representation of the Query, Key and Value creation process.

The input embeddings x of two words is multiplied by three weight sets

{WQ,WK ,W V }, which results in the creation of a query, key and value

projection of each word in the input sequence. From Alammar (2018).

Once the vector projections Q,K, V have been obtained, the next step

is to calculate a score. Each element of the input sequence needs to be

scored against all the other inputs in the sequence. The score will determine

how much focus a particular word should get from every single element in

the sequence. The scoring is done by taking a dot product of a particular
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word’s query vector with the keys of every other input. For example, if the

input sequence is of length three, to compute the scores for the first word,

q1 • k1 = s1, q1 • k2 = s2, q1 • k3 = s3.

Figure 7: A step by step illustration of the contextual representation building

process for a word. From Alammar (2018).

In step three, each score of a particular embedding needs to be divided

by the square root of the key vector dimension
√

64 = 8, i.e., s1√
64
, ..., sn√

64
.

The denominator value is not restricted to the use of the square root, how-

ever, according to Vaswani et al. (2017) it helps to keep the gradient sta-

ble. Moreover, step four is to use a softmax function over the set of values
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retrieved from the divisions (step three), i.e., softmax( s1√
64
, ..., sn√

64
). The

softmax function will strengthen the highest result and shrink down the less

necessary results in order to reflect the more important context.

The fifth step is to multiply the softmax results by the value vectors. The

intuition is that the value vectors that get multiplied by higher scores will be

reflected in the embedding more. Note that it is almost always the case that

the product of itself scores the highest, as a word needs to prioritise itself in its

representation and then consider the other relevant context. Furthermore,

in step six, the resulting vectors from step five get summed up into one

representation, which is the product of the attention mechanism for the word

at the first element in the sequence. The entire process is depicted in Figure

7.

Until now, it has been shown how the attention mechanism calculates a

context for one word. Knowing how it works, we can go a step further and

explore how it is done for the whole sentence at the matrix multiplication

level. Performing the calculation using matrices computes the whole sentence

at once, thus, improves the efficiency of calculations.

Figure 8: A self-attention formula that collapses steps 2-6, from Figure 7, into

a matrix form computation. The matrix formula produces the self-attention

output for all the inputs in the sequence, at once. From Alammar (2018).
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Figure 6 illustrates the calculation process of the query, key and value

projections (step one). Steps 2-6 can be collapsed into one formula which

produces the attention output for the whole sequence (See Figure 8).

Vaswani et al. (2017) go a step further and propose a multi-head attention

layer. At a high level, the multi-head attention makes use of the self-attention

mechanism by computing multiple representations of the same word in the

same context and then concatenating the representations to form one. The

multi-head attention aims to expand the context of an embedding further.

Recall the query, key and value projection processes. In this step, the

set of weights WQ,K,V
1 = {WQ,WK ,W V } decides which parts of the embed-

ding should be projected. Having n-head attention means having WQ,K,V
n

sets of weights {WQ,WK ,W V }, where each set is randomly initialised, thus,

trained differently. Hence, different heads capture different relevant context

for a specific word. Figure 5 illustrated two attention heads and their cap-

tured context for the word “it”, note that each head captures a different

context. Having n heads also results in having Zn attention outputs for

a word, which, as mentioned before, needs to be transformed into a single

representation. The transformation process is done by concatenating all the

outputs Z0, Z1, ..., Zn and multiplying it by another set of weights WO, which

results in a shrank output of the size of WO. The multi-head attention is

illustrated in Figure 9.
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Figure 9: A schematic representation of the concatenation process involving

multi-head attention outputs. From Alammar (2018).

To summarise, the attention is a stand-alone mechanism which can be

applied to many architectures for many different tasks. One very success-

ful application is for contextual word representation learning. The attention

mechanism perfectly suits such an application since it figures out the rela-

tionship between different words in the sequence. In more detail, it projects

three different vectors for each token in the sequence (Query, Key and Value)

and uses them to calculate the “relevance score” of each element in the se-

quence. Furthermore, the mechanism creates multiple copies of the process

described above, called multi-head attention, where each uses a different set

of trainable weights. Such a strategy outputs multiple representations for

the same sentence, which are concatenated and then shrunk to one fixed

representation by a trained encoder. The resulting matrix is a function of

the entire sentence, meaning that, its representation is unique and entirely

depended on the tokens in the sentence - changing one input token would

change the representation of every other token.
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3.3 Context-encoding Algorithms

In this section, we are going to go through the state-of-the-art word em-

bedding algorithms that largely contributed to the NLP field development.

In order to understand the differences in word embeddings, it is necessary

to know the building mechanism, which defines how the context is captured.

Firstly, this section discusses a word2vec embedding modelling approach that

uses a shallow feedforward neural network with two different language mod-

elling objectives. Secondly, it is shown how ELMo uses an LSTM network

with left-to-right and right-to-left language modelling objectives to combine

the two and form a rich bidirectional language model representation that cap-

tures context from both sides. Lastly, it is demonstrated how BERT builds on

top of recent ideas to construct deep bidirectional language model represen-

tations. Due to BERT’s superior results over previous methods, BERT has

a promising foundation to be a replacement for word2vec in many industrial

applications bert.

3.3.1 Word2Vec

Mikolov et al. (2013b) have proposed two effective language modelling meth-

ods for learning distributed vector representations (word embeddings), a

Skip-gram (SG) and a Continuous-Bag-of-Words (CBOW). Both of these

methods are used to map words into vector representations, thus the name

word-to-vector (word2vec). The word embeddings obtained from using mod-

els trained on large amounts of unlabelled data, capture a syntactic and

semantic word relationship. For example, the relationship between “worst”

and “best” should be captured by these distributional models as the words

have a related meaning through the opposition and often can be found in

similar contexts. Refer back to section 3.1.1 for more information on word

embeddings and the information they capture.

At the time of the Mikolov et al. (2013b) publication, computational

power was a problem; thus, it was harder to train models long enough so

that they generalise well. The two major contributions the authors proposed
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were: a lighter architecture by not using multiple hidden layers, and the

consideration of additional context when computing word embeddings. As a

result, the models could compute better quality word embeddings from big

data in a shorter time, which largely contributed to the models being widely

used in the industry today. Furthermore, the authors showed a possibility

to manipulate vector space using arithmetic operations and linear distance

functions; having two representations it was possible to derive a new and

related one. For example, the result of a vector calculation, vec(\Madrid”)−
vec(\Spain”)+vec(\Poland”) is closer to vec(\Warsaw”) than to any other

word vector in the vector space.

The improved word embedding accuracy on downstream tasks is mostly

due to specific training strategies, which will be explored now, starting from

the CBOW model. Note, that the strategies are used to train the model’s

weights, which after the training processes are used to produce the word

embeddings.

Recall Equation 4 and 5 from section 3.1.3. The LM objective defined in

equation 4 can only look back in time as it only uses the previous sequence

to predict the next element. LM for word vector modelling does not suffer

from this restriction and can also consider the future context. That is an

advantage since the more context an objective function is exposed to, the

more “knowledge” the produced final embeddings have. Thus, the CBOW

model uses both, the n words before and after the pivot word wn in order to

predict the pivot word, (See Equation 12). The model is named a Continuous-

Bag-of-Words because it uses continuous context whose order does not get

reflected in the embedding; hence, the word “bag”. The model’s architecture

is illustrated in Figure 10.
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Figure 10: The architecture of a Continuous Bag of Words model proposed

by Mikolov et al. (2013b). The input layer represents one-hot vectors of

respective words. The word representations are then multiplied by a set

of weight connections and their weighted sum is computed. The connection

from the projection to the output represents a softmax layer, which produces

a probability distribution over all the words in the vocabulary.

Jθ =
1

N

N∑
n=1

log p(wn | wn−m, ..., wn−1, wn+1, ..., wn+m) (9)

The objective of this model is to maximise the average log probability of

a target word, given its respective contextual window of size n, for all the

words in the vocabulary.

Figure 10 best illustrates the word2vec CBOW modelling process. The

first layer from the left illustrates the input words in the form of one-hot vec-

tors. Vaguely speaking, one-hot embedding is the easiest method of numer-

ically representing and disambiguating words. In more detail, to construct

the one-hot vectors, it is necessary to first, identify all the unique words (vo-

cabulary) in the training corpus4. Then, the next step is to create a matrix

4All the words. For example, strong and strongly would get two different representa-
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of zeros, whose length is the number of unique words. Furthermore, for all of

the rows in the matrix, we substitute a unique position with a value of 1. The

intuition is that we end up with a matrix of the same size as the vocabulary,

where each row contains only one 1, that uniquely identifies a word. Lastly,

we create a dictionary between the unique words and the unique vectors,

thus, we end up with a unique representation for each unique word in the

corpus. More formally, given a corpus C, we identify all its unique words, or

its vocabulary, V ∈ C. Then we calculate the length Vl = len(V ) and con-

struct a matrix M of size Vl x Vl. Then, for all of the unique words, we map

one word to one vector dict(Vn,Mn), where n ranges from 0 to Vl. Note that

each word’s length is proportional to the vocabulary size, thus, the greater

the vocabulary, the more dimensional embeddings.

Furthermore, the projection layer represents the weighted sum of the

contextual input, which is denoted hs =
∑N

n=1 wnh. Nevertheless, it is also

used to create the final word embeddings; after training, we multiply all the

one-hot embeddings by the projection layer, and the resulting outputs define

the embedding, i.e., hs × V = a set of word2vec embeddings. Note that the

size of the hidden layer defines the size of the final embeddings, which is

usually between 100-1000.

Lastly, the output layer takes the sum of the weighted input hs of the

previous layer and multiplies it by another set of weights vwn , where, vwn

represent weight connections between the hidden state and the classes rep-

resenting words in the V . Then, a softmax function, equation 10, is used to

produce a probability distribution over the V .

p(wn | wn−m, ..., wn−1, wn+1, ..., wn+m) =
exp(hsvwn)∑
wi∈V exp(h

svwi
)

(10)

The inner product hsvwn computes the un-normalised log-probability of

the word wn and normalises it by the sum of the log-probability of all words

in V. In other words, the softmax uses an exponential function to set all

values to be positive and then maximises a probability distribution for each

tions; not considering subword information is a drawback of this method.
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word in the vocabulary by dividing it by the sum of all other words. Thus,

after softmax, all the values are probabilities which are positive and add up

to 1.

In contrast to the CBOW, the SG architecture is the exact opposite.

Instead of predicting a target word from the context word, the SG predicts

the context words from the centre word. The bigger the window size, the

better the quality of the resulting embeddings, however, the computational

time increases. Since the more distant surrounding words are usually less

related to the target’s context, the authors decided to assign smaller weights

to the distant words. The architecture is depicted in Figure 11.

Figure 11: The architecture of a Skip Gram model proposed by (Mikolov

et al., 2013b).

Thus, the SG’s objective is to average the log probabilities of the surrounding

n words to the left and to the right of a target word wn:

Jθ =
1

N

N∑
n=1

∑
−n≤j≤,6=0

logP (wn+j | wn) (11)
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And the softmax is:

P (wn+j | wn) =
exp(hsvwn+j)∑
wi∈V exp(h

svwi
)

(12)

To summarise, word2vec are two shallow neural LM approaches that utilise

large amounts of unlabelled data in order to optimise its weights; which are

later used to create word embeddings that other models benefit from at the

input layer. During the training process, the CBOW ’s objective maximises

the probability of the target word given its context, or differently put, pre-

dicts a target word from the sum of all word vectors in its contextual window

size. Therefore, after the training process, the model will predict the most

probable word for a given context. This approach inherits a predictive lim-

itation which largely depended on the training dataset. To better illustrate

the problem, consider the following example. Given the context “yesterday

was a really [...] day”, the model will most likely predict commonly seen

words like “beautiful” or “nice”. However, words like “delightful”, despite

fitting even better into the context, will get less probability since the net-

work’s objective models to predict the most probable words. In other words,

the “delightful” word probability will get smoothed out because of examples

with more frequent words.

In contrast, the SG model rotates the objective and predicts the window of

contextual words given a middle target word. In such a setting, the SG model

is constrained to understand the word “delightful” as, during the training

process, it must predict its contextual window words. Differently put, with

SG the word “delightful” will not try to compete with the word “beautiful”

in the probability space, but instead, will treat the “delightful” + context

pairs as new observations. Therefore, the SG model is better at representing

rare words, and thus, is more diverse. However, the CBOW is better at

representing more common words, which is beneficial for cases where the

word diversity is not a priority.

Furthermore, the SG works better with small amounts of training data

because we are using one target word to predict many contextual words, and
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thus, we create multiple errors given one input; a training objective that

creates more error results in faster weights optimisation. On the other hand,

the CBOW trains several times faster.

It is essential to understand that there is no better modelling strategy

between the two; the choice should entirely depend on the specifics of the

problems word2vec-distributed. In order to achieve the best accuracy at a

particular task, it is vital to first, fully understand the task, and then to

choose an architecture whose trade-offs are more beneficial for the specific

task and the available resources.

3.3.2 ELMo: Embedding from Language Model

The embedding from Word2vec LM is limited to a fixed number of contextual

words that the model uses to construct the representation, which is a limita-

tion as the true context can vary in length. ELMo, proposed by Peters et al.

(2018), solves this problem by benefiting from the sequential characteristics

of an LSTM network and using it to encode full sequence while naturally per-

sisting the order of the context. Furthermore, using word2vec to learn word

vectors only allows to model one context-dependent representation for each

word. This is a problem because in natural language we often have many

possible meanings for a word or phrase (polysemy). ELMo, like word2vec,

models complex characteristics of word use (grammar and semantics), how-

ever, it also models how these characteristics vary across contexts. Hence,

ELMo solves the polysemy problem by encoding each word representation

in the sequence as a function of the whole sentence, similarly to what self-

attention does (see section 3.2.3). This means that ELMo produces different

representations of the same word used in a different context. Furthermore,

in contrast to word2vec, using one-hot vectors to represent words at the in-

put layer, ELMo uses a convolutional neural network (CNN) over characters

(Kim et al., 2016) to construct raw word representations xLMk . The CNN over

characters method assembles words purely from character level representa-

tions. This brings an advantage over one-hot vectors because the pure word
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representation already captures some internal word structure. For example,

the words “limit” and “limitless” would be somewhat related because they

both contain the same subword. Furthermore, the character-based method is

also robust to unknown words that weren’t encountered during the training

process as they’re being represented with subword phrases.

ELMo produces word vectors by running the input through learnt func-

tions of the internal states of a deep bidirectional language model (biLM),

which is pre-trained on a large text corpus. Adding the ELMo word vectors

to existing models, at the time of publication, has surpassed the state-of-

the-art accuracy on six different NLP tasks that include question answering,

textual entailment and sentiment analysis (Peters et al., 2018). Now, it will

be made clear what the deep bidirectional language model is and how it is

used to encode word embedding.

In a high-level overview, the term deep bidirectional language model refers

to an architectural structure which makes use of at least two layers. Each

layer is constructed with two LSTM networks. One is trained to predict

the next element in the sequence given the previous words. Whereas the

other uses the LM in a reverse way, i.e., to predict the previous words given

the sequence of future words. Thus, the term bidirectional refers to those

two LSTM networks using the LM objective function in order to collectively

capture context from both directions.

Given a sequence of N words, (w1, w2, ..., wN), the forward language

model computes a probability of the sequence by calculating the probability

of a word wk given the history (w1, ..., wk−1):

P (w1, w2, ..., wN) =
N∏
k=1

P (wk | w1, w2, ..., wk−1) (13)

Now, in order to produce a forward LM output, the sentence represen-

tations in the aforementioned form, xLMk , are then passed through L layers

of forward LSTM networks. That is, at each position k, each LSTM layer

outputs a context-dependent representation
→
hLMk,j where j = {1, ..., L}. The
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top LSTM output,
→
hLMk,L , is then run through a softmax layer in order to

predict the next word wk+1.

As previously mentioned, ELMo is bidirectional, which means that we

also need to predict previous words from the future context. This works

similarly to equation 13, however, in a reverse order:

P (w1, w2, ..., wN) =
N∏
k=1

P (wk | wk+1, wk+2, ..., wN) (14)

The backward pass can be implemented in an analogous way to the for-

ward pass and should also produce a representation
←
hLMk,j for each element in

the sequence k for L many LSTM layers. Then, following the same procedure

as with the forward pass,
←
hLMk,j is processed by the softmax layer in order to

predict a word wk given (wk+1, ..., wN).

A bidirectional LM that ELMo uses combines the forward and backward

LM passes and jointly maximises the log likelihood for the prediction:

∑N
k=1(log P (wk | w1, ..., wk−1; Θx,

→
ΘLSTM ,Θs)

+ log P (wk | wk+1, ..., wN ; Θx,
←

ΘLSTM ,Θs))

(15)

Both LSTM networks share parameters for input representation construc-

tion Θx and the softmax layer prediction Θs. However, they use separate

parameters for LSTM networks going in each direction.

Furthermore, ELMo has introduced a new approach of learning word

representations, i.e., a linear combination of the biLM layers. For each word

wk, a L-layers biLM computes a set of 2L+ 1 representations:

Rk = {xLMk ,
→
hLMk,j ,

←
hLMk,j | j = 1, ..., L}

= {hLMk,j | j = 0, ..., L}

(16)

Where hLMk,0 is the input layer and hLMk,j = [
→
hLMk,j ;

←
hLMk,j ], for each biLSTM

layer. Figure 12 illustrate the whole process until now. Furthermore, the au-
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thors ran interesting experiments on each of these representations and found

that biLM layers encode different types of syntactic and semantic informa-

tion. Generally, they found that using the first layer’s output performs well

on part-of-speech tagging tasks indicating that the first layer captures syn-

tax/grammar well. It’s also been shown that the last layer’s output performs

well on supervised word sense disambiguation tasks, indicating that the last

layer encodes semantic information. Combining the internal states in this

manner allows for very rich word representations.

Figure 12: An abstract representation of ELMo’s architecture and data flow.

From (Hagiwara, 2018).

Now, in order to use the outputs in Rk for downstream tasks, in its

simplest case, it is possible to use a particular layer’s output as a context-
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dependent word vector representation, e.g., the top layer’s output, E(Rk) =

hLMk,L . On the other hand, a better way would be to collapse all the outputs

into a single vector representation ELMok = E(Rk; Θe). This can be done

by running all the outputs separately through a task-specific set of weights

and then back-propagating the weights on the weighted average error:

ELMotaskk = E(Rk; Θtask) = γtask
L∑
j=0

staskj hLMk,j (17)

Where stask are softmax weights and the scalar parameter γtask helps with

scaling the entire ELMo vector.

To summarise, ELMo uses bidirectional LM which is a concatenation of

two LMs going in opposite directions. As depicted in Figure 3.3.2, there

is one LSTM scanning words from right to left and another scanning from

left to right. This means that both of the LSTM networks produce context-

depended outputs for each element in the sequence. The outputs then can

be concatenated in order to form an intermediate representation of a word.

However, ELMo goes a step further and comprises a multi-layer bidirectional

language model. This is done by stacking two forward and two backwards

passes together where the intermediate representation is fed as an input to the

upper layer. This way the intermediate representations get processed further

and can represent more abstract semantic concepts. Overall, ELMo produces

2 × L + 1 representations, where L stands for number of layers, and uses

them to create a task-specific weighted combination of these intermediate

word representations.

3.3.3 BERT: Bidirectional Encoder Representations from Trans-

formers

BERT (Bidirectional Encoder Representations from Transformer) is an ar-

chitecture proposed by Devlin et al. (2019). Despite the very recent pub-

lication, BERT has received a lot of attention from the community due to

its outstanding performance on eleven NLP tasks, which include: sentence
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classification, token-level classification, inference, and question answering.

BERT’s key technical innovation is to pre-train a transformer-encoder (TE),

an architecture fundamentally based on the self-attention mechanism, using

deep bidirectional LM. This means that BERT is trained to produce deep

bidirectional representations by jointly conditioning on both, left and right

context in all layers. Conditioning on both context sides was previously im-

possible using one network, however, a new Masked LM (MLM) that BERT

has proposed makes it possible.

Now, we will see how BERT works in detail by explaining its architecture

structure and its input representation. Further on, it will be explained what

the new Masked LM is and how BERT benefits from it in contrast to previous

work. Lastly, it will be discussed how we can fine-tune a trained BERT

model for transfer learning and how we can extract BERT’s contextualised

representations for word embeddings.

As previously mentioned, BERT uses a transformer architecture which

is fundamentally based on an attention mechanism, thus BERT is able to

learn contextual relations between words in a given sentence. The original

transformer architecture, proposed by (Vaswani et al., 2017), consists of two

parts, encoder and decoder. The encoder processes a textual input and

produces an abstract representation, whereas, the decoder is used to produce

a prediction for the task. Since BERT’s objective is to learn a language

model, only the encoder part is necessary.

BERT stacks multiple encoder layers on top of each other, where the

output of the previous layer is fed as an input to the layer above. All the

encoder layers are identical in structure, however, use different weights, thus

each layer up the ladder recomputes the previous layer’s output and improves

on the overall quality of the final embedding. Furthermore, each encoder

layer is made up of two sub-layers, as illustrated in Figure 13a. The first

layer consists of a self-attention mechanism, which was discussed in section

3.2.3. Once the contextual representations from the self-attention layer have

been produced, the model processes all of them using the same feedforward
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layer. This way the network can regulate contextual information by making

more relevant context stronger. In addition, each of the sub-layers has a

residual connection and a layer-normalisation step. As illustrated in Figure

13b, the residual connections add the input to the output of the self-attention

module. The resulting vector could increase in the value range, hence, needs

to be normalised before it is passed on further. The residual connections help

to maintain the inputs’ original information, hence allow for stable gradient

flow in the multi-layered process.

(a) An abstract representation of en-

coder layer.

(b) A more defined encoder layer representation.

Figure 13: The encoder layer representing inner two layers. From Alammar

(2018).

One aspect that hasn’t been mentioned yet is the input representation.

The input is a sequence of words, which are first embedded into vectors

using WordPieces (Wu et al., 2016). This embedding approach provides

subword structure information at the input layer and supplies a meaningful

representation for words that have not been seen during the training process.

Furthermore, as opposed to directional models (LSTM), which sequentially
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process input in one direction, the TE reads the whole sentence at once.

This characteristic allows the self-attention layer to learn the context from

both the left and the right direction at the same time. However, unlike the

sequential models that naturally encode the input sequence, TE needs a way

to represent the input order, thus, uses position encoding. The positional

encoding is a vector that is added to each input element (see Figure 14a).

These vectors follow a specific pattern that the model learns and uses to

determine the distance between different words in the sequence. The intuition

is that the self-attention Q, K, and V projections reflect the position pattern,

thus, the latter calculated word scores are higher for vectors with somewhat

closer vector representations. Figure 14b illustrates the position vectors.

Note that the further the words are apart, the larger the value difference at

each encoding element. The same encoding process is applied to every input

before it is fed as an input to the first layer.

(a) An abstract representation of the position encoding process.

(b) A toy representation of the sequence encoding vectors.

Figure 14: The input layer representation. From Alammar (2018).

It is believed that a deep bidirectional model is more powerful than ei-
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ther a left-to-right model or a shallow concatenation of a left-to-right and

right-to-left LM model. Unfortunately, the standard LM can be trained in

one direction only, since bidirectional conditioning would indirectly allow

each word to “see itself” in a multi-layered context. Thus, BERT authors

argue that the current traditional LM techniques restrict the power of the

pre-trained representations. For example, Radford et al. (2018) have pro-

posed a model which uses a transformer with a forward LM objective that

predicts a word given left context only. Such an approach has shown to be

sub-optimal because incorporating context from both directions is crucial

for sentence-level tasks like SQuAD question answering (Rajpurkar et al.,

2016). Furthermore, recent work by Peters et al. (2018), has shown to use

two shallow LSTM networks with a traditional LM objective to separately

predict words given context from one direction and then conditioning on a

joint representation. This approach provides a bidirectional LM, however,

it requires two models to separately compute predictions in one direction,

imposing a high computational cost and a parallelism constraint.

To address the aforementioned restrictions, BERT has proposed a new

pre-training objective, a Masked Language Model (MLM). Before the input

is fed into the network, 15% of the sequence is randomly replaced with a

[MASK] token. Then, the model’s objective is to predict the original vocab-

ulary ID of the masked tokens based on the non-masked context. To do this,

the final hidden vectors corresponding to the masked tokens are fed into the

softmax layer, which predicts a word from the vocabulary (similarly to the

standard LM). Although this approach allows for bidirectional prediction, it

introduces a downside. BERT’s loss function only takes into consideration

the prediction of masked words, which means that the non-masked words are

left out. As a consequence, the model converges slower than the standard

LM, which predicts every word. Despite only conditioning 15% of the input,

the authors show that MLM yields higher training accuracy earlier in the

training process as opposed to the standard LM.

In addition to the MLM, the authors also introduce the “next sentence
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prediction” task that is jointly pre-trained with the MLM. The sentence pre-

diction is a binary classification problem that is tasked to predict whether or

not sentence B is a continuation of sentence A, that the model pair-wise takes

as an input. Incorporating this additional training objective is beneficial for

many downstream tasks that require sentence relationship understanding,

that isn’t directly captured by just the LM, e.g., question answering and nat-

ural language inference. Aside from the benefits the additional task brings, it

is also easy to generate its corresponding labels. The training data is created

from a large corpus of text by assigning a 50% chance for the next sentence

to be a continuation, as well as, 50% to be a random sentence. Consider the

following example, where the [CLS] tag indicates the start of the input and

[SEP] separates the sentences:

• Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon

[MASK] milk [SEP]

Label = IsNext

• Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK]

are flight less birds [SEP]

Label = NotNext

There are two strategies for applying pre-trained language representations

to downstream tasks: feature-based and fine-tuning. The feature-based strat-

egy, similarly to ELMo, works by using BERT to create contextualised word

embeddings and then learning the task-specific model from scratch based on

those extracted representations. Furthermore, the contextualised word em-

beddings can be added or concatenated with different word embedding. Each

layer’s output represents the same input, hence we can extract a represen-

tation from any intermediate layer, which can be used in an arbitrary way.

The authors found that concatenating last four hidden layer representations

yields better accuracy on the named-entity recognition task than taking an

average of the last four hidden layer outputs. In fact, the concatenation

strategy scored 96.1% accuracy, which is 0.3% behind fine-tuning the whole

model for the exact same task.
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Inspired by transfer learning in the computer vision field and the Universal

Language Modelling Fine-tuning (ULMFiT) by Howard and Ruder (2018),

the pre-trained BERT model can be fine-tuned to a wide range of tasks

with just one additional output layer, to create new state-of-the-art models.

Many of those tasks require a labelled dataset, which often are very limited

in size since most of them have to be created by a human. By fine-tuning,

ULMFiT have shown that only 100 labelled examples match the performance

of training from scratch on ×100 more data.

To summarise, BERT is a work inspired by recent advancements in the

NLP field, in particular: ELMo’s bidirectional language model, transformer

architecture that utilised self-attention mechanism to build contextualised

representations and ULMFiT that introduced a process for transfer learning.

Thanks to the concatenation of those ideas, BERT produced new state-of-

the-art results on eleven competitive tasks. In order to allow for bidirectional

language learning using the transformer architecture, BERT introduced a

new technique called Masked Language Model. The MLM uses a masking tag

[MASK] to randomly cover up a section of the input sequence and then uses

the uncovered context to predict the masked tokens. Furthermore, BERT

also incorporates another supervised task, called Next Sentence Prediction,

to jointly train with MLM. The additional task is a binary classification

problem, which requires the model to identify whether the right part of an

input (sentence B) is a continuation of the left part of the input (sentence A).

This way, BERT models sentence relationship knowledge, which is required

for many downstream tasks that benefit from abstract-level understanding.

In general, BERT can be seen as a universal model that has a strong lin-

guistic knowledge, which can be transferred to any NLP task by adding one

classification layer on top. Hence, extracting word vectors or fine-tuning

BERT model parameters, provides a promising building block for existing

applications to improve.
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3.3.4 GPT2: Generative Pre-Training

Generative Pre-Training 2 (GPT2) model is a successor to BERT for gener-

ative tasks (Radford et al., 2019). Similarly to BERT, at the core of GPT2

stands the transformer architecture that utilised self-attention to compute

the representations of the input. Since BERT internal architecture has been

explained in-depth in Section 3.3.3 and the GPT2 is based on the same

concepts; the explanation will focus on the architectural differences rather

than repeating the whole mechanism. In contrast to BERT, GPT2 uses a

standard-LM objective on top of the self-attention representations to learn

the language model. The standard-LM objective learns to predict the output

given a joint probability of the previous sequence representations (condition),

which makes the GPT2 auto-regressive5 in nature. On the other hand, BERT

trades the auto-regression for the ability to incorporate context from both di-

rections, which results in better performance at the NLU tasks. However, the

lack of auto-regression makes BERT output sampling not obvious. There-

fore, the main concept that sets the GPT2 and BERT apart is the learning

objective.

Given that the self-attention mechanism incorporates the bidirectional

context to compute a representation for a token at a particular position, the

GPT2 uses its modified variant called masked self-attention in order to main

the auto-regression. The masked self-attention differs from the original ver-

sion in that it hides the future context for representation computation at a

particular position; therefore, the mechanism only attends to the previous se-

quence, which accommodates the standard-LM objective used by the GPT2.

If one used self-attention representations computed using the bidirectional

context with the standard-LM objective, the model would see the words it is

trying to predict in the representation of the previous sequence, which would

make the training banal that would results in a model not generalising prop-

erly. Figure 15 contrasts the two attention mechanisms.

5”Auto-regression is a time series model that uses observations from previous time steps

as input to a regression equation to predict the value at the next time step.”
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Figure 15: A contrasting illustration of the self-attention mechanism used by

BERT (left) and GPT2 (right). The Masked Self-Attention covers the future

context when computing a representation for a token, whereas Self-Attention

utilised the bidirectional context. Diagram from (Alammar, 2019)

Furthermore, the GPT2 uses a massive dataset of 40GB of text called

WebText, to pre-trained the model. At the time of publication, this was by

far the most extensive dataset a language model was trained on. The authors

scraped the data from Common Crawl website, which is an open-source of

diverse textual data from a range of domains. By training the GPT2 model

on such a large amount of diverse data, the model facilities well to a range of

fine-tuning tasks, e.g., question answering, article generation and text sum-

marisation. Moreover, by improving the state-of-the-art at seven competitive

tasks without any task-specific fine-tuning (using pure pre-trained model),

the achievement underlines the significance of large training data required to

improve the task-specific transferability performance of a pre-trained model

(Radford et al., 2019).

The authors have produced four GPT2 model distributions: small, medium,

large, and extra-large. What sets the model distributions apart is the perfor-

mance gained by the higher number of transformer-decoder blocks and hid-

den state outputs used by the larger distributions. The smallest model stacks

12 transformer-decoder blocks and uses hidden state outputs of 768 neurons

(117M computational parameters), whereas the medium model stacks 24 lay-
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ers and uses 1024 hidden states (345M). The large distribution model is made

of 35 layers whose outputs are of size 1280 (762M), and lastly, the extra-large

model stacks 48 layers of 1600 hidden states size (1542M computations per

input). Note, the performance gained by the extra layers and hidden states

is thanks to extra blocks having its own weights, in both, the self-attention

and neural network sublayers, that get learnt in the multilayered process.

The smallest and medium model distributions are publicly available; how-

ever, in the following experiments, we utilise the smallest distribution because

of the computational power limitations.

To summerise, GPT2 is a transformer-based network that utilises an auto-

regressive standard-LM objective that allows for output generations in a

straight-forward sequential fashion. In order to accommodate the sequential

training objective, GPT2 uses a modified variant of the self-attention mech-

anism, called masked self-attention, that hides the future context at a token

representation computation, so that the model can not indirectly see it, in

the multi-layers process, at the next word prediction. At the time of publi-

cation, GPT2 advances the performance at seven tasks without task-specific

fine-tuning, that is thanks to training on a large and diverse training dataset

size (40GB), which shows the significance of large amounts of data required

for better-performing pre-training model.

3.4 Summary

To conclude, it has been shown how word2vec, ELMo and BERT use differ-

ent language modelling objectives in order to capture linguistic properties.

Word2vec uses a fixed sliding window size around a pivot word in order to

capture the context. At the time of publication (2013), it was reasonable to

limit the context since the hardware available was much slower. Furthermore,

word2vec offered a shallow and efficient neural framework for LM that has

reduced the computational time of creating good quality word embeddings.

Using word embeddings at the input layer of downstream tasks has provided

linguistic information, hence, they became widely used in the industry as a
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building block for language understanding applications.

ELMo (2018) has addressed the limited context issue by using two LSTM

networks, where each sequentially processes the full sentence in one direction

while producing an output for each element in the sequence. Then, the uni-

directional output representations for each element are concatenated in order

to form bidirectional language modelling representations. By considering full

sentence context from both directions ELMo has produced superior results

over the previous methods for six language understanding tasks, which em-

phasised the importance of bidirectionality in LM. However, the LSTM’s

inherent sequential nature restricts the parallelisation within training, which

becomes critical at longer sequence lengths. Hence, a shift to a more par-

allel architecture was required in order to allow for faster computations and

deeper architectures.

BERT (late 2018) is built upon recent ideas, which include: a bidirectional

LM, transformer architecture and a task-specific fine-tuning of a pre-trained

model. The transformer model takes the whole sentence as an input at

once and uses a self-attention mechanism to compute word relationships.

Furthermore, the transformer network can serve as a complete replacement

of the LSTM as it allows for sequence dependency modelling without regard

to the distance in the sequence. Nevertheless, due to attention’s application

flexibility, BERT, in contrast to ELMo, stacks multiple attention layers that

collectively improve the contextual representations. Since BERT takes the

whole input at once, the unidirectional LM objective would not work as the

words could see themselves in the multilayered process, which would make

the sequential word prediction pointless. As a solution, BERT has introduced

a new language objective, i.e., to cover 15% of the words using a [MASK] tag

and then conditioning on the uncovered context to predict the masked words.

By using the new bidirectional LM objective in a deeply layered process, at

the time of publication, BERT has pushed the benchmarks at multiple tasks.

Generally, since language models benefit from large amounts of unlabelled

data to capture grammatical and semantic information, it makes sense to use
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BERT as a universal model that can be fine-tuned to a task-specific problem.

Fine-tuning, in contrast to word embedding extraction, gives the possibility of

biasing the output representations to the specific problem. However, it is also

possible to fine-tune a model and then extract the task-specific embeddings.

In contrast to word2vec embeddings, BERT and ELMo embeddings are a

function of the sentence, meaning that if we provide the same word in two

different contexts as inputs, we would get different representations of the

same word. Whereas, a word2vec embedding for a word is always the same

in a different context. This provides a promising foundation for BERT to

become a replacement of word2vec embeddings that are widely used in the

industry.

The model performance has been shown to increase with the size of the

training dataset (Radford et al., 2019). Despite the fact that the recent

architectures have become more efficient, training these models to state-of-

the-art quality is still inaccessible to most of the community. For example,

GPT2 has been trained on 256 Google cloud TPU v3 cores, for several days,

which is equivalent to £40,0006 (a single training).

6Link to HCP price calculator: https://cloud.google.com/products/calculator/
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4 Preliminary Experiments

4.1 BERT-Base vs BERT-Large: Comparison

This section compares the performance of two open-sourced BERT model dis-

tributions: a smaller version called BERT-Base (BB) and BERT-Large (BL).

The BB model stacks 12 transformer layers, where each has 768 hidden neu-

rons and uses 12 multi-head attentions, thus computes 110M parameters per

input. Whereas the BL stacks 24 layers, has 1024 hidden states and 16 atten-

tion heads, which results in 340M computations. The model, along with the

pre-trained weights and pre-trained Masked-LM head, can be obtained from

a library called transformers7. By comparing the two model distributions,

we will explore the new Masked-LM objective in more details as well as see

the performance gained by the larger model. Comparing the performance

of the two models that considerably differ in size provides a perception for

one to decide whether the gains are worth the expenses pulled by the larger

model training.

The performance of each model gets tested by the amount of correctly

predicted word-tokens using Masked-LM (see Section 3.3.3) as an objective

function that the models were pre-trained with. The objective function masks

a certain amount of word-tokens that the model has to predict given the un-

masked contextual words.

In more detail, the prediction process looks as follows: First, we select a

text with a word length smaller or equal to 512. Then we mask n words that

we will predict by simply replacing the actual words with a [MASK]. It is

essential to keep a reference of the words we are replacing since they will be

later used as the labels. Then, the masked input needs to be encoded into

token-ids, where each word, including the [MASK] token, has its correspond-

ing token id. Running the encoded input through the model produces a set

of hidden states for each word. These hidden states representative of the

words are then independently run through the pre-trained Masked-LM head,

7Link to huggingface docs: https://huggingface.co/transformers/
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which returns a probability distribution over the vocabulary for a particular

set of hidden states. Then, in order to derive the prediction for each masked

position, we use a softmax over the vocabulary probability distribution. The

softmax returns the model’s prediction for that particular position, which

then gets compared to the corresponding label.

In this experiment, the number of masked tokens gets increased until

the maximum coverage of 80% of the sentence length. The experiment is

repeated 500 times for each amount of masked words, where at each training

iteration (i.e. epoch) the masked words are chosen at random. In order to

keep the comparison fair, the models take the same text as an input; however,

the word masking selection is random. Figure 16 illustrates the results of the

comparison.

When choosing the text for the predictions, it was aimed to find a short

descriptive story with an average complexity level. For example, a sequence

that does not contain many names, over-complicated words and punctuation

like quotes, since such occurrences would make the prediction difficult. The

chosen candidate text, Text A, comes from the “Beauty and the Beast”8

narrative and its snippet looks as follows: “Once upon a time, there was

a girl named Beauty. She lived with her father and her sisters in a small

village. Beauty was a beautiful girl. She was also hard-working. She always

helped her father on the farm...”. The full story can be viewed in Appendix

A.1.

8Link to text A orgin website: https://www.scribd.com/document/44455701/Example-

of-Descriptive-Text
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Figure 16: Prediction accuracy from masked language modelling applied to

BERT-Large and base model distributions.

Intuitively, the biggest model performs better by approximately 7% for

low number of masked tokens. However, as the masked tokens coverage

increases, the prediction accuracy of both models converges. This behaviour

is natural since as we increase the number of masked tokens the length of

surrounding context decreases; thus, the models are more prone to error.

A further investigation into the predicted words shows that some incor-

rect predictions fit into the sentence just as good as the actual labels. For

example, given the masked word “father” and the context“She always helped

her [MASK]” the models first predicts “mother” and then “father”. In order

to allow for such behaviour, in the second experiment, top n predictions are

considered. Figure 17 illustrates the top-n prediction accuracy.
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(a) BERT-Base.

(b) BERT-Large.

Figure 17: The word prediction accuracy for top 1, 2, 3 and 5 model’s pre-

dictions, using a Masked-LM objective with an increasing number of masked

tokens.
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As the results show, by only considering the top 2 predictions, the predic-

tion accuracy increases by approximately 10% for both models. Moreover,

the model’s first conclusion is often a synonym of the actual label, which

also fits into the context. Increasing the top n predictions transitions into

a higher prediction accuracy whose absolute improvement tends to shrink

with the growing n. Therefore, this experiment shows that when using MLM

for tasks like language generation, considering the top few predictions for

sentence construction improves the quality of the final output. Moreover,

the experiment demonstrates that for tasks like language modelling, cover-

ing more than 20% of the input tokens decreases the prediction performance,

since the accuracy slope for all experiments starts to get steeper after that

point. However, covering tokens until the margin of 20% shows not to harm

the prediction accuracy by much and provides fundamentals for experimental

investigations.

Interestingly, the BERT paper authors have pre-trained the model by

masking 15% of the inputs; however, the results suggest that there is an

experimental margin up to 20% that could potentially improve the final pre-

diction accuracy of the pre-trained model. Intuitively, increasing the masking

percentage involves a natural trade-off between known information to pre-

dict the unknown. The more tokens covered the less information and thus

the more laborious task for the model. Trying to solve a harder task at the

training time could potentially transition to a better performing model. Fur-

thermore, a higher masking ratio is also a trade-off between the prediction

accuracy and the training time since the more tokens covered per input, the

more teacher’s signal and thus the faster the learning.

If one has enough resources to train a BERT model from scratch, a differ-

ent Masked-LM strategy could potentially yield an improved performance.

4.2 BERT: Token Representation Interpretability

In this section, we are going to inspect and interpret the BERT’s contex-

tual representations, also known as the hidden states of the final layer, in
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order to state the level of interpretability - “In the context of ML systems,

interpretability is the ability to explain or to present in understandable terms

to a human” - Finale Doshi-Velez. The model’s output can be considered

interpretable when humans can relate and associate it to how we under-

stand and make sense of concepts in the environment we live in. Word2Vec

embeddings are interpretable since when manipulating the word’s represen-

tations we can derive meaningful associations which make sense for us. In

particular, this experiment will show whether BERT contextual word repre-

sentations are as interpretable as Word2Vec word embeddings: i.e., whether

performing arithmetic operations on the vector representations would result

in new semantically similar vectors that are reasonable for us. For example,

whether king−man+woman (KMWQ) results in a vector close in distance

to “queen”.

In order to state the interpretability, we are going to follow two differ-

ent approaches, context-free and context-based. The context-free approach

experiments will be conducted on BERT representations constructed using

single word inputs, whereas the latter will involve experiments with represen-

tations of words in context. Lastly, we are going to investigate the influence

a single word can have on all of the representations of the contextual words,

as well as the impact of different word order.

4.2.1 Context-Free Approach

The first step is to extract the features for the words “king”, “man”, “woman”

and “queen”, devoid of any context. The features are extracted from the re-

spective model’s last layer from the particular word’s index. Note that BERT

has been pre-trained to construct contextual word representations and thus

heavily relies on the context in output construction; however, in this exper-

iment, we ignore this fact and first experiment with out-of-domain context-

free vectors. Furthermore, BERT uses a [CLS] tag to encode the start of the

sentence and a [SEP] tag to encode the end; however, these are not included

in these tests. That is because these tags are added to every input during
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the training process, which would introduce a stronger bias towards the rep-

resentations of words that appeared more frequently. Furthermore, after the

particular word’s features extraction, a cosine similarity function is used to

calculate the distance between two vectors. The cosine function will return

a scalar value between 1 and -1, where 1 means vectors are completely the

same and -1 completely different. The results are illustrated in Table 2.

Cosine distance between word vectors: no context

Comparison Between Base Large

queen vs queen (Q) 1.0 1.0

king vs queen (KQ) 0.609 -0.079

woman vs queen (WQ) 0.347 0.288

man vs queen (MQ) 0.358 0.824

KMWQ vs queen (QQ) 0.458 -0.476

Table 2: Cosine similarities between pairs of contextual word representations

computed without any context.

The comparison KQ from BB, puts king quite far in space from the queen,

indicating that there is no semantic relationship between the pair. More

interestingly, the cosine distance in BL is -0.079, which puts the king on the

opposing side of the axis and means that the representations are strongly

uncorrelated. Furthermore, we can also see that in both models, the MQ

similarity score is greater than WQ, meaning that the word man has a closer

relationship to the queen than the word woman, which is completely opposite

to how we interpret this relationship. Lastly, the QQ comparison also puts

the arithmetic queen far in space from the raw queen representation, which

is unsurprising given the not interpretable representations of the previously

inspected words. Furthermore, the differences in values between the two

models can be explained with the varying hyperparameter setting (capacity)

and training data size, and can suggest that the BL model is underfitted.
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All of the previous comparisons prove the fact that BERT struggles to

construct interpretable representation without context.

4.2.2 Contextual Approach

In this experiment we are going to repeat the same procedure as in the

previous test, however, with the difference of target-words being computed

in the setting of the following context: the <target word>went to sleep. Since

BERT has been trained to represent a word given its contextual words, the

now added static context should produce more interpretable representations

for the target-words. The results are illustrated in Table 3

Cosine distance between word vectors: with context

Comparison Between Base Large

queen vs queen (Q) 1.0 1.0

king vs queen (KQ) 0.882 0.907

woman vs queen (WQ) 0.799 0.836

man vs queen (MQ) 0.822 0.826

KMWQ vs queen (QQ) 0.798 0.858

Table 3: Cosine similarities between pairs of contextual word representations

computed in the context of: the <target-word>went to sleep.

By inspecting Table 3, we can see that the new word representations

computed in the setting of the context now score higher in the similarity

comparison. Such results not only prove that BERT needs context to define

words but also that the representations are to some degree interpretable, i.e.,

the vectors reflect the real-world semantic relationship between the target-

words. Taking a closer look into the BB section, the WQ scores lower than

MQ, meaning that the man has a closer relationship to the queen than the

woman does. Furthermore, in the case of both models, the arithmetic queen

QQ is still further in space than any other target-word. Such results sug-

gest that the contextual representations are not convincingly successful in
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associating words in the context of space manipulation.

Let us see what are the results when we extend the context so that our

target-words can be more defined. Would such extent improve the represen-

tation of the QQ in such a way that it will be more similar to the queen’s

representation than any other?

Cosine distance between word vectors: with extended context

Comparison Between Base Large

queen vs queen (Q) 1.0 1.0

king vs queen (KQ) 0.893 0.482

woman vs queen (WQ) 0.840 0.559

man vs queen (MQ) 0.832 0.519

KMWQ vs queen (QQ) 0.906 0.478

Table 4: Cosine similarities between pairs of contextual word representations

computed in the context of: the <target-word>was tired so (s)he went to

sleep.

After adding the new context, the BB finally starts to exhibit favourable

behaviour, i.e., WQ is closer than MQ and QQ is closer to the queen than

any other vector in the comparison. On the other hand, BL in contrast to

BL in Table 3, moves further from the queen for all of the comparisons, thus

showing that the extra context can also have an unpredictable and nega-

tive effect. The negative effect can be explained with the randomness in the

training dataset, i.e., during the training phase, the new words must have

appeared more frequently in the context of other words which have modelled

its representation to be different. Therefore, adding words with very dif-

ferent representation can drastically change the contextual representations

when compared to its representations computed in the setting of partial con-

text. Furthermore, the BL unpredictability may suggest that the BL model

is underfitted, since it does not associate concepts as effectively as the BB

model.
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BERT is a model that uses a Transformer based architecture that is entirely

based on an attention mechanism, which allows for bidirectional and deep-in-

layers language modelling. Word representations from such a language model

are a function of the entire sentence, meaning that the representation of the

same word can differ, depending on the contextual words surrounding it.

That is an advantageous asset since natural language is complex, and many

words are, for example, monomorphic, however: BERT knows how to disam-

biguate them, thus, its superior performance at word/sentence classification

tasks. On the other hand, the complexity of contextuality, in contrast to

fixed word embeddings, makes the model space manipulation questionable,

i.e., whether it is still possible to find word associations using contextual

word embeddings.

The experiments in this section have shown that BERT is also capable of

computing context-free representations; however, using these representations

to find meaningful associations has proven to be insignificant and unsuccess-

ful. Since BERT has been trained to construct a representation of a word

using its context, adding a limited context has shown to improve the target

word’s representations as it started to exhibit a real-world relationship, just

like in the case of word2vec embeddings. Furthermore, for BERT-Base, ex-

tending the context has shown to improve the interpretability even further,

as, for example, the arithmetic queen vector was the closest to the pure queen

vector, which is what we would expect. However, for BERT-Large, the extra

context has shown to unexpectedly spread away two representation that we

would expect to approach closer in space. Therefore, the BERT-Large irreg-

ularities in cosine similarity scores, when compared to BERT-Base, suggest

that the model is underfitted, since is unable to provide reasonable associa-

tions between the related word’s representations. Furthermore, such irregu-

larities in the representations also indicate that BERT output construction

can be very unpredictable, as by adding a few extra words to the context,

the context words representation can drastically change in a un-interpretable
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manner. To conclude, contextual representations can provide meaningful as-

sociations when inspecting the final hidden state representations; however,

they can be unpredictable and thus unreliable. Since contextual embeddings

are too dynamic for tasks like model’s space manipulation, it is better to use

more straightforward and reliable embeddings, like word2vec.

Note that the choice of words plays a big part in this experiment, as so

does the similarity metric. On further investigation, we are going to examine

the similarity of words based on the sentence level measurement strategy.

4.2.3 Order-based Approach

As BERT is bidirectional in the sequence and layers, the order of the words

should matter. In order to test this, we are going to extract representations

for the word “queen”, used in the same context but with a different order of

words. The context is mentioned below:

(a) the queen was tired so she went to sleep (original)
(b) the queen was sleep so she went to tired (two words swapped)
(c) sleep to went she so tired was queen the (reverse)
(d) tired the queen was so to sleep she went (random)

Cosine distance between word vectors: with context

Comparison Between Base Large

a vs a (AA) 1.0 1.0

b vs a (BA) 0.852 0.812

c vs a (CA) 0.662 0.409

d vs a (CA) 0.610 0.230

Table 5: Illustrates a cosine similarity between the queen vectors in the same

context but in different order. The contexts are listed above as a, b, c, d.

Table 5 shows that the order does matter. In fact, the more random or

previously unseen the order of the words is, the less the representations for

the word “queen”.
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4.2.4 Word Influence on Contextual Representations

It is unclear how we can precisely measure a difference between two con-

textual representations since every single word in the sentence impacts the

contextual representation of all the other words. One reasonable step in

this direction is to include the sentence-level information in the comparison

between two word representations. Applying cosine distance metric on the

sentence-level, we can compute the similarity between the representations of

words in the sentences, i.e., in all-to-all relation for every word. Figure 18

shows the cosine scores computed between two sentences consisting of the

same words.

Figure 18: Cosine similarly scores between the pairs of word representations,

in all-to-all relation for every word in each sentence, from BERT-Large. The

overall average similarity score is: 0.940. The Average Influence Similarity

(AIS) score: 1.0 (introduces later)
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By looking at the scores, it is notable that the top-down diagonal cosine

similarity scores are all equal to 1. This is because they compare the same

words computed in the same context. Although the sentences are the same,

it is also clear from the heat map that all the other scores depart from 1. This

is natural since, e.g., the contextual representation of the word “the”, should

naturally differ from the word “sleep”. This fact indicates that the non-

intersecting words cosine scores should not participate in the sentence-level

similarity comparison, i.e., averaging such values would falsely downgrade the

score. In other words, having the two same sentences, the metric would never

produce an expected score of 1. However, using the cosine similarity scores

of the intersecting words between the two comparison sentences provides

a reasonable ground for a pair-wise contextual representation’s similarity

measure.

Now, consider all-to-all cosine similarity scores between words in two

sentences, that only differ in one position in the sequence (see Figure 19).

It is visible that the scores between the same words differ, i.e., the different

word has influenced the representation of all the other words, and thus, when

computing the cosine similarity, the values depart from 1.

Furthermore, given the two same sentences, which only differ at one par-

ticular position in the sequence, we can calculate a more precise similarity of

the two differing words by averaging the cosine similarities of the intersecting

contextual words. Since there is only one different position between the sen-

tences, the average of the intersecting context words (excluding the differing

words representation cosine similarity) also serves as a measure of the influ-

ence the differing word has on the representations of the contextual words.

In further explanations, the aforementioned sentence-level word comparison

metric will be referred to as Average Influence Similarity (AIS).
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Figure 19: Heat map visualising the cosine similarly scores between the pairs

of word representations, in relation all-to-all words in the sentence, from

BERT-Large. The overall average similarity is: 0.874. The Average Influence

Similarity score is: 0.927

Applying AIS to the sentences displayed in Figure 18 results in an accu-

rate prediction of 1, since the sentences are exactly the same. In contrast

to the pure average cosine similarity score, 0.94, this metric is more truth-

ful since one expects the two same sentences to get the maximum similarity

score. Furthermore, using AIS to compare the differing words in the sen-

tences visible in Figure 19 results in a score of 0.927. In contrast to the score

of 0.874 for average cosine similarity, the AIS seems more reflective since

queen and king are commonly perceived as being conceptually close, thus

should display a high value. However, it is not possible to stress which score
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is better because the relationship between the two words is a subject to an

opinion.

Despite the AIS metric showing reasonable scores, it suffers from sub-

stantial restrictions. It is only possible to compare two word representations

at a time, given the same context. This creates a few significant problems.

The choice of the context may be biased towards one particular representa-

tion. In terms of the other issue, sometimes it may be challenging to find

two different words that would fit into the same context. Furthermore, an-

other side problem is that the metric is also computationally expensive since

it is required to calculate the cosine similarities between all the intersecting

words. Nevertheless, when computing AIS between two the same words in

multiple different contexts, the AIS scores would differ, i.e., the score is de-

pended on the context. However, one could compute AIS for two words by

approximating the score from multiple scores calculated in different contexts,

that could be retrieved by searching a textual corpus.

4.3 Sequence Generation from BERT

Bidirectional Encoder Representations from Transformer (BERT) have been

designed to pre-train deep bidirectional representations by jointly condition-

ing on the left and right context in all layers. The resulting representations

capture grammatical and semantical information that is fundamental for any

NLP/NLU task. In order to benefit from BERT’s language rich information

modelling, we simply add an additional layer on top, which we later fine-tune

using a task-specific learning objective and data. The knowledge gained at

the pre-training step helps the fine-tuning layer reach a satisfiable accuracy

on a wide range of NLP tasks using limited dataset sizes. In fact, BERT has

shown to achieve state-of-the-art on eleven tasks, which include: sentence

classification, token-level classification, inference, and question answering.

However, all of the tasks belong to NLU group which models the learning

space of the fine-tuning layer into classes. The authors did not conduct any

experiments on Natural Language Generation (NLG), which is an equally im-
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portant group of tasks that serve as fundamentals to solving many problems,

e.g., text summarisation and article generation.

BERT is pre-trained using Masked-LM that learn to predict masked to-

kens given the left and right context, however, during the generation phase,

it is unclear how the same objective can be used to generate a words sequence

from scratch9. Furthermore, it is also uncertain how we can use Standard-

LM objective to generate from BERT because such an approach imposes a

pre-specified generation order that only uses left context. In other words, the

bidirectional nature of BERT does not naturally admit sequential sampling.

However, given that the dominant approach to language generation is left-

to-right, this section will experiment generating from BERT in that manner.

The following sampling strategies are also illustrated in Figure 20.

In the following experiments, we are going to test different strategies

for generating from BERT. All of the experiments begin with a starting

conditional sentence, where for n ∈ {1, ..., T} steps we sequentially append

a masking token to the sentence, generate a word for that position, and

substitute it into the sentence for the next time step t. After T steps, we

end up with a generated sentence based on conditional words. All of the

experiments differ in the choice of the masking position and the context used

to generate a prediction. In order to predict for a given masked, as in the

previous experiments, we softmax over the hidden states of a particular mask.

In the first test, we provide a starting sentence, “Once upon a time, there

was a girl named Beauty. She lived with her father and her sisters in a small

village. Beauty was a beautiful girl. She was also hard-working. She always

helped her”, where at each time step we append a masking token at the end

of the sentence and thus, use the left-only context to predict the sequence.

In this scenario we would expect the model to generate something along the

lines “father and sisters on the farm”, but it is almost never the case since

the model generates tokens which are not coherent, collapse into a repetitive

9At least at the time of writing this thesis, it is unclear how we can generate from

BERT while achieving a satisfiable performance.
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loop and are often a part of punctuation vocabulary, e.g. five full stops in a

row.

Figure 20: An abstract illustration of three BERT token prediction strate-

gies investigated in this experiment (best visualised in colour). Schema 1:

displays a sequential token prediction given left context only. After predict-

ing a word, the word and a new masked token are added to the end of the

sequence for next token prediction. Schema 2: context from both directions

is reflected in the masked token representations, from which we sequentially

predict. Schema 3: using context from both sides, we compute representa-

tions for all of the masked tokens at once, from which we later predict (similar

process to the Masked-LM objective). Note that the red dot indicates a start

of the sequence prediction. The different shades of red refer to different time

steps at the prediction.

In the second strategy, we split the conditional sentence into two parts,

left and right context. Then we append the masking token to the left context

and before running it through the model we join both contexts into one. This

way we predict for the masking token which is located in the middle of the
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sentence and thus we use bidirectional context for the prediction. We also do

this for n steps, where at each step we add the masking token to the end of

the left context and then substitute the predicted token into that position.

The quality of the output is somewhat similar to the previous approach but

sometimes predicts words that somewhat fit into the context.

The third and last strategy is to repeat the above experiments, however,

with the difference of adding all the masking tokens to the starting sentence

at once and then predicting for all the respective positions. Such an approach

combined with the second strategy simulates a very similar objective to the

one at training. This approach for sentence generation has shown to fall into

the same problems as the previous techniques, however, outperforms the

previous approaches in terms of the frequency of more suitable output. An

interesting observation is that the pre-defined length of the expected num-

ber of generations influences the quality of the output. When the expected

number of generations fits into the given context, the model can generate a

coherent continuation. However, there are two main problems. There is no

way knowing and thus pre-defining a number of fit generations, as well as, it

is always required to have context on both sides of the prediction word.

Very recently, there have been paper publications tackling the words se-

quence generation problem using the bidirectional transformer. Stern et al.

(2019) proposed an approach which accommodates arbitrary orderings by

allowing for tokens to be inserted anywhere in the sequence during decoding.

Furthermore, Welleck et al. (2019) has proposed a method which generates

a word at an arbitrary position and then recursively generates words to its

left and right, while yielding a binary tree. The final output is generated

thanks to the imitation learning strategy which learns sequential decision-

making policies on the binary tree. Lastly, Gu, Liu and Cho (2019) proposed

an extension to the Transformer architecture which models the generation

order as a latent variable based on the input information, i.e. at every step,

the model sequentially predicts a word as well as its relative position in the

input.
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All of the papers focus on the same idea - allowing an arbitrary genera-

tion order via some sort of insertion mechanism - which spans an important

research direction. Most of the recent research in NLP tackling the method-

ology of processing the inputs have shown to produce high-quality models for

most of the possible tasks. However, as this experiment has shown, having

a high-quality model is not enough when it is still unclear how to get the

most out of it for tasks requiring generation. Further research into genera-

tive strategies that are perhaps inspired by the way humans write text could

allow for novel interactive applications. Furthermore, considering the poor

output performance obtained from BERT points us to using a GPT2, as the

fundamental generative model, in further experiments.
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5 Conditional Lyrics Generation using GPT2

The focus of this Section is to discuss and analyse technical training de-

tails, experimental strategies and results of a successful song lyrics genera-

tor (SLG) model. The fine-tuned model generates coherent song lyrics of

a particular style which is provided as a condition. The conditional genera-

tion capabilities are purely achieved with an appropriate fine-tuning strategy,

without any architectural changes to the pre-trained model.

In the previous Section, it has been stated that BERT struggles to gen-

erate a coherent text due to the lack of a suitable sampling technique that

would work well with the Masked-LM objective used during pre-training. As

a consequence, using BERT for generative tasks would not provide satisfying

results. Instead, a BERT’s competitive counterpart, a GPT2 model will be

used.

Both language models are pre-trained transformer networks that utilise

self-attention to compute contextual representations, which makes them al-

most identical at the architectural level. Whereas the most significant distinc-

tion is the training objective function, which sets the model learning progress

as well as, after the training, defines a strategy to generate outputs from it.

BERT uses a Masked-LM objective that utilises bidirectional context repre-

sentations for learning. Whereas the GPT2 uses a unidirectional left-to-right

objective function that, in contrast to prior, trades a practical and straight-

forward approach to sequence generation for slightly lower performance on

the downstream tasks. Since the bidirectional representations conditioning

raises the model performance, and the left-to-right objective function pro-

vides a simple and effective output generation strategy, one may ask: why

not to use bidirectional conditioning with a standard learning function for

language model modelling. Unfortunately, such an approach is not logically

compatible because bidirectional conditioning would allow each word to in-

directly “see itself”, and the model could trivially predict the target word in

a multi-layered context. Moreover, always predicting the next element to the

right given the representation of the previous sequence would not reveal full
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bidirectional potential as much as predicting a word from the middle.

GPT2 pre-trained model is available online as a library package called

“transformers” created by Hugging Face10. Similarly to BERT, the GPT2

model comes with two sets of pre-trained weights, small and medium. The

small weights originate from a model trained with 12 layers, 768 hidden

states and 12 multi-attention heads per layer, thus, the maximum of 117M

computations per input. Whereas the medium weights come from a model

pre-trained with 24 layers, 1024 hidden states, 16 multi-attention heads and

thus 345M parameters.

5.1 Methods

This Section details an approach and methods essential to compose a con-

ditional lyrics generation model. The topics include the training dataset

details, input feeding strategy, output sampling methods, and the output

evaluation metrics. The details discussed in this Section directly relate to

the experiments and analysis covered in Section 5.2.

5.1.1 Datasets

The original data11 used for SLG model training consists of 380,000 lyrics

examples, where each example has four additional related features, including

a genre. As it is the case with most raw datasets, the lyrics dataset also

requires some cleaning. The preparation is an important part of the training

process since the quality of the data directly reflects the performance. After

the dataset inspection, it can be noted that some input features are blank

or contain lyrics in other languages than English; thus, we filter those out.

Furthermore, the dataset contains twelve different genres, where each genre

has an uneven number of examples in respect to each other. Therefore, we

filter out all lyrics but the ones belonging to metal, pop and country because

10https://github.com/huggingface/transformers
11https://www.kaggle.com/gyani95/380000-lyrics-from-metrolyrics
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only these classes have enough examples to make the new datasets propor-

tional in respect to the classes. Furthermore, we also make sure that each

song is in the range of 500-2000 characters, which approximately transitions

to 125-500 words.

From the input examples that have passed the above conditions, we cre-

ate four datasets where each has a different number of inputs. Table 6 sum-

marises the dataset details.

Dataset Sizes

Dataset Name: Training Size: Evaluation Size:

Large Lyrics (LL) 30000 6000

Medium Lyrics (ML) 15000 3000

Small Lyrics (SL) 6000 1200

XSmall Lyrics (XSL) 600 120

Table 6: Displays different dataset sizes used for experiments in Section 5.2.

The evaluation datasets do not intersect with the training samples.

5.1.2 Training: Input Construction Strategy

To construct input for the model, we draw lyrics from the dataset and wrap

them with a special token. For example:

< SPECIAL > ... lyrics ... < SPECIAL >.

A special token is any character composition that is unique to the pre-

trained model vocabulary. Technically, the model treats special tokens just

like any other words; appends to the vocabulary and represent with a unique

reference number. Therefore, it is a programmer choice to decide on a unique

special token name that will reflect its purpose. By defining the unique tokens

at the beginning of the fine-training, the pre-trained model has no prior

knowledge of what they stand for; therefore, the model begins modelling of

what the tokens should correlate with. Since the model correlates inputs

based on their words occurrence patterns, by placing the special tokens in
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an appropriate sequence position, we can manipulate the learning space of a

model. As a result, after the fine-tuning process, it is possible to condition

the model on the special tokens to output lyrics in a particular style. For

the experiments in Section 5.2, we define three special tokens, < METAL >,

< POP > and < COUNTRY > to represent every genre within the datasets

described in Section 5.1.1.

Furthermore, in order to help the model disambiguate between features

we want it to learn, in our case genres, we element-wise add additional vec-

tors to the input (Token IDs), i.e., Token Type IDs and Position IDs. The

additional vectors can contain any values that mean to help a specific objec-

tive generalise. The goal of this conditional generator is to learn the different

lyrics styles (mental, country, pop), thus utilise the Token Type IDs to sepa-

rate the different genres in the following manner. That is, for each different

lyrics genre, we fill the Token Type IDs with a different value that is the

same for all of the input positions. For example, if the training input is of

metal type, we fill the Token Types IDs with ones, and if the lyrics are of a

pop genre, we fill with twos, etc. Note that the addition of the Token Type

IDs is not compulsory; it is a strategy that we have chosen to experiment

with. Moreover, we use the Position IDs to help the model encode the spe-

cial distance between words of the input. We do it by filling a vector with

incremental integer sequence, i.e., [1, 2, 3, ..., input length], which we then

element-wise add to the input (Token IDs). By using the positional encod-

ing, the model learns the input length patterns, and thus, learns to predict

the unique end token that is used as an indication to cut off further sequence

prediction. Figure 21 illustrates an exemplary training input using the above

input constriction strategy.
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<_POP_> <_POP_>These are song lyricsInput

Token ids

Token type ids

Position ids

+

+

+

+ +
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+

+

+

50267 50267204 2005 1232137

22 2 2 2 2

0 1 2 3 4 5

Figure 21: Exemplary model training input used for experiments in Section

5.2. The input is wrapped with special tokens that, after the training, are

used as a condition that encodes a particular genre style. The Token IDs

correspond to input words transformed by a static encoding function (Byte

Pair Encoding by Sennrich, Haddow and Birch (2016)). The Token Type

IDs are represented with a pre-chosen value that helps the model learn the

particular genre type. The Position IDs partition holds pre-chosen spatial

distance encoding values that are the same for all genre classes. All of the

input partitions are element-wise added before being fed into the model.

Moreover, during the training process, it is also required to provide lan-

guage modelling labels which are essentially input Token IDs with every

element being shifted one position to the right. Lastly, we pad the input

partitions with zeroes until the length of the longest input in the dataset, in

order for all the inputs to be of the same size in the input batch.

5.1.3 Generation: Output Sampling Strategies

The recent idea of fine-tuning a pre-trained transformer network has resulted

in many benchmark advances in natural language understanding and gener-

ating tasks. Using a fine-tuned model for the tasks requiring understanding is

straightforward since it usually involves processing an input through a model

that assigns it into a specific class, which is the required output. However,

sampling from a model is not as simple as the classification since it requires
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an appropriate output sampling technique. The decoding strategies alone

drastically affect the quality of the outputs, even when sampled from the

same distribution as model weights. Differently put, no matter how excel-

lent the fine-tuned model is, without an appropriate sampling strategy, the

output qualities will be poor.

Until recently, the two most common decoding strategies were greedy-

decoding and beam-search. The greedy-decoding is the most basic method

which selects the most probable (argmax) next token and repeats the pro-

cedure until reaching the end-of-sequence special token. However, always

selecting the token with the highest probability distribution introduces a

risk of a high-probable word being hidden behind a low-probability token.

As mitigation to this problem, at each decoding step, the beam-search main-

tains a beam of several possible sequences and at the end selects a sentence

that is globally maximised. Over the last few years, beam-search has be-

come a standard decoding strategy for almost all generative tasks, which

includes both open-ended12 and non-open-ended13 tasks. In practice, while

it still makes sense to use beam-search for the non-open-ended tasks due to

their often tightly scoped probability distribution space, it makes less sense

for open-ended tasks since they require more spatial freedom in terms of

word choice, where this maximisation-based algorithm do not perform well

(Holtzman et al., 2020). As a result, the current influential long sequence

generative models have chosen an alternative of a top-k sampling to serve

as the model sampling strategy (Radford et al., 2019), (Zellers et al., 2019).

Since this work has shown to produce state-of-the-art quality outputs, it sets

12The open-ended tasks are generally identified by a conditional long sequence genera-

tion. An example application includes article generation and text continuation. In such

tasks, the output sampling strategy should restrict the range of acceptable output words

while leaving a considerable level of freedom for the sentences to be diverse.
13The non-open-ended tasks can be mostly defined by an input-output pair, such that

the generated output is a close transformation of the input. An example application

includes machine translation and text summarisation. At such tasks, the output sampling

technique should be tightly scoped by the input condition so that there is not much freedom

in the output word selection.
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a promising ground for the top-k method to be used in this project. Broadly

speaking, the top-k sampling method selects the next token by first, tak-

ing top-k most probable words, and then re-scaling their relative probability

distributions. More formally, the whole process looks as follows:

Given a sequence of m tokens, x1...xm, as a conditional context, the

task is to generate the next n continuation tokens to obtain a complete

sequence, x1...xm+n. Under the assumption that a standard left-to-right lan-

guage model for text decomposition is used, we generate token by the token

in the following manner:

P (xm : xm+n) =
m+n∏
i=m+1

P (xi|x1 : xi−1) (18)

Now, this is where the top-k comes into play. At each decomposition step,

given the probability distribution P (xi|x1:i−1) over the model’s vocabulary

V , we select a set of k highest activations V (k) ∈ V , where k is a pre-chosen

hyperparameter. Then, by indexing through the V (k) we take the sum to

obtain p′:

p′ =
∑

xi∈V (k)

P (xi|x1:i−1) (19)

Then, using the p′, we re-scale the original distribution to a new distri-

bution accordingly:

P ′ (xi|x1:i−1) =

{
P (xi|x1:i−1) /p′ if xi ∈ V (k)

0 otherwise
(20)

Using softmax function over the new probability distribution, we obtain

the next word.

Furthermore, the recent work by Holtzman et al. (2020) has proven that

the distribution of words in texts generated by the beam-search and greedy-

decoding differs considerably from the distribution of words in human-written

texts. They argue that people optimise text against stating the obvious,

making highly predictable text unlikely to occur in practice, therefore, the
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decoding strategies based on the maximum probability lead to text with

unnatural high probability and low variance, which results in an unnaturally

looking outputs. This motivation has led to a product of a new nucleus

top-p sampling strategy, which is based on the idea of randomisation rather

than maximisation. The top-p works by sampling from the previous word

distribution after having to filter it only to keep the tokens with a cumulative

probability distribution above the p threshold. Generation using the top-p

have shown to produce satisfying quality and diverse outputs which is the

reason why it will be used in further experiments.

The top-p will be explained from Equation 18 onwards. Similarly to

top-k, the top-p determines a set of tokens to be sampled from. Given a

probability distribution P (xi|x1:i−1) over the language model’s vocabulary,

we select the highest probability tokens whose cumulative probability mass

exceeds the pre-chosen threshold p:

p
′
=

∑
xi∈V (p)

P (xi|x1:i−1) >= p (21)

In practice, this means that after obtaining the distribution we sort the

logits in descending order, apply a softmax function and then on top of that

a cumulative sum. Like-wise in Equation 20, the next step is to re-scale the

distribution to a new one in order to filer all the tokens whose mass exceeds

the threshold p:

P ′ (xi|x1:i−1) =

{
P (xi|x1:i−1) /p′ if xi ∈ V (p)

0 otherwise
(22)

To compare the two aforementioned methods, both sample from trun-

cated LM distribution, differing on the strategy of where to truncate. The

top-k samples from the next token distribution after having to filter it out

only to top k tokens, whereas, the top-p, samples from the distribution whose

cumulative probability surpassed the p threshold. This makes the top-k strat-

egy constant in terms of the number of words to consider, whereas top-p is

dynamic since it picks the number of words whose mass passes a threshold.
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Note that the choice of truncation point is an important feature since it

defines the model’s generative confidence region.

5.1.4 Output Evaluation

Evaluative metrics on generative models’ outputs is an active area of research

and yet there is no unique metric that would fit all kinds of outputs for a fair

comparison across different generative capabilities. A reasonable evaluation

metric for generative models are human annotators since we best know what

kind of output looks real and within the expectations. However, human

judgement can be tricky since most generative outputs are a subject to an

interpretation and thus would be difficult to judge fairly, as well as the process

is very time-consuming and not reusable.

In this project, we automatically evaluate the models’ performance based

upon measuring the quality, diversity and condition genre reflection in the

generated outputs. The metrics are discussed later in more detail; however,

the quality of a model is measured using a Bilingual Evaluation Understudy

(BLEU) score first proposed by Papineni et al. (2002). Whereas for the

diversity reflection we use two metrics, a Self-BLEU (SBLEU) introduced

by Zhu et al. (2018) and a Unique-Ngram Counts (UNGC), as described in

the work of Wang and Cho (2019). Lastly, we train a genre discriminator to

see whether the condition is reflected in the output of the model.

Quality Metric: The BLEU scoring metric proposed by Papineni et al.

(2002) was first designed and introduced in the thought of machine transla-

tion (MT) evaluation; however, it can also be applied to other tasks’ evalu-

ation. As a consequence, the BLEU scoring algorithm will be first explained

from the MT point of view in order to understand the trade-offs when used

for generated lyrics evaluation. In MT, the closer the translated text (candi-

date) to a professional human translation (reference), the better the quality.

The first step to derive a BLEU score is to compute an ngram precision.

This is done by counting the number of matching n-grams between the can-
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didate and the reference and dividing by the total number of n-grams in

the candidate. Unfortunately, computing the precision this way introduces a

problem at a case where the model over-generates “reasonable” words, result-

ing in low adequacy but high-precision score, e.g., consider the illustration

below where the model generated a matching word multiple times (example

inspired on Papineni et al. (2002)).

Candidate: the, the, the, the, the, the, the

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

Uni-gram Precision: Ref. 1 scores 7/7, Ref. 2 scores 7/7

Modified Uni-gram Precision: Ref. 1 scores 2/7, Ref. 2 scores 1/7

The problem is solved with a Modified Ngram Precision (MNP) which

considers a reference word exhausted when a matching candidate has been

found. In order to compute an MNP, one must first count the maximum

number of times a specific word occurs in the reference translation (clipped

count), and in the case when the number of overlaps for that particular word

in the candidate exceeds the clip count, the clip count is used instead for

the precision calculation. Mathematically it’s computed like: count clip =

min(count,max ref count). Note that each candidate can have multiple

corresponding target sentences to which, throughout the explanation, it has

been referred to as a reference. Furthermore, the modified n-gram precision

is a unit evaluation of candidate-to-reference pair; however, what we want

is a scalar that describes the MNP over a dataset of candidates. In order

to do the prior, the algorithm adds the clipped n-gram counts for all of

the candidate sentences and divides by the total number of n-grams in the

generated corpus, just like in equation 23 below.

pn =

∑
C∈{Candidates}

∑
n−gram∈C Countclip(n− gram)∑

C ′∈{Candidates}
∑

n−gram′∈C′ Count (n− gram′)
(23)
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Furthermore, BLEU computes a geometric average of the modified n-

gram previsions, pn, using n-grams up to length N and positive weights wn

which sum up to 1. The geometric mean has been chosen since the greater

in length grams, the less probable overlaps; thus the different scores need to

be weighted accordingly.

Moreover, from the ML point of view, a perfect translation should neither

be too long nor too short and the BLEU strategy detailed until this point is

only enforcing it partially. The n-gram precision penalises the spurious words

in the candidate that do not appear in any of the reference translations. In

addition, the MNP penalises given the word occurs more frequently than

in the maximum reference count. However yet, the MNP does not have

any explicit mechanism to punish translations much shorter in length, as

illustrated in the extreme example below (modified example from Papineni

et al. (2002)).

Candidate: of the

Reference 1: It is a guide to action that ensures that the military will

forever heed Party commands

Reference 2: It is the guiding principle which guarantees the military

forces always being under the command of the Party

Modified Uni-gram Precision: Ref. 1 scores 1/2, Ref. 2 scores

2/2

Modified Bi-gram Precision: Ref. 1 scores 0/1, Ref. 2 scores 1/1

Nevertheless, to resolve such cases as the one illustrated above, the au-

thors came up with a sentence Brevity Penalty (BP). With this mechanism,

high-scoring candidates must match the reference translations in length, word

choice and word order. It works by assigning a sentence BP of 1 in a case

when the candidate’s length is the same as one of its references. E.g., con-

sider having three reference translations whose lengths are 10, 13 and 17,

and a candidate whose length is 13. In such case, the sentence BP would be
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1 since the algorithm looks for a “best match length” in all of its references.

In order for the penalty not to be too harsh on shorter sentences, the authors

decided to compute it at the corpus level. This is done by summing the best

match lengths for each candidate sentence in the corpus, r, and dividing by

the length of the total words of the target corpus c, where the penalty is

a decaying exponential of r/c. Note that the MNP already penalises the

translations longer in length thanks to the count clip.

To finalise, BLEU takes a geometric mean of the modified precision scores

for all of the n-grams and multiplies the result by an exponential brevity

penalty factor. The equation is a follows (Papineni et al., 2002):

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(24)

Then,

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
(25)

Which is more immediately apparent in the log domain,

log BLEU = min
(

1− r

c
, 0
)

+
N∑
n=1

wn log pn (26)

Where N =4 and uniform weights wn = 1/N .

In terms of the final BLEU result from MT point of view, a perfect

candidate would score 1 if its n-grams would be exactly the same as the

n-grams in the reference translation.

By following the intuition of Yu et al. (2017), we compute BLEU between

the generated lyrics and the training dataset in order to measure the quality

of the generations in contrast to the original data. Note that for the machine

translation task perfect quality score is 1; however it is not the case for

lyrics generation. This is because lyrics generation task is a fundamentally

different and perfect score of 1 would mean that the model is massively

overfitted and has mostly copied the true data distribution. However, using
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BLEU to evaluate the lyrics is still a true quality reflection that can be used

to contrast the different model training settings. Note, using BLEU for lyrics

evaluation, the BP should not affect the final score so much since for each

generated song we treat all of the training dataset inputs as a reference;

thus, it is very probable to find a matching length spawning BP=1. Such

behaviour is useful because we expect the generated songs to be of different

lengths, and thus we do not want the metric to penalise unless it is an extreme

case. Moreover, the metric does not consider synonyms in the n-grams, which

is preferable for the machine translation scenario, however, not necessarily

essential for lyrics comparison since it would introduce a randomisation factor

which would raise the scores.

Furthermore, in the experimental Section 5.2, in order to apply BLEU in

a fair environment, for each evaluation model we generate a lyrics collection

of size equal to 10% of the current model’s training dataset size. We sample

from the models by sequentially setting seed from 0 to 100 and generating

an equal amount of songs for each genre. Also, the batch size is dynamically

adjusted to generate exactly 10% of a particular training dataset size.

Diversity Measurement:

In order to get a diversity measurement in the form of a scalar, we compute

Self-BLEU (Zhu et al., 2018), which we will refer to as SBLEU through the

thesis. SBLEU, as the name suggests, is a variation of BLEU that evaluates

the diversity of the generated data in contrast to itself. Since the underlying

mechanism of BLEU compares how similar two sentences are, it can also

be used to calculate how one sentence resembles the rest in a generated

collection. Particularly, this is done by regarding one generated sentence as

a candidate and all the others as a reference, which produces a score for every

candidate that is later averaged to create a SBLEU score of the generated

dataset. A higher final score implies a smaller diversity.

Moreover, in order to get a more fine-grained diversity metric, we perform

a Unique N-gram Count (UNGC) for N that ranges in length from 1 to
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4. The UNGC compares the percentage of n-grams that are unique in the

whole collection. This is done by first, identifying all n-grams and counting

their appearance frequency. Then, counting all the n-grams that have an

appearance frequency of one (unique) and dividing by the sum of all n-gram

counts. This way the resulting value reflects the proportion of unique n-grams

in relation to all the n-grams and their count frequency. Furthermore, the

UNGC can be applied to both, the original training dataset (likewise BLEU),

and to the corpus of generations (likewise SBLEU). The higher the resulting

values for each n-gram, the more diversity. Thus, this metric is somewhat

opposite to the BLEU as fewer unique n-grams imply higher BLEU. Note that

this metric will never be too close to 1 since the final division denominator

includes counts of words whose natural frequency is greater than one, e.g.

connective words.

In other words: Given a collection {C} we identify n-grams g and their

frequency c,
∑N

4

∑1
{C} an = (gn, cn) and then we get the unique n-grams by

auniquen ⊂ an where cn == 1. Then, we divide the unique n-grams by the

total count
∑N

4
uniquen∑1

cn

in order to get a set of probabilities for the collection.

Condition Discriminator:

To obtain the discriminator, we define and train a one layered fully connected

network with bias, that takes the GPT2’s output in the form of the hidden

states and classifies it to a genre class. Having to fine-tune multiple GPT2

models in the different hyperparameter and dataset settings, we can expect

each GPT2 to produce a different set of hidden states for the same input text.

Therefore it is only fair to train a separate discriminator for each different

fine-tuned model because each discriminator learns to classify correctly based

on specific model’s hidden states. In other words, the discriminator’s output

is depended on the GPT2’s hidden states. We tried using one discriminator

to judge the outputs of multiple GPT2 models; however, the performance

was poor. In addition, such a strategy would not provide a stable ground for

a fair evaluation; one GPT2 hidden state outputs could be more similar to
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the ones used for discriminator training than others.

Furthermore, in order not to bias the discriminator towards the correct

genre class, during the training process, it is crucial to remove the special

tokens from the GPT2’s input since they will be reflected in the contex-

tual hidden states representation used by the discriminator. This creates a

conflict when trying to fine-tune GPT2 model and train the discriminator

together since we require one input to be processed twice. As a consequence

of double training, we chose a strategy to first fine-tune a GPT2 model on the

whole dataset and afterwards train the discriminator using the same dataset.

This approach has an advantage of providing a fixed and quality representa-

tions for the discriminator that do not reflect the special tokens; however, it

prevents from using a joint error to fine-tuning the GPT2 since the model is

already trained.

Note, the discriminator is an only one layered networks, which potentially

may be too small to classify the GPT2 very dynamically changing representa-

tions. However, this may not necessarily be the case since the GPT2 hidden

states already encode the input patterns. Therefore, we chose this design

implication because of two reasons: lack of computational power, and the

curiosity to see what the only one layer can accomplish.

5.2 Experiments & Results

This Section displays results and analysis on three essential aspects of a con-

ditional generative model training, i.e., the dataset size, input construction

strategy, and model sampling techniques. Note that the experiments in this

Section utilise the methods described in Section 5.1; therefore, in the analy-

sis, it is assumed that the reader is familiar with the covered methodological

arrangements.

5.2.1 Fine-tuning on a Variety of Dataset Sizes

In this experiment, we are going to compare and analyse the performance of

a GPT2 model fine-tuned on four different dataset sizes in order to find an

90



appropriate balance between the training time and satisfying output quality.

Finding such a trade-off is an important aspect of model training since of-

ten one has limited computational resources and dataset size. The model’s

performance is examined by first, generating lyrics collections from weights

trained using corresponding datasets, and then, by using BLEU14, SBLEU

and Self-UNGC metrics to measure the quality, diversity and uniqueness of

the outputs. The generated collection’s size measures 10% of the number of

songs in the particular training dataset.

Evaluation of Generated Collections

Dataset len BLEUQuality SBLEUDiversity Difference

30000 (LL) 42.5% 23.3 19.2%

15000 (ML) 39.5% 20.6 18.6%

6000 (SL) 35.4% 18.4 17.0%

600 (XSL) 20.2% 17.7 2.5%

Table 7: Performance of the GPT2 model fine-tuned using four different

dataset sizes with the output sampling setting of (top-p, top-k = 0). The

quality and diversity scores are based upon generated collections that make

up 10% of the respective training dataset size. The ’difference’ column dis-

plays a resulting value of the following computation: BLEU score − SBLEU

score.

To recall the BLEU score meaning, the higher the percentage, the more

similar the generated corpus to the training dataset. A vital characteristic

of any neural network is for the model to generalise on the data patterns

and not copy the dataset (overfit). Intuitively, a BLEU score of a 100%

would mean that the network has overfitted the data, which is not what

we want. Therefore, the question remains - what is an unknown optimal

BLEU value of an open-ended generative task, such as, lyrics generation,

14To produce the BLEU score we compare a generated collection to a corresponding

model’s training dataset - not the evaluation dataset.
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that would best reflect the aesthetic qualities while not entirely copying the

dataset. Differently put, what is an optimal BLEU value that displays a

good balance between underfitting and overfitting - good generalisation.

In respect to the BLEU (quality) score alone, Table 7 shows that a dataset

size of 600 is not big enough for the model to generalise properly since the

score of 20.2% indicates strong data underfitting. However, fine-tuning the

model on only 6000 inputs displays almost double quality in contrast to the

prior, signifying that this size may be reasonable enough to achieve aesthet-

ically pleasing outputs. Furthermore, increasing the dataset size from 6000

to 15000 gains 4.1%, and from 15000 to 30000 brings only a 3% increase

in quality. Revealing that dataset size expansions improve the quality as-

pect, however, the relative improvement decays with the increase in data

size. Meaning that if a large dataset composition is extravagant, one may

consider creating a smaller set, e.g., of size 6000, while expecting a slightly

smaller performance.

Furthermore, to recall the SBLEU (diversity) meaning, the higher the

percentage, the less diverse the generated collection because there are more

matching n-grams in relation to each other. When inspecting the SBLEU

scores, one obvious correlation is that the model becomes less diverse given

a larger dataset size, where the relative diversity loss is constant with the

size15. Given the diversity scores of the training datasets being at around

30-50%, the correlation of outputs becoming less diverse given more data

indicates that the model continues ‘fitting’ to the training data distribution.

Ideally, we do not want the model to copy the data distribution and thus for

the diversity score to grow, but we want the model to generalise from the

data in such a way that would make the outputs as diverse as possible, i.e.,

settling somewhere below the training dataset diversity score. However, one

may say a high diversity, especially early in training, may not translate to the

expected output aesthetics, i.e., the model can generate more out-of-context

15At first, the Table 7 may not indicate a constant relative loss in diversity. However,

note the irregular increases to the dataset size.
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and incoherent sentences which can falsely lower the score. Nevertheless,

when manually contrasting the generated lyrics from the weights trained

using the dataset size 6000 and 30000 (see Table 8), we can state that the

low diversity score truly reflects the good qualities of output, i.e., both lyrics

display to be similarly coherent. Therefore, a low SBLEU score should be

considered as a striven property of the outputs.

Given that output should have the highest quality and the lowest diversity

score, combining the BLEU and SBLEU metrics allows finding a compromise

between the training time and the performance. This can be done by fine-

tuning a model using a variety of dataset sizes that marginally differ in size in

relation to each other. Furthermore, by inspecting the quality and diversity

scores of generated collections from the respective weights, it is possible to

identify the dataset that produces the biggest proportion between the gain

in the quality and the decrease in the diversity, in contrast to the previous

dataset.

By analysing Table 7 using the prior hypothesis it is visible that, the more

training data, the bigger the ‘difference’ gets. In other words, the more data

we have, the more absolute performance gained. It is notable that after the

dataset size of 6000, the relative performance gains decrease. Therefore, given

one’s limited computational and dataset resources, fine-tuning a GPT2 model

using a dataset size of 6000 would produce outputs of reasonable qualities, in

terms of the diversity and dataset resemblance. Note, that this experiment

is dataset-specific, i.e., we are using a dataset that is composed of lyrics

belonging to three different genre classes. Increasing the number of genre

classes, or the number of features describing lyrics could result in entirely

different scores.
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Generated Song Lyrics - Feature-less Approach

Dataset Size: 6000 Dataset Size: 30000

Condition: Metal Condition: Metal

You started a journey from the East

Nothing have I seen but the ocean

The seas will open up for me

Can you feel how I feel against your soul

My coldest dreams come true

I know you took the smile away

Blood dried tears and life had left me

There have no sadness of the sea i have

cried

You came right with your smile

I stood side by side, open face and face

As silent as could be

Inside your heart there’s nothing to bear

I hear your voice smiling in the dark

I know you took the smile away

Slaves shattered into these sheets

Despair did you feel so beautiful

That our love would last

No tears to tears to be seen again

When our dreams will last

When our dreams will last

Here’s a place in the heart of heroville

Where you used to be

Walkin’ in the parkin’ lot

It’s a crowded place

Where I remember the old folks

Once ma’am afraid to use that old time

playin’ song

It’s a crowded place

Where there were those

People who were blinded with their eyes

Brought me pain and minds who cried

And just like they were blind

Like the movie star

This lonesome entrance slammin’ place

Wouldn’t have the chance to talk it over

Thereen retreatin’ place

That old mistakes were the new

Yapp awakened early

The Exit Hotel by that old city

A girl beneath that old school

Table 8: Generated samples from a GPT2 model trained using feature-less

datasets. On the left, song lyrics produced from a model fine-tuned using a

dataset of size 6000. On the right, a sample from a model fine-tuned on 30000

inputs. Despite the training size difference, both outputs display aesthetic

lyrics qualities. The lyrics were randomly picked without any specific score

indication.
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Figure 22: Self Unique Ngram Count scores of generated collections sam-

pled from four different weight distributions that were trained using four

datasets varied in size. The scores are produced based upon generated lyrics

collections that are of size: 10% of the training dataset.

Now we are going to inspect the output diversity from a different per-

spective, i.e., using the Self-UNGC metric. A Self-UNGC score represents

the percentage of n-grams that are unique in a given collection. A higher

percentage means more unique n-grams. Figure 22 illustrates the results.

As it can be observed, the 1-grams and 2-grams for the different col-

lections do not significantly differ, indicating that the generated collections

do not vary at the range of word predictions. However, when inspecting 4-

grams, it is notable that the larger dataset displays a higher uniqueness at

four words sequence composition. The analysis of this metric with respect to

the SBLEU ravels that given more data, the outputs generally start to be-
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come less diverse; however, short sequences (4-grams) become more unique.

While considering the complexity of natural language and its properties un-

captured by the metrics, such correlations may indicate numerous things.

For example, given more data inputs, the outputs become less random and

out-of-context (less diverse), and more unpredictable and human-like (more

uniqueness). This behaviour can be justified with the model generalising

on the additional subset of inputs included in the larger dataset, since the

extra inputs contain words that have been seen before (lowers diversity), as

well as introduce previously unseen words (enlarges the uniqueness). There-

fore, given more data, the model more frequently predicts common sentences,

however, more often occasionally produces a sequence which is unique. Al-

ternatively, the lower diversity (higher score) could signify that the model

collapses its prediction to a smaller subset of words, and thus starts to over-

fit.

Discriminator Scores

Dataset size Genre Classification Acc. Training Evaluation Acc.

30000 (LL) 46.9% 84.3%

15000 (ML) 50.1% 96.4%

6000 (SL) 46.3% 93.2%

600 (XSL) 37.0% 82.2%

Table 9: On the left, discriminator’s genre classification accuracy based upon

generated collections of size 10% of the training dataset size. The lyrics

collections were generated from GPT2 models trained using the same amount

of inputs as the respective discriminators. On the right, the discriminator

training evaluation accuracy. All of the discriminators were evaluated using

the same evaluation dataset of size 6000.

Now, we will be looking at the discriminator. The discriminator’s goal

is to classify the generated lyrics into a genre class and check whether it

is, in fact, the GPT2’s condition. It is important to comprehend that the

discriminator’s classification output is not entirely depended on the adequacy
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of the lyrics, but also on the training evaluation error rate. Since in the

chosen discriminator training strategy all of the GPT2 models have separate

discriminators trained from scratch, we obtain different evaluation scores for

different models16.

When looking at the evaluation and classification test accuracy scores of

the training using only 600 examples, we can first suspect that the discrim-

inator has been overfitted; indicative by the high evaluation score of 82.2%

and low genre classification accuracy of 37% (bad generalisation). However,

when considering the complexity of the experiment, i.e., the GPT2 model,

on whose hidden state outputs the discriminator was trained on, was also

trained on 600 inputs which as the prior results have shown (see Table 7)

did not transition to high-quality outputs. Therefore, the evaluation accu-

racy most probably indicates that the discriminator is underfitted, and given

its not the most optimal state and the badly generated outputs, we get the

test accuracy of only 37%. Furthermore, a much higher number of exam-

ples - 6000 and 15000 - has brought more satisfying results, however, with

an expense of many data examples. However, given the greater amount of

inputs, the GPT2 model has learnt to produce better quality outputs (see

Table 7) which did not transition into significantly better test17 accuracy.

Therefore, these results indicate that the discriminator is overfitted since it

cannot, with a high precision, classify generated lyrics that only slightly differ

from the ones in the training dataset. Lastly, the score for LL dataset shows

that there were too many different examples for the network to grasp since

the two prior results (6K and 15K of inputs) have achieved better accuracy.

Therefore, give the twice as large number of examples, the discriminator is

16Recall that one discriminator would not be able to fairly evaluate models trained on

varying in size datasets because of the randomisation introduced by the extra inputs.

Therefore, after training, despite given the same input, the different GPT2 models would

produce different hidden state output that the discriminator would classify. As a result,

the model with hidden states that would be more-alike the ones the discriminator was

trained on, would unfairly score the highest.
17Test in this context corresponds to genre classification accuracy.
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underfitted.

Generally, when observing the generated lyrics classification scores, it

becomes evident that the discriminator has struggled with the classification

since most of the accuracy scores are at around 50%, where a random guess

would result in the accuracy of 33%. Therefore, the discriminator is not

complex enough to capture such dynamic GPT2 representations. In order

to improve the reliability of the discriminator, it is necessary to enlarge the

structure in terms of the number of layers with a consideration of the training

dataset size; the more different training examples we have, the more complex

the discriminator should be.

Motivated by the idea of limited dataset and resources for model fine-

tuning, in this experiment, we contrasted the performance gains in respect to

the increasing data size. In more details, we trained a GPT2 model using four

varied in size datasets: 600, 6000, 15000 and 30000. The datasets were pro-

portionally composed of song lyrics belonging to three different genre classes

(metal, country and pop). After training, from each obtained weight distribu-

tions, we generated lyrics collections of length equal to 10% of the respective

training dataset size. Then, we evaluated the performance of these lyrics

collections using four measures: BLEU (quality), SBLEU (diversity), Self-

UNGC (uniqueness) and the discriminator (genre condition resemblance).

A general observation is that the quality of the outputs positively corre-

lated with the increase in data size; however, the relative improvements gain

decayed with the increase in dataset size. Therefore, given one has limited

resources and the dataset, the results have shown that it is reasonable to

fine-tune a GPT2 model only using 6000 input examples to achieve a reason-

ably satisfying output quality; the dataset extensions - from 6000 to 15000,

and from 15000 to 30000 - only displayed marginal performance gains.

Furthermore, when analysing the SBLEU scores, the outputs display to

become less diverse, given more inputs. This property positively correlated

with the quality scores, which indicated that the model was learning, and

thus, becoming more ‘fit’ to the dataset distribution. Since the highest qual-
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ity and the lowest diversity scores (more diversity) are the striven output

properties, in this experiment, we show an approach of finding a right bal-

ance between the training resources and the output performance qualities,

i.e. by identifying a dataset that produces the biggest proportion between

the gain in the quality and the decrease in the diversity, in contrast to the

previous dataset.

Moreover, the Self-UNGC for 4-grams has shown that the more inputs we

trained a model on, the more unique the output sequences become. There-

fore, using this specific training approach and the dataset, when increasing

the data amount, the outputs improve at the quality and uniqueness, but

become less diverse. Given the complexity of natural language, we hypothe-

sise this means that the model predictions become more dataset-alike, occa-

sionally predict the previously unseen tokens learned from the new data, and

generally the prediction collapses to the most popular words whose frequency

rises given the new data. Lastly, the genre discriminator scores have shown

to be just above the guess-level, indicating that the discriminator itself can

be unreliable and may not truly measure the genre reflection in the outputs.

Displaying that one layer on top of the transformer for simple lyrics classify-

ing task is not big enough, and expansion in the number of layers is required

in order to achieve more reliable genre evaluation metric.

5.2.2 Effect of Input Partitions on Model Performance

This Section investigates the influence of input partitions on the model’s per-

formance by fine-tuning a model with and without specific partitions, i.e., the

input Token IDs (TIDs) with and without the Token Type IDs (TTIDs)

and the Position IDs (PIDs). Recall the input partitions are additional vec-

tors that get added element-wise added to the input in order to manipulate

and enhance the learning of a model (see Section 5.1.2). By analysing the

additional partitions individually, we reveal the relative performance gains

it brings to the optimal model solution, and therefore, can identify a par-

tition that is the most critical to the specific task we are trying to learn.
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Identifying partitions with the most significant performance changes provide

a foundation for further experimental strategies that mean to develop the

model’s performance.

In order to make the experiment consistent, for all of the test cases the

same ML dataset gets used for training that is made up of 15000 inputs (see

Table 6 in Section 5.1.1 for more details). The GPT2 generative performance

is evaluated based upon a generated collection from the respective training

weights, using the BLEU and SBLEU metrics. Furthermore, the experiment

extends the analysis to the genre discriminator network that is built on top

of the GPT2 model and trained using its final hidden layer output. Each

GPT2 model, fine-tuned using a different input partition approach gets its

private discriminator that is trained separately after GPT2 using the same

ML dataset. Moreover, after the training process, we evaluate the discrimi-

nator’s genre classification18 accuracy on a LL evaluation dataset that makes

a total of 6000 samples, and on generated collections consisting of 1500 songs.

In order to generate a lyrics collection for a specific setup, a GPT2 model

is first fine-tuned using a left-to-right language modelling objective and a

particular input partition. Then using its learned weights, we predict the

lyrics, token by token - given the previous sequence as a condition with the

same input partitions used during the training.

The experimental results will be first explained from the GPT2 model

perspective and then from the discriminator point of view.

Table 10 illustrates the quality and diversity scores of generated collec-

tions produced from weight distributions trained using a different input con-

struction setting. For simplicity, throughout the analysis, the different input

settings will be referred to as rows in the table where: row 1 represents the

quality and diversity scores of a full input setting comprising of the Token

18For generated lyrics evaluation, the GPT2 genre conditional feature was used as the

correct class label for the discriminator. Whereas, in case of the evaluation dataset, the

Token Type IDs value was used.

100



IDs19, Token Type IDs20 and Position IDs21; row 2 presents scores of the

prior but without the Position IDs; row 3 stands for an input without the

Token Type IDs; and lastly, row 4 displays scores for the input without the

Token Type IDs and Position IDs.

GPT2 Model - Generative Performance

Input Partitions: BLEUQuality SBLEUDiversity

1: TIDs + TTIDs + PIDs 39.5% 20.6%

2: TIDs + TTIDs 26.5% 15.5%

3: TIDs + PIDs 39.8% 20.7%

4: TIDs 19.5% 13.4%

Table 10: Performance of a GPT2 model fine-tuned using different input

construction strategies. The two scoring columns correspond to the perfor-

mance measures, quality (left) and diversity (right), produces based upon

1500 generating lyrics from respective weight distributions.

When comparing row 1 and 3 quality and diversity scores, it is notable

that the values are almost the same, i.e., 39.5% and 20.6% to 39.8 and 20.7%

respectively. In other words, the score of an input strategy without the

TTIDs is almost identical to the one with TTIDs. Meaning that the PIDs

bring the full performance gain while the TTIDs do not contribute, in a case

when added together with the PIDs. The hypothesis is further confirmed by

comparing rows 3 and 2 since the scores of a setting without PIDs depart far

from the optimal. Furthermore, when comparing rows 2 and 4, a small per-

formance gain is notable, showing that TTIDs alone do make a small impact.

19Correspond to the input words
20Each input lyrics of a different genre type get a different constant ineger value that is

the same for all the positions. The metal genre lyrics get ones added for every position,

pop lyrics get twos, and country lyrics get threes. It means to help the model classify the

different lyrics types.
21Incremental integer sequence that indicates the model a spacial distance between words

of the input.
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Interestingly, given the prior analysis, the TTIDs bring no benefit when in

the presence of the PIDs; however, alone do make a small contribution. This

indicates that during the training process, given an input comprising of a full

setup, the GPT2 model puts its full attention to the PIDs only; however, in

a case where there are none, the model makes use of the TTIDs to slightly

improve the performance. Therefore, such results imply that the PIDs are

a critical input partition necessary for an optimal model’s generative per-

formance, while the model could do without the TTIDs partition for this

particular task.

From now on, the analysis focus on the genre discriminator that is trained

on the GPT2 model’s last hidden layer outputs. Note, during the training

process, in order not to bias the discriminator towards the correct genre

class; it is crucial to remove the special tokens from the GPT2’s input. Oth-

erwise, the special tokens would be reflected in the contextual hidden state

representations used to train the discriminator, and as a result, would make

the training objective banal which would transition to poor after training

classification performance. See Section 5.1.4 for a more in-depth explana-

tion of the discriminator training strategy. Furthermore, as it was stated

at the beginning of this section, the discriminator evaluation consists of two

parts: validating using evaluation dataset examples and on lyrics examples

generated from the model. For the former, we feed inputs to the GPT2

model using the same partition setup as the one used during this specific

model training. However, for the generated lyrics classification, in order to

make the task tougher, we remove the additional partitions while providing

only the word tokens. See Figure 23 for an overview of this experiment’s

construction decisions-flow.
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Figure 23: A schematic representation of the input partition experimental

choices (best visible in colour). The blue background corresponds to the

GPT2 model training process. The green area represents lyrics generation

and evaluation processes. The orange area displays the discriminator evalu-

ation process.
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Furthermore, a keynote to remember throughout the analysis is that the

generated lyrics classification scores depend on the GPT2 model’s generative

performance. Differently put, the discriminator is trained to classify lyrics

that are dataset-alike; however, when the GPT2 model generates a song un-

like the ones seen in the training dataset, the discriminator has a mean to

missclassify. Nevertheless, the prior is also depended on the training evalua-

tion error since the discriminator can also make a mistake. However, given

that the training evaluation scores are independent of the GPT2 vulnerabil-

ity; should display an impartial influence of the particular input partitions,

and thus those scores will be analysed first.

Genre Discriminator - Classification Accuracy Scores

Input Partitions: Lyrics Class. Acc. Training Eval. Acc.

1: TIDs + TTIDs + PIDs 50.1% 96.4%

2: TIDs + TTIDs 34.2% 99.7%

3: TIDs + PIDs 58.0% 78.3%

4: TIDs 45.4% 69.7%

Table 11: Classification accuracy scores of a genre discriminator layer that

was trained using a GPT2 model’s hidden state representations, that were

produced from weight distributions learned using the displayed input parti-

tion settings. Each row corresponds to a different discriminator, where all

get evaluated at two distinct scenarios: after training using 6000 evaluation

samples (right), and based upon generated lyrics collections consisting of

1500 samples (left). Note, during the evaluation process, the hidden state

representations that were fed into the discriminator were conditioned based

upon the corresponding input partition settings; however, in case of the gen-

erated lyrics evaluation, the hidden states were conditioned on pure input

tokens (TIDs).

Table 11 illustrates discriminator’s genre classification accuracy scores.

When abstractly examining the training evaluation accuracy, it is notable
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that the input without the PIDs scores the highest - 99.7%, whereas the

second-highest, 96.4%, is the full input partition; therefore, meaning that

the position tokens make the classification task harder. Furthermore, when

comparing rows 2 and 3, the scores indicate that the TTIDs help the dis-

criminator achieve higher accuracy in contrast to the PIDs, by a considerable

amount of 21.4%, thus signifying strong dependence of TTIDs for classifica-

tion. Lastly, it is notable that all of the additional partitions bring in some

value to the discriminator classification as a result of pure TIDs displays the

lowest performance out of all setups.

Now, the discriminator training evaluation scores will be analysed with

respect to the imperative lyrics classification accuracy in order to see corre-

lations between the two evaluations’ scores.

One would expect the highest training evaluation accuracy, displayed in

row 2, to correlate with the generated lyrics classification positively; how-

ever, this is not the case since the prior displays the lowest score of 34.2%.

Given the analysis from the Table 10 indicating a strong GPT2’s reliance on

the PIDs, in this case of its absence, the GPT2 produces contrasting repre-

sentations that the discriminator unrecognises, and thus often miss-classifies.

This shows the importance of keeping the same input partitions at both, the

training and evaluations stages, especially the ones that the GPT2 model

mostly relies upon - in order for the discriminator to be useful. Furthermore,

when inspecting row 3 displaying an input partition without the TTIDs, we

see a low training evaluation accuracy of 78.3% and the highest generated

lyrics score of 58.0%. Given the prior hypothesis stating the strong discrim-

inator dependence on the TTIDs, and the firm GPT2 reliance of the PIDs,

such behaviour is exhibit because the lack of TTIDs and the presence of PIDs

does not heavily hurt the GPT2 representations, and thus, the discriminator

can associate the representations with the ones at training. Moreover, given

that the lack of TTIDs downgrades the discriminator training performance

which positively transitions on the imperative generated lyrics evaluation, it

is reasonable to state that, at training, it is advantageous not to bias the
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discriminator towards the correct class since it does not transition to after

training performance. Therefore, providing inputs without TTIDs would

make the discriminator rely on the word tokens and their positions more,

which would make the training task harder to learn, however, the training

evaluation score is more reflective of the actual performance.

To summarise, in this experiment, we fine-tuned a GPT2 model using dif-

ferent input partition setups in order to reveal and compare the generative

performance gains of the individual partitions. For the performance compar-

ison, we generated lyrics collections from the corresponding model weights,

which we then evaluated using SBLEU (diversity) and BLEU (quality) met-

rics. Analysis of the evaluation scores had shown that the Token Type IDs

and the Position IDs, when separately added to the lyrics tokens, benefit

the model performance while the Position IDs are considerably more ben-

eficial. However, when compared both input partitions added to the input

words against a setup without just the Token Type IDs - the performance

scores were almost identical, showing that the Token Type IDs brings no

value when in presence with Position IDs, and thus signifying that the Token

Type IDs are not necessarily required for such task. Alternatively, indicating

that the Position IDs partition is the most critical for optimal GPT2 model

performance.

Furthermore, the experiment extends to an analysis of the influence of

input partitions on the lyrics genre discriminator, that is a one layered clas-

sification network trained on the GPT2 model’s last layer hidden state rep-

resentations. Each GPT2 model fine-tuned using the specific input partition

setting was given its private discriminator, that was trained separately after

the GPT2 model using the same dataset. The discriminator classification

performance was evaluated at two distinct scenarios; after training, utilising

a non-intersecting evaluation dataset; and on generated by the GPT2 song

collections. During the evaluation, the hidden state representations that were

fed into the discriminator were conditioned based upon the different input

partition settings; however, in case of the generated lyrics evaluation, the
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representations were conditioned on pure lyrics tokens. By analysing the

discriminator training evaluation alone, the discriminator showed to heavily

rely on the Token Type IDs since when in case of its absence at the condition,

the classification accuracy was dropped from 99.7% to 78.3%. Nevertheless,

when contrasting the scores of a full input partition setting against a one

without Position IDs, we see that the performance of the former dropped by

3.3%, meaning that the Position IDs marginally confuse the discriminator.

Additionally, further examination contrasted the training evaluation scores

against the imperative generated dataset classification accuracy to inspect

correlations between the two evaluations. Input partition combination of the

Token IDs and Token Type IDs have shown the biggest negative correlation

in respect to the other setting, meaning that the training evaluation perfor-

mance score did not translate to the after training performance on generated

lyrics. Given the prior analysis of the GPT2 depended on the Position IDs, at

this case of its absence, the GPT2 has generated lyrics that the discriminator

has often miss-classified. Alternatively, given the experimental choice of con-

ditioning on the generated lyrics provided as only token ids, the hidden state

representations of the GPT2 model were too different from the ones seen by

the discriminator at training. This signifies that when training a model with

a specific input partition, after training, it is essential to keep it precisely the

same as it was during training - since a lack of partition makes the GPT2 to

produce slightly different hidden states which confuse the discriminator.

5.2.3 Getting the Most Out of Top-k & Top-p

An optimal output sampling technique is an essential aspect of any generative

model. Without an appropriate sampling strategy, outputs from a prosperous

model can display poor quality and not realistically reflect its full potential.

See Section 5.1.3 for more details about model sampling.

The most commonly used sampling strategies are top-k and top-p sam-

pling (Holtzman et al., 2020). This experiment aims to find a better perform-

ing method of the two and the most optimal hyperparameter setting of it. In
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this experiment, we train a GPT2 model using a medium-size dataset (15K

inputs) and then, using all of the different top-k/p settings, generate 1.5k

lyrics for the quality and diversity score measurement. In more detail, for

each genre class in the dataset, we generate lyrics from 100 seeds - ranging

from 0 to 99 - where for each seed we use a batch of size 5.

Figure 24: SBLEU and BLEU scores of lyrics collections generated using

different top-k hyperparameter settings. The GPT2 model from which the

song collections were produced was fine-tuned using the ML dataset that

comprises of 15000 inputs. The evaluation is based upon 1500 generated

samples.

Recall the SBLEU(diversity) and BLEU(quality) scores. The BLEU score

reflects the n-gram count similarity of the generated samples against the

training dataset, where the higher the score, the more similar the generated
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samples to the dataset. Whereas, the SBLEU contrasts a one generated song

against all the others, for a given collection. In SBLEU metric, the higher

the score, the more similar the outputs; thus, lower score implies greater

diversity. Therefore, we strive for the diversity score to be as low as possible,

and the quality score to be high. Consequently, this would mean that the

model can generate diverse and dataset-like lyrics. Subtracting the diversity

score from the quality displays a total performance gain which can highlight

the most optimal hyperparameter setting.

Firstly, we are going to inspect top-k scores, which are displayed in Figure

24. By inspecting the bar chart, we can see that one proper performing

setting is k=0, with the diversity being 21, quality 40, and the difference

between the two 19. Another, also high-performing setting is k=1000, with

diversity 24, quality 44, and the difference 19. Generally, we want a setting

that has the greatest difference: however, in a case when the two green

lines match performance; we need to compromise the other scores in order

to define a model that best fits into our use case, i.e., diversity vs quality.

One may want a less diverse model, however, with outputs reassembling the

dataset more. Alternatively, one may prioritise diversity over quality. In

this experiment, we value a balanced setting, and thus, chose k=1000 as the

optimum. Note, top-k=0 means no logits filtering: thus, all logits are taken

into account. Therefore, having no sample filtering strategy can produce

outputs of satisfying quality. Furthermore, k=5 and k=10 display the worst

performance, which is apparent by the small difference and high diversity

score. When further inspecting the generated outputs from these settings,

it is noticeable that they tend to collapse into a repetitive mode (see lyrics

samples in Appendix 14).
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Figure 25: SBLEU and BLEU scores for lyrics collections generated using

different top-p hyperparameter settings. The GPT2 model from which the

song collections were produced was fine-tuned using the ML dataset that

comprises of 15000 inputs. The evaluation is based upon 1500 generated

samples.

Moreover, Figure 25 illustrates the top-p results. A commonly visible

behaviour is that the results of the threshold p ranging from 1 to 0.9 in-

crease in the quality and diversity scores, given a smaller p. In other words,

the decreasing threshold p makes the outputs less diverse; however, more

dataset-a-like. When considering the performance gain values (green lines),

it is apparent that the model performs similarly for all the settings men-

tioned above. Therefore, again, the choice of the best setting depends on

which compromise is more valuable to the user: diversity or quality. In the
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choice of the optimal threshold p setting, we went for a middle ground and

chose 0.95. This is because this setting displays a reasonably good balance

between the quality and diversity, and when inspecting the generated col-

lections manually, they display a coherent and aesthetic text. Furthermore,

when decreasing the threshold below 0.8, in contrast to the previous settings,

we can see a sudden drop in the performance, which is given by the lower

quality and higher diversity score, meaning that the generated words are

repetitive and less often subset with the dataset in the n-grams.

Generated Song Lyrics - Feature-less Approach - ML Dataset

Condition: Metal Condition: Metal

Top-k = 1000 Top-p = 0.95

I found myself in a place where

I turned to walk beneath

I’ve a place where I belong

I run and I’ve all flown

And somehow find it anywhere

Where there’s hope for the sun still shining on

But I can’t find my way in myself

Where the sun still shines on the trees

What have I done, what have I done to you?

I remember I was smiling in my youth

But I don’t realize the past behind closed doors

The door’s wide open that doesn’t open

Excuse me, don’t step inside

What have I done, what have I done to you?

Life doesn’t exist, this is how it used to be

I chose to play along

I gave my life to the monsters

It seemed nothing, nothing at all

These three gifts keep in my heart,

They seem quite safe, and they go my way

To keep balance between us two,

These three gifts keep in my heart,

You see, I play with fire,

That keeps our both together.

There’s no time for each one to be born.

It seems the other gifts I bring

Cannot be bought or sold.

If you gave a little sweet tomorrow

I would have given you more than I have

If things could come my way,

And all you want is you to see me,

I’m not gonna waste another tear

I take off all I can find

These three gifts keep in my heart,

They seem quite safe, and they go my way

To keep balance between us two,

These three gifts keep in my heart,

You see, I play with fire,

That keeps our both together.

Table 12: Lyrics generated from a GPT2 model trained on Dataset of size

15000. On the left, an output produced using top-k=1000 sampling strategy.

On the right, lyrics produced utilising top-p = 0.95.
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For both sampling strategies, we can see that the settings of top-k = 0

and top-p = 1.0 display a satisfying generative model performance since the

evaluated lyrics collections are the most diverse while demonstrating high

dataset resemblance score. Therefore, proving that it is possible to gener-

ate desirable samples from a model without the top-k and top-p strategy.

However, experimenting with the threshold values have shown to trade the

model diversity for a greater quality, which may be beneficial for some tasks.

In the case of lyrics generation, we want the model to resemble the dataset

well so that the outputs look human-written, and thus we chose the k=1000

and p=0.95 as the optimum. Example of lyrics is displayed in Table 12. The

k = 1000 and p = 0.95 display a very similar performance in terms of the

best BLEU and SBLEU score. Additionally, when inspecting the generated

outputs, both of the collections contain high-quality lyrics with coherent and

reasonable text. Moreover, for both strategies, the model generates songs

with repetitive sentences, which is the required behaviour since most of the

songs contain naturally repetitive chorus (see Appendix A.3).

To conclude, sampling from a model can provide satisfiable results with-

out any particular sampling technique available today, since the model showed

to generate excellent performance outputs based on a simple maximisation

sampling. However, using the top-k/p sampling strategy helps to raise the

quality, which is worth testing out, in particular for use cases where the

dataset resemblance is a priority. Furthermore, p sampling is more flexible

and using any threshold between 1 and 0.9 can be considered ‘safe’ in terms

of the output quality. In contrast, the top-k requires an experimental phrase

to find a well-performing top logits threshold.

5.3 Fine-grained Control Over the Style

In this Section, we go a step further and expand the conditional features to

include the genre, year, author, and song name. Generating from a model

trained using such metadata, we can achieve more fine-grained control over

the style of the lyrics. In other words, we can cross-breed the outputs by
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conditioning on different feature combinations, e.g., we can condition a pop

author to produce a country-like song in the style of the ’50s. By providing

a word sequence as the song name condition, the model often reflects subsets

of the conditional tokens in the generation. Furthermore, thanks to the input

dropout strategy, conditioning on all features is not compulsory, i.e., we can

only condition on any subset of features or even none. Nevertheless, we can

also generate any of the conditional features, e.g., we can first generate a

song given its name and then regenerate the song name so that it suits the

lyrics better.

Training the fine-grain controlled model requires an expanded dataset,

that for each input song, contains the appropriate metadata. Having an

input described by a number of features it may be unclear how to feed it

into the model so that, after training, we get the capability of generating any

of the features. In this approach, we set a predefined order of the features,

i.e., genre, year, author, song name and the lyrics and indicate a start and

the end of each feature, using special tokens. In particular, conditioning the

model on a full context would look as follows (note the missing lyrics end

tag):

[s:genre]...[e:genre] [s:year]...[e:year] [s:author]...[e:author]

[s:song name]...[e:song name] [s:lyrics]

Using the unique tokens around the different metadata allows the model to

map the appropriate input tokens to the corresponding special tokens: so

that the starting tags can be used to condition the data seen at training.

Intuitively, the end tag is used as an indication to stop generating for a

given feature. In terms of the input partitions, for the Token Type IDs, we

represent each feature with a constant value which is incremental along with

the features. Whilst, the Position IDs remain the same as in the previous

experiment.

Furthermore, in order to allow the model to predict given a subset of

conditions, the training input requires a “features dropout” function at the

training process. In this approach, we first, randomly drop all features but
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lyrics with the probability of 25%. Further on, in case the condition is un-

satisfied, we set a probability of 10% to drop the features individually. This

way, for each input from the dataset, there is some chance that the features

will be lost and so the model learns to predict given only partial information.

Figure 26: An illustration of styled lyrics generation. 1) Model conditioning

using partial context. 2) The model generates an author using the previously

generated lyrics. 3) Regeneration of the song name to a one that better suits

the new conditional context.

By using the metadata generative modelling approach, the further sub-

sections explore how the dataset size expansions translate on the model per-

formance, as well as how increasing the feature variety in the training data

influences the model’s generative qualities. Lastly, we investigate how the

output qualities change when the model is conditioned on a different subset

of the conditional features.

5.3.1 Data Variety & Dataset Size Experiment

The goal of this experiment is to identify performance correlations of the

GPT2 model trained using two lyrics data banks that differ in the feature

variety, i.e., one bank contains lyrics belonging to 3 genres(3GEN), whereas

the other is composed of 10 (10GEN). From the two data pools, we create

two groups of incremental in size datasets on which the GPT2 model is

114



separately trained. In particular, the 3GEN datasets are made of metal, pop

and country lyrics. Whereas, the 10GEN datasets are composed of the prior

and the: electronic, folk, indie, jazz, hip-hop, RB, and rock. In order to make

the comparison impartial, each respective dataset size from the two pools

contains the same total amount of inputs that are proportionally segmented

in regards the number of songs of each genre. By comparing the quality and

diversity scores of the generated lyrics, we inspect how the feature variety

influences the model performance over an expanding dataset size.

Furthermore, in this experimental investigation, we also contrast the per-

formance of the previously explored feature-less generative model strategy

(see Section 5.2.1) against the metadata approach explored in this Section.

By comparing the two approaches, we explore the benefits of the metadata

in relation to the generative model performance.

Note, the further experimental analysis assumes that one has limited data

and computational resources and wants to achieve a well-performing model

given the smallest costs. In most cases, the more data provided, the better

the outcome; however, this experiment looks for a satisfiable balance between

the performance and the resources.

In order to generate a lyrics collection for a given model, we randomly

sample from all of the conditions of the respective model’s training dataset.

Furthermore, all of the generated collections consist of 1000 songs, where each

is conditioned on a different seed. The GPT2 hyperparameters that mostly

leverage its learning are: learning rate = 0.0000625, warm-up learning rate

= 0.0002, batch size = 1, the number of epochs = 4, and the top p = 0.95.
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Figure 27: SBLEU and BLEU scores for generated lyrics collections. The

models used to produce the evaluated lyrics were trained on varying dataset

sizes, which are composed of lyrics belonging to 3 genres that are described

by four features, i.e., genre, author, year and song name. In order to generate

the outputs, the models were conditioned on all of the features (3GEN(f))

that were randomly selected from the respective datasets.

Figure 27 demonstrates the performance scores of the GPT2 trained on

3GEN datasets. It is important to highlight that when increasing the num-

ber of inputs, there is a constant improvement in terms of the diversity

and quality: best visualised by the performance gain (green line). However,

when reaching about 11K inputs, the diversity starts to become stable in-

dicating that score of 20 might be an optimum given the specific training

setup. Whereas the quality carries on improving, indicating that the model’s
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outputs become more dataset-alike, thus the model still fits the data. Ad-

ditionally, these results give an idea that in order to train a well performing

model, it is reasonable to just use a dataset size of around 11K inputs since

the output performance displays to be reasonable in contrast to the other

training settings that require more resources. Moreover, it is notable that

increasing the data size after 20K of inputs, brings a small improvement in

the quality, which decays with the increasing number of inputs. This un-

derlines the dataset size importance and constraints, i.e., it is possible to

get a good satisfying model with only 11K training examples, however, any

small improvement, costs a much greater amount of data than needed for a

well-performing model. This is crucial when creating a dataset, especially

when the process is expensive and very time consuming, since no one wants

to waste time and resources.

When comparing these results to the dataset size experiment on a model

trained without features (Section 5.2.1, Table 18), it is notable that the

models exhibit the same performance at around 15k inputs, i.e., a score of

20 in SBLEU and 40 in BLEU. However, both models differ in the way they

approach the same performance. In terms of the diversity score, the non-

features model displays a low diversity score early in training, which given

more data inputs, increases over training time; indicating less diversity in the

outputs when exposed to more data. Whereas the features model exhibits

the exact opposite behaviour, i.e., the diversity positively correlates with

the input size. This shows that training a model using a featured dataset

helps the model to categorise the lyrics examples in its latent space, and

thus, when conditioned on a full set of features, the model can generate from

‘more defined’ and less shared space. Which, as a result, transitions to the

outputs being more diverse. Whereas, in case of pure lyrics dataset, the

model does not have meta information to separate the lyrics, and thus, when

conditioned, more often collapses to a more conventional space, producing

less diverse outputs. Furthermore, the fact that given more data the diversity

decreases indicates that there are not enough features to properly categories
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the model space, and thus, the model starts to overfit the data, resulting in

less diverse and more similar to dataset outputs.

Figure 28: SBLEU and BLEU scores for generated lyrics collections. The

models used to produce the evaluated lyrics were trained on varying dataset

sizes, which are composed of lyrics belonging to 3 genres that are described by

four features (3GEN(f)), i.e., genre, author, year and song name. In order to

generate the outputs, the models were conditioned only on the genre feature

(3GEN(g)), which was randomly selected from the respective datasets.

Furthermore, Figure 28, illustrates the quality and diversity scores for

generated collections conditioned only on the genre feature 3GEN(g). In

comparison to 3GEN(f), the outputs improve on both scores in correlation

with the increase in dataset size. However, the outputs are less diverse and

show higher quality measure, i.e., about 5% increase at both metrics, for all
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dataset sizes. This is because the outputs are not constrained with as many

conditions, and thus, the model predicts the more frequently seen words,

which span a higher quality and less diverse outputs (see Appendix ?? for

examples).

Figure 29: SBLEU and BLEU scores for collections of generated lyrics from

models trained on varying dataset sizes. All of the datasets used to train these

models were composed of lyrics belonging to 10 genres that are described by

four features, i.e., genre, author, year and song name. In order to generate

the evaluated collections, the GPT2 model was conditioned on the full set of

features (10GEN(f)) randomly selected from corresponding datasets.

Nevertheless, Figure 29, demonstrates the scores of models trained on

datasets composed of 10 genres (more various data) and the lyrics generated

using all conditions (10GEN(f)). In contrast to 3GEN(f) scores, the outputs’

119



diversity score approaches the optimum of 20 much sooner, i.e., at 5k inputs

in contrast to 15.5k inputs. This is because the dataset is in essence more

diverse, and thus, the model learns from a more diverse data which transitions

on performance. In other words, it contains examples belonging to more

genres, which contain songs of a greater range of authors that may potentially

use a different subset of vocabulary in their lyrics. Therefore, the model

more often predicts a greater subset of vocabulary which transition into the

optimal diversity score early in the dataset size. Furthermore, in terms of the

quality score, the model has a slightly lower performance of around 2% when

compared to 3GEN(f). This is because the data is naturally less similar and

thus, it is harder for the model to learn and achieve a higher quality grade.

To conclude, this section compares the performance of a GPT2 model

trained on range of dataset sizes, with a varying input’s origin, in order to

spot correlations between the performance and the increase in dataset size

as well as correlations between different data origins. The lyrics contained

within the datasets are accompanied by feature descriptions, i.e., genre, year,

author and the song name. Furthermore, the experiment involves two sets of

datasets on which the model is trained, and the analysis is performed. The

first set, (3GEN), defines models trained on datasets whose lyrics only belong

to three different genre classes whereas the second set of datasets (10GEN)

is composed of 10 genre classes.

When comparing 3GEN and 10GEN outputs generated based on a full

set of conditions, the model trained on 10GEN dataset has shown to ap-

proach a better diversity score after a smaller number of inputs, i.e. 5k vs

15k, indicating the importance of dataset diversity for more diverse outputs.

Furthermore, in terms of the quality score, the models trained on more varied

datasets exhibit worse performance (approx. 2%). Indicating that a more

diverse dataset is harder for the model to learn.

Moreover, further comparison between models trained on datasets with

and without the features has shown the metadata to have a positive influence

on the model’s performance. That is, when training with features, over an
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increasing number of training examples, the model produces outputs that

become more diverse, while also improving on the quality. Whereas when

training without metadata, the produced lyrics also improve on the quality

score; however, they become less diverse given more training inputs. This

puts the enriched dataset to be advantageous since one wants the model to

improve consistently given more data.

6 Discussion

This section covers the main limitations of the presented work, which in-

cludes the computational resources, dataset filtering, and evaluation metrics.

Furthermore, we discuss undiscovered experimental paths that have the po-

tential to serve as a continuation of this work.

6.1 Limitations

The central limitation of this thesis is related to the accessible computa-

tional resources, which has restricted the range of available investigations

and its experimental arrangements. An interesting experimental path could

have been conducted on the architecture-level of the recent language mod-

els, such as the BERT or GPT2. However, given our limited resources, such

work was not possible because it requires pre-training from scratch, which

is computationally heavy. For an intuitive example, a recent competitive

language model was trained on 1024 V100 GPU cards for a few consecu-

tive days, where a fraction of such computational power is not attainable

by most of the universities. As a consequence, we have focused on utilis-

ing the pre-defined architectures and its pre-trained weights for experiments

on task-specific fine-tuning, which is an interesting research direction, how-

ever, not as significant and groundbreaking as language model improving.

Furthermore, given that the University GPU cards have 16 GB of GRAM,

loading a large model distribution was not possible since such weights did

not fully fit; thus, we could not operate on the highest performance models.
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Furthermore, the choice of the memory-related hyperparameters, such as the

batch size which was limited to one, was also restricted due to GRAM re-

quirements. Moreover, all of the experimental results are based upon a single

computation. Having to re-compute the same experimental setting a couple

of times, and then taking an average of the results, would provide a more

reflective validation.

Another limitation of this work is the cleanliness of the data pool used

for the training. Data is an essential aspect of any model training since it

is what the model learns patterns from and strives to generalise. Despite

the data cleaning process of removing blank inputs and lyrics containing

special symbols or non-English letters; there are still some songs left within

the English alphabet which are written in other languages, since they are

difficult to filter out. This is a problem for two main reasons. First, the

model learns to generate non-English lyrics occasionally. Second, when such

songs make up a part of a generated collection whose diversity level is to

be evaluated, the non-English words enrich the evaluation score. Therefore,

getting rid of such samples from the dataset would make the model generate

only native lyrics which would transition to more fair evaluation scores.

To evaluate the performance of a model, we first generated a lyrics collec-

tion (or used a dataset) and then measured its quality, diversity and unique-

ness level. All of the mentioned metrics are based upon n-gram counts which,

abstractly speaking, measure the similarity between set A and set B. Com-

paring a generated collection to the training dataset in such fashion provides

an indication of the dataset resemblance, therefore the quality. Comparing

one generated song against a collection of others, and repeating the same

process for all the other songs and then computing an average over all of the

results, indicates a diversity score. Whereas, counting all the words appear-

ing only once in a collection and dividing by the total of all the other unique

word whose frequency is greater than one, indicates the uniqueness.

Since all of the above evaluation metrics look for matching n-grams be-

tween two sets, the resulting scores are size-dependent. In other words, in-
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creasing or decreasing the generated collection size, or the dataset size to

which the collections are compared results in different score reflection. This

is because the more songs make up a set A, the more chance we have to find

a subset of A in set B, and vice versa. Therefore, these evaluation metrics are

only comparable in a constant experimental setup and are not useful for a

global comparison against other people’s models since there are no evaluation

standards for everyone to follow. Moreover, this work does not implement

any other competitive model for a fair comparison using these evaluation met-

rics. Therefore, despite the results indicating an excellent conditional lyrics

generator performance, it is unknown how the model looks at the background

of the other.

Nevertheless, these metrics are not always reflective of the actual model

performance. For example, consider a poorly trained model that alternately

generates coherent lyrics and songs containing non-existing words. Eval-

uating the diversity and uniqueness of a such generated collection would

falsely result in scores indicating higher diversity and uniqueness since the

non-existing words would make up more unique n-grams.

6.2 Future Work

Training a conditional lyrics generator requires a dataset of songs accompa-

nied by its origin descriptors (metadata), so that, after the training process,

we can use the metadata to condition the style of the output. However,

training a model utilising an input feeding strategy that always uses the full

set of features to learn the weights confuses the model when conditioned on

only partial descriptors. Therefore, in order to introduce the capability of

partial conditioning, the training input feeding strategy must occasionally

drop out some and all of the features. The dropout probability of the meta-

data is a modelling choice that affects the output generation performance.

For the final generator model used in this thesis, we have used a training

input strategy that drops all of the features but the genre, with a probability

of 25%, and when this condition is unsatisfied, individually drops the author,
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year and song name features with a probability of 10%. This way, the model

learned to generate lyrics given any combination of the features.

As a continuation of this thesis, it would be interesting to conduct an in-

vestigation that would look into how the model output performance changes

given all of the different possible conditional permutations. Such investiga-

tion would display which features, and combination of features, display the

best performance. Furthermore, it would have been interesting to analyse

the results with respect to different input feeding strategies. Since, for ex-

ample, given a very high probability of dropping all metadata but the genre,

like 70%, would most probably result in a model well handling a genre only

conditional scenario. Finding correlations between the conditional feature

permutations and different input feeding strategies could help the develop-

ers to make a decision on which dropout probability would be best for their

particular use case to achieve the most optimal performance.

Furthermore, a typical song is made up of several verses and a repetitive

chorus. Enriching the dataset with such lyrics part information and using

special tokens to indicate them at the training, would extend the model

capabilities to generating a particular part of a song. An appropriate input

feeding strategy could even allow for regeneration of the chorus given the

verses as a condition, or vice-versa.

Moreover, in the preliminary section, it would be interesting to compare

BERT and GPT2 models, however, not by the performance on some auxiliary

task, but by the internal representation modelling. In particular, it would

be interesting to see how unidirectional (GPT2) and bidirectional (BERT)

language model representations differ in a multilayered process, i.e., by in-

vestigating the evolution of representations of individual tokens. Such an

investigation could characterise how the learning objectives determine the

information flow of a model. The examination could start by observing the

nature of changes a token undergoes from layer to layer, and then expand

onto relationships between tokens, e.g., comparing rare and common words,

and short and long in length words. Such research could reveal the hidden
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data modelling differences between the two commonly used language mod-

elling objective, i.e., the LM and Masked-LM.

7 Conclusion

In this thesis, we carried out a systematic inquiry to discover and examine

the generative capabilities of the recent state-of-the-art language modelling

approaches, in particular: the pre-trained BERT and GPT2 models. Both

of the models utilise a transformer-based architecture, which is based on a

self-attention mechanism, to produce contextual representation as a function

of the model, which makes them comparable. However, the central funda-

mental aspect that sets them apart is the Language Modelling objective,

i.e., GPT2 uses a standard left-to-right objective, whereas, BERT trains its

weights utilising a bidirectional Masked Language Modelling function. In

practice, this means that BERT, in contrast to GPT2, exploits self-attention

context representations that are computed in both directions in order to learn

its weights. At the time of publication, BERT has advanced the NLP field

by surpassing the benchmarks at eleven Natural Language Understanding

tasks. Given the BERT exceptional performance at tasks requiring language

understanding, and, at the time of the model announcement, limited re-

search on the bidirectional modelling, we decided to conduct experiments on

the BERT generative capabilities. The experiments have shown that it is not

effective to sequentially generate word tokens from BERT, even when provid-

ing the conditional context from both directions. Therefore, proving that the

Masked-LM objective, that was used in training, does not serve as a re-usable

and straightforward approach for text sampling. In further experimentation

on BERT, we conduct a series of tests on its bidirectional context representa-

tions. In more detail, we investigated whether the model conveys real-world

knowledge information by using simple arithmetic operations on the word

embeddings and seeing whether the resulting word makes sense for the given

scenario. For example, whether the embedding of king−man+woman results
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in a representation that is the closest to the word queen. The analysis has

shown that BERT requires context to construct meaningful representations

of the individual words, and by manipulating the model space using such

representations, depending on the provided context, the model displays a

conventional world-knowledge. The tests were conducted on the BERT-Base

and BERT-Large weight distributions: BERT-Large often output represen-

tations, that in contrast to BERT-Base, did not make sense for the given

tests, indicating that BERT-Large model is strongly under-fitted. Generally,

the experiment has proven that it is possible to manipulate the model space

using the bidirectional context representations: however, the process is very

context responsive; thus, it is more reliable to perform such tasks on fixed

vector representations, like the ones from word2vec algorithm.

Given that it is unclear how to easily and effectively sample a word se-

quence from BERT, for further experiments, we operated on its counterpart,

a GPT2 model. Since the GPT2 is trained using a left-to-right unidirectional

Language Model, we can generate from it in a straightforward sequential fash-

ion (token by token). As a base for the experimental purposes, we create a

conditional song lyrics generator by fine-tuning a pre-trained GPT2 model

on a lyrics dataset. The experiments are divided into two lyrics generation

modelling approaches; a simplified approach where the generated lyrics can

only be styles into a specific genre; and a metadata approach that allows for

fine-grained control over the style by introducing more conditional features,

i.e., genre, year, author and the song name.

In the simpler approach, in order to encode the style of a specific genre,

we define a special token for each different song type in the dataset and

wrap the training inputs with the corresponding special tokens. Since the

unique tokens are introduced at the fine-tuning stage, the pre-trained model

has no prior knowledge what they should represent, and therefore starts

correlating them with the respective words at the fine-tuning process. As

a consequence, after training, we can use the special token to condition the

style of the generated output. Furthermore, to help the model establish

126



different lyrics types in its latent learning space, we element-wise add the

input partitions, i.e., the Token Type IDs and Position IDs to the Token

IDs, that are representative of the input sequence. In particular, for the

Token Type IDs, we chose a constant value that is the same for all lyrics of

the same genre. Whereas, for the Position IDs, we incrementally increase the

value starting from one till the length of the input. The Position IDs help

the model identify the end of the lyrics, whereas, the Token Type IDs mean

to help differentiate between genres.

By applying the above training strategy, we conduct a series of experi-

ments, which include the dataset size, input partition and the model sampling

technique. Each of the empirical subjects is required to be experimentally

analysed in order to achieve a well-performing generator. Furthermore, to

evaluate the generative model performance at the investigations, we utilise

the BLEU (quality), SBLEU (diversity), UNGC (uniqueness) metrics and a

one-layered genre discriminator network, on the generated lyrics collections

from respective model weights.

Motivated by the idea of limited dataset and resources for model fine-

tuning, in the dataset experiment, we contrasted the performance gains with

respect to the increasing data size. In more details, we trained a GPT2 model

using four varied in size datasets: 600, 6000, 15000 and 30000. A general

observation is that the quality of the outputs positively correlated with the

increase in data size; however, the relative improvements gain decayed with

the increase in dataset length. Therefore, given one has limited resources and

the dataset, the results have shown that it is reasonable to fine-tune a GPT2

model only using 6000 input examples to achieve a satisfying output quality;

the dataset extensions - from 6000 to 15000, and from 15000 to 30000 - only

displayed marginal performance gains. Furthermore, when analysing the

SBLEU scores, the model outputs displayed to become less diverse, given

more inputs. This property positively correlated with the quality scores,

which indicated that the model was learning, and thus, becoming more ‘fit’

to the dataset distribution. Moreover, the UNGC has shown that, given
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more data, the model outputs become more unique at three and four-word

sequences. Therefore, using this specific training approach and the dataset,

when increasing the data amount, the outputs improve at the quality and

uniqueness but become less diverse. Given the complexity of natural lan-

guage, we hypothesise this means that the model predictions become: more

dataset-alike; occasionally predict the previously unseen tokens learned from

the new data; generally, the prediction collapses to the most popular words

whose frequency rises given the new data. Lastly, the genre discriminator

scores have shown to be just above the guess-level, indicating the discrimi-

nator itself can be unreliable and may not truly measure the genre reflection

in the outputs. Displaying that one layer on top of the transformer for sim-

ple lyrics classifying task is not big enough, and expansion in the number of

layers is required in order to achieve more reliable genre evaluation metric.

For the input partition experiment, we fine-tuned a GPT2 model using

different input partition setups in order to reveal and compare the genera-

tive performance gains of the individual partitions. Analysis of the evaluation

scores had shown that the Token Type IDs and the Position IDs, when sep-

arately added to the lyrics tokens, benefit the model performance while the

Position IDs are considerably more beneficial. However, when compared both

partitions added to the word tokens against a setup without just the Token

Type IDs - the performance scores were almost identical, showing that the

Token Type IDs brings no value when in presence with Position IDs, and

thus signifying that the Token Type IDs are not necessarily required for such

task. Alternatively, indicating that the Position IDs partition is the most

critical for optimal GPT2 model performance. Furthermore, the experiment

extends to an analysis of the influence of input partitions on the lyrics genre

discriminator, which was trained on the GPT2 model’s last layer hidden state

representations. The discriminator showed to heavily rely on Token Type

IDs since, at a case of its absence, the classification accuracy has drastically

dropped. In terms of the Position IDs partition, we saw that it marginally

confuses the discriminator. Furthermore, we also found that the experimen-
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tal strategy of first, fine-tuning a model using a particular partitions setup,

and then, after training, conditioning the model on only the Token IDs has

shown not to be useful. This is because the hidden state representations of

the GPT2 model were too different from the ones seen by the discriminator

at training. Therefore, signifying that when training a model with a specific

input partition, after training, it is essential to keep it precisely the same as

it was during training - since a lack of partition makes the GPT2 to pro-

duce slickly different hidden states which confuse the discriminator at the

classification.

Lastly, we experimented with two output sampling strategies, called Top-

k and Top-p. This investigation aimed to find a better performing method

of the two and the most optimal hyperparameter setting of it. A carefully

chosen sampling technique in respect to a specific task, as well as its the most

optimal setting, is an important aspect of any generative model. Without an

appropriate sampling strategy, outputs from a prosperous model can display

poor quality and not realistically reflect its full potential. In more detail, we

trained a GPT2 model using a medium-size dataset (15K inputs) and then,

using different top-k/p settings, generated 1.5K lyrics for the quality and

diversity score measurement. The analysis has shown that sampling from a

model could do without any particular sampling technique available today

since the model displayed to generate excellent performance outputs based

on a simple maximisation sampling. However, using the top-k/p sampling

strategy helps to raise the quality, which is worth testing out, in particular,

for use cases where the dataset resemblance is a priority. Furthermore, p

sampling is more flexible and using any threshold between 1 and 0.9 can be

considered ‘safe’ in terms of the output quality. In contrast, the top-k requires

an experimental phrase to find a well-performing top logits threshold, which

when found, is competitive to the optimal top-p.

In the second experimental section, we explore the metadata approach

of generator modelling. In this strategy, we go a step further and expand

the conditional features to include the genre, year, author, and song name.
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Generating from a model trained using such strategy, we can achieve more

fine-grained control over the style of the lyrics. In other words, we can cross-

breed the outputs by conditioning on different feature combinations, e.g., we

can condition a pop author to produce a country-like song in the style of the

’50s. Furthermore, conditioning on all features is not compulsory, i.e., we

can only condition on any subset of features or even none. Nevertheless, we

can also generate any of the conditional features, e.g., we can first generate

a song given its name and then regenerate the song name so that it suits the

lyrics better.

Training the fine-grain controlled model requires an expanded dataset,

that for each input song, contains the appropriate metadata. Having an

input described by several features, it may be unclear how to feed it into

the model so that, after training, we get the capability of generating any of

the features. In this approach, we set a predefined order of the features, i.e.,

genre, year, author, song name and the lyrics and indicate a start and the

end of each feature, using special tokens. In terms of the input partitions, for

the Token Type IDs, we represent each feature with a constant value which is

incremental along the features. Whilst, the Position IDs remain the same as

in the previous experiment, i.e., sequentially increase for each token position.

By using the metadata generative modelling approach, we explore how the

dataset size expansions translate on the model performance, as well as, how

increasing the feature variety in the training data influences the model’s gen-

erative qualities over an expanding dataset size. In more detail, we trained

a GPT2 model on data bank that contained lyrics belonging to 3 genres

(3GEN), and on another set of data composed of 10 (10GEN) genres. When

comparing 3GEN and 10GEN outputs generated based on a full set of condi-

tions, the model trained on 10GEN dataset has shown to approach a better

diversity score after a smaller number of inputs, i.e. 5k vs 15k, indicating the

importance of dataset diversity for more diverse outputs. We also generated

lyrics from 10GEN based on the genre field only. In contrast to the full con-

text conditioning, the outputs have shown to be more dataset-alike, however,
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less diverse. Which is simply because the smaller number of conditions does

not restrict the model’s predictive space as much as all meta conditioning.

Furthermore, in this experimental investigation, we also contrast the per-

formance of the previously explored feature-less generative model strategy

against the metadata approach. By comparing the two approaches, we ex-

plore the benefits of the metadata in relation to the generative model perfor-

mance. The analysis has shown that metadata has a positive influence on the

model’s performance. That is, when training with features, over an increas-

ing number of training examples, the model produces outputs that become

more diverse, while also improving on the quality. Whereas, when training

without meta, the produced lyrics also improve on the quality score; how-

ever, become less diverse given more training inputs. This puts the training

using the metadata datasets to be advantageous since one wants the model

to improve consistently, given more data.

Therefore, for a successful lyrics generative model, it is best to train a

GPT2 model using a metadata dataset, which introduces a fine-grained con-

trol over the output style. Moreover, using metadata brings more advantages.

That is, when expanding the dataset, the model consistently improves on the

quality and diversity of its outputs, in contrast to the training on featureless

data. Furthermore, the more varied the metadata features are, the faster the

model approaches the right diversity level early in training. Furthermore,

as the experiments have indicated, a good compromise between the training

resources and the model performance is to train the model on 11k of data in-

puts. However, depending on one’s available resources, it is best to fine-tune

using as much data as possible. In terms of the input partition, it is critical

to use Position IDs in addition to the word tokens, since they bring much of

the performance and indicate the model when to stop generating for a given

feature. Also, after training, it is important to use the same input partition

strategy that was used for the training. Concerning the output sampling

technique, it is the most advisable to use the recent top-p sampling method

since it allows us to have control over the output diversity while generating
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a coherent and aesthetically-pleasing text. Additionally, the threshold p is

flexible, and small changes to it do not negatively impact the model’s per-

formance, therefore provides some space for a mistake when looking for an

optimum. A GPT2 model trained with respect to the above indications gen-

erates lyrics of excellent quality and diversity, whose style can be controlled

using several features.
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A Appendix

A.1 Example of Descriptive Text

Text A:

“Once upon a time, there was a girl named Beauty. She lived with her

father and her sisters in a small village. Beauty was a beautiful girl. She

was also hard-working. She always helped her father on the farm. One day,

her father set out for the city. He saw an old castle and went in. No-one was

in but there was food on the table. Then he walked around the castle. He

picked arose from garden for Beauty. Suddenly an angry Beast appeared. He

wanted to kill Beauty’s father unless Beauty was brought to him. Beauty’s

father told her daughters what had happened. Beauty’s sisters ordered her

to see the Beast. Beauty went to see the Beast and had to stay at the castle.

She felt scared, lonely and sad. She tried to run away but was stopped by the

Beast. The Beast treated Beauty well. Soon, Beauty began to like the Beast.

One day, through the Beast’s magic mirror, Beauty saw that her father was

sick. The Beast allowed her to go home. Her father was happy to see her.

One night, Beauty had a dream. A fairly told her that the Beast was sick.

Beauty hurried back and saw the Beast dying. She began to cry. Tears fell

onto the Beast. Suddenly, the Beast changed into handsome prince. Beauty

and the Beast got married and lived happily ever after22.”

22https://www.scribd.com/document/44455701/Example-of-Descriptive-Text
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A.2 Top-n Prediction Accuracy

(a) Top 1 prediction. (b) Top 2 predictions.

(c) Top 3 predictions. (d) Top 5 predictions.

Figure 30: BERT base and large performance comparison for top n predic-

tion(s).
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A.3 Top-k Top-p Experiment - Lyrics Samples

Lyrics Sample from the XL dataset

Genre Country

Lyrics I sobered up in Houston

In the bed of my pickup truck

My head was hangin’ so heavy

I could hardly hold it up

I got to thinkin’ ’bout

Sweet little woman I left all alone

And that’s when I started rollin’

Drinkin’ my way back home

Drinkin’ my way back home

Listenin’ to a honky tonk song

I hope the Devil in my soul don’t steer me wrong

’Cause I’m drinkin’ my way back home

I can feel that Texas sun

Down on this redneck of mine

Every time I pop top

I’m getting closer to the Arkansas line

I left a trail of Lone Star beers

From here to San Antone

So, baby, here I come, don’t worry

Drinkin’ my way back home

Drinkin’ my way back home

Listenin’ to a honky tonk song

I hope the Devil in my soul don’t steer me wrong

’Cause I’m drinkin’ my way back home

Drinkin’ my way back home

Listenin’ to a honky tonk song

I hope the Devil in my soul don’t steer me wrong

’Cause I’m drinkin’ my way back home

Here I come, baby

Table 13: A random lyrics sample from the XL training dataset.
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Generated Lyrics: Feature-less Approach

Top-k = 5 Top-p = 0.8

I’m just a girl in the middle of a summer

A summer girl in a summer dress

A blue summer night and I can’t remem-

ber her name

I can’t remember the night we met

I was just a girl in a summer dress

In summertime I was just a girl in a sum-

mer dress

In summertime I was just a girl in a sum-

mer dress

Oh, I’m just a girl in a summer dress

Oh I’m just a girl in a summer dress

I can’t remember the night we met

I was just a girl in a summer dress

In summertime I was just a girl in a sum-

mer dress

In summertime I was just a girl in a sum-

mer dress

In summer

see you with your eyes

A beautiful smile

And you have the power

To say what you want to say

I can’t stop thinking about you

The things you say to me

I can’t stop thinking about you

I can’t stop thinking about you

The things you say to me

I can’t stop thinking about you

The things you say to me

I can’t stop thinking about you

The things you say to me

I can’t stop thinking about you

I can’t stop thinking about you

The things you say to me

I can’t stop thinking about you

The things you say to me

I can’t stop

Table 14: These lyrics present a regularly observed quality achieved with

bad top-k/p settings. Note the overwhelming repetitive sentences.
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A.4 Lyrics from Metadata Training

Generated Lyrics: 10GEN, 14K inputs

Conditions

Genre Country Rock

Year - -

Author - -

Song Name - christmas is a birthday

Lyrics I went to the salesmen’s store I met the bright young man

who looked so young

He said his name was Johnny

He worked hard but then he said, ””Sorry, Johnny, for all

my trouble

You never made the grade””

He just sold his guitar and he didn’t have any more

He never came back again

Well Johnny will be gone tomorrow

He didn’t go home and he didn’t find a job

He put up with poor Johnny and they started a war

Then when he was made head of state by the people in the

streets

Johnny went back to San Antone

But Johnny wouldn’t pay the bills and he couldn’t live on

Johnny went to your place and he never spoke a word

Johnny came home one fine day

On the high horse he made his bid for gold

So Johnny did his thing and the day is done

Well Johnny will be gone tomorrow

He didn’t go home and he didn’t find a job

He put up with poor Johnny and they started a war

Then when he was made head of state by the people in the

streets

Johnny went back to San Antone

But Johnny wouldn’t pay the bills and he couldn’t live on

Johnny went to your place and he never spoke a word

Johnny came home one fine day

On the high horse he made his bid for gold

Now when Johnny finds a job

He has to look out for the hopeless

So he does his best to make the best of his life

So he’s making money and running high

And when he gets there he’ll realize

That he made the best of it all

And when he gets there he’ll realize he made the best

And when he gets there he’ll realize he made the best

Well the first thing that he said to his friend

Is that you can have a horse

Now if you’re tired of running and want to fly away

There’s a horseman named Johnny and he’ll come on your

mind

And you can have a horse and a horsemen named Johnny

Well he’s a long way from San Antone

So you can have a horse and a horsemen named Johnny

they caught me making plans

the boy said watch this mother*****

when you’re feelin’ sad, cryin’ out so loud.

startin’ up the fire from where you stand

then about half of the flame goes to coal

and the boy lies down and complains

””the sun don’t rise any more, so will you.””

then I saw the mess they made

while I was layin’ on the snow

with the roach that was feeding

on it’s carcass I just made up my mind

””look over there, and there’ll be no more shad-

ows””

then up out the chimney went the orange and I saw

my shoes

covered with snow

then got him some Christmas pills

then lay him down and told him

””gonna lie down and say you’ve got ’em””

””gonna lie down and say that it’s all a big lie

and here I come from a land where little kids cry

and we don’t have to tell eachother anything.””

then he laid there and cried

””I didn’t mean to run you off with my man””

then he laid there and cried

””Gonna lie down and say you’ve got ’em””

(christmas is a birthday)

Metric

BLEU 37.7% 39.6%

UNGC 1: 0.008, 2: 0.112. 3: 0.401, 4: 0.640 1: 0.016, 2: 0.216, 3: 0.635, 4: 0.840

Table 15: Song lyrics generated from a GPT2 model fine-tuned on lyrics

dataset of size 14000, containing 10 different genre classes.
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Generated Lyrics: 10GEN, 14K inputs

Conditions

Genre Jazz Hip-Hop

Year - 2000

Author bil miller golden features

Song Name from the inside out her portrait in black

Lyrics I just hope it’s not too late for that

Bill miller he’s so country

From the inside out

I’ll admit that I do

My mama told me back then

That one day, I’ll go away

This old farm town

Where corn and peas grow

Is where I learned about you

In the west side of town

Bill miller I hope you’ll be home soon

In your old pickup truck

The boys and girls, they’ll all be back by now

And baby you’ll see

They’ll work all day and play on the job

From the inside out

The one thing I hope you’ll remember

Is when you were just a child

Oh darling it’s the only way

From the inside out

Keep your old truck turning round

Once it gets used to turning

It’ll just make it out this way

And mama maybe I’ll come back someday

To stay in your arms

Bill miller he’ll always be my buddy

From the inside out

One thing I hope you’ll remember

Is when you were just a child

Oh darling it’s the only way

Her features are a perfect line of sight

Her voice is clear and clear as the night

Her skin is an angel’s shield

Her arms are warm and wild

Her eyes are full of life

Her hair is pale and soft

Her face is pure and fair

When I begin to speak

I feel my very first words

As she walks into my life

A brief glimpse of her smile

Lips of ruby light the sky

Her eyes are pure and clear

Her skin is an angel’s shield

Her arms are warm and wild

Her eyes are full of life

Her hair is pale and soft

Her face is pure and fair

When I begin to speak

Metric

BLEU 48.5% 31.8%

UNGC 1: 0.006, 2: 0.144. 3: 0.480, 4: 0.780 1: 0.001, 2: 0.103, 3: 0.478, 4: 0.692

Table 16: Song lyrics generated from a GPT2 model fine-tuned on lyrics

dataset of size 14000, containing 10 different genre classes.

138



Generated Lyrics: 3GEN, 30K inputs

Conditions

Genre Metal Country

Year - -

Author - -

Song Name - cold black days

Lyrics Gods of war- ideology

Thought and power-resist

What you are in your own triumph

Reform is futile

You struggle against your doubts

No flesh upon your hands

What you were was light

Your name is sacred

The Saint of prophets

You are and is)

Behind the rising sun

The highest power has risen

The spirits of the other side

Will guide you against the might

Open your eyes-loathe the dead

They’ll show you the way

I will protect you-Holy no spirit in your way

I will show you the way

I will protect you-Holy no spirit in your way

Let you know the time

The signs will be your guide

We will show you the way

No matter how you try to hide

What we show is written in the sky

The higher that you rise, the harder you’ll fall

You’ll rise, you’ll fall

The higher that you rise, the harder you’ll fall

No one can fight the spirit of yesterday

Darkness sails over you

Taste the wisdom of sain

Shall be for ever

I need you-Holy no spirit in my way

I will protect you-Holy no spirit in my way

I will show you the way

I will protect you-Holy no spirit in my way

I hear music as I pass the time is tickin’

Winter leaves are fallin’

But I know as I step into the sunlight

I hear a song as I stand and watch the snow

fly

Walking in the frozen breeze

Softly you whisper my name

And you weep in remembrance

For in dreams I can see your face

And I can feel your embrace

The warm sound of winter’s silent night

Slowly walkin’ down the street

And let the world know the joy you bring

For you still had your song

In the silence of the street

I heard a voice as I passed the time is tickin’

Tears are fallin’ but I know as I stand by the

river

The voice that spoke will forever stand

There’s a place where the sun will shine

The warm sound of winter’s silent night

The warm sound of winter’s silent night

Metric

BLEU 51.8% 55.5%

UNGC 1: 0.019, 2: 0.131. 3: 0.421, 4: 0.644 1: 0.001, 2: 0.074, 3: 0.326, 4: 0.719

Table 17: Song lyrics generated from a GPT2 model fine-tuned on lyrics

dataset of size 30000, containing 3 different genre classes.
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Generated Lyrics: 3GEN, 30K inputs

Conditions

Genre Pop Metal

Year - 1980

Author belinda carlisle christina milian

Song Name straight from hell out in the open

Lyrics i never took much time to explain this song

and all of the words like falling apart to music.

you never knew what to write,

and how to play the bass

but you know your fiddles are made to make violins

so take the beat and break it up

for you know there’s one way to make it better

right down to the elementary

and all the things you never thought of before

and it doesn’t matter how far

or how your head struggles

if the melody will exist

like some notes in harmony with the melody to the

beat

I never thought much about

what it takes to make a man into someone

like the finest guitar strings to play the beat

it always takes a little

to train you to a melody you know

so take the beat and break it up

for you know there’s one way to make it better

right down to the elementary

and all the things you never thought of before

and it doesn’t matter how far

or how your head struggles

if the melody will exist

a highway for thieves and all the victims

for there to be no refuge for those who hold stolen

souls

a long road for those who are betrayed and

shunned

coming not a light but a shadow

obscuring the innocent out on the highway

i find myself off at sea

in trouble surrounding me but they stay true

not a strand of drifting sand that moves with me

but a nerve like a poison oak tree

stronger than the rain I can see

no escape I see if the prey is right

beneath the man in the moon

he leads his own circle

a living out the dream he had

staring into the night

he brings the light

but in the darkness he walks among us

gave in to temptation, led to rebellion

chasing dreams out on the highway

for those who hold stolen souls

now it is time to face the day

to break the chains

that bind us to the road of destray

and our souls to make our own way

i close my eyes to regain the feeling

of a broken world

and the day we are born

beneath the man in the moon

Metric

BLEU 55.7% 46.9%

UNGC 1: 0.001, 2: 0.054. 3: 0.324, 4: 0.607 1: 0.005, 2: 0.142, 3: 0.528, 4: 0.850

Table 18: Song lyrics generated from a GPT2 model fine-tuned on lyrics

dataset of size 30000, containing 3 different genre classes.
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