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Abstract

In mathematics, any form of probabilistic proof obtained through the application of a
probabilistic method is not considered as a legitimate way of gaining mathematical knowl-
edge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic
reasons justifying mathematicians’ rejection of probabilistic proofs. The present paper
identifies such an epistemic reason. More specifically, it is argued here that if one adopts a
conception of mathematical knowledge in which an epistemic subject can know a mathe-
matical proposition based solely on a probabilistic proof, one is then forced to admit that
such an epistemic subject can know several lottery propositions based solely on proba-
bilistic evidence. Insofar as knowledge of lottery propositions on the basis of probabilistic
evidence alone is denied by the vast majority of epistemologists, it is concluded that this
constitutes an epistemic reason for rejecting probabilistic proofs as a means of acquiring
mathematical knowledge.
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In mathematics, the only accepted means to acquire knowledge of a mathematical proposition
other than an axiom is through a deductive proof of it. In particular, any form of probabilistic
proof obtained through the application of a probabilistic method is not considered as a legiti-
mate way of gaining mathematical knowledge. In a series of papers,1 Don Fallis has defended
the thesis that “mathematicians do not have good grounds for their rejection of probabilistic
methods” (Fallis, 1997, p. 165), where a ‘good’ ground is, for Fallis, an epistemic one.2 In
other words, Fallis holds that there are no epistemic reasons to deny knowledge of a mathe-
matical proposition based solely on a probabilistic proof of it. In this paper, I will argue that
if one adopts a conception of mathematical knowledge in which an epistemic subject S can
know a mathematical proposition based solely on a probabilistic proof, one is then forced to
admit that S can know several lottery propositions3 based solely on probabilistic evidence.4

Insofar as knowledge of lottery propositions on the basis of probabilistic evidence alone is de-
nied by the vast majority of epistemologists for reasons to be recalled below,5 I conclude that
this constitutes an epistemic ground for rejecting probabilistic proofs as a means of acquiring
mathematical knowledge.6

Before engaging in this discussion, it is important to get clear on what probabilistic proofs
are. In the context of Fallis’ thesis, one is said to possess a probabilistic proof for a mathematical
proposition Φ whenever: (1) one has run a probabilistic algorithm designed to decide whether
Φ, (2) the algorithm has yielded ‘YES’ as a response, (3) there is a non-zero probability that
the algorithm is mistaken when it yields ‘YES’ as a response, and (4) one possesses a bound on
the probability that such a mistake occurs.7 A probabilistic (also called randomized) algorithm
is an algorithm which appeals to one or several random choices—i.e., lotteries—during its
execution.8 Because a probabilistic proof results from the run of an algorithm that has a non-

1See Fallis (1997, 2000, 2002, 2011).
2Fallis recognizes that mathematicians might have reasons of various kinds to reject probabilistic proofs

(see Fallis, 1997, p. 166). His thesis only concerns the epistemic status of probabilistic proofs, as he puts it: “I
am only claiming that [mathematicians] do not have good epistemic reasons” (Fallis, 1997, p. 166).

3A lottery proposition is a proposition expressing the outcome of a lottery, the paradigmatic example being
“ticket t is a loser” while talking about one of the tickets of a given lottery. The term ‘lottery proposition’ is
originally due to Vogel (1990).

4I will develop the argument in the paradigmatic case discussed in this literature, namely the probabilistic
proofs produced by the Miller-Rabin primality test, and will indicate how the argument generalizes.

5The epistemic status of lottery propositions has received substantial attention in contemporary epistemol-
ogy in discussions relative to the lottery paradox in its ‘knowledge’ version—to be distinguished from the lottery
paradox due to Kyburg (1961) which does not concern knowledge but rational acceptance. The ‘knowledge’
version of the lottery paradox is originally due to Harman (1968, 1973), and has since then generated an exten-
sive literature. See, among others, Cohen (1988), Vogel (1990), DeRose (1996), Lewis (1996), Nelkin (2000),
Williamson (2000), Hawthorne (2004), Douven (2007), Kvanvig (2009), and Smith (2010, 2016).

6A different epistemic reason for rejecting probabilistic proofs has been advanced by Easwaran (2009) who
identifies a property that he calls ‘transferability’ and that, according to him, deductive proofs possess and
probabilistic proofs lack. This proposal has been critically discussed by Jackson (2009) and Fallis (2011). As
Easwaran’s proposal is orthogonal to the one to be developed here, I will not discuss it in this paper. The
interested reader is invited to consult the references just mentioned.

7I agree with Jackson (2009) that the use of the term ‘probabilistic proof’ might be confusing here, insofar
as the term has been used in mathematics to refer to deductive proofs relying on the probabilistic method, a
method described by Alon and Spencer (2015) as a a way to “prove the existence of a combinatorial structure
with certain properties” by constructing “an appropriate probability space and show that a randomly chosen
element in this space has the desired properties with positive probability” (Alon and Spencer, 2015, p. xiii).
Jackson suggests to switch to the term ‘randomized argument’, but I choose to stick to the term ‘probabilistic
proof’ in order to be consistent with the terminology previously used in this philosophical discussion.

8Motwani and Raghavan (1995) define a probabilistic algorithm as “an algorithm that is allowed access to
a source of independent, unbiased, random bits; it is then permitted to use these random bits to influence its
computation” (Motwani and Raghavan, 1995, p. 6). Notice that a probabilistic algorithm does not necessarily
yield an answer that runs a risk to be incorrect, that is, some probabilistic algorithms do give the correct answer
all the time. In this case, the random choices or bits can lead to variations in the behavior of the algorithm, in
particular regarding its running time performances.
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zero probability of being mistaken, a probabilistic proof for a mathematical proposition Φ only
provides probabilistic evidence for Φ.

The example that has received most attention in previous philosophical discussions of
Fallis’ thesis is the one of the probabilistic proofs obtained through the probabilistic algorithm
developed by Michael O. Rabin (1980) for deciding whether a number n is prime.9 The
algorithm exploits a certain condition originally identified by Miller (1976) for a number b
to be a witness to the compositeness of n, whose interest lies in the fact that one can easily
show that if there exists a witness to the compositeness of n, then n is composite, and, by
contraposition, that if n is prime, then there are no witnesses to the compositeness of n.10

Rabin’s algorithm is, furthermore, based on a fundamental theorem proved by Rabin (1980,
p. 130) which states that if a number n > 4 is composite, then more than 3/4 of the numbers
1 ≤ b < n are witnesses to the compositeness of n. The algorithm works as follows: first,
it chooses randomly and independently k numbers 1 ≤ b1, . . . , bk < n;11 second, it evaluates
whether each bi is a witness to the compositeness of n; finally, if at least one of the bi is a
witness to the compositeness of n, the algorithm outputs that n is composite, otherwise the
algorithm outputs that n is prime. The algorithm’s output is always correct when it says that
n is composite. The algorithm can, however, be mistaken when it says that n is prime, the
reason being that the random choices of the k numbers 1 ≤ b1, . . . , bk < n might happen to pick
only nonwitnesses of the compositeness of n when n is composite. Thanks to the fundamental
theorem proved by Rabin, we know that the probability of picking randomly and independently
k nonwitnesses to the compositeness of n when n is composite is smaller than 1/4k. Thus,
we know that the probability that the algorithm is mistaken when it says that n is prime is
smaller than 1/4k, and so that the probability that the algorithm is correct when saying that
n is prime is greater than (4k − 1)/4k. Insofar as Rabin’s algorithm can be mistaken when
saying that a given number is prime, a probabilistic proof for the proposition that “n is prime”
obtained through this algorithm only provides probabilistic evidence for it.

I will now argue, in the paradigmatic case of the probabilistic proofs produced by Rabin’s
probabilistic algorithm, that if one accepts that an epistemic subject S can know a mathemat-
ical proposition based solely on a probabilistic proof, one is then forced to admit that S can
know several lottery propositions based solely on probabilistic evidence. To this end, assume
that S can know the mathematical proposition “n is prime” based solely on a probabilistic
proof produced by Rabin’s algorithm, that is, based on a given run of the algorithm with input
n and output “n is prime”. Assume, furthermore, that S has indeed run Rabin’s algorithm
with input n, obtained as output that “n is prime”, and that on this basis:

S knows that n is prime,

where the probabilistic evidence S has for the proposition “n is prime” is greater than (4k −
1)/4k. Now, we can also assume that S knows the mathematical proposition “if n is prime, then
there are no witnesses to the compositeness of n”, since S can easily acquire knowledge of this
proposition by simply consulting either Miller (1976) or Rabin (1980). Since S knows that n is
prime, and S knows that if n is prime, then there are no witnesses to the compositeness of n, S
can come to know by some straightforward deductions all the mathematical propositions of the
form “b is not a witness to the compositeness of n” for any number b such that 1 ≤ b < n. If
we assume that S has competently carried out those deductions, we have that, for any number
b such that 1 ≤ b < n:

S knows that b is not a witness to the compositeness of n.
9This method is now known as the Miller-Rabin primality test.

10The algorithmic interest of this property comes from the fact that checking whether a number b is a witness
to the compositeness of a number n can be done at a low computational cost (see Rabin, 1980).

11Allowing possible repetitions, that is, some of the picked numbers might end up being equal.
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Now, the mathematical propositions of the form “b is not a witness to the compositeness of n”
are lottery propositions for the particular lottery consisting in drawing a number between 1 and
n− 1 and saying that one wins whenever the drawn number is a witness to the compositeness
of n. Furthermore, S only has probabilistic evidence for those lottery propositions, since
S has deduced them from the proposition “n is prime” for which S only had probabilistic
evidence. This means that S knows those lottery propositions solely based on probabilistic
evidence. Thus, the previous argument establishes, in the particular case of the probabilistic
proofs obtained through Rabin’s probabilistic algorithm, that if S can know a mathematical
proposition based solely on a probabilistic proof, S can know several lottery propositions based
solely on probabilistic evidence. To put it differently, the argument shows that if one accepts
that S can know the mathematical proposition “n is prime” based on a probabilistic proof
obtained through Rabin’s probabilistic algorithm, one has as a consequence that, based only
on the knowledge of a single draw of k numbers 1 ≤ b1, . . . , bk < n where none of them are
witnesses to the compositeness of n, one can know that any other number drawn in this interval
will not be a witness to the compositeness of n. This argument can be applied to any situation
where the output of the probabilistic algorithm entails a proposition stating a property of the
outcome of one or more of the lotteries present in the considered probabilistic algorithm.12

To see more distinctively why lottery propositions occur in the context of the probabilistic
proofs produced by Rabin’s algorithm, it is useful to consider the following epistemic situation
analogous to the previous one. Imagine an urn with N − 1 balls for which S knows that either
all the balls in the urn are white, or more than 3/4 of the balls in the urn are black. Suppose
that k balls are randomly and independently drawn from the urn.13 If one of the balls is black,
S can deduce that more than 3/4 of the balls in the urn are black, and in this case there are
no issues in saying that S knows that more than 3/4 of the balls are black. If none of the balls
are black, the chances that all the balls in the urn are white are very high, since the chances
to pick k times in a row a white ball in the urn in the second situation where more than 3/4 of
the balls in the urn are black is very low (as we said earlier, the probability that this happens
is less than 1/4k).14 Now, suppose that, in this situation, we would say that:

S knows that all the balls in the urn are white.

By a straightforward deduction, S can then reach an epistemic state in which for any ball b in
the urn:

S knows that b is not black.

As a matter of fact, S has strong probabilistic evidence for each of these propositions, the
probabilistic evidence for each proposition being greater than (4k − 1)/4k. Yet, despite such
strong probabilistic evidence, if another ball b is drawn randomly from the urn, would you be
willing to say prior to the drawing that S knows that b won’t be black?

If you have answered negatively to the previous question, you might have followed a general
inclination to deny knowledge of lottery propositions based solely on probabilistic evidence.
Most contemporary epistemologists reject the possibility that an epistemic subject can know
a lottery proposition based solely on probabilistic evidence15—paradigmatically that an epis-
temic subject can know that a given ticket is a loser based solely on the probabilistic evidence

12Needless to say, this property should be such that it cannot be determined prior to the drawing.
13Allowing possible repetitions, that is, each drawn ball is put back into the urn after it has been picked.
14If k is very small, say equal to 1 or 2, one might not say that a probability of 1/4k is ‘very low’. Since in

the concrete applications of Rabin’s algorithm k is relatively large, we shall assume here that k is sufficiently
large to meaningfully say that 1/4k is ‘very low’.

15Douven (2007) qualifies this possibility as “downright absurd” (Douven, 2007, p. 327). All the authors
listed in footnote 5 reject knowledge of lottery propositions as well. To my knowledge, only two epistemologists
have embraced the possibility of knowing lottery propositions: Morillo (1984) and Reed (2010).
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that can be computed from the considered lottery setting—and this has been taken as a datum
for most contemporary philosophical theorizing about knowledge. This general inclination is
particularly manifest when one considers the connection between knowledge and assertion, as
well as between knowledge and practical reasoning. For, if S knew that her ticket in a given
lottery was a loser, S would have no reservations about asserting flat-out that her ticket is a
loser, and yet there seems to be strong disinclination to flat-out assert a lottery proposition
such as “ticket t is a loser” at any time prior to the drawing of the lottery, or at least prior to
obtaining by other means information on which ticket has been drawn. Furthermore, if S knew
that her ticket was a loser, it would be hard to make sense of why S bought the ticket in the
first place (assuming S bought the ticket), and why S would intend to keep the ticket until the
drawing, instead of (say) throwing it away or giving it to someone else. As mentioned earlier,
the epistemic situations described in the two previous paragraphs can be construed as lottery
situations in which one wins whenever the drawn number is a witness to the compositeness
of n, or whenever the drawn ball is black. Thus, whatever reason there is to deny that an
epistemic subject S can know a lottery proposition based on probabilistic evidence also counts
as a reason to deny that S can know that b is not a witness to the compositeness of n for any
number b such that 1 ≤ b < n, or that S can know that b is not black for any ball in the urn,
in the epistemic situations previously described.

It could be objected that, in these situations, it might happen that there is no winning
ticket. This, however, is not an issue since, as DeRose (1996) has shown, our disinclination
to grant knowledge of lottery propositions still holds in lottery situations where there is no
winning ticket:

[W]ith many lotteries, there is no winning ticket. Many of the big state lotteries,
for example, usually have no winner. Still, it seems, you don’t know you’ve lost.
In case you think that is because the jackpot is carried over to the next month’s
drawing, so we think of the whole process as one giant lottery which will eventually
have a winner, note that our ignorance of losing seems to survive the absence of
that feature. Suppose a billionaire holds a one-time lottery, and you are one of the
1 million people who have received a numbered ticket. A number has been drawn
at random from among 100 million numbers. If the number drawn matches that on
one of the 1 million tickets, the lucky holder of that ticket wins a fabulous fortune;
otherwise, nobody receives any money. The chances that you’ve won are 1 in 100
million; the chances that somebody or other has won are 1 in 100. In all likelihood,
then, there is no winner. You certainly don’t believe there’s an actual winner. Do
you know you are a loser? Can you flat-out assert you are a loser? No, it still
seems. Here, the mere chance of being a winner—with nothing remotely like an
assurance that there actually is a winner—does seem to destroy knowledge of your
being a loser. (DeRose, 1996, p. 571)

To my knowledge, this point has been widely accepted in the subsequent epistemological lit-
erature on lottery propositions (see, e.g., Nelkin, 2000, p. 389; Williamson, 2000, p. 248;
Hawthorne, 2004, p. 8). Still, it may be objected further that, in the lottery situations I have
considered, it is very unlikely that there will be a winning ticket. But it would be very strange
if the capacity of an epistemic subject to know that her ticket is a loser depends on the actual
probability that there will be a winning ticket. For consider again the case of big state lotteries
which may not have a winner. The probability that there will be a winning ticket in a draw
depends on the number of tickets that have been sold. Now, the probability that your ticket is
a loser does not depend at all on the number of sold tickets, and so the evidence you possess in
favor of believing that your ticket is a loser does not depend on the probability that there will
be a winning ticket. It would seem very odd to imagine, for instance, that you would suddenly
know that your ticket is a loser because you have learnt that only a small amount of tickets
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have been sold.
Easwaran (2009) has rightly pointed out that probabilistic methods such as the Miller-

Rabin primality test differ from standard lottery situations in that they track the truth of
the considered propositions. He then observed that: “Although obeying these probabilistic
tracking conditions may or may not be either necessary or sufficient for knowledge (see Roush,
2005), they certainly make the situation epistemically better than in a lottery case” (Easwaran,
2009, p. 348). I agree with Easwaran that this feature makes the situation epistemically better
for probabilistic methods as compared to standard lottery situations. The key question is
whether this is sufficient for such probabilistic methods to yield knowledge of the mathematical
propositions they purport to establish.16 I will now argue that it is not.17

First of all, it should be noted that the lottery propositions I identify in the above argument
are not the mathematical propositions established by Rabin’s probabilistic algorithm—which
are propositions of the form “n is prime”—but other mathematical propositions that can be
deduced from them, namely mathematical propositions of the form “b is not a witness to the
compositeness of n” for any number b such that 1 ≤ b < n. It should also be noted that in the
epistemic situation I consider in which the epistemic subject S has run Rabin’s algorithm with
input n and obtained as output that “n is prime”, S does not track these latter propositions:
if the number b being drawn turns out to be a witness to the compositeness of n (in the very
unlikely case in which n is composite, and all the numbers randomly picked by the algorithm
turned out to be non-witnesses to the compositeness of n), S would still believe that “b is not
a witness to the compositeness of n” prior to the draw. The tracking view of knowledge would
then classify these propositions on a par with standard lottery propositions, and together with
propositions admitting very unlikely exceptional cases that the epistemic subject cannot track
such as “the ice cubes have melted” in the famous example proposed by Vogel (1987).18 In a
discussion of this family of epistemic situations, Roush (2005) wrote the following:

Knowledge I have about there being a large number of eligible tickets and that the
drawing is fair give me knowledge that my ticket will very probably not win, but it
is generally agreed that I do not know that my ticket will not win. Either tracking
view has a neat explanation of this fact since if my ticket were going to win I might,
and probably would, still believe that it was not, because I am isolated from any
indication that it will win even if it will. It is similar with the ice cubes not melting

16As witnessed by the sentence just quoted, Easwaran (2009) does not take a stand on this issue. In a
defense of the thesis that non-deductive methods—including probabilistic methods—can yield knowledge of
mathematical propositions, Paseau (2014, p. 788) uses this distinguishing feature to dismiss any connection
between probabilisitic methods and lottery situations. The argument presented in this paper shows that such
a connection cannot be so easily dismissed.

17In this discussion, I will take as a representative of the tracking view of knowledge the recursive tracking
view developed by Roush (2005) because this version of the tracking view is formulated in terms of conditional
probabilities which makes it easy to apply it to the Miller-Rabin primality test, but also because Roush (2005)
provides a detailed discussion of lottery cases and how they are handled by her view. Roush’s view is based on
Nozick’s tracking account of knowledge (Nozick, 1981). In addition to the traditional requirements of truth and
belief, Nozick’s account proposes two conditions for knowing a proposition p: the ‘variation’ condition which
says that if p were not true, then the subject would not believe that p; the ‘adherence’ condition which says that
if p were true, then the subject would believe that p. Roush (2005) implements two key revisions to Nozick’s
account. The first one is to replace the use of subjunctive conditionals with conditional probabilities: the
variation condition now says that P(¬b(p) | ¬p) > t, and the adherence condition now says that P(b(p) | p) > t,
where b(p) means “subject S believes p” and t is a suitable high threshold. The second one is to add a closure
condition on knowledge under known implication which is implemented through a recursive clause (Roush,
2005, p. 47). For a detailed description of the recursive tracking view see Roush (2005, chapter 2). For another
updated version of the tracking view that relies on dispositions instead of subjunctive conditionals for the
variation and adherence conditions, see Briggs and Nolan (2012).

18In this example, one has left ice cubes outside for a few hours on a very hot day, preferring to go back
inside the house to avoid the heat. The question is whether one knows in this case that “the ice cubes have
melted” although one has not gone outside to check whether the ice cubes have melted.
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and the other cases here. The subject is isolated from any indication of things not
going in the expected way, and so does not know that they definitely have not, only
that they very probably have not. (Roush, 2005, p. 67)

In the epistemic situation I consider, the epistemic subject S has no indications that Rabin’s
algorithm has not gone in the expected way, i.e., that she is not in one of those exceptional
and very unlikely cases in which the algorithm would have picked only non-witnesses to the
compositeness of n although n was indeed composite. In this family of epistemic situations,
Roush (2005, pp. 65–67) considers that one does not know that “the ice cubes have melted”,
“ticket t is a loser”, and (I would add) “b is not a witness to the compositeness of n”, although
one does know that “the ice cubes have very probably melted”, “ticket t is very probably a loser”,
and (I would add) “b is very probably not a witness to the compositeness of n”.

Now, because Rabin’s algorithm does track the truth of propositions of the form “n is
prime”, the tracking view will still attribute knowledge of a mathematical proposition of the
form “n is prime” based on a probabilistic proof produced by Rabin’s probabilistic algorithm.
And through the recursion clause (Roush, 2005, p. 47)—i.e., through some straightforward
deductions—knowledge of the mathematical propositions “b is not a witness to the composite-
ness of n” for any number b such that 1 ≤ b < n. What are we to do with that? My assessment
is that the (recursive) tracking view is getting things wrong here. The problem is that, based
solely on a run of Rabin’s algorithm with input n, the epistemic subject can come to know
through deduction that she is not in one of those exceptional cases in which Rabin’s algorithm
would have picked only non-witnesses to the compositeness of n although n was composite.
This seems absurd, and a similar conclusion has been rejected by Roush in the ice cubes case
and similar ones:

Notice that if we attributed knowledge that the ice cubes melted, and not merely
that they probably melted, to the person in the house, then by closure our subject
would, if he or she were sufficiently reflective, thereby have knowledge that this
instance was not one of those exceptional cases. This is because this follows deduc-
tively from the generalization and the instance, both of which our subject knows.
But that this was not an exceptional case is precisely what our subject does not
know because of failure to track the instance. (Roush, 2005, p. 66)

So what is going wrong here? I believe that the answer is to be found in the deductions by which
the epistemic subject can come to know all the mathematical propositions of the form “b is not
a witness to the compositeness of n” for any number b such that 1 ≤ b < n when she knows
that “n is prime”. These deductions exploit the mathematical theorem that “if n is prime, then
there are no witnesses to the compositeness of n”, and this theorem is precisely what allows
the epistemic subject to conclude that she is not in one of those exceptional cases in which
Rabin’s algorithm would have gone astray. Interestingly, such deductions are not possible in
the ice cubes case since what one knows and tracks there is the empirical generalization that
“ice cubes left in high temperatures generally melt”, and there it is the “generally” that blocks
the possibility to deduce from this generalization that “the ice cubes have melted”, although
one can still deduce that “the ice cubes have very probably melted”. As Roush notices, the trick
in these empirical generalizations is that “knowledge that exceptional events have probably not
occurred can be had indirectly through knowledge of the generalizations to which those events
would be exceptions” (Roush, 2005, p. 65). This trick is not available in the epistemic situation
considered in the above argument, since when the epistemic subject knows that “n is prime”
she can come to know that “b is not a witness to the compositeness of n” for all numbers b
such that 1 ≤ b < n (without exception!). I will leave it to the defenders of the tracking view
to figure out what is the best way to accommodate this example in their theory of knowledge.
At any rate, I believe that the right conclusion in this case is not to attribute knowledge of the
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propositions that “n is prime” and that “b is not a witness to the compositeness of n” based
solely on a probabilistic proof provided by a run of Rabin’s algorithm with input n, but rather
knowledge of the propositions that “n is very probably prime” and that “b is very probably not
a witness to the compositeness of n”.

It may be objected that the evidence provided by a run of Rabin’s algorithm cannot be
classified as merely probabilistic because it is produced by an inductive method. Since it is
commonly held that inductive methods can produce knowledge—e.g., we may know that all
ravens are black based on a finite number of observations of black ravens—one may wonder
why Rabin’s algorithm, conceived as an inductive method, could not yield knowledge of the
mathematical propositions at stake. There is, however, an important difference between Ra-
bin’s algorithm and standard forms of induction which has to do with the subject’s background
knowledge. More specifically, an epistemic subject using Rabin’s algorithm knows, prior to any
run of the algorithm, that there will be cases in which the algorithm will mistakenly say that
“n is prime” because the algorithm would have only picked nonwitnesses to the compositeness
of n. This is because the subject possesses a certain amount of mathematical knowledge before
running the algorithm: she knows that (1) there are infinitely many composite numbers, and
so that some of the natural numbers to be tested will be composite, and (2) for some composite
number n, it will be the case that some of the numbers strictly smaller than n are not witnesses
to the compositeness of n. By contrast, in a standard case of induction, the agent does not
have any background knowledge on what may or may not happen in the course of her observa-
tions. Interestingly, these observations are in direct line with the arguments developed by Ryan
(1996) as to why probabilistic evidence can yield knowledge in standard cases of induction, but
not in lottery cases. A key observation of Ryan is that, in lottery cases, the epistemic subject
also has counterevidence for the proposition “ticket t is a loser” for she knows that there will
be a winning ticket19—for lotteries where it is assured that there will be a winning ticket—or
that there may be a winning ticket—for lotteries where there may not be a winning ticket.20

When evaluating the epistemic situation of a subject, one must then consider the total evidence
available to the subject for a given proposition, that is, both her positive and negative evidence.
This is why, according to Ryan, the overwhelming probabilistic evidence for the proposition
“ticket t is a loser” is not sufficient for knowledge due to the presence of counterevidence, while
it may be sufficient in cases where no counterevidence is present as in standard cases of induc-
tion. From this perspective, the probabilistic evidence produced by Rabin’s algorithm is closer
to lottery cases than to standard cases of induction. This is because, in the case of Rabin’s
algorithm, the subject always possesses counterevidence for the proposition “n is prime”—the
subject knows that there will be cases in which the algorithm will mistakenly say that “n is
prime” because the algorithm would have only picked nonwitnesses to the compositeness of n.
This background knowledge then plays a role similar to the knowledge that there will be, or
there may be, a winning ticket in a lottery situation. These considerations highlight then an
important insight for the debate on the epistemic status of probabilistic proofs, namely that
the total evidence possessed by the epistemic subject must be taken into consideration, that is,
not only the overwhelming probabilistic evidence that may result from a probabilistic proof,
but also the counterevidence that may be present in the subject’s background knowledge.

One potentially fruitful line of inquiry to better understand the epistemic status of proba-
bilistic proofs is to see whether epistemological diagnostics as to what is blocking knowledge in

19In a similar vein, Pollock (1983, p. 237) has pointed out that, in lottery cases, the subject has “statistical
grounds both for accepting and for rejecting the conclusion that any given ticket will lose”. It is such “conflicting
considerations” that, according to Pollock, block the knowledge of lottery propositions. Pollock accepts that,
in the absence of conflicting considerations, a subject can know a proposition on the basis of (high) statistical
evidence.

20Ryan (1996) focuses on lotteries where there is a guaranteed winner, but her point also holds for lotteries
where there may not be a winning ticket since the fact that there may be a winning ticket constitutes as well
counterevidence for the proposition “ticket t is a loser”.
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lottery cases also apply to probabilistic proofs. As we have just discussed, the diagnostic pro-
posed by Pollock (1983) and Ryan (1996) in terms of the presence of conflicting considerations
or counterevidence also applies to the case of Rabin’s algorithm. Another relevant diagnostic is
the one proposed by Smith (2010, 2016) in terms of normic support. Smith has argued that, in
lottery cases, the epistemic subject lacks justification for believing lottery propositions because
the subject’s evidence about the considered lottery does not normically support propositions
of the form “ticket t is a loser” (Smith, 2010, p. 20). The idea is that, given the subject’s
evidence, although it would be very unlikely that ticket t is a winner, it would not at all be
abnormal if ticket t turns out to be a winning ticket, and this situation would not call for
any particular explanation. Interestingly, this diagnostic also applies to the case of Rabin’s
algorithm. More specifically, in a situation where an epistemic subject has come to believe the
proposition “n is prime” on the basis of a run of Rabin’s algorithm with input n and output “n
is prime”, it would not at all be abnormal, and it would not call for any particular explanation,
if n turns out to be composite. The reason is that the subject knows that Rabin’s algorithm
may turn out to pick only nonwitnesses to the compositeness of n when n is composite, in the
same way that, in lottery cases, the subject knows that ticket t may turn out to be a winning
ticket. The key idea of Smith is that normic support is a necessary condition for justification,
and hence for knowledge. This idea can then be recruited to explain why one cannot know a
lottery proposition on the sole basis of probabilistic evidence, and similarly why one cannot
know a mathematical proposition on the sole basis of a probabilistic proof.

Finally, one may worry that the argument developed in this paper relies or promotes a gen-
eral skepticism about knowledge on the basis of probabilistic or statistical evidence. Whether
rejecting knowledge of lottery propositions leads to a form of skepticism, or at least forces us to
renounce to large chunks of knowledge that we presumably have, is a well-known issue that has
been extensively discussed in epistemology. However, most epistemologists commonly agree
that this is not the case; the dominant view is that knowledge of lottery propositions should be
rejected while most of the knowledge we commonly have should be preserved, including knowl-
edge on the basis of high probabilistic evidence. The goal of the epistemological literature on
the lottery paradox in its epistemic version is precisely to explain why an epistemic subject
cannot know lottery propositions while being in a position to know various propositions that
may be less likely to be true given the subject’s evidence. The argument developed in this pa-
per exploits the rejection of knowledge of lottery propositions to argue that one cannot know a
mathematical proposition based solely on a probabilistic proof. Insofar as rejecting knowledge
of lottery propositions does not lead to skepticism, this argument does not rely or promote a
general skepticism about knowledge on the basis of probabilistic or statistical evidence.

Fallis has defended the thesis that mathematicians do not have good epistemic grounds
for rejecting probabilistic proofs as a means of acquiring mathematical knowledge. In this
paper, I have argued that if one accepts that an epistemic subject S can know a mathematical
proposition based solely on a probabilistic proof, one is then forced to admit that S can
know several lottery propositions based solely on probabilistic evidence.21 There are, however,
strong epistemic reasons to deny knowledge of lottery propositions based solely on probabilistic
evidence. Taken together, this constitutes an epistemic ground for rejecting probabilistic proofs
as a means of acquiring mathematical knowledge.22

21The argument has been developed in the paradigmatic case of the probabilistic proofs produced by Rabin’s
probabilistic algorithm. As we saw, the argument generalizes insofar as it can be applied to any probabilistic
proof obtained through a probabilistic algorithm whose output entails a proposition stating a property of the
outcome of one or more of the lotteries present in the algorithm.

22It is important to notice that the argument provided here is primarily about knowledge. It does not
prevent the possibility to rationally accept or justifiably believe a mathematical proposition based solely on a
probabilistic proof.
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