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Abstract

The SWIM package implements a flexible sensitivity analysis framework, based primarily
on results and tools developed by Pesenti et al. (2019). SWIM provides a stressed version of a
stochastic model, subject to model components (random variables) fulfilling given probabilistic
constraints (stresses). Possible stresses can be applied on moments, probabilities of given events,
and risk measures such as Value-at-Risk and Expected Shortfall. SWIM operates upon a single
set of simulated scenarios from a stochastic model, returning scenario weights, which encode
the required stress and allow monitoring the impact of the stress on all model components. The
scenario weights are calculated to minimise the relative entropy with respect to the baseline model,
subject to the stress applied. As well as calculating scenario weights, the package provides tools for
the analysis of stressed models, including plotting facilities and evaluation of sensitivity measures.
SWIM does not require additional evaluations of the simulation model or explicit knowledge of
its underlying statistical and functional relations; hence it is suitable for the analysis of black box
models. The capabilities of SWIM are demonstrated through a case study of a credit portfolio
model.

Keywords: Sensitivity analysis; risk measures; stress testing; sensitivity measures, Kullback-Leibler
divergence

1 Introduction

1.1 Background and contribution

Complex quantitative models are used extensively in actuarial and financial risk management applica-
tions, as well as in wider fields such as environmental risk modelling (Tsanakas and Millossovich, 2016;
Borgonovo and Plischke, 2016; Pesenti et al., 2019). The complexity of such models (high dimension-
ality of inputs; non-linear relationships) motivates the performance of sensitivity analyses, with the
aim of providing insight into the ways that model inputs interact and impact upon the model output.

When model inputs are subject to uncertainty, global sensitivity methods are often used, considering
the full space of (randomly generated) multivariate scenarios, which represent possible configurations
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of the model input vector. The particular task of ranking the importance of different model inputs
leads to the use of sensitivity measures, which assign a score to each model input. A rich literature
on global sensitivity analysis exists, with variance decomposition methods being particularly promi-
nent; see Saltelli et al. (2008) and Borgonovo and Plischke (2016) for wide-ranging reviews. The R
package sensitivity (Iooss et al., 2019) implements a wide range of sensitivity analysis approaches
and measures.

We introduce an alternative approach to sensitivity analysis called Scenario Weights for Importance
Measurement (SWIM) and present the R package implementing it (Pesenti et al., 2020). This ap-
proach was developed with actuarial risk models in mind, particularly those used for risk management
and economic capital calculations. The aim of this paper is to provide an accessible introduction to
the concepts underlying SWIM and a vignette demonstrating how the package is used. SWIM
quantifies how distorting a particular model component (which could be a model input, output, or
an intermediate quantity) impacts all other model components. Such analyses allow a risk modeller,
for example, to rank the importance of model inputs either by the extent that their being stressed
impacts the output or, conversely, the way that they respond to a stress in model output – the latter
has been termed reverse sensitivity testing by Pesenti et al. (2019). The SWIM approach can be
summarised as follows:

1. The starting point is a table of simulated scenarios, each column containing realisations of a
different model component. This table forms the baseline model as well as the dataset on which
the SWIM bases its calculations.

2. A stress is defined as a particular modification of a model component (or group of components).
This could relate to a change in moments, probabilities of events of interest, or risk measures,
such as Value-at-Risk or Expected Shortfall (e.g. McNeil et al. (2015)). Furthermore, there is
the facility for users to design their own stresses, involving potentially more than one model
component.

3. SWIM calculates a set of scenario weights, acting upon the simulated scenarios and thus mod-
ifying the relative probabilities of scenarios occurring. Scenario weights are derived such that
the defined stress on model components is fulfilled, while keeping the distortion to the baseline
model to a minimum, as quantified by the Kullback-Leibler divergence (relative entropy). Al-
ternatively, users are able to import their own set of weights, generated by a method of their
choice.

4. Given the calculated scenario weights, the impact of the stress on the distributions of all model
components is worked out and sensitivity measures, useful for ranking model components, are
evaluated.

A key benefit of SWIM are that it provides a sensitivity analysis framework that is economical
both computationally and in terms of the information needed to perform the analysis. Specifically,
sensitivity analysis is performed using only one set of simulated scenarios. No further simulations are
needed, thus eliminating the need for repeated evaluation of the model, which could be numerically
expensive. Furthermore, the user of SWIM needs to know neither the explicit form of the joint
distribution of model components nor the exact form of functional relations between them. Hence,
SWIM is appropriate for the analysis of black box models, thus having a wide scope of applications.
Specifically, SWIM is well suited to simulation models used in insurance risk management, which are
characterised by high dimensions, complex interactions between risk factors, and high computational
cost of re-simulating under different assumptions.

While there is an extensive literature on sensitivity analysis and there exist multitudes of sensitivity
measures, our proposed sensitivity analysis framework differs in that it is model independent and can
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be applied in a numerically efficient way since it does not require potentially expensive re-evaluation of
the model’s output. Moreover, our sensitivity analysis framework focuses on risk measures which are
widely used in risk management (McNeil et al., 2015), whereas much of the literature on sensitivity
analysis focuses on variance-based and moment-independent sensitivity measures (Borgonovo et al.,
2016); thus the current manuscript adds a perspective that is missing by standard variance-based and
moment-independent approaches.

The proposed sensitivity analysis framework implemented in SWIM is based on theoretical results
derived in Pesenti et al. (2019). While these results hold in generality, the SWIM package fundamen-
tally hinges on the fact that it works on a set of Monte Carlo simulations. Thus, the quality of the
sensitivity analysis conducted using SWIM is intimately connected with the quality of the dataset.
Specifically, as we work on an empirical space, the user is constrained to change the probability of
already simulated scenarios, without the ability to introduce new ones. Hence, the user must specify
stresses judiciously so that they can be supported by the given dataset.

The SWIM approach is largely based on Pesenti et al. (2019) and uses theoretical results on risk mea-
sures and sensitivity measures developed in that paper. An early sensitivity analysis approach based
on scenario weighting was proposed by Beckman and McKay (1987). The Kullback-Leibler divergence
has been used extensively in the financial risk management literature – papers that are conceptually
close to SWIM include Weber (2007); Breuer and Csiszár (2013); and Cambou and Filipović (2017).
Some foundational results related to the minimisation of the Kullback-Leibler divergence are provided
in Csiszár (1975).

1.2 Installation

The SWIM package can be installed from CRAN or through GitHub:

# directly from CRAN
install.packages("SWIM")
# and the development version from GitHub
devtools::install_github("spesenti/SWIM")

1.3 Structure of the paper

Section 2 provides an introduction to SWIM, illustrating key concepts and basic functionalities of
the package on a simple example. Section 3 contains technical background on the optimisations that
underlay the SWIM package implementation. Furthermore, Section 3 includes a brief reference guide,
providing an overview of implemented R functions, objects, and graphical/analysis tools. Finally, a
detailed case study of a credit risk portfolio is presented in Section 4. Through this case study,
advanced capabilities of SWIM for sensitivity analysis are demonstrated, including more complex
user-designed stresses.

2 What is SWIM?

2.1 Sensitivity testing and scenario weights

The purpose of SWIM is to enable sensitivity analysis of models implemented in a Monte Carlo
simulation framework, by distorting (stressing) some of the models’ components and monitoring the
resulting impact on quantities of interest. To clarify this idea and explain how SWIM works, we first

3

https://CRAN.R-project.org/package=SWIM
https://github.com/spesenti/SWIM


define the terms used. By a model, we mean a set of n (typically simulated) realisations from a vector
of random variables (X1, . . . , Xd), along with scenario weights W assigned to individual realisations,
as shown in Table 1. Hence each of the columns 1 to d corresponds to a random variable, called a
model component, while each row corresponds to a scenario, that is, a state of the world.

There is a conceptual distinction between the model from which the scenarios are simulated and the
model as understood here. Specifically, as we are considering the case when an analyst has access
to simulated scenarios only, and not the data-generating mechanism, we are consistently working
with the empirical probability measure and any expectations or probabilities stated below are given
with respect to that measure. Furthermore, as we work on an empirical space, we systematically
conflate a random variable with its vector of realisations – in particular, the scenario weights W can
be identified with a Radon-Nikodym on that space. For relevant notation on the space we are working
on, see Section 3.

Table 1: Illustration of the SWIM framework, that is the baseline
model, the stressed model and the scenario weights.

X1 X2 . . . Xd W

x11 x21 . . . xd1 w1
x12 x22 . . . xd2 w2
...

...
. . .

...
...

x1n x2n . . . xdn wn

Each scenario has a scenario weight, shown in the last column, such that, scenario i has probability wi

n
of occurring. Scenario weights are always greater or equal than zero and have an average of 1. When
all scenario weights are equal to 1, such that the probability of each scenario is 1

n (the standard Monte
Carlo framework), we call the model a baseline model – consequently weights of a baseline model will
never be explicitly mentioned. When scenario weights are not identically equal to 1, such that some
scenarios are more weighted than others, we say that we have a stressed model.

The scenario weights make the joint distribution of model components under the stressed model
different, compared to the baseline model. For example, under the baseline model, the expected value
of X1 and the cumulative distribution function of X1, at threshold t, are respectively given by:

E(X1) = 1
n

n∑
i=1

x1i, FX1(t) = P (X1 ≤ t) = 1
n

n∑
i=1

1x1i≤t,

where 1x1i≤t = 1 if x1i ≤ t and 0 otherwise. For a stressed model with scenario weights W , the
expected value EW and cumulative distribution function FW become:

EW (X1) = 1
n

n∑
i=1

wix1i, FWX1
(t) = PW (X1 ≤ t) = 1

n

n∑
i=1

wi1x1i≤t.

Similar expressions can be derived for more involved quantities, such as higher (joint) moments and
quantiles.

The logic of stressing a model with SWIM then proceeds as follows. An analyst or modeller is
supplied with a baseline model, in the form of a matrix of equiprobable simulated scenarios of model
components. The modeller wants to investigate the impact of a change in the distribution of, say, X1.
To this effect, she chooses a stress on the distribution of Xi, for example requiring that EW (X1) = m;
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we then say that she is stressing X1 and, by extension, the model. Subsequently, SWIM calculates
the scenario weights such that the stress is fulfilled and the distortion to the baseline model induced
by the stress is as small as possible; specifically the Kullback-Leibler divergence (or relative entropy)
between the baseline and stressed models is minimised. (See Section 3.1 for more detail on the different
types of possible stresses and the corresponding optimisation problems). Once scenario weights are
obtained, they can be used to determine the stressed distribution of any model component or function
of model components. For example, for scenario weights W obtained through a stress on X1, we may
calculate

EW (X2) = 1
n

n∑
i=1

wix2i, EW (X2
1 +X2

2 ) = 1
n

n∑
i=1

wi
(
x2

1i + x2
2i
)
.

Through this process, the modeller can monitor the impact of the stress on X1 on any other random
variable of interest. It is notable that this approach does not necessitate generating new simulations
from a stochastic model. As the SWIM approach requires a single set of simulated scenarios (the
baseline model) it offers a clear computational benefit.

2.2 An introductory example

Here, through an example, we illustrate the basic concepts and usage of SWIM for sensitivity analysis.
More advanced usage of SWIM and options for constructing stresses are demonstrated in Sections 3
and 4.

In sensitivity analysis, one often considers a model with a vector of inputs Z and an output Y = g(Z),
for some aggregation function g that maps inputs to the real line. Then the importance of model
inputs can be investigated by stressing the distribution of inputs and observing the impact on the
output distribution and vice versa (Pesenti et al., 2019). (We note that in SWIM there is no ex
ante assumption about which of the model components (X1, . . . , Xd) should be interpreted as inputs
or outputs – these variables could represent any randomly varying quantity in the model. For that
reason, we use Xi for variable labels when documenting the SWIM’s capabilities, but use alternative
notation in illustrations where variables have specific interpretable meanings, as in the current section
and in the case study of Section 4).

Here, we consider a simple portfolio model, with the portfolio loss defined by Y = Z1 + Z2 + Z3.
The random variables Z1, Z2, Z3 represent normally distributed losses, with Z1 ∼ N(100, 402), Z2 ∼
Z3 ∼ N(100, 202). Z1 and Z2 are correlated, while Z3 is independent of (Z1, Z2). Our purpose in this
example is to investigate how a stress on the loss Z1 impacts on the overall portfolio loss Y . First we
derive simulated data from the random vector (Z1, Z2, Z3, Y ), forming our baseline model.

set.seed(0)
# number of simulated scenarios
n.sim <- 10 ^ 5
# correlation between Z1 and Z2
r <- 0.5
# simulation of Z1 and Z2
# constructed as a combination of independent standard normals U1, U2
U1 <- rnorm(n.sim)
U2 <- rnorm(n.sim)
Z1 <- 100 + 40 * U1
Z2 <- 100 + 20 * (r * U1 + sqrt(1 - r ^ 2) * U2)
# simulation of Z3
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Z3 <- rnorm(n.sim, 100, 20)
# portfolio loss Y
Y <- Z1 + Z2 + Z3
# data of baseline model
dat <- data.frame(Z1, Z2, Z3, Y)

Now we introduce a stress to our baseline model. For our first stress, we require that the mean of Z1
is increased from 100 to 110. This is done using the stress function, which generates as output a
SWIM object, which we call str.mean. This object stores the stressed model, i.e. the realisations of
the model components and the scenario weights. In the function call, the argument k = 1 indicates
that the stress is applied on the first column of dat, that is, on the realisations of the random variable
Z1.

library(SWIM)
str.mean <- stress(type = "mean", x = dat, k = 1, new_means = 110)

## cols required_moment achieved_moment abs_error rel_error
## 1 1 110 110 -8.8e-10 -8e-12

summary(str.mean, base = TRUE)

## $base
## Z1 Z2 Z3 Y
## mean 1.0e+02 99.9404 99.9843 299.9811
## sd 4.0e+01 19.9970 19.9819 56.6389
## skewness -6.1e-04 0.0012 -0.0025 -0.0023
## ex kurtosis -1.1e-02 -0.0090 -0.0126 -0.0094
## 1st Qu. 7.3e+01 86.4745 86.4816 261.6121
## Median 1.0e+02 99.9866 100.0091 300.0548
## 3rd Qu. 1.3e+02 113.3957 113.4934 338.2670
##
## $‘stress 1‘
## Z1 Z2 Z3 Y
## mean 110.0000 102.4437 99.9828 312.4265
## sd 40.0333 19.9954 19.9762 56.6173
## skewness -0.0024 -0.0015 -0.0049 -0.0037
## ex kurtosis -0.0050 -0.0032 -0.0155 -0.0012
## 1st Qu. 82.9984 88.9771 86.4815 274.2200
## Median 110.0759 102.4810 99.9954 312.5039
## 3rd Qu. 136.9310 115.8744 113.5019 350.6120

The summary function, applied to the SWIM object str.mean, shows how the distributional charac-
teristics of all random variables change from the baseline to the stressed model. In particular, we see
that the mean of Z1 changes to its required value, while the mean of Y also increases. Furthermore
there is a small impact on Z2, due to its positive correlation to Z1.

Beyond considering the standard statistics evaluated via the summary function, stressed probability
distributions can be plotted. In Figure 1 we show the impact of the stress on the cumulative dis-
tribution functions (cdf) of Z1 and Y . It is seen how the stressed cdfs are lower than the original
(baseline) ones. Loosely speaking, this demonstrates that the stress has increased (in a stochastic
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sense) both random variables Z1 and Y . While the stress was on Z1, the impact on the distribution
of the portfolio Y is clearly visible.

# refer to variable of interest by name...
plot_cdf(str.mean, xCol = "Z1", base = TRUE)
# ... or column number
plot_cdf(str.mean, xCol = 4, base = TRUE)
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1.00

0 100 200
Z1
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df stress 1

base

0.00
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0.50
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Figure 1: Baseline and stressed empirical distribution functions of model components Z1 (left) and Y
(right), subject to a stress on the mean of Z1.

The scenario weights, given their central role, can be extracted from a SWIM object. In Figure 2,
the scenario weights from str.mean are plotted against realisations from Z1 and Y respectively. It is
seen how the weights are increasing in the realisations from Z1. This is a consequence of the weights’
derivation via a stress on the model component Z1. The increasingness shows that those scenarios
for which Z1 is largest are assigned a higher weight. The relation between scenario weights and Y
is still increasing (reflecting that high outcomes of Y tend to receive higher weights), but no longer
deterministic (showing that Y is not completely driven by changes in Z1). Figure 3 displays the
scenario weights as a function of the input variable Z1 and Z2. The different colours of the scenario
weights indicate their relative sizes. We observe that the scenario weights are increasing jointly in Z1
and Z2.

# parameter n specifies the number of scenario weights plotted
plot_weights(str.mean, xCol = "Z1", n = 1000)
# specifying the limits of the x-axis
plot_weights(str.mean, xCol = "Y", x_limits = c(90, 550), n = 1000)

The stress to the mean of Z1 did not impact the volatility of either Z1 or Y , as can be seen by the
practically unchanged standard deviations in the output of summary(str.mean). Thus, we introduce
an alternative stress that keeps the mean of Z1 fixed at 100, but increases its standard deviation from
40 to 50. This new stress is seen to impact the standard deviation of the portfolio loss Y .

str.sd <- stress(type = "mean sd", x = dat, k = 1, new_means = 100, new_sd = 50)
summary(str.sd, base = FALSE)

## $‘stress 1‘
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Figure 2: Scenario weights against observations of model components Z1 (left) and Y (right), subject
to a stress on the mean of Z1.
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Figure 3: Scenario weights for observations of model components Z1 Z2 subject to a stress on the
mean of Z1.
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## Z1 Z2 Z3 Y
## mean 100.0000 99.941 99.9782 299.9187
## sd 50.0005 21.349 19.9800 67.9233
## skewness -0.0027 0.007 -0.0034 0.0049
## ex kurtosis -0.0556 -0.033 -0.0061 -0.0427
## 1st Qu. 66.0964 85.495 86.4822 253.7496
## Median 100.1290 99.974 100.0455 299.9766
## 3rd Qu. 133.7733 114.301 113.4701 345.9159

Furthermore, in Figure 4, we compare the baseline and stressed cdfs of Z1 and Y , under the new
stress on Z1. The crossing of probability distributions reflects the increase in volatility.

plot_cdf(str.sd, xCol = "Z1", base = TRUE)
plot_cdf(str.sd, xCol = 4, base = TRUE)

0.00

0.25

0.50

0.75

1.00

0 100 200
Z1

ec
df stress 1

base

0.00

0.25

0.50

0.75

1.00

100 200 300 400 500
Y

ec
df stress 1

base

Figure 4: Baseline and stressed empirical distribution functions of model components Z1 (left) and Y
(right), subject to a stress on the standard deviation of Z1.

The different way in which a stress on the standard deviation of Z1 impacts on the model, compared
to a stress on the mean, is reflected by the scenario weights. Figure 5 shows the pattern of the scenario
weights and how, when stressing standard deviations, higher weight is placed on scenarios where Z1
is extreme, either much lower or much higher than its mean of 100.

plot_weights(str.sd, xCol = "Z1", n = 2000)
plot_weights(str.sd, xCol = "Y", n = 2000)

Finally we ought to note that not all stresses that one may wish to apply are feasible. Assume for
example that we want to increase the mean of Z1 from 100 to 300, which exceeds the maximum
realisation of Z1 in the baseline model. Then, clearly, no set of scenario weights can be found that
produce a stress that yields the required mean for Z1; consequently an error message is produced.

stress(type = "mean", x = dat, k = 1, new_means = 300)

## Error in stress_moment(x = x, f = means, k = as.list(k), m = new_means, :
Values in m must be in the range of f(x)
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Figure 5: Scenario weights against observations of model components Z1 (left) and Y (right), subject
to a stress on the standard deviation of Z1.

max(Z1)

## [1] 273

3 Scope of the SWIM package

3.1 Stressing a model

We briefly introduce key concepts, using slightly more technical language compared to Section 2. A
model consists of a random vector of model components X = (X1, . . . , Xd) and a probability measure;
we denote the probability measure of a baseline model by P and that of a stressed model by PW ,
where W = dPW

dP , satisfying E(W ) = 1 and W ≥ 0, is a Radon-Nikodym derivative. In a Monte Carlo
simulation context, the probability space is discrete with n states Ω = {ω1, . . . , ωn}, each of which
corresponds to a simulated scenario. To reconcile this formulation with the notation of Section 2, we
denote, for i = 1, . . . , n, j = 1, . . . , d, the realisations Xj(ωi) := xji and W (ωi) := wi; the latter are
the scenario weights. Under the baseline model, each scenario has the same probability P (ωi) = 1/n,
while under a stressed model it is PW (ωi) = W (ωi)/n = wi/n.

The stressed model thus arises from a change of measure from P to PW , which entails the application
of scenario weights w1, . . . , wn on individual simulations. SWIM calculates scenario weights such
that model components fulfil specific stresses, while the distortion to the baseline model is as small
as possible when measured by the Kullback-Leibler divergence (or relative entropy). The Kullback-
Leibler divergence of the probability measure of the baseline model P with respect to that of a stressed
model PW is defined as

E(W log(W )) =
∫
dPW

dP
log
(
dPW

dP

)
dP. (1)

The Kullback-Leibler divergence is non-negative, vanishes if and only if the probabilities coincide,
i.e., if P = PW , and is often used as a measure of discrepancy between probability measures (Pesenti
et al., 2019).

A stressed model is defined as the solution to

min
W

E(W log(W )), subject to constraints on X under PW . (2)
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In what follows, we denote by a superscript W operators under the stressed model, such as FW , EW
for the probability distribution and expectation under the stressed model, respectively. We refer to
Pesenti et al. (2019) and references therein for further mathematical details and derivations of solutions
to (2).

Table 2 provides a collection of all implemented types of stresses in the SWIM package. The precise
constraints of (2) are explained below.

Table 2: Implemented types of stresses in SWIM.

R function Stress type Reference
stress wrapper for the stress_type functions Sec. 3.1.1
stress_user user defined scenario weights user Sec. 3.1.5
stress_prob probabilities of disjoint intervals prob Eq. (3)
stress_mean means mean Eq. (4)
stress_mean_sd means and standard deviations mean sd Eq. (5)
stress_moment moments (of functions) moment Eq. (6)
stress_VaR VaR risk measure (quantile) VaR Eq. (7)
stress_VaR_ES VaR and ES risk measures VaR ES Eq. (8)

The solutions to the optimisations (3) and (7) are worked out fully analytically (Pesenti et al., 2019),
whereas problems (4), (5), (6) and (8) require some root-finding. Specifically, problems (4), (5) and
(6) rely on the package nleqslv, whereas (8) uses the uniroot function.

3.1.1 The stress function and the SWIM object

The stress function is a wrapper for the stress_type functions, where stress(type = "type", )
and stress_type are equivalent. The stress function solves optimisation (2) for constraints specified
through type and returns a SWIM object, that is, a list including the elements shown in Table 3:

Table 3: The SWIM object, returned by any stress function.

x realisations of the model
new_weights scenario weights
type type of stress
specs details about the stress

The data frame containing the realisations of the baseline model, x in the above table, can be extracted
from a SWIM object using get_data. Similarly, get_weights and get_weightsfun provide the
scenario weights, respectively the functions that, when applied to x, generate the scenario weights.
The details of the applied stress can be obtained using get_specs.

3.1.2 Stressing disjoint probability intervals

Stressing probabilities of disjoint intervals allows defining stresses by altering the probabilities of
events pertaining to a model component. The scenario weights are calculated via stress_prob, or
equivalently stress(type = "prob", ), and the disjoint intervals are specified through the lower
and upper arguments, the endpoints of the intervals. Specifically,
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stress_prob solves (2) with the constraints

PW (Xj ∈ Bk) = αk, k = 1, . . . ,K, (3)

for disjoint intervals B1, . . . , BK with P (Xj ∈ Bk) > 0 for all k = 1, . . . ,K, and
α1, . . . , αK > 0 such that α1 + . . .+ αK ≤ 1 and a model component Xj .

3.1.3 Stressing moments

The functions stress_mean, stress_mean_sd and stress_moment implement the solution in Csiszár
(1975) and provide stressed models with moment constraints. The function stress_mean returns a
stressed model that fulfils constraints on the first moment of model components. Specifically,

stress_mean solves (2) with the constraints

EW (Xj) = mj , j ∈ J, (4)

for mj , j ∈ J , where J is a subset of {1, . . . , d}.

The arguments mj are specified in the stress_mean function through the argument new_means. The
stress_mean_sd function allows to stress simultaneously the mean and the standard deviation of
model components. Specifically,

stress_mean_sd solves (2) with the constraints

EW (Xj) = mj and VarW (Xj) = s2
j , j ∈ J, (5)

for mj , sj , j ∈ J , where J is a subset of {1, . . . , d}.

The arguments mj , sj are defined in the stress_mean_sd function by the arguments new_means and
new_sd respectively. The functions stress_mean and stress_mean_sd are special cases of the general
stress_moment function, which allows for stressed models with constraints on functions of the (joint)
moments of model components. Specifically

For k = 1, . . . ,K, Jk subsets of {1, . . . , d} and functions fk : R|Jk| → R, stress_moment
solves (2) with the constraints

EW (fk(XJk
)) = mk, k = 1, . . . ,K, (6)

for mk, k = 1, . . . ,K and XJk
the subvector of model components with indices in Jk.

Note that stress_moment not only allows to define constraints on higher moments of model com-
ponents, but also to construct constraints that apply to multiple model components simultaneously.
For example, the stress EW (XhXl) = mk is achieved by setting fk(xh, xl) = xhxl in (6) above.
The functions stress_mean, stress_mean_sd and stress_moment can be applied to multiple model
components and are the only stress functions that have scenario weights calculated via numerical
optimisation, using the nleqslv package. Thus, depending on the choice of constraints, existence or
uniqueness of a stressed model is not guaranteed. The stress_moment function will print a message
stating the specified values for the required moments, alongside the moments achieved under the
stressed model resulting from the function call. If the two match, the stress specification has been
successfully fulfilled.
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3.1.4 Stressing risk measures

The functions stress_VaR and stress_VaR_ES provide stressed models, under which a model com-
ponent fulfils a stress on the risk measures Value-at-Risk (VaR) and/or Expected Shortfall (ES). The
VaR at level 0 < α < 1 of a random variable Z with distribution F is defined as its left-inverse
evaluated at α, that is

VaRα(Z) = F−1(α) = inf{y ∈ R | F (y) ≥ α}.

The ES at level 0 < α < 1 of a random variable Z is given by

ESα(Z) = 1
1− α

∫ 1

α

VaRu(Z)du.

The details of the constraints that stress_VaR and stress_VaR_ES solve, are as follows:

For 0 < α < 1 and q, s such that q < s, stress_VaR solves (2) with the constraint

VaRWα (Xj) = q; (7)

and stress_VaR_ES solves (2) with the constraints

VaRWα (Xj) = q and ESWα (Xj) = s. (8)

Note that, since SWIM works with discrete distributions, the exact required constraints may not be
achievable, see Pesenti et al. (2019) for more details. In that case, the stress function will print a
message with the achieved and required constraints. For example stress_VaR will return scenario
weights inducing the largest quantile in the dataset smaller or equal to the required VaR (i.e. q); this
guarantees that PW (Xj ≤ q) = α.

3.1.5 User defined scenario weights

The option type = "user" allows to generate a SWIM object with scenario weights defined by a
user. The scenario weights can be provided directly via the new_weights argument or through a list
of functions, new_weightsfun, that applied to the data x generates the scenario weights.

3.2 Analysis of stressed models

Table 4 provides a complete list of all implemented R functions in SWIM for analysing stressed
models, which are described below in detail.

Table 4: Implemented R function in SWIM for analysing stressed
models.

R function Analysis of Stressed Models
summary summary statistics
cdf cumulative distribution function
quantile_stressed quantile function
VaR_stressed VaR
ES_stressed ES
sensitivity sensitivity measures
importance_rank importance ranks
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R function Analysis of Stressed Models
plot_cdf plots cumulative distributions functions
plot_quantile plots quantile functions
plot_weights plots scenario weights
plot_hist plots histograms
plot_sensitivity plots sensitivity measures

3.2.1 Distributional comparison

The SWIM package contains functions to compare the distribution of model components under
different (stressed) models. The function summary is a method for an object of class SWIM and
provides summary statistics of the baseline and stressed models. If the SWIM object contains more
than one set of scenario weights, each corresponding to one stressed model, the summary function
returns for each set of scenario weights a list, containing the elements shown in Table 5.

Table 5: The output of the summary function applied to a SWIM
object.

mean sample mean
sd sample standard deviation
skewness sample skewness
ex kurtosis sample excess kurtosis
1st Qu. 25 quantile
Median median, 50 quantile
3rd Qu. 75 quantile

The empirical distribution function of model components under a stressed model1 can be calculated
using the cdf function of the SWIM package, applied to a SWIM object. To calculate sample
quantiles of stressed model components, the function quantile_stressed can be used. The function
VaR_stressed and ES_stressed provide the stressed VaR and ES of model components, which is of
particular interest for stressed models resulting from constraints on risk measures, see Section 3.1.4.
(While quantile_stressed works very similarly to the base R function quantile, VaR_stressed
provides better capabilities for comparing different models and model components.)

Implemented visualisation of distribution functions are plot_cdf, for plotting empirical distribution
functions, plot_quantile, for plotting empirical quantile functions, and plot_hist, for plotting
histograms of model components under different (stressed) models. The scenario weights can be
plotted against a model component using the function plot_weights.

3.2.2 Sensitivity measures

Determining sensitivities of different model components is a fundamental component of model building,
interpretation, and validation and we refer to Saltelli et al. (2008) and Borgonovo and Plischke (2016)
for a comprehensive review. A key tool in sensitivity analysis are sensitivity measures that associate to
every model component a sensitivity score. Here we introduce the sensitivity measures implemented
in the SWIM package for comparing baseline and stressed models and how model components change

1Note that R functions implementing the empirical cdf or the quantile, ecdf and quantile, will not return the
empirical distribution function or the quantile function under a stressed model.
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under different models. In particular, the SWIM packages contains the sensitivity function, which
calculates sensitivity measures of stressed models and model components. The implemented sensitivity
measures, summarised in the table below, are the Wasserstein of order 1, Kolmogorov and the Gamma
sensitivity measures, see also Pesenti et al. (2016), Pesenti et al. (2019), and Emmer et al. (2015).
While the Wasserstein and the Kolmogorov sensitivity measures are defined as distances on the space
of distributions, they nevertheless provide useful insight in how the baseline model changes under a
stress.

Table 6: Definition of the sensitivity measures implemented in
SWIM.

Metric Definition
Wasserstein

∫
|FWX (x)− FX(x)|dx

Kolmogorov supx |FWX (x)− FX(x)|
Gamma EW (X)−E(X)

c , for a normalisation c

The Wasserstein distance is typically defined via the mass-transportation problem and we refer to Vil-
lani (2008) for a detailed treatment of its properties. For distributions on the real line, the Wasserstein
distance admits the above representation which is convenient for numerical evaluations (Vallender,
1974). The difference between the Wasserstein and the Kolmogorov sensitivity is that, while the lat-
ter determines the largest pointwise distance between a stressed and the baseline model, the former
sensitivity sensitivity reflects the entire distribution.

The Gamma sensitivity is introduced in Pesenti et al. (2019) and we refer to that paper for its prop-
erties and a comparison to variance-based sensitivity measures and moment independent sensitivity
measures. Loosely speaking, the Gamma sensitivity measure represents the difference between the
first moments of the stressed and the baseline distribution of a model component. The Gamma mea-
sure is normalised such that it takes values between -1 and 1, with higher positive (negative) values
corresponding to a larger positive (negative) impact of the stress on the particular model component.
The sensitivity measures can be plotted using plot_sensitivity. The function importance_rank
returns the effective rank of model components according to the chosen sensitivity measure. A small
rank of a model component’s sensitivity measure corresponds to high sensitivity to that model com-
ponent. The functions sensitivity together with plot_sensitivity and importance_rank allow
for a numerically efficient sensitivity analysis of a model and provide visual assessments of model
components’ sensitivities to a stressed model.

4 Case study

4.1 A credit risk portfolio

In this section we provide a detailed case study of the use of SWIM in analysing a credit risk model.
Through this analysis, we also illustrate more advanced capabilities of the package. The credit model
in this section is a conditionally binomial loan portfolio model, including systematic and specific
portfolio risk. We refer to the Appendix A for details about the model and the generation of the
simulated data. A key variable of interest is the total aggregate portfolio loss L = L1 +L2 +L3, where
L1, L2, L3 are homogeneous subportfolios on a comparable scale (say, thousands of $). The dataset
contains 100,000 simulations of the portfolio L, the subportfolios L1, L2, L3 as well as the random
default probabilities within each subportfolio, H1, H2, H3. These default probabilities represent the
systematic risk within each subportfolio, while their dependence structure represents a systematic risk
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effect between the subportfolios. We may thus think of L as the model output, H1, H2, H3 as model
inputs, and L1, L2, L3 as intermediate model outputs.

The simulated data of the credit risk portfolio are included in the SWIM package and can be accessed
via data("credit_data"). A snippet of the dataset looks as follows:

data("credit_data")
head(credit_data)

## L L1 L2 L3 H1 H2 H3
## [1,] 692 0 346.9 345 1.24e-04 0.00780 0.0294
## [2,] 1006 60 515.6 430 1.16e-03 0.01085 0.0316
## [3,] 1661 0 806.2 855 5.24e-04 0.01490 0.0662
## [4,] 1708 0 937.5 770 2.58e-04 0.02063 0.0646
## [5,] 807 0 46.9 760 8.06e-05 0.00128 0.0632
## [6,] 1159 20 393.8 745 2.73e-04 0.00934 0.0721

4.2 Stressing the portfolio loss

In this section, we follow a reverse sensitivity approach, similar to Pesenti et al. (2019). Specifically,
we study the effects that stresses on (the tail of) the aggregate portfolio loss L have on the three sub-
portfolios. This enables us to assess their comparative importance. If a subportfolio’s loss distribution
substantially changes following a stress on the portfolio loss, we interpret this as a high sensitivity to
that subportfolio.

First, we impose a 20% increase on the VaR at level 90% of the portfolio loss.

stress.credit <- stress(type = "VaR", x = credit_data, k = "L", alpha = 0.9,
q_ratio = 1.2)

## Stressed VaR specified was 2174.25 , stressed VaR achieved is 2173.75

The 20% increase was specified by setting the q_ratio argument to 1.2 – alternatively the argument
q can be set to the actual value of the stressed VaR.

Using the function VaR_stressed, we can quantify how tail quantiles of the aggregate portfolio loss
change, when moving from the baseline to the stressed model. We observe that the increase in the
VaR of the portfolio loss changes more broadly its tail quantiles; thus the stress on VaR also induces
an increase in ES. The implemented functions VaR_stressed and ES_stressed calculate respectively
VaR and ES; the argument alpha specifies the levels of VaR and ES, respectively, while the stressed
model under which the risk measures are calculated can be chosen using wCol (by default equal to 1).

VaR_stressed(object = stress.credit, alpha = c(0.75, 0.9, 0.95, 0.99),
xCol = "L", wCol = 1, base = TRUE)

## L base L
## 75% 1506 1399
## 90% 2174 1812
## 95% 2426 2085
## 99% 2997 2671
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ES_stressed(object = stress.credit, alpha = 0.9, xCol = "L", wCol = 1,
base = TRUE)

## L base L
## 90% 2535 2191

As a second stress, we consider, additionally to the 20% increase in the VaR0.9, an increase in ES0.9
of the portfolio loss L. When stressing VaR and ES together via stress_VaR_ES, both VaR and ES
need to be stressed at the same level, here alpha = 0.9. We observe that when stressing the VaR
alone, ES increases to 2535. For the second stress we want to induce a greater impact on the tail of
the portfolio loss distribution, thus we require that the stressed ES be equal to 3500. This can be
achieved by specifying the argument s, which is the stressed value of ES (rather than s_ratio, the
proportional increase).

stress.credit <- stress(type = "VaR ES", x = stress.credit, k = "L", alpha = 0.9,
q_ratio = 1.2, s = 3500)

## Stressed VaR specified was 2174.25 , stressed VaR achieved is 2173.75

When applying the stress function or one of its alternative versions to a SWIM object rather than
to a data frame (via x = stress.credit in the example above), the result will be a new SWIM
object with the new stress “appended” to existing stresses. This is convenient when large datasets
are involved, as the stress function returns an object containing the original simulated data and the
scenario weights. Note however, that this only works if the underlying data are exactly the same.

4.3 Analysing stressed models

The summary function provides a statistical summary of the stressed models. Choosing base = TRUE
compares the stressed models with the the baseline model.

summary(stress.credit, base = TRUE)

## $base
## L L1 L2 L3 H1 H2 H3
## mean 1102.914 19.96 454.04 628.912 0.000401 0.00968 0.0503
## sd 526.538 28.19 310.99 319.715 0.000400 0.00649 0.0252
## skewness 0.942 2.10 1.31 0.945 1.969539 1.30834 0.9501
## ex kurtosis 1.326 6.21 2.52 1.256 5.615908 2.49792 1.2708
## 1st Qu. 718.750 0.00 225.00 395.000 0.000115 0.00490 0.0318
## Median 1020.625 0.00 384.38 580.000 0.000279 0.00829 0.0464
## 3rd Qu. 1398.750 20.00 609.38 810.000 0.000555 0.01296 0.0643
##
## $‘stress 1‘
## L L1 L2 L3 H1 H2 H3
## mean 1193.39 20.83 501.10 671.46 0.000417 0.01066 0.0536
## sd 623.48 29.09 363.57 361.21 0.000415 0.00756 0.0285
## skewness 1.01 2.09 1.36 1.02 1.973337 1.35075 1.0283
## ex kurtosis 0.94 6.14 2.23 1.22 5.630153 2.23353 1.2382
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## 1st Qu. 739.38 0.00 234.38 405.00 0.000120 0.00512 0.0328
## Median 1065.62 20.00 412.50 605.00 0.000290 0.00878 0.0483
## 3rd Qu. 1505.62 40.00 675.00 865.00 0.000578 0.01422 0.0688
##
## $‘stress 2‘
## L L1 L2 L3 H1 H2 H3
## mean 1289.90 21.70 558.27 709.93 0.000437 0.01180 0.0566
## sd 875.90 30.57 507.78 447.30 0.000448 0.01045 0.0351
## skewness 1.90 2.17 2.10 1.57 2.090425 2.10128 1.5384
## ex kurtosis 3.67 6.74 4.79 2.80 6.203429 4.97000 2.6142
## 1st Qu. 739.38 0.00 234.38 405.00 0.000123 0.00512 0.0328
## Median 1065.62 20.00 412.50 605.00 0.000297 0.00879 0.0484
## 3rd Qu. 1505.62 40.00 675.00 875.00 0.000594 0.01439 0.0697

In the summary output, stress 1 corresponds to the 20% increase in the VaR, while stress 2 cor-
responds to the stress in both VaR and ES. The information on individual stresses can be recov-
ered through the get_specs function, and the actual scenario weights using get_weights. Since
the SWIM object stress.credit contains two stresses, the scenario weights that are returned by
get_weights form a data frame consisting of two columns, corresponding to stress 1 and to stress
2, respectively. We can observe from the summary that the two stresses modify the distributions of
model components in somewhat different ways. For example, the more tail-oriented stress 2 leads
to an increase in both the skewness and excess kurtosis of the portfolio loss.

get_specs(stress.credit)

## type k alpha q s
## stress 1 VaR L 0.9 2173.75 <NA>
## stress 2 VaR ES L 0.9 2173.75 3500

Next, we illustrate the difference between the two stresses applied, by a scatter plot of the scenario
weights against the portfolio loss L. As the number of scenario weights is large, we only 5000 data
points. This can be achieved via the parameter n in the function plot_weights, that has a default
of n = 5000.

plot_weights(stress.credit, xCol = "L", wCol = 1, n = 2000)
# parameter ‘wCol‘ specifies the stresses, whose scenario weights are plotted.
plot_weights(stress.credit, xCol = "L", wCol = 2, n = 7000)

It is seen in Figure 6 that the weights generated to stress VaR, and VaR and ES together, follow
different patterns to the weights used to stress means and standard deviations, as shown in Section
2. Recall that SWIM calculates the scenario weights such that under the stressed model the given
constraints are fulfilled. Thus, an increase in the VaR and/or ES of the portfolio loss L results in
large positive realisations of L being assigned higher weight. On the other hand, when the standard
deviation is stressed, scenario weights are calculated that inflate the probabilities of both large positive
and negative values. When we compare stress 1 and stress 2 in this example, we see that stressing
VaR induces a high but constant weight on scenarios that correspond to large outcomes of L, while
when stressing VaR and ES, the weights are exponentially increasing in (tail observations of) L. This
difference in pattern is associated with the different impacts on the shape of the tail of L.
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Figure 6: Scenario weights against the portfolio loss L for stressing VaR (left) and stressing both VaR
and ES (right).

4.4 Visualising stressed distributions

The change in the distributions of the portfolio and subportfolio losses, when moving from the base-
line to the stressed models, can be visualised through the functions plot_hist and plot_cdf. The
following figure displays the histogram of the aggregate portfolio loss under the baseline and the two
stressed models. It is seen how stressing VaR and ES has a higher impact on the right tail of L,
compared to stressing VaR only. This is consistent with the tail-sensitive nature of the Expected
Shortfall risk measure (McNeil et al., 2015). Moreover, the discontinuity in the way that, for stress
1, values of L map to the weights W , as seen in Figure 6, makes the stressed density of L no longer
monotonic in the tail. These observations indicate that stressing both VaR and ES together may be
a preferable option for risk management applications.

plot_hist(object = stress.credit, xCol = "L", base = TRUE)

The arguments xCol and wCol (with default to plot all stresses) define the columns of the data
and the columns of the scenario weights, respectively, that are used for plotting. Next, we analyse
the impact that stressing the aggregate loss L has on the subportfolios L1, L2 L3. Again, we use
the function plot_hist and plot_cdf for visual comparison, but this time placing the distribution
plots and histograms of subportfolio losses along each other via the function ggarrange (from the
package ggpubr). The plots obtained from plot_hist and plot_cdf can be further customised when
specifying the argument displ = FALSE, as then the graphical functions plot_hist and plot_cdf
return data frames compatible with the package ggplot2.

pL1.cdf <- plot_cdf(object = stress.credit, xCol = 2, wCol = "all", base = TRUE)
pL2.cdf <- plot_cdf(object = stress.credit, xCol = 3, wCol = "all", base = TRUE)
pL3.cdf <- plot_cdf(object = stress.credit, xCol = 4, wCol = "all", base = TRUE)

pL1.hist <- plot_hist(object = stress.credit, xCol = 2, wCol = "all", base = TRUE)
pL2.hist <- plot_hist(object = stress.credit, xCol = 3, wCol = "all", base = TRUE)
pL3.hist <- plot_hist(object = stress.credit, xCol = 4, wCol = "all", base = TRUE)

ggarrange(pL1.cdf, pL1.hist, pL2.cdf, pL2.hist, pL3.cdf, pL3.hist, ncol = 2,
nrow = 3, common.legend = TRUE)

19



0

5000

10000

0 1000 2000 3000 4000
L

hi
st

og
ra

m stress 1

stress 2

base

Figure 7: Histogram of the portfolio loss L under the baseline and the two stressed models.

stress 1 stress 2 base

0.00

0.25

0.50

0.75

1.00

0 100 200 300
L1

ec
df

0
10000
20000
30000
40000
50000

0 100 200 300
L1

hi
st

og
ra

m

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
L2

ec
df

0

5000

10000

15000

0 1000 2000 3000
L2

hi
st

og
ra

m

0.00

0.25

0.50

0.75

1.00

0 1000 2000
L3

ec
df

0
2500
5000
7500

10000
12500

0 1000 2000
L3

hi
st

og
ra

m

Figure 8: Distribution functions and histograms of the subportfolios L1, L2, L3 for the stresses on the
VaR (stress 1) and on both the VaR and ES (stress 2) of the portfolio loss L.
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It is seen from both the distribution plots and the histograms in Figure 8 that the stresses have no sub-
stantial impact on L1, while L2 and L3 are more affected, indicating a higher sensitivity. Specifically,
the distributions of L1 under the baseline model and the two stresses are visually indistinguishable.
This indicates the lack of importance of L1 with respect to portfolio tail risk. The higher impact on
the tails of stress 2 (on both VaR and ES) is also visible. Sensitivity measures quantifying these
effects are introduced in the following subsection.

4.5 Sensitivity measures

The impact of the stressed models on the model components can be quantified through sensitivity
measures. The function sensitivity includes the Kolmogorov distance, the Wasserstein distance,
and the sensitivity measure Gamma; the choice of measure is by the argument type. We refer to
Section 3.2 for the definitions of those sensitivity measures. The Kolmogorov distance is useful for
comparing different stressed models. Calculating the Kolmogorov distance, we observe that stress
2 produces a larger Kolmogorov distance compared to stress 1, which reflects the additional stress
on the ES for the stressed model stress 2.

sensitivity(object = stress.credit, xCol = 1, wCol = "all", type = "Kolmogorov")

## stress type L
## 1 stress 1 Kolmogorov 0.0607
## 2 stress 2 Kolmogorov 0.0748

We now rank the sensitivities of model components by the measure Gamma, for each stressed model.
Consistently with what the distribution plots showed, L2 is the most sensitive subportfolio, followed
by L3 and L1. The respective default probabilities H1, H2, H3 are similarly ranked.

sensitivity(object = stress.credit, xCol = c(2:7), wCol = "all", type = "Gamma")

## stress type L1 L2 L3 H1 H2 H3
## 1 stress 1 Gamma 0.150 0.819 0.772 0.196 0.811 0.767
## 2 stress 2 Gamma 0.113 0.734 0.639 0.171 0.708 0.636

Using the sensitivity function we can analyse whether the sensitivity of the joint subportfolio
L1 + L3 exceeds the sensitivity of the (most sensitive) subportfolio L2. This can be accomplished by
specifying, through the argument f, a list of functions applicable to the columns k of the dataset. By
setting xCol = NULL only the transformed data is considered. The sensitivity measure of functions of
columns of the data is particularly useful when high dimensional models are considered, providing a
way to compare the sensitivity of blocks of model components.

sensitivity(object = stress.credit, type = "Gamma", f = sum, k = c(2, 4),
wCol = 1, xCol = NULL)

## stress type f1
## 1 stress 1 Gamma 0.783

We observe that the sensitivity of L1 +L3 is larger than the sensitivity to either L1 and L3, reflecting
the positive dependence structure of the credit risk portfolio. Nonetheless, subportfolio L2 has not
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only the largest sensitivity compared to L1 and L3 but also a higher sensitivity than the combined
subportfolios L1 +L3. This has a clear risk management implication, as it shows conclusively that L2
should be an area of priority for the owner of this portfolio of credit liabilities. Loosely speaking, L2
is the portfolio from which ‘problems may arise’.

The importance_rank function, having the same structure as the sensitivity function, returns the
ranks of the sensitivity measures. This function is particularly useful when several risk factors are
involved.

importance_rank(object = stress.credit, xCol = c(2:7), wCol = 1, type = "Gamma")

## stress type L1 L2 L3 H1 H2 H3
## 1 stress 1 Gamma 6 1 3 5 2 4

4.6 Constructing more advanced stresses

4.6.1 Sensitivity of default probabilities

From the preceding analysis, it transpires that the subportfolios L2 and L3 are, in that order, most
responsible for the stress in the portfolio loss, under both stresses considered. Furthermore, most of
the sensitivity seems to be attributable to the systematic risk components H2 and H3, reflected by
their high values of the Gamma measure. To investigate this, we perform another stress, resulting
once again in a 20% increase in VaR(L), but this time fixing some elements of the distribution of H2.
Specifically, in addition to the 20% increase in VaR(L), we fix the mean and the 75% quantile of H2
to the same values as in the baseline model. Hence, we once again perform a reverse stress test, but
this time intentionally restricting the movement in the distribution of H2, to enable us to focus on
other variables. This set of constraints is implemented via the function stress_moment.

# 90% VaR of L under the baseline model
VaR.L <- quantile(x = credit_data[, "L"], prob = 0.9, type = 1)
# 75th quantile of H2 under the baseline model
q.H2 <- quantile(x = credit_data[, "H2"], prob = 0.75, type = 1)
# columns to be stressed (L, H2, H2)
k.stressH2 = list(1, 6, 6)
# functions to be applied to columns
f.stressH2 <- list(

# indicator function for L, for stress on VaR
function(x)1 * (x <= VaR.L * 1.2),
# mean of H2
function(x)x,
# indicator function for 75th quaantile of H2
function(x)1 * (x <= q.H2))

# new values for the 90% VaR of L, mean of H2, 75th quantile of H2
m.stressH2 = c(0.9, mean(credit_data[, "H2"]), 0.75)
stress.credit <- stress_moment(x = stress.credit, f = f.stressH2, k = k.stressH2,

m = m.stressH2)

Using the summary function, we verify that the distribution of H2 under the new stress has unchanged
mean and 75th quantile. Then we compare the sensitivities of the subportfolio losses under all three
stresses applied.
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summary(stress.credit, wCol = 3, xCol = 6, base = TRUE)

## $base
## H2
## mean 0.00968
## sd 0.00649
## skewness 1.30834
## ex kurtosis 2.49792
## 1st Qu. 0.00490
## Median 0.00829
## 3rd Qu. 0.01296
##
## $‘stress 3‘
## H2
## mean 0.00968
## sd 0.00706
## skewness 1.39135
## ex kurtosis 2.26506
## 1st Qu. 0.00453
## Median 0.00786
## 3rd Qu. 0.01296

sensitivity(object = stress.credit, xCol = c(2:4), type = "Gamma")

## stress type L1 L2 L3
## 1 stress 1 Gamma 0.1501 0.8195 0.772
## 2 stress 2 Gamma 0.1131 0.7336 0.639
## 3 stress 3 Gamma 0.0102 0.0203 0.366

It is seen that, by fixing part of the distribution of H2, the importance ranking of the subportfolios
changes, with L2 now being significantly less sensitive than L3. This confirms, in the credit risk model,
the dominance of the systematic risk, reflected in the randomness of default probabilities.

4.6.2 Stressing tails of subportfolios

Up to now, we have considered the impact of stressing the aggregate portfolio loss on subportfo-
lios. Now, following a forward sensitivity approach, we consider the opposite situation: stressing the
subportfolio losses and monitoring the impact on the aggregate portfolio loss L. First, we impose a
stress requiring a simultaneous 20% increase in the 90th quantile of the losses in subportfolios L2 and
L3. Note that the function stress_VaR (and stress_VaR_ES) allow to stress the VaR and/or the
ES of only one model component. Thus, to induce a stress on the 90th quantiles of L2 and L3, we
use the function stress_moments and interpret the quantile constraints as moment constraints, via
E(1L2≤VaRW (L2)) and E(1L3≤VaRW (L3)), respectively, where VaRW = VaR · 1.2 denotes the VaRs in
the stressed model.

# VaR of L2 and L3, respectively
VaR.L2 <- quantile(x = credit_data[, "L2"], prob = 0.9, type = 1)
VaR.L3 <- quantile(x = credit_data[, "L3"], prob = 0.9, type = 1)
#stressing VaR of L2 and L3
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f.stress <- list(function(x)1 * (x <= VaR.L2 * 1.2),
function(x)1 * (x <= VaR.L3 * 1.2))

stress.credit.L2L3 <- stress_moment(x = credit_data, f = f.stress, k = list(3, 4),
m = c(0.9, 0.9))

#impact on portfolio tail
VaR_stressed(stress.credit.L2L3, alpha = c(0.75, 0.9, 0.95, 0.99), xCol = "L",

base = TRUE)

## L base L
## 75% 1556 1399
## 90% 2086 1812
## 95% 2423 2085
## 99% 3072 2671

It is seen how the stressing of subportfolios L2 and L3 has a substantial impact on the portfolio loss.
Given the importance of dependence for the distribution of the aggregate loss of the portfolio, we
strengthen this stress further, by additionally requiring that the frequency of joint high losses from
L2 and L3 is increased. Specifically, we require the joint exceedance probability to be PW (L2 >
V aRW (L2), L3 > V aRW (L3)) = 0.06, which is almost doubling the corresponding probability in the
last stressed model, which was equal to 0.0308.

# probability of joint exceendance under the baseline model
mean(1 * (credit_data[, "L2"] > VaR.L2 * 1.2) * (credit_data[, "L3"] >

VaR.L3 * 1.2))

## [1] 0.00865

# probability of joint exceendance under the stressed model
mean(get_weights(stress.credit.L2L3) * (credit_data[, "L2"] > VaR.L2 *

1.2) * (credit_data[, "L3"] > VaR.L3 * 1.2))

## [1] 0.0308

# additionally stress joint exceedance probability of L2 and L3
f.stress.joint <- c(f.stress, function(x) 1 * (x[1] > VaR.L2 * 1.2) * (x[2] >

VaR.L3 * 1.2))
stress.credit.L2L3 <- stress_moment(x = stress.credit.L2L3, f = f.stress.joint,

k = list(3, 4, c(3, 4)), m = c(0.9, 0.9, 0.06))

We analyse the impact the stresses of the tail of the subportfolios L2 and L3 have on the aggregate
portfolio L. For this, we plot in Figure 9 the quantile of the aggregate portfolio under the baseline
model (blue), under the stress on the tail of L2 and L3 (red), and under the additional stress on the
joint tail of L2 and L3 (green).

plot_quantile(stress.credit.L2L3, xCol = "L", wCol = "all", base = TRUE,
x_limits = c(0.75, 1))

The results and the plots indicate that the additional stress on joint exceedances of subportfolios,
increases the tail quantiles of L even further, demonstrating the importance of (tail-)dependence in
portfolio risk management.
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Figure 9: Quantiles of the aggregate loss L under the baseline (blue), the stress on the tails of L2 and
L3 (red), and the additional stress on the joint tail of L2 and L3 (green).

5 Conclusion and future work

The SWIM package enables users to perform flexible and efficient sensitivity analyses of simulation
models, using the method of stressing model components by re-weighting simulated scenarios. Multiple
possibilities were demonstrated, from prioritising risk factors via reverse stress testing, to evaluating
the impact on a portfolio distribution of increasing the probability of subportfolios’ joint exceedances.
The implemented analysis and visualisation tools help users derive insights into their models and
perform formal comparisons of the importance of model components. Since SWIM does not require
re-simulation from the model, these sensitivity analyses have a low computational cost; moreover,
they can be performed on black-box models.

While working with a single set of simulated scenarios is computationally efficient, it also poses some
limitations, as SWIM cannot currently consider states of the world outside those already generated
by the simulation model. This places a constraint on how different the baseline and stressed model
can be; technically speaking the latter must be absolutely continuous with respect to the former. We
aim to address this limitation in the future, for example by allowing users to augment a given set of
simulated scenarios with additional ones and/or to consider more than one set of scenarios as part of
a single sensitivity analysis.

A different issue emanating from working with a limited set of scenarios relates to the impact of
sampling error on estimates of stressed distributions and sensitivity measures. Substantial sampling
errors may occur in cases where users specify stresses that are technically feasible, but concentrate
a lot of weight on only a few scenarios. In future updates of the package we intend to implement
relevant warnings, as well as bootstrap estimates of confidence intervals for key SWIM outputs.

Furthermore, future work includes enhancing analysis tools, for example functions that will make it
easier to extract distributional characteristics of stressed models – e.g. a stressed_cor function that
enables the monitoring of correlation changes when models are stressed.
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A Appendix Credit Model

A.1 Credit Model assumptions

The credit risk portfolio of Section 4 is based on the conditionally binomial credit model described
in Section 11.2 of McNeil et al. (2015) which belongs to the family of mixture models. Specifically,
we consider a portfolio that consists of three homogeneous subportfolios and denote the aggregate
portfolio loss by L = L1 + L2 + L3, with L1, L2, L3 the losses of each subportfolio, given by

Li = ei · LGDi ·Mi, i = 1, 2, 3, (9)

where ei and Mi are the exposure and number of defaults of the ith subportfolio, respectively, and
LGDi is the loss given default of subportfolio i. Mi is Binomially distributed, conditional on Hi,
a random common default probability. Specifically Mi|Hi ∼ Binomial(mi, Hi), where mi is the
portfolio size. The His follow a Beta distributions with parameters chosen so as to match given
overall unconditional default probabilities pi and default correlations ρi, that is, the correlation
between (the indicators of) two default events within a subportfolio, see McNeil et al. (2015). The
dependence structure of (H1, H2, H3) is modelled via a Gaussian copula with correlation matrix

Σ =

 1 0.3 0.1
0.3 1 0.4
0.1 0.4 1

 . (10)

Table 7 summarises the parameter values used in the simulation.

Table 7: Parameter values used in the simulation for the credit risk
portfolio in Section 4.

i mi ei pi ρi LGDi

1 2500 80 0.0004 0.00040 0.250
2 5000 25 0.0097 0.00440 0.375
3 2500 10 0.0503 0.01328 0.500

A.2 Code for generating the data

set.seed(1)
library(copula)
nsim <- 100000

# counterparties subportfolio 1, 2 and 3
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m1 <- 2500
m2 <- 5000
m3 <- 2500

# prob of default for subportfolios 1, 2 and 3
p1 <- 0.0004
p2 <- 0.0097
p3 <- 0.0503

# correlation between default probabilities
rho1 <- 0.0004
rho2 <- 0.0044
rho3 <- 0.01328

# exposures
e1 <- 80
e2 <- 25
e3 <- 10

# loss given default
LGD1 <- 0.25
LGD2 <- 0.375
LGD3 <- 0.5

# beta parameters: matching subportfolios default probabilities and correlation
alpha1 <- p1 * (1 / rho1 - 1)
beta1 <- alpha1 * (1 / p1 - 1)

alpha2 <- p2 * (1 / rho2 - 1)
beta2 <- alpha2 * (1 / p2 - 1)

alpha3 <- p3 * (1 / rho3 - 1)
beta3 <- alpha3 * (1 / p3 - 1)

# correlations between subportfolios
cor12 <- 0.3
cor13 <- 0.1
cor23 <- 0.4

# Gaussian copula structure
myCop <- normalCopula(param = c(cor12, cor13, cor23), dim = 3, dispstr = "un")

# multivariate beta with given copula
myMvd <- mvdc(copula = myCop,

margins = c("beta", "beta", "beta"),
paramMargins = list(list(alpha1, beta1),

list(alpha2, beta2),
list(alpha3, beta3)))

# simulation from the chosen copula
H <- rMvdc(nsim, myMvd)
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# simulate number of default per subportfolios (binomial distributions)
M1 <- rbinom(n = nsim, size = m1, prob = H[, 1])
M2 <- rbinom(n = nsim, size = m2, prob = H[, 2])
M3 <- rbinom(n = nsim, size = m3, prob = H[, 3])

# total loss per subportfolio
L1 <- M1 * e1 * LGD1
L2 <- M2 * e2 * LGD2
L3 <- M3 * e3 * LGD3

# aggregate portfolio loss
L <- L1 + L2 + L3

# the credit data included in SWIM
credit_data <- cbind(L, L1, L2, L3, H)
colnames(credit_data) <- c("L", "L1", "L2", "L3", "H1", "H2", "H3")
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