
              

City, University of London Institutional Repository

Citation: Fett, A-K. ORCID: 0000-0003-0282-273X (2021). Neural, behavioural and real-
life correlates of social context sensitivity and social reward learning during interpersonal 
interactions in the schizophrenia spectrum. Australian and New Zealand Journal of 
Psychiatry, 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/25836/

Link to published version: 

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/394977093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Neural, behavioural and real-life correlates of social context sensitivity and social 

reward learning during interpersonal interactions in the schizophrenia spectrum 

 

Hanssen, E. 1,2,3, van Buuren, M. 1, Van Atteveldt, N. 1, Lemmers-Jansen, I.L.J. 1,2, Fett, 

A.-K.J. 1,2,4 

 

1 Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and 

Movement Sciences, and Institute for Brain and Behaviour (IBBA) Amsterdam, Vrije Universiteit 

Amsterdam, the Netherlands 

2 CSI Lab, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, 

King’s College London, London, United Kingdom 

3 Hersencentrum Mental Health Institute, Amsterdam, the Netherlands 

4 Department of Psychology, City, University of London, London, United Kingdom 

 

* Corresponding author: Esther Hanssen  

Postal address: Vrije Universiteit Amsterdam, Faculty of Behavioural and Movement 

Sciences, Van der Boechorststraat 7, 1081 BT Amsterdam 

Email address: emehanssen@gmail.com 

 

Word count main body of text: 5423 | Word count abstract: 335 

2 tables, 3 figures, supplementary material A – E 



Abstract 

Objective Recent findings suggest that diminished processing of positive contextual 

information about others during interactions may contribute to social impairment in the 

schizophrenia spectrum (SZ). This could be due to general social context processing 

deficits or specific biases against positive information. We studied the impact of positive 

and negative social contextual information during social interactions using functional 

neuroimaging and probed whether these neural mechanisms were associated with real-

life social functioning in SZ. 

 Methods Patients with SZ (N=23) and controls (N=25) played three multi-round 

trust games during fMRI scanning, with no, positive and negative information about the 

counterpart’s trustworthiness, while all counterparts were programmed to behave 

trustworthy. The main outcome variable was the height of the shared amount in the trust 

game, i.e. investment, representing an indication of trust. The first investment in the game 

was considered to be basic trust, since no behavioural feedback was given yet. We 

performed region-of-interest analyses and examined the association with real-life social 

functioning using the Experience Sampling Method. 

 Results Social contextual information had no effect on patients’ first investments, 

whereas controls made the lowest investment after negative and the highest investments 

after positive contextual information was provided. Over trials, patients decreased 

investments, suggesting reduced social reward learning, whereas controls increased 



investments in response to behavioural feedback in the negative context. Patients engaged 

the dorsolateral prefrontal cortex (dlPFC) less than controls during context presentation 

and showed reduced activity within the caudate during repayments. In patients, lower 

investments were associated with more time spent alone and social exclusion and lower 

caudate activation was marginally significantly associated with higher perceived social 

exclusion. 

 Conclusion The failure to adapt trust to positive and negative social contexts 

suggests that patients have a general insensitivity to prior social information, indicating 

top-down processing impairments. In addition, patients show reduced sensitivity to social 

reward, i.e. bottom-up processing deficits. Moreover, lower trust and lower neural 

activation were related to lower real-life social functioning. Together, these findings 

indicate that improving trust and social interactions in SZ needs a multi-faceted approach 

that targets both mechanisms. 

 

  



1.1 Introduction 

The ability to integrate social contextual information and behavioural feedback from 

others is necessary for successful social interactions (Ruz et al., 2011) and is an important 

foundation of trust in social relationships (Lewicki and Wiethoff, 2006). Individuals with 

a schizophrenia spectrum (SZ) diagnosis, hereafter referred to as patients,  show a reduced 

ability in judging social signals (Penn et al., 2008). Previous research suggests two 

underlying mechanisms. First, there are deficits in learning from others’ behavioural 

feedback during social interactions, suggesting problems in bottom-up mechanisms. 

Second, there are problems with the integration of a-priori contextual information in a 

top-down way (Chung et al., 2010; Hooker et al., 2011). Here we investigate how these 

two mechanisms of social information processing impact on social behaviour in real-time 

interactions, using a modified neuroeconomic trust game (Fett et al., 2015).  

Studies employing the trust game (Berg et al., 1995) in SZ have demonstrated that 

patients invested lower initial amounts, indicating lower trust towards others (Fett et al., 

2012; Gromann et al., 2013; Lemmers-Jansen et al., 2018). In addition, SZ has been 

associated with a reduced ability to use others’ cooperative behavioural feedback to adjust 

trusting behaviour, i.e. bottom-up processing (Fett et al., 2012; Gromann et al., 2013). 

Research on the effects of social contextual information on trust in the general population 

demonstrated that trust increases in response to a trustworthy interaction partner, showing 

a strong impact of a-priori information on trust in a top-down manner (Delgado et al., 



2005). Patients in contrast show a diminished sensitivity to such prior positive 

information (Fett et al., 2012). The reduced ability to use bottom-up information and not 

being able to overcome distrust during positive interactions in response to such 

information, may explain real-life social impairment seen in SZ (Velthorst et al., 2016) 

and could be tackled with cognitive bias modification or other ways of cognitive 

remediation. However, it has not been investigated whether the insensitivity to social 

context reflects a more general processing deficit or a specific bias against positive social 

information. 

 Three core cognitive mechanisms have been suggested to underlie trust and 

decision making in social contexts (Declerck et al., 2013). First, context processing and 

cognitive control, which are subserved by the dorsolateral prefrontal cortex (dlPFC) 

(MacDonald et al., 2000). Second, theory of mind, i.e. the ability to infer the mental states 

of others, in which medial prefrontal cortex (mPFC) and temporo-parietal junction (TPJ) 

are implicated as key regions (Carrington and Bailey, 2009; Schurz et al., 2014). Third, 

reward processing, which strongly involves the caudate nucleus (Sanfey, 2007; Krach et 

al., 2010).  

 Deficits in mentalizing, social reward processing (bottom-up) and social context 

processing (top-down) have been suggested to underlie lower trust, paranoia and social 

disconnection in SZ (Couture et al., 2006; Velthorst et al., 2016; Kapur et al., 2005). In 

SZ, prior studies have reported reduced activation within the dlPFC during context 



processing (Niendam et al., 2014; Barch and Ceaser, 2012), within the mPFC and TPJ 

during mentalising (Pinkham et al., 2008; Green et al., 2015; Lee et al., 2004), and within 

the caudate during both non-social (Juckel et al., 2006b; Murray et al., 2008) and, more 

importantly, social reward processing (Gromann et al., 2013; Fett et al., 2019). This 

earlier work leads to the hypotheses that the dlPFC, mPFC, TPJ and caudate play an 

important role in disturbed social decision making and context processing in SZ. 

 In this first-time investigation of the underlying mechanisms of disturbed trust and 

social interaction in SZ, we therefore probed the impact of different social contexts and 

investigated the underlying neural correlates in patients with SZ and healthy controls , 

using a modified version of an interactive trust game while measuring brain activity with 

fMRI. Since social interactions are embedded in peoples’ daily lives in a complex way, it 

is important to elucidate the association between the neural processes underlying social 

interactions and daily-life social engagement in SZ. To investigate this, we combined 

fMRI and the Experience Sampling Method (ESM), a diary method (Delespaul, 1995). 

Initial ESM studies (Moran et al., 2019; Kluge et al., 2018) started to investigate how 

brain activation during task-based fMRI translates to real-world functioning. This method 

ensures high ecological validity because it allows for real-time monitoring of behaviour 

in daily-life contexts. In patients, Moran et al. (2019) found that greater hemodynamic 

signal change during (non-social) reward anticipation in caudate, insula and anterior 



cingulate was associated with greater anticipated pleasure and motivation for daily-life 

activities. 

 We hypothesized that: a) patients would show a general reduced sensitivity to 

prior information about the counterpart reflected in no differences in baseline trust 

between conditions, i.e. first investments. Controls would increase investments from the 

negative to the positive context; b) patients would not increase trust over trials in response 

to benevolent behavioural feedback, whereas controls would do so; c) patients would 

engage the regions-of-interest (ROIs) to a lesser extent than controls: i) in the left dlPFC 

during context presentation and investment (i.e. trusting) decisions, because of its specific 

role in context processing; ii) in the mPFC and right TPJ during context presentation and 

investment decisions, given their role in mentalising mechanisms, which we expected to 

a greater extent in controls while processing prior social information compared to no 

information; iii) in the right caudate nucleus during the partner’s repayments (i.e. receipt 

of social reward); d) for patients, reduced trust and reduced activation in the ROIs during 

the trust game is associated with lower daily life social functioning, i.e. more time spent 

alone, higher perceived social exclusion and lower perceived relationship quality, 

measured by ESM. 

 

2.1 Methods 

2.1 Subjects 



Twenty-five patients with a SZ diagnosis and 26 controls without a personal or family 

history of SZ were included (for recruitment see supplement - A). Inclusion criteria were: 

1) age 18 to 65, 2) good understanding of the English language, 3) IQ > 70. An additional 

criterion for patients was a SZ diagnosis according to ICD-10 (WHO, 1992), which was 

confirmed with the treating NHS clinician. Exclusion criteria were: 1) a history of any 

neurological conditions, 2) a diagnosis of alcohol/drug dependence within six months. 

One control subject did not complete MRI scanning due to anxiety. Two patients were 

excluded from analyses due to excessive movement (framewise displacement ≥ 1.5 mm 

in ≥ 20% of the volumes per run). Therefore, analyses were performed on 23 patients and 

25 controls. Forty-four participants completed the ESM measurements (20 patients, 24 

controls). The London-Harrow Research Ethics Committee [14/LO/0071] approved this 

study. 

 

2.2 Measures 

2.2.1 Estimated cognitive ability 

To assess an estimated cognitive ability, an abbreviated two-test version of the Wechsler 

Abbreviated Scale of Intelligence (WASI) was used (Wechsler, 1999), which consisted 

of the vocabulary subtest and the matrix reasoning subtest. WASI scores are reported in 

Table 1. 

 



2.2.2 Symptoms 

The Positive and Negative Syndrome Scale (PANSS) semi-structured interview was used 

to measure symptom severity in the two weeks prior to testing in patients (Kay et al., 

1987). Fourteen items evaluate the severity of positive and negative symptoms (1 = absent 

to 7 = extreme). PANSS scores are reported in Table 1. 

 

2.2.3 Trust game  

To measure the impact of social context processing in social interactions, we employed a 

modified multi-round trust game (Berg et al., 1995; King-Casas et al., 2005; Gromann et 

al., 2013). In a multi-round classic trust game, the first player, i.e. the investor, is given 

an initial endowment of £10 and has to invest a chosen amount between zero and ten 

pounds. This amount is tripled and given to the second player, i.e. the trustee. The trustee 

then decides whether and how much of the tripled amount he or she wants to give back 

to the investor. The chosen amount to invest by the investor reflects trust (given that the 

trustee can chose not to return any money). In our study, participants played the role of 

the investor and played the trust game three times, with three different hypothetical 

counterparts. In one game (condition), the trust game was presented without prior social 

contextual information, i.e. a classic multi-round trust game, while the other two 

conditions were modified to examine social context processing. In the negative and 

positive context condition, participants first played three ‘blind’ rounds, without seeing 



the repayments of the interaction partner. These rounds were implemented to establish 

the cooperativeness of the trustee (Fett et al., 2012). When making their blind investments 

participants saw the following the message: ‘Determining E.H.’s initial average returns’. 

After these three ‘blind’ investments, they viewed the following message on the screen 

pointing out the average returns (more or less than invested) of the trustee during the blind 

investments (i.e. the social context): ‘On average your partner E.H. returned more/less 

than you invested’. This message was shown before each trial in the trust game. 

Participants completed a total of 120 trials (60 experimental, 60 control), equally divided 

over the three conditions (no context, positive context and negative context). Control 

trials were included to control for general effects of motor and visual activation elicited 

by the task. An experimental and control trial with the respective phases and timings are 

displayed in Figure 1.  

 

Participants were instructed that they played with a real human player via the Internet but 

were actually playing with a pre-programmed computer that behaved in the same 

benevolent probabilistic manner in all three contexts (for algorithm see supplement - B). 

After completion of the trust game, participants were asked whether they thought the 

other players were real and trustworthy, on a 7-point Likert scale. Ratings on whether the 

other players were unreal did not differ between groups (16 % controls and 13 % patients, 



p > .83), and were unrelated to investments in the trust game (p > .82). Also, the ratings 

of trustworthiness of the interacting partners did not differ between groups (p > .59). 

 

2.2.4 Experience Sampling Method (ESM) – Measurement of social engagement 

ESM (Palmier‐Claus et al., 2011), a structured diary technique, was used to measure 

social engagement in daily life. The ESM device (iPod) gave a signal to fill in the 

questionnaire 10 times a day, by means of a pseudo-random ‘beep’ on 7 consecutive days. 

We included several questions to probe real-life social functioning in terms of social 

engagement, social exclusion and quality of social relationships. The question that was 

used assessing social engagement was ‘Are you alone?’ (yes/no). Perceived social 

exclusion was assessed when individuals were alone using an average of the two items: 

‘I feel lonely’ and ‘I feel excluded’ (Cronbach’s alpha 0.82). The perceived quality of 

social relationships was assessed when individuals were in social company with an 

average of the four items: ‘I like the person(s) I am with’, ‘I feel close to them’, ‘They are 

dependable’, ‘I trust them’ (Cronbach’s alpha 0.90). ESM items were rated on a 7-point 

Likert scale. 

 

2.3 Procedure 

 



The two sessions took place at the Institute of Psychiatry, Psychology, Neuroscience 

(IoPPN), King’s College London. Participants gave written informed consent before the 

study. 

Participants first completed a demographic questionnaire and several practice 

trials before playing the trust game in the MRI scanner. They were told that they would 

receive the earnings from one randomly selected round to keep them motivated (between 

£0 and £30). For fairness reasons all participants received a payment of £5. After the trust 

game, they completed the questionnaire on their perception of the game partners. Next, 

the PANSS interview was administered. Last, an explanation of the iPod was given to 

participants and they completed one practice questionnaire. The morning after the first 

session the 7-days ESM data collection started. All participants were contacted by phone 

on day 2 for guidance in case of any problems or difficulties with the iPod. The second 

session consisted of assessment of the WASI subtests. Participants handed in the iPod 

and experiences were discussed. At the end of the study each participant received 

payment (£60 + £5) for participation. 

 

2.4 Statistical analyses 

2.4.1 Behavioural analyses 



Statistical analyses were performed using STATA version 14 (StataCorp, 2015). We 

examined group differences in demographics using chi-square tests and regression 

analyses. Investments were analysed using mixed effects multilevel random regression 

analyses (MIXED) to account for repeated measurements within persons, with (first) 

investment as dependent variables and with group (control, patient) and context (negative, 

no and positive) and their respective interactions as independent variables. For 

investments over trials, trial number (1-20) was added to the model. Mixed effects 

multilevel random regression analyses (MIXED) were used to examine associations 

between investments and ESM indices of real-life social functioning (%alone, social 

exclusion and quality of social relationships) across contexts. Interactions were probed 

with the CONTRAST command. Analyses with a significant group effect are additionally 

reported with estimated IQ as a covariate. Additional analyses on association with 

symptoms are reported in supplement - E. 

 

2.4.2 fMRI data acquisition & scanning parameters 

Imaging data were acquired using a 3 T GE Signa Neuro-optimized MR System at the 

Centre of Neuroimaging Science of the IoPPN. Functional images were acquired by a 

T2*-weighted echo-planar imaging sequence scanning 39 axial slices of 3.0 mm thick 

with 0.3 mm gap. The in-plane resolution was 3.3 × 3.3 mm (FOV 211 × 211), flip angle: 

75°, TR = 2.00 s; TE = 30 ms. There were 413 volumes per run. For anatomical reference, 



a T1-weighted image (196 slices; isotropic voxels of 1.2 mm; TR 7.312 ms; TE 3.016 ms; 

flip angle: 11°; FOV 270 mm) was acquired. 

 Imaging data were analysed using Statistical Parametric Mapping 12 (SPM, 

2014). Pre-processing of the functional images consisted of realign and unwarp, and 

coregistration to individual anatomical images. Next, using unified, segmentation, 

anatomical images were segmented and normalization parameters estimated. These 

parameters were used to transform functional and anatomical images to a Montreal 

Neurological Institute (MNI) template. Subsequently, smoothing was applied (Gaussian 

kernel 6 mm full-width at half-maximum), and the last three volumes were removed, at 

the ending of the task. 

 

2.4.3 ROI analyses 

A general linear model was used per run in which the three phases in the game were 

modelled as regressors of interest for the experimental and control condition separately 

(see Figure 1). The cue phase was time-locked to the start of each trial (duration 2 s), the 

investment phase started after the investment cue (duration 4 s) and the repayment phase 

started at the beginning of the repayments shown and was modelled until the end of the 

displayed totals (duration 5 - 8 s). All other game phases were combined into one 

regressor of no interest (the  investment cue, the invested amounts, waiting for the 



partners response and the two fixation crosses).  All phases were modelled using a box-

car function convolved with the hemodynamic response function (Friston et al., 1995). 

To correct for motion, the six realignment parameters and regressors for volumes detected 

as motion-corrupted, calculated by DVARS metric as implemented in FSL, version 6.00 

(FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) by FSL Motion Outliers 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers) were included in the design 

matrix, making the total number of regressors in the model variable for each individual, 

with a minimum of ten regressors (cue phase, investment  phase, repayment phase, 

regressor of no interest and six motion parameters). A high pass filter of 128 seconds was 

used. Subsequently, for each phase of interest, contrast images were created by 

contrasting a specific phase of the experimental condition with the corresponding phase 

in the control condition.  

 A-priori ROI analyses were performed. Talairach coordinates were converted to 

MNI space (https://bioimagesuiteweb.github.io/webapp/mni2tal.html), resulting in the 

following ROI MNI coordinates: right caudate (17, 20, 3), right TPJ (50, −56, 27), mPFC 

(−3, 64, 24) (Gromann et al., 2014) and the left dlPFC (-43, 18, 29) (MacDonald and 

Carter, 2003). ROIs were created in MarsBar with an 8 mm sphere (version 0.44; 

http://marsbar.sourceforge.net). For each ROI and each subject, average signal change 

(beta estimate) was extracted to investigate group and context effects, and to test 

association between the fMRI and the ESM data. Additional analyses on association with 

http://marsbar.sourceforge.net/


symptoms (PANSS positive scale , PANSS negative scale, PANSS suspiciousness, 

PANSS amotivation factor and PANSS diminished expression factor; supplement - E) 

and IQ are reported. Mixed effects multilevel random regression analyses (MIXED) were 

used to examine associations between ROI beta estimates and ESM indices of real-life 

social functioning (%alone, social exclusion and quality of social relationships) across 

contexts. The results of the ROI-based analyses were Bonferroni corrected at alpha levels 

of 0.0125 per test (0.05/4, as tests were performed with data from four ROIs). 

 

2.4.4 Exploratory analyses  

We also performed exploratory whole-brain analyses, investigating neural activation 

beyond the predefined ROIs for all three game phases. Analyses were corrected at family-

wise-error (FWE) whole-brain cluster significance threshold of p = 0.05 (see supplement 

- C). 

 

 

3. Results 

 

3.1 Behavioural analysis 

Groups did not differ in age and gender. Patients had a lower estimated cognitive ability 

than controls. Percentage of time spent alone was higher in patients than controls. Patients 



felt lonelier and more excluded, but reported a similar quality of their social relationships 

compared to controls (see Table 1). 

 

3.1.1 Baseline trust: context effect and group differences in first investments 

First investments were examined to establish context effects on baseline trust (Table 2). 

There was a significant group-by-context interaction (χ2(2) = 7.34, p = 0.02), which 

remained significant when estimated IQ was added to the model (χ2(2) = 7.34, p = 0.02). 

Estimated IQ was not significantly associated with baseline trust (p = .32). The context 

effect was only significant in controls, who made lower investments in the negative than 

the no-context condition (b= -1.28, 95% CI [-2.23, -.33], p = .009) and higher investments 

in the positive than the no-context condition (b = 1.32, 95% CI [.35, 2.28], p = 0.007). 

Patients’ first investments did not differ by context (both p >.75). In all three contexts, 

first investments did not differ significantly between groups (all p > .07). 

 

3.1.2 Changes in trust over trials: context effect and group differences 

We examined interference of context information on changes in trust (i.e. investments) 

over time (Figures 2 a and b). The 3-way interaction between group, context and trial was 

marginally significant (χ2(2) = 5.07, p = .07) and analyses by group showed a marginally 

significant interaction of context-by-trial number in controls (χ2(2) = 5.26, p = .07), but 

not patients (p = .21). Across trials, both groups showed a context effect with significant 



differences between negative and no context, which was larger in controls than patients 

(controls: b = -.64, 95% CI [-.88, -.39], p < .0001, patients: b = -.39, 95% CI [-.67, -.11], 

p = .006), but no differences between the positive and no context (both p > .41). Both 

groups showed a significant main effect of trial number; controls increased investments 

over time, while patients decreased their investments (controls: b = .03, 95% CI [.01, .04], 

p = .002; patients: b = -.04, 95% CI [-.06, -.02], p < .0001). 

Additional, analyses by context showed that the effect of trial number was most 

pronounced and in opposite directions in patients and controls in the negative context 

(group-by-trial number interaction (χ2(2) = 21.21, p <.0001), controls: b = .06, 95% CI 

[.03, .8], p < .001; patients: b = -.05, 95% CI [-.08, -.02], p < .001). In the no context 

condition, there was a group-by-trial number interaction (χ2(2) = 8.37, p = .004); no 

significant changes in investments were found controls (p = .51), but patients invested 

significantly less over time (b = -.06, 95% CI [-.10, -.01], p = .02). Groups did not differ 

significantly in the positive context condition and did not show investment changes over 

trials (all p > .30). Additional analyses between symptoms and behavioural results are 

reported in supplement - E.  

 

3.2 fMRI analysis 

3.2.1 ROI analyses by trust game phase 



Cue phase. There were no significant group-by-context interaction in any ROIs (all p > 

0.12). A significant group effect in the left dlPFC showed lower activation in patients 

than controls (b = -0.59, 95% CI [-1.00, -.18], p = .004, Figure 3a). The effect remained 

significant when the IQ estimate was added to the model as covariate (b = -0.71, 95% CI 

[-1.24, -.17], p = .009). The IQ estimate was not significantly related to left dlPFC 

activation (p = .51).  

Investment phase. There were no significant group-by-context interactions (all p > .08), 

nor main effects of group (all p > .50) or context in any of the ROIs (all p > .11). 

Repayment phase. There were no significant group-by-context interactions or context 

effects for the right caudate or mPFC. A significant group effect showed lower right 

caudate activation in patients compared to controls (b = -.14, , 95% CI [-.25, -.03], p = 

.01, Figure 3b). This effect remained significant when the IQ estimate was added to the 

model as covariate (b = -0.16, 95% CI [-.30, .004], p = .028). The IQ estimate was not 

significantly related to right caudate activation (p = .66). Higher mPFC activation was 

found in patients than controls (b = .32, 95% CI [.003, .62], p = .047). However, this result 

did not survive Bonferroni correction. There were no interaction, group or context effects 

in any other ROI (all p > .16). 

 Given that we observed a behavioural group difference in investments over trials, 

we performed exploratory analyses probing the change in ROI activation over investment 



trials. The results are reported in supplement - D. Additional analyses between symptoms 

and ROI results are reported in supplement - E. 

 

3.2.2 Associations between investment, ROI activation and real-life social functioning in 

patients 

We were specifically interested to examine whether lower neural activation within the 

left dlPFC and the right caudate found in patients was related to the level of real-world 

social functioning. In addition, we explored this association in the less robustly increased 

mPFC signal in patients. 

Across contexts, higher investments were significantly associated with less time 

spent being alone (b =- .02, 95% CI [-.05, -.001, p = .04]. A significant interaction 

between context and perceived relationship quality on investments (X(2) = 23.01, p 

<.0001), showed trend-level associations between higher relationship quality and higher 

investments in the positive (b = .85, 95% CI [-.06,1.78], p = 0.07) and negative (b = .94, 

95% CI [-.06,1.78], p = 0.06), but not the no context condition (p = .79). There was a 

significant interaction between context and social exclusion on investments (X(2) = 13.19, 

p <.0001), indicating an association between lower perceived social exclusion and higher 

investments the no context condition only (b = -1.17, 95% CI [-1.97, -.35], p = 0.005, 

other p >.23). 



There were no significant associations between any measure of real-life social 

functioning and dlPFC activation (all p > .21). A significant interaction between social 

exclusion and context emerged for the right caudate (X(2) = 8.51, p = .01); lower 

perceived social exclusion was marginally significantly associated with higher caudate 

activation in the positive context only (b = -.17, 95% CI [-.36, -.018], p = .07, all other p 

>.18). No significant associations were present with social relationship quality or time 

spent alone (both p > .17). Higher perceived social relationship quality was associated 

with higher mPFC activation (b = .27, 95% CI [.002, .54], p = .048). There were no 

significant associations between mPFC activation and social exclusion or time spent 

alone (both p > .22). 

 

4. Discussion 

Using a novel, modified trust game, we examined the impact of social context on trust 

and social reward and the underlying neural activation patterns during real-time social 

interactions. In addition, we probed the associations with real-life social functioning in 

SZ. Patients showed no differential effect of social context on first investments, regardless 

of the valence or the absence of a context, whereas controls showed the expected distinct 

context effect with highest levels of trust in response to positive and lowest levels of trust 

in response to negative social information. This suggests a general insensitivity to social 



context instead of a bias against positive social contextual information in patients. 

Patients also did not increase trust in response to benevolent behavioural feedback 

whereas controls did. Within the patient group, the findings indicate an association 

between lower trust and lower real-world social functioning. 

We found overall lower activation in the left dlPFC during context presentation 

and less engagement of the right caudate nucleus during repayments in patients compared 

to controls. These results suggest that SZ is associated with a general insensitivity to 

social contexts and with a reduced sensitivity to social reward. On the neural level, we 

also found an association between caudate activation and lower real-life social 

functioning in patients. 

 

4.1 Social context effect on baseline trust 

For baseline trust (i.e. the first investment where partner feedback has not yet been 

received), we found reduced sensitivity to positive and negative social contextual 

information in patients compared to controls. This seems to reflect a general insensitivity 

to social contextual information. These results strengthen and extend previous evidence 

of a social context top-down processing deficit in SZ (Fett et al., 2012; Niendam et al., 

2014; Baez et al., 2013), however, this may not generalize to tasks concerning different 

types of information processing. This insensitivity points to persistent a-priori beliefs 



about other people in SZ. It is important to unravel whether this context sensitivity is a 

risk factor for developing a SZ or secondary to the disorder or related factors, by 

examining whether this insensitivity is also found in first-episode patients and individuals 

at high risk for SZ. In the current study, patients tended to approach social interactions 

with similar trusting behaviour as controls, in line with findings in first-episode patients 

(Fett et al., 2019), but contrasting results have also been found in chronic and first-episode 

patients and individuals at clinical high risk (Fett et al., 2012; Gromann et al., 2013; 

Lemmers-Jansen et al., 2018). 

 

4.2 Trust over time: the effects of benevolent feedback 

As hypothesized, patients did not increase trust in response to benevolent partner 

feedback, in line with previous literature in patients with chronic psychosis (Fett et al., 

2012; Gromann et al., 2013). Controls, however, increased trust in the negative context 

and showed stable levels of trust after no and positive information, suggesting that prior 

positive beliefs about others were matched by the benevolent partner feedback. Patients 

seem to have difficulties to overcome the given prior negative information, i.e. persistent 

a-priori negative beliefs about others. Patients showed a tendency to reduce trust, even 

though subjective ratings of trustworthiness of the interacting partner were similar for 

both groups. Other studies have shown that patients show reduced sensitivity to social 



rewards, such as smiles (Catalano et al., 2018). Our results strengthen the evidence that 

patients have deficits in bottom-up processing of partner feedback, which might be due 

to an insensitivity to social reward (Fett et al., 2012; Gromann et al., 2013). The reduced 

ability to increase trust could explain patients’ reduced motivation to engage in social 

behaviour (Krach et al., 2010). 

 

4.3 Neural findings during social interactions with contextual information 

In support of our hypotheses, we found reduced left dlPFC activation in patients 

compared to controls during social context presentation. The dlPFC has been implicated 

in deficits in non-social context processing in schizophrenia (Barch and Ceaser, 2012; 

Niendam et al., 2014) and is viewed as key region in top-down cognitive control 

(MacDonald et al., 2000). The impairment in top-down modulation of trust in response 

to contextual information may be related to reduced engagement of the dlPFC in SZ. This 

result that dlPFC activation was lower in all contexts, supports a general insensitivity 

rather than a specific bias. We did not see any group differences in ROI activation during 

investments. However, during the repayment phase, where reward processing takes place, 

we found context independent blunted activation in the right caudate nucleus in patients 

compared to controls. The caudate is a highly innervated by dopaminergic neurons 

(Björklund and Dunnett, 2007). Aberrant regulation of dopamine is thought to play a key 



role in SZ and reward processing (Howes and Kapur, 2009), and may account for the 

insensitivity to social feedback, i.e. reward. This finding adds to evidence showing 

deficits in social reward processing in SZ (Gromann et al., 2013; Lee et al., 2018) and 

may explain why patients fail to increase trust over time. A less robust effect was found 

in the mPFC; activation was higher in patients compared to controls. This was 

unexpected, but may be related to the role of the mPFC in reward-based action selection 

(Euston et al., 2012). We speculate that this may point to a compensation mechanism for 

reduced engagement of the caudate, which is tentatively supported by the correlations 

with real-world social outcomes, which are discussed in the following section. 

 

4.4 Associations with real-life social engagement 

Previous social neuroscience studies have started to investigate the link between the 

reward related processing in the brain and daily life (Bakker et al., 2019; Moran et al., 

2019), yet associations with real-life social functioning have not been considered in 

schizophrenia, despite yielding meaningful insights in healthy controls (Bickart et al., 

2011; Kanai et al., 2012; Lewis et al., 2011). We found that in real life, patients spent 

more time alone than healthy controls, in line with previous work (Pinkham and Penn, 

2006; Velthorst et al., 2016). They reported higher feelings of loneliness and social 

exclusion, but a similarly good relationship quality as controls. On the behavioural level, 

higher investments were associated with higher social functioning in real life. A higher 



level of trust may create an advantageous basis for engaging in meaningful social 

relationships (Campellone et al., 2016). This could positively impact on social support 

networks, which in turn could aid in recovery (Corrigan and Phelan, 2004). At the neural 

level, we found that in patients, lower activation in the caudate in the positive context was 

marginally significantly associated with higher perceived social exclusion. More 

engagement of this key reward area may be related to heightened experience of positive 

social interaction, i.e., social reward (Gromann et al., 2013). This could lead to a higher 

sense of belonging or inclusion in social relationships. In addition, higher activation in 

the mPFC was associated with higher reported relationship quality in daily life, which 

would support the role of mentalizing abilities (Schurz et al., 2014). However, it is 

possible that this finding also relates to higher feelings of (social) reward (Euston et al., 

2012). Future evidence from larger replication studies will be needed to strengthen and 

support these initial results. 

 

4.5 Limitations 

The current results should be interpreted in light of the following limitations. First, our 

study is an initial investigation of social context processing in relation to neural activation 

and in relation to daily life social functioning in a relatively small sample of relatively 

stable patients with a SZ diagnosis. Specifically, our patient sample had relatively low 

symptom levels: negative and positive scores of respectively 14.74 (SD = 6.15) and 12.26 



(SD = 3.25). We defined these scores as relatively low, since, with respect to the 7-point 

Likert scale of the PANSS items and the number of items in the positive and negative 

subscale, the item scores of 1 and 2 are respectively absent and minimal (Kay et al., 1987), 

(see also supplement - E). Consequently, our results need to be interpreted with caution 

when it comes to generalizability and larger replication studies are warranted before any 

firm conclusions can be made.  Second, medication type has been found to have an effect 

on reward processing in SZ (Juckel et al., 2006a), however, the majority of participants 

in our sample was on atypical antipsychotics (see Table 1), which are thought to 

normalize reward processing (Nielsen et al., 2012; Schlagenhauf et al., 2008). In addition, 

healthy first-degree relatives of patients with SZ show reduced social reward processing, 

without any medication confounds (Gromann et al., 2014; Hanssen et al., 2020). 

Therefore, the current findings are not likely to represent an enhancement of the effects, 

they may even reflect an underestimation, compared to expected effects in unmedicated 

patients. Studying unmedicated patients is valuable, but poses a great challenge due to 

the clinical reality. Third, subjective self-report measures, like ESM, may raise the 

question of response accuracy or social desirable, which may be related to suspiciousness. 

However, ESM is a widely used and well-validated method in psychiatric and 

schizophrenia samples (Myin‐Germeys et al., 2018; Delespaul, 1995) and has the 

advantage that it does not rely on retrospective recall (Potheegadoo et al., 2012). 

Moreover, our sample showed a good compliance and did not report any issues related to 



the use of the ESM app during the debriefing. We therefore have no grounds to assume 

that responses were inaccurate. Last, not all participants believed they were playing with 

a real human player, however, this was not associated with investments and adequate 

changes in investments in controls after context information and behavioural feedback 

indicated that the experimental manipulation was effective. 

 

4.6 Concluding remarks 

This is the first study to investigate the neural correlates of social context processing and 

the link with real-life social functioning in SZ. We provide evidence that patients do not 

modulate their behaviour in response to social context information (i.e. top-down 

processing) and positive behavioural cues of others (i.e. bottom-up processing). Our 

results point to a general reduced sensitivity to social information on a behavioural and 

neural level. The findings suggest that increasing trust may facilitate social engagement 

in patients. Also, indices of real-life social functioning seem to be associated with lower 

neural activity in reward- and context processing (i.e. cognitive control) brain areas. The 

current study suggests that improving social interaction in SZ requires a multi-faceted 

approach in clinical practice, which considers both bottom-up and top-down processing 

of social information. An example of an intervention that incorporates these two facets is 

the Social Cognition and Interaction Training (SCIT) (Penn et al., 2007), targeting social 

skills bottom-up and social cognition top-down, which shows promising effects on social 



functioning. Clinical practice will benefit from newly developed treatments, building on 

the SCIT for instance, targeting these facets in daily life by implementing an ecological 

momentary intervention by means of a smartphone based treatment. In addition, future 

studies are warranted to investigate how this is related to fine grained assessments of 

functional capacity and real world social functioning. 
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