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Abstract 
 

Maximum simulated likelihood (MSL) procedure is generally adopted in 

discrete choice analysis to solve complex models without closed mathematical 

formulation. This procedure differs from the maximum likelihood simply because 

simulated probabilities are inserted into the Log-Likelihood (LL) function. The LL 

function to be maximized is the sum of the logarithm of the expected choice 

probabilities; since the logarithmic operation is a nonlinear transformation bias is 

then introduced. The simulation bias depends on the number of draws that are used 

in the simulation and on the sample size. Although the asymptotic properties of the 

MSL estimator are well known, the question is how simulation bias affects 

parameters estimation and therefore the main outcomes of choice models (for 

instance value of travel time and market shares). In this paper, we estimate 

explicitly the simulation bias in mixed logit parameter estimation, using Taylor 

expansion and we correct the log-likelihood objective function during the 

maximization process. The method is developed in the context of Monte Carlo 

simulation. We report significant error reduction on the final objective value but 

also on the optimal parameters. The method could be extended to randomized 

quasi-Monte Carlo techniques as long as standard deviations of simulated choice 

probabilities are calculated. Computation costs can be neglected when using 

Monte Carlo draws and even when advanced strategies such as adaptive sampling 

methodology are in use.  
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1 Introduction  

 
Simulation is used extensively for approximating some mathematical quantities whose 

computations would otherwise be intractable. Simulation methods have been 

traditionally used to study the properties of inference methods in finite samples, 

classical applications being the bias and the mean square error of an estimator or the 

level of power of a test (Gouriéroux and Monfort 1993). More recently, 

econometricians are using simulation methods to make statistical inference over 

observational data (Gouriéroux and Monfort 1993; Lerman and Manski 1981; 

McFadden 1989; Pakes and Pollard 1989; Hajivassiliou and McFadden 1989). In all 

these studies, the aim of the simulation technique is to approximate integrals 

appearing in the objective function used in the estimation method (Gouriéroux and 

Monfort 1993).  

In transportation demand analysis, simulation has been adopted for models with 

random coefficients, such as mixed logit (Train 2003). It is widely known that the 

maximum simulated likelihood estimator for these models is inconsistent for any fixed 

number of simulation draws and is consistent and asymptotically normal only if the 

number of draws rises with sample size at a sufficiently fast rate. The inconsistency 

arises because the log-likelihood function is a nonlinear transformation of the 

simulated probability, such that an unbiased probability simulator does not provide an 

unbiased simulator of the log-likelihood function. This problem occurs even if the 

integrals are replaced by unbiased estimators, produced for instance by (quasi-)Monte 

Carlo simulation. (see Bhat 2001 and 2003). Both MC and QMC simulations 

nevertheless introduce approximation errors that affect the value of the likelihood 

function at the optimum and the final estimates of the parameters.  

One can argue that simulated scores could be adopted to produce unbiased 

estimators or to compute the maximum likelihood estimators (McFadden 1989); but 

this theoretical advantage is obtained at the expense of strong computation difficulties. 

In particular, if the accept-reject method is used, the objective function is then 

discontinuous in the parameters, so that practical estimation cannot be performed 

using standard, out-of-the-box, nonlinear programming tools, which assume 

differentiable functions. Consequently log-likelihood maximization remains the most 

popular approach amongst researchers and practitioners. 

Gouriéroux and Monfort have studied the properties of the estimators in the 

context of simulated maximum likelihood models in 1993. In particular, the 

consistency and the asymptotic normality of the estimators were derived analytically 

when the number of observations goes to infinity and when the number of simulations 

is fixed or goes to infinity. Their study however remains quite theoretical. Bastin et al. 

(2006b) have independently explored the consistency issues in the context of discrete 

choice analysis, giving strong consistency results based on analogy to stochastic 

programming. Gouriéroux and Monfort as well as Bastin et al. propose an estimation 

of the bias of the simulated log-likelihood, based on a Taylor expansion. While the 

two formulations look quite different, it can be shown that they are in reality very 

similar (Bonneu 2007). The expression proposed by Bastin et al. and used here uses 

the unbiased variance estimator and is numerically tractable. 

This paper examines a procedure that has the potential to reduce the bias. In 

particular, the bias is a function that can be simulated and included directly in the 

objective function as a bias correction. This simulated bias is itself a nonlinear 

function of the simulated probability, and so it is also biased. As a result, the estimator 

with this correction remains biased, but potentially significantly less. Our Monte Carlo 
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results indicate that a significant error reduction is indeed obtained on the final 

objective value but also on the optimal parameters when the correction term is 

included. The proposed method could be extended to randomized quasi-Monte Carlo 

techniques (see for instance Bhat 2003), however at an increased price as standard 

deviations can then be computed by repeating the simulated log-likelihood evaluation, 

using different set of draws.  

The remaining of this paper is organized as follows. In Section 2 after a brief 

description of the econometric model we introduce the technique of bias reduction. 

Section 3.1 is devoted to testing the method on artificial case studies. The dimensions 

affecting the bias, i.e. the sampling and the population sizes, are varied to evaluate the 

bias in different modeling situations. Both cross sectional and panel data are 

considered. Similar analyses are conducted on a real dataset and the results are 

presented in Section 3.2. The effects of bias on parameters estimation, value of travel 

time and market shares are outlined in Section 4. Conclusions and perspectives for 

future research are finally given in Section 5. 

 

2 Calculating Bias in Mixed Logit Models 
 

2.1 The Mixed logit model 
 

Mixed logit belongs to the family of discrete choice models; under the usual 

assumptions we define population size I and iA  the set of available alternatives for 

individual . For each individual i, each alternative , 

has an associated utility that depends on the individual characteristics and the 

relative attractiveness of the alternative. The utility is assumed to have the additive 

form: 

 

 

 

where  is a function of the model parameters vector  and of , 

the observed attributes of alternative , while is a random term reflecting the 

unobserved part of the utility. Assuming that individual i selects the alternative 

maximizing his/her utility, the probability that he/she chooses alternative is given 

by:  

 

 

 

If we assume that the random terms are identically and independently Gumbel 

distributed, with scale factor set to one, we obtain the closed form for choice 

probability of logit models: 
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Mixed logit models relax the assumption that the parameters  are the same for all 

individuals, by assuming instead that individual explanatory variables vectors , 

, are realisations of a random vector . We then assume that  is itself 

derived from a random vector  and a parameters vector . The 

choice probability is then given by: 

 

Pij E Lij , Lij , P d Lij , f d , 

 

where P is the probability measure associated with  and  is its distribution 

function. The vector of parameters  is then estimated by maximizing the log-

likelihood function, i.e. by solving the program 

 

 

 

where is the alternative choice made by the individual i. Note that the 

normalization factor  is often omitted, but we introduce it for consistency with 

the stochastic programming literature (see for instance Shapiro 2000). This allows us 

to make direct comparisons between different sample sizes. This involves the 

computation of for each individual, which is impractical since it requires the 

evaluation of one multidimensional integral per individual. The value of is 

therefore replaced by some approximation, obtained in the Monte Carlo setting by 

sampling over , and given by: 

 

 

 

where R is the number of random draws . As a result,  is now computed as the 

solution of the simulated log-likelihood problem: 

 

 

 

We will denote by  a solution of this last approximate problem (often called the 

Sample Average Approximation, or SAA), while will represent a solution of the 

true problem. 

A standard extension is the treatment of repeated choice observations. 

Typically, the tastes of a given decision-maker are assumed to stay constant across 

choice-situations for that respondent, such that tastes vary across individuals, but not 

across observations for the same individual. The probabilities of the individual 

choices are then replaced by the probabilities of the observed sequence of choices 

for each decision-maker. With jit giving the alternative chosen by decision-maker i in 
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choice-situation t (t=1,…,Ti), the probability of the choices made by decision-maker 

n, conditional on βi, is given by:  

 

, 

 

with a corresponding unconditional probability: 

 

. 

 

This leads to a new version of the log-likelihood function, given by: 

 

, 

 

with a corresponding form for the simulated log-likelihood function. 

 

2.2 Bias reduction 

 
Under reasonable assumptions, the second-order Taylor expansion of the simulated 

log-likelihood around the true log-likelihood value gives 

 

 
 

where
 iji  

is the standard deviation of
 
Lij i

,
 
(see Bastin et al. 2006b, for the 

derivation under Monte Carlo sampling; the result directly extends to randomized 

quasi-Monte Carlo draws). The bias is thus in the order of
 
O(1/R) for each choice 

probability (where
 
R is the sample size per individual) and in the order of O(1) with

 respect to the population size I. The variance, on the other side, is in
 
O(1/(RI)), and 

consequently vanishes as the population size grows to infinity.  

Note
 
that this bias term can itself be simulated, by (i) using the simulated 

probability
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and
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variance of Lij i
, . In the Monte Carlo setting, we therefore use the mean and 

variance of
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over the R draws as estimators for
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2

, 

respectively. The bias can therefore be estimated at a computation cost close to zero, 

and the only correction we have to make is to add this quantity to the log-likelihood 

in the estimation procedure. In other terms, we now have to solve the program 

 

max SLLR SBR ,
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SB R

 
is the simulated bias. It is important to note that
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biased, since it is a nonlinear function of the simulated probability. The asymptotic 
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properties of the estimator based on this new objective function are therefore 

formally the same as those for maximum simulated likelihood. However, it seems 

reasonable that the bias is reduced by the inclusion of the bias correction, even 

though the correction is itself biased. We could nevertheless surmise that the bias 

estimator addition will result in an increase of the objective function variance, as the 

estimator is itself random. The Monte Carlo analyses in the next section examine 

these issues. 

Focusing on the simulation bias means that one neglects another important 

source of error: the optimisation bias. This bias is well known in stochastic 

programming, and results from the inequality 

 

 
 

where  is the SAA estimator of , a function that we want to minimize with
 

respect to x but that depends on stochastic factors . In the case of the 

maximization
 of the log-likelihood function associated to the probability choices 

amongst the population, we have from the monotonic behaviour of the logarithm 

operator that: 
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of the objective function, the more important this bias. We nevertheless observe that 
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accurate estimators. The main difficulty remains in that we never know when such a 

cancellation happens. Both biases are more important with small numbers of draws; 

but while we can quantify the decrease of the simulation bias, we have to date no 

information about the optimisation bias. We therefore consider that it is dangerous to 

take a risk on the magnitude of the bias effects, and we prefer to limit the sources of 

errors, as long as we can do it at a reasonable computation cost. 
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3 Numerical experiments 

 
3.1 Simulated data 

 
In order to evaluate the magnitude of the bias in different experimental situations we 

first use synthetic data. In all the simulated cases, individuals are assumed to face five 

alternatives. The utilities are linear and include five explanatory variables drawn from 

normal distributions N(0.5,1.0) and five generic coefficients. Assumptions are made 

on coefficient distributional forms; they are all random and normally distributed with 

mean 0.5 and standard deviation 1.0. We generate cross-sectional and panel data-sets; 

the latter contains for each individual ten repeated observations. We test the 

population size effects on bias by generating samples of different sizes (I = 1,000, 

2,000 and 4,000). Each simulated choice model was estimated ten times using 

different seeds and three different number of pseudo-random Monte Carlo draws (R = 

500, 1,000 and 2,000) per individual. In total 180 models have been estimated; results 

obtained with classical maximum likelihood estimation are then compared with those 

obtained when correcting the bias. In order to quantify the bias we use two error 

measurements for each coefficient of index l (that is the component of the 

parameter vector ) that is bias and MSE, which are respectively: 

 

 

 

It should be noted that the true values are those estimated with a number of draws 

equal to 10,000. The MSE measure is necessary to capture the variance effect in 

coefficient estimates; too much variance could in fact make difficult the bias 

measurement. It also gives us the mean quadratic error of our estimator. We finally 

summarize these quantities by taking their 2-norm over all the parameters. 

Bias and MSE for cross sectional data are reported in Figures 1 and 2, while the 

same measures on panel data are depicted in Figure 3 and 4. The transparent grey 

surface represents the bias for the model estimated with classical log-likelihood 

estimation, the dark surface is the one obtained by correcting the log-likelihood with 

the procedure proposed in Section 2. 

In both Figures 1 and 3 the light grey surfaces, which represent biased estimates, 

are upper than the dark unbiased surface, corresponding to corrected estimates, as 

expected. In cross sectional data the bias ranges from 0.0184 obtained for the model 

with 2,000 individuals and 2,000 number of random draws to 0.094 which is the value 

of the bias found for the case with 1,000 individuals and 500 draws; the highest value 

of bias (0.297) is obtained with a model estimated on 4,000 simulated observations 

with 500 draws. This result confirms that analysts should worry about bias not only 

when the number of MC draws is low, but also when the size of the population used in 

model estimation increases. The adopted technique is able to correct the bias, with a 

reduction factor varying from 50 percent to about 90 percent. Bias in panel data is 

higher in values, ranging from 0.034 to 0.196; reduction in bias are less efficient than 

for the cross-sectional data ranging from 15 percent to 60 percent. 
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Figure 1. Bias on cross sectional data      Figure 2. MSE on cross sectional data 

 

 
 

Figure 3. Bias on panel data  Figure 4. MSE on panel data 

 

 

MSE values are low except in two cases: 1) coefficients estimated on cross-sectional 

data with 4,000 individuals and 500 MC draws and 2) coefficients estimated on panel 

data with 1,000 responses and 500 MC draws. For panel data with low number of 
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impact solutions quality; however the bias just increases about 10 percent. We 

attribute this increase to the optimization bias, introduced at the end of Section 2.  

 

3.2 Real case study: Mobidrive 
 

To test the effects of simulation bias on mixed logit models estimated from real data 

we apply the technique in Section 2.2 to a dataset derived from a six-week travel diary 

known as Mobidrive. The survey was held in 1999 in Karlsruhe (Germany) and since 

then has been extensively used by the research community to study rhythms of daily 

life (Axhausen et al. 2002), day-to day variability in individuals‟ schedule (Kitamura 

et al. 2006) and to test advanced econometric models (Cirillo and Axhausen 2006; 

Bhat et al. 2005). We refer the reader to the website 

http://www.ivt.ethz.ch/vpl/research/mobidrive for a complete list of research papers 

based on Mobidrive dataset.  

Here we use Mobidrive to model mode choice; each observation is constituted by 

a tour, which can be either home-based or work-based. The framework adopted to 

define tours is reported in Cirillo and Axhausen (2006). In synthesis the recorded trips 

were structured according to activity chains on a daily basis having tours as 

elementary units. Each daily chain is characterized by a main activity of the day, 

which is work/education for working days or by a principal activity, which is the 

activity with the longest duration for non-working days. All daily activity chains are 

represented in relation with this pivotal activity; the sequence of tours for a given day 

(week/individual) is called daily (weekly/individual) schedule. The final sample used 

in this paper slightly differs from the sample used in Cirillo and Axhausen; other than 

some further tests on the availability of the alternatives, the analysis presented here is 

based on the week days only. The final sample is composed of 4,089 single tours, 

2,488 daily schedules, 674 weekly schedules, 129 individual schedules and 56 

household schedules.  

As indicated mixed logit framework is applied to model mode choice of 

individual tours. Five alternatives are available to the population: car as driver (CD), 

car as passenger (CP), public transportation (PT), walk (W) and bike (B). The final 

estimated model is shown in Table 1 and contains fifteen coefficients: four alternative 

specific constants, time and cost, several interaction terms between time and socio-

economic characteristics, one activity attribute (purpose of the tour being leisure), one 

individual attribute (main user of one of the household cars) and one household 

location characteristic (household location). The two models have been estimated by 

considering Mobidrive as a (1) cross-sectional or as a (2) panel dataset; in the latter 

case observations belonging to the same individual-week are supposed to be 

correlated. The apparent discrepancy for the values at 0 comes from our normalisation 

factor that is the inverse of the number of individuals. Alternative specific constants, 

time and cost are randomly distributed and assumed to be normal (with mean m. and 

standard deviation s.d.), the remaining nine coefficients are fixed. The presented 

values are the results obtained with the adaptive optimisation algorithm proposed by 

Bastin et al. (2006a), in which the final number of MC random draws is fixed to 

10,000 and the bias correction is applied; these values are assumed to be the “true” 

values of the model. 

Before analysing the effects of simulation bias on the estimates we briefly 

describe the main characteristics of the model. We found that the five systematic 

variations around the travel time are highly significant at least in one of the two model 

formulation presented. The marginal utility travel time is lower for individuals who 

http://www.ivt.ethz.ch/vpl/research/mobidrive
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are married with child(ren), for females working part time and for work trips. 

Conversely the marginal utility of travel time increases (is smaller in absolute value) 

with the number of stops realized during the tour (the more stops the less the disutility 

of the time spent traveling, maybe because activities are performed at each stop), and 

for walk, bike or ride public transportation for educational purpose (students care less 

about travel time). 

As for the preference for each alternative, it is not surprising that the car driver is 

preferred by people who are mainly car-users and that car as passenger alternative is 

preferred by those traveling for leisure. It is important to note that more systematic 

heterogeneities have been found, but they have not been included in the final 

specification either because they were not consistent with the behavioural theory or 

because they generated confounding effects. Random heterogeneity is found to be 

highly significant for time and cost coefficients. Alternative specific constants are also 

assumed to be randomly distributed, significance differs across the two formulations 

cross and panel; we also report quite a lot of instability around the mean values. The 

fit of the models significantly increases when accounting for correlation across 

observations from the same week, which is in part to be expected due the panel nature 

of the dataset.  

 

Table 1. Mobidrive data – Model results 

 

  Mixed logit (cross) Mixed logit (panel) 

Variable Alts. Estimates (t-stat.) Estimates (t-stat.) 

ASC Car Passenger (m.) CP -2.4226 (-5.43) -0.0640 (-0.35) 

ASC Car Passenger (s.d.)  3.3583 (4.90) 2.0408 (18.14) 

ASC Public Transport (m.) PT 0.2646 (0.99) 0.0318 (0.18) 

ASC Public Transport (s.d.)  4.6422 (6.60) 3.0644 (22.26) 

ASC Walk (m.)  W -1.2411 (-4.09) -0.1091 (-0.39) 

ASC Walk (s.d.)  0.0692 (0.15) 2.2956 (11.76) 

ASC Bike (m.) B -2.4490 (-7.48) -2.9155 (-17.50) 

ASC Bike (s.d.)  2.0118 (5.46) 3.8663 (19.51) 

Time (m.) All -0.0515 (-4.67) -0.0889 (-8.53) 

Time (s.d.)  0.0322 (4.02) 0.0900 (9.97) 

Cost (m.) All -0.4793 (-6.01) -0.2094 (-7.36) 

Cost (s.d.)  0.2351 (4.84) 0.1539 (6.15) 

Time x married with child(ren) All -0.0418 (-4.89) -0.0645 (-6.28) 

Time x work All -0.0603 (-5.65) -0.0058 (-0.52) 

Time x female and Part Time All -0.0399 (-4.57) -0.0636 (-5.66) 

Time x number of Stop(s) All 0.0095 (3.54) 0.0134 (3.72) 

Time x education PT, W, B 0.0120 (1.47) 0.0622 (8.39) 

Main car user CD 3.7613 (6.99) 3.3265 (16.29) 

Leisure CP 3.8374 (5.79) 1.8921 (16.75) 

Time x Sub Urban location PT 0.0576 (5.48) 0.0494 (8.32) 

Urban location PT -2.4174 (-5.25) -1.4948 (-4.54) 

Log-likelihood (0)  -1.0737  -6.5141  

Log-likelihood (final)  -0.7178  -3.2764  

Number of (independent) 

individuals  

 
4089  674 
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We present in Figure 5 and Figure 6 the bias and the MSE obtained from Mobidrive 

estimated as panel data. The cross-sectional case presents strong optimisation bias and 

the results cannot be correctly interpreted with respect to the simulation bias. 

Optimisation bias also affects the reported results; in particular nothing can be said 

about the case in which we have estimated the model on 1,000 observations. It can 

however be interesting to compare the optimal values of the log-likelihood function 

when the bias correction is applied to those obtained without correction (Table 2). 

 
Table 2. Optimal values of Log-likelihood function 

 

Number of draws (R) 500 1,000 2,000 

not corrected -3.1312 -3.1338 -3.1327 

corrected -3.1276 -3.1276 -3.1297 

 
We observe that for 1,000 draws an optimisation bias exists; the value of the log-

likelihood function obtained with R = 1,000 is in fact -3.1338 (with the bias correction 

being applied). This is in contrast with the decreasing values towards the “true” value 

obtained with a very high number of draws, and from Table 2, we observe that 

optimisation bias here dominates simulation bias. 

Simulation bias appears to dominate when the model is estimated with 2,000 and 

4,000 observations. The significant reductions in bias are obtained in the following 

three cases:  

 

 number of observations equal to 2,000 and number of draws equal to 2,000, 

where the bias reduction is about 28 percent; 

 number of observations equal to 4,000 and number of draws equal to 1,000, 

where the bias reduction is 20 percent; 

 number of observations equal to 4,000 and number of draws equal to 2,000, 

where the bias reduction is 62 percent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

Figure 5. Bias – Mobidrive panel        Figure 6. MSE – Mobidrive panel 
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Although this application limits the spectrum of the possible analyses, we can 

conclude that the simulation bias can be significant when the number of observations 

increase and that significant reduction in its absolute value can be obtained by 

increasing the maximum number of draws when maximizing the log-likelihood 

function. Our computation results confirm what the theory predicts. In such cases 

however, applying the Taylor-based bias correction appears to be efficient, as the 

simulation bias is then more important than the optimisation bias. 

The dominance of the optimisation bias over the simulation bias when the 

population size is small is consistent with theoretical predictions. For a fixed number 

of draws per individual, the overall variance decreases as the population size 

increases, and consequently, the optimisation bias is also smaller in magnitude. 

Considering that, on the other side, the simulation bias is not affected by the 

population size, the correction is therefore especially interesting for large population 

sizes, for which computation budget can limit the number of draws (per individual) we 

can afford. 

However, as already stated in Section 2, the use of Taylor expansion for bias 

correction could be a potential source of additional variance, and the correction itself 

can be biased. While the bias estimation already received numerical support in Bastin 

et al. (2006a), this correction may appear as potentially harmful. With regards to the 

variance calculation, it should be noted that the same random draws are used when 

computing the log-likelihood and the bias correction, creating a strong correlation 

between these two quantities. The use of common random numbers is popular as a 

variance reduction technique, and the proposed approach takes benefit of it. It is 

nevertheless difficult to assess the impact of common random numbers, so we made a 

simple validation test by computing the value of the objective function at the solution 

that has been found, but with new random draws and computed the resulting 

deviations. We repeat the procedure 36 times, and assuming the central limit theorem 

holds, we also compute the half interval width for 90 percent confidence. We limit 

ourselves to the application to real data, as it exhibits better the limits of the approach, 

and to the run with 4,000 observations, since the more observations we have, the less 

we can use random draws for a given computation time. We compute the key statistics 

for one estimation run, and report results in Table 3, where „C.I. radius‟ indicates the 

confidence half-interval. We observe very similar standard deviations before and after 

correction, suggesting that the correction does not add any substantial additional 

variance. From the tables, we see that the bias estimator standard deviation is small 

compared to the log-likelihood standard deviation. Additional tests also exhibited that 

the correlation between the bias estimator and the simulated log-likelihood is not 

significant. These facts (more than the use of common random variables) explain the 

variance stability. 

 

Table 3. Empirical variance of the LL at the optimal solution (4,000 obs.) 

 

Number of draws  

Correction 

500 

without 

500 

with 

1,000 

without 

1,000 

with 

2,000 

without 

2,000 

with 

Mean log-likelihood -3.2992 -3.2852 -3.2895 -3.2828 -3.2799 -3.2763 

Standard deviation 0.0079 0.0075 0.0055 0.0056 0.0036 0.0037 

C.I. radius 0.0130 0.0123 0.0090 0.0093 0.0058 0.0060 
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Our bias estimate nevertheless still suffers from another deficiency. Due to the 

presence of the choice probabilities in the denominators of the bias estimator, we 

inevitably introduce an additional bias, even if the estimator is strongly consistent. 

This new bias have to remain small compared to the applied correction, otherwise the 

objective function deteriorates. It is again quite difficult to quantify this new bias. In 

order to validate our proposed method, we turn on bootstrap estimation techniques. 

Using the conditional choice probabilities, with respect to the specific random draws, 

we compute bootstrap estimates of the value of the objective function at the solution 

by sampling over these probabilities. Using 500 replications, we compute the variance 

and the bias of the value of the objective function at the solution, as well as the bias of 

our bias estimate. Results can be found in Tables 4, 5, and 6. In Table 4, we report the 

log-likelihood at the solution without correction, and in Table 5 the correspondent 

value obtained by applying the correction. The bias has been estimated as described in 

Chapter 10 of Efron and Tibshirani (1993), using both standard and improved 

techniques, the last normally being more accurate. 

From Tables 4-6, we observe that the variance of the log-likelihood function is 

not significantly affected by the correction. The correspondence between standard and 

improved bias estimation suggest that 500 replications were enough. Tables 4 and 5 

show significant bias reduction although bias cannot be totally eliminated. The 

residual bias can be partly explained by the correction estimator bias, whose values are 

given in Table 6. The positive value indicates that we underestimate the true bias, but 

that the error remains small. 

We could finally note that the bootstrap bias estimate seems to be less accurate 

than the Taylor correction. Moreover, its own variance makes its use as an alternative 

correction potentially hazardous; bootstrap estimate relies on the initial sample and 

randomness is introduced when using new draws (from the empirical function). The 

computation time, while reasonable, is certainly higher than the time required by the 

Taylor correction.  

 

Table 4. Log-likelihood bootstrap analysis (standard estimates) 

 

Number of draws  

Correction 

500 

without 

500 

with 

1,000 

without 

1,000 

with 

2,000 

without 

2,000 

with 

Mean -3.3186 -3.3078 -3.2964 -3.2903 -3.2830 -3.2787 

Standard deviation 0.0066 0.0066 0.0060 0.0061 0.0047 0.0048 

Bootstrap bias -0.0139 -0.0031 -0.0088 -0.0027 -0.0056 -0.0018 

Improved bias -0.0134 -0.0026 -0.0088 -0.0026 -0.0054 -0.0017 

 

Table 5. Log-likelihood bootstrap analysis (corrected estimates) 

 

Number of draws  

Correction 

500 

without 

500 

with 

1,000 

without 

1,000 

with 

2,000 

without 

2,000 

with 

Mean -3.3173 -3.3060 -3.2968 -3.2905 -3.2886 -3.2849 

Standard deviation 0.0079 0.0080 0.0061 0.0062 0.0046 0.0048 

Bootstrap bias -0.0166 -0.0052 -0.0091 -0.0027 -0.0056 -0.0019 

Improved bias -0.0160 -0.0045 -0.0090 -0.0027 -0.0054 -0.0017 
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Table 6. Bias estimator properties 

 

Number of draws  

Correction 

500 

without 

500 

with 

1,000 

without 

1,000 

with 

2,000 

without 

2,000 

with 

Mean -0.01080 -0.01142 -0.00616 -0.00632 -0.00372 -0.00372 

Standard deviation 0.00049 0.00052 0.00036 0.00037 0.00032 0.00032 

Bootstrap bias 0.00095 0.00126 0.00065 0.00068 0.00058 0.00058 

Improved bias 0.00097 0.00122 0.00066 0.00070 0.00058 0.00058 

 

4 Bias effects on VOT and market share  

 
We extend our analysis to the effects of simulation bias on significant outcomes of 

discrete choice models: the value of travel time and the market share. In Figure 7 we 

report travel time and travel cost distributions obtained with the model estimated on 

2,000 observations using 2,000 draws per individual; standard distributions, corrected 

distributions and reference distributions obtained with 10,000 draws are compared. 

The correction effect is evident on both travel time and travel cost coefficients; in 

Table 7 we observe that by correcting the bias the values of travel time savings are 

closer to the true values obtained with a very high number of draws. 

 
 

Figure 7. Travel time and travel cost coefficients – 2,000 observations 2,000 draws 
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Table 7. Value of travel time (GM/h) savings 2,000 observations 2,000 draws 

 

Quartile not corrected corrected 10,000 

25% 6.43 4.67 1.31 

50% 12.59 12.41 10.5 

75% 19.78 22.31 23.45 

 
A better fit can be observed also in the second case analysed, where the model has 

been estimated on 4,000 observations using 2,000 draws (see Figure 8 and Table 8). 

 

 
 

Figure 8. Travel time and travel cost coefficients – 4,000 observations 2,000 draws 

 
Table 8. Value of travel time (GM/h) 4,000 observations 2,000 draws 

 

Quartile not corrected corrected 10000 

25% 3.93 1.74 2.32 

50% 21.26 20.25 19.86 

75% 45.91 46.32 44.63 

 
Finally we apply the model calibrated on 2,000 observations to the remaining 2,000 

observations available in the Mobidrive dataset in order to predict their market shares. 
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Results are shown in Table 9; again corrections are able to get results closer to the 

reference values obtained with 10,000 draws per individual. 

 

Table 9. Market share 2,000 observations 2,000 draws 

 

 not corrected corrected 10,000 

Car as driver 34.5 34.1 34.2 

Car as passenger 13.4 13.1 12.6 

Public transport 16.9 17.4 17.6 

Walk 22.7 22.9 22.9 

Bike 12.5 12.5 12.5 

 

5 Conclusions 

 
In this paper, we have quantified simulation bias on the log-likelihood function in 

mixed logit models. Bias calculation is based on a second-order Taylor expansion; the 

formulation used is similar to the one proposed by Gouriéroux and Monfort (1993) but 

is computationally more tractable. We have also studied the effect of simulation bias 

on the parameters estimation. Both synthetic and real data have been used to explore 

the problem. Results from simulated experiments clearly show that the methodology is 

able to correct the bias and that the most significant corrections are obtained when a 

low number of draws is used to optimize the log-likelihood function. In this study, 

simulation bias dominates as the number of observations increases. Those results are 

consistent with what the theory predicts. The analysis has also been extended to real 

data: a panel data extracted from a six-week travel diary. Here the results are less 

clear; however the instability of the results can be explained by the presence of the 

optimisation bias, that depends on the variance of the simulated log-likelihood, while 

this variance is not affected by the bias correction. The optimisation bias is well 

known in stochastic programming, but unfortunately cannot be a priori quantified; we 

however know that it has positive sign, therefore opposite to the simulation bias, and 

increases with overall variance, and consequently is more important for small 

population sizes. We found that the bias correction has benefit effect on the parameter 

estimation and that significant reduction of bias can be obtained, especially when the 

population size increases. The use of common random numbers makes this correction 

virtually free, that does not significantly increase the log-likelihood variance, and it 

only suffers from a small bias. Analysis on the value of travel time and market shares 

also shows that beneficial effects are obtained by applying the simulation bias 

correction. 

In view of the negligible computation cost and direct implementation, we 

therefore suggest applying this correction when estimating mixed logit models. A 

natural follow up of this research work is the calculation of the simulation bias when 

quasi-random techniques are adopted to approximate the integration space. This is 

possible if the variance is somehow quantified during the optimisation process. We are 

currently exploring the extension of the adaptive sampling size strategy to randomized 

quasi-Monte Carlo methods. Randomized quasi-Monte Carlo techniques try to benefit 

from the best of the two worlds: better uniform coverage than standard Monte Carlo, 

and easy error estimation. In particular, the randomization implies that our theoretical 

analysis is still valid, with a different, hopefully smaller, standard deviation. The 

calculation of this last quantity at a particular step of the estimation process is however 
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computationally expensive, as we have to repeat the likelihood evaluation with 

different randomized draws set. The total cost can however remain significantly 

smaller. Additional numerical investigation is therefore required to correctly address 

the potential advantages in this case. 
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