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On the concavity of the arithmetic volumes

Hideaki Tkoma

October 23, 2014 (Kinosaki Symposium).

1 Introduction

We pursue the following analogy.

Convex geometry Algebraic geometry | Arakelov geometry
(Bonnesen, (Boucksom-Favre
Diskant, ...) -Jonsson, Cutkosky)
convex bodies nef & big divisors nef & big —
Euclidean volumes vol(P) vol(P)
mixed volumes deg(P? - Q4mX—7) deg(P" - _dlmXﬂ)
P, ): homothetic P=m@ PrpQ
inradius s(P, Q) = s(P,Q) = s(P,Q)
sup{t : P D tQ + ¢,3c} | sup{t: P —tQ is psef}

In [7], Yuan showed that the arithmetic volumes also fit into the Brunn-
Minkowski inequality, that is, if X is a projective arithmetic variety and P, )
are pseudo-effective arithmetic (R-Cartier) R-divisors on X, then

vol(P + Q)@ > vol(P)ax + vol(Q)aw. (1.1)

Our purpose is to obtain equality conditions for this inequality (Theorem 4.5).
Let me illustrate the ideas with a toy example.

Toy case Let A = diag(a,...,a,), B = diag(b,...,b,) be diagonal
positive-definite matrices. The mixed volumes of A, B are given by

V(AR . pn=k)) :T > e I]v
k

Ic{1,...,n}, i€l jeI
=k



The AM-GM inequality says that Vk

()
vA®. gy > T T[]0 = det(A) " det(B)" %"
Ic{1,...,n}, i€l JjeI
HI=k

(1.2)
and

det(A+ B) = (Z) V(AR . Bk
k=0

> ; (Z) det(A)% det(B)"5" = (det(A)% + det(B)%>". (1.3)

By the equality condition for the AM-GM inequality, we know that equalities
in (1.2) Vk iff a1/by = -+ = a,/b,. But we can also go by a very very
roundabout way ...

Alexandrov inequality (Corollary 2.6). Let C' = diag(cy,...,c,) be an-
other positive definite matriz. Then

V((A+B)"D.0) T > V(AP D . )it 4 V(BMY Oy (1.4)

Diskant inequality (Theorem 4.4). Set s = s(A, B) = min{a;/b;}. Then

1

0< (V(A<n—1> . B)"T — sdet(B)ﬁ)" < V(A=D.B)71 _det(A)-det(B) .

(1.5)
Proof. Since s = sup{t € R : det(A —tB) > 0}, we have
det(A) = n / V((A—tB)"V . B) di
=0
$ 1 1 \n—1
< n/ (VA" B)=T — tdet(B)7T) " at
=0
by (1.4). We can calculate the last integral. ]

If equality in (1.3), then, by (1.5), s(A, B) = s(B, A)~' = (det(A)/ det(B))x.
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2 Arithmetic R-divisors

Let me explain some terminology. Let X be a normal projective arithmetic
variety, that is, a normal and integral scheme projective and flat over Spec(Z).
We set d := dim X —1 and denote the rational function field of X by Rat(X).

Definition 2.1 (Arith. R-divisors). An arithmetic R-divisor is a pair D =
(D,g) of an R-Cartier R-divisor D = a;D; + -+ + @yD; and a D-Green
function g : (X \ JSupp(D;))(C) — R, that is, ¢ is continuous, invariant
under the complex conjugation, and, Vp € X (C),

up(w) = g(x) + > ailog | fi(a)[” (2.1)

extends to a C%-function around p, where f; is a local equation defining D;
around p. We denote the (oo-dimensional) R-vector space of all the arith.
R-divisors on X by Div(X).

Example 2.1. Let L = (L, |-|) be a continuous Hermitian line bundle on X,

and let s be a non-zero rational section of L. Then CTRI(S) ;= (div(s), — log |s|?)
is an arith. R-divisor of C-type.

Example 2.2. A ¢ € Rat(X)* ®z R is a formal product ¢7'--- ¢S with
¢; € Rat(X)* and e; € R. Such ¢ defines an arith. R-divisor by

o~

(6) = ex((é1), —log|d1|*) + -+ + e (), — log |, [*).

Given an arith. R-divisor D on X, we set
H°(D) :={¢ € Rat(X)* : (¢)+ D >0} u{0}

and
H°(D) = {¢ € H'(D) : ||g]|%, < 1},

sup X

where || - ||9,, is the sup norm on H°(D) ®z R defined as

sup
p x
91,y = esssuplo(x) exp (£ ).
zeX(C)
An aritIAl. R;divisor D is said to be effective it D > 0 and g > 0. D is effective
iff 1 € HO(D).
Definition 2.2 (Arith. volumes). The arith. volume of D is defined as

—~ log tH(mD)
vollD) = B sp =7 i 1
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Remark 2.1. (1) The function D — XTO\I(E) is positively homogeneous of
degree dim X and continuous (Moriwaki [5]).

(2) D is called big if \751(5) > (0. The cone of all the big arith. R-divisors
is denoted by Big(X).

(3) D is called pseudo-effective if \To\l(z) > 0 implies \7(;1(3 + A) > 0.

Let D = (a1 Dy +---+a;Dy, g) be an arith. R-divisor on X. Assume that
D; are all effective and Cartier.

Definition 2.3 (Heights). Given a rational point x € X(Q), we denote the
minimal field of definition for x by K (x) and the normalization of {x} by C,.
If (%) ¢ Supp(D;), Vi, then we define the height of x as

l
1 o
hﬁ(l’) = m ZZI a; IOg JjOCT (Dz)/OCT + 5 UZK%_}(C g(.T )

—

In general, we can choose a suitable ¢ € Rat(X)* @z R s.t. D + (¢) satisfies
the condition (x).

(1) D is said to be nef if D is relatively nef, u, (2.1) is continuous PSH Vp,

and hp(z) > 0 Ve € X(Q). The cone of all the nef arith. R-divisors on
X is denoted by Nef(X).

D is said to be integrable if D can be written as (nef arith. div.) —
2) D d b ble if D b f h.d
(nef arith. div.). The (co-dimensional) R-vector space of all the inte-

grable arith. R-divisors on X is denoted by I/n\t(X ).

Example 2.3. Let P¢ = Proj(Z[Xy, ..., X,]) be the projective space. Let
H :={Xy, =0} and let

grs = log (14 | X1/Xo> + -+ + | Xa/Xo|?) -

Then H = (H, grs) is nef and big (but not arithmetically ample). If we add
some A > 0, then (H, grs + A) is arithmetically ample.

Define the naive height of a rational point z := (¢ : - -+ : 74) € P%(Q) as
1
Puaive() 1= = > log (max{[il.})
Kwog 2 el

which is invariant under the multiplication by o € K(x)* by the product
formula. Then we can prove hpave(z) = hyg(z) + O(1). (In other words,
hp 4+ O(1) gives the Weil height associated to D.)

4
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Proposition-Definition 2.2. There exists a unique, symmetric (in Dy, ..., Dq_1),
multilinear, and continuous map

d-times
7\

deg : Int(X) x -+ x Int(X) xDiv(X) — R,
(EU, e ,Edfl;ﬁd) — d/e\g(ﬁo .. bd>

having the following properties.
(1) For every nef arith. R-divisor N, d/c:g(w'dﬂ) = \7(;1(N).

(2) If Dy, ..., Dq_1 are nef and Dy is pseudo-effective, then Ee\g(bo - Dy) =
0.

Remark 2.3. (1) The above map extends the usual arith. intersection num-
bers of C*°-Hermitian line bundles (that is defined by the *-products).

(2) As in the algebraic case, D is pseudo-effective iff, for any normalized
blow-up ¢ : X’ — X and for any nef arith. R-divisor H on X’,

deg(H* - " D) > 0
(|4, Theorem 6.4]).

Theorem 2.4 (Faltings, Hriljac, Moriwaki, Yuan-Zhang, ...). Let D be an in-
tegrable arith. R-divisor. Let Hy, ..., Hy be nef arith. R-divisors s.t. Hiq,...,Hqo
are all big.

(1) If deg(Dg - Hoq -+ Hyg) = 0, then JeTg(E'Q "Hy---Hy) <0,
(2) Ifdeg(D - H, -+ Hy) =0, then deg(D”> - Hy -+~ Hy) < 0.

Sketch of proof. (1) By using an arith. Bertini theorem, we can reduce the
result to Faltings-Hriljac’s theorem (on arith. surfaces).

(2) Set t =deg(Dg- Hyg- -+ Hag)/deg(Hig - Hag - Hag) and apply (1)
to D—tHl,Hg,...,Hd.
O

Remark 2.5. Yuan and Zhang [8] have proved that (under suitable conditions)
the equality holds in (1) iff D comes from Spec(H"(Ox)).

Corollary 2.6. Let D, E, Hy,..., Hy be nef arith. R-divisors on X.
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(1) (Teissier-Khovanskii-type) For any i with 1 <i < d,

ge\g<52 ) E~(d—i+1))2 2 ge\g(ﬁ(l—l) ) E~(d—i+2)) . ge\g(ﬁ(l-i-l) . E(d—z))
(2) For any k with 1 <k < d+1 and for any i with 0 <i < k,
deg@" BV H, - H)
> deg(D" - Hy---Ha) - deg(E" - Hy-- - Hy)* .
(3) (Alexandrov-type) For any k with 1 <k < d+1,
deg(D+E)* Hy---Hy)*
> deg(D" - Hy- - Ha)

Eall
=

+deg(E" - Hy---Hy)t.

3 Arithmetic positive intersection numbers
An approzimation of D is a pair (¢ : X' — X, M) having the following
properties.

(1) ¢ is a projective birational morphism s.t. X' is normal and Xg is
smooth.

(2) M is a nef arith. R-divisor on X’ s.t. ©*D — M is pseudo-effective.

We denote the set of all the approximations of D by @(E) If D is pseudo-
effective, then ©(D) # 0.

Definition 3.1. Let 0 < n < d. Suppose that Dy, ..., D, are all big and
that Dyq1,..., Dq are all nef and big. The arithmetic positive intersection

number of (Do, ..., Dyp; Dyiy,...,Dy) is defined as

(50 . -ﬁn>5n+1 oDy = sup deg(Wo oMy @*Dygq - @*5d)-
(¢,M;)€O(D;)

Proposition 3.1. (1) The map
Big(X) " x (Nef(X) N Big(X))**™ — R,
(Do, ..., Dp; D1y, Dg) = (Do -+ Dy)Dyyy -+ Dy,
18 multi-additive in ﬁn+l, ...,D4 and uniquely extends to

E%(X)X(HJF” % ﬂﬁ](X)X(din) — R,
(Do Do Dostr .. D) v (Do -+ Do) Doss -+ D,
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(2) If n =d — 1, then we can further extend the map to
Big(X)** x Div(X) — R,
(Eo, e 7Ed—1§5d) — <EO .. -Ed_1>ﬁd.

Theorem 3.2 (Arithmetic Fujita approximation: Yuan [7], Chen [2]). If D

is big, then vol(D) = (E'(dﬂ)).

By Corollary 2.6 + Theorem 3.2, we have

Proposition 3.3. Let D, E be big arith. R-divisors. For any i with 1 <i <

d—1,
<E.z 'E-(d71+1)> > ;51(5) = @(E) d;rlrl
and d w4 o
(DYE > (D" E) > vol(D)##1 - vol(E) 1.

In particular,

e E— dtl —_— —d—1 —_ 1 —_— 1 d+1
vol(D+ E) > Z <d+ 1) D" 1k z+1> > (Vol(D)ﬁ —|—V01(E)ﬁ> .

: 1
=0

4 Concavity of the arithmetic volumes
Theorem 4.1 (Yuan [6]). If D, E are nef arith. R-divisors, then
vol(D — E) = vol(D) — (dim X)deg(D* - E).

Corollary 4.2. The function D \751(5) is differentiable al big arithmetic
R-divisors. If D s big and E is arbitrary, then

PH& vol(D + tii) — vol(D)

— (dim X)(D)E.

Suppose that D is big. The (positive) height of X is defines as
vol(D)
(dim X') vol(Dg) "

hi(X) = (4.1)

A sequence (z,,) of rational points on X is said to be generic if every subse-
quence is Zariski dense in X. If (x,,) is generic, then

lim inf h(z,) = hE(X). (4.2)

n—oo

7
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Moreover, if hy5(2,) converges to hi(X) and we move D along D +t(0,2f),

then the both functions in (4.2) have the same slope at D. So we can extend
the equidistribution theorem (Yuan [6], Berman-Boucksom [1], Chen [3], ...)
to the case of big arith. R-div’rs.

Corollary 4.3. Let f : X(C) — R be a continuous function that is invariant
under the complex conjugation, and let (z,) be a generic sequence of rational
points. If hp(x,) converges to hi(X), then

- o DY02))
nh—>n<;>lo [K (z,) : Q] U:K%_)Cf( ) vol(Dg)

Theorem 4.4 (Diskant inequality). If D is big and P is nef and big, then

— —

dy 5y 1 -2\ 4! =d sS4l A S\ 1
0< ((D)P)1 = svol(P)1) < ((D*)P)"* — vol(D) - vol(P),
where s = s(D, P) = sup{t € R : D —tP is pseudo-effective}.
Theorem 4.5 ([4]). Let D, E be nef and big arith. R-divisors. TFAE.
(1) vol(D + E)#7 = vol(D)# + vol(E)#1.

— . —-(d7i+1)> —_— i — d—i+t1

(2) Fori with1<i<d, deg(D"-E = vol(D) @1 - vol(E) a1 |

—_ 1

(3) deg(D” - E) = vol(D)#1 - vol(E) .

(4) 36 € Rat(X)*, B
D E— ]

1 e 1

vol(D)#1  vol(E) @1

Proof of Theorem 4.5. (4) = (1) = (2) = (3) are obvious (by the arith.
Teigsier-Khovanskii inequalities). The key is (3) = (4).
By the arith. Diskant inequality, we have

=s(D,E) = ;O\I(E) - an s(E,D)=s"!
s=s(D,F) (@(E)) d s(E,D) .

Thus D — sE and sE — D are both pseudo-effective. By Moriwaki’s Dirichlet
theorem, we have (4). O
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5 Computation formula

Suppose that Xg is smooth and fix a volume form w with fX(C) w = 1. Given

a big arith. divisor D, blow-up X along
b(mD) := Image <<f[0(mﬁ)> ®z Ox(—mD) — OX) :
zZ

We obtaigum : X — X s.t. X, is normal, the generic fibre X,, g is smooth,
and b(mD)0Oy,, is Cartier. Set

F(mD) :=b(mD)Ox, and M(mD) = u,(mD)— F(mD).

We can endow these divisors with GreAen fug:tions as follows:
Take an L>-ONB ey, ..., e, for <H0(mD)>(C and let

Berg(mD)(z) = |ex(x)]* + - + ley, ()", 2 € X(C),

be the Bergman function.
We can define a continuous Hermitian metric on Ox,, (F(mD)) by

e l(2) = /Berg(mD) (1 (@), @ € Xun(C).

Then F(mb_) = (F(mD), —u, log Berg(mD)) is effective and M(mD) :=

wt (mD) — F(mD) is nef. B
Suppose that Xq is smooth. Let D be a big arith. divisor.

Theorem 5.1. Let k be an integer with 1 < k < d+1, lel Dy, ..., D, be big
arith. R-divisors, and let D, 1, ..., Dy be integrable arith. R-divisors. Then

' AA\D —= Dy---D)NM(mD)*-D,,,---D
(D" Dy -Dy)Dypyy - Dy = lim< k YM(mD) o ¢

m—0o0 mk

Corollary 5.2 (Asymptotic orthogonality).

i deg(M(mD)* - F(mD))

m—00 md+1

=0.

6 Applications

Definition 6.1. An arith. Zariski decomposition of a big arith. R-divisor D
isasum D = P+ N s.t. P is a nef arith. R-divisor, N is an effective arith.

R-divisor, and vol(P) = vol(D).
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Remark 6.1. (1) If dim X = 2, then an arith. Zariski decomposition of a
big D always exists and unique (Moriwaki [5]).

(2) If dim X > 3, there exists no arith. Zariski decomposition in general
even after any blow-up of X (Moriwaki "11).

Example 6.1. Let P2 = Proj(Z[X,, X1, X5]) and let z; := X;/ X, be the
affine coordinate. Let H := {X, = 0} and let

g = max {—2,log | X1/ Xo|* + 2, log | X2/ Xo|* + 2},

which is an H-Green function of PSH-type. Moreover, we can add a “bump”
p: P?(C) — R such that

Supp(p) € {|z1] < exp(=2)} x {[2] < exp(=2)}.

Then H = (H, g + p) are big and non-nef (hy7(1: 0:0) < 0 or g + p is not
of PSH-type).
Blow up P2 with center (1:0 :0), viz. over {Xy # 0},

@ : Proj(Zz1, »|[V1, Y]/ (22Y1 — 21Y2)) — {Xo # 0}
Then ¢*H admits an arith. Zariski decomposition. Let E be the exceptional
divisor and let w;; :=Y;/Y;. Then the positive part is given by
— 1
P= <90*H — §E, max {log |ziwa |, log | ziwig|, log |zsw;1 |* + 2, log | ziwsa |* + 2}) ,
the negative part is

- 1
N = (§E,max {0, —2 — max {log | z;w;1], log | z;wia |} } + go*p) >0,

and vol(H) = vol(P) = 5/4.

Corollary 6.2. Let ]_3,_@ be nef and big arith. R-divisors. If;(;l(ﬁ) = \7(;1(6)
and P > @, then P = Q).
Proof.

2vol(P) 71 = vol(P) 7 + vol(Q) 71 < vol(P + Q)71 < vol(2P) 7.
Thus, by Theorem 4.5, 3¢ € Rat(X)* @z R s.t. P—Q = @ > 0.

o~ o~

()20 & (9)=0 (& ¢eH(0x)@zR).
O

Corollary 6.3. An arith. Zariski decomposition of a big arith. R-divisor is
(if it exists) unique.

10

97



Acknowledgement I thank the organizers for giving me this opportunity.
I thank Professors Moriwaki and Kawaguchi for communications. This re-
search is supported by Research Fellow of Japan Society for the Promotion
of Science.

References

1]

2

3]

4]

[5]

6]

|7

18]

Robert Berman and Sébastien Boucksom. Growth of balls of holomor-
phic sections and energy at equilibrium. Inventiones Mathematicae,

181(2):337-394, 2010.

Huayi Chen. Arithmetic Fujita approximation. Annales Scientifiques de
’Ecole Normale Supérieure. Quatriéme Série, 43(4):555-578, 2010.

Huayi Chen. Differentiability of the arithmetic volume function. J. Lond.
Math. Soc. (2), 84(2):365-384, 2011.

Hideaki Tkoma. On the concavity of the arithmetic volumes. to appear in
International Mathematics Research Notices (available at http://arxiv.
org/abs/1310.8424), 2013.

Atsushi Moriwaki. Zariski decompositions on arithmetic surfaces. Publ.
Res. Inst. Math. Sci., 48(4):799-898, 2012.

Xinyi Yuan. Big line bundles over arithmetic varieties. Invent. Math.,
173(3):603-649, 2008.

Xinyi Yuan. On volumes of arithmetic line bundles. Compositio Mathe-
matica, 145(6):1447-1464, 20009.

Xinyi Yuan and Shou-Wu Zhang. The arithmetic Hodge index theorem
for adelic line bundles I: number fields. preprint available at http://
front.math.ucdavis.edu/1304.3538, 2013.

Graduate School of Mathematical Sciences,
The University of Tokyo,

Tokyo, 153-8914, Japan
ikoma@ms.u-tokyo.ac.jp

11

98



