

Kyoto University Research Info	rmation Repository RTOTO UNIVERSITY
Title	On the concavity of the arithmetic volumes
Author(s)	Ikoma, Hideaki
Citation	代数幾何学シンポジウム記録 (2014), 2014: 88-98
Issue Date	2014
URL	http://hdl.handle.net/2433/215017
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On the concavity of the arithmetic volumes

Hideaki Ikoma

October 23, 2014 (Kinosaki Symposium).

1 Introduction

We pursue the following analogy.

Convex geometry	Algebraic geometry	Arakelov geometry
(Bonnesen,	(Boucksom-Favre	
Diskant,)	-Jonsson, Cutkosky)	
convex bodies	nef & big divisors	nef & big —
Euclidean volumes	$\operatorname{vol}(P)$	$\widehat{\operatorname{vol}}(\overline{P})$
mixed volumes	$\deg(P^i \cdot Q^{\dim X - i})$	$\widehat{\operatorname{deg}}(\overline{P}^i \cdot \overline{Q}^{\dim X - i})$
P, Q: homothetic	$P \equiv_{\text{num}} Q$	$\overline{P} \sim_{\mathbb{R}} \overline{Q}$
inradius $s(P,Q) =$	s(P,Q) =	$s(\overline{P},\overline{Q})$
$\sup\{t: P\supset tQ+c, \exists c\}$	$\sup\{t: P - tQ \text{ is psef}\}$	
:	:	:

In [7], Yuan showed that the arithmetic volumes also fit into the Brunn-Minkowski inequality, that is, if X is a projective arithmetic variety and $\overline{P}, \overline{Q}$ are pseudo-effective arithmetic (\mathbb{R} -Cartier) \mathbb{R} -divisors on X, then

$$\widehat{\text{vol}}(\overline{P} + \overline{Q})^{\frac{1}{\dim X}} \geqslant \widehat{\text{vol}}(\overline{P})^{\frac{1}{\dim X}} + \widehat{\text{vol}}(\overline{Q})^{\frac{1}{\dim X}}.$$
(1.1)

Our purpose is to obtain equality conditions for this inequality (Theorem 4.5). Let me illustrate the ideas with a toy example.

Toy case Let $A = diag(a_1, ..., a_n)$, $B = diag(b_1, ..., b_n)$ be diagonal positive-definite matrices. The mixed volumes of A, B are given by

$$V(A^{(k)} \cdot B^{(n-k)}) = \frac{1}{\binom{n}{k}} \sum_{\substack{I \subset \{1, \dots, n\}, \\ \sharp I = k}} \prod_{i \in I} a_i \cdot \prod_{j \notin I} b_j.$$

The AM-GM inequality says that $\forall k$

$$V(A^{(k)} \cdot B^{(n-k)}) \geqslant \left(\prod_{\substack{I \subset \{1, \dots, n\}, \ i \in I}} \prod_{i \in I} a_i \cdot \prod_{j \notin I} b_j \right)^{\binom{n}{k}^{-1}} = \det(A)^{\frac{k}{n}} \det(B)^{\frac{n-k}{n}}$$
(1.2)

and

$$\det(A+B) = \sum_{k=0}^{n} \binom{n}{k} V(A^{(k)} \cdot B^{(n-k)})$$

$$\geqslant \sum_{k=0}^{n} \binom{n}{k} \det(A)^{\frac{k}{n}} \det(B)^{\frac{n-k}{n}} = \left(\det(A)^{\frac{1}{n}} + \det(B)^{\frac{1}{n}}\right)^{n}. \tag{1.3}$$

By the equality condition for the AM-GM inequality, we know that equalities in (1.2) $\forall k$ iff $a_1/b_1 = \cdots = a_n/b_n$. But we can also go by a very very roundabout way ...

Alexandrov inequality (Corollary 2.6). Let $C = \text{diag}(c_1, \ldots, c_n)$ be another positive definite matrix. Then

$$V\left((A+B)^{(n-1)}\cdot C\right)^{\frac{1}{n-1}} \geqslant V(A^{(n-1)}\cdot C)^{\frac{1}{n-1}} + V(B^{(n-1)}\cdot C)^{\frac{1}{n-1}}.$$
 (1.4)

Diskant inequality (Theorem 4.4). Set $s = s(A, B) = \min\{a_i/b_i\}$. Then

$$0 \leqslant \left(V(A^{(n-1)} \cdot B)^{\frac{1}{n-1}} - s \det(B)^{\frac{1}{n-1}} \right)^n \leqslant V(A^{(n-1)} \cdot B)^{\frac{n}{n-1}} - \det(A) \cdot \det(B)^{\frac{1}{n-1}}.$$
(1.5)

Proof. Since $s = \sup\{t \in \mathbb{R} : \det(A - tB) > 0\}$, we have

$$\det(A) = n \int_{t=0}^{s} V\left((A - tB)^{(n-1)} \cdot B \right) dt$$

$$\leq n \int_{t=0}^{s} \left(V(A^{(n-1)} \cdot B)^{\frac{1}{n-1}} - t \det(B)^{\frac{1}{n-1}} \right)^{n-1} dt$$

by (1.4). We can calculate the last integral.

If equality in (1.3), then, by (1.5), $s(A, B) = s(B, A)^{-1} = (\det(A)/\det(B))^{\frac{1}{n}}$.

2 Arithmetic \mathbb{R} -divisors

Let me explain some terminology. Let X be a normal projective arithmetic variety, that is, a normal and integral scheme projective and flat over $\operatorname{Spec}(\mathbb{Z})$. We set $d := \dim X - 1$ and denote the rational function field of X by $\operatorname{Rat}(X)$.

Definition 2.1 (Arith. \mathbb{R} -divisors). An arithmetic \mathbb{R} -divisor is a pair $\overline{D} = (D,g)$ of an \mathbb{R} -Cartier \mathbb{R} -divisor $D = a_1D_1 + \cdots + a_lD_l$ and a D-Green function $g: (X \setminus \bigcup \operatorname{Supp}(D_i))(\mathbb{C}) \to \mathbb{R}$, that is, g is continuous, invariant under the complex conjugation, and, $\forall p \in X(\mathbb{C})$,

$$u_p(x) := g(x) + \sum_{i=1}^{l} a_i \log |f_i(x)|^2$$
 (2.1)

extends to a C^0 -function around p, where f_i is a local equation defining D_i around p. We denote the (∞ -dimensional) \mathbb{R} -vector space of all the arith. \mathbb{R} -divisors on X by $\widehat{\mathrm{Div}}(X)$.

Example 2.1. Let $\overline{L} = (L, |\cdot|)$ be a continuous Hermitian line bundle on X, and let s be a non-zero rational section of L. Then $\widehat{\text{div}}(s) := (\text{div}(s), -\log|s|^2)$ is an arith. \mathbb{R} -divisor of C^0 -type.

Example 2.2. A $\phi \in \operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$ is a formal product $\phi_1^{e_1} \cdots \phi_r^{e_r}$ with $\phi_i \in \operatorname{Rat}(X)^{\times}$ and $e_i \in \mathbb{R}$. Such ϕ defines an arith. \mathbb{R} -divisor by

$$\widehat{(\phi)} := e_1((\phi_1), -\log|\phi_1|^2) + \dots + e_r((\phi_r), -\log|\phi_r|^2).$$

Given an arith. \mathbb{R} -divisor \overline{D} on X, we set

$$H^0(D) := \{ \phi \in \text{Rat}(X)^{\times} : (\phi) + D \geqslant 0 \} \cup \{ 0 \}$$

and

$$\widehat{H}^0(\overline{D}) := \left\{ \phi \in H^0(D) \, : \, \|\phi\|_{\text{sup}}^g \leqslant 1 \right\},\,$$

where $\|\cdot\|_{\sup}^g$ is the sup norm on $H^0(D)\otimes_{\mathbb{Z}}\mathbb{R}$ defined as

$$\|\phi\|_{\sup}^g := \underset{x \in X(\mathbb{C})}{\operatorname{ess.sup}} |\phi(x)| \exp\left(\frac{g(x)}{2}\right).$$

An arith. \mathbb{R} -divisor \overline{D} is said to be *effective* if $D \geqslant 0$ and $g \geqslant 0$. \overline{D} is effective iff $1 \in \widehat{H}^0(\overline{D})$.

Definition 2.2 (Arith. volumes). The arith. volume of \overline{D} is defined as

$$\widehat{\operatorname{vol}}(\overline{D}) = \limsup_{m \to \infty} \frac{\log \sharp \widehat{H}^0(m\overline{D})}{m^{\dim X} / \dim X!}.$$

- Remark 2.1. (1) The function $\overline{D} \to \widehat{\operatorname{vol}}(\overline{D})$ is positively homogeneous of degree $\dim X$ and continuous (Moriwaki [5]).
 - (2) \overline{D} is called big if $\widehat{vol}(\overline{D}) > 0$. The cone of all the big arith. \mathbb{R} -divisors is denoted by $\widehat{Big}(X)$.
- (3) \overline{D} is called *pseudo-effective* if $\widehat{\operatorname{vol}}(\overline{A}) > 0$ implies $\widehat{\operatorname{vol}}(\overline{D} + \overline{A}) > 0$. Let $\overline{D} = (a_1D_1 + \cdots + a_lD_l, g)$ be an arith. \mathbb{R} -divisor on X. Assume that D_i are all effective and Cartier.

Definition 2.3 (Heights). Given a rational point $x \in X(\overline{\mathbb{Q}})$, we denote the minimal field of definition for x by K(x) and the normalization of $\overline{\{x\}}$ by C_x . If (*) $x \notin \operatorname{Supp}(D_i)$, $\forall i$, then we define the *height* of x as

$$h_{\overline{D}}(x) := \frac{1}{[K(x) : \mathbb{Q}]} \left(\sum_{i=1}^{l} a_i \log \sharp \mathcal{O}_{C_x}(D_i) / \mathcal{O}_{C_x} + \frac{1}{2} \sum_{\sigma : K(x) \to \mathbb{C}} g(x^{\sigma}) \right).$$

In general, we can choose a suitable $\phi \in \operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$ s.t. $\overline{D} + \widehat{(\phi)}$ satisfies the condition (*).

- (1) \overline{D} is said to be *nef* if D is relatively nef, u_p (2.1) is continuous PSH $\forall p$, and $h_{\overline{D}}(x) \geq 0 \ \forall x \in X(\overline{\mathbb{Q}})$. The cone of all the nef arith. \mathbb{R} -divisors on X is denoted by $\widehat{\mathrm{Nef}}(X)$.
- (2) \overline{D} is said to be *integrable* if \overline{D} can be written as (nef arith. div.) (nef arith. div.). The (∞ -dimensional) \mathbb{R} -vector space of all the integrable arith. \mathbb{R} -divisors on X is denoted by $\widehat{\operatorname{Int}}(X)$.

Example 2.3. Let $\mathbb{P}^d_{\mathbb{Z}} = \operatorname{Proj}(\mathbb{Z}[X_0, \dots, X_d])$ be the projective space. Let $H := \{X_0 = 0\}$ and let

$$g_{\text{FS}} := \log \left(1 + |X_1/X_0|^2 + \dots + |X_d/X_0|^2 \right).$$

Then $\overline{H} = (H, g_{\rm FS})$ is nef and big (but not arithmetically ample). If we add some $\lambda > 0$, then $(H, g_{\rm FS} + \lambda)$ is arithmetically ample.

Define the naive height of a rational point $x := (x_0 : \cdots : x_d) \in \mathbb{P}^d_{\mathbb{Z}}(\overline{\mathbb{Q}})$ as

$$h_{\text{naive}}(x) := \frac{1}{[K(x) : \mathbb{Q}]} \sum_{v \in M_{K(x)}} \log \left(\max_{i} \{|x_i|_v\} \right),$$

which is invariant under the multiplication by $\alpha \in K(x)^{\times}$ by the product formula. Then we can prove $h_{\text{naive}}(x) = h_{\overline{H}}(x) + O(1)$. (In other words, $h_{\overline{D}} + O(1)$ gives the Weil height associated to D.)

Proposition-Definition 2.2. There exists a unique, symmetric (in $\overline{D}_0, \dots, \overline{D}_{d-1}$), multilinear, and continuous map

$$\widehat{\operatorname{deg}} : \widehat{\widehat{\operatorname{Int}}(X) \times \cdots \times \widehat{\operatorname{Int}}(X)} \times \widehat{\operatorname{Div}}(X) \to \mathbb{R}, \\
(\overline{D}_0, \dots, \overline{D}_{d-1}; \overline{D}_d) \mapsto \widehat{\operatorname{deg}}(\overline{D}_0 \cdots \overline{D}_d)$$

having the following properties.

- (1) For every nef arith. \mathbb{R} -divisor \overline{N} , $\widehat{\deg}(\overline{N}^{\cdot d+1}) = \widehat{\operatorname{vol}}(\overline{N})$.
- (2) If $\overline{D}_0, \ldots, \overline{D}_{d-1}$ are nef and \overline{D}_d is pseudo-effective, then $\widehat{\operatorname{deg}}(\overline{D}_0 \cdots \overline{D}_d) \geqslant 0$.
- Remark 2.3. (1) The above map extends the usual arith, intersection numbers of C^{∞} -Hermitian line bundles (that is defined by the *-products).
 - (2) As in the algebraic case, \overline{D} is pseudo-effective iff, for any normalized blow-up $\varphi: X' \to X$ and for any nef arith. \mathbb{R} -divisor \overline{H} on X',

$$\widehat{\operatorname{deg}}(\overline{H}^{\cdot d} \cdot \varphi^* \overline{D}) \geqslant 0$$

([4, Theorem 6.4]).

Theorem 2.4 (Faltings, Hriljac, Moriwaki, Yuan-Zhang, ...). Let \overline{D} be an integrable arith. \mathbb{R} -divisor. Let $\overline{H}_1, \ldots, \overline{H}_d$ be nef arith. \mathbb{R} -divisors s.t. $H_{1,\mathbb{Q}}, \ldots, H_{d,\mathbb{Q}}$ are all big.

(1) If
$$\deg(D_{\mathbb{Q}} \cdot H_{2,\mathbb{Q}} \cdots H_{d,\mathbb{Q}}) = 0$$
, then $\widehat{\deg}(\overline{D}^{2} \cdot \overline{H}_{2} \cdots \overline{H}_{d}) \leq 0$.

(2) If
$$\widehat{\operatorname{deg}}(\overline{D} \cdot \overline{H}_1 \cdots \overline{H}_d) = 0$$
, then $\widehat{\operatorname{deg}}(\overline{D}^{\cdot 2} \cdot \overline{H}_2 \cdots \overline{H}_d) \leqslant 0$.

Sketch of proof. (1) By using an arith. Bertini theorem, we can reduce the result to Faltings-Hriljac's theorem (on arith. surfaces).

(2) Set
$$t = \deg(D_{\mathbb{Q}} \cdot H_{2,\mathbb{Q}} \cdots H_{d,\mathbb{Q}}) / \deg(H_{1,\mathbb{Q}} \cdot H_{2,\mathbb{Q}} \cdots H_{d,\mathbb{Q}})$$
 and apply (1) to $\overline{D} - t\overline{H}_1, \overline{H}_2, \dots, \overline{H}_d$.

Remark 2.5. Yuan and Zhang [8] have proved that (under suitable conditions) the equality holds in (1) iff \overline{D} comes from $\operatorname{Spec}(H^0(\mathcal{O}_X))$.

Corollary 2.6. Let $\overline{D}, \overline{E}, \overline{H}_1, \dots, \overline{H}_d$ be nef arith. \mathbb{R} -divisors on X.

5

(1) (Teissier-Khovanskii-type) For any i with $1 \le i \le d$,

$$\widehat{\operatorname{deg}}(\overline{D}^{\cdot i} \cdot \overline{E}^{\cdot (d-i+1)})^2 \geqslant \widehat{\operatorname{deg}}(\overline{D}^{\cdot (i-1)} \cdot \overline{E}^{\cdot (d-i+2)}) \cdot \widehat{\operatorname{deg}}(\overline{D}^{\cdot (i+1)} \cdot \overline{E}^{\cdot (d-i)}).$$

(2) For any k with $1 \le k \le d+1$ and for any i with $0 \le i \le k$,

$$\widehat{\operatorname{deg}}(\overline{D}^{\cdot i} \cdot \overline{E}^{\cdot (k-i)} \cdot \overline{H}_k \cdots \overline{H}_d)^k \geqslant \widehat{\operatorname{deg}}(\overline{D}^{\cdot k} \cdot \overline{H}_k \cdots \overline{H}_d)^i \cdot \widehat{\operatorname{deg}}(\overline{E}^{\cdot k} \cdot \overline{H}_k \cdots \overline{H}_d)^{k-i}.$$

(3) (Alexandrov-type) For any k with $1 \le k \le d+1$,

$$\widehat{\operatorname{deg}}((\overline{D} + \overline{E})^{\cdot k} \cdot \overline{H}_k \cdots \overline{H}_d)^{\frac{1}{k}}
\geqslant \widehat{\operatorname{deg}}(\overline{D}^{\cdot k} \cdot \overline{H}_k \cdots \overline{H}_d)^{\frac{1}{k}} + \widehat{\operatorname{deg}}(\overline{E}^{\cdot k} \cdot \overline{H}_k \cdots \overline{H}_d)^{\frac{1}{k}}.$$

3 Arithmetic positive intersection numbers

An approximation of \overline{D} is a pair $(\varphi: X' \to X, \overline{M})$ having the following properties.

- (1) φ is a projective birational morphism s.t. X' is normal and $X'_{\mathbb{Q}}$ is smooth.
- (2) \overline{M} is a nef arith. \mathbb{R} -divisor on X' s.t. $\varphi^*\overline{D} \overline{M}$ is pseudo-effective.

We denote the set of all the approximations of \overline{D} by $\widehat{\Theta}(\overline{D})$. If \overline{D} is pseudo-effective, then $\widehat{\Theta}(\overline{D}) \neq \emptyset$.

Definition 3.1. Let $0 \le n \le d$. Suppose that $\overline{D}_0, \ldots, \overline{D}_n$ are all big and that $\overline{D}_{n+1}, \ldots, \overline{D}_d$ are all nef and big. The arithmetic positive intersection number of $(\overline{D}_0, \ldots, \overline{D}_n; \overline{D}_{n+1}, \ldots, \overline{D}_d)$ is defined as

$$\langle \overline{D}_0 \cdots \overline{D}_n \rangle \overline{D}_{n+1} \cdots \overline{D}_d := \sup_{(\varphi, \overline{M}_i) \in \widehat{\Theta}(\overline{D}_i)} \widehat{\operatorname{deg}}(\overline{M}_0 \cdots \overline{M}_n \cdot \varphi^* \overline{D}_{n+1} \cdots \varphi^* \overline{D}_d).$$

Proposition 3.1. (1) The map

$$\widehat{\operatorname{Big}}(X)^{\times (n+1)} \times (\widehat{\operatorname{Nef}}(X) \cap \widehat{\operatorname{Big}}(X))^{\times (d-n)} \to \mathbb{R},$$

$$(\overline{D}_0, \dots, \overline{D}_n; \overline{D}_{n+1}, \dots, \overline{D}_d) \mapsto \langle \overline{D}_0 \cdots \overline{D}_n \rangle \overline{D}_{n+1} \cdots \overline{D}_d,$$

is multi-additive in $\overline{D}_{n+1}, \ldots, \overline{D}_d$ and uniquely extends to

$$\widehat{\operatorname{Big}}(X)^{\times (n+1)} \times \widehat{\operatorname{Int}}(X)^{\times (d-n)} \to \mathbb{R},$$

$$(\overline{D}_0, \dots, \overline{D}_n; \overline{D}_{n+1}, \dots, \overline{D}_d) \mapsto \langle \overline{D}_0 \dots \overline{D}_n \rangle \overline{D}_{n+1} \dots \overline{D}_d.$$

(2) If n = d - 1, then we can further extend the map to

$$\widehat{\operatorname{Big}}(X)^{\times d} \times \widehat{\operatorname{Div}}(X) \to \mathbb{R},$$

$$(\overline{D}_0, \dots, \overline{D}_{d-1}; \overline{D}_d) \mapsto \langle \overline{D}_0 \cdots \overline{D}_{d-1} \rangle \overline{D}_d.$$

Theorem 3.2 (Arithmetic Fujita approximation: Yuan [7], Chen [2]). If \overline{D} is big, then $\widehat{\text{vol}}(\overline{D}) = \langle \overline{D}^{\cdot (d+1)} \rangle$.

By Corollary 2.6 + Theorem 3.2, we have

Proposition 3.3. Let \overline{D} , \overline{E} be big arith. \mathbb{R} -divisors. For any i with $1 \leq i \leq d-1$,

$$\langle \overline{D}^{\cdot i} \cdot \overline{E}^{\cdot (d-i+1)} \rangle \geqslant \widehat{\operatorname{vol}}(\overline{D})^{\frac{i}{d+1}} \cdot \widehat{\operatorname{vol}}(\overline{E})^{\frac{d-i+1}{d+1}}$$

and

$$\langle \overline{D}^{\cdot d} \rangle \overline{E} \geqslant \langle \overline{D}^{\cdot d} \cdot \overline{E} \rangle \geqslant \widehat{\operatorname{vol}}(\overline{D})^{\frac{d}{d+1}} \cdot \widehat{\operatorname{vol}}(\overline{E})^{\frac{1}{d+1}}.$$

In particular,

$$\widehat{\operatorname{vol}}(\overline{D} + \overline{E}) \geqslant \sum_{i=0}^{d+1} \binom{d+1}{i} \langle \overline{D}^{\cdot i} \cdot \overline{E}^{d-i+1} \rangle \geqslant \left(\widehat{\operatorname{vol}}(\overline{D})^{\frac{1}{d+1}} + \widehat{\operatorname{vol}}(\overline{E})^{\frac{1}{d+1}} \right)^{d+1}.$$

4 Concavity of the arithmetic volumes

Theorem 4.1 (Yuan [6]). If \overline{D} , \overline{E} are nef arith. \mathbb{R} -divisors, then

$$\widehat{\operatorname{vol}}(\overline{D} - \overline{E}) \geqslant \widehat{\operatorname{vol}}(\overline{D}) - (\dim X) \widehat{\operatorname{deg}}(\overline{D}^{\cdot d} \cdot \overline{E}).$$

Corollary 4.2. The function $\overline{D} \mapsto \widehat{\text{vol}}(\overline{D})$ is differentiable at big arithmetic \mathbb{R} -divisors. If \overline{D} is big and \overline{E} is arbitrary, then

$$\lim_{t\to 0}\frac{\widehat{\operatorname{vol}}(\overline{D}+t\overline{E})-\widehat{\operatorname{vol}}(\overline{D})}{t}=(\dim X)\langle\overline{D}^{\cdot d}\rangle\overline{E}.$$

Suppose that \overline{D} is big. The *(positive) height* of X is defines as

$$h_{\overline{D}}^{+}(X) := \frac{\widehat{\operatorname{vol}}(\overline{D})}{(\dim X)\operatorname{vol}(D_{\mathbb{O}})}.$$
(4.1)

A sequence (x_n) of rational points on X is said to be *generic* if every subsequence is Zariski dense in X. If (x_n) is generic, then

$$\liminf_{n \to \infty} h_{\overline{D}}(x_n) \geqslant h_{\overline{D}}^+(X).$$
(4.2)

Moreover, if $h_{\overline{D}}(x_n)$ converges to $h_{\overline{D}}^+(X)$ and we move \overline{D} along $\overline{D} + t(0, 2f)$, then the both functions in (4.2) have the same slope at \overline{D} . So we can extend the equidistribution theorem (Yuan [6], Berman-Boucksom [1], Chen [3], ...) to the case of big arith. \mathbb{R} -div'rs.

Corollary 4.3. Let $f: X(\mathbb{C}) \to \mathbb{R}$ be a continuous function that is invariant under the complex conjugation, and let (x_n) be a generic sequence of rational points. If $h_{\overline{D}}(x_n)$ converges to $h_{\overline{D}}^+(X)$, then

$$\lim_{n \to \infty} \frac{1}{[K(x_n) : \mathbb{Q}]} \sum_{\sigma : K(x_n) \to \mathbb{C}} f(x_n^{\sigma}) = \frac{\langle \overline{D}^{\cdot d} \rangle (0, 2f)}{\operatorname{vol}(D_{\mathbb{Q}})}.$$

Theorem 4.4 (Diskant inequality). If \overline{D} is big and \overline{P} is nef and big, then

$$0 \leqslant \left((\langle \overline{D}^{\cdot d} \rangle \overline{P})^{\frac{1}{d}} - \widehat{\text{svol}}(\overline{P})^{\frac{1}{d}} \right)^{d+1} \leqslant (\langle \overline{D}^{\cdot d} \rangle \overline{P})^{1+\frac{1}{d}} - \widehat{\text{vol}}(\overline{D}) \cdot \widehat{\text{vol}}(\overline{P})^{\frac{1}{d}},$$

where $s = s(\overline{D}, \overline{P}) = \sup\{t \in \mathbb{R} : \overline{D} - t\overline{P} \text{ is pseudo-effective}\}.$

Theorem 4.5 ([4]). Let \overline{D} , \overline{E} be nef and big arith. \mathbb{R} -divisors. TFAE.

(1)
$$\widehat{\text{vol}}(\overline{D} + \overline{E})^{\frac{1}{d+1}} = \widehat{\text{vol}}(\overline{D})^{\frac{1}{d+1}} + \widehat{\text{vol}}(\overline{E})^{\frac{1}{d+1}}$$
.

(2) For
$$i$$
 with $1 \leqslant i \leqslant d$, $\widehat{\deg}(\overline{D}^{\cdot i} \cdot \overline{E}^{\cdot (d-i+1)}) = \widehat{\operatorname{vol}}(\overline{D})^{\frac{i}{d+1}} \cdot \widehat{\operatorname{vol}}(\overline{E})^{\frac{d-i+1}{d+1}}$.

(3)
$$\widehat{\operatorname{deg}}(\overline{D}^{\cdot d} \cdot \overline{E}) = \widehat{\operatorname{vol}}(\overline{D})^{\frac{d}{d+1}} \cdot \widehat{\operatorname{vol}}(\overline{E})^{\frac{1}{d+1}}.$$

$$(4) \ \exists \phi \in \operatorname{Rat}(X)^{\times},$$

$$\frac{\overline{D}}{\widehat{\operatorname{vol}}(\overline{D})^{\frac{1}{d+1}}} - \frac{\overline{E}}{\widehat{\operatorname{vol}}(\overline{E})^{\frac{1}{d+1}}} = \widehat{(\phi)}.$$

Proof of Theorem 4.5. (4) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) are obvious (by the arith. Teissier-Khovanskii inequalities). The key is (3) \Rightarrow (4).

By the arith. Diskant inequality, we have

$$s = s(\overline{D}, \overline{E}) = \left(\frac{\widehat{\operatorname{vol}}(\overline{D})}{\widehat{\operatorname{vol}}(\overline{E})}\right)^{\frac{1}{d+1}}$$
 and $s(\overline{E}, \overline{D}) = s^{-1}$.

Thus $\overline{D} - s\overline{E}$ and $s\overline{E} - \overline{D}$ are both pseudo-effective. By Moriwaki's Dirichlet theorem, we have (4).

5 Computation formula

Suppose that $X_{\mathbb{Q}}$ is smooth and fix a volume form ω with $\int_{X(\mathbb{C})} \omega = 1$. Given a big arith, divisor \overline{D} , blow-up X along

$$\mathfrak{b}(m\overline{D}) := \operatorname{Image}\left(\left\langle \widehat{H}^0(m\overline{D}) \right\rangle_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathfrak{O}_X(-mD) \to \mathfrak{O}_X \right).$$

We obtain $\mu_m: X_m \to X$ s.t. X_m is normal, the generic fibre $X_{m,\mathbb{Q}}$ is smooth, and $\mathfrak{b}(m\overline{D})\mathfrak{O}_{X_m}$ is Cartier. Set

$$F(m\overline{D}) := \mathfrak{b}(m\overline{D})\mathfrak{O}_{X_m}$$
 and $M(m\overline{D}) := \mu_m^*(m\overline{D}) - F(m\overline{D}).$

We can endow these divisors with Green functions as follows:

Take an
$$L^2$$
-ONB e_1, \ldots, e_{r_m} for $\left\langle \widehat{H}^0(m\overline{D}) \right\rangle_{\mathbb{C}}$ and let

$$\operatorname{Berg}(m\overline{D})(x) := |e_1(x)|^2 + \dots + |e_{r_m}(x)|^2, \quad x \in X(\mathbb{C}),$$

be the Bergman function.

We can define a continuous Hermitian metric on $\mathcal{O}_{X_m}(F(m\overline{D}))$ by

$$|1_{F(m\overline{D})}|(x) = \sqrt{\operatorname{Berg}(m\overline{D})(\mu_m(x))}, \quad x \in X_m(\mathbb{C}).$$

Then $\overline{F}(m\overline{D}):=(F(m\overline{D}),-\mu_m^*\log\mathrm{Berg}(m\overline{D}))$ is effective and $\overline{M}(m\overline{D}):=\mu_m^*(m\overline{D})-\overline{F}(m\overline{D})$ is nef.

Suppose that $X_{\mathbb{Q}}$ is smooth. Let \overline{D} be a big arith, divisor.

Theorem 5.1. Let k be an integer with $1 \leq k \leq d+1$, let $\overline{D}_k, \ldots, \overline{D}_n$ be big arith. \mathbb{R} -divisors, and let $\overline{D}_{n+1}, \ldots, \overline{D}_d$ be integrable arith. \mathbb{R} -divisors. Then

$$\langle \overline{D}^{\cdot k} \cdot \overline{D}_k \cdots \overline{D}_n \rangle \overline{D}_{n+1} \cdots \overline{D}_d = \lim_{m \to \infty} \frac{\langle \overline{D}_k \cdots \overline{D}_n \rangle \overline{M} (m \overline{D})^{\cdot k} \cdot \overline{D}_{n+1} \cdots \overline{D}_d}{m^k}.$$

Corollary 5.2 (Asymptotic orthogonality).

$$\lim_{m \to \infty} \frac{\widehat{\operatorname{deg}}(\overline{M}(m\overline{D})^{\cdot d} \cdot \overline{F}(m\overline{D}))}{m^{d+1}} = 0.$$

6 Applications

Definition 6.1. An arith. Zariski decomposition of a big arith. \mathbb{R} -divisor \overline{D} is a sum $\overline{D} = \overline{P} + \overline{N}$ s.t. \overline{P} is a nef arith. \mathbb{R} -divisor, \overline{N} is an effective arith. \mathbb{R} -divisor, and $\widehat{\operatorname{vol}}(\overline{P}) = \widehat{\operatorname{vol}}(\overline{D})$.

- Remark 6.1. (1) If dim X = 2, then an arith. Zariski decomposition of a big \overline{D} always exists and unique (Moriwaki [5]).
 - (2) If $\dim X \geqslant 3$, there exists no arith. Zariski decomposition in general even after any blow-up of X (Moriwaki '11).

Example 6.1. Let $\mathbb{P}^2_{\mathbb{Z}} = \operatorname{Proj}(\mathbb{Z}[X_0, X_1, X_2])$ and let $z_i := X_i/X_0$ be the affine coordinate. Let $H := \{X_0 = 0\}$ and let

$$g := \max \{-2, \log |X_1/X_0|^2 + 2, \log |X_2/X_0|^2 + 2\},$$

which is an H-Green function of PSH-type. Moreover, we can add a "bump" $\rho: \mathbb{P}^2(\mathbb{C}) \to \mathbb{R}_{\geq 0}$ such that

$$\operatorname{Supp}(\rho) \in \{|z_1| < \exp(-2)\} \times \{|z_2| < \exp(-2)\}.$$

Then $\overline{H} = (H, g + \rho)$ are big and non-nef $(h_{\overline{H}}(1:0:0) < 0 \text{ or } g + \rho \text{ is not of PSH-type})$.

Blow up $\mathbb{P}^2_{\mathbb{Z}}$ with center (1:0:0), viz. over $\{X_0 \neq 0\}$,

$$\varphi: \text{Proj}(\mathbb{Z}[z_1, z_2][Y_1, Y_2]/(z_2Y_1 - z_1Y_2)) \to \{X_0 \neq 0\}.$$

Then $\varphi^*\overline{H}$ admits an arith. Zariski decomposition. Let E be the exceptional divisor and let $w_{ij} := Y_j/Y_i$. Then the positive part is given by

$$\overline{P} = \left(\varphi^* H - \frac{1}{2} E, \max\left\{\log|z_i w_{i1}|, \log|z_i w_{i2}|, \log|z_i w_{i1}|^2 + 2, \log|z_i w_{i2}|^2 + 2\right\}\right),$$

the negative part is

$$\overline{N} = \left(\frac{1}{2}E, \max\{0, -2 - \max\{\log|z_i w_{i1}|, \log|z_i w_{i2}|\}\}\right) + \varphi^* \rho \geqslant 0,$$

and
$$\widehat{\text{vol}}(\overline{H}) = \widehat{\text{vol}}(\overline{P}) = 5/4$$
.

Corollary 6.2. Let $\overline{P}, \overline{Q}$ be nef and big arith. \mathbb{R} -divisors. If $\widehat{\operatorname{vol}}(\overline{P}) = \widehat{\operatorname{vol}}(\overline{Q})$ and $\overline{P} \geqslant \overline{Q}$, then $\overline{P} = \overline{Q}$.

Proof.

$$2\widehat{\mathrm{vol}}(\overline{P})^{\frac{1}{d+1}} = \widehat{\mathrm{vol}}(\overline{P})^{\frac{1}{d+1}} + \widehat{\mathrm{vol}}(\overline{Q})^{\frac{1}{d+1}} \leqslant \widehat{\mathrm{vol}}(\overline{P} + \overline{Q})^{\frac{1}{d+1}} \leqslant \widehat{\mathrm{vol}}(2\overline{P})^{\frac{1}{d+1}}.$$

Thus, by Theorem 4.5, $\exists \phi \in \operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{R} \text{ s.t. } \overline{P} - \overline{Q} = \widehat{(\phi)} \geqslant 0.$

$$\widehat{(\phi)} \geqslant 0 \quad \Leftrightarrow \quad \widehat{(\phi)} = 0 \quad (\Leftrightarrow \quad \phi \in H^0(\mathcal{O}_X^*) \otimes_{\mathbb{Z}} \mathbb{R}).$$

П

Corollary 6.3. An arith. Zariski decomposition of a big arith. \mathbb{R} -divisor is (if it exists) unique.

10

Acknowledgement I thank the organizers for giving me this opportunity. I thank Professors Moriwaki and Kawaguchi for communications. This research is supported by Research Fellow of Japan Society for the Promotion of Science.

References

- [1] Robert Berman and Sébastien Boucksom. Growth of balls of holomorphic sections and energy at equilibrium. *Inventiones Mathematicae*, 181(2):337–394, 2010.
- [2] Huayi Chen. Arithmetic Fujita approximation. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 43(4):555–578, 2010.
- [3] Huayi Chen. Differentiability of the arithmetic volume function. *J. Lond. Math. Soc.* (2), 84(2):365–384, 2011.
- [4] Hideaki Ikoma. On the concavity of the arithmetic volumes. to appear in International Mathematics Research Notices (available at http://arxiv.org/abs/1310.8424), 2013.
- [5] Atsushi Moriwaki. Zariski decompositions on arithmetic surfaces. *Publ. Res. Inst. Math. Sci.*, 48(4):799–898, 2012.
- [6] Xinyi Yuan. Big line bundles over arithmetic varieties. *Invent. Math.*, 173(3):603–649, 2008.
- [7] Xinyi Yuan. On volumes of arithmetic line bundles. *Compositio Mathematica*, 145(6):1447–1464, 2009.
- [8] Xinyi Yuan and Shou-Wu Zhang. The arithmetic Hodge index theorem for adelic line bundles I: number fields. preprint available at http://front.math.ucdavis.edu/1304.3538, 2013.

Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, 153-8914, Japan ikoma@ms.u-tokyo.ac.jp