

Tryoto Oniversity Nescaren inioi	
Title	The Tate-Lichtenbaum pairing on a hyperelliptic curve via hyperelliptic nets
Author(s)	Uchida, Yukihiro
Citation	代数幾何学シンポジウム記録 (2011), 2011: 151-151
Issue Date	2011
URL	http://hdl.handle.net/2433/214946
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

2011年度 pp.151 151

The Tate-Lichtenbaum pairing on a hyperelliptic curve via hyperelliptic nets Yukihiro Uchida (Kyoto University)

Introduction

Let C be a non-singular projective curve defined over a finite field \mathbb{F}_q . Let m be a positive integer with $m \mid (q-1)$. The Tate-Lichtenbaum pairing is a bilinear map

$$\tau_m \colon \operatorname{Pic}^0(C)[m] \times \operatorname{Pic}^0(C)/m \operatorname{Pic}^0(C) \to \mathbb{F}_q^{\times}/(\mathbb{F}_q^{\times})^m$$

For cryptographic applications, it is important to find an efficient algorithm to compute the Tate-Lichtenbaum pairing.

The Tate-Lichtenbaum pairing is usually computed by Miller's algorithm. Recently, Stange [3] gave a new algorithm to compute the Tate(-Lichtenbaum) pairing on an elliptic curve. This algorithm is based on elliptic nets, which are also defined by Stange as a generalization of elliptic divisibility sequences.

In this poster, we define hyperelliptic nets as a generalization of elliptic nets to hyperelliptic curves. We also give an expression for the Tate-Lichtenbaum pairing on a hyperelliptic curve in terms of hyperelliptic nets. By using this expression, we obtain an algorithm to compute the Tate-Lichtenbaum pairing on a hyperelliptic curve of genus 2.

The hyperelliptic sigma function

Let C be a non-singular projective curve of genus q over \mathbb{C} defined by

$$y^2 = x^{2g+1} + \lambda_{2g}x^{2g} + \dots + \lambda_1x + \lambda_0.$$

We use the following notation:

- ∞ : the point at infinity of C,
- J: the Jacobian variety of C,
- $\kappa \colon \mathbb{C}^g \to \mathbb{C}^g/\Lambda \cong J(\mathbb{C})$, where we fix a uniformization $\mathbb{C}^g/\Lambda \cong J(\mathbb{C})$,
- $\lambda : C \to J$: an embedding with $\lambda(\infty) = O$,
- $\bullet \Theta = \lambda(C) + \cdots + \lambda(C)$ (g-1 times): the theta divisor.

We write $e(z) = \exp(2\pi\sqrt{-1}z)$. We define the theta function with characteristics by

$$\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z,\tau) = \sum_{n \in \mathbb{Z}^g} e \left(\frac{1}{2} {}^t (n+a) \tau (n+a) + {}^t (n+a) (z+b) \right),$$

where $z \in \mathbb{C}^g$, $\tau \in M_g(\mathbb{C})$ is symmetric, $\operatorname{Im}(\tau)$ is positive definite, and

Definition 1 (cf. [2]). We define the hyperelliptic sigma function on \mathbb{C}^g

 $\sigma(u) = c \exp\left(\frac{1}{2} u \eta' \omega'^{-1} u\right) \vartheta[\delta](\omega'^{-1} u, \omega'^{-1} \omega''),$

where $\omega', \omega'' \in M_q(\mathbb{C})$ are period matrices satisfying $\Lambda = \omega' \mathbb{Z}^g + \omega'' \mathbb{Z}^g$ and $c \in \mathbb{C}$, $\eta' \in M_g(\mathbb{C})$, and $\delta \in ((1/2)\mathbb{Z})^{2g}$ are certain constants.

If g = 1, then $\sigma(u)$ coincides with the Weierstrass sigma function. The sigma function $\sigma(u)$ has a zero of order 1 along $\kappa^{-1}(\Theta)$.

3 Hyperelliptic nets

Let n be a positive integer.

We first define hyperelliptic nets over C. The following is a straightforward generalization of Stange's definition.

Definition 2. Let $P_1, \ldots, P_n \in J(\mathbb{C}) \setminus \Theta$ with $P_i + P_j \notin \Theta$ for all $1 \leq i < j \leq n$. Let $u_1, \ldots, u_n \in \mathbb{C}^g$ be points with $\kappa(u_i) = P_i$. We define a map $W_{C,P_1,\ldots,P_n} : \mathbb{Z}^n \to \mathbb{C}$ by

$$W_{C,P_1,...,P_n}(v_1,\ldots,v_n) = \frac{\sigma(v_1u_1+\cdots+v_nu_n)}{\prod_{i=1}^n \sigma(u_i)^{2v_i^2-\sum_{j=1}^n v_iv_j} \prod_{1 \leq i < j \leq n} \sigma(u_i+u_j)^{v_iv_j}}.$$

We call W_{C,P_1,\ldots,P_n} the hyperelliptic net associated to C,P_1,\ldots,P_n .

It is easily verified that W_{C,P_1,\ldots,P_n} does not depend on the choice of u_1,\ldots,u_n .

Lemma 3. We assume that C is defined over a subfield $K \subset \mathbb{C}$ and $P_1, \ldots, P_n \in J(K)$. Then, for any $v \in \mathbb{Z}^n$,

$$W_{C,P_1,\ldots,P_n}(\boldsymbol{v})\in K.$$

By Lemma 3, we can define hyperelliptic nets over any field of characteristic 0. Furthermore, we can also define hyperelliptic nets over any field of positive characteristic by reduction.

4 Recurrence relations

Theorem 4. Let W_{C,P_1,\ldots,P_n} be a hyperelliptic net as before. Let $m>2^g$ be an integer. Let $\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(m)} \in ((1/2)\mathbb{Z})^n$ with $\mathbf{v}^{(i)} + \mathbf{v}^{(j)}, \mathbf{v}^{(i)} - \mathbf{v}^{(j)} \in \mathbb{Z}^n$ for all $1 \leq i, j \leq m$. We define a matrix A by

$$A = \left(W_{C,P_1,\dots,P_n}(\boldsymbol{v}^{(i)} + \boldsymbol{v}^{(j)})W_{C,P_1,\dots,P_n}(\boldsymbol{v}^{(i)} - \boldsymbol{v}^{(j)})\right)_{1 \leq i,j \leq m}$$

Then we have $\det A = 0$. In particular, if $g \equiv 1, 2 \pmod{4}$ and m is even, then we have pf A = 0, where pf A is the Pfaffian of A.

5 The Tate-Lichtenbaum pairing

Definition 5. The Tate-Lichtenbaum pairing is a map

$$\tau_m \colon \operatorname{Pic}^0(C)[m] \times \operatorname{Pic}^0(C)/m \operatorname{Pic}^0(C) \to \mathbb{F}_q^{\times}/(\mathbb{F}_q^{\times})^m;$$
$$(\overline{D}, \overline{E}) \mapsto f_D(E) = \prod_{i=1}^r f_D(P_i)^{n_i},$$

where D and E are divisors on C representing \overline{D} and \overline{E} respectively such that D and E have no points in common, f_D is a rational function on Cwith $\operatorname{div}(f_D) = mD$, and $E = \sum_{i=1}^r n_i P_i$.

It is known that τ_m is bilinear and non-degenerate (cf. [1]).

The Tate-Lichtenbaum pairing is described in terms of hyperelliptic nets.

Theorem 6. Let P and Q be points associated to \overline{D} and \overline{E} respectively. Then we have

$$\tau_m(\overline{D},\overline{E}) = \frac{W_{C,P,Q}(m+1,1)W_{C,P,Q}(1,0)}{W_{C,P,Q}(m+1,0)W_{C,P,Q}(1,1)} \bmod (\mathbb{F}_q^\times)^m.$$
 Theorem 6 is a generalization of Stange's result for elliptic curves.

By Theorems 4 and 6, we can compute $\tau_m(\overline{D}, \overline{E})$ for a curve of genus 2.

Corollary 7. Assume q = 2. If (P,Q) is not on a certain divisor on $J \times J$, then $\tau_m(\overline{D}, \overline{E})$ can be computed with $O(\log m)$ operations in \mathbb{F}_a .

Note that the above complexity is the same as that of Miller's algorithm.

6 Example

Let q = 47. We consider the following curve and divisors:

- C/\mathbb{F}_{47} : $y^2 = x^5 + x + 41$,
- $D = (\alpha_1, 31\alpha_1 + 3) + (\alpha_2, 31\alpha_2 + 3) 2\infty,$
- $E = (\beta_1, 22\beta_1 + 14) + (\beta_2, 22\beta_2 + 14) 2\infty,$

where α_1 and α_2 are the roots of the polynomial $x^2 + 6x + 16$ over \mathbb{F}_{47} , and β_1 and β_2 are the roots of the polynomial $x^2 + 29x + 24$ over \mathbb{F}_{47} .

Let P and Q be the points on J corresponding to \overline{D} and \overline{E} respectively. The following figure shows a part of the net $W_{C,P,O}$

7	12	2	36	19	33	39	18
14	38	14	10	23	21	36	9
13	31	32	18	8	2	2	16
14	15	43	19	44	5	22	42
25	6	33	11	10	36	21	16
25	8	2	13	16	32	14	5
1	1	23	4	29	40	43	7
0	1	37	18	36	2	7	45

Let m = 23. Then m is a divisor of q - 1 = 46 and $\overline{D} \in \text{Pic}^0(C)[m]$. We have

$$W_{C,P,Q}(m+1,1) = 43, \quad W_{C,P,Q}(m+1,0) = 8,$$

 $W_{C,P,Q}(1,0) = W_{C,P,Q}(1,1) = 1.$

Therefore, by Theorem 6,

$$\tau_m(\overline{D}, \overline{E}) = \frac{43}{8} \bmod (\mathbb{F}_{47}^{\times})^{23} = 23 \bmod (\mathbb{F}_{47}^{\times})^{23}.$$

References

- [1] G. Frey, H.-G. Rück, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Math. Comp. 62 (1994) 865-874.
- [2] Y. Ônishi, Determinant expressions for hyperelliptic functions (with an appendix by Shigeki Matsutani), Proc. Edinb. Math. Soc. (2) 48 (2005) 705-742.
- [3] K. E. Stange, The Tate pairing via elliptic nets, in Pairing-Based Cryptography PAIR-ING 2007, Lecture Notes in Computer Science 4575, Springer, Berlin, 2007, 329-348.