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The Tate-Lichtenbaum pairing on a hyperelliptic curve via hyperelliptic nets
Yukihiro Uchida (Kyoto University)

1 Introduction

Let C be a non-singular projective curve defined over a finite field Fy. Let m
be a positive integer with m | (¢ — 1). The Tate-Lichtenbaum pairing is a
bilinear map

Tm: Pic®(C)[m] x Pic®(C)/mPic’(C) — F} /(F})™.

For cryptographic applications, it is important to find an efficient algorithm
to compute the Tate-Lichtenbaum pairing.

The Tate-Lichtenbaum pairing is usually computed by Miller’s algorithm.
Recently, Stange [3] gave a new algorithm to compute the Tate(-Lichtenbaum)
pairing on an elliptic curve. This algorithm is based on elliptic nets, which
are also defined by Stange as a generalization of elliptic divisibility sequences.

In this poster, we define hyperelliptic nets as a generalization of elliptic nets
to hyperelliptic curves. We also give an expression for the Tate-Lichtenbaum
pairing on a hyperelliptic curve in terms of hyperelliptic nets. By using this
expression, we obtain an algorithm to compute the Tate-Lichtenbaum pairing
on a hyperelliptic curve of genus 2.

2 The hyperelliptic sigma function

Let C be a non-singular projective curve of genus g over C defined by

P =2 4 X ¥ 4o+ Nz + Ao

We use the following notation:

eco: the point at infinity of C,

e J: the Jacobian variety of C,

ek: C9— CI/A = J(C), where we fix a uniformization C?/A = J(C),
e ): C — J: an embedding with A(c0) = O,

eO=A(C)+---+ A(C) (g — 1 times): the theta divisor.

We write e(z) = exp(2m+/—1 z). We define the theta function with charac-
teristics by

1
? m (z7)=) e (—‘(n +a)r(n+a)+'(n+a)(z + b)) ,

2

nezs

where 2 € C9, 7 € My(C) is symmetric, Im(7) is positive definite, and
a,beRI.
Definition 1 (cf. [2]). We define the hyperelliptic sigma function on CY
by

1,
o(u) = cexp (2 un'w’™ u) o) (w'Mu, w' "),
where ', w” € My(C) are period matrices satisfying A = w'Z9 + w"Z? and
c€C,n' € My(C), and § € ((1/2)Z)* are certain constants.

If g =1, then o(u) coincides with the Weierstrass sigma function.
The sigma function o(u) has a zero of order 1 along £~}(©).

3 Hyperelliptic nets

Let n be a positive integer.
We first define hyperelliptic nets over C. The following is a straightforward

generalization of Stange’s definition.

Definition 2.Let B,...,P, € J(C)\ © with P, + P; ¢ ©O for all

1<i<j<n Letu,...,u, € C? be points with k(u;) = P. We

define a map Wep,..p,: Z" = C by

o(vig + - + vyt
Ty o) 2 T g 0 s + uj)"‘"’.
We call We p,... p, the hyperelliptic net associated to C, Py, .
Itis easﬂy vers 1ﬁed that W(; Py, p,, docs not depend on the choice of Upye ey U

Wen, (V1. v0) =

By Lemma 3 we can deﬁne hyperelhptlc nets over any field of chalactel istic
0. Furthermore, we can also define hyperelliptic nets over any field of positive
characteristic by reduction.

4 Recurrence relations

5 The Tate-Lichtenbaum pairing

Definition 5. The Tate-Lichtenbaum pairing is a map
7 Pic(©@)[m] x Pid(C) /m’Pri‘cf’(G) - FXJ(F )™
(D,E) + fo(B) =[] fo(R)",
=1

where D and E are divisors on C representing D and E respectively siich
that D and E have no points in common, fp is a rational function on C
with div( fp) mbiand B =51, 1B,

It is known that Tin 18 bilinear and non- degenerate (cf. [1]).

Theorem 6 is a generahzatlon of Stange s result for elhptlc curves.
By Theorems 4 and 6, we can compute 7,(D, E) for a curve of genus 2.

6 Example

Let ¢ = 47. We consider the following curve and divisors:

oC/Fy: 4 = a® +x +41,
oD = (oy,310q + 3) + (a2, 312 + 3) — 200,

E = (81,2201 + 14) + (82, 22B> + 14) —
where o and @y are the roots of the polynomial x> + 6z + 16 over Fy7, and
B1 and B are the roots of the polynomial 2 + 29z + 24 over Fyy.

Let P and @ be the points on J corresponding to D and E respectively.
The following figure shows a part of the net We, po.
7.12| 2:136{19:33/39{18
1438/14:10{23;21{36 9

13/31[32/18 8 2| 2|16
1415431944 522142
25! 6/33(11]10/36/21 16
%! 8| 2|13/16/32/14| 5
+{171[28] 4129/ 40/43] 7
Q[ 0/ 1/37/18/36] 2| 745

P—
Let m = 23. Then m is a divisor of ¢ — 1 = 46 and D € Pic(C)[m].
We have
Wepem+1,1) =
We,po(1,0)
Therefore, by Theorem 6,

(D, E) = 4—3 mod (F3)% = 23 mod (F3)%.

Wepo(m+1,0)=8,
=Wepo(l,1)=1
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