Title	K 3 surfaces and log del Pezzo surfaces of index three
Author（s）	Ohashi，Hisanori；Taki，Shingo
Citation	代数幾何学シンポジウム記録（2013），2010：119－119
Issue Date	2013－02
URL	http：／hdl．handle．net／2433／214920
Right	Departmental Bulletin Paper
Type	Kitiormation Repository Textversion publisher

Hisanori Ohashi（Research Institute for Mathematical Sciences） and
Shingo Taki（Korea Institute for Advanced Study）

We want to classify log del Pezzo surfaces of index k ．
History of classification
－$k=1$ ：classical result
－$k=2$ ：Alexeev and Nikulin，Nakayama

Generalize the idea of［AN］to the $k=3$ case！
Review of［AN］（ $k=2$ case）
－Smooth Divisor Theorem
$\exists C \in\left|-2 K_{Z}\right|$ s．t．C ：smooth curve and $C \not \supset$ singularities．
－Right resolution
In general，we get the following dual graph by the minimal resolution．
 －．
\uparrow ：blow up at all intersection points

－Classification of non－symplectic involutions on K3 surfaces by Nikulin

We get a correspondence between $K 3$ surfaces with a non－symplectic involution and log del Pezzo sur－ faces of index 2.

Main Theorem（ $k=3$ case）
There exists a correspondence between $K 3$ surfaces with a non－symplectic automor－ phisms of order 3 and log del Pezzo surfaces of index 3.
－Multiple Smooth Divisor Property $\exists 2 C \in\left|-3 K_{Z}\right|$ s．t．C ：smooth curve and $C \not \supset$ singularities．
－Right resolution
It is a successive union of the unit chain

$$
-3--1-6
$$

－Classification of non－symplectic auto－ morphisms of order 3 on $K 3$ surfaces by Artebani and Sarti，Taki（indepen－ dently）

5050505050506

There exists a log del Pezzo surface of index 3 which does not satisfy MSDP．（ex． $\mathbb{P}(1,1,3)$ ） Thus the observation does not give the com－ plete classification．

Example

triple cover branched along $\widetilde{C},(-6)$ and (-3)

－119－

$$
Z=(10) \subset \mathbb{P}(1,1,5,9)
$$

minimal resolution $\quad \frac{1}{9}(1,2) \operatorname{sing}$

