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PROJECTIVE GEOMETRY OF FREUDENTHAL VARIETIES

HAjlME KAjl

                                O. INTReDgCTION

  H. Freudenthal constructed, in a series of his papers (see [10] and its references), the exceptional

Lie algebras of type Es, E7, E6 and E4, with defining various projective varieties. The purpose of
our work is to study projective geometry for his varieties of certaixx type, which are caJled varieties

of planes in the symplectic geometry of Freudenthal (see [10, 4.ll], [24, 2.31).

  Let g be a graded, simple, finite-dimensional Lie algebra over the complex number field Åë with
grades between -2 and 2, dimg2 =-L 1 and gi:O, namely a graded Lie algebra of contact type:
g mm gpt2Og-1 ego egi eg2 (see gl). We set

Y:-- {x Eg X {g}Kad x)2g-2 rm e},

attd defiite an algebraic set V in ge(gD to be the projectivizatioxx of Y:

V := T(Y),

where 7r : gA {O} - P(gi) is the natural projection. Then we cal1 V g P(gi) (with the reduced
struÅëture) the FVeudenthal varietgy associated to the graded Lie algebra g of contact type, which is

a natural generalization of Freudenthal's varieties mentioned above: Note that V is not necessarily
connected in this general setting. We here consider moreover the projectivization of a elosed set
{x G g"(ad x)fo+ig-2 == e}, and denote it by Vk; we have

e = Ye g va E V2 ! V3 ! Y4 == ge,

where we set P := ew(gi) for shert. Clearly, V3 is a quartic hypersurface, V2 is an intersection of

cubics and Vi = V is an intersection of quadrics, with a few exceptions.
  In the literature, several results have been known about the structure of gi as a go-space,
case-by-case for each exceptional Lie algebra of types Es, E7, jEi)6 and jF14, from the view-point
of the invariant theory of prehomogeneous vector spaces (see [13], [15], [201, [23]). By virtue of
those results, it can be shown, for example, that the stratification of P given by the differences
of Vk-'s exactly correspends to the orbit decomposition of the go-space gi for those exceptional
Me algebras, and also that Freudenthal varieties V asseciated to the algebras of type Es, E7, E6
and F4 gre respectively projectively equlva}eRt to the 27-dimelt$ionai g7-varlety ayisi}ig from the
56--elmeRsic}ickl iyyedgcible yepresent&tioR, t}3e o:gkegeital Gi'assmakit variety gf isotropic 6-planes
IR ÅqC22 (Rame}y, tlie 15-dimeit$ion&l spiRor varlety), tke (];ras$maa}m variety ef 3-plaiies iR Åë6 and

the symp}ectic Grassmann variety of lsotrepic 3-plalie$ in Åë6, with dimP == 55,31, 19 aftd 13,
respectively (see Appendix 1): for those homogeneous projective varieties, we refer to [12, S23.3].
  In thSs article we study the IFlreudenthal varieties V with the filtration {Vk} of the ambient

space P, from the view-point of projective geometry, not individually but systematically in terms

tktwueIaj":U]:tuca y' tziitO •? VA (2oo4110/2't', 9:3010:30am)
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of ab$tract Lie algebras, witheRt depeRdiRg on the classification of simple Lle algebras as well aLs

eR the kitown results for each case of types Es, E7, E6 and F4•
  Before stating the main result, we note that the Lie bracket gi Å~ gi - g2 -A. C defines a non-
degexxerate skew-symmetric form on gi, so that this form allows us to identify gi with it$ clual
spaee, hence P with its dual space, and gi i$ even-dimemsional. Moreover, the quartic form on
gi defining V3 has a di.fferential whinh via the symplectic form defines a vector field on gi, and
thls vectoy fie}d defiltev" a 1-dlraeasloxxal {listributloik oR P away f}om ghe singulgi' locgs of V3 (see

Proposition Al). We denote by Lp the (closure of the) integral curve of this distribution passing

through P ff PXSing V3. 0n the other hand, we have a rational map ry:P --• P defined by
x }-• Åqadx)3g-2 with base locgs V2, w}}ich tums out te be a Cremolta traftsfgi'matioR of ge: It
is deduced that 7"-i(V) = V3 X V2, 7-'(PX V3) = PX V3, ty2 = 1 on PX V3, and or is explicitly

given by the partiai differentials of q (see Proposition A2). Note that our or is a special case of
the Cremoma tTa;i}sfermatioms iR i7, Tkeerem 2.8 (ii)l.

  Our main results are summarized as follows (see Theorerns A, B, C, D, E, Corollaries A2, Bl,
B3 and C):

Theorem. Assurne that V ts irredttcibte. Then we have:

   (1) V is a Legendrian subvariety ofP, that is, the proJ'ectivization of a Lagrangian subvariety
      ofgi, witk dimV = n- l, spans ?, and ts an erbit of She grozzp ef inner auteme7phisms
      ofg with Lie algebra go, hence smooth, where dimgi = 2n. In particular, the projective
      dual V' of V is equal to the union of tangents to V via the syrnplectic form.
   (2) Y2 is the sing#{ar iocus ef V3, and for any I' E geX V2, Lp is the Sine in ? joining jF) and

      7(P). Moreover, we have:
       (a) If P e PX V3, then Lp is a unigue secant gine of V passing through P, there is
          no tangent iine te Y passiRg thfetigh P, Lp fi V consists ef harmenie cenjttgates
          with respect to P and or(P), and Lp X V g PN Ixr3. Moreover, 7 preserves Lp, and
          the autory}orphtsm of Lp induced frorn or leaves each point in Lp fi V invastant and
          permutes P and 7(P).
       (b) IfP E V3 X V2, then there is no secant line of Y passing through P, 1i, is a unique
          taRgent line te V passing threttgh P, Lp fi V = 7(jF'), and Lp Å~ V C- V3 X V2.
          Moreover, Lp is contracted by 7 to the contact point or(P), and conversely the fibre
          of'r on (? E V consists of the points P E V3 X V2 such that (? di Lp, or equivalently,

          P lies en seme tangent to V at e.
      In particuiar, V is a variety with one apparent doubte point, and V3 ts the union of tangents

      to V.
   (3) Fer any P E V2 X V, the fgmiiy of secant3 of V pa$sing thrcugh P ts of dimens{en gt ieast
      1, and atl of those secants are isotropie with respect to the spmplectic form: ln particular,

      V2 X V is covered by tsotropic secants of V.
   (4) Fer any 9,R E V, the secgnt giRe ?'oining Q ang R is isotrepic of and ongy if the tangents
      to V at Q and at R are disj'oint.
   (5) For any P ff V3 X V2 and (? ff V, if the secant line lbining Q and the contact point or(P)
      ofLp is Ret tsetrepic, tken there ts a t2tiisted ca5ie curve contained in V te whieh Lp and
      LR are tangent at 7(P) and at Q, respectively, where R is a point on some tangent to V
      at Q away from V2, determined by P and Q.
   (6) ij Y2pt V, tken V ts raled, that ts, covered by Sine$ centained in V.
   (7) For any P e V, the double pro]'ection from P gives a birational map from V onto Ipa-i,

      and by the inverse V ts written as the cgosure of the image ofa cmbie Veronese embedding
      of a eertain afiine space A"-i under some protiection to P.

  We show also that ghe three condigions, V = Åë, V3 = ge aRd V2 = P are equivaleRt to each
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other (see Ccrollary Ai), aRd tliat if Y is fieither empty iior irreducible, theB gi decomposes
naturally into two irreducible go-submodules of dimension n and V i,s the (disjoint) union of the
projectivizations of those summands (see Corollary B2).
  Finally we should mention that S. Mukai announeed a theorem [2`.t, (5.8)] on cubic Veronese
varieties without prooÅís. Our wofk was orlgiRated by }ooki{ig for proofs of the corre$poRdifig
stagerceats for I"re"deRthal varieties (Corol}ayies A2, B2, C end Theerem DÅr: IR f3ct, we see fygm
his list i22, (5.le)i of cubic Veroitese varieties (and the list in Appendix i) that the notien of our

Freudenthal varieties coincides with that of his cubic Veronese varieties. Our result gives a partial

explanation for this coineidence (see Ther)rem D).
  This is a joint work with Osami Yasukura. For proofs of the results here, see [191.

                               i. PRELIMINARIES

  For a finite-dimensional, simple Lie algebra g of rank ) 2, a graded decomposition of contact
type is obtained as follows; Take a Canrtan subalgebra b of g and a ba$is A of the root system
R with respect to h, and fix an order on R defined by A. Denote by p the highest root of g,
}et E" ancl E- be highest aRd lowesg weight vectors, respectively, and set H := IE",E-l. By
multiplying sifltab}e $ealars, oite may assume that (EÅÄ, ff,E-) foxm an gS2-grip}e, shat is, these

vectors have the following standard relations:

[ll, E+j = 2E+, (ll, E-1 == -2E-, IE+, E-l mm El.

The}i, tbo eigeRspErce deeompositlgR of g witk respect to ad H gives g a graded decompositloR of
coittact type: I" other words, if we set gx := {x E gl{H,x] = Ax} fox Ae {C, theR it follows that
g = g-2 ew g-i O go di gi e g2, dimg2 = 1 and gilO: Ixx fact, gi == O if and only if g =: s{2. In
terms of root spaces of g, we have

go=fpe O (gaeg-aÅr, g" =xx OgÅ}a, gfu2 nmgÅ}p=ÅëEk,
       aeRAÅqR.u{p}) aeR.

where R+ is the set of positive roots and Rp := {a di R+lp -a G R}: Indeed, let fip be the
subalgebra of g spanned by E+, H and E., which js isomorphjc to fft2. Then the irreducible
decomposition of g as an 's[2-module gives the decomposition above (see, for full details, [27]).
CoRversely, for a graded decomposition g = Z) gi of ceittaet type, taking suitab}e bases EÅÄ for
g2 gRd E- fer g.2 with ff := [EÅÄ,E-], oRe may assume tkat ÅqEÅÄ, ff, g-) foriii an sg2-t#iple, as

before. Then, we see that E+ and E- are some highest and lowest weight vectors, re$pectively,
and each gi is recovered as an (ad H)-eigenspace. Therefore, the graded deÅëompositions of contact

type are unique up to automorphism of g, so that the Ereudenthal variety V is essentially unique
and determined by g itself (see Appendix 1).
  New, we clefu3e a symmetric pygdgct Å~ : gi Å~ gi ---" gc by gbe fgym"}a:

- 2a Å~ b me [b, [a, E-]l + [a, [b, E-l],

which induces a symmetric map L : gi Å~ gi . Hom(gi,gi) and a ternary product [, ,] : gi Å~ gi Å~

gi -gi by
                           Ia, b, e] = L(a, b)e = ia'Å~ b, e].

Note that the adjoint action of go on gi is faithful sinÅëe g is sjmple (see [27, Lemma 3.2 (1)]):

we may assume go g Horn(gi,gi), so that we identify L(a,b) with aÅ~ b, We think of gi as an
go-module via the adjoint action: For example, we often write Dx instead of (ad D)x and [D,x]
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for D wr go and x ff gi. As the skew-symmetric form Åq,År : gi Å~ gi - C and the ctuartic form on
k definiRg V3 meRtieited in IRtroditctioit, we use tke oites determiited by

                     2Åqa,bÅrgÅÄ xe la,b], 2qÅqx)EÅÄ nm (adxÅr`E-.

Note that the skew--symmetrie form Åq,År is noR-degeRerate since g is simple (see [27, Lemma 3.2
(2)]).

  With the notation above, it foHows that

V= va -r({x ff gi X {O}lx Å~ x == O}) ,

    V2 == x({x G gi X {e}iixxx] = O}) ,

    V3 = 7r ({x ff gi X {O}Kx, [xxxlÅr :O}),

and q(x) = Åqx, [xxxlÅr. Note that Vo me e since l[x,E-IE" =x for any x G gi: Indeed, it follows
Åírem el3e jacobi ideRtity tkat [[x,g.nt]E+] ex [[x,E+l,E-l ÅÄ [xiEny,E+]] xe [x,-H] = x since
[x,E+] E g3 ww O. On the other hand, it follows from Lemma 1 below that VfP.

Lemma 1. Letgoo be the subalgebra ofso defined by

ge" := Ker(ad E-e lge) -wy Ker(ad Eww ige).

Then we have ge == gcg eÅëH, and gge ts SinearSy spanned by the eSements in ge of the foma a x b
with a,bE gi. In particular, gootO, and x Å~ xlO for some x G gi.

Lemraa 2 (Asime [3]). Fer gny a,5,cE gi and IÅr E gge, we have

   (1) ÅqDa, bÅr + Åqa,DbÅr -- O.

   (2År P(g Å~ b) = Pa Å~b+ax Db.
   (3) D[abc] - [(Pa)bcl + [a(Db)c] + [ab(Dc)].

  If we denote by Goo the group of inner autemorphisms of g with Lie aigebra goo, then Lemma
2 tells that the symplectic form Åq,År, the symmetric product Å~ and the ternary product [,,] are
equivariaitt with re$pect to tke aÅítien ef Geg, sg t}}at each Yi is stable wader tke acti6lt of Gog,

that is,a union of some orbits of Goo. We should mention that the above proofs of (2) and (3) in
Lemma2 are dge to the referee, mgch simp}er thaR the oRes in l31.

Lemma 3 (Asano [3]). We have [abe] - [acb] = Åqa,cÅrb- Åqa,bÅrc+2Åqb,cÅra for any a,b,cGgi•

                              2. BASIC RESULTS

Fropo$ition l. ifx E V, then we have:

   (1) (Asano [2]) [axxj -- 3Åqa,xÅrx for any aE gi. In particular, zfa Å~x xe O, then Åqa,xÅr =O.

   (2) Åëx (ill goex.

Proposlt io xx 2. We have Åq[abc] , siÅr -- ÅqIegai , bÅr for any a, b, c, d E gi .

Propo$ition 3. Ifx E V and D,EE goo, then we have:

   (1) (Asane [2]) Px Å~ x = e.
   (2) ÅqDx, xÅr = O,

   (3) ÅqDx, ExÅr == e.

   (4) l(Dx)(Ex)x] -O.
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Proposition 4. For amJ a es gi, we have:

   (1) [aaa] Å~ a = O.

   (2) [aa[aaa]] =3q(a)a.
   (3) [aaa] Å~ [aaa] = -3q(a)a Å~ a.
   (4) [[aaal[aaai[aaal] = -9q(a)2a.
   (5) q([aaa]) - 9q(a)3.

ProposltioR 5. If b = a -i- x with a E gi gng x E }2, then we have:

  (1) bÅ~b =gÅ~gÅÄ2a Å~x.
  (2) Ibob] = laaal ÅÄ3laGx] -l-6Åqx,aÅr(a-x).
  (3) q(b) = q(a) + 4Åqx, iaaa]År + 12Åqx, aÅr2.

Proposition 6. Eor any a G gi, we have:

  (1) 3[aa[aabll =8Åqb, [aaa]Åra+8Åqa,bÅr [aaa] + Åqa, [aaa]Årb for any b ff gi.

  (2) ijq(a)tO, then the linear map L(a,a) has fall rank.

Proposition 7. Eor any a G gi and x E )2, we have

  (1) [aaa] Å~ x +3[aaxl Å~ a+ 6Åqx, aÅra Å~ a = O.

  (2) 3[aaxl Å~ [agxi +8Åqx, iaaalÅrG Å~ x-8Åqx,esÅr[aaa] Å~ x == g. In partieuiar, if [aaal == e, then

      [aaxl Å~ Iggxl == e, and moreover, Åëx +ÅëfgGx] g Yu {g}.

               3. A LINE FIELD

Proposition Al.
  (1) The quartic form q on gr has

AND A CREMONA TRANSFORMATIeN

a differential at a E gi as follotvs:

dq(a) : t.gi - C; b H 4Åqb, [aaa]År,

   where t.gi is the Zariski tangent space to gi at a, natttrally identified with gi.
(2) in particuSar, the singutar goctts of V3 is egual to V2.

(3) The veeter fieid on gi eorrespenging tg gq via the sympgeetie fome Åq,År induce$ a 1-
   dimeRsiengS dtstrib#tieR IEÅr on P away ,frem Sing Y3 xx Y2, whieh ts gi#en 5y

P : rr(a) - (Åëa + CIaaa])/Åëa,

2vhere r(a) E PX V2 and tve naturatty identify the Zariski tangent space t..P with the
quotient space gi/Ca.

Proposition A2. Let
                                7:P--ÅÄP

be a rational map induced from the cubic, a " [aaa]. Then we have:

  (1) •-}t't(V) =:= V3 X Y2.

  (2) ty-i(?X V3)-PX V3.
  (3År ty2 == l en PX V3, i}ence 7 gives gn automerphtsm ofPX V3•

  (4) 7 is expgicitgy gtven by the partiai differentiags ofq.

in particular, or is a Cre7nona transformation of P(gi) with order 2 if V21P.

  A secant iine of V is by definition a line in P which passes through at least two distinct points
of V and is not contained in V. We note that for a line L in P if the schemetheoretic intersection

LnV has length more than 2, then L g; V: Indeed, V is an intersection of quadric hypersurfaces,
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Theorem A. Let Lp be the closure ef the integral curve of CD through P E PX V2, where [) ts
the 1-di7?zensional distrtbution on ge X V2 induced from the quartic foma q. Then we have:

   (1) lilor any PGPX V2, Lp is the line in Pj'oinvjng P and or(P).
   (2) If P G PÅ~ V3, th en we hgve:
       (a) Lp is a secant line of V, and Lp fi V consists of harmonic conjugates with respect
          to P and cr(P),
       (b) Lp XV E PX V3.
       (c) Lp is a unique secant line of V passing through P.
       (d) There is no tangent line to V passing through I).
       (e) 7(Lp X Y) =: Lp X V, aud tke autemerphtsm ef Lp ind#ced ,from 7 geaves egch peinS
          in Lp n V invariant and perrnutes P and ty(,P).
   (3) IfPG V3XV2, then we have:
       (a) Lp ts a tangent Sine to V, gnd Lp ft V = {7Åq.F')}.

       (b) LpXVgV,NU2.
       (c) There is no secant line ofV passtng through I'.
       (d) Lp ts a unique tangent line to V passing through P.
       (e) ty(LpXV) -= 7(llP), and 7-'(Q) == {P ff V3 X V2i(? E Lp} = TQVX V2 for any (? E V,

          where TqV is the embedded tangent space to V at Q.

Corollary Al. The three conditions, V= to, V3 ec P and V2 =P are equivalent to each other.

Remark A. It can'be shown that V =Åë if aAd only if the Lie algebrag is ef type C (see
Appendix): In fact, using a theerem ef Asano [3e, i.6.[I'heorem], [4], oite can show that if q i e,

then g bl sp2.+2, where dimgi = 2n; The cormverse is checked by an explicit computation.

  Recal} tkat a projective variety V {; P ls called a variety with exe apparexS detibie peiRt if fgy
a general point P e P there exists a unique secant line of V passing through P (see [25, IX]).

Corollary A2. IfViÅë, then V is a variety usith one apparent doubSe point. In particttlar, V ts
non-degenerate in tw.

                             4. THE HOMOGENEITY

Theorem B. Let Goo be the group of inner automorphisms ofg with Lie algebra goo, where geo
is the subalgebra ofgo defined by goo := Ker(ad EÅ}lgo). Then we have:

   (i) Gge aets transitiveiy on each of irredttcibge compenents of V. in particttlar, we have
      tx),7 xx: goox for any x E )2, where t. ),7 is the Zartski tangent space to ),7 at x.

   (2) geex == (ggex)i with2dimgoex =dimgi for anyxE V, and gi = geox ew goey for any
      x,y M V with Åqx, yÅr pt e.

  Recall that the tangent variety of V, denoted by Tan V, is the union of embedded tangent
spaÅíes tg V, aRd the projective guag of V, denoted by V*, is the set eÅí kyperplaiies taRgeRt te V

(see, for exarnple, [11, g3]).

Cerollary Bl. Assume that VSe. Then we have:
   (1) Goo acts transitively on each of irredueible components of V, and V is smooth, equi-
      dimensional of dimension n - 1, where dim gi -- 2n.
   (2) benete by L' the set of hsipe?'pganes eentgining a ginear sub$paee L {;; P. Then we have
      (TQV)" = TeV for any (? G V, hence

                                 Talk v = v",

      where we identify P with its dual space PV :--- P(gr) via the sgenplectic fo7'm Åq,År.
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Corollary B2. if V is neither empt?J nor irreducibge, then there are irreducibge Boe-moduies si
and s2 of dimension n such that gi := si e s2, and we have

                            V = P(Si) U P(S2),

where dimgi = 2n.

Remark Bl. It is knowik tlÅr.kt V is iTTeducible uRless s is of type A or C (see AppeRdix): in fact,
if g = som, then V is a Segre embedding of Pi Å~ ([2} in P2Mnd9, where Q is a quadric hypersurface in

PM'5; ifg is of type a2, then V is a cubic Veronese ermbedding of Pi in P3; for other exceptional

Lie algebras g, see Introduction. Conversely, it follows from a direct computation that we are in
the case above if g = ff[." with n ) 1.

Cerellary B3. if Vpt$ and Y2fV, then V is ruged, that is, esve?'ed by gines centained in Y.

Remark B2. It can be shown that V rm V2 if and only ifg is of type' C2.

                          5. ISOTROPIC SECANTS
PropesitloR C. For P xx 7r(u) E P, let epp : P --. ev be a vatiengS map induced from L(u,u) witk
bGse gec2is Bp == geÅqKer LÅqu,u)). ij V is irreducible gnd ,F' E V2 X V, ehen dim$pÅqVX Bp) 2 l,

hence dimÅëp(PX Bp) lr 1 and codimBp ) 2.

Remark Ol. The irreducibility condition for V is essential in Proposition C: In fact, there is an
example ofu satisfying the assumption above such that rkL(u,u) =: 1 in case ofg :s[., where
V is not irreducible (see Remark B3).

Remark C2. It follows easily frcm Propesitiofi 6 that dimÅëp(PXBp) ) i if P Åë Y2, and
codim epp(PX Bp) ) 1 if P E V3, though we do not use these facts in this article.

  Recall that the secant locus 2p as well as the tangent locus ep of V with respect to a given
point P G P are defined by

               XO. ; :{Q E YI]R G VX{Åq?},P ff Q* R}, :p :-- ÅíOp,

               Gp : ={Q E Viai' G l"iQV}}

where we denote by Q*R the line in Pjoining Q and R, and by TqV the embedded tangent
space to V at Q in P (see, for example, [11]).

Theorem C. Assume that V ts irreducibge. Then we have: '
  (1) jffTerany T,y E Y, Åqx,yÅr = e ofandongy ifggexftseoy74g. In partic2siar, a seeant knesbining

     (?,R E V is isotropic with respect to the sympleetic form of and only if TQVn TRV;to.
   (2) V2 XV ts covered by isotropic secants of V. More prectselg, for any u E gi, we have that
      [amzt] =O anduÅ~ ztlO if and only ifu=x+y for some x,yGV such that Åqx,yÅr = O
     and x Å~ yl O•
  (3) if P E V2 X V, then

                  Åëp(VX Bp) S Xp, Åëp(v n f)M Å~ Bp) g ep,

     where Åëp : P --. P is the rational map induced from L(tt,u) with base loctts Bp =
     P(Ker L(u, u)) and Pi = P(z-) with P = T(u).
  Åq4) We have dimXp Årww l for any PG V2 X V.

Remark C3. The lrreducibility conditioii for V is essentiai in Åq1) above: In faet, it is easily seen

that the conclusion does not hold in case of g = s[m.

Corollary C. IfV ts tT'reducible, then V3 = TanV.
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Proposition D.

            6. DouBLg PRgjscxgNs
For any x,y ff V, let W.nd gi - gi be a tinear map defined by

             Wxy(a) :== [axy] + Åqa,2'Åry.

   (1) lf Åqx,yÅrIO, then KerW.,y -- goox and W.y(gi) = gooy. In particular, a rational map
      WpQ : P --. P induced from W.y is a double pro]'ectton from P with image TQV, that is,
      a projecSigR with center TpY ente TQV, hence deLfZnes a me? ge}hism

                            WpQ:PX TpV -" TQ V,

      where TpV is the embedded tangent space to V at P with P == 7r(x) and Q =rm rr(y).
   (2) Mereover for any R E V, the four peints R, [PqR], WpR(Q) gnd WqR(P) are cggSinear,
      and [P(?R] is the harmonic conjugate of R zvith respect to WpR(Q) and WQR(P), where
      we set [PRR] : = T([xyil) with R -ma 7r(i). In particular, thts hol(is for general JP, (?, R e V

      and gives a geometrtc meaning of our temary product.

Remark Di. In terms of the Lie bracket, we have pt.bÅqc) = Ib[a[c,E-]jj by (Åq)) in the proof of

Lemma 1.

Theorem D. For any P,Q G V, if the secant ltne ]bintng P and 9 is net isotropic, that ts,
TpYR TQV=l then uie have:
   (1) VX ,F)Å} = (WpQl.xT.v)--i(TQVX ,F,X).
   (2) The double proJ'ection WpQ gives an isornorphism VXPk --År TQVX,Pi. In fact, a rational

      map rep : TQV --+ V ind#ced from g mgp ry. : gggy --År Vu {e} defiReg by

                    ryx(t) := Åqx, [ttt]Årx + 3Åqx, tÅr [ttx] + 12Åqx, tÅr2t

      gives the inverse of ,PpQlvxpi, where P == r(x) and C? me T(y).
   (3) The base lectts ef rep is TeV fi P-L fi V2.

In particular, if V is trreducible, then WpQ gives a birational map ,from V to TQV, and V is the
closure of the image of a composition of a cubic Veronese embedding of the afiine space TQVXPme

with some projectton te P.

Rernark D2. The morphism ÅëpQ : VX TpV - TQV is net necessariiy surjective: In fact, if g i$
of type C2, then for any P E V, Pi is the osculating plane to the twisted cubic V E P3 at ,l',

Vn PÅ} = {P}, and WpQ(VX TpV) = TQVN PÅ} for any Q E V with Pyde q.

Remark 93. We kave proved in tke above that ig.y : VNxÅ} -" gceyXx'i" ls an isomorphism.

Remark D4. We here give another expression of the inverse map of the double project,ion Wpq.
We first note that there is an isomorphism of aMne spaces,

                           b: geey fi xÅ} - TQYX PÅ}

defined by t(a) := r(a+y). Indeed, the inverse is given by cri(T(t)) :mx [X.',\lt-y Åíor T(t) G

TQVXPi, where TgV ve- P(geoy) Emd Pi me P(xÅ}). Now let p : gog?j fixi - V be the composition

og L with tke ratieRai map rQp : TQV ---. Y ilt 'lrheorem D (2). Then p ls the inverse of $pQ via
t, and it follows from part (1) and (4) of Proposition 3 that

                   p(gÅr = 7r ( ÅqiX.2"Åq:","y"År],År = ÅÄ 4Åq.1, yÅr [aax] -y a ÅÄ y)

In particular, the Flreudenthal variety V is ectual to the closure of the image of the affine space
gooy n xi under the cubic Veronese embedding p.
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                        7. '1['WISTED CUBIC CURVES

Propo$ition E. IIor any P E V3 X V2 and (? E V, if the secant tine 1'oining (? and the contact
point 7(P) of Lp is not isotropic, then 2ve have:

  (1) (? E Lop.@) and {b3.(Q) = or(P) E Lrv = Ldj2.@) with Åëp(Q), ep2p((?) E V3 X V2•

  (2) Lp n Lo.ÅqQ) == Åë, hence {?,Åëp((?), ep2p((?) and 03p((?År are linearly independent in P.

Theorem E. For any P G V3 X V2 and Q E V such that the secant line ]'oining Q and the contact
peint ry(P) of Lp ts not isetropic, that ts, TGV fi T.ÅqpÅrV =: Åë, SeS gepe be #he ginear sttbspace of

dimension 3 in P spanned by Q, Åëp(Q), Åë2p(Q) (or equivalently P? and Åë3p(Q) xe or(P), that is,

spanned by Lp and LÅë.ÅqQ), the unigue tangent ltnes to V pgssing threugh ,P and Åëp(Q). Then

we have:

  (1) The intersectien V fi PpQ ts a twisted cubie curzte tn gepQ Nnd P3 given expgicitly 5y the

     irnage of Lp under the cubic map rtr(p)Q:

                          V fi PpQ = U(p)Q(Lp)•

  (2) Tke t2gisted ettbtc cgr{se in ewFe above has the following preperties;
      (a) ll[Lp and LÅë.(Q) are respectively the tangent lines at or(P) and at Q, and
      Åqb) ty(P)'k" ft PpQ and {?Å} ft ewpQ are respectivegy the oscuiating plane$ at 7(P) gRd at
         ([?, which are spanned by llp and Åëp(C?) and by Lep.(q) and op2p((?), respectively.

Refnark Ei. rl)he morpkl$m "(p)Q : Lp - PpQ is givefi by

                       (A:g) N (2A3:6k2p:9Ap2:gpa3)

in teTms ef bomogexxeous coordiRate wkh yespect to the bgsis {D2x,D3x} for Lp 3i}d {x, Dx,
D2x, D3x} for PpQ•

Remark g2. Set g:= L(Px,Dx), F:xe [D,E] witk D :=ur L(t,g) as in the abeve, aRd dencge by
goopQ the subalgebra of goo generated by D, E and F. Then it follows that

                  [F, D] ww gÅqD3x, xÅr D, IF, E] == -gÅqD3x, .År E,

so that goop(? is isomorphic to the Lie algebrasE2. If we denote by gipQ the subspace ofgi spanned
by x, Px, D2x aRd D3x, theR we see that g2pq is ax} irreggcible geepQ-modif}e of dimensigR 4

with
                       F(Dkx) = Åq2k - 3År g' Åq93x, xÅr Dkx,

aiid the twisted cubic curve Vn PpQ = I" cr(p)Q(Lp) is a unique closed orbit in Ppe = P(gipQ)
tt"der the itaturai aetleit of the group of irmer automerphisms of goe witli Me algebra BoopQ•
  Thus, for any P E V3 X V2 and (? es V with Ttr(p)Vn TQV = Åë, a subalgebra goopQ of goo
i$omgrphic to s{2 aRd &}} irÅíedgcib}e ggepQ-$ubmodgle gipQ gf gi wlth dimemsIDR 4 are associated

to P and Q. If g is of type G2, then goopQ and gipQ are respective}y equaJ to goo and gi
themselve$.

           APPENDI.X !. A CLASSIFICATION OF FREUDENTHAL VARIETIES

  We here give a classification of Freudenthal vamieties V in terms of the root data of g. It would

be iRteresting to compaz'e V with the adjoipt variety assoc!ated to s $!Rce those varletles are
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closely related to each other: In fact, for a simple graded Lie algebra g = Åíg,i of contact type,
denote by V the Freudenthal variety associated to g, as before, and denote by X the orbit of the
inner automorphism group of g through T(E+) in IP(g), which isthe minimal closed orbit in P(gÅr,
called the ad2'oint variety associated to g (see [16]). Then, according to [17, Theorem B], we have
V rm= Xn P(gi).

ADJOINT VARIETIESANDFREUDENTHALVARIETIES

g x g ?(g) gee V g P(gi)

Stm (ifptn-i Å~ ffprrv-i)n o) g prn2-2 g[1 est.h2 ffrrn-3 u p,n-3 c p2m-5

som Gorthog.(2,m) K P(T)-i s[? e som-4 Pl Å~ (?m-6 g P2m-g

5P2.
v2P2M-1 g p( zaM,"')-1

SP2m-2 e c p2m-3

e6 E6 (w2)2i K pr7 St6 G(3,6) g pi9

e7 E7(wD33 K ge132 5e12
S5 rm Gorthog.(6, i2) g P25-1

eg Es(ws)57 sc pt47 e7 E?(w6År g ?55

f4 F4(wDi5 K p5i SP6 `G;sympl. (3, 6) C P13

g2 G2(w2)5 s pi3 S[2 v3Pi g p3

Notation: We denote by n(1) cutting by a general hyperplane, and by vd the Veronese embedding of degree d.

We denote by G(r, m) a Grassmann variety of r-planes in CM, and denote by Gorthog.(r, Tn) and by Gsymp.(r, m)

respectively an orthogonal and a syrnplectic Grassmann varieties of isotropic r-planes in CM. A sirnple exceptional

Lie algebra of Dynkin type G is denated by the lowercase of C in the Åqi;ermaan character, as in [121, a simaple

algebraic group of type C is deneted by just a, and for a dominant lntegral weight w of g, the minlmal closect

orbit ef C iR P(Yt.År is deRoted by a(e`f), wkere Yw ;s the irreducible representation space of g wi#k highest weight

to: For example, g2 IR the list i$ tke simple Lie algebra eftype G2, and Åq)2(wit) is tke minimai closed orblt of axx

algebraic greup ef type a2 in ge(Yw2), where w? is the second fundamental dorninant weigkt witli the standard

notation of Bourbaki (61.

APPENDIx 2. rliiHE FILTRATION OFTHEAMBIEN"rSPACE

" e6,7,8,f4

o

l

e
l

o
1

o
1

o

P

Y3 = TaR Y

V2 = Sing V3

V

Åë

e g2

o

;

e
l

o
1

o

pt

y3 -- traRv

ÅqV2)red

Åë

nm sing v3 = V = v3tw1
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e sl•mÅr3

o
I

o
l

o

I

o

p2,n-s

(V3)red rm V2 = z(Åí xiyi)

V == pm-3 u pm-3 ,,.

g

Z(XO,..-,Xm-3) mu Z(YO,••• ,Yrn-3)

- SP2m
o

l

o

p2m-3 ,.

V=Åë

V3=V2

" sgg

(P3 Å~ Pi o
/
Å~

o

l

o
l

o

i

o
l

o

x

/

P7

V3 = TanV

o pl

gge = $"4 es;2 er sf2 ee st2 ew sg2

gi = Åë2xÅë4 or C2xÅë2Qc2 =:

== Z(hyper-determinant for M2,2,2)

Å~ P3)..•••• V2 ==

V .. pl

to

Å~ Pl X PI

Sing V3

M2,2,2

e sgmÅrg

(V2o o
/
Å~

o
1

o

o
t

o

Å~

/

P2m-g

V3 = TaR v

cr va1)•••V2 = Sing V3

V= pl Å~ em-6

op

gge

gt

V2o

va1

= gg2 e sgm-4
= C2 X CM'4 me Mrn-4,2

=r({X E M.ww4,2IrkX rm= 2,'XX = o})

= {{a xc+bx d]l[a] * lb] -- ?', icl * [d] g Q}

: dim 2m - 12

7r({X E M.ww4,2IrkX nm i,
Pl Å~ pm-s

gkTxX=- l}År
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