| Title | On Moishezon Threefolds Homeomorphic to a Cubic <br> Hypersurface in $\mathrm{P}^{4}$ |
| :---: | :--- |
| Author（s） | Nakamura，Iku |
| Citation | 代数幾何学シンポジューム記録（1993），1993：196－215 |
| Issue Date | 1993 |
| URL | http：／hdl．handle．net／2433／214594 |
| Right | Departmental Bulletin Paper |
| Type | publisher |
| Textversion |  |

## On Moishezon Threefolds

## Homeomorphic to a Cubic Hypersurface in $\mathrm{P}^{4}$

Iku Nakamura<br>Hokkaido University， Department of Mathematics

## $\S 0$. Introduction．

The three dimensional projective space $\mathbf{P}^{3}$ and a smooth quadric hypersurface $Q^{3}$ in the four dimensional projective space $P^{4}$ have the unique complex structure as Moishezon manifolds （［Ko2，5．3．5］［N1］［N2］）．${ }^{1}$ See also［P1］［P2］［Ko2，5．3．13］．The major purpose of the present paper is to report recent progress on the sim－ ilar problems for Fano 3－folds of index two or more specifically cubic hypersurfaces in $\mathbf{P}^{4}$ ．

There are，besides smooth ones，various normal singular cubic hy－ persurfaces admitting small（smooth）resolutions．A cubic 3－fold is by definition a smooth Moishezon 3 －fold which is a small resolution

[^0]of a normal cubic hypersurface in $\mathrm{P}^{4}$. Any cubic 3 -fold with $b_{2}=1$ is a simply connected closed 6 -manifold with the second integral homology group infinite cyclic, whose first Chern class is divisible by two. Some of cubic 3 -folds are shown to have torsion free integral homology groups. Since the second homology group is generated by the dual of a hyperplane section, the cubic form on the second homology group is the same as that of a smooth cubic hypersurface. Therefore if any integral homology group of it is torsion free, (though we do not know whether this is true for arbitrary cubic 3 -folds) then the topology of a cubic 3 -fold with $b_{2}=1$ is by [W] uniquely determined by its third Betti number $b_{3}$. By an inequality which will be proved in (4.2) we see that $b_{3}$ is an even integer with $0 \leq b_{3} \leq 10$. An arbitrary even integer between 0 and 10 is realized as the third Betti number of some cubic 3 -fold with $b_{2}=1$, where a cubic 3 -fold with $b_{3}=10$ is a smooth cubic hypersurface. We prove

Theorem 0.1. Let $X$ be a Moishezon 3 -fold with $c_{1}^{3}$ positive, $b_{2}=1$ and $2 \leq b_{3} \leq 10$. Then $X$ is homeomorphic to a cubic 3 -fold if and only if it is isomorphic to either a cubic 3 -fold $\left(2 \leq b_{3} \leq 10\right)$ or a certain blowing down of a small resolution of a blowing-up of $\mathbf{Q}^{3}(2 \leq$ $b_{3} \leq 4$ ). In particular, any Moishezon 3 -fold with $c_{1}^{3}$ positive which is homeomorphic to a smooth cubic hypersurface in $\mathrm{P}^{4}$ is isomorphic to a smooth cubic hypersurface in $\mathrm{P}^{4}$.

Theorem 0.2. Let $X$ be a Moishezon 3-fold with $b_{2}=1, b_{3}=$
0 . Then $X$ is homeomorphic to a cubic 3 -fold if and only if it is

## ON MOISHEZON THREEFOLDS

isomorphic to either a cubic 3-fold or a certain blowing down of a small resolution of a blowing-up of $\mathrm{Q}^{3}$.

The blowing down of a blowing-up of a smooth quadric hypersurface $\mathrm{Q}^{3}$ mentioned above, which we refer to as a fake cubic 3-fold, has $b_{2}=1$ and $b_{3} \leq 4$. Since any fake cubic 3 -fold is simply connected and has torsion free integral homology groups isomorphic to those of one of cubic 3 -folds, it is diffeomorphic to some cubic 3 -fold by the same reason as before. However it seems that no fake cubic 3-folds are global deformations of cubic 3-folds.

Here we would like to remark that for quadric hypersurfaces in $\mathrm{P}^{4}$ with Hessian rank four it seems very hard to give their characterization similar to the above because $b_{2} \geq 2$. In fact, any normal quadric hypersurface in $\mathrm{P}^{4}$ with Hessian rank four has a small resolution, which is a $\mathrm{P}^{2}$-bundle over $\mathrm{P}^{1}$, and has infinitely many distinct complex structures as $\mathrm{P}^{2}-b$ bundles over $\mathrm{P}^{1}$.

Our proof of (part of) (0.1) roughly goes as follows. Let $X$ be a Moishezon 3 -fold with $c_{1}^{3}$ positive which is homeomorphic to a smooth cubic hypersurface. Then $b_{2}=1$ and $b_{3}=10$, while the canonical line bundle of $X$ is divisible by two. Let $L$ be a (positive) generator of $H^{2}(X, Z)$ with $L^{3}=3$. Since $c_{1}^{3}$ is positive by the assumption, we have $K_{X}=-2 L$ and $h^{0}(X, L)=5$. If the base locus $B:=\mathrm{Bs}|L|$ is empty, then the associated rational map $\rho_{L}$ is a birational morphism of $X$ onto a possibly singular normal cubic hypersurface in $P^{4}$ with at worst isolated singularities. Thus $X$ is a cubic 3 -fold. Then it follows from the inequality proved in section seven that $X$ is isomorphic to
a smooth cubic hypersurface.
Next we assume in general that $X$ is a Moishezon 3 -fold with $L^{3}=3, \Pi_{X}=-2 L, h^{0}(X, L)=5$ and that the base locus $B:=$ Bs $|L|$ of $|L|$ is nonempty. Two distinct general members $D$ and $D^{\prime}$ of $|L|$ have no irreducible components in common so that the complete intersection $\ell=D \cap D^{\prime}$ is pure one dimensional, which turns out to be a cycle of two smooth rational curves. Thereby $B$ turns out to be a single reduced smooth rational curve. Thus the base locus of $\rho_{L}$ can be eliminated by blowing up $X$ only once with $B$ center so that we have a morphism from the blowing up $\hat{X}$ of $X$ onto $Q^{3}$. By studying the morphism we prove that $\hat{X}$ is a small resolution of a blowing-up of $\mathbf{Q}^{3}$, and that $X$ is therefore a fake cubic 3-fold. However, no fake cubic 3 -fold is homeomorphic to a smooth cubic hypersurface because their third Betti numbers are different. This proves (0.1) when $X$ is homeomorphic to a smooth cubic hypersurface.

In the last we would like to mention that the positivity of $b_{3}$ is the obstacle for removing the assumption $c_{1}^{3}>0$ from (0.1). Since $b_{3} \geq 2$ in these cases, $X$ may have nontrivial holomorphic three forms so that $K_{X}=0$ or $K_{X}=2 L$ can happen. We were unable to exclude these possibilities without the assumption on $c_{1}^{3}$. However we need no extra assumption in (0.2) by the vanishing of $b_{3}$. It is an interesting question whether there exists a Calabi-Yau 3 -fold homeomorphic to some cubic 3 -fold with $b_{2}=1$, hence having Euler number -6 or $\pm 4$, or $\pm 2$.

Acknowledgement. The author would like to express his hearty

## ON MOISHEZON THREEFOLDS

gratitude to Professors F. Hidaka, Y. Kawamata and S. Mori for their advices (especially on the proofs of Lemmas omitted here) during the preparation of the article.

## § 1. Cubic 3 -folds

(1.1) Let $W$ be an irreducible cubic hypersurface in $\mathrm{P}^{4}$. If $W$ is smooth, then $X:=W$ is a Fano 3 -fold of index two with Pic $X \simeq$ $Z$ whose integral homology groups are all torsion free and $b_{2}=1$, $b_{3}=10$. Now we consider also normal cubic hypersurfaces in $\mathrm{P}^{4}$, which admit small (smooth) resolutions. We call those smooth 3folds cubic threefolds. The purpose of this section is to show that besides smooth cubic hypersurfaces there are smooth cubic 3 -folds $X$ with Pic $X \simeq Z L, L^{3}=3, K_{X}=-2 L$ and $h^{0}(X, L)=5$ whose integral homology groups are all torsion free. By [W] it is easy to determine (classify) the topology of those 3 -folds.

Let $W$ be a singular normal cubic hypersurface in $\mathrm{P}^{4}, p_{0}$ a singular point of $W$. Taking homogeneous coordinates $x_{0}, \cdots, x_{4}$ such that $p_{0}=[0,0,0,0,1]$, we write the clefining equation $F$ of $W$ as

$$
F=f_{2}(x) x_{4}+f_{3}(x)
$$

where $f_{k}(x)$ is a homogeneous polynomial of degree $k$ in $x_{0}, \cdots x_{3}$.

Lemma 1.2. $f_{2}$ is not identically zero if $W$ has a small resolution.

Lemma 1.3. Assume $f_{2}(x)=x_{0} x_{1}-x_{2} x_{3}$. Let $\Delta$ be a curve on $\mathbf{P}^{3}$ defined by $f_{2}=f_{3}=0$. If $W$ has at worst isolated singularities, then $\Delta$ is recluced. If moreover $W$ has a small resolution $\operatorname{smr}: X \rightarrow W$, then any local irreducible component of $\Delta$ is smooth and $b_{2}(X)=$ $b_{2}(\Delta)$. The small resolution $X$ is simply connected.

Proof. Let $G(x)=f_{2}(x)$ and $H(x)=f_{3}(x)$. Assume $x_{k} \neq 0$ for some $0 \leq k \leq 3$. Hence we have $G_{k} \neq 0$ for some $k$. Therefore

$$
\begin{gathered}
F_{k}:=\partial F / \partial x_{k}=0 \text { for any } k \\
\hat{\eta} \\
G=H=0, \quad x_{4} G_{k}+H_{k}=0 \text { for any } k \\
\hat{k} \\
x_{4}+H_{k} / G_{k}=0 \text { for some } k, \quad G=H=0, \\
\operatorname{rank}\left(\begin{array}{llll}
G_{0} & G_{t_{1}} & G_{2} & G_{3} \\
H_{0} & H_{1} & H_{2} & H_{3}
\end{array}\right) \leq 1
\end{gathered}
$$

where $G_{k}:=\partial G / \partial x_{k}$ and $H_{k}:=\partial H / \partial x_{k}$. Since $G_{k} \neq 0$ for some $k$, $x_{4}$ at the singular point of $W$ is uniquely determined by $x_{4}+H_{k} / G_{k}=$ 0 . It follows that the singularities of $W$ except at $p_{0}$ are in one to one correspondence with the singularities of $\Delta$. If $\Delta$ is nonreduced along an irreducible component, then $\Delta$ is singular along the component so that $W$ has nonisolated singularities. Therefore if $W$ has at worst isolated singularities, then $\Delta$ is reduced.

We assume that $\Delta$ is reduced. Let $s m r: X \rightarrow W$ be a small resolution. The point $p_{0}$ is an ordinary double point of $W$. On the other

## ON MOISHEZON THREEFOLDS

hand, any singularity of $X$ except $p_{0}$ corresponds to a singularity of $\Delta$ as observed above. The singularity of $X$ except $p_{0}$ is defined by an equation of the form $x y=f(z, w)$ where $f(z, w)=0$ is a local equation of $\Delta$ at the corresponding singular point of $\Delta$. Hence by (1.2), any local irreducible component of $\Delta$ is smooth.

Since $p_{0}$ is an ordinary clouble point of $W, C:=s m r^{-1}\left(p_{0}\right)$ is a. smooth rational curve. Let $\phi_{C}: \hat{X} \rightarrow X$ be the blowing-up of $X$ with $C$ center. Let $f: W \rightarrow \mathbf{P}^{3}$ be a rational map defined by $f\left(\left[x_{0}, \cdots, x_{4}\right]\right)=\left[x_{0}, \cdots, x_{3}\right]$, which is an isomorphism over $\mathbf{P}^{3} \backslash Q$ where $Q$ is a smooth quadric surface defined by $f_{2}:=x_{0} x_{1}-x_{2} x_{3}=0$ in $\mathrm{P}^{3}$. Then the induced morphism $\pi:=f \cdot s m r \cdot \phi_{C}: \hat{X} \rightarrow \mathbf{P}^{3}$ is birational, which induces an isomorphism of the exceptional set $E:=\left(s m r \cdot \phi_{C}\right)^{-1}\left(p_{0}\right)$ onto $Q\left(\subset \mathbf{P}^{3}\right)$.

Let $S:=\pi^{-1}(\Delta)$. Then $\Delta=\pi(S)$, and $s m r \cdot \phi_{C}(S)$ is a cone over $\Delta$ in $\mathrm{P}^{4}$. The divisor $S$ consists of $b_{2}(\Delta)$ irreducible components. It is clear that $\hat{X} \backslash S \cup E \simeq X \backslash \phi_{C}(S) \cup C \simeq \mathbf{P}^{3} \backslash Q$ and $S \cap E \simeq \Delta$.

Now we compuite $b_{2}(X)$. Let $T:=S \cup E$. Since $\mathrm{P}^{3} \backslash Q \simeq \hat{X} \backslash T$, we have $\pi_{1}(\hat{X} \backslash T) \simeq H_{1}(\hat{X} \backslash T) \simeq \mathrm{Z} / 2 \mathrm{Z}$. It follows easily from $\pi_{1}(\hat{X} \backslash T) \simeq \mathrm{Z} / 2 \mathrm{Z}$ that $\hat{X}$ is simply connected. Similarly $H_{2}(\hat{X} \backslash T) \simeq$ $H_{2}\left(\mathrm{P}^{3} \backslash Q\right)=0$. By the realtive homology exact sequence for the pair $(\hat{X}, \hat{X} \backslash T)$, we have $H_{2}(\hat{X}, \hat{X} \backslash T) \simeq H^{4}(T) \simeq H^{4}(S) \oplus H^{4}(E)$, so that $b_{2}(X)=b_{2}(\hat{X})-1=\operatorname{rank} H_{2}(\hat{X}, \hat{X} \backslash T)-1=b_{4}(T)-1=$ $b_{4}(S)=b_{2}(\Delta)$. This completes the proof.
q.e.d.

Lemma 1.4. Assume $f_{2}(x)=x_{0} x_{1}-x_{2} x_{3}$. If $W$ admits a small
resolution smr $: X \rightarrow W$ with $b_{2}(X)=1$, then the integral homology groups of $X$ are torsion free and we have

$$
b_{q}=1(q: \text { even }), b_{1}=b_{5}=0, b_{3}=8-2 r
$$

where $r=\frac{1}{2}\left(\operatorname{deg} \omega_{\Delta}-\operatorname{deg} \omega_{\bar{\Delta}}\right)$ for the normalization $\tilde{\Delta}$ of $\Delta$.

Now we recall a theorem of C.T.C. Wall [W, Theorem 5].
Theorem 1.5. (Wall) Diffeomorphism classes of oriented closed 6manifolds with torsion free integral homology groups and $w_{2}=0$ corresponds bijectively to isomorphism classes of systems of invariants :
free abelian groups $H:=H^{2}(M), G:=H^{3}(M)$,
a symmetric trilinear form (cup product) $\mu: H \times H \times H \rightarrow \mathrm{Z}$, a homomorphism (Pontrjagin class) $p_{1}: H \rightarrow \mathrm{Z}$ subject to

$$
\mu(x, x, y)=\mu(x, y, y) \bmod 2, \quad p_{1}(x)=4 \mu(x, x, x) \bmod 24 .
$$

In our case $p_{1}$ is given by $p_{1}=c_{1}^{2}-2 c_{2}$. It is easy to check that the conditions on $p_{1}$ and $\mu$ in (1.5) are automatically true in our case. Thus we see

Lemma 1.6. Let $X$ and $Y$ be cubic 3 -folds with $b_{2}=1$. Assume that the integral homology groups of $X$ and $Y$ are torsion free. Then the following are equivalent.
(1.6.1) $X$ and $Y$ are homeomorphic.

## ON MOISHEZON THREEFOLDS

(1.6.2) $X$ and $Y$ are diffeomorphic.
(1.6.3) $b_{3}(X)=b_{3}(Y)$.

Proof. It is easy to show that any cubic 3 -fold is simply connected. Therefore the assertion of (1.6) follows from (1.5). q.e.d.

Remark 1.7. By computations we see that there are some cubic 3 -folds with torsion free integral homology groups also in the case where Hessian rank $f_{2} \leq 3$. Therefore in view of (1.6) some cubic threefolds can be diffeomorphic to each other even when they arise from quadratic polynomials $f_{2}$ with clifferent Hessian ranks. We know so far no cubic 3 -folds whose integral homology groups have torsions.

Example 1.8. Let $f_{2}=x_{0} x_{1}-x_{2} x_{3}$. Let $S$ be a surface in $\mathbf{P}^{3}$ defined by $f_{2}=0$. Then $S$ has two rulings $f$ and $g$. Let $\Delta:=$ $\left\{f_{2}=f_{3}=0\right\}$ be a reduced curve of 6 components, the union of 3 fibers of $f$ and 3 fibers of $g$. Then $\Delta$ has 9 double points, whence the cubic hypersurface $W: f_{2} x_{4}+f_{3}=0$ has 10 ordinary double points. In this case $W$ has a small resolution $X$ with $b_{2}(X)=6$ and $b_{3}(X)=0$ by (1.3) and (4.1). This gives the maximum of the number of ordinary double points on cubic hypersurfaces. This is shown as follows. We choose one of the ordinary double points on a given cubic hypersurface $W$ as $p:[0,0,0,0,1]$. Then we can choose the equation defining $W$ and the projective coordinates $x_{i}$ as in (1.1) so that $f_{2}(x)=x_{0} x_{1}-x_{2} x_{3}$. Hence by the proof of (1.3) any ordinary clouble point of $W$ corresponds to that of a curve $\Delta$, which is a member of $\left|3 e_{1}+3 e_{2}\right|$. Therefore it is easy to see that the above
example gives the maximum.

## §2. Fake cubic 3 -folds and compactifications of $\mathrm{C}^{3}$

(2.1) In this section we construct some Moishezon threefolds with $K_{X}=-2 L$ whose rational image by $\rho_{L}$ is $\mathbf{Q}^{3}$. This example has been mentioned in [Ko2, 5.3.14].

Let $\Delta$ be an irreducible Gorenstein curve of $\mathrm{Q}^{3}\left(\subset \mathrm{P}^{4}\right)$ with $\operatorname{deg} \Delta=5$ and $\operatorname{deg} \omega_{\Delta}=2$ whose any local irreducible components are smooth. We assume that $\Delta$ lies on a smooth hyperplane section of $\mathbf{Q}^{3}$, which we denote by $Q\left(\simeq \mathrm{~F}_{0} \simeq \mathrm{P}^{1} \times \mathrm{P}^{1}\right)$. Let $e_{1}$ and $e_{2}$ be fibers of two natural rulings of $Q$. Then we may assume that $\Delta$ belongs to $\left|2 e_{1}+3 e_{2}\right|$.

Let $\hat{f}: \hat{X} \rightarrow \mathbf{Q}^{3}$ be a small resolution of a blowing-up of $\mathbf{Q}^{3}$ with $\Delta$ center, $\hat{\Delta}:=\hat{f}^{-1}(\Delta)$ and $\hat{Q}$ the proper transform of $Q$. It is easy to see that $\hat{Q} \simeq Q$ and $N_{\hat{Q} / \hat{X}} \simeq-e_{1}-2 e_{2}$ even if $\Delta$ is singular. Therefore we have a contraction morphism $\phi: \hat{X} \rightarrow X$ such that $B:=\phi(\hat{Q}) \simeq \mathrm{P}^{1}$. Let $\hat{L}:=\hat{f}^{*}\left(O_{\mathrm{Q}^{3}}(1)\right)$ and $L:=\phi_{*}(\hat{L}+\hat{Q})$. We easily check that

$$
\text { Pic } X \simeq \mathrm{Z} L, \quad L^{3}=3, \quad \kappa(L)=3, \quad K_{X}=-2 L
$$

Let $\Lambda:=\phi_{*} \hat{f}^{*}\left|O_{\mathrm{Q}^{3}}(1)\right|$. Let $H$ be a general smooth hyperplane section of $\mathbf{Q}^{3}, \hat{D}:=\hat{f}^{-1}(H)$ and $D:=\phi(\hat{D})$. Then $\hat{D}$ is the blowingup of $H$ with center $H \cap \Delta$, which consists of 6 distinct points. Hence $\hat{D}$ is smooth, while so is $D$. We easily check that $B=\mathrm{Bs} \Lambda \simeq \mathrm{P}^{1}$.

## ON MOISHEZON THREEFOLDS

Moreover for a pair of general members $D$ and $D^{\prime}$ of $\Lambda$, we see that $\ell:=D \cap D^{\prime}=B+C$ is a cycle of smooth rational curves. Moreover

$$
L C=4, \quad L B=-1, \quad \Lambda=|L| \simeq|\hat{L}| \simeq\left|O_{\mathrm{Q}^{3}}(1)\right| .
$$

We denote $X$ by $X\left(\Delta, Q^{3}\right)$ and call it a fake cubic 3 -fold, which is uniquely determined by $\left(\Delta, O_{\Delta}(1)\right)$. This construction gives no Moishezon 3 -folds with $K_{X}=-2 L$ and $b_{2}(X)=1$ when $\Delta$ lies on a singular quadric surface by (3.2).

It is easy to see the following'
Lemma 2.2. Let $\Delta$ be an irreducible Gorenstein curve on a smooth quadric surface $Q\left(\subset \mathbf{P}^{3} \subset \mathrm{P}^{4}\right)$ with $\operatorname{deg} \Delta=5$ and $\operatorname{deg} \omega_{\Delta}=$ 2, any of whose local irreducible components are smooth. Let $r=$ $\frac{1}{2}\left(\operatorname{deg} \omega_{\Delta}-\operatorname{deg} \omega_{\Delta}\right)$ for the normalization $\tilde{\Delta}$ of $\Delta, X:=X\left(\Delta, \mathbf{Q}^{3}\right)$. Then $0 \leq r \leq 2$ and any homology group $H_{q}(X, Z)$ of $X$ is torsion free, $b_{q}=1(q=0,2,4,6), b_{1}=b_{5}=0$, while $b_{3}=4-2 r(\leq 4)$ and the Euler number of $X$ is given by $e(X)=2 r(\leq 4)$.

Corollary 2.3. In the notation in (2.2), $X\left(\Delta, \mathbf{Q}^{3}\right)$ is diffeomorphic to a cubic 3-fold with the same integral homology groups.

Proof. This follows from Lemmas 1.5-1.6 and 2.2. q.e.d.

Remark 2.4. It is possible to construct similar examples when the curve $\Delta$ is on a singular hyperplane section. We also call this a fake cubic 3 -fold.

By choosing $\Delta \in\left|2 e_{1}+(6-m) e_{2}\right|$ with mild singularities, we can also procluce examples of Moishezon 3-folds $X$ with Pic $X=\mathrm{Z} L$, $K_{X}=-2 L$ and $L^{3}=m$.

To be more precise, let $Q$ be a smooth hyperpplane section of $\mathbf{Q}^{3}$, and $\Delta \in\left|2 e_{1}+(6-m) e_{2}\right|_{Q}(-\infty<m \leq 3)$ an irreducible curve on $Q$ whose any local irreducible components are smooth. Let $\hat{f}: \hat{X} \rightarrow \mathbf{Q}^{3}$ be a small resolution of the blowing up $B_{\Delta}\left(\mathbf{Q}^{3}\right)$ of $\mathbf{Q}^{3}$ with $\Delta$ center, $\hat{\Delta}:=\hat{f}^{-1}(\Delta)$, and $\hat{B}$ the proper transform of Q. Then we see $N_{\dot{B} / \hat{X}} \simeq O_{\dot{B}}\left(-e_{1}-(5-m) e_{2}\right)$ so that we have a Moishezon 3-fold $X$ and a contraction morphism $\phi: \hat{X} \rightarrow X$ such that $B:=\phi(\hat{B}) \simeq \mathrm{P}^{1}$ and $\hat{X} \backslash \hat{B} \simeq X \backslash B$. Letting $\hat{L}=\hat{f}^{*}\left(O_{\mathbf{Q}^{3}}(1)\right)$ and $L:=\phi_{*}(L)$, we have

$$
\begin{gathered}
\operatorname{Pix} X=\mathrm{Z} L, \quad K_{X}=-2 L, \quad L^{3}=m(\leq 3) \\
|L| \simeq|\hat{L}| \simeq\left|O_{\mathbf{Q}^{3}}(1)\right|, \quad \text { Bs }|L|=B .
\end{gathered}
$$

We denote $X$ by $X\left(\Delta, \mathbf{Q}^{3}\right)$. We also note that if $m \geq 6$, then there is no irreducible $\Delta$. If $m=4$ or 5 , then Bs $|L|$ is empty and $X$ is either a small resolution of a complete intersection of two quadric hypersurfaces in $\mathrm{P}^{5}(m=4)$ or a 3 -fold hyperplane section of $\operatorname{Gr}(2,5) \subset \mathrm{P}^{9}(m=5)$. This is shown directly or by using a theorem of Kollár (3.1).

It is possible to construct similar examples when the curve $\Delta$ is on a singular hyperplane section. These yield compactifications of $\mathbf{C}^{3}$ by an irreducible divisor.
§ 3. Moishezon 3-folds with $b_{2}=1$ and $K_{X}=-2 L$

## ON MOISHEZON THREEFOLDS

First we recall a theorem of Kollár.
Theorem 3.1. (Kollár [Ko2, 5.3.12]) Let X be a Moishezon 3-fold $X$ with $K_{X}=-2 L, s:=h^{0}(X, L) \geq 4$ and $b_{2}=1$. Let $\rho_{L}$ be the rational map associated with $|L|$. Then $\left(X, \rho_{L}\right)$ is one of the following;
(3.1.1) $s=4, \rho_{L}$ is a birational rational map of $X$ onto $\mathbf{P}^{3}$,
(3.1.2) $s=4, X$ is a double cover of $\mathrm{P}^{3}$ ramified along a quartic by the morphism $\rho_{L}$,
(3.1.3) $s=5, \rho_{L}$ is a birational rational map of $X$ onto $\mathbf{Q}^{3}$,
(3.1.4) $s=5, \rho_{L}$ is a birational morphism of $X$ onto a cubic hypersurface in $\mathrm{P}^{4}$,
(3.1.5) $s=6, \rho_{L}$ is a birational morphism of $X$ onto a complete intersection of a pair of quadric hypersurfaces in $\mathbf{P}^{5}$,
(3.1.6) $s=7, \rho_{L}$ is an isomorphism of $X$ onto a 3-fold hyperplane section of the Grassmanian $\operatorname{Gr}(2,5) \subset \mathbf{P}^{9}$, which we call $V_{5}$.

We shall nearly settle (3.1.3) by proving (3.2) and (3.3).
Theorem 3.2. Let $X$ be a Moishezon 3-fold with $b_{2}(X)=1$, $L^{3}=3, K_{X}=-2 L$ and $h^{0}(X, L)=5$. If Bs $|L|$ is nonempty, then $X$ is a fake cubic 3 -fold. In particular, $X$ is homeomorphic to no smooth cubic hypersurface.

Theorem 3.3. Let $X$ be a Moishezon 3-fold with $b_{2}(X)=1, L^{3}=$ $m, K X=-2 L$ and $h^{0}(X, L)=5$. If Bs $|L|$ is empty, then $m=3$ and
$X$ is a cubic 3 -fold. If $\mathrm{Bs}|L|$ is nonempty, then $-\infty<m \leq 3$ and $X$ is isomorphic to $X\left(\Delta, Q^{3}\right)$ resp. the blowing up-and-down or the blowing down of a $\mathbf{Q}$-factorialization of the blowing up $B_{\Delta}\left(\mathbf{Q}^{3}\right)$ of $\mathbf{Q}^{3}$ with center a curve $\Delta$ of $\mathbf{Q}^{3}\left(\subset \mathbf{P}^{4}\right)$ where $\Delta$ is an irreducible reduced curve contained in a smooth (resp. singular) hyperplane section of $\mathrm{Q}^{3}$ with deg $\Delta=S-m$ and $\operatorname{deg} \omega_{\Delta}=8-2 m$.

See (2.4) (resp. (3.5)) for the detail when $\Delta$ is contained in a smooth (resp. singular) hyperplane section of $\mathbf{Q}^{3}$.

Proof of (3.3). If $\mathrm{Bs}|L|$ is empty, then $m=3$ and $X$ is a cubic 3 -fold by (3.1) or [Ko2, 5.3.12]. Now we assume that $B:=\mathrm{Bs}|L|$ is nonempty. Then we see $B \simeq \mathbf{P}^{1}$. Moreover we have $h^{0}\left(O_{B}(L)\right)=0$, whence $L B \leq-1$. This proves that $m=L^{3}=L B+L C=L B+4 \leq$ 3. Let $\hat{X}$ be the blowing-up of $X$ with $B$ center, $\hat{B}$ the total transform of $B$. The we have a morphism $f: \hat{X} \rightarrow \mathbf{Q}^{3}$. Let $\hat{L}:=f^{*}\left(O_{\mathbf{Q}^{3}}(1)\right.$.

There are two cases $\hat{B} \simeq \mathbf{F}_{0}$ or $\hat{B} \simeq \mathbf{F}_{2}$. In each case we have
Lemma 3.4. If $\hat{B} \simeq \mathrm{~F}_{0}$, then $\hat{X}$ is a small resolution of $B_{\Delta}\left(\mathbf{Q}^{3}\right)$. The curve $\Delta$ is an irreducible reduced curve contained in a smooth hyperplane section of $\mathbf{Q}^{3}$ with deg $\Delta=8-m$ and deg $\omega_{\Delta}=8-2 m$, any of whose local irreducible components is smooth.

Lemma 3.5. Assume $\hat{B} \simeq \mathrm{~F}_{2}$. Let $e_{\infty}$ be a smooth rational curve on $\mathrm{F}_{2}$ with $e_{\infty}^{2}=-2, I_{e_{\infty}}$ the defining ideal of $e_{\infty}$ in $\hat{X}, I:=I_{e_{\infty}}^{2-k}+I_{\hat{B}}$ $(m=2 k, 2 k+1)$ and $\phi_{I}: B_{I}(\hat{X}) \rightarrow \hat{X}$ the blowing-up of $\hat{X}$ with

## ON MOISHEZON THREEFOLDS

the ideal $I$ center. Then we have a natural surjective morphism $g^{\text {norm }}: B_{I}(\hat{X}) \rightarrow B_{\Delta}^{\text {norm }}\left(\mathbf{Q}^{3}\right)$.
(3.5.1) If $m=2 k$, then $m \leq 1$, and $g^{\text {norm }}$ contracts $E:=\phi_{I}^{-1}\left(e_{\infty}\right) \simeq$ $\mathrm{F}_{0}$ into a smooth rational curve. There exists a contraction morphism cont $E_{E}: B_{I}(\hat{X}) \rightarrow \operatorname{Cont}_{E} B_{I}(\hat{X})$ of $B_{I}(\hat{X})$ onto a 3-dimensional normal Moishezon space $\operatorname{Cont}_{E} B_{I}(\hat{X})$ and a surjective morphism $h^{\text {norm }}: \operatorname{Cont}_{E} B_{I}(\hat{X}) \rightarrow B_{\Delta}^{\text {norm }}\left(\mathbf{Q}^{3}\right)$ such that $g^{\text {norm }}=h^{\text {norm }} \cdot \operatorname{cont}_{E}$. We have $\operatorname{cont}_{E}(E) \simeq \mathrm{P}^{1}$ and $\operatorname{Cont}_{E} B_{I}(\hat{X})$ is a Q -factorialization of $B_{\Delta}^{\text {norm }}\left(\mathbf{Q}^{3}\right)$ by $h^{\text {norm }}$.
(3.5.2) If $m=2 k+1$, then $m \leq 1$ and $B_{I}(\hat{X})$ is a normal Qfactorialization of $B_{\Delta}^{\text {norm }}\left(Q^{3}\right)$ by $g^{\text {norm }}$.

## § 4. $V_{5}$ and cubic 3 -folds

Theorem 4.1. (Kollár) Let $X$ be a Moishezon 3-fold homeomorphic to a $V_{5}$. Then it is isomorphic to a $V_{5}$.

Lemma 4.2. Let $W$ be a normal cubic hypersurface with isolated singularities which admits a small resolution $f: X \rightarrow W$. Let $H$ be a general hyperplane section of $W$, and $L:=f^{*}(H)$. Let $s:=$ the number of singular points of $W$, and $e(X)$ the Euler number of $X$. Then $X$ is a Moishezon 3 -fold with $K_{X}=-2 L, h^{q}\left(X, O_{X}\right)=0(q \geq 1)$. Moreover there exists a coherent sheaf $\mathcal{G}$ on $X$ with supp $\mathcal{G}$ contained in the exceptional set of $f$ such that $\frac{1}{2} e(X)+3=h^{0}(X, \mathcal{G}) \geq s$.

Proof. Since the singularities of $W$ are rational by $[\mathrm{E}], h^{q}\left(O_{X}\right)=$
$h^{q}\left(O_{W}\right)=0$ for $q \geq 1$ and $\chi\left(O_{X}\right)=1$. Let $T_{X}$ be the holomorphic tangent bundle of $X$. Then we have exact sequences,

where $\mathcal{F}$ and $\mathcal{G}$ are the cokernels of the sequences, while the second sequence is the normal sequence over the smooth locus of $W$. Note that $h^{q}(X, m L)=h^{q}(W, m H)=0$ for any $q \geq 1$ and $m \geq 0$ because $f_{*}(m L) \simeq m H$ and $R^{q} f_{*}(m L)=0$ for $q \geq 1$. From the above seçuences we infer

$$
\begin{gathered}
h^{q}\left(X, f^{*} T_{\mathrm{P}^{4}}\right)=0(q \geq 1), \quad h^{3}\left(X, T_{X}\right)=h^{0}\left(X, \Omega_{X}^{1}(-2 L)\right)=0 \\
h^{q}(X, \mathcal{G})=h^{q+1}(X, \mathcal{F})=h^{q+2}\left(X, T_{X}\right)=0(q \geq 1)
\end{gathered}
$$

It follows that

$$
\begin{aligned}
h^{0}(X, \mathcal{G}) & =\chi(X, \mathcal{G}) \\
& =\chi(X, 3 L)-\chi\left(X, f^{*} T_{\mathrm{P}^{4}}\right)+\chi\left(X, T_{X}\right) \\
& =\chi(X, 3 L)-5 \chi(X, L)+\chi\left(X, O_{X}\right)+\chi\left(X, T_{X}\right) \\
& =34-25+1+\left(12 c_{1}^{3}-19 c_{1} c_{2}+12 c_{3}\right) / 24 \\
& =e(X) / 2+3
\end{aligned}
$$

## ON MOISHEZON THREEFOLDS

where $c_{1} c_{2}=24 \chi\left(X, O_{X}\right)=24$ and $c_{1}:=c_{1}(X)=f^{*} c_{1}(W)=$ $2 c_{1}(L)$ because the resolution $f: X \rightarrow W$ is small. Let $F:=$ $F\left(x_{0}, \cdots, x_{4}\right)$ be the defining equation of $W, I$ the Jacobian ideal of $F$ (generated by $\partial F / \partial x_{i}$ ). Let $J$ be the ideal of $O_{X}$ generated by $f^{*}\left(\partial F / \partial x_{i}\right)$. Then by the clefinition of the above sequences we have $\mathcal{G} \simeq\left(O_{X} / J\right) \otimes O_{X}(3 L)$. Since the singularities of $W$ are isolated, $\left(O_{X} / J\right) \otimes O_{X}(3 L) \simeq O_{X} / J$. Therefore $h^{0}(X, \mathcal{G}) \geq s$, where $s:=$ the number of singular points of $W$. This completes the proof of (4.2).
q.e.d.

Proposition 4.3. Let $W$ be a normal cubic hypersurface in $\mathrm{P}^{4}$ which admits a small resolution $f: X \rightarrow W$, and $H$ a general hyperplane section of $W$. Then $H_{1}(X, Z)=0$, and the inclusion homomorphism $\mathrm{i}_{*}: H_{2}(H, \mathrm{Z}) \rightarrow I H_{2}(W, \mathrm{Z}) \simeq H_{2}(X, \mathrm{Z})$ is surjective where $\mathrm{IH}_{2}(W, \mathrm{Z})$ is the second intersection homology of $W$ for any perversity. In particular, $b_{2}(X) \leq 7$ and $-6 \leq e(X) \leq 16$.

Proof. Let $W$ be a normal cubic hypersurface which admits a small resolution $X$. By [GM, 6.2], $I H_{2}(W, Z) \simeq H_{2}(X, Z)$ by the smoothness of $X$. The first assertion of (4.2) follows from [GM, 7.1]. Similarly $b_{2}(X) \leq b_{2}(H) \leq 7$. Because $H$ is a smooth cubic surface so that it is $\mathbf{P}^{2}$ blown-up at 6 points. We also see $e(X)=2+2 b_{2}-b_{3} \leq 16$, we have $e(X) \geq-6$ by (4.2).
q.e.d.

Corollary 4.4. Let $W$ be a normal cubic hypersurface in $\mathrm{P}^{4}$ with at worst ordinary double points. Then the number of ordinary double points on $W$ is at most 10.

Proof. We have $s \leq 10$ by (1.9), though we have only $s \leq 11$ by (4.2) and (4.3).
q.e.d.

Theorem 4.5. Let $X$ be a Moishezon 3-fold homeomorphic to a cubic 3 -fold with $b_{2}=1$ and $6 \leq b_{3} \leq 10$. If $c_{1}^{3}$ is positive or if $X$ has no holomorphic 3 -forms, then $X$ is isomorphic to a cubic 3 -fold. In particular if $X$ is homeomorphic to a smooth cubic hypersurface in $\mathbf{P}^{4}$ and if $c_{1}^{3}>0$, then $X$ is isomorphic to a smooth cubic hypersurface in $\mathrm{P}^{4}$.

Proof. Let $X$ be a Moishezon 3 -fold homeomorphic to a smooth cubic hypersurface. Then $b_{1}=0, b_{2}=1$ and $b_{3}=10$. Hence $h^{1}\left(X, O_{X}\right)=h^{2}\left(X, O_{X}\right)=0$ and $h^{3}\left(X, O_{X}\right) \leq b_{3} / 2=5$ so that Pic $X \simeq H^{2}(X, Z) \simeq Z$. Let $L$ be a generator of $\operatorname{Pic} X$ with $L^{3}=3$. Then $K_{X}=-(2 q+2) L$ for some integer $q$ because $c_{1} \bmod 2$ is a topological invariant. Then as in $[M]$ we have

$$
-4 \leq \chi\left(X, O_{X}\right)=\chi\left(Z, O_{Z}(q)\right)=(q+1)\left(q^{2}+2 q+2\right) / 2
$$

where $Z$ is a smooth cubic hypersurface in $\mathrm{P}^{4}$ and $O_{Z}(1)$ is the hyperplane bundle. Hence $\left(q, h^{3}\left(X, O_{X}\right)\right)=(0,0),(-1,1),(-2,2)$. When $q$ is negative, we have $c_{1}^{3}=3(2 q+2)^{3} \leq 0$. By either of the assumptions we have $q=0, h^{3}\left(X, O_{X}\right)=0$ and $K_{X}=-2 L$. Then by $[\mathrm{Ko2}, 5.3 .12] h^{0}(X, L)=5$. By $(3.2), B:=\mathrm{Bs}|L|$ is empty. Therefore the half anti-canonical map $\rho_{L}$ of $X$ is defined everywhere and $X$ is a cubic 3 -fold because $b_{2}=1$.

Let $W$ be the cubic hypersurface which is the image of $X$ by $\rho_{L}$. Then the singularities of $W$ are isolated, hence normal. Since $X$ is a

## ON MOISHEZON THREEFOLDS

small resolution of $W$, the singularities of $W$ are terminal so that they are rational $[E]$. Hence by (4.2), we have $5-b_{3} / 2=e(X) / 2+3 \geq s$, where $s:=$ the number of isolated singular points on $W$. It follows from $b_{3}=10$ that $W$ is smooth and $X \simeq W$.

Next we consider the case where $X$ is homeomorphic to a cubic 3 -fold with $6 \leq b_{3} \leq 8$. We see in the same manner as above that $I_{X}=-2 L$ and $h^{0}(X, L)=5$ for the generator $L$ of Pic $X$ with $L^{3}=3$ by [Ko2]. Let $B:=\mathrm{Bs}|L|$. If $B$ is empty, then $X$ is a cubic 3 -fold by $b_{2}=1$, while if $B$ is nonempty, then $X \simeq X\left(\Delta, \mathbf{Q}^{3}\right)$ by (4.2), which contradicts $b_{3}\left(X\left(\Delta, \mathbf{Q}^{3}\right)\right) \leq 4$ by (2.2). q.e.d.

Theorem 4.6. Let $X$ be a Moishezon 3-fold homeomorphic to a cubic 3 -fold with $b_{2}=1$, then $X$ is isomorphic to either a cubic 3 -fold or a fake cubic 3 -fold if one of the following conditions is satisfied.
(4.6.1) $2 \leq b_{3} \leq 4$, either $c_{1}^{3}$ is positive or $h^{3,0}(X)=0$, (4.6.2) $\quad b_{3}=0$.

## Bibliography

[B] E.Brieskorn, Die Auflösung der rationalen Singularitäten holomorphen Abbildungen, Math. Ann. 178 (1968), 255-270.
[E] R.Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1-6.
[F] A.Fujiki, On the blowing down of analytic spaces, Publ. R. Inst. Math. Sci. Kyoto Univ. 10 (1975), 473-507.
[GM] M.Goresky and R.MacPherson, Intersection homology II, Invent. Math. 71 (1983), 77-129.
[Ka] Y.Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math. 127 (1988), 93-163.
[Ko1] J.Kollár, Flops, Nagoya Math. J. 113 (1989), 15-36.
[Ko2] J.Kollár, Flips, flops, minimal models etc., Surveys in Diff. Geom. 1 (1991).
[M] J.Morrow, A survey of some results on complex Kähler manifolds, Global Analysis, Univ. Tokyo Press and Princeton University Press (1969), 315-324.
[N1] I.Nakamura, Moishezon threefolds homeomorphic to $\mathbf{P}^{\mathbf{3}}$, Jour. Math. Soc. Japan 39 (1987), 521-535.
[N2] I.Nakamura, Threefolds homeomorphic to a hyperquadric in $\mathbf{P}^{4}$, Algebraic Geometry and Commutative Algebra in Honor of M. Nagata, Kinokuniya, Tokyo, Japan (1987), 379-404.
[N3] I.Nakamura, On Moishezon manifolds homeomorphic to $\mathrm{P}_{\mathrm{C}}^{n}$, Jour. Math. Soc. Japan 44 (1992), 667-692.
[N4] I.Nakamura, Moishezon fourifolds homeomorphic to Q $_{\mathrm{C}}^{4}$, Osaka J. Math to appear.
[P1] T.Peternell, A rigidity theorem for $\mathbf{P}_{3}(\mathrm{C})$, Manuscripta Math. 50 (1985), 397-428.
[P2] T.Peternell, Algebraic structures on certuin 3-folds, Math. Ann. 274 (1986), 133-156.
[R] M.Reicl, Minimal models of canonical 3-folds, Advanced Studies in Pure Mathematics, Kinokuniya, Tokyo, Japan, vol. 1 (1983), 131-180.
[W] C.T.C.Wall, Classification problems in differential topology V, On certain 6-mani-folds, Invent. Math. 1, (1966), 355-374.

Iku Nakamura
Department of Mathematics, Hokkaido University, Sapporo, 060, Japan


[^0]:    1 There is a rumor that it has been proved that the six dimensional sphere $S^{6}$ has a complex structure，a fortiori， $\mathrm{P}^{3}$ has an exotic complex structure with nonzero irregularity．It may probably true that any compact complex 3 －fold homeomorphic to $\mathbf{P}^{3}$（resp． $\mathrm{Q}^{3}$ ）is isomorphic to $\mathbf{P}^{3}$（resp． $\mathbf{Q}^{3}$ ）if the irregularity vanishes．

