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On Moishezon Threefolds

Homeomorphic to a Cubic Hypersurface in P*

IKu NAKAMURA

Hokkaido University,
Department of Mathematics

§ 0. Introduction.

The three dimensional projective space P® and a smooth
quadric hypersurface Q? in the four dimensional projective space P*
have the wunique complex structure as Moishezon manifolds
([Ko02,5.3.5] [N1][N2]).! See also [P1][P2] [Ko02,5.3.13]. The major
purpose of the present paper 1s to report recent progress on the sim-
ilar problems for Fano 3-folds of index two or more specifically cubic
hypersurfaces in P*.

There are, besides smooth ones, various normal singular cubic hy-
persurfaces admitting small (smooth) resolutions. A cubic §-fold is

by definition a smooth Moishezon 3-fold which is a small resolution

1 There is a rumor that it has been proved that the six dimensional sphere

5% has a complex structure, a fortiori, P? has an exotic complex structure with
nonzero irregularity. It may probably true that any compact complex 3-fold
homeomorphic to P? (resp. Q3) is isomorphic to P2 (resp. Q2) if the irregularity
vanishes.

Typeset by AaS-TEX

—196—



of a normal cubic hypersurface in P*. Any cubic 3-fold with b, = 1
is a simply connected closed 6-manifold with the second integral ho-
mology group infinite cyclic, whose first Chern class is divisible by
two. Some of cubic 3-folds are shown to have torsion free integral ho-
mology groups. Since the second homology group is generated by the
dual of a hyperplane section, the cubic form on the second homology
group 1s the same as that of a smooth cubic hypersurface. Therefore
if any integral homology group of it is torsion free, (though we do not
know whether this is true for arbitrary cubic 3-folds) then the topol-
ogy of a cubic 3-fold with b; = 1 is by [W] uniquely determined by
its third Betti number b3. By an inequality which will be proved in
(4.2) we see that bs is an even integer with 0 < b3 < 10. An arbitrary
even integer between 0 and 10 is realized as the third Betti number
of some cubic 3-fold with by = 1, where a cubic 3-fold with b3 = 10

1s a smooth cubic hypersurface. We prove

Theorem 0.1. Let X bea Moishezon 3-fold with c3 positive, by = 1
and 2 < b3 < 10. Then X i1s homeomorphic to a cubic 3-fold if and
only if it Is isomorphic to either a cubic 3-fold (2 < b3 < 10) or a
certain blowing down of a small resolution of a blowing-up of Q* (2 <
by < 4). In particular, any Moishezon 3-fold with ¢} positive which
is homeomorphic to a smooth cubic hypersurface in P* is isomorphic

to a smooth cubic hypersurface in P4,

Theorem 0.2. Let X be a Moishezon 3-fold with by = 1, b3 =
0. Then X is homeomorphic to a cubic 3-fold if and only if it is
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ON MOISHEZON THREEFOLDS

isomorphic to either a cubic 3-fold or a certain blowing down of a

small resolution of a blowing-up of Q3.

The blowing down of a blowing-up of a smooth quadric hypersur-
face Q3 mentioned above, which we refer to as a fake cubic 3-fold, has
by = 1 and b3 < 4. Since any fake cubic 3-fold is simply connected
and has torsion free integral homology groups isomorphic to those of
one of cubic 3-folds, it is diffeomorphic to some cubic 3-fold by the
same reason as before. However it seems that no fake cubic 3-folds
are global deformations of cubic 3-folds.

Here we would like to remark that for quadric hypersurfaces in
P* with Hessian rank four it seems very hard to give their charac-
terization similar to the above because b, > 2. In fact, any normal
quadric hypersurface in P* with Hessian rank four has a small resolu-
tion, which is a P2-bundle over P!, and has infinitely many distinct
complex structures as P?-bundles over P!.

Our proof of (part of) (0.1) roughly goes as follows. Let X be a
Moishezon 3-fold with ¢? positive which is homeomorphic to a smooth
cubic hypersurface. Then b; =1 and b3 = 10, while the canonical
line bundle of X 1s divisible by two. Let L be a (positive) generator
of H%(X,Z) with L® = 3. Since ¢} is positive by the assumption, we
have Kx = —2L and h°(X,L) = 5. If the base locus B := Bs |L| is
empty, then the associated rational map pr is a birational morphism
of X onto a possibly singular normal cubic hypersurface in P* with at
worst isolated singularities. Thus X is a cubic 3-fold. Then it follows
from the inequality proved in section seven that X is isomorphic to

—198—



a smooth cubic hypersurface.

Next we assume in general that X is a Moishezon 3-fold with
I? =3, x = 2L, h°(X,L) = 5 and that the base locus B :=
Bs |L| of [L] is nonempty. Two distinct general members D and D’
of |L| have no irreducible components in common so that the complete
intersection ¢ = D N D' is pure one dimensional, which turns out to
be a cycle of two smooth rational curves. Thereby B turns out to be
a single reduced smooth rational curve. Thus the base locus of py, can
be eliminated by blowing up X only once with B center so that we
have a morphism from the blowing up X of X onto Q®. By studying
the morphism we prove that X is a small resolution of a blowing-up
of Q3, and that X is therefore a fake cubic 3-fold. However, no fake
cubic 3-fold is homeomorphic to a smooth cubic hypersurface because
their third Betti numbers are different. This proves (0.1) when X is
homeomorphic to a smooth cubic hypersurface.

In the last we would like to mention that the positivity of b3 is
the obstacle for removing the assumption ¢ > 0 from (0.1). Since
b; > 2 in these cases, X may have nontrivial holomorphic three forms
so that Ky = 0 or Y y = 2L can happen. We were unable to exclude
these possibilities without the assumption on ¢}. However we need no
extra assumption in (0.2) by the vanishing of b3. It is an interesting
question whether there exists a Calabi-Yau 3-fold homeomorphic to
some cubic 3-fold with b, = 1, hence having Euler number —6 or %4,
or 2.

ACKNOWLEDGEMENT. The author would like to express his hearty
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ON MOISHEZON THREEFOLDS

gratitude to Professors F. Hidaka, Y. Kawamata and S. Mori for their
advices (especially on the proofs of Lemmas omitted here) during the

preparation of the article.

§ 1. Cubic 3-folds

(1.1) Let W be an irreducible cubic hypersurface in P*. If W is
smooth, then X := W is a Fano 3-fold of index two with Pic X ~
Z whose integral homology groups are all torsion free and by = 1,
b3 = 10. Now we consider also normal cubic hypersurfaces in P*,
which admit small (smooth) resolutions. We call those smooth 3-
folds cubic threefolds. The purpose of this section is to show that
besides smooth cubic hypersurfaces there are smooth cubic 3-folds
X with Pic X ~ ZL, L* = 3, Kx = —2L and h% X, L) = 5 whose
integral homology groups are all torsion free. By [W] it is easy to
determine (classify) the topology of those 3-folds.

Let W be a singula,r normal cubic hypersurface in P*, pg a singular
point of W. Taking homogeneous coordinates zg,--- , 24 such that

po = [0,0,0,0,1], we write the defining equation F' of W as

F = fa(2)zs + fi(z)

where fr(a) is a homogeneous polynomial of degree k in zg, --z3.

Lemma 1.2. f, is not identically zero if W has a small resolution.
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Lemma 1.3. Assume fo(z) = zoz;—z2z3. Let A be a curve on P3
defined by f, = f3 = 0. If W has at worst isolated singularities, then
A is reduced. If moreover W has a small resolution smr : X — W,
then any Io‘cal nrreducible component of A is smooth and by(X) =

by(A). The small resolution X 1s simply connected.

Proof. Let G(z) = f2(z) and H(z) = f3(x). Assume z; # 0 for

some 0 < k < 3. Hence we have G # 0 for some k. Therefore

Fy :=0F/0zy =0 for any k

(i
G=H=0, 224G+ Hi=0 forany k

T
vy + Hi/Gr =0 for some k&, G=H=0,

rank <§(()) 21 gz gi) <1

where G, := 0G/0zy and Hy := 0H/0zy. Since Gy # 0 for some &k,
x4 at the singular point of W is uniquely determined by z,+H /G =
0. It follows that the singularities of W except at py are in one to one
correspondence with the singularities of A. If A is nonreduced along
an irreducible component, then A is singular along the component
so that W has nonisolated singularities. Therefore if W has at worst
isolated singularities, then A is reduced.

We assume that A is reduced. Let smr : X — W be a small reso-
lution. The point pg 1s an ordinary double point of W. On the other
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ON MOISHEZON THREEFOLDS

hand, any singularty of X except pg corresponds to a singularity of
A as observed above. The singularity of X except po is defined by
an equation of the form ay = f(z,w) where f(z,w) = 0 is a local
equation of A at the corresponding singular point of A. Hence by
(1.2), any local irreducible component of A is smooth.

Since pg 1s an ordinary double point of W, C := smr~!(pg) is
a smooth rational curve. Let ¢c : X — X be the blowing-up of
X with C center. Let f : W — P be a rational map defined by
f(lzo, -+ ,24]) = 20, -+ , 23], which is an isomorphism over P3\ Q
where @) 1s a smooth quadric surface defined by fs := 29z, — 2223 =0
in P3. Then the induced morphism « := f - smr-¢¢c : X — P3

15 birational, which induces an isomorphism of the exceptional set

E = (smr - éc) " (po) onto Q (C P?).

Let S :=771(A). Then A = 7(S5), and smr - ¢¢(S) is a cone over
A in P*. The divisor S consists of by(A) irreducible components. It
is clear that X \SUE ~ X\ ¢c(S)UC ~P*\Q and SNE ~ A.

Now we compute by(X). Let T := SUE. Since P?\ Q ~ X'\ T,
we have m (X \ T) ~ H(X \ T) ~ Z/2Z. 1t follows easily from
m(X\T) ~ Z/22 that X is simply connected. Similarly Ho(X\T) ~
Ho(P?\ Q) = 0. By the realtive homology exact sequence for the
pair (X, X\ T), we have Ho(X, X\ T) ~ H4(T) ~ H*(S) @ H*(E),
so that by(X) = bp(X) — 1 = rank Hy(X, X\ T) =1 =by(T) -1 =
ba(S) = b2(A). This completes the proof. q.e.d.

Lemma 1.4, Assume f>(z) = zoz) — zox3. If W admits a small
—202—



resolution smr : X — W with by(X) = 1, then the integral homology

groups of X are torsion free and we have

by=1(q:even),by = bs =0,b3 =8 —2r
where r = %(cleg wa — deg wy ) for the normalization A of A.

Now we recall a theorem of C.T.C. Wall [W, Theorem 5.

Theorem 1.5. (Wall) Diffeomorphism classes of oriented closed 6-
manifolds with torsion free integral homology groups and wq = 0
corresponds bijectively to isomorphism classes of systems of invari-
ants :

free abelian groups H := H*(M), G := H3(M),

a symmetric trilinear form (cup product) u: Hx H x H — Z, a

homomorphism (Pontrjagin class) py : H — Z subject to

plz,z,y) = p(z,y,y) mod 2, pi(z)=4u(z,z,z) mod 24.

In our case p; is given by p; = ¢ —2¢,. It'is easy to check that the
conditions on p; and w in (1.5) are automatically true in our case.

Thus we see

Lemma 1.6. Let X and Y be cubic 3-folds with by = 1. Assume
that the integral homology groups of X andY are torsion free. Then
the following are equivalent.

(1.6.1) X and Y are homeomorphic.
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ON MOISHEZON THREEFOLDS

(1.6.2) X andY are diffeomorphic.
(1.6.3) b3(X) = bs(Y).

Proof. 1t is easy to show that any cubic 3-fold is simply connected.

Therefore the assertion of (1.6) follows from (1.5). g.e.d.

Remark 1.7. By computations we see that there are some cubic
3-folds with torsion free integral homology groups also in the case
where Hessian rank fo < 3. Therefore in view of (1.6) some cubic
threefolds can be diffeomorphic to each other even when they arise
from quadratic polynomials f, with different Hessian ranks. We know

so far no cubic 3-folds whose integral homology groups have torsions.

Example 1.8. Let fo = 29z1 — z223. Let S be a surface in pP3
defined by f; = 0. Then S has two rulings f and ¢g. Let A :=
{fs = f3 = 0} be a reduced curve of 6 components, the union of 3
fibers of f and 3 fibers of g. Then A has 9 double points, whence
the cubic hypersurface W : foay + f3 = 0 has 10 ordinary double
points. In this case W has a small resolution X with by(X) = 6 and
b3(X) = 0 Dby (1.3) and (4.1). This gives the maximum of the number
of ordinary double points on cubic hypersurfaces. This is shown as
follows. We choose one of the ordinary double points on a given
cubic hypersurface W as p : [0,0,0,0,1]. Then we can choose the
equation defining W and the projective coordinates z; as in (1.1) so
that fy(z) = zoz, — z223. Hence by the proof of (1.3) any ordinary
double point of W corresponds to that of a curve A, which is a

member of |3e; + 3es|. Therefore it is easy to see that the above
—204—



example gives the maximum.
§ 2. Fake cubic 3-folds and compactifications of C3

(2.1) In this section we construct some Moishezon threefolds with
Ky = —2L whose rational image by pr is Q3. This example has
been mentioned in [Ko2, 5.3.14].

Let A be an irreducible Gorenstein curve of Q® (C P*) with
deg A = 5 and deg wa = 2 whose any local irreducible components
are smooth. We assume that A lies on a smooth hyperplane section
of Q3, which we denote by @ (~ Fy ~ P! x P!). Let ¢; and e,
be fibers of two natural rulings of (). Then we may assume that A
belongs to |2e; + 3es|.

Let f: X — Q® be a small resolution of a blowing-up of Q® with
A center, A := f71(A) and Q the proper transform of Q. It is easy
to see that Q ~ Q and Nao g ~ —ep — 2eg even if A is singular.
Therefore we have a contraction morphism ¢ : X — X such that
B = ¢(Q) ~ P1. Let L := f*(Oqs(1)) and L := ¢.(L + Q). We

easily check that
Pic X ~ZL, L*=3, x(L)=3, Kx = -2L.

Let A := QS*]E*IOQa(l)}. Let H be a general smooth hyperplane
section of Q3, D := f~Y(H) and D := ¢(D). Then D is the blowing-

up of H with center H NA, which consists of 6 distinct points. Hence

D is smooth, while so is D. We easily check that B = Bs A ~ P!,

—205—
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ON MOISHEZON THREEFOLDS

Moreover for a pair of general members D and D' of A, we see that

¢:=DND" =B+ C is a cycle of smooth rational curves. Moreover
LC =4, LB=-1, A=|L|~|L]~|0qs:(1)

We denote X by X(A,Q?%) and call it a fake cubic 3-fold, which
is uniquely determined by (A, Oa(1)). This construction gives no
Moishezon 3-folds with Ky = —2L and b(X) = 1 when A lies on a

singular quadric surface by (3.2).
It is easy to see the following

Lemma 2.2. Let A be an irreducible Gorenstein curve on a smooth
quadric surface Q (C P* C P*) with deg A = 5 and deg wa =
2, any of whose local irreducible components are smooth. Let r =
1(deg wa — deg wy) for the normalization A of A, X := X(A, Q?).
Then 0 < r < 2 and any homology group H,(X,Z) of X is torsion
free, by, =1 (¢ = 0,2,4,6), by = b5 = 0, while by = 4 — 2r (< 4) and
the Euler number of X 1s given by e¢(X) = 2r(< 4).

Corollary 2.3. In the notation in (2.2), X(A, Q®) is diffeomorphic

to a cubic 3-fold with the same integral homology groups.

Proof. This follows from Lemmas 1.5-1.6 and 2.2. q.e.d.

Remark 2.4. It is possible to construct similar examples when the
curve A is on a singular hyperplane section. We also call this a fake

cubic 3-fold.
—206—
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By choosing A € |2e; + (6 — m)es| with mild singularities, we can
also produce examples of Moishezon 3-folds X with Pic X = ZL,
Ky =-=2Land L® = m.

To be mbfe precise, let @ be a smooth hyperpplane section of
Q3, and A € |2e; + (6 — m)ez|g (=00 < m < 3) an irreducible
curve on @ whose any local irreducible components are smooth. Let
f X — Q3 be a small resolution of the blowing up Ba(Q?) of
Q3 with A center, A := f~1(A), and B the proper transform of
Q. Then we see Np,x = Og(—e1 — (5 —m)ez) so that we have a
Moishezon 3-fold X and a contraction morphism ¢ : X — X such
that B := ¢(B) ~ P! and X \ B = X \ B. Letting L = f*(0q:(1))
and L := ¢.(L), we have

Pix X =ZL, Kx=-2L, L’=m(<3),
|L| ~ 1Iﬂ,{‘: |Oqs(1)], Bs |L| = B.

We denote X by X(A,Q®). We also note that if m > 6, then
there is no irreducible A. If m = 4 or 5, then Bs |L| is empty
and X is either a small resolution of a complete intersection of two
quadric hypersuifaces in P® (m = 4) or a 3-fold hyperplane section
of Gr(2,5) ¢ P® (m = 5). This is shown directly or by using a
theorem of Kollar (3.1).

It is possible to construct similar examples when the curve A 1s on
a singular hyperplane section. These yield compactifications of C3

by an irreducible divisor.

§ 3. Moishezon 3-folds with b, =1 and Ky = -2L

—207—
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ON MOISHEZON THREEFOLDS

First we recall a theorem of Kollar.
Theorem 3.1. (Kollar [Ko2, 5.3.12]) Let X be a Moishezon 3-fold
X with Ky = —2L, s := R%X,L) > 4 and b, = 1. Let py be
the rational map associated with |L|. Then (X, pr) is one of the

following;
(3.1.1) s =4, py is a birational rational map of X onto P3,

(3.1.2) s =4, X is a double cover of P? ramified along a quartic by
the morphism py,

(3.1.3) s =25, py is a birational rational map of X onto Q3,

(3.1.4) s =25, pr 1s a birational morphism of X onto a cubic hyper-
surface in P*,

(3.1.5) s = 6, pr is a birational morphism of X onto a complete
intersection of a pair of quadric hypersurfaces in P3,

(3.1.6) s=17, pr Is an i.somorphism of X onto a 3-fold hyperplane
section of the Grassmanian Gr(2,5) C P°, which we call Vs.

We shall nearly settle (3.1.3) by proving (3.2) and (3.3).

Theorem 3.2. Let X be a Moishezon 3-fold with by(X) = 1,
L3 =3, Kx = —2L and h°(X,L) = 5. If Bs |L| is nonempty, then X
1s a fake cubic 3-fold. In particular, X is homeomorphic to no smooth

cubic hypersurface.

Theorem 3.3. Let X be a Moishezon 3-fold with by(X) =1, L* =
m, Kx = —=2L and h®(X,L) = 5. If Bs |L| is empty, then m = 3 and

208
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X is a cubic 3-fold. If Bs |L| is nonempty, then —oo < m < 3 and
X is isomorphic to X(A, Q®) resp. the blowing up-and-down or the
blowing down of a Q-factorialization of the blowing up BA(Q3) of Q3
with center a curve A of Q?® (C P*) where A is an irreducible reduced
curve contained in a smooth (resp. singular) hyperplane section of

Q3 with deg A = 8 — m and deg wa = 8 — 2m.

See (2.4) (resp. (3.5)) for the detail when A is contained in a

smooth (resp. singular) hyperplane section of Q3.

Proof of (3.8). If Bs |L| is empty, then m = 3 and X is a cubic
3-fold by (3.1) or [Ko2, 5.3.12]. Now we assume that B := Bs |L| is
nonempty. Then we see B ~ P!. Moreover we have h°(Op(L)) = 0,
whence LB < —1. This proves that m = L3 = LB+ LC =LB+4 <
3. Let X be the blowing-up of X with B center, B the total transform
of B. The we have a morphism f: X — Q®. Let L := f*(Oqs(1).

There are two cases B ~ Fy or B ~ F3. In each case we have

Lemma 3.4. If B ~ Fy, then X is a small resolution of BA(Q?). |

The curve A is an irreducible reduced curve contained in a smooth
hyperplane section of Q3 with deg A = 8 —=m and deg wa = 8 — 2m,

any of whose local irreducible components is smooth.

Lemma 3.5. Assume B ~ F,. Let e, be a smooth rational curve
onF, withel, = -2, I,  the defining ideal of e in X, I := I2-¥ 41
(m = 2k,2k + 1) and ¢; : By(X) — X the blowing-up of X with

—209—
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ON MOISHEZON THREEFOLDS

the ideal I center. Then we have a natural surjective morphism

gnorm . B[(}A{) N BZm-m(qS)

(3.5.1) Ifm =2k, thenm <1, and g"°"™ contracts £ := ¢;1(eoo) ~
F, into a smooth rational curve. There exists a contraction mor-
phism contg : Bj(X) — Contg B1(X) of B;(X) onto a 3-dimensional
normal Moishezon space Contg B;(X) and a surjective morphism
prerm - Cont g B[(}A{) — B2°"™(Q?®) such that g"°™ = K™ . contg.

We have contg(E) ~ P! and Cont g Bj(X) is a Q-factorialization of
Bgorm(QB) by jporm
(3.5.2) If m = 2k+ 1, then m < 1 and By(X) is a normal Q-

factorialization of'BZO"“‘(Q3) by ghorm,

§ 4. V5 and cubic 3-folds

Theorem 4.1. (Kolldr) Let X be a Moishezon 3-fold homeomorphic

to a Vs. Then it is 1somorphic to a V.

Lemma 4.2. Let W be a normal cubic hypersurface with isolated
singularities which admits a small resolution f : X — W. Let H be a
general hyperplane section of W, and L := f*(H). Let s :=the num-
ber of singular points of W, and e(X') the Euler number of X. Then
X is a Moishezon 3-fold with Kx = —2L, h9(X,0x) = 0 (¢ > 1).
Moreover there exists a coherent sheaf G on X with supp G contained

in the exceptional set of f such that 1e(X)+3 =h%X,G) > s.

Proof.  Since the singularities of W are rational by [E], h?%(Ox) =

—-210—-
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h(Ow) = 0 for ¢ > 1 and x(Ox) = 1. Let Tx be the holomorphic

tangent bundle of X. Then we have exact sequences,

0 —— Oy —— Ox(I)® —— f*Tps — 0

0 —— Ty —— f*Tps ——— Ox(3L)

0 —— Ty — f*Tps — F — 0

0 —— F —— 0x(3L) —— g — 0
where F and G are the cokernels of the sequences, while the second
sequence is the normal sequence over the smooth locus of W. Note

that h9(X,mL) = h¥(W,mH) = 0 for any ¢ > 1 and m > 0 because
fe(mL) ~ mH and Rif,(mL) = 0 for ¢ > 1. From the above

sequences we infer

RI(X, f*Tp) =0(g2 1), R*(X,Tx)=h"(X,Q%(-2L)) =0
hU(X,G) = R (X, F) = kX, Tx) = 0(¢ 2 1)

It follows that

hY(X,6) = x(X,4)
= X(X,3L) = x(X, f"Tps) + x(X, Tx)
= x(X,3L) = 5x(X, L) + x(X,0x) + x(X,Tx)
=34 25+ 14 (1268 — 19¢ics + 12¢5)/24

= e(X)/2+3
—211—
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ON MOISHEZON THREEFOLDS

where cjcy = 24x(X,0x) = 24 and ¢; := 1(X) = f*a;(W) =
2¢1(L) because the resolution f : X — W is small. Let F :=
F(ag, - ,z4) be the defining equation of W, I the Jacobian ideal
of F' (generated by 0F/0z;). Let J be the ideal of O x generated by
f*(0F/0x;). Then by the definition of the above sequences we have
G ~ (Ox/J)® Ox(3L). Since the singularities of W are isolated,
(Ox/J)®Ox(3L) ~ Ox/J. Therefore h°(X,G) > s, where s :=the
number of singular points of W. This completes the proof of (4.2).

q.e.d.

Proposition 4.3. Let W be a normal cubic hypersurface in P*
which admits a small resolution f : X — W, and H a general hy-
perplane section of W. Then H{(X,Z) = 0, and the inclusion ho-
momorphism 1. : Hy(H,Z) — IHy(W,Z) ~ Hy(X,Z) is surjective
where I H,(W,Z) is the second intersection homology of W for any

perversity. In particular, ~I)Q(X) <7and -6 <e(X) <L 16.

Proof. Let W be a normal cubic hypersurface which admits a small
resolution X. By [GM, 6.2], THo(W,Z) ~ Hy(X,Z) by the smooth-
ness of X. The first assertion of (4.2) follows from [GM, 7.1]. Simi-
larly 02(X) < b2(H) < 7. Because H is a smooth cubic surface so that
it is P? blown-up at 6 points. We also see e(X) = 2 + 2b, — b3 < 16,
we have é(X) > —6 by (4.2). q.e.d.

Corollary 4.4. Let W be a normal cubic hypersurface in P* with
at worst ordinary double points. Then the number of ordinary double
points on W is at most 10.

~212 ~
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Proof. We have s < 10 by (1.9), though we have only s < 11 by
(4.2) and (4.3). ’ q.e.d.

Theorem 4.5. Let X be a Moishezon 3-fold homeomorphic to a
cubic 3-fold with by = 1 and 6 < by < 10. If ¢3 is positive or if X has
no holomorphic 3-forms, then X is isomorphic to a cubic 3-fold. In
particular if X is homeomorphic to a smooth cubic hypersurface in P*
and if ¢} > 0, then X is isomorphic to a smooth cubic hypersurface
in P4,

Proof. Let X be a Moishezon 3-fold homeomorphic to a smooth
cubic hypersurface. Then b; = 0, b = 1 and b3 = 10. Hence
RN (X,0x) = h*(X,0x) = 0 and R3(X,0x) < b3/2 = 5 so that
Pic X ~ H*(X,Z) ~ Z. Let L be a generator of Pic X with L3 = 3.
Then K'x = —(2¢ + 2)L for some mteger ¢ because ¢; mod 2 is a

topological invariant. Then as in [M] we have
~4 < x(X,0x) = x(2,02(q)) = (¢ + 1)(¢" + 2¢ +2)/2,

where Z is a smooth cubic hypersurface in P* and Oz(1) is the
hyperplane bundle. Hence (¢, 23(X,0x)) :'(0,0), (-1,1), (-2,2).
When ¢ is negative, we have ¢3 = 3(2¢ + 2)® < 0. By either of the
assumptions we have ¢ = 0, h*(X,0x) = 0 and Kx = —2L. Then by
[Ko2,5.3.12] h°(X,L) = 5. By (3.2), B := Bs |L| is empty. Therefore
the half anti-canonical map pr of X is defined everywhere and X is
a cubic 3-fold because b, = 1.

Let W be the cubic hypersurface which is the image of X by py.
Then the singularities of W are 1solated, hence normal. Since X is a
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small resolution of W, the singularities of W are terminal so that they
are rational [E]. Hence by (4.2), we have 5 — b3/2 = ¢(X)/2+ 3 > s,
where 5 := the number of isolated singular points on W. It follows
from b3 = 10 that 7 is smooth and X ~ W,

Next we consider the case where X is homeomorphic to a cubic
3-fold with 6 < b3 < 8. We see in the same manner as above that
Ky = —=2L and R%(X,L) = 5 for the generator L of Pic X with
L3 = 3 by [Ko2]. Let B := Bs |L|. If B is empty, then X is a cubic
3-fold by by = 1, while if B is nonempty, then X ~ X(A,Q?3) by
(4.2), which contradicts b3(X (A, Q%)) < 4 by (2.2). q.e.d.

Theorem 4.6. Let X be a Moishezon 3-fold homeomorphic to a
cubic 3-fold with b, = 1, then X 1s isomorphic to either a cubic 3-fold
or a fake cubic 3-fold if one of the following conditions is satisfied.
(4.6.1) 2 < by <4, either ¢ is positive or h¥%(X) =0,

(4.6.2) by = 0.
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