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Abstract
Working memory is linked to the functions of the frontal areas, in which neural activity is me-

diated by dopaminergic and serotonergic tones. However, there is no consensus regarding

how the dopaminergic and serotonergic systems influence working memory subprocesses.

The present study used an imaging genetics approach to examine the interaction between

neurochemical functions and working memory performance. We focused on functional poly-

morphisms of the catechol-O-methyltransferase (COMT) Val158Met and serotonin 2A re-

ceptor (HTR2A) -1438G/A genes, and devised a delayed recognition task to isolate the

encoding, retention, and retrieval processes for visual information. The COMT genotypes

affected recognition accuracy, whereas the HTR2A genotypes were associated with recog-

nition response times. Activations specifically related to working memory were found in the

right frontal and parietal areas, such as the middle frontal gyrus (MFG), inferior frontal gyrus

(IFG), anterior cingulate cortex (ACC), and inferior parietal lobule (IPL). MFG and ACC/IPL

activations were sensitive to differences between the COMT genotypes and between the

HTR2A genotypes, respectively. Structural equation modeling demonstrated that stronger

connectivity in the ACC-MFG and ACC-IFG networks is related to better task performance.

The behavioral and fMRI results suggest that the dopaminergic and serotonergic systems

play different roles in the working memory subprocesses and modulate closer cooperation

between lateral and medial frontal activations.

Introduction
Working memory (WM) refers to systems involved in holding and manipulating representa-
tions in the mind, and it supports cognitive abilities, such as reading comprehension, spatial
thinking, and associative learning [1, 2]. WM processes are regulated by the dopaminergic sys-
tem, which enhances the neural signal-to-noise ratio in the frontal cortex [3, 4]. Catechol-O-
methyltransferase (COMT) is involved in the degradation of synaptic catecholamines: COMT
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containing Met is one-fourth as active as that containing Val. The less efficient metabolism
leads to higher levels of dopamine remaining in and around the synapses [5, 6]. It has been
found that Val/Val homozygotes show greater frontal activations during WM tasks, such as the
n-back task, than Met carriers [7–9]. However, recent studies have demonstrated an opposing
pattern of activations [10, 11]. Thus, there is still some controversy about how the COMT
Val158Met genotypes affect WM-related brain activity.

It is known that serotonin modulates emotional behaviors and its dysfunction causes de-
pression, mood disorders, and impulsive behavior [12–14]. The serotonergic system, like the
dopaminergic system, plays an important role in human cognition. It has been reported that
the polymorphism of serotonin 2A receptor (HTR2A) His452Try is associated with the delayed
recall accuracy of a verbal memory task [15]. However, subsequent results have been mixed:
the administration of psilocybin (an HTR2A agonist) has no effect on visual working memory
[16], and the HTR2A T102C polymorphism is linked to perseverative errors in the Wisconsin
Card Sorting Test [17]. In addition, there is evidence that frontal activations during the n-back
task are different for different genotype groups of tryptophan hydroxylase 2 (a regulator of se-
rotonin synthesis), but, despite the differences, task performance remains unchanged [18]. The
present study focused on the relationship between the HTR2A -1438G/A polymorphism and
WM-related brain activity. The -1438A allele enhances promoter activity (i.e., gene expression
of HTR2A) more than the -1438G allele does [19]. HTR2A is abundant on the apical dendrites
of pyramidal cells in the frontal cortex [20] and the activity of HTR2A increases cortical activa-
tions via glutamatergic excitatory postsynaptic potentials [21]. Thus, we can expect brain activ-
ity during a WM task to be greater for A carriers than for G carriers.

The discrepancies among the results across previous studies may reflect different subpro-
cesses within tasks, which have differential sensitivity to neurotransmitter activity [9, 22]. The
n-back task has been frequently employed as a WMmeasure, but it includes subprocesses for
retention, matching, and updating, which are inseparable. In addition, the phonological com-
ponent of WM systems has been mainly investigated, but executive control seems to be re-
quired more for visual tasks than for verbal tasks [23, 24]. We developed a simple task that
comprises separate processes for the encoding, maintenance, and retrieval of visual informa-
tion (Fig 1A) and identified brain activity during the task phases using functional magnetic res-
onance imaging (fMRI). Another possibility is that the effective connectivity between brain
activations, rather than the signal strength of the activations, is closely linked to WM perfor-
mance [25–27]. It has been shown that individual differences in visual WM performance
strongly depend on the functions of the fronto-parietal networks, particularly the right hemi-
sphere [27, 28]. Dopaminergic neurons are projected from the brainstem to the frontal and
limbic areas [29]. The catabolic flux of synaptic dopamine through the COMT pathway is char-
acteristic of the frontal cortex [30]. Although the projection of serotonergic neurons spreads
widely throughout the whole brain [29], the function of the HTR2A is pronounced in the fron-
tal cortex [31]. Taking these findings into account, we hypothesized that the frontal and parie-
tal areas are sensitive to differences in brain activity of genotype groups.

This study was designed to look at two factors: genotype group and task phase. We first as-
sessed the degree to which variations in the COMT and HTR2A genotypes contribute to WM
performance. For each task phase, we used a subtraction analysis to compare the strength of
brain activity between genotype groups. We constructed interregional networks for each group
and specified the effective connectivity between brain areas.

Genotypes andWorking Memory
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Fig 1. Schematic representation of stimuli and task performance. (A) Participants memorized a sample
display during the encoding phase and retained the configuration of circles during the delay phase. When a
probe appeared during the test phase, they indicated the position of the target circle from four possible
positions by pressing a button. (B and C) Circles and diamonds indicate the percentage of correct responses
and the median of response times (RTs) for each individual, respectively. Horizontal bars represent the mean
of the genotype groups. ** p < 0.01, * p < 0.05,N = 14 for each group.

doi:10.1371/journal.pone.0126511.g001
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Materials and Methods

Ethics Statement and Participants
All procedures reported in this study were approved by the Ethics and Safety Committees of
NTT Communication Science Laboratories and ATR Institute International (approval num-
bers: H18-008 and 07–001). All participants gave written informed consent after the proce-
dures had been fully explained to them. Data are available from the Ethics Committee of NTT
Communication Science Laboratories for researchers who meet the criteria for access to confi-
dential data. Access is limited to maintain privacy.

An initial pool of 90 right-handed Japanese (45 males and 45 females; mean age 22.6 years,
range 20–29 years) was genotyped for screening [32, 33]. They were in good health without
any previous history of neurological or psychiatric disorders and had normal or corrected-to-
normal visual acuity. Venous blood samples were collected from all participants and genomic
DNA was extracted. The polymorphisms of the COMT Val158Met (dbSNP accession: rs4680)
and HTR2A -1438G/A (rs6311) genes were genotyped. Polymerase chain reactions (PCRs)
were carried out using PrimeSTAR HS DNA polymerase in a total volume of 20 μl containing
60 ng genomic DNA, 2.5 mM of each dNTP, 5 mM of 5× PCR buffer, and 8 μM of each primer.
The single nucleotide polymorphisms were amplified with the primers of COMT (fw: 5’ CAC
CTG TGC TCA CCT CTC CT 3’; rev: 5’ GGG TTT TCA GTG AAC GTG GT 3’) and HTR2A
(fw: 5’ AAC CAA CTT ATT TCC TAC CAC 3’; rev: 5’ TAA GCT GCA AGG TAG CAA
CAG 3’). Initial denaturation at 98°C for 2 min was followed by 35 cycles of denaturation at
98°C for 10 s, primer annealing at 60°C for 5 s, and primer extension at 72°C for 60 s. PCR
products were genotyped with an Applied Biosystems 3730 DNA Analyzer with a BigDye Ter-
minator Cycle Sequencing Kit. The polymorphisms were distributed according to the Hardy-
Weinberg equilibrium: 16 Met/Met, 38 Val/Met, and 36 Val/Val individuals of the COMT
genotype (χ2(1) = 1.12, p> 0.29); 24 A/A, 43 G/A, and 23 G/G individuals of the HTR2A geno-
type (χ2(1) = 0.18, p> 0.67).

All participants performed six types of paper-and-pencil tests that were chosen from the
Kyoto University SX15 Intelligence Test [34]. The Word Selection and Sentence Completion
Tests were used to assess the verbal abilities of the participants, and the Mental Rotation and
Paper Unfolding Tests were chosen to investigate their abilities with respect to mental imagery
operations. The other two subtests, the Operation Exchange and Calculation Method Tests,
were used to check their arithmetic performance. The number of correct answers for each sub-
test was transformed into z scores (mean = 50) for each individual. The scores were added up
to compute composite scores for each domain. The reliability estimates of the subtests were cal-
culated by adjusting split-half correlations with the Spearman-Brown prophecy formula. The
estimates generally reached a satisfactory level (0.68 to 0.84 range).

Twenty-eight of the 90 participants were recruited for the fMRI experiment. To minimize
confounding factors, we carefully matched genotype groups in terms of gender, age, years of ed-
ucation, handedness scores (as measured with the Edinburgh Handedness Inventory), and com-
posite scores of intelligence subtests (Table 1). We categorized the participants into two equal
groups because of the small number of Met/Met individuals: MM/VM (4 Met/Met and 10 Val/
Met individuals) and VV (14 Val/Val individuals) groups. Similarly, we divided the same partic-
ipants into AA/GA (7 A/A and 7 G/A individuals) and GG (14 G/G individuals) groups. The
numbers of AA/GA and GG participants were balanced in each COMT genotype group; each
HTR2A genotype group comprised the same numbers of MM/VM and VV participants.

Genotypes andWorking Memory
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WMTask
At the beginning of each trial, crosshairs were displayed for fixation. An encoding display was
presented for 3 s, a blank screen for 6 s, and a test display for 2 s (Fig 1A). The duration of the
trial was fixed, but the inter-trial interval was temporally jittered (3 to 5 s range). On each en-
coding display, eight white bars on a black background were presented around the crosshairs
(visual angle 6.0°). Vertical or horizontal bars were randomly used for each presentation. A
small circle was located on either side of each bar. Participants were instructed to memorize
the configuration of the circles as a visual image during the encoding phase and keep track of
it during the delay phase. During the test phase, a cross-shaped probe appeared with four cir-
cles indicating four possible positions so that the chance of correctly guessing the answer was
25%. We used a response box with four buttons whose positions formed a diamond shape
corresponding to the position of the target circle in the encoding display. Participants were in-
structed to press a button with their right thumb. Their responses were recorded via a nonmag-
netic response device (Current Designs, Philadelphia, PA, USA).

Participants completed six runs (6 min 8 s for each) and performed a total of 144 trials.
Before an actual run, they completed one practice run to familiarize themselves with the task.
Stimuli were generated on a PC and projected onto a translucent screen placed outside the
bore of the magnet. Participants viewed stimuli via a mirror system attached to a head coil and
pressed a response button with their right thumb. Presentation software (Neurobehavioral Sys-
tems, Berkeley, CA, USA) was used to synchronize the timing of the stimuli presentation with
that of the scan sequence.

Image Data Acquisition
Images were acquired with a 1.5-TMRI scanner (Shimadzu-Marconi, Kyoto, Japan) with a stan-
dard head coil. Head motion was minimized with comfortable padding around the participant’s
head. Functional images sensitive to blood oxygen level dependent signals were obtained with a
single-shot echo-planar imaging sequence (2-s repetition time, 48-ms echo time, 80° flip angle,
64 × 64 at 3 mm in-plane resolution, 6-mm thickness, 184 volumes for each session). The whole
brain, except for the orbitofrontal area and the lower part of the cerebellum, was covered with
20 contiguous oblique transverse slices. After the experimental runs, anatomical images were
obtained with a standard T1-weighted pulse sequence (isotropic voxel size of 1 mm3).

Table 1. Demographic characteristics of COMT and HTR2A genotype groups.

Measure COMT genotypes HTR2A genotypes

MM/VM VV AA/GA GG

Gender (male/female) 6/8 6/8 6/8 6/8

Age 22.9 (2.3) 23.7 (2.4) 22.9 (2.1) 23.7 (2.6)

Education 16.4 (1.5) 16.8 (1.1) 16.4 (1.2) 16.9 (1.3)

Handedness 93.2 (8.9) 94.6 (7.5) 96.8 (7.2) 91.1 (8.1)

Psychometric test

Verbal score 101.3 (14.0) 100.1 (9.8) 101.1 (15.7) 100.3 (6.8)

Spatial score 102.6 (15.2) 100.7 (16.3) 101.2 (16.2) 102.1 (16.4)

Arithmetic score 94.8 (15.0) 91.9 (16.2) 94.3 (14.8) 92.4 (16.4)

The means and standard deviations (in parentheses) are shown. Positive values of handedness scores indicate strongly right-handed. The intelligence

test scores are normalized (mean score = 100) by using data for 90 individuals.

doi:10.1371/journal.pone.0126511.t001
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Image Data Analyses
Imaging data were reprocessed with SPM8 (Wellcome Trust Centre for Neuroimaging, Lon-
don, UK) implemented in Matlab (MathWorks, Natick, MA, USA). The four initial images of
each run were discarded from the analysis to achieve steady-state equilibrium between radio-
frequency pulsing and relaxation. The images were calibrated to correct the slice acquisition
timing and realigned to correct the head movement. The movement on the x, y, and z axes was
less than 1 mm within runs. The images were co-registered to the anatomical images, normal-
ized to the T1 template of the Montreal Neurological Institute (MNI), and spatially smoothed
with a 9-mm Gaussian full-width at half-maximum filter.

After preprocessing, we performed a first-level analysis for each individual. The design ma-
trix was created to identify genotype- and WM-related activations. The 3-s encoding, 3-s delay,
and 2-s test phases were modeled using three box-car regressors with a canonical hemodynam-
ic response function. The middle 3 s of the delay phase was set as a regressor to prevent reten-
tion-related activity from contaminating encoding- and retrieval-related activity. This resulted
in at least a 4-s separation between the onset of task phases, which allows the analysis to statisti-
cally resolve temporally neighboring signals [35]. The head motion realignment parameters
were also included as a regressor. The data were high-pass filtered with a cut-off at 128 s to re-
move baseline drift and whitened using a first-order autoregressive model to control the tem-
poral autocorrelation. Subject-specific activation maps were used for a second-level analysis
(one-sample t tests; N = 28). In the subsequent analysis, the statistical significance was set at a
threshold of uncorrected p< 0.001 and at a cluster size of k> 30. A subtraction analysis was
performed to detect differences between the brain activations of the MM/VM and VV groups
and of the AA/GA and GG groups (two-sample t tests; N = 14 for each).

To compare the connectivity of brain activations between the genotype groups, we con-
structed interregional networks using structural equation modeling. The connectivity analysis
was performed for each task phase. On the basis of the results of the genotype group compari-
sons, the following areas were chosen as regions of interest (ROIs): the middle frontal gyrus
(MFG, Brodmann area 46), inferior frontal gyrus (IFG, BA 45), anterior cingulate cortex
(ACC, BA 32), and inferior parietal lobule (IPL, BA 40) in the right hemisphere. The structural
model consisted of four ROIs and their connections with each other. We focused on the encod-
ing and delay activations, determined the ROIs of each individual anatomically, and extracted
signal changes from the local maxima of the ROIs (see Table 2). The peak amplitudes of the sig-
nal changes were specified for each task phase. Following procedures used in previous studies
[36–38], we concatenated peak amplitude data to check for a general tendency in brain activity
(sample size, N = 2016; 144 trials × 14 participants). Models were computed by minimizing the
difference between observed and predicted covariances of peak amplitudes. To assess the mod-
els, we chose the Akaike information criterion (AIC) and the comparative fit index (CFI) be-
cause the χ2 statistic easily reaches a significant level in the analysis of large data sets. The AIC
is an absolute fit index and a lower AIC value reflects a better-fitting model. The CFI, a relative
fit index, quantifies the extent to which the evaluated model is better than an independence
model, in which correlations between observed variables are set at zero. The parameter in the
model was represented as a path coefficient between ROIs, corresponding to an estimate of ef-
fective connectivity. Z tests were employed to examine whether path coefficients differed be-
tween genotype groups. Finally, a correlation analysis was carried out to investigate the brain-
behavior relationship. We produced structural models for each individual, identified path coef-
ficients between ROIs, and estimated correlations between the coefficients and task perfor-
mance. These analyses were performed with IBM SPSS Statistics and Amos (version 22).

Genotypes andWorking Memory
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Results

WMPerformance
The accuracy and response time (RT) for recognition were used as measures of WM perfor-
mance. We performed a statistical analysis using raw data because the variables followed a
normal distribution (Kolmogorov-Smirnov tests, p> 0.20). For the COMT genotypes, the ac-
curacy (mean ± standard error) was better for the MM/VM group (48.2 ± 1.5%) than for the
VV group (44.0 ± 1.4%): t(26) = 2.07, d = 0.81, p = 0.049 (Fig 1B). However, for the HTR2A
genotypes, there was no difference in performance between the AA/GA and GG groups:
47.9 ± 1.5% and 44.4 ± 1.5%; t(26) = 1.67, d = 0.66, p> 0.11. A regression analysis demonstrated
that the COMT and HTR2A genotypes accounted for the 20.8% variance in recognition accu-
racy: adjusted R2 = 14.5%, F(2, 25) = 3.39, p = 0.050. A post-hoc power analysis showed that the
statistical power (i.e., (1 - β) probability) was 0.537. We compared the genotypes in terms of
median RTs (Fig 1C). There was no difference between the RTs of the MM/VM and VV groups
(1371 ± 64 ms and 1421 ± 63 ms): t(26) = 0.56, d = 0.20, p> 0.50. In contrast, the RTs were
faster in the AA/GA group (1268 ± 45 ms) than in the GG group (1524 ± 60 ms): t(26) = 3.40,
d = 1.34, p = 0.002. The statistical power for the RTs was 0.552. These results indicate that the
COMT and HTR2A genotypes have different effects on the performance of a visual WM task.

WM- and Genotype-Related Activations
We first identified average activations (N = 28) related to WM subprocesses (Table 2). Activa-
tion areas time-locked to the encoding, delay, and test phases are shown in Fig 2. The MFG
and IPL were activated throughout all of the phases. In addition, ACC and IPL activities were
found during the encoding phase, whereas IFG and ACC activities were specified during the
delay phase. A subtraction analysis was performed to compare the extent and intensity of acti-
vations between the genotype groups (N = 14 for each) (Table 3). Although distributed frontal
and parietal areas were activated throughout a trial, the contrasts between the genotype groups

Table 2. Activated areas related to workingmemory subprocesses (N = 28).

Region BA Encoding Delay Test

x y z t value k x y z t value k x y z t value k

MFG L10 38 56 6 7.29 296

R10 -34 52 8 6.16 210 38 56 -2 7.00 428 44 56 -4 7.80 204

L46/9 -44 28 26 5.21 71 -42 26 30 5.19 309

R46/9 44 44 24 4.22 170 44 38 24 4.08 64

IFG L45/44 -46 0 6 9.82 1299

R45/44 46 18 10 4.24 62 52 22 4 9.28 1484

ACC L32 -12 28 24 4.67 59 -2 38 24 5.28 228

R32 10 28 30 3.65 47 8 36 26 6.17 191

IPL L40 -42 -40 44 12.61 379 -54 -36 36 9.73 783 -48 -54 42 6.98 203

R40 44 -38 42 10.33 448 56 -40 38 11.51 679 46 -38 42 5.44 281

SPL L7 -16 -62 62 10.63 256

R7 10 -70 56 8.44 357

LING L18 -8 -78 -8 6.75 342

R18 12 -76 -6 8.29 463

All voxels are significant at the threshold of uncorrected p < 0.001 and at a cluster size of k > 30. MFG, middle frontal gyrus; IFG, inferior frontal gyrus;

ACC, anterior cingulate cortex; IPL, inferior parietal lobule; SPL, superior parietal lobule; LING, lingual gyrus; BA, Brodmann area; L, left; R, right.

doi:10.1371/journal.pone.0126511.t002
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produced localized activations, particularly of the right hemisphere. The contrast of the VV-
minus-MM/VM groups produced MFG activity during the encoding phase. However, there
was no significant activation in the contrast of the MM/VM-minus-VV groups. In the contrast
of the AA/GA-minus-GG groups, the ACC and IPL were activated during the delay phase.
However, there was no significant activation in the contrast of the GG-minus-AA/GA groups.
These results suggest that the involvement of the dopaminergic and serotonergic systems in
brain activity varies with the WM subprocesses.

Fig 2. Average activations related toWM subprocesses. Color-coded t-statistic maps are superimposed on a transverse slice of grayscale anatomical
images. The activations are timelocked with different events for each trial: 0–3 s = encoding; 4.5–7.5 s = delay; 9–11 s = test. The numbers above the top
panel refer to z coordinates in the MNI space. All activations are significant at the threshold of uncorrected p < 0.001 (t > 3.24). R, right; L, left.

doi:10.1371/journal.pone.0126511.g002
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Interregional Network Models for Genotype Groups
We constructed interregional networks for each genotype group to examine the effective con-
nectivity between brain activations. On the basis of the contrasts between the genotype groups,
we focused on the encoding and delay activations. Using structural equation modeling, we as-
sessed the goodness of fit for the models and specified estimates of effective connectivity be-
tween ROIs. In all the models, the values of the fit indices generally reached a satisfactory level
(Table 4). The models for the MM/VM and VV groups are shown in Fig 3. There was a differ-
ence between the effective connectivities of the COMT genotypes during the encoding phase,
but not during the delay phase. The estimate of effective connectivity from the ACC to the
MFG was greater for the MM/VM group (0.63) than for the VV group (0.23): z = 4.26,
p< 0.001. The models for the AA/GA and GG groups are shown in Fig 4. The difference be-
tween the effective connectivities of the HTR2A genotypes was found during the delay phase,
but was not during the encoding phase. The estimate of effective connectivity from the ACC
to the IFG was greater for the AA/GA group (0.50) than for the GG group (0.27): z = 2.29,
p = 0.011. Our results suggest that pivotal frontal areas change temporally with WM
subprocesses.

Table 3. Activated areas in the contrasts of genotype groups (N = 14 for each).

Region BA Encoding Delay

x y z t value k x y z t value K

VV minus MM/VM

MFG R46 44 36 22 5.00 57

AA/GA minus GG

ACC R32 14 24 40 4.46 95

IPL R40 54 -36 42 4.35 54

See the Table 2 legend for statistical significance and abbreviations.

doi:10.1371/journal.pone.0126511.t003

Table 4. Fit indices of models for genotype groups.

Group (task phase) χ2 df p AIC CFI

COMT genotypes (encoding)

MM/VM 5.12 2 0.077 29.12 0.994

VV 79.75 2 0.001 53.75 0.826

COMT genotypes (delay)

MM/VM 59.22 2 0.001 43.22 0.921

VV 88.93 2 0.001 70.93 0.748

HTR2A genotypes (encoding)

AA/GA 80.36 2 0.001 54.34 0.802

GG 62.35 2 0.001 43.41 0.885

HTR2A genotypes (delay)

AA/GA 69.41 2 0.001 48.35 0.865

GG 77.85 2 0.001 51.85 0.848

Non-significant χ2 statistic represents a good fit to the data. A lower AIC value indicates a better fit,

whereas a higher CFI value indicates a better fit. df, degrees of freedom; AIC, Akaike information criterion;

CFI, comparative fit index.

doi:10.1371/journal.pone.0126511.t004
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Fig 3. Comparisons of path diagrams of the COMT genotype groups. (A and B) Interregion network models are derived from the encoding and delay
activation data, respectively. The signal changes are extracted from local maxima of brain activations for each phase (see Table 2). The peak amplitudes of
signal changes are entered as the variables. The values alongside the arrows represent the path coefficients, corresponding to the estimates of effective
connectivity. The red arrows indicate significant differences between the coefficients of the genotype groups (p < 0.05).

doi:10.1371/journal.pone.0126511.g003

Genotypes andWorking Memory
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Fig 4. Comparisons of path diagrams of the HTR2A genotype groups. See the Fig 3 legend for a detailed description.

doi:10.1371/journal.pone.0126511.g004

Genotypes andWorking Memory

PLOS ONE | DOI:10.1371/journal.pone.0126511 May 14, 2015 11 / 18



We checked the brain-behavior relationship to confirm the results of the connectivity analy-
sis. For each individual, we computed the ACC-MFG connectivity during the encoding phase
and the ACC-IFG connectivity during the delay phase. The former was positively correlated
with recognition accuracy: r(26) = 0.53, p = 0.004 (Fig 5A). The latter showed a negative correla-
tion with RTs: r(26) = -0.38, p = 0.044 (Fig 5B). These results suggest that the strong connectivi-
ty between ACC and MFG activations contributes to better recognition accuracy, whereas the

Fig 5. Correlations between effective connectivity and task performance. (A) Path coefficients between
the ACC and MFG activations show a positive correlation with the percentage of correct responses. (B) Path
coefficients between the ACC and IFG activations show a negative correlation with RTs for recognition.
Circles and diamonds indicate individual data.

doi:10.1371/journal.pone.0126511.g005
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strong connectivity between the ACC and IFG activations is associated with faster RTs for
recognition.

Discussion
The present results demonstrate that (1) the COMT genotypes are related to recognition accu-
racy, whereas the HTR2A genotypes are associated with RTs for recognition; (2) MFG and
ACC/IPL activations are sensitive to differences between the COMT genotypes and between
the HTR2A genotypes, respectively; and (3) strong connectivity in the cingulo-frontal networks
is closely linked to better WM performance, regardless of the genotypes. Our findings suggest
that the dopaminergic and serotonergic systems play different roles in the WM subprocesses
and modulate closer cooperation between lateral and medial frontal activations.

Individual differences in cognitive functions, such as intelligence, personality, and social at-
titudes, are influenced by both genetic and environmental factors [39, 40]. We found that the
COMT and HTR2A genotypes account for a 20.8% variance in WM performance. Specifically,
the contribution of the COMT genotypes (effect size, d = 0.81 and r2 = 0.14) identified in this
study was relatively higher than that observed in previous studies that used cognitive tasks
[41]. This is perhaps due to the need for executive functions to select task-relevant information
and keep it as an active representation. It has been argued that visual WM tasks impose a great-
er demand on executive functions than verbal WM tasks because the rehearsal system for visual
information is not as well-established as that for phonological information [23, 24]. In addi-
tion, executive functions are greatly influenced by genetic factors and are possibly even more
heritable than intelligence [42]. Thus, it is plausible that the severely limited capacity in visual
WM leads to the recruitment of executive functions and increases the effects of genetic varia-
tions on WM performance.

WM-related activations were found in the MFG, IFG, ACC, and IPL. Recent views of the
parietal cortex indicate that the IPL seems to participate not only in spatial perception but also
in the detection of salient items [43]. It is known that the ACC plays an important role in per-
formance monitoring [44–46]. Neuroimaging studies using a delayed recognition paradigm
have demonstrated that the MFG and IFG are responsible for the encoding and retention of in-
formation, respectively [47, 48]. In addition, WM-load-dependent activity has been found in
the MFG: larger set sizes (i.e., the number of memory items) elicit greater encoding-related ac-
tivity [49–51] and greater retention-related activity [52–54]. Taken collectively, these findings
suggest that the MFG and IPL are engaged in creating mental images from visual inputs and
preserving the images, whereas the ACC and IFG are involved in maintaining a mental set for
task management and controlling distractor interferences.

Genetic factors affect individual variations in frontal and parietal activations during a WM
task [55]. We showed that the COMT and HTR2A genotypes have different brain-behavior
patterns. For the COMT genotypes, recognition accuracy was better in the MM/VM group
than in the VV group, and the MFG for the former was less active during the encoding and
delay phases. This pattern is consistent with previous findings showing that cognitive abilities
are better and frontal activations are lower for Met carriers than for Val carriers [7–9]. It has
been also found that brain activity decreases more for good performers than for poor perform-
ers in visual WM tasks [56–58] and verbal WM tasks [51, 59, 60]. These findings support a
neural efficiency hypothesis in which the same neural computation is performed, but the meta-
bolic expenditure differs between the groups: one group is efficient because it can perform a
task at a lower metabolic cost than the other group. For the HTR2A genotypes in the present
study, the RTs for recognition were faster in the AA/GA group than in the GG group, and the
ACC and IPL for the former were more active during the delay phase. On the other hand,
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other studies have found that brain activity increases more for good performers than for poor
performers in visual WM tasks [61, 62] and verbal WM tasks [63–65]. These findings support
a mental effort hypothesis in which the concentration of mental resources on task requirements
results in better performance. However, the neural efficiency and mental effort hypotheses ap-
pear superficially to be exclusive, pointing to the need for some other interpretation. Several re-
searchers have attempted to account for the brain-behavior relationship in terms of the
interaction between factors: neural efficiency and task difficulty [66]. However, it should be
noted that although the degree of task difficulty was not manipulated in the present study, the
results revealed the co-occurrence of different brain-behavior patterns within a WM task.

Importantly, we revealed that WM performance depends on the connectivity in interregion-
al networks. First, strong connectivity between ACC and MFG activations was associated with
better recognition accuracy in the MM/VM group. The ACC and MFG receive extensive pro-
jections from dopaminergic neurons in the subcortical areas [29]. Thus, it is likely that the
ACC-MFG network is modulated by the dopaminergic system. Second, strong connectivity be-
tween ACC and IFG activations was linked to faster RTs for recognition in the AA group. The
importance of inhibition in WM systems has been argued in terms of human behaviors [67,
68]. WM performance is predicted not only by the neural enhancement of task-relevant infor-
mation but also by the neural suppression of distractors [69, 70]. In addition, an fMRI study
using various cognitive tasks has demonstrated that the ACC-IFG network is involved in task-
set maintenance [71]. Thus, the ACC-IFG network is probably modulated by the serotonergic
system. Our findings may be consistent with the dual-network model of top-down control, in
which the front-parietal network initiates and adjusts control signals and the cingulo-opercular
network provides stable task-set control [72].

It is known that the allele frequencies of COMT Val/Met genotypes vary with ethnic back-
grounds. Europeans have two alleles of nearly equal frequencies, whereas the Val allele is much
more common in other populations [73]. The genotype distribution of the Japanese sample
identified in this study (MM, VM, and VV; proportion = 0.18, 0.42, and 0.40, respectively) is
very similar to that of an East Asian sample observed in a global survey (proportion = 0.24,
0.36, and 0.40, respectively) [73]. As described above, our results are consistent with activation
patterns in COMT genotype groups based on a European sample [7, 9]. Taken together, the
present findings as regards COMT genotypes could be generalized. However, further research
on HTR2A genotypes is needed because reliable findings have yet to be accumulated.

Finally, we mention some limitations of the present study. Although we found significant
differences between the behavioral and brain data of the genotypes, the number of participants
(N = 28) was not very large. A post-hoc power analysis showed that 40 participants were need-
ed to achieve a statistical power of 80% to detect behavioral differences between the genotype
groups (α-level = 0.05). Meta-analysis studies have pointed out that a sample size of more than
60 or 70 participants is necessary for imaging genetics research to enhance the statistical power
[74, 75]. In addition, the differences between the activation areas of the genotype groups were
smaller than expected. This may be because the task paradigm used in this study was insuffi-
cient to disentangle the encoding and delay activations: the inter-trial interval was jittered but
the inter-phase interval was fixed. We placed emphasis on the relationship between the cin-
gulo-frontal networks and visual WM performance. However, several researchers have argued
that the activity of the parietal areas reflects individual differences in visual WM performance
[76–78]. Thus, it is important to specify the functional roles of the frontal and parietal areas in
WM as well as replicate the analyses with large sample data.

In summary, it has been argued that WM supports the fundamental processes of cognitive
abilities. However, there is no consensus as to how the dopaminergic and serotonergic systems
influence WM subprocesses. The present study used an imaging genetics approach to examine
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this issue. We found that synchronized frontal activations during encoding and retention pro-
cesses are affected by the dopaminergic and serotonergic systems. We believe that examining
the connectivity between brain activations is a useful way to gain an integrative understanding
of the relationship between neurochemical functions and human behaviors.
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