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The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or

pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of

these substrates are accepted by protons, generating molecular hydrogen (H2). The

hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase

(Mbh). In this study, we have examined several possibilities to increase the protein levels

of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh

levels were achieved when the promoter of the entirembh operon (TK2080-TK2093) was

exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene

(TK1431) (strainMHG1).WhenMHG1was cultivated under continuous culture conditions

using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate

(SHPR) of 35.3mmol H g-dcw−1
2 h−1 was observed at a dilution rate of 0.31 h−1. We

also combined mbh overexpression using an even stronger constitutive promoter from

the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the

cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are

involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR

was 36.2mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that

of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1

resulted in a SHPR of 120mmol H2 g-dcw
−1 h−1, which is one of the highest production

rates observed in microbial fermentation.

Keywords: hydrogen, hydrogenase, hyperthermophile, archaea, genetic engineering, dark fermentation,

Thermococcus
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Introduction

In view of the high demand for renewable energy resources,
biological hydrogen (H2) produced by photosynthetic and
anaerobic fermentative microorganisms is a promising biofuel
that has attracted research activities during the last decades
(Hallenbeck, 2009; Oh et al., 2011; Rittmann et al., 2015). Light-
dependent H2 production processes by photosynthetic organisms
have been limited by their low cell-specific productivities,
and by the requirement of large reactor surface areas for
light exposure (Melis et al., 2000; Akkerman et al., 2002; Lo
et al., 2010). In contrast, dark fermentation by fermentative
anaerobes revealed higher productivities, and studies mostly
focused on anaerobic cultures of mesophilic bacteria such as
Enterobacter and Clostridium (Taguchi et al., 1995; Kumar and
Das, 2001; Rittmann and Herwig, 2012), (hyper-) thermophilic
bacteria such as Thermotoga and Caldicellulosiruptor (van Niel
et al., 2002; Mars et al., 2010) and hyperthermophilic archaea,
especially of the order Thermococcales, such as Pyrococcus and
Thermococcus (Schicho et al., 1993; Kanai et al., 2013; Bae et al.,
2015).

The hyperthermophilic archaeon T. kodakarensis grows on
media with pyruvate or carbohydrates (such as soluble starch
or maltodextrin) (Morikawa et al., 1994; Atomi et al., 2004). It
displays one of the highest cell-specific H2 production rates when
grown in a continuous culture (up to 60mmol g-dcw−1 h−1) with
pyruvate (Kanai et al., 2005). Using similar continuous culture
conditions, even higher H2 production rates were reported for
Pyrococcus furiosus (up to 102mmol g-dcw−1 h−1 with maltose)
(Schicho et al., 1993). Recently, a maximum cell-specific H2

production rate of 352mmol g-dcw−1 h−1 with formate was
reported in a batch culture of Thermococcus onnurineus (Bae
et al., 2015). Bacteria typically exhibit maximum cell-specific
H2 production rates below 40mmol g-dcw−1 h−1 (Rittmann
and Herwig, 2012), but have the advantage to reach higher cell
densities.

In T. kodakarensis, cultivation on pyruvate was shown
to promote a 44% higher cell specific H2 production rate
than cultivation on soluble starch (Kanai et al., 2005). Many
enzymes involved in pyruvate metabolism and H2 production
of Thermococcales were identified in P. furiosus (Verhees et al.,
2003; Bräsen et al., 2014) and genome analysis of T. kodakarensis
confirmed the presence of equivalent pathways in this organism
(Fukui et al., 2005). Besides being used as starting material for
gluconeogenesis, pyruvate is mainly either reduced to alanine
via alanine aminotransferase (AlaAT) (Ward et al., 2000), or is
oxidized to acetate (Figure 1).

Pyruvate oxidation comprises two steps catalyzed by
pyruvate:ferredoxin oxidoreductase (POR) (Blamey and Adams,
1993) and acetyl-CoA synthetases (ACSs), which produce ATP
through substrate-level phosphorylation (Mai and Adams, 1996;
Glasemacher et al., 1997). The POR reaction produces acetyl-
CoA and CO2, and an electron from this reaction is transferred
to oxidized ferredoxin (Fdox) to produce reduced ferredoxin
(Fdred). A membrane-bound [NiFe]-hydrogenase complex
(Mbh; TK2080-TK2093) (Figure 2) utilizes the electrons to
produce molecular H2 with protons and regenerates Fdox (Sapra

et al., 2000; Silva et al., 2000; Kanai et al., 2011). The metabolism
indicates a H2/CO2 gas production ratio of 1 from pyruvate.
The Mbh reaction also contributes to energy conservation as
it is thought to be coupled to proton export, which via an
Na+/H+-antiporter domain, results in a sodium gradient that
fuels ATP synthesis by the A1A0-ATP synthase (Sapra et al.,
2003; Pisa et al., 2007). Deletion of Mbh abolishes H2production
and impairs growth under H2-producing conditions, reflecting
that Mbh is the key [NiFe]-hydrogenase that is responsible
for H2 production in T. kodakarensis (Kanai et al., 2011;
Santangelo et al., 2011) as well as in P. furiosus (Schut et al.,
2012).

Pyruvate reduction into alanine potentially competes with H2

production from pyruvate. Glutamate, which is used as an amino
donor for pyruvate reduction through AlaAT, is regenerated from
2-oxoglutarate via glutamate dehydrogenase (GDH) coupled
with NADPH consumption (Consalvi et al., 1991; Robb et al.,
1992; Yokooji et al., 2013). NADPH is partially regenerated by
a cytosolic [NiFe]-hydrogenase complex (Hyh; TK2069-2072),
which utilizes H2 as an electron donor for NADP+ reduction
(Bryant and Adams, 1989; Ma et al., 2000; Kanai et al., 2003,
2011). In a continuous, gas exchange culture of T. kodakarensis
with pyruvate as a substrate, the deletion of hyh increases the
gas production ratio of H2/CO2 by 8% (Kanai et al., 2011). An
increase in cell-specific H2 production of up to three-fold was
also reported in a closed batch culture with the same substrates
(Santangelo et al., 2011).

Attempts to increase microbial H2 production via
genetic engineering revealed two main successful strategies;
overexpression of enzymes directly involved in H2 production
and the deletion of competing pathways (Yoshida et al.,
2005, 2007; Kim et al., 2009; Klein et al., 2010). The effect of
homologous overexpression of the H2-evolving hydrogenase on
cell-specific H2 production rates depends on the organism and
ranges from no effect (Clostridium acetobutylicum) to a 2.8-fold
increase (Escherichia coli) (Yoshida et al., 2005; Klein et al.,
2010). Heterologous overexpression of the membrane-bound
formate hydrogen lyase complex of T. onnurineus in P. furiosus
enabled conversion of formate into H2 in addition to its native
H2 production from maltose (Lipscomb et al., 2014). In E. coli,
overexpression of the hydrogenase from Enterobacter cloacae
led to H2 production levels comparable to those observed in
Enterobacter species (Chittibabu et al., 2006). The effects of
deleting competing pathways (H2-consuming hydrogenases,
AlaAT) (Kanai et al., 2011; Santangelo et al., 2011) or pathways
generating compounds that inhibit H2 production have been
examined (Kim et al., 2009). For example, the disruption of
lactate and succinate generating pathways in E. coli, which have
a negative effect on H2 production, resulted in an increase in
cell-specific H2 production rates by 1.3-fold (Yoshida et al.,
2007).

In the present study, we performed homologous
overexpression of the Mbh gene in T. kodakarensis via different
genetic approaches in combination with the disruption of the
genes encoding H2-consuming Hyh and AlaAT (Figure 1). The
effects on both cell-specific H2 production rate (SHPR; mmol
H2 g-dcw−1 h−1) and media-volume specific H2 evolution rate
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FIGURE 1 | Pyruvate conversion and H2 metabolism in

T. kodakarensis. The metabolic pathways of pyruvate reduction to alanine

linked to H2 consumption and of pyruvate oxidation to acetate linked to H2

production are indicated. Enzymes marked with a cross were deleted and

the Mbh was overproduced in this study; ACS, acetyl-CoA synthetase;

AlaAT, alanine aminotransferase; GDH, glutamate dehydrogenase; Hyh,

cytosolic [NiFe]-hydrogenase; Mbh, membrane-bound [NiFe]-hydrogenase;

POR, pyruvate:ferredoxin oxidoreductase.

FIGURE 2 | Gene structure of the membrane-bound [NiFe]-hydrogenase complex (Mbh). The palindromic sequence found between the genes encoding the

Na+/H+ antiporter (Na/H region, mbhA-I) and the genes encoding the catalytic hydrogenase (Hyd region, mbhJ-N) are indicated.

(HER; mmol H2 L
−1 h−1) were analyzed during cultivation with

pyruvate under continuous culture conditions.

Materials and Methods

Microorganisms and Culture Conditions
E. coli DH5α was used for general DNA manipulation and
sequencing. E. coli strains were cultivated in LB medium (10
g L−1 tryptone, 5 g L−1 yeast extract and 10 g L−1 NaCl) at
37◦C. Ampicillin was added to the medium at a concentration of
100µg mL−1.

T. kodakarensis strains and plasmids used in this study are
listed in Table 1. T. kodakarensis strains were routinely grown
under anaerobic conditions at 85◦C in MA-YT medium with

the following composition; 30.4 g L−1 Marine Art SF-1 salt as
artificial sea salts (Tomita Pharmaceutical, Tokushima, Japan), 5
g L−1 yeast extract and 5 g L−1 tryptone. In the case of cultivation
with S0, sulfur powder was added at a concentration of 2 g L−1

after autoclaving the MA-YT medium. In the case of cultivation
with pyruvate, 5 g L−1 sodium pyruvate was added to theMA-YT
medium before autoclaving (MA-YT-Pyr).

Construction of T. kodakarensis Mutant Strains
Disruption of specific genes by double-crossover homologous
recombination (for MHG1 and MHC1) or single-crossover
homologous recombination followed by pop-out deletion of
region containing pyrF marker (for MPD1 and MAH1) in T.
kodakarensis was performed as described previously (Sato et al.,
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TABLE 1 | Strains and plasmids used in this study.

Strain or

plasmid

Relevant characteristics Sources or

references

Strains KU216 KOD1 1pyrF Sato et al., 2005

MHG1 KU216

mbh::Pmbh-2µ-Pgdh-mbhA

This study

MHC1 KU216

1chiA::Pcsg-mbhJKLMN-2µ

This study

MPD1 KU216 mbh::1� This study

DPHA1 KU216 1hyhBGSL::2µ
′
1aat::2µ

′ Kanai et al., 2011

MAH1 DPHA1 mbh::Pmbh-Pcsg-mbhA This study

Plasmids pUC118 Ampr general cloning vector Takara Bio (Otsu,

Japan)

pUD pUC118 derivative; pyrF marker

cassette

Sato et al., 2003

pUD2 pUC118 derivative; pyrF marker

cassette

Sato et al., 2005

pUP1 pUC118 derivative; 2µ -pyrF-2µ This study

pMHG1 pUC118 derivative;

Pmbh-2µ-pyrF-2µ- Pgdh-mbhA

This study

pMHC1 pUC118 derivative; chiAN-Pcsg-

mbhJKLMN-2µ-pyrF-2µ-chiAC

This study

pMPD1 pUD2 derivative; 1� This study

pMAH1 pUD2 derivative; Pmbh-Pcsg-mbhA This study

2003, 2005; Hirata et al., 2008). The sequences of all PCR primers
used for this study are listed in Table 2. For Mbh overexpression
in T. kodakarensis, four vectors (pMHG1, pMHC1, pMPD1, and
pMAH1) were constructed as follows. Schemes of the cloning
strategies are shown in the Supplementary Materials, Figure S1
for construction of pMHG1, Figure S2 for pMHC1, Figure S3
for pMPD1 and Figure S4 for pMAH1.

Construction of pMHG1

pUP1 is a plasmid that contains the pyrF marker gene of T.
kodakarensis flanked by identical sequences (2µm), necessary for
marker removal via homologous recombination after cloning.
pUP1 was constructed by amplification of the pyrF region
from the pUD plasmid (Sato et al., 2003) with the primer set,
PyrF-N-SP/M13RV and inserting the fragment into the SpeI
and XbaI sites of pUC19-Sp. pUC19-Sp is a modified pUC19
plasmid containing an SpeI recognition site instead of the SmaI
recognition site. Next, the primer set 2µm-Sp/2µm-Xb was
used to amplify the 2µm region from the yeast expression
vector pYES (Life Technologies, Carlsbad, CA), and the fragment
was inserted into the SpeI site upstream of the pyrF gene,
and again into the XbaI site downstream of the pyrF gene.
To enable further cloning via NdeI, an NdeI site (CATATG)
inside of the pyrF gene of pUP1 was changed to CACATG
by point mutation (underline indicates the position of the
changed nucleotide), resulting in plasmid pUP1m. The promoter
region of the glutamate dehydrogenase gene (TK1431) (Pgdh) was
amplified from the genomic DNA of T. kodakarensis using the
primer set gdh-Xb/gdh-Nd. The amplified fragment was inserted
into the SpeI/NdeI site of pUP1m to yield plasmid pUPG1. Two

TABLE 2 | Sequences of primers used in this study.

Plasmid

used for

Name Sequence (from 3′ to 5′)

pUP1 PyrF-N-SP AAAAACTAGTCCGCAACGCGCATTTTGCTCACCC

pUP1 M13RV CAGGAAACAGCTATGAC

pUP1 2µm-Sp AAAAACTAGTGATAAGCTGTCAAAGATGAG

pUP1 2µm-Xb AAAATCTAGAATGCGACGTGCAAGATTACC

pMHG1 gdh-Nd AAAACATATGTACCACCTCATTTCGGTAATCTGCGAGG

pMHG1 gdh-Xb AAAATCTAGATATCCCACCTCCGATTCCGTTGG

pMHG1 mhp1 AAAAGAATTCGGCTGGAGCGTTCATCGCCTTCG

pMHG1 mhp2 AAAATCTAGAGCTTAAAACGCTTTTCCCAAGC

pMHG1 mhp3-3 AAAATCTAGAAAAAACATATGTTGCCGTTCATAGTGG

CGTTCCTC

pMHG1 mhp4 AAAAGTCGACCCTCGTAGGCATCAACAACCGC

pMHC1 Tk-mbhJ-Nh AAAAGCTAGCATGGCGATAACAGTTCCCGCCAAC

pMHC1 Tk-mbhN-Bm AAAAGGATCCACCTACGGTGAAGAACCGAAAAAA

pMHP1 mhpd1 AAAGGATCCAACCCTCATAGTAGGCAACGCGA

pMHP1 mhpd4 AAAGAATTCAGGCGGAGCGGGTAGATGCCCTC

pMHP1 mhpd2-2 AAACCCTTCATCCCCATATCA

pMHP1 mhpd3-2 CAAAAACACACTCTGCGGAGGTGGTAGCTGATG

pMAH1 csgx AAAATCTAGACGGCAAAAGGCGAATTATGTG

pMAH1 csgn AAAACATATGACAACACCTCCTTGGGTTG

genomic regions (1.0–1.1 kb each) including the promoter of
the mbh operon (Pmbh) and a part of the mbh structural genes
(mbhA) were amplified with the primer sets mhp1/mhp2 and
mhp3-3/mhp4, respectively. The resulting fragments were cut
by EcoRI/XbaI and XbaI/SalI, respectively, and were fused and
inserted into the EcoRI/SalI sites of pUC118, resulting in plasmid
pMHGa. A point mutation (T to C) was introduced to the 204th
nucleotide of mbhA, to change an existing NdeI site (CATATG)
to CATACG (underline indicates the position of the changed
nucleotide), yielding plasmid pMHGam. The point mutation
resulted in a change of the respective (68th) codon from TAT
to TAC, both encoding the same amino acid (tyrosine). Next, a
fragment containing 2µm-pyrF-2µm-Pgdh was cut from pUPG1
by NdeI/XbaI and introduced to the respective sites of pMHGam,
to obtain plasmid pMHG1.

Construction of pMHC1

First, the mbhJKLMN genes as well as its terminator region
and the cell surface glycoprotein gene (TK0895) promoter (Pcsg)
were amplified from the genomic DNA of T. kodakarensis by
PCR using the primer sets Tk-mbhJ-Nh/Tk-mbhN-Bm and Pcsg-
Sp/Pcsg-Nh, respectively. Via the introduced SpeI, NheI, and
BamHI cleavage sites of these fragments, Pcsg and mbhJKLMN
were fused and inserted into the SpeI/BamHI sites of pUC19-
Sp, yielding the plasmid pMH1. Second, SpeI and XbaI were
used to clone the promoter gene cassette into the XbaI site of
plasmid pUP1 containing the 2µm-pyrF-2µm cassette, resulting
in plasmid pMHUP1. In the third step, the cassette including
Pcsg , mbhJKLMN and 2µm-pyrF-2µm was excised via SpeI and
inserted into the SpeI site of the plasmid pchiA-NC, to yield
plasmid pMHC1. pchiA-NC is a pUC118 derivative with 0.9–
1.0 kb homologous sequences of the 5′-flanking region of the
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T. kodakarensis chitinase gene (chiA,TK1765) and of the 3′-
portion of the gene itself. After amplification of the 5′-flanking
region and the 3′-portion of chiA from the genome using
primer sets ChiA-1/ChiA-2 and ChiA-3/ChiA-4, respectively,
both fragments contained overlapping regions upstream of the
introduced SpeI sites and were fused in a second fusion PCR
reaction using the primer set ChiA-1/ChiA-4. The resulting
fragment was inserted into the EcoRI and SalI sites of the multi-
cloning site of pUC118 upon digestion and blunt ending to yield
pchiA-NC. The final plasmid pMHC1 carries the mbhJKLMN
genes with its terminator region (Tmbh) and the 2µm-pyrF-
2µm cassette, flanked by the chiA sequences for homologous
recombination.

Construction of pMPD1

A palindrome sequence (5′-TCCGCGAGAGCTCTGCGGA-3′)
is located within a non-coding region (37 bp) between the
Mbh subunit structure genes mbhI and mbhJ. The non-
coding region was amplified together with its adjacent mbh
genes from the genomic DNA of T. kodakarensis using
the primer set mhpd1/mhpd4. The fragment was cut by
BamHI/EcoRI, and ligated into the respective sites of plasmid
pUD2 (Sato et al., 2005), to yield plasmid pMPDa. In
order to disrupt the palindrome sequence on pMPDa via
nucleotide substitution (5′-CAAAAACACACTCTGCGGA-3′;
underline indicates the positions of mutated nucleotides), inverse
PCR was performed using the primer set mhpd2-2/mhpd3-2,
and the amplified fragment was self-ligated to obtain plasmid
pMPD1.

Construction of pMAH1

Using genomic DNA of T. kodakarensis, Pcsg was amplified with
the primer set csgx/csgn, and the fragment cut by XbaI/NdeI was
introduced to the respective sites of pMHGam, to yield plasmid
pMAHa. A fragment containing the Pmbh region, Pcsg and a part
of the mbhA structure gene was excised from this plasmid by
sequentially applying SalI, DNA blunting and EcoRI digestion.
The fragment was introduced into the EcoRI/SmaI site of pUD2,
to obtain plasmid pMAH1.

DNA restriction and modification enzymes as well as general
cloning plasmids were purchased from TaKaRa (Otsu, Japan) or
Toyobo (Osaka, Japan). The KOD plus NEO DNA polymerase
(Toyobo) was used for amplification, and DNA fragments
separated via agarose gel electrophoresis were isolated using
the MinElute gel extraction kit (Qiagen, Hilden, Germany).
Plasmids were isolated with the Plasmid Mini kit (Qiagen). The
cloning products were confirmed via sequencing with the BigDye
Terminator cycle sequencing kit, version 3.1 and a model 3130
capillary DNA sequencer (Applied Biosystems, Foster City, CA).

For transformation, the T. kodakarensis uracil-auxotroph
strains KU216 (Sato et al., 2005) (for MHG1, MHC1, and
MPD1) and DPHA1 (Kanai et al., 2011) (for MAH1) were
used as host strains. The transformation procedures included
selection of pyrF+ strains with uracil-prototrophy and positive
selection of pyrF-eliminated strains with 5-fluoroorotic acid and
was performed as described elsewhere (Sato et al., 2005; Hirata

et al., 2008; Kanai et al., 2011). Recombinant strains carrying the
desired genetic modifications on the genome were identified by
colony PCR and sequencing.

Western Blot Analysis
To determine intracellular protein levels of MbhL, Western
blot analysis was performed. T. kodakarensis strains (KU216,
DPHA1, MHG1, MHC1, MPD1, and MAH1) were cultivated
in MA-YT medium supplemented with 0.5% (w/v) sodium
pyruvate. After 11 h of cultivation at 85◦C, cells were harvested
by centrifugation under 5000 g for 10min at 4◦C. Cell pellets
were resuspended in 25mM Tris-HCl (pH 8.0) buffer containing
0.1% (v/v) Triton-X100, and disrupted by vortex for 30min at
4◦C. After removing the insoluble fraction by centrifugation
under 5000 g for 10min, the resulting cell extracts were used for
Western blot analysis. Protein concentrations were measured
using the Bio-Rad protein assay kit (Bio-Rad Laboratories,
Hercules, CA), with bovine serum albumin as the standard.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) was performed in a 12.5% gel. Western blot
analysis was performed as described previously (Endoh et al.,
2006) using rabbit polyclonal antibodies against the MbhL
protein.

Continuous Culture Experiments
Continuous culture experiments of the host strains KU216 and
DPHA1 and the engineered strains MHG1, MHC1, MPD1, and
MAH1 were performed as described previously (Kanai et al.,
2011) using a gas-lift fermenter designed for cultivation of
hyperthermophiles (Taiyo Nippon Sanso Corporation, Tokyo,
Japan). In a 1 L cultivation vessel, 500mL of MA-YT-Pyr
medium was introduced and cultivation was performed at 85◦C
with continuous agitation using a rotor at 50 rpm. The evolved
gas metabolites were flushed out by nitrogen gas, which was
introduced continuously into the vessel at a rate of 100mL
min−1. Fresh medium was supplied into the vessel using a
peristaltic pump and the volume of the culture was monitored
with a water level sensor (B.E. Marubishi, Tokyo, Japan), which
was connected to a pump for culture discharging. Cell densities
were monitored by measuring the turbidity at 660 nm (OD660)
and according biomasses (dcw) were calculated from OD660 via
calibration information determined beforehand. The pH of the
culture broth was maintained at 7.4 and the amounts of H2

gas and CO2 gas in the exhaust gas were measured periodically
using gas chromatography (provided by Taiyo Nippon Sanso
Corporation) as described previously (Kanai et al., 2005).

Results

Construction of T. kodakarensis Strains that
Overexpress the Mbh Genes
In T. kodakarensis, the membrane-bound hydrogenase, Mbh, is
the key enzyme that is responsible for the evolution of H2 (Kanai
et al., 2011). The mbh operon can be divided into two regions;
the former region containing genes presumed to encode Na+/H+

antiporter subunits (Na/H region; mbhA-I; TK2080-TK2088),
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FIGURE 3 | Overview of the genetic approaches taken to increase H2

production in T. kodakarensis. (A–C), Mbh overexpression; (D), Disruption

of the pyruvate reduction pathway associated with H2 consumption; (E),

Combination of both approaches. hyh, cytosolic [NiFe]-hydrogenase gene;

alaAT, alanine aminotransferase gene; Na/H, Na+/H+-antiporter region of

Mbh (mbhA-I); �, palindromic sequence; Hyd, [NiFe]-hydrogenase catalytic

region of Mbh (mbhJ-N); Pmbh, mbh promoter; Pgdh, gdh promoter; Pcsg, csg

promoter.

and the latter region containing genes for the catalytic [NiFe]-
hydrogenase subunits (Hyd region; mbhJ-N; TK2089-TK2093)
(Figure 2). These two regions are separated by a palindrome
sequence (5′-TCCGCGAGAGCTCTGCGGA-3′) that can form a
remarkably long stem-loop structure and may potentially inhibit
transcription and/or translation.

In order to enhance the capacity of H2 production, we
took three different genetic approaches aiming to increase the
Mbh protein levels in T. kodakarensis (Figure 3). First, the
mbh promoter (Pmbh) of the entire operon was exchanged with
the strong/constitutive glutamate dehydrogenase gene (TK1431)
promoter (Pgdh) (strain MHG1). Second, the Hyd region, which
encodes the catalytic subunits, was overexpressed under the
control of another strong/constitutive cell-surface glycoprotein
gene (TK0895) promoter (Pcsg) (strain MHC1). The construct
was inserted into the chiA-locus, which encodes a chitinase
(Tanaka et al., 1999), resulting in a strain with a second copy of
the Hyd region. Third, the palindrome sequence between mbhI
and mbhJ was deleted, as the Hyd gene cluster falls downstream
of the palindrome, and removal of the sequence might enhance
the expression of theHyd genes (strainMPD1). All modifications
were introduced into the genome ofT. kodakarensis strain KU216
by homologous recombination and were confirmed via analytical
PCR and sequencing (data not shown).

FIGURE 4 | Expression levels of the [NiFe]-hydrogenase large subunit

(MbhL) in the constructed T. kodakarensis strains. Numbers below the

panel indicate band intensity (%) relative to that of the host strain KU216

(defined as 100%). Pre-MbhL indicates the MbhL precursor (see Discussion).

Quantification of MbhL Protein in the
Recombinant Strains
In order to compare theMbh production levels of the constructed
T. kodakarensis strains, Western blot analysis was performed on
the extracts of cells grown in pyruvate medium (MA-YT-Pyr) and
compared (Figure 4). Antibodies raised against the large subunit
of Mbh (MbhL) were applied to estimate the overexpression of
the catalytic Hyd subunits.

Quantification of the bands revealed that protein levels of
MbhL were higher in all three recombinant strains compared to
that observed in the host strain KU216. MbhL levels in strain
MHC1 (addition ofMbhHyd genes under the control of Pcsg) and
strain MPD1 (deletion of the palindrome sequence) increased
1.86-fold and 1.74-fold, respectively. Strain MHG1, whose mbh
operon is under the control of Pgdh, displayed even higher levels
of MbhL, 2.52-fold higher than that of the host strain. Extracts
from this strain revealed an additional band (Pre-MbhL) with a
higher molecular weight than that of MbhL (see Discussion).

Hydrogen Production under Continuous Culture
Conditions
HERs of the Mbh overexpression strains (MHG1, MHC1, and
MPD1) were examined and compared with that of the host strain
(KU216). If the H2-forming Mbh reaction is the bottleneck of
H2 production from pyruvate, increases in MbhL protein might
result in increases in SHPR. To investigate this relationship, cell-
and culture volume-specific H2 production rates (SHPR, HER)
of the T. kodakarensis strains were analyzed under continuous
culture conditions using a continuous gas-flow fermenter.

At a dilution rate of 0.27–0.31 h−1, cell densities (OD660) of
all strains were between 0.84 and 1.09 (Table 3). In these cultures,
HERs ranged from 9.4 to 11.2mmol L−1 h−1 with the host strain
KU216 displaying the lowest H2 production, while the highest
production was observed with strain MHC1.

As the HER depends on the cell densities, differences in SHPR
more accurately reflect the impact of genetic modification on H2

production in the cell. The deletion of a palindrome sequence
in strain MPD1 caused an increase in MbhL protein (Figure 4),
but hardly changed the SHPR (Table 3). For the other strains, on
the other hand, there was a general tendency that strains with
higher levels of MbhL protein resulted in higher SHPR values;
28.3 (host), 32.4 (strain MHC1) and 35.3mmol g-dcw−1 h−1

(strain MHG1).
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TABLE 3 | Average cell densities, H2 productivities (HERs and SHPRs), and molecular H2/CO2 ratios of T. kodakarensis strains.

Strain D (h−1) OD660 HER (mmol L−1 h−1) SHPR (mmol g-dcw−1 h−1) H2/CO2

KU216 0.27 0.95 ± 0.01 9.4 ± 0.3 28.3 ± 0.9 0.96

MHG1 0.31 0.84 ± 0.01 10.3 ± 0.1 35.3 ± 0.5 0.91

MHC1 0.27 0.98 ± 0.01 11.2 ± 0.3 32.4 ± 1.2 0.93

MPD1 0.30 1.09 ± 0.01 11.1 ± 0.6 28.9 ± 1.4 0.88

DPHA1 0.30 1.15 ± 0.01 11.7 ± 0.5 28.7 ± 1.4 0.96

MAH1 0.30 1.02 ± 0.01 13.0 ± 0.3 36.2 ± 1.1 0.98

MAH1 0.59 0.91 ± 0.03 24.6 ± 0.6 76.7 ± 2.4 0.99

MAH1 0.83 0.64 ± 0.03 27.1 ± 1.6 120 ± 2 1.04

MAH1 1.07 0.41 ± 0.02 17.4 ± 0.9 120 ± 9 1.18

D, Dilution rate; Error bars represent standard deviations of at least three measured points at the steady state of each dilution rate.

Effect of Combining Mbh Overexpression with
Deletion of the Pyruvate Reduction Pathway
Linked to H2 Consumption
Promoter exchange by Pgdh (strain MHG1) exhibited the highest
effect among the three Mbh overexpression strains examined.
As a next step, we focused on the disruption of the pyruvate
reduction pathway to alanine. The pathway is metabolically
linked to H2 consumption and its disruption circumvents H2

uptake of T. kodakarensis (Kanai et al., 2011). The double
knock out strain (DPHA1) carries hyh and alaAT gene deletions
and was previously shown to exhibit a higher SHPR than its
host strain KU216 (Kanai et al., 2011). To check whether Mbh
overexpression and deletion of hyh and alaAT have an additive
effect on H2 production, DPHA1 was further engineered to
overexpress the mbh operon via promoter exchange with Pcsg ,
resulting in strain MAH1.

Levels of MbhL protein in strain DPHA1 and in strain
MAH1 were examined via Western blot analysis using anti-
MbhL antibodies. As a result, MAH1 exhibited strikingly higher
levels of MbhL; 3.34-fold and 2.30-fold higher band intensities
were observed when compared to those of the strains KU216
and DPHA1, respectively (Figure 4). The results also indicate
that the MbhL protein levels in MAH1 are higher than those in
MHG1, and as such, intracellular Pre-MbhL accumulation found
in MHG1 was also observed in strain MAH1 (see Discussion).

Evaluations of HERs in continuous cultures of DPHA1 and
MAH1 were examined at a dilution rate of 0.30 h−1. Unlike
the previously reported examination (Kanai et al., 2011), hyh
and alaAT deletion (strain DPHA1) only slightly increased
SHPR (Table 3). In contrast, strain MAH1 exhibited the highest
increases in SHPR with 36.2mmol g-dcw−1 h−1. The increase
of SHPR by 28% is slightly above the increase caused by the
promoter exchange with Pgdh in strain MHG1 (25%). This agrees
with the higher MbhL protein levels found in strain MAH1 than
in MHG1. The higher levels of MbhL in MAH1 compared to
those in MHG1 may be due to differences in the strengths of
the promoters Pcsg and Pgdh. However, the additional disruption
of hyh and alaAT in MAH1 may also have an effect, as the
MbhL levels in DPHA1 are higher than those in KU216, even
though there are no changes in the promoters governing mbhL
expression. In addition to the high SHPR, strain MAH1 also

FIGURE 5 | SHPRs of strain MAH1 at different dilution rates. Error bars

represent standard deviations of at least three measured points during the

steady-state of each dilution rate. D, Dilution rate.

exhibited the highest HER (13.0mmol L−1 h−1) among the
strains examined at a dilution rate of around 0.3 h−1.

Influence of the Culture Dilution Rates on SHPRs
As T. kodakarensis strain MAH1 displayed the highest SHPRs
and HERs, this strain was used to analyze the effect of dilution
rates on H2 production from pyruvate. The dilution rate was
increased stepwise from 0.30 to 0.59, 0.83, and 1.07 h−1. SHPRs
as well as HERs increased gradually and both displayed their
maxima at a dilution rate of 0.83 (Figure 5, Table 3). The SHPR
and HER at this dilution rate were 120mmol g-dcw−1 h−1 and
27.1mmol L−1 h−1, respectively. Both values (SHPR and HER)
are so far the highest of those reported for T. kodakarensis. At a
dilution rate of 1.07 h−1, SHPR maintained a constant value of
120mmol g-dcw−1, whereas the volume-specific HERs dropped
to 17.4mmol L−1 h−1 as a result of a decrease in cell density.

Discussion

In this study, different strategies were taken to overproduce the
[NiFe]-hydrogenase complex Mbh in T. kodakarensis and to
reduce H2-consuming pathways. The H2 production potential of
these engineered strains were examined in a continuous culture,
where evaluation is possible under steady-state conditions. As
a result, we found that the increase in SHPR was highest in
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TABLE 4 | Strong microbial H2 producers and their maximal H2 production rates.

Organism Substrate Culture conditions SHPR HER Reference

Continuous Thermococcus kodakarensis MAH1 Pyruvate Gas removal, D: 0.83, T: 85 120.4 27.1 This study

culture Pyrococcus furiosus DSM3638 Maltose D: 0.6, T: 98 102* – Schicho et al., 1993

Thermococcus kodakarensis KOD1 Pyruvate Gas removal, D: 0.8, T: 85 59.6 6.3 Kanai et al., 2005

Clostridium sp. No. 2 Glucose/Xylose D: 1.2-1.3, T: 36 34.0/41.9 20.4/15.1 Taguchi et al., 1995

Caldicellulosiruptor kristjanssonii

DSM12137

Glucose D: 0.15, T: 70 34.6 10.3 Zeidan et al., 2010

Klebsiella oxytoca HP1 Sucrose T: 38 15.2 14.4# Minnan et al., 2005

Batch Thermococcus onnurineus NA1 Formate T: 80 351.6 85.8 Bae et al., 2015

culture Escherichia coli SR13 Formate Enriched cells in buffer,

substrate feed, T: 37

250.0 12,351.3# Yoshida et al., 2005

Thermococcus onnurineus KS0413 CO pH control, CO feed, T: 80 207.8 88.4 Lee et al., 2014

Citrobacter sp. Y19 Glucose T: 36 32.3 4.9# Oh et al., 2003

Enterobacter cloacae IIT-BT 08 Sucrose pH control, T: 36 29.5 35.6 Kumar and Das, 2000

Ethanoligenens harbinense B49 Glucose T: 36 27.7 7.5* Xu et al., 2008

Klebsiella oxytoca HP1 Glucose In buffer, T: 35 9.6 3.6# Minnan et al., 2005

Thermoanaerobacterium

thermosaccharolyticum W16

Glucose/Xylose T: 60 9.7/8.8 12.9/10.7 Ren et al., 2008

Thermotoga elfii DSM9442 Glucose T: 65 8.9 4.5 van Niel et al., 2002

Thermotoga neapolitana DSM4359 Xylose T: 80 0.24 1.45 Eriksen et al., 2011

Photosynthetic bacteria and algae Organic acids, sugars T: 35 <6 <6 Hillmer and Gest, 1977

SHPR (mmol g-dcw-1 h-1 ); HER (mmol L-1 h-1 ); D, Dilution rate (h-1 ); T, cultivation temperature (◦C); *Values estimated from a plot; #Converted from ml/L/h via gas constant at 23◦C

and 1 atm.

strain MAH1, with a 28% increase compared to the host strain
at dilution rates of 0.27–0.31 h−1.

In comparison, the SHPR from formate in E. coli increased by
2.8-fold in a batch culture when deleting a negative transcription
regulator and overexpressing a transcriptional activator of
the formate hydrogenlyase complex (strain SR13 in Table 4)
(Yoshida et al., 2005). In T. onnurineus KS0413, also in a
batch culture, up to 2.9-fold increased SHPRs were reached
by promoter exchange of the carbon monoxide dehydrogenase
(CODH) operon including CODH, hydrogenase and an Na+/H+

antiporter with Pcsg (Table 4) (Kim et al., 2013; Lee et al., 2014).
In both cases, hydrogenase overexpression yielded much higher
increases in SHPR compared to those obtained in this study.
This is most likely due to the fact that the substrate to H2

conversion (formate –> H2+ CO2 or CO + H2O –> CO2+

H2) comprises only one enzymatic step which was subjected to
overexpression. In contrast, the H2 production from pyruvate
in T. kodakarensis involves at least one additional enzyme,
POR, and the flux might also be affected by the downstream
ACS (Figure 1). As we did observe 25–28% increases in SHPR
in strains MHG1 and MAH1, the Mbh reaction seems to
be the rate-limiting step for H2 production from pyruvate
in the wild type T. kodakarensis. The maximal increase in
SHPR upon Mbh overexpression was probably reached, as
promoter exchange of Pmbh with Pcsg provided higher protein
levels (334%, strain MAH1) than Pgdh (252% strain MHG1),
but only slightly increased SHPR values (36 compared to
35mmol g-dcw−1 h−1). In order to reach higher SHPR values, a
simultaneous increase in the levels ofMbh, POR, andACSmay be
necessary.

Interestingly, we observed the presence of the precursor of
the large Mbh subunit (Pre-MbhL) at high Mbh overexpression
levels (strains MHG1 and MAH1 in Figure 4). Posttranslational
maturation of the active center of the large Mbh subunit (MbhL)
is assisted by the Mbh accessory Hyp proteins (Sasaki et al.,
2012, 2013; Watanabe et al., 2012a, 2015; Tominaga et al., 2013),
which is completed by the cleavage of the Pre-MbhL protein
into the functional MbhL via specific endopeptidases (Forzi and
Sawers, 2007; Watanabe et al., 2012b). The increased levels of
Pre-MbhL in strains MHG1 and MAH1 may be exceeding the
functional capacity of the Hyp proteins, thereby leading to the
accumulation of precursor. The Na+/H+ antiporter does not
seem to be required for Mbh maturation, as overexpression of
the Hyd region without the Na/H region in strainMHC1 resulted
in an increase in mature MbhL (Figure 4) and increased H2

production (Table 3).
The increase in SHPR brought about by deletion of hyh and

alaAT in this study was lower than those observed elsewhere
(Kanai et al., 2011). In batch cultures, three-fold higher cell
specific H2 productions from pyruvate were reached when hyh
was disrupted and an estimated 9% higher H2 productions when
alaAT was disrupted (Santangelo et al., 2011). The continuous
removal of H2 from the gas phase in our cultures is probably the
reason for the much lower effects of hyh and alaAT disruption on
H2 consumption. Large effects of gas removal on H2 production
(54% increase) have also been demonstrated in studies with
a mixed microbial culture and glucose as a substrate. Gas
removal was suggested to prevent H2 (and CO2) consumption
by homoacetogenesis (Esquivel-Elizondo et al., 2014). Increased
H2 concentrations in the liquid phase caused by higher gas phase
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pressures were also assumed to influence the equilibrium of the
H2 production step in E. cloacae (Mandal et al., 2006).

Among fermentative microorganisms, the T. kodakarensis
strain MAH1 exhibits relatively high H2 microbial production
rates (Table 4). This demonstrates the high potential of this
strain as a host strain for further engineering. Examining the H2

production of this strain grown on cheaper substrates like sugars
will be important, as demonstrated with P. furiosus (Schicho
et al., 1993), which is also a strong H2 producer. The HER can
probably be further enhanced by increasing cell densities, for
example by cell immobilization (Zhao et al., 2012). Studies with
the E. coli strain SR13 showed that beside genetic modification,
the use of concentrated cells results in extremely high H2 yields
(Yoshida et al., 2005).
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Figure S1 | Strategy for construction of pMHG1. pMHG1 was used to insert

Pgdh upstream of the mbhA gene of the mbh operon via homologous

recombination using strain KU216 as the host.

Figure S2 | Strategy for construction of pMHC1. pMHC1 was used to

introduce an additional Hyd gene region under the control of Pcsg into the

chitinase region of strain KU216 via homologous recombination.

Figure S3 | Strategy for construction of pMPD1. pMPD1 was used to replace

the palindrome sequence between the Na/H- and Hyd regions of strain KU216

with a non-coding sequence that does not form a stem loop structure via

homologous recombination.

Figure S4 | Strategy for construction of pMAH1. pMAH1 was used to

introduce Pcsg upstream of the mbhA gene of the mbh operon via homologous

recombination. Strain DPHA1 was used as the host in order to combine Mbh

overexpression with alaAT and hyh deletion.
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