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ALGEBRAIC VARIETIES OF GENERAL TYPE

P.M.H.Wilson, Kyoto and Cambridge, England.
Introduction.

In order to have any kind of classification theory for
algebraic Variepies, we need to consider in detail the case of
varieties of general type. This in turn leads us to investigating
the pluricanonical systems on such varieties. For surfaces, we
have a number of vital results concerning these linear systems;
in particular, we know that a canonical model exists, and that the
5-canonical system defines a birational morphism onto its canonical
model. It is this that enables us for instance to construct a

coarse moduli space for surfaces of general type.

It is therefore natural to ask whether any of these results on
pluricanonical systems generalize to higher dimensions. In general
the answer would appear to be No, but it would also seem (especially
in dimension 3) that there are redeeming features. The present
paper therefore considers these questions for dimensions = 3,
pointing out the similarities and the differences compared with

the case of surfaces.

The, author is spending the academic year 1979/80 at the
University of Kyoto, funded by an Overseas Research Fellowship
from the Royal Society, England. He would like to thank all the
mathematicians at Kyoto, in particular Professors Nagata and Ueno,

for helping to make his stay a most enjoyable and stimulating one.
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Part I : Preliminaries, and the case of surfaces.

Let V be a smooth, compact algebraic variety of dimension d
defined over k = €. If L is an invertible sheaf on V, then L
corresponds to a divisor class C1(D), and the complete linear

system |D| is given by the zeros of the sections s ¢ HO(V,L).
If HO(V,L) # 0, choose a basis Sg s SN and define

a rational map ¢, = ¢, : V ----- > pN by
X > (so(x);.....;sN(x)).

This is a morphism outside the base locus of |D].

Definition 1.1. Let N(V,D) dencte the set of positive integers
n such that HO(V,nD) # 0. We define the D-dimension k(V,D) of V

-0 if N(V,D) = ¢
by «(V,D) =

max {¢nD(V)} otherwise.
ne N(V,D)

On V we have the canonical sheaf wy= 93 of regular d-forms on V,

with a corresponding divisor KV. The Xodaira dimension x(V) of V
is then defined to be K(V,KV). We say that V is, of general type
if k(V) = d ; i.e. V is of general type if and only if Sk is

\'

generically finite for some positive m.

Example 1.2. In the case of curves, V is of general type if and
only if the genus g(V) =z 2. Note that by itself is generically
finite, and is an isomorphism if and only if V is not hyperelliptic.
The map 2 Te is an isomorphism if and only if g(V) > 2, and ¢zx is

always an isomorphism.

Now recall the following result of Iitaka (see [5] or [12]).
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Theorem 1.3. Let V be a variety of dimension d and Kodaira
dimension k. Then there exists a fibre space f : ¥ - W such that
V ~ V (birationally equivalent),
W ~ ¢nK(V) for sufficiently large n ¢ N(V,KV), and
K(Vw)= 0 for the general fibre Vw of £ : ¥ » W,
(By definition, a fibre space is a proper surjective morphism of

smooth varieties with connected fibres). - 0

Therefore, we see that in order to obtain a classification
theory for algebraic varieties, we need in particular to study
the cases when (V) = d, 0 and -«. In this paper we concentrate

on the first case.

From (1.3), we see that if V is of general type (i.e. ¢k is
generically finite for some m), then bk is birational for n

sufficiently large. We can however be more precise than this.

Préposition 1.4. If ¢mK is generically finite and not a double

cover of Pd (say Pm(V) > d+1), then ¢(dm+1)K is birational.

Proof. See [13] or [14]. 0

Remarks 1.5.
(a) We need to exclude the case when ¢mK is a double cover of Pd :

consider for example the case of a curve of genus 2.

(b) There exist surfaces with ¢2K generically finite (and P2 > 33,
but ¢4K not birational ; e.g. any surface whose minimal model has

K2= 1 and pg= 2 (see [8], Proposition'4.7).

(¢) There exist threefolds with bk generically finite (and P2> 4),

but ¢6K not birational (see [13]).
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Let us now consider the case of surfaces of general type ; for

such a surface S, recall the following facts
Faet 1. S has an absolutely minimal model (unique up to isomorphism).

Faet 2. If S is minimal, then the complete linear system ansl is
without fixed points for n sufficiently large. In fact, it can be
shown that InKS[ is without fixed points for n = 4 (see [1]). Thus

for any surface S of general type, Sk is a morphism for n 2 4,

Faet 3. The canonical ring R[S] = gngo(S,nKs) is a finitely

generated ring over k. This follows from Fact 2, using a theorem

of Zariski (see Mumford appendix to [16]).

Faet 4. Given that R[S] is finitely generated over k, we can
construct a canonical model of S, X = Proij[S]. We now put
RM(s] = @, HO(S,nmK). Since R[S] is finitely gemerated, we

2

deduce that R(m)[S] = @ HO(S,mK ' form sufficiently 1large,
20 S

ie. gt S~ Wo=X. It is shown in [1] that Wm= X form 2 5,

and so in particular Ok is birational for m 2 5.
On S, we have a formula for the plurigenera,
. i 2
Pn(S) = x(OS) + 1/2(n l)nKs forn> 1,

where S is the minimal model of S. The problem of classification
up to birational equivalence then reduces down to classifying a
specific type of surface of degree 25K§2 in PN, where

N = IOKSZ + x(OS)-l. This leads to the construction of a coarse
moduli space for surfaces of general type (as described in [9]

and [4]).
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Part II : The case of threefolds, and higher dimensions

We now consider whether the facts stated for surfaces of
general type in Part I of this paper can be generalized (in some
form) to higher dimensions. As before, V is a d-dimensional
variety of general type, where we are now interested in the

case d = 3,

Question 1. In general, does there exist an absolutely minimal

model of V ?

The answer to this question is No, even for threefolds of general

type.

o W
(*) Suppose that we have a diagram
fl/ \fz
of birational morphisms between V1 V2
smooth threefolds.

Suppose that on W there is a smooth surface S which has a min-

1 1 1

imal model P"x P~ ; we therefore have morphisms LT S >

(i = 1, 2) corresponding to the two projections from Plx Pl.

Finally we suppose that fiIS =7 Taking relatively

i
minimal models of V1 and'V2 will then in general give two

non-isomorphic relatively minimal models of W.

The reader will find examples of the above type (*) constructed
explicitly in [2] ; in these examples, the morphisms fi are
blow-ups of smooth rational curves on Vi , and so S = Plx Pl.
The type of example described in (®*) will cause problems in a

number of contexts ; we shall for instance meet it again in Quest-

ion 2. Compare also the following result of Frumkin [3].
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Proposition 2.1. Given a birational morphism f : X > Y of smooth

threefolds, there exists a threefold X' and a morphism h : X' » X,
where h factors into blow-ups of points or smooth rational curves,
and foh : X' » Y factors into arbitrary blow-ups of smooth

subvarieties. 0

Question 2(a). Does there exist a model of V for which |nK| is

fixed point free for some n ?

The answer to this question is No ; there are examples of threefolds
of general type where, for all smooth models V, the n-canonical’

system }nKVI has fixed components for all n (see [10} and [111).

Question 2(b). For a d-fold V of general type, does there exist
a smooth model for which the n-canonical system is base point free

(i.e. defines a morphism) for all n sufficiently large ?

This question is very closely related to the fundamental Quest-

ion 3, concerning the canonical ring R{V] = gzo HO(V,nKV}. A

weaker form of Question 3, would be to ask whether R[V] is finitely
generéted under the assumption that the answer to-Question 2(b)

is Yes ; even this however seems to be a very difficult question.

The converse to this weaker form of Question 3 is easy. If
R[V] is finitely generated, then the answer to Question 2(b) is Yes.
To see this, simply take m such that R(m)[V] is generated Sy its
degree 1 terms (i.e. by HO{V,va)), and resolve the base locus
of {nKvi for m < n < 2m. It is then easy to verify that the

resulting model has the required propert&.

346



Question 2(c). In the case of surfaces, |nKV| was base point free
for n sufficiently large and for any model V. Does this generalize

at all to higher dimensions ?

If V is a threefold of general type with R[V] finitely

generated, then we do have a suitable generalization.

Proposition 2.2. If V is a threefold of general type with R[V]

finitely generated, then anVI is base point free for n sufficiently
large, apart from threefolds arising from examples of type (*).
In particular, if B is a base curve of InKV{ for arbitrarily

large n, then B must be rational.

In the second example constructed in [2], the mobile part

of InKV | on V2 meets the rational curve nZ(S) in a finite number
2

of points for n sufficiently large. It then follows easily that
on V, , the rational curve m,(S) must be a base curve of anV f
1
for all n sufficiently large. Thus the counterexamples in (2.2)

do actually occur. The proof of (2.2) is postponed until later.

Question 3. If V is a d-dimensional variety of general type, is

the canonical ring R[V] finitely generated 7

As things stand, there is not yet enough evidence to indicate
whether we should try to prove that R[V] is finitely generated in
general, or to find an example where it is not. I would 1like to
quote here some results which will indicate some of the problems

involved (see [15] for proofs and further details).
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Proposition 2.3. Let D be a divisor on an algebraic variety W

of dimension d, where «(W,D) = d. Let R[W,D] = @,/ HO(w,nD) ;
then R[W,D] is finitely generated if and only if there exists m=21
and a blow-up £ : W » W with D = £*D, such that the map fy N W
is a birational morphism which contracts every fixed component

of |mD|. 0

If R[W,D] is finitely generated, it is in fact sufficient
to take m such that R(m)[W,D] = gzo HO(W,an) is generated by
its degree 1 terms, and then resclve the base locus of |mD] (see

[15], and cf. [10]).

Corollary 2.4. The canonical ring R[V] of an algebraic variety

of general type is finitely generated if and only if there exists
mz1 and a birationally equivalent model ¥, such that the map ¢mK~

v
on V is a birational morphism which contracts every fixed

component of {vaf. 0

The above result leads us to ask about the irreducible divisors
on V which are fixed components of {nKVI for all n e N(V,K,). It
is easy to see that if E is such a component, then pg(E) = 0. In
the case when V is a threefold, we can say rather more (see [15]),

although it is not yet known whether or not k(E) = -,

Let us now concentrate on the case of threefolds of general
type ; if in general the answer to Question 3 is then No, any
examples with R[V] not finitely generated will necessarily be far
more complicated than the known examples where R[V,D] is not

finitely generated for some divisor D (see [16] and [7]).
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Proposition 2.5. Let V be a threefold of general type. For alln

sufficiently large, suppose that anV] has no base locus, and the
fixed components are smooth and disjoint. Then the canonical ring

is finitely generated. g

The above result shows that in the case of the canonical ring
{unlike the knbwn examples where R[V,D] is not finitely generated),
any couﬁterexamples will depend crucially on the fixed components
interacting with one another. Note that we may consider a base

curve as a fixed component merely by blowing it up.

Question 4. Does there exist N (independent of V) such that

. . . o
¢NKV is birational ?

Recall, by (1.4), this is if and only if there is an n
{independent of V) such that ¢nKv is generically finite. For d<2,
the answer to Question 4 is of course Yes. Let us therefore
consider the case when dim(V)=3. Furthermore, let us assume that

R{V] is finitely generated.
Recall first the following result of Matsusaka [6].

Proposition 2.6. If X is a normal projective variety of dimension d,
d-lDd

D an ample divisor on X with hg(nD) >d-1 +n , then th is

generically finite. 0

Remark 2.7. If we apply (2.6) and (1.4) to the case when V is a
canonically polarized threefold, we can deduce immediately that
¢k is birationgl (see [13]). Note that a threefold of general
type is canonically polarized if and only‘if KV.C > 0 for all

curves C on V (see [14]).
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Returning however to the case when V is an arbitrary threefold
of general type with R[V] finitely generated, we shall see that
the answer to Question 4 is 'almost certainly' No ; this is due to
a specific reason shown by Reid in [10]. We shall now quickly

summarize the relevant results from [10].

Given that R[V] is finitely generated, we have a canonical
model X = Proij[V] , which is easily seen to be normal. Choosing
m such that R(m){V} is generated by its degree 1 terms, we have
¢p  V ---> W = X. By resolving the base locus of {mKV} , we
may assume ¢ = ¢_. is a morphism on V. It then follows without
difficulty that ¢,k contracts down the fixed components of !mKV!

(see(2.3)).

Now let wy denote the sheaf of differentials (i.e. d-forms)
on X regular in codimension 1, and w&n] denote the sheaf of
n-differentials regular in codimension 1. The above reasoning
shows that there exists m such wém} is invertible, and corresponds

to a hyperplane section of X = Im(¢hK).

Let r be the minimum m such that w%m] is invertible ; it is

[n]

an easy lemma that if wy is invertible for some n, then r
divides n. We call r the index of V (a birational invariant]).

[r]

Let rKX be the divisor on X corresponding to wy ; we define

3 ) = 10V, Kyrmo* (k)

3,3 .
Ky = (rKy)7/r” e Q . By computing P ...

by means of Riemann-Roch, and using the vanishing theorem of
Grauert-Riemenschneider, we see that Pn(V) ~ (l/é)nsxi + O{nz)

for large n.

If therefore we can find V with K; arbitrarily small, then we
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see that the answer to Question 4 is No. It is shown in [10] that
there exist V of arbitrarily high index, and that one can write
down threefolds with for instance Ki = 1/10. Thus, it seems
almost certain that there exist threefolds with arbitrarily small

Ki . in which case the answer to Question 4 would be No.

Let us digress here to give the promised proof of (2.2).

Proof of (2.2). Using Theorem 6.2 of [16], we need only consider
the case of base curves. Suppose that there is a curve B on V
such that we can find n arbitrarily large with B a base curve of

| nK Then I claim that V arises from an example of type (*).

vl
We choose m so that R(m)[V] is generated by its degree 1 terms
and B is a base curve of ImKVI. By blowing V up in points, we’

may assume that B is smooth.

Now blow V up in B, obtaining £ : V' —> V and a surface E'
oﬁ V' which is ruled over B. Consider the base locus of |mKV,|.
If there is a base curve B' such that f(B'}=B, then we repeat the
proceedure. Eventually, we obtain a smooth threefold W, containing
a smooth curve C which‘is a base curve of lmKW} ; moreover, if we
blow W up in C, say g : W' -~ W, there does not exist a base curve
of ImKw,! whose image under g is C. Let S' denote the surface

on W' corresponding to C on W ; S' is therefore ruled over C.

Now resolve the base locus of ImKW,I, say h : W » w'. on W,
the linear system ImKW} has no base locus, and the morphism Sk

contracts down all the fixed components (see (2.3) again).

Let S be the surface on W corresponding to S' on W' ; thus §
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is birationally ruled over C. Clearly S is a fixed component
of lmKWI, and so it is contracted by ¢ . . From our assumption
W

on the base curves of |mK and since C is a base curve of |mKw|,

-
we deduce that the general fibre F of S over C is not contracted
by ¢mK . Thus the morphism ¢mK : W » X contracts S down to a curve
A on X, but does not contract the generél fibre F of § = C. 1In

particular therefore, the curve A is rational.

From Corollary 1.14 of [10], apart from at a finite number of
points, every point on A has an analytic neighbourhood which is
either non-singular or isomorphic to (rational double point)X.ml.
Thus S is birationally ruled over A, and the mobile part of |mK |
meets S in fibres of this ruling. As rational singularities do
not affect adjunction, and § is a fixed component of |mK |, it
follows that we can (generically) contract S down to a curve C'
of smooth points, in such a way that the general fibre F of the

ruling § + C is mapped surjectively onto C'.

We may assume that C' is a smooth curve, and we can resolve

the indeterminacies of the map involved, obtaining a diagram of

*
where ¢/w\v is now of
woox

the form W

I

\l type (*).
X

Moreover, a general fibre F' of § + C' maps surjectively onto C,

21*'—2

and thus C is rational. This in turn implies that our original

base curve B is rational. 0

252



13

Finally, we return to Question 4. Given a threefold V of
general type with R[V] finitely generated, what can we say about

N such that K is birational ?

Theorem 2.8. There exists a polynomial Q(x) with rational coeff-
icients, such that for n suffiéiently large,

Pn(V) = Q(n) + term of period r .
Furthermore, there exists N = N(Q,r) (depending only on the index r

and the polynomial Q) such that g is birational.
Vv

Proof. The first part comes from a more careful version of the

. 0
above calculation of Pmr+1(V) = h (V, Kv*m¢*(rKX)} (see {10])f

The second part then follows easily using (1.4) and (2.6).

For more details, see [14]. o

Conjeecture 2.9. The value of N such that ¢NK is birational

depends only on the index r.

The above conjecture is the natural generalization of the
results for surfaces of genefal type and for canonically polarized
threefolds. In both these cases the index is 1, and so it is no
surprise that there exists an N which is independent of the

variety chosen.
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