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1 Introduction

The idea of the inflationary Universe [1–3] is now a key part of the standard model of
cosmology. The primordial period of accelerated expansion at the beginning of the Universe
provides not only a solution to the flatness and horizon problems, but also the initial density
fluctuations that seed the formation of large-scale structure.

It has been claimed that a period of accelerated expansion has the potential to reconcile
a certain class of particle physics models with cosmology. The gravitino, a fermionic partner
of the graviton with spin 3/2, appears in the theory of supergravity. Its number density
per comoving volume is proportional to the reheating temperature after inflation [4, 5].
Therefore, if the reheating temperature is high, the gravitinos are abundantly produced.
The lifetime of the gravitino is estimated as τ ∼ 8πM2

Pl/m
3
3/2 ∼ 105 sec if the gravitino

mass takes a value m3/2 = 103GeV with MPl = 2.4 × 1018GeV being the reduced Planck
mass. Namely, they decay after Big-Bang Nucleosythesis (BBN) due to their very weak
interactions. Subsequently, the decay products of gravitinos spoil the light elements after
BBN. This is called the gravitino problem. The scalar fields called moduli, with Planck-
suppressed couplings, are also dangerous in a similar way [6–8]. They start to oscillate when
the Hubble parameter becomes as small as their mass and soon dominate the Universe, since
the initial amplitude of such oscillations is expected to be on the order of MPl. Driven by the
coherent oscillations of the moduli fields the Universe evolves like a matter-dominated one,
until the moduli decay to reheat the Universe. The moduli fields are coupled very weakly
with other fields, and as a result of their long lifetime the reheating temperature is so low that
BBN does not work. Furthermore, in ref. [9] it is shown that the energy density of moduli
is also constrained by X(γ)-ray observations, requiring that the theoretical prediction does
not exceed the observed backgrounds. One can dilute the moduli fields by assuming a short,
low-energy inflationary period after the moduli begin oscillating at H ≈ mmoduli [10–15].
This type of temporally short inflationary period is called thermal inflation, and is driven by
a scalar field with almost flat potential called the flaton [10–12]. In a similar way, thermal
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inflation can also evade the gravitino problem [4, 5] by diluting them after their generation.
In summary, thermal inflation is needed to dilute the unwanted relics formed after primordial
inflation in a similar way that primordial inflation can solve the monopole problem of the big
bang model.

Thermal inflation has been studied by many authors due to its other interesting prop-
erties. First, it is related to gravitational waves. A period of accelerated expansion after the
generation of tensor perturbations in the primordial inflationary period leads to their dilu-
tion [16]. This is a non-negligible effect that must be taken into account when determining
the value of the primordial tensor-to-scalar ratio and constraining models of inflation using
observations. In addition, the collision of bubbles created at the end of thermal inflation can
give rise to gravitational waves [17–19]. Second, thermal inflation provides a mechanism for
baryogenesis. Though it washes out the baryon number generated before thermal inflation,
we can consider mechanisms for generating baryon asymmetry at the end of thermal infla-
tion [20–24]. Third, effects of thermal inflation on the primordial density fluctuations are
studied in ref. [25].

In a similar way as with primordial inflation, the mechanism of thermal inflation is often
described in terms of an effective potential. A key difference with most models of primordial
inflation, however, is that there exists a radiation bath during thermal inflation. Interactions
with particles in the thermal bath lead to thermal corrections to the flaton potential, which
creates a small dip at the origin of the flaton potential. Thermal inflation is driven by the
potential energy of the flaton at the origin and we usually assume it ends through a first-order
phase transition.

Though the existence of a thermal bath is necessary for thermal inflation to occur, it also
leads to thermal fluctuations that affect the dynamics of the flaton field. Since these effects
are not accounted for in the effective potential approach, we incorporate the effect of thermal
fluctuations separately. In this paper we consider two phases which are relevant to the thermal
inflation scenario. The first phase is before the beginning of thermal inflation. If in some
spatial regions the flaton value is kept large even when the Universe cools, thermal inflation
never begins. The second phase is the end of thermal inflation. If thermal inflation ends with
a first-order phase transition, bubbles are generated and their collisions induce gravitational
waves. Therefore, in order to predict gravitational-wave observables, it is important to study
how thermal inflation ends with thermal fluctuations taken into account.

This paper is organized as follows. In section 2, we take a brief look at the thermal
inflation scenario. Though it is often described in terms of an effective potential, we consider
the flaton dynamics based on the effective action in section 3. We study the flaton dynamics
further in detail by performing lattice simulations, whose setup is summarized in section 4,
and discuss the results in section 5. In section 6, we summarize the implications of our study
for the thermal inflation scenario.

2 Scenario of thermal inflation

We briefly review the scenario of thermal inflation in this section. In considering the dynamics
of thermal inflation, we often use the thermal effective potential. Since thermal inflation
occurs after primordial inflation and reheating, there is a hot thermal bath and interactions
between the flaton and the fields in the bath lead to thermal corrections to the flaton potential.
The flaton is kept at the origin of the potential owing to this correction and the potential
energy at the origin drives thermal inflation. One example of the flaton potential at zero
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Figure 1. The zero-temperature potential of the flaton and its finite-temperature correction.

temperature is

V0(φ) = VTI −
1

2
m2

φφ
2 + λ6φ

6, (2.1)

where the second term represents a tachyonic mass term, whose value is assumed to be set by
the soft SUSY breaking scale, mφ ≈ msoft ≈ 103GeV. The energy scale of thermal inflation
is determined by the constant term VTI. The exactly flat potential is curved due to SUSY
breaking, and stabilized by unrenormalizable terms.1 By requiring the potential energy at

the bottom of the potential to be zero, we obtain λ6 =
m6

φ

54V 2
TI

and φvev =
√
3VTI/mφ, where

φvev is the vacuum expectation value of the flaton.
Let us move on to the thermal corrections. The one-loop effective potential arising from

thermal corrections is given by

V 1−loop
T (φ) = T 4

∑

p

gpJp

(
mp(φ, T )

T

)
, (2.2)

where p labels both the bosonic and fermionic degrees of freedom and the function Jp is
expressed in terms of an integral as

J±(y) = ± 1

2π2

∫
∞

0
dxx2ln

(
1∓ e−

√
x2+y2

)
, (2.3)

for bosons and fermions, respectively. Following ref. [17], the effective mass squared for fields
in the bath are

m2
p(φ, T ) ≈





m2
b +

1

2
λ2
bφ

2 +

(
1

4
λ2
b +

2

3
g2b

)
T 2 boson ,

1

2
λ2
f φ

2 +
1

6
g2f T

2 fermion .

(2.4)

Here we consider Yukawa couplings between the flaton and scalar boson and fermion, with
coupling constants λb and λf , respectively. The coupling constants gb and gf are associated
with the gauge interactions of the scalar boson and fermion, respectively. We assume that the
masses of other bosons are also determined by msoft ≈ 103GeV and that fermions are massless
at tree level. Since these corrections lower the potential by O(T 4/10) around |φ| <∼ T , there
appears a small dip at the origin, which traps the flaton to drive thermal inflation. We show
an example flaton potential in figure 1.

Thermal inflation begins when the energy density of other components decays to be as
small as the potential energy of the flaton. If the Universe is dominated by radiation, the

temperature at the beginning of thermal inflation, Tbegin, is given by Tbegin =
(

30
π2g∗

VTI

)1/4
.

1The exact form of the third term and possible higher order terms are unimportant for our study.
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During thermal inflation, the potential energy of the false vacuum phase around the
origin is larger than that of the true vacuum, meaning that we might expect tunneling from
the false to the true vacuum. However, the tunneling rate is so small [10] that the flaton
is assumed to be fixed at the origin until the dip almost disappears. Since the order of the
curvature of the dip is determined by the temperature as V ′′

eff ∼ O(T 2), thermal inflation
ends when the temperature becomes as small as mφ ≈ ms. Therefore, by choosing VTI and
mφ, one can tune the duration of thermal inflation. Namely, the number of e-folds of thermal
inflation is roughly given by

N = log

(
Tbegin

Tend

)
∼ log

(
V

1
4
TI

mφ

)
. (2.5)

If we set mφ = 103GeV and V
1
4
TI = 107GeV, we obtain N ∼ 9.

Here we consider how thermal inflation solves the gravitino problem [4, 5]. The gravitino,
which only has suppressed interactions and hence a long lifetime, decays after BBN and its
decay products affect the abundances of light elements. As such, we can constrain the
abundance of the gravitino in the early Universe using observations [26]. We use the variable
Y3/2 = n3/2/s to represent the comoving number density of gravitinos, since the entropy
density, s, is proportional to a−3 if there is no entropy production. Before the gravitinos
decay, Y3/2 is approximately proportional to the reheating temperature TR. Hence, if the
reheating temperature is high, we have to decrease Y3/2. According to ref. [26], TR >∼ 106GeV
may be problematic. A solution proposed in refs. [11, 12] is to increase the entropy density
via flaton decay after thermal inflation. The ratio of the entropy densities before and after
the flaton decay is

safter
sbefore

≈
4
3

VTI
TR,TI

2π2

45 g∗(Tend)T
3
end

= 1.5× 1017

(
V

1
4
TI

107GeV

)4(
TR,TI

1GeV

)−1( Tend

1TeV

)−3(g∗(Tend)

200

)−1

, (2.6)

where TR,TI is the reheating temperature associated with the flaton decay. Due to this
significant entropy production the abundance of gravitinos is made harmless.

As another possibility, let us consider the case where the Universe transitions to thermal
inflation after being dominated by oscillating moduli. Hereafter we use Φ to represent one of
the moduli fields. Since the moduli start oscillating when the Hubble parameter becomes as
small as the mass of the moduli (mΦ), they start oscillating before reheating if the reheating
temperature is lower than ∼ √

mΦMPl. The energy density of the moduli at reheating is
estimated as

ρΦ(at reheating) =
1

2
m2

ΦΦ
2
0 ×

(
aosc
aR

)3

=
1

2
m2

ΦΦ
2
0 ×

(
HR

Hosc

)2

=
1

2
Φ2
0H

2
R , (2.7)

where Φ0 is the initial amplitude of the oscillating moduli and the subscript “osc” represents
the value at the onset of oscillation. After reheating, since the temperature scales as T ∝ a−1,
ρΦ scales as ∝ T 3. Therefore Tbegin is determined by

1

2
Φ2
0H

2
R ×

(
Tbegin

TR

)3

= VTI , (2.8)
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then we obtain

Tbegin ≈ 9.7× 105
(

g∗
200

)−1/3( TR

109GeV

)1/3( V
1
4
TI

107GeV

)4/3( Φ0

MPl

)−2/3

GeV . (2.9)

On the other hand, if the reheating temperature is high, the oscillations begin in the radiation-
dominated Universe, when

m2
Φ = H2

osc =
π2

90
g∗

T 4
osc

M2
Pl

, (2.10)

is satisfied. If Φ0 is as large asMPl, the energy density associated with the coherent oscillation
of moduli soon becomes dominant. In this case Tbegin is determined by

1

2
m2

ΦΦ
2
0 ×

(
Tbegin

Tosc

)3

= VTI , (2.11)

combining the above expressions we obtain

Tbegin ≈ 3.4× 105
( g∗
200

)−1/4
(

V
1
4
TI

107GeV

)4/3( mΦ

1TeV

)−1/6( Φ0

MPl

)−2/3

GeV . (2.12)

Let us move on to the cosmological moduli problem. The moduli abundance YΦ = nΦ/s
should also be small enough so as not to spoil BBN [27, 28]. Assuming the moduli start
oscillating before reheating, during the era when the energy density associated with the
coherent oscillations of the inflaton dominate the Universe, the moduli abundance before
flaton decay is evaluated as

YΦ =

1
mΦ

1
2Φ

2
0H

2
R

4
3TR

× 3M2
PlH

2
R

=
1

8

TR

mΦ

(
Φ0

MPl

)2

, (2.13)

where we use eq. (2.7) and assume that there is no entropy production after reheating. After
the flaton decays, by using eq. (2.6), YΦ becomes

YΦ, after ≈
π2

240
g∗(Tend)

(
Φ0

MPl

)2 TRTR,TIT
3
end

mΦVTI

= 8.2× 10−13

(
V

1
4
TI

107GeV

)−4( TR

109GeV

)(
TR,TI

1GeV

)

×
(
Tend

mΦ

)3( mΦ

1TeV

)(
Φ0

MPl

)2(g∗(Tend)

200

)
. (2.14)

Therefore, with appropriate parameters, thermal inflation can make YΦ small enough for
successful BBN.

3 Flaton dynamics in a thermal bath

In this section, we consider the flaton dynamics based on finite-temperature field theory.
In order to describe the dynamics of the expectation values of quantum fields in a thermal
bath, we use the effective action method, which has been studied in several contexts [29–33]
based on the in-in or the closed time-path formalisms. Using this method, we can evaluate
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the evolution of expectation values by performing path integrals along two time paths, with
two field variables φ± defined on each path. Generally the effective action can be expressed
as [29–33]

Γ = S0 + ΓR + ΓI , (3.1)

where S0 is the tree level action, and ΓR and ΓI, respectively, represent the real and imaginary
parts coming from interactions. The imaginary part has the following structure

exp [iΓI] = exp

[
− 1

2

∫
d4x1d

4x2Aa(x1 − x2)φ∆(x1)φ∆(x2)

+Am(x1 − x2)φ∆(x1)φ∆(x2)φc(x1)φc(x2)

]
, (3.2)

and we can rewrite it as

exp [iΓI] =

∫
DξaDξm P [ξa]P [ξm] exp [iSnoise] , (3.3)

where

P [ξa] ∝ exp

[
−1

2

∫
d4x1d

4x2 ξa(x1)A
−1
a (x1 − x2)ξa(x2)

]
,

P [ξm] ∝ exp

[
−1

2

∫
d4x1d

4x2 ξm(x1)A
−1
m (x1 − x2)ξm(x2)

]
,

Snoise =

∫
d4x [ξa(x)φ∆(x) + ξm(x)φ∆(x)φc(x)] ,

φc =
φ+ + φ−

2
, φ∆ = φ+ − φ− . (3.4)

We can interpret the new variables ξa and ξm as stochastic noises whose probability distribu-
tions are given by P [ξa] and P [ξm], respectively. Finally the equation of motion for φc, which
is obtained by varying the effective action with respect to φ∆, becomes the Langevin equation

�φ(x) + V ′

eff [φ] +

∫ t

−∞

dt′
∫

d3x′Ba(x− x′)φ(x′)

+ φ(x)

∫ t

−∞

dt′
∫

d3x′Bm(x− x′)φ2(x′) = ξa(x) + ξm(x)φ(x) . (3.5)

We briefly see specific examples studied in ref. [31]. An interaction term Lint = −λ2χ2φ2,
where χ is a real scalar field, leads to both additive and multiplicative noises and the cor-
responding non-local terms. Functions A and B for additive noise and the correspondent
non-local terms in Fourier space are calculated as

Aa(ω,~k) =− 16πiλ4

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

(2π)3δ3(~q1 + ~q2 + ~q3 − ~k)
1

8ωq1ωq2ωk−q1−q2

×
[
{(1 + nq1)(1 + nq2)(1 + nq3) + nq1nq2nq3} δ(ω − ωq1 − ωq2 − ωq3)

+ {(1 + nq1)(1 + nq2)nq3 + nq1nq2(1 + nq3)} δ(ω − ωq1 − ωq2 + ωq3)

+ {(1 + nq1)nq2(1 + nq3) + nq1(1 + nq2)nq3} δ(ω − ωq1 + ωq2 − ωq3)

+ {nq1(1 + nq2)(1 + nq3) + (1 + nq1)nq2nq3} δ(ω + ωq1 − ωq2 − ωq3)

– 6 –
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+ {(1 + nq1)nq2nq3 + nq1(1 + nq2)(1 + nq3)} δ(ω − ωq1 + ωq2 + ωq3)

+ {nq1(1 + nq2)nq3 + (1 + nq1)nq2(1 + nq3)} δ(ω + ωq1 − ωq2 + ωq3)

+ {nq1nq2(1 + nq3) + (1 + nq1)(1 + nq2)nq3} δ(ω + ωq1 − ωq2 + ωq3)

+ {nq1nq2nq3 + (1 + nq1)(1 + nq2)(1 + nq3)} δ(ω + ωq1 + ωq2 + ωq3)
]
,

(3.6)

Ba(ω,~k) = 8πλ4

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

(2π)3δ3(~q1 + ~q2 + ~q3 − ~k)
1

8ωq1ωq2ωq3

×
[
{(1 + nq1)(1 + nq2)(1 + nq3)− nq1nq2nq3} δ(ω − ωq1 − ωq2 − ωq3)

+ {(1 + nq1)(1 + nq2)nq3 − nq1nq2(1 + nq3)} δ(ω − ωq1 − ωq2 + ωq3)

+ {(1 + nq1)nq2(1 + nq3)− nq1(1 + nq2)nq3} δ(ω − ωq1 + ωq2 − ωq3)

+ {nq1(1 + nq2)(1 + nq3)− (1 + nq1)nq2nq3} δ(ω + ωq1 − ωq2 − ωq3)

+ {(1 + nq1)nq2nq3 − nq1(1 + nq2)(1 + nq3)} δ(ω − ωq1 + ωq2 + ωq3)

+ {nq1(1 + nq2)nq3 − (1 + nq1)nq2(1 + nq3)} δ(ω + ωq1 − ωq2 + ωq3)

+ {nq1nq2(1 + nq3)− (1 + nq1)(1 + nq2)nq3} δ(ω + ωq1 − ωq2 + ωq3)

+ {nq1nq2nq3 − (1 + nq1)(1 + nq2)(1 + nq3)} δ(ω + ωq1 + ωq2 + ωq3)
]
,

(3.7)

where ωq1 =
√
|~q1|2 +m2

χ, ωq2 =
√
|~q2|2 +m2

χ, ωq3 =
√

|~q3|2 +m2
φ, and nqi =

1

eβωqi−1
. For

the multiplicative noise and corresponding non-local term, we find

Am(ω,~k) = 2πλ4

∫
d3q

(2π)3
1

ωqωk−q

×
[
{(1 + nq)(1 + nk−q) + nqnk−q} δ(ω − ωq − ωk−q)

+ {(1 + nq)nk−q + nq(1 + nk−q)} δ(ω − ωq + ωk−q)

+ {(nq(1 + nk−q) + (1 + nq)nk−q} δ(ω + ωq − ωk−q)

+ {nqnk−q + (1 + nq)(1 + nk−q)} δ(ω + ωq + ωk−q)
]
, (3.8)

Bm(ω,~k) = − 2πiλ4

∫
d3q

(2π)3
1

ωqωk−q

×
[
{(1 + nq)(1 + nk−q)− nqnk−q} δ(ω − ωq − ωk−q)

+ {(1 + nq)nk−q − nq(1 + nk−q)} δ(ω − ωq + ωk−q)

+ {(nq(1 + nk−q)− (1 + nq)nk−q} δ(ω + ωq − ωk−q)

+ {nqnk−q − (1 + nq)(1 + nk−q)} δ(ω + ωq + ωk−q)
]
. (3.9)

Though the noise terms generally consist of both additive noise, ξa, and multiplicative noise,
ξmφ, we focus on the additive noise term since the former is more important to trigger
phase transition. This noise term is related to the “friction” term through the fluctuation-
dissipation relation [31, 32]

noise correlation

dissipation coefficient
=

Aa(ω,~k)

iBa(ω,~k)/2ω
= ω

eω/T + 1

eω/T − 1
→ 2T (T ≫ ω) . (3.10)

– 7 –
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In ref. [33] it was shown that the damping scale of the fermionic noise correlation is
independent of the mass of the fermion, which is different from the bosonic noise whose
correlation damps exponentially above the mass scale. Therefore, in the high-temperature
regime T ≫ m, the dominant noise component comes from interactions with fermions. More
quantitatively, the correlation function for fermionic noise can be expressed as

〈ξ(t, ~x)ξ(t, ~x′)〉 ∝ T 4

r2
e−2πrT , for r ≫ 1

πT
, (r = |~x− ~x′|) . (3.11)

From this expression we take the correlation length of thermal noise as (πT )−1. This length
scale is very important in estimating the typical value of the flaton at finite temperature.
Here let us take a quick look at this typical field value, as this will help us to understand the
results of numerical simulations later. The form of the effective potential is too complicated
to be well approximated by a simple polynomial function, so for simplicity let us neglect the
potential here. Following ref. [34], the mean square value of the coarse-grained field φ over
the spatial scale R is given by

〈φ2〉R =
1

2π2

∫
∞

0
dk k

(
1

2
+

1

e
k
T − 1

)
W (k,R)2 , (3.12)

where W (k,R) is the coarse-graining window function. As an example, if we take the Gaus-
sian function

W (k,R) = e−
1
2
k2R2

, (3.13)

we obtain
√
〈φ2〉 ≈ 0.43T for R = (πT )−1.

Since the correlation length of the noise is ∼ (πT )−1, we can treat the noise as being
uncorrelated on larger scales. The same is true for the temporal noise correlation, since it is
suppressed exponentially for ∆t > (πT )−1. As such, the noise term can be approximated by a
white, Gaussian random variable when we consider dynamics on spatial and temporal scales
that are larger than the above correlation length. Hence we use the following simple EoM

φ̈(~x, t)− ~∇2φ(~x, t) + ηφ̇(~x, t) + V ′

eff [φ] = ξ(~x, t) , (3.14)

where the correlation function of the noise term is
〈
ξ(~x, t)ξ(~x′, t′)

〉
= Dδ(t− t′)δ3(~x− ~x′) . (3.15)

The fluctuation-dissipation relation in this simple EoM is

D

η
= 2T . (3.16)

Due to the fluctuation-dissipation relation, equilibrium values do not depend on the friction
coefficient η. Its value is related with the decay rate of φ particle if φ is oscillating [29–
32]. On dimensional grounds we can take Γ ∝ T . Since the value of η only determines the
time scale on which the system approaches equilibrium, here we simply take η = T as strong
enough couplings between the flaton and the thermal bath are required for successful thermal
inflation. Then the ratio of the equilibration timescale to the cosmic expansion timescale is

equilibration timescale

Hubble time
∼ η−1

H−1
=

T−1

H−1
∼





T

MPl
(RD era) ,

V
1
2
TI

MPl T
(during thermal inflation) .

(3.17)

– 8 –



J
C
A
P
0
3
(
2
0
1
5
)
0
2
4

We see that this ratio is much smaller than unity in both the RD era and the period of thermal
inflation, from which we can conclude that the equilibration time is still much shorter than the
Hubble time even if we take other choices for the value of η. This huge difference between the
two timescales allows us to safely ignore the Hubble expansion in simulations we show later.

4 Setup of numerical simulations

In this section we summarize the details of our three-dimensional lattice simulation. We
solved the equation of motion given by eq. (3.14) by the second-order explicit Runge-Kutta
method with the second-order finite differences approximating the spatial derivatives. The
basic setup is the same as in ref. [33]. In numerical calculations we use dimensionless variables
like x̃ = Tx, t̃ = Tt, φ̃ = φ/T , and ξ̃ = ξ/T 3 since the scale of interest is deeply related to
the temperature.

The noise correlation function on the lattice becomes

〈ξ(~xi, tm)ξ(~xj , tn)〉 = 2ηδ(tm − tn)δ
3(~xi − ~xj) →

2η

∆t(∆x)3
δm,nδi,j , (4.1)

since on the lattice the delta functions are properly replaced as δ(tm− tn) → (∆t)−1δm,n and
δ3(~xi − ~xj) → (∆x)−3δi,j . The value of noise variable on each lattice is given by

ξ(~xi, tm) =

(
2η

∆t(∆x)3

) 1
2

Gi,m , (4.2)

where G is a standard Gaussian random variable.
We also define approximation function of the potential term, which is shown in appendix.

As can be seen later, the quantitative shape of the effective potential is very sensitive to
the temperature, especially at the end of thermal inflation. Therefore we use the above
approximation function both in the lattice simulation and semi-analytic calculation.

We choose the initial condition for simulations as

φ(~x, t = 0) = φ̇(~x, t = 0) = 0 . (4.3)

Although this is an admittedly unrealistic initial condition, we have confirmed that the field
quickly reaches the thermal configuration compared to the typical duration of simulation
time and the timescale of the temperature variation.

With the above settings we use the 2563 lattice points andmφ (andmb in eq. (2.4))= 103

and 102 GeV, but the qualitative results do not depend on these mass values.

5 Results of numerical simulations

5.1 Phase 1: before thermal inflation

A necessary initial condition for the flaton to drive thermal inflation is that the field value of
the flaton should be homogeneously close to zero before thermal inflation begins. However,
the form of the 1-loop effective potential suggests that there is more than one local minimum,
and if the flaton field is trapped in the true vacuum in some spatial regions, the thermal
inflation scenario does not work. In order to determine whether or not this problem is
encountered, we simulated the time evolution of the flaton from a very high temperature, T0,
to the temperature at which thermal inflation begins.
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The “high” temperature T0 is determined by the following consideration. In order to
realize a situation where the typical value of the flaton is φvev (≡ √

3VTI/mφ, the vacuum

expectation value at T = 0), we first perform a simulation at T = φvev, expecting
√
〈φ2〉 ≈

T ≈ φvev.
2 At this temperature the shape of the effective potential becomes like the potential

labelled “T = T1” in the right panel of figure 1. We then perform a second simulation, setting
the temperature to half of that in the previous simulation and using the final configuration
of the previous simulation to determine the initial conditions. Since we fix the gridsize of the
simulation and the value of the lattice spacing normalized by the temperature, the physical
size of the second simulation box is larger than that of the previous, hotter simulation. We
therefore use periodic boundary conditions and define the initial condition for φ and φ̇ as
averaged quantities of the previous values of close grids on each new grids. Repeating this
procedures N times we can follow the flaton dynamics from T = T0 to T = T0×2−N ∼ Tbegin.

In the numerical simulations we consider corrections to the potential coming from a
single bosonic and single fermionic degree of freedom. In order to try and establish the
importance of the thermal effects we perform simulations with two choices of the coupling
constants appearing in eq. (2.4). Hereafter we refer to these two choices as the strongly
and weakly coupled cases, and they correspond to taking λb = gb = λf = gf = 1 and
λb = gb = λf = gf = 0.1 respectively. We also consider two different scenarios. In the first
scenario thermal inflation is preceded by moduli domination (MD→TI) and in the second
scenario thermal inflation is preceded by radiation domination (RD→TI). The results of
one example simulation are shown in figure 2. For the form of effective potential used in
this study, we confirm that the typical value of the flaton is

√
〈φ2〉 ≈ T , regardless of the

temperature before thermal inflation. In other words, we do not see any spatial regions where
the field value remains so large that the flaton potential energy becomes inhomogeneous and
ruins the thermal inflation scenario.

We close this subsection with comments on the validity of our multistage simulation.
The result shown in figure 2 confirms us that we properly follow the dynamics of the fla-
ton from a high temperature to Tbegin, with multistage simulation. Since the equilibration
timescale (∼ η−1) is much shorter than that of temperature change (∼ H−1), the system
approaches the equilibrium rapidly enough in each simulation with a fixed temperature. In
other words, even though we impose out-of-equilibrium initial condition which is simply con-
nected by the previous simulation where the temperature is set twice as hot, we can realize
the equilibrium distribution (

√
〈φ2〉 ∼ T ) by performing a simulation for a longer time than

η−1 (but much shorter than H−1). Therefore repetitive simulations enable us to consider
a system in quasi-equilibrium state for a longer time than Hubble time without including
the exact change in temperature. The smooth change of the root mean square (RMS) value
obtained in figure 2 justifies a factor of 2 change of the temperature at each step is small
enough to warrant the adiabatic change of the temperature in the sequential simulations. As
for the maximum value, we note that for random 2563 realization of Gaussian distribution,
the probability the maximun exceeds 6.2σ (5.6T) is 1 % and that it lies lower than 5.2 σ
(4.6T) is also 1%. Although the field value at each point is correlated with nearby points,
we find one-point distribution function is close to a Gaussian distribution. Hence we may

2Note that the VEV of the zero-temperature potential also depends on VTI as φvev =
√
3VTI/mφ. Since

the temperature at the beginning of thermal inflation, Tbegin, is controlled by VTI (see section 2), we choose
the value of VTI such that the number of e-folds of thermal inflation becomes about 6. In order to calculate
the number of e-folds we also need to know the temperature at the end of thermal inflation, and this can be
determined once we have fixed the coupling constants.
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scenario couplings Tbegin[GeV] φvev(= T0)[GeV]

MD → TI strong 2.1× 106 3.7× 1012

MD → TI weak 1.7× 107 8.3× 1013

RD → TI strong 2.1× 106 6.0× 1010

RD → TI weak 1.7× 107 3.9× 1012

Table 1. The temperature at the beginning of thermal inflation and VEV of the flaton. Since the
ratio of these values is O(106) ∼ 220, we performed about 20 simulations to follow the flaton dynamics
from T0 to Tbegin.

à
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Φ
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MD ® TI, strong coupling

Figure 2. The results of one example multistage lattice simulation that was performed assuming
moduli-domination before thermal inflation and strong coupling to the fields in the thermal bath. In
other cases the results are qualitatively the same. The root mean square of φ and the maximum value
of |φ| in the first and the last simulation at each reference time are shown. The red lines with square
vertices are the results of the first (hot) simulation and the dashed blue lines with circular vertices are
those of the last simulation, where T ∼ Tbegin. Since we impose the initial conditions φ = φ̇ = 0 in
the first simulation and the initial conditions for the following simulations are determined sequentially
by the final configuration of the preceding, higher temperature simulation, the flaton distribution at
each first reference time is not the equilibrium configuration.

conclude the observed maximum values in figure 2 are also in accordance with the entire
distribution.

5.2 Phase 2: at the end of thermal inflation

It is believed that thermal inflation ends with a first-order phase transition accompanied by
the formation of bubbles, and that the collision of these bubbles then leads to gravitational
wave production. Here we briefly review the theory of tunneling at a finite temperature
and define the percolation temperature at which the bubbles collide and start generating
gravitational waves.

The tunneling rate per unit volume at temperature T is estimated as [35, 36]

Γ(T ) ∼ T 4e−
S3
T , (5.1)
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where S3 is the Euclidean action after performing the time integral,

S3 =

∫
d3x

(
1

2
(∇φ)2 + V (φ)

)
. (5.2)

The dominant contribution to the tunneling rate comes from the solution of the equation
of motion,

d2φ

dr2
+

2

r

dφ

dr
− dV

dφ
= 0 , (r = |~x|) (5.3)

under the boundary conditions φ(r = ∞) = 0 and dφ
dr

∣∣
r=0

= 0.
The fraction of spatial regions occupied by bubbles can be written as [37]

F (t) = 1− e−P (t) , (5.4)

where the function P (t) is given by

P (t) =

∫ t

dt′ Γ(t′)
4π

3

(∫ t

t′
dt′′

a(t)

a(t′′)

)3

=
4π

3

∫ t

dt′ Γ(t′)
1

H3

(
eH(t−t′) − 1

)3
. (5.5)

Making use of eq. (5.1) we can rewrite this in terms of temperature as

P (T ) =
4π

3

∫
∞

T
dT ′

T ′3

H4

(
T ′

T
− 1

)3

e−
S3(T

′)

T ′ . (5.6)

In this paper we define the percolation temperature as F (T = Tp) = 0.5.3 Note that since the
exponential factor exp[−S3(T )/T ] is very sensitive to the temperature and quickly becomes
small when we take a large value of T , it is sufficient to take the upper limit of the integral
to be some finite value. For example, it is enough to take it as 2Tcurv, where Tcurv is the
temperature at which the curvature of the potential becomes zero. After evaluating the above
quantities numerically, we find that the difference between the percolation temperature Tp

and Tcurv is tiny, so that the Universe becomes filled with critical bubbles almost immediately
after bubble formation effectively begins.

From the above consideration based on the shape of the flaton effective potential, we
may expect that thermal inflation ends with a first-order phase transition characterized by
critical bubble formation. However, this description is based on the assumption that the
flaton is well within the false vacuum phase before bubble nucleation occurs.

We see from figure 3 that around the percolation temperature the potential barrier is
located at φ ≪ T and the height of the barrier is much smaller than T 4. Taking thermal
fluctuations into account, since the width of the field distribution is

√
〈φ2〉 ≈ T , we conclude

that the small potential barrier cannot trap the flaton in the false vacuum phase until the
temperature becomes as small as the temperature at which critical bubble nucleation occurs.
This means that the two phases coexist well before the percolation epoch in the bubble nu-
cleation picture, and the phase transition proceeds with phase-mixing. As such, the standard
description of the end of thermal inflation in terms of a strong first-order phase transition
which is accompanied with bubble formation is inappropriate.

3The qualitative conclusion (Tcurv ≈ Tp < Tsub) remains unchanged if we employ other definitions such as
F (Tp) = 0.01 or 0.99.
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Now let us investigate more quantitatively the failure of critical bubble formation as a
description of the end of thermal inflation. The width of the wall trapping the flaton is broad
at high temperatures and gradually becomes thin as the temperature drops. We define the
width in field space, φwid, at temperature T , as

Veff [φ = φwid, T ] = Veff [φ = 0, T ] . (5.7)

Since the shape of the effective potential depends on temperature, we obtain φwid(T ) by
solving the above equation. As a typical temperature at which phase-mixing occurs, we
define the temperature Tsub as

φwid(T = Tsub) = Tsub , (5.8)

i.e. Tsub is the temperature at which the width of the potential wall becomes as small as the
temperature. As we see from the simulations in the previous subsections and the analytical
estimation (eq. (3.12)), the typical value of φ is as large as T . Therefore, at T = Tsub, and
if the height of the potential barrier is small enough, spatial regions in which the flaton lies
outside of the potential dip are ubiquitous in the Universe. We call such regions subcritical
bubbles [38–41], which are continuously created and destroyed by thermal fluctuations and
hence differ from the critical bubbles which only grow after being nucleated by tunneling. For
the effective potential we study in this paper, the relations Tsub > Tp and F (Tsub) ≪ 1 hold.
Therefore, at T = Tsub the flaton is no longer trapped at the local minimum at the origin,
meaning that there are practically no critical bubbles. Specific values are shown in table 2.
We would like to make a comment on the temperature at the end of thermal inflation, Tend

quantitatively. In section 2 we estimated Tend ∼ mφ. Table 2, however, shows that while
Tcurv, Tp, and Tsub coincide with each other within 5% they deviate from mφ by a factor of 5
- 40. Hence we should use Tend ∼ Tsub to estimate the proper duration of thermal inflation.

By performing numerical simulations at T = Tsub we are able to verify that the height
of the potential barrier is small enough for the flaton to escape from φ = 0. In some cases
we found that the flaton rolls down to the bottom of the potential — meaning that thermal
inflation ends at T > Tsub — and in other cases we found that the flaton remained around
the origin,4 but with a distribution width that was broader than the potential well. We thus
see that all cases deviate from the standard scenario in which thermal inflation ends as the
result of a strong first-order phase transition. We summarize the dependence of the potential
shape on temperature in figure 4 schematically.

6 Conclusion

In this paper we studied the effect of thermal fluctuations on the thermal inflation scenario.
Thermal inflation is a short period of accelerated expansion after reheating and provides a way
to dilute dangerous moduli and gravitinos in order to make theories based on supersymmetry
compatible with cosmological observations. Thermal inflation is driven by the flaton potential
energy at the origin with the help of thermal corrections. Since the thermal environment
gives rise to thermal fluctuations as well, we used lattice simulations to study the dynamics
of the flaton taking into account the 1-loop effective potential, thermal fluctuations and
the dissipation term. First we studied the effects of thermal fluctuations before thermal

4This may be explained as an effect of surface tension, which is stronger than the potential force pulling
the flaton away from the origin.
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Scenario Couplings Tcurv[GeV] Tp[GeV] Tsub[GeV] F (Tsub)
Simulated

√
〈φ2〉

at Tsub

MD → TI strong 5230 5239 (2× 10−3) 5502(5× 10−2) 10−84 φvev

MD → TI weak 41216.96 41216.97(4× 10−7) 41378(4× 10−3) less than 10−2000 0.91T

RD → TI strong 5230 5252 (4× 10−3) 5502(5× 10−2) 10−77 φvev

RD → TI weak 41216.96 41216.97(4× 10−7) 41378(4× 10−3) less than 10−2000 0.91T

Table 2. Specific temperature values for four different scenarios. In all four scenarios we take
mφ = 1TeV. Since the temperatures themselves are almost the same, we also show the relative
differences (Tp − Tcurv)/Tcurv and (Tsub − Tcurv)/Tcurv in brackets. In evaluating Tp and F (T ), we fix
the value of VTI so that thermal inflation begins at T = Tcurv× e6. The RMS values of φ at T = Tsub,
obtained by simulations with duration t = 2000/T , are also shown. In the two strongly-coupled cases
the flaton leaves the origin and settles in its VEV. In the two weakly-coupled cases the flaton stays at
the origin, but the width of its distribution function is as broad as the barrier. Though the potential
barrier is negligible, the potential force arising from the tachyonic mass term is also so weak that it
may take a long time to displace the flaton from the origin.
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Figure 3. Some examples of the effective potential at T = Tcurv, Tp, and Tsub are shown. Since at
T = Tp the local maximum is located at φ < T and its height is much smaller than T 4, the flaton is
able to escape the local minimum and critical bubble formation theory is not applicable.

inflation. Though the effective potential contains multiple local minima during the course
of the evolution of the Universe, the flaton settles at the origin before thermal inflation
even when thermal fluctuations are taken into account. Therefore the scenario of thermal
inflation may be feasible. Second, we find that thermal inflation ends with a cross over phase
transition. The tunneling rate of the flaton from the origin of the potential is so small that
the tunneling does not occur until the position of the potential barrier becomes very close to
the origin. However, since the height of the barrier is much smaller than T 4, the flaton can
escape over the barrier before tunneling occurs. Though the form of the effective potential
suggests that thermal inflation ends with a first-order phase transition accompanied by bubble

– 14 –



J
C
A
P
0
3
(
2
0
1
5
)
0
2
4

T=Tp

T=Tsub

T=Tcurv

PDF of Φ at T=Tsub

ææ

0 1

0

Φ�T

V
ef

f@
Φ
D-

V
ef

f@
0D

schematic summary of potential shapes around the origin

Hnot to scaleL

Figure 4. A schematic relation of the potential shapes at T = Tsub, Tp, and Tcurv. We also show the
probability distribution function of the flaton at T = Tsub, which indicates that subcritical bubbles
are abundant in the Universe at T = Tsub.

formation, thermal fluctuations make the transition to proceed through phase mixing, which
is characterized by subcritical bubbles. As such, we cannot expect critical bubble formation
and the production of gravitational waves.
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A Constructing approximation functions of the potential term

In this section, we consider the approximation of eq. (2.3), which determines the functional
shape of the thermal correction to the flaton potential. Expanding the integrand of eq. (2.3),
we can perform the integration term by term,

J±(y) = ∓ 1

2π2

∞∑

n=1

(±1)n

n

∫
∞

0
dxx2e−n

√
x2+y2 ,

= ∓ y2

2π2

∞∑

n=1

(±1)n

n2
K2(ny), (A.1)

where K2(x) is the modified Bessel function of the second kind. The derivative of J(y) with
respect to y, which appears in the field equation, (3.14), is calculated as

dJ

dy
= ± y2

2π2

∞∑

n=1

(±1)n

n
K1(ny). (A.2)
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For convenience, we define the shape function,

S±(y) ≡
∞∑

n=1

(±1)n

n
K1(ny). (A.3)

The modified Bessel function K1(z) for small z can be approximated as

K1(z) ≈
1

z
. (A.4)

Therefore, the shape function for small y becomes

S±(y) ≈
1

y

∞∑

n=1

(±1)n

n2
=

1

y
×





ζ(2), for +

−ζ(2)

2
. for −

(A.5)

Away from y = 0 this approximation breaks down almost immediately. Moreover, it is diffi-
cult to achieve better accuracy by simply retaining more terms in the expansion in eq. (A.4),
since there are logarithmic terms like ln z, meaning that we cannot take the infinite summa-
tion analytically. Instead, we use the following ansatz,

S̃
(0)
+ (y) =

e−y

y

(
ζ(2) + a1y + a2y

2 + a3y
3
)
, (A.6)

S̃
(0)
− (y) =

e−y

y

(
−ζ(2)

2
+ b1y + b2y

2 + b3y
3 + b4y

4

)
, (A.7)

where ai and bi are determined by requiring a good fit with the shape function in the
limited region 0 ≤ y ≤ 2; we obtain ai = (0.146773, 0.106023,−0.0248936) and bi =
(−0.772073, 0.163142,−0.0547415, 0.0107667).

In the opposite limit, for large y we can truncate the infinite summation in eq. (A.3)
at relatively small n thanks to the asymptotically exponential decay of K1(ny). Here we
take the summation up to n = 2. We also use the asymptotic expansion of the modified
Bessel functions. To guarantee accuracy, we expand K1(y) up to y−3 and K1(2y) up to y−1.
Eventually we obtain

S̃
(∞)
± (y) = ±

√
π

2y
e−y

(
1 +

3

8y
− 15

128y2
+

105

1024y3

)
+

√
π

16y
e−2y

(
1 +

3

16y

)
. (A.8)

Finally, we approximate the shape function given in eq. (A.3) as

S±(y) ≈




S̃
(0)
± (y), for y < 2,

S̃
(∞)
± (y), for y ≥ 2.

(A.9)

The partitioned fitting curve for the shape function constructed here has an accuracy E =
1.73× 10−3 for S− and E = 2.06× 10−3 for S+, where E ≡ ||1− S̃±(y)/S±(y)||∞. Note that,

as a result of the naive matching of the two functions, dV 1−loop
T /dφ is discontinuous at y = 2

by construction. However, this is not problematic, since the amplitude of the discontinuity
in dVT /dφ at y = 2 is on the order of 0.1%.

– 16 –



J
C
A
P
0
3
(
2
0
1
5
)
0
2
4

References

[1] A.A. Starobinsky, A new type of isotropic cosmological models without singularity,
Phys. Lett. B 91 (1980) 99 [INSPIRE].

[2] K. Sato, First order phase transition of a vacuum and expansion of the universe, Mon. Not.

Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].

[3] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems,
Phys. Rev. D 23 (1981) 347 [INSPIRE].

[4] M.Y. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265
[INSPIRE].

[5] J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological gravitino regeneration and decay,
Phys. Lett. B 145 (1984) 181 [INSPIRE].

[6] G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for

the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

[7] T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical

supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].

[8] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and

cosmological implications of the dilaton and moduli sectors of 4D strings,
Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

[9] M. Kawasaki and T. Yanagida, Constraint on cosmic density of the string moduli field in gauge

mediated supersymmetry breaking theories, Phys. Lett. B 399 (1997) 45 [hep-ph/9701346]
[INSPIRE].

[10] K. Yamamoto, Phase transition associated with intermediate gauge symmetry breaking in

superstring models, Phys. Lett. B 168 (1986) 341 [INSPIRE].

[11] D.H. Lyth and E.D. Stewart, Cosmology with a TeV mass GUT Higgs,
Phys. Rev. Lett. 75 (1995) 201 [hep-ph/9502417] [INSPIRE].

[12] D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem,
Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].

[13] T. Asaka, J. Hashiba, M. Kawasaki and T. Yanagida, Cosmological moduli problem in gauge

mediated supersymmetry breaking theories, Phys. Rev. D 58 (1998) 083509 [hep-ph/9711501]
[INSPIRE].

[14] T. Asaka and M. Kawasaki, Cosmological moduli problem and thermal inflation models,
Phys. Rev. D 60 (1999) 123509 [hep-ph/9905467] [INSPIRE].

[15] K. Choi, W.-I. Park and C.S. Shin, Cosmological moduli problem in large volume scenario and

thermal inflation, JCAP 03 (2013) 011 [arXiv:1211.3755] [INSPIRE].

[16] L.E. Mendes and A.R. Liddle, Early cosmology and the stochastic gravitational wave

background, Phys. Rev. D 60 (1999) 063508 [INSPIRE].

[17] R. Easther, J. Giblin, John T., E.A. Lim, W.-I. Park and E.D. Stewart, Thermal inflation and

the gravitational wave background, JCAP 05 (2008) 013 [arXiv:0801.4197] [INSPIRE].

[18] A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological

phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

[19] M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order

phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

[20] E.D. Stewart, M. Kawasaki and T. Yanagida, Affleck-Dine baryogenesis after thermal inflation,
Phys. Rev. D 54 (1996) 6032 [hep-ph/9603324] [INSPIRE].

– 17 –

http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B91,99
http://inspirehep.net/search?p=find+J+Mon.Not.Roy.Astron.Soc.,195,467
http://dx.doi.org/10.1103/PhysRevD.23.347
http://inspirehep.net/search?p=find+J+Phys.Rev.,D23,347
http://dx.doi.org/10.1016/0370-2693(84)91656-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B138,265
http://dx.doi.org/10.1016/0370-2693(84)90334-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B145,181
http://dx.doi.org/10.1016/0370-2693(83)91091-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B131,59
http://dx.doi.org/10.1103/PhysRevD.49.779
http://arxiv.org/abs/hep-ph/9308292
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9308292
http://dx.doi.org/10.1016/0370-2693(93)91538-X
http://arxiv.org/abs/hep-ph/9308325
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9308325
http://dx.doi.org/10.1016/S0370-2693(97)00282-7
http://arxiv.org/abs/hep-ph/9701346
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9701346
http://dx.doi.org/10.1016/0370-2693(86)91641-2
http://inspirehep.net/search?p=find+J+Phys.Lett.,B168,341
http://dx.doi.org/10.1103/PhysRevLett.75.201
http://arxiv.org/abs/hep-ph/9502417
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9502417
http://dx.doi.org/10.1103/PhysRevD.53.1784
http://arxiv.org/abs/hep-ph/9510204
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9510204
http://dx.doi.org/10.1103/PhysRevD.58.083509
http://arxiv.org/abs/hep-ph/9711501
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9711501
http://dx.doi.org/10.1103/PhysRevD.60.123509
http://arxiv.org/abs/hep-ph/9905467
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905467
http://dx.doi.org/10.1088/1475-7516/2013/03/011
http://arxiv.org/abs/1211.3755
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3755
http://dx.doi.org/10.1103/PhysRevD.60.063508
http://inspirehep.net/search?p=find+J+Phys.Rev.,D60,063508
http://dx.doi.org/10.1088/1475-7516/2008/05/013
http://arxiv.org/abs/0801.4197
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.4197
http://dx.doi.org/10.1103/PhysRevLett.69.2026
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,69,2026
http://dx.doi.org/10.1103/PhysRevD.49.2837
http://arxiv.org/abs/astro-ph/9310044
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9310044
http://dx.doi.org/10.1103/PhysRevD.54.6032
http://arxiv.org/abs/hep-ph/9603324
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9603324


J
C
A
P
0
3
(
2
0
1
5
)
0
2
4

[21] D.-h. Jeong, K. Kadota, W.-I. Park and E.D. Stewart, Modular cosmology, thermal inflation,

baryogenesis and predictions for particle accelerators, JHEP 11 (2004) 046 [hep-ph/0406136]
[INSPIRE].

[22] M. Kawasaki and K. Nakayama, Late-time Affleck-Dine baryogenesis after thermal inflation,
Phys. Rev. D 74 (2006) 123508 [hep-ph/0608335] [INSPIRE].

[23] S. Kim, W.-I. Park and E.D. Stewart, Thermal inflation, baryogenesis and axions,
JHEP 01 (2009) 015 [arXiv:0807.3607] [INSPIRE].

[24] K. Choi, K.S. Jeong, W.-I. Park and C.S. Shin, Thermal inflation and baryogenesis in heavy

gravitino scenario, JCAP 11 (2009) 018 [arXiv:0908.2154] [INSPIRE].

[25] M. Kawasaki, T. Takahashi and S. Yokoyama, Density fluctuations in thermal inflation and

non-gaussianity, JCAP 12 (2009) 012 [arXiv:0910.3053] [INSPIRE].

[26] M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of

long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

[27] J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos and S. Sarkar, Astrophysical constraints
on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].

[28] E. Holtmann, M. Kawasaki, K. Kohri and T. Moroi, Radiative decay of a longlived particle and

big bang nucleosynthesis, Phys. Rev. D 60 (1999) 023506 [hep-ph/9805405] [INSPIRE].

[29] M. Morikawa, Classical fluctuations in dissipative quantum systems,
Phys. Rev. D 33 (1986) 3607 [INSPIRE].

[30] M. Gleiser and R.O. Ramos, Microphysical approach to nonequilibrium dynamics of quantum

fields, Phys. Rev. D 50 (1994) 2441 [hep-ph/9311278] [INSPIRE].

[31] J. Yokoyama, Fate of oscillating scalar fields in the thermal bath and their cosmological

implications, Phys. Rev. D 70 (2004) 103511 [hep-ph/0406072] [INSPIRE].

[32] C. Greiner and B. Müller, Classical fields near thermal equilibrium,
Phys. Rev. D 55 (1997) 1026 [hep-th/9605048] [INSPIRE].

[33] M. Yamaguchi and J. Yokoyama, Numerical approach to the onset of the electroweak phase

transition, Phys. Rev. D 56 (1997) 4544 [hep-ph/9707502] [INSPIRE].

[34] M. Yamaguchi and J. Yokoyama, Probability distribution function of the coarse grained scalar

field at finite temperature, Nucl. Phys. B 523 (1998) 363 [hep-ph/9805333] [INSPIRE].

[35] A.D. Linde, Fate of the false vacuum at finite temperature: theory and applications,
Phys. Lett. B 100 (1981) 37 [INSPIRE].

[36] A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1
[hep-th/0503203] [INSPIRE].

[37] A.H. Guth and E.J. Weinberg, Cosmological consequences of a first order phase transition in

the SU(5) grand unified model, Phys. Rev. D 23 (1981) 876 [INSPIRE].

[38] M. Gleiser, E.W. Kolb and R. Watkins, Phase transitions with subcritical bubbles,
Nucl. Phys. B 364 (1991) 411 [INSPIRE].

[39] M. Gleiser and E.W. Kolb, Fluctuation driven electroweak phase transition,
Phys. Rev. Lett. 69 (1992) 1304 [INSPIRE].

[40] M. Gleiser and E.W. Kolb, Critical behavior in the electroweak phase transition,
Phys. Rev. D 48 (1993) 1560 [hep-ph/9208231] [INSPIRE].

[41] T. Shiromizu, M. Morikawa and J. Yokoyama, Thermal fluctuations in electroweak phase

transition, Prog. Theor. Phys. 94 (1995) 795 [hep-ph/9501312] [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/1126-6708/2004/11/046
http://arxiv.org/abs/hep-ph/0406136
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406136
http://dx.doi.org/10.1103/PhysRevD.74.123508
http://arxiv.org/abs/hep-ph/0608335
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0608335
http://dx.doi.org/10.1088/1126-6708/2009/01/015
http://arxiv.org/abs/0807.3607
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3607
http://dx.doi.org/10.1088/1475-7516/2009/11/018
http://arxiv.org/abs/0908.2154
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.2154
http://dx.doi.org/10.1088/1475-7516/2009/12/012
http://arxiv.org/abs/0910.3053
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3053
http://dx.doi.org/10.1103/PhysRevD.71.083502
http://arxiv.org/abs/astro-ph/0408426
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0408426
http://dx.doi.org/10.1016/0550-3213(92)90438-H
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B373,399
http://dx.doi.org/10.1103/PhysRevD.60.023506
http://arxiv.org/abs/hep-ph/9805405
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9805405
http://dx.doi.org/10.1103/PhysRevD.33.3607
http://inspirehep.net/search?p=find+J+Phys.Rev.,D33,3607
http://dx.doi.org/10.1103/PhysRevD.50.2441
http://arxiv.org/abs/hep-ph/9311278
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9311278
http://dx.doi.org/10.1103/PhysRevD.70.103511
http://arxiv.org/abs/hep-ph/0406072
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406072
http://dx.doi.org/10.1103/PhysRevD.55.1026
http://arxiv.org/abs/hep-th/9605048
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605048
http://dx.doi.org/10.1103/PhysRevD.56.4544
http://arxiv.org/abs/hep-ph/9707502
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9707502
http://dx.doi.org/10.1016/S0550-3213(98)00100-X
http://arxiv.org/abs/hep-ph/9805333
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9805333
http://dx.doi.org/10.1016/0370-2693(81)90281-1
http://inspirehep.net/search?p=find+J+Phys.Lett.,B100,37
http://arxiv.org/abs/hep-th/0503203
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503203
http://dx.doi.org/10.1103/PhysRevD.23.876
http://inspirehep.net/search?p=find+J+Phys.Rev.,D23,876
http://dx.doi.org/10.1016/0550-3213(91)90592-L
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B364,411
http://dx.doi.org/10.1103/PhysRevLett.69.1304
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,69,1304
http://dx.doi.org/10.1103/PhysRevD.48.1560
http://arxiv.org/abs/hep-ph/9208231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9208231
http://dx.doi.org/10.1143/PTP.94.795
http://arxiv.org/abs/hep-ph/9501312
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9501312

	Introduction
	Scenario of thermal inflation 
	Flaton dynamics in a thermal bath 
	Setup of numerical simulations 
	Results of numerical simulations 
	Phase 1: before thermal inflation
	Phase 2: at the end of thermal inflation

	Conclusion 
	Constructing approximation functions of the potential term

