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Abstract: We study numerically the phase structure and the gluon propagator of the

SU(2) gauge-Higgs model in two dimensions. First, we calculate gauge-invariant quan-

tities, in particular the static potential from Wilson Loop, the W propagator, and the

plaquette expectation value. Our results suggest that a confinement-like region and a

Higgs-like region appear even in two dimensions. In the confinement-like region, the static

potential rises linearly, with string breaking at large distances, while in the Higgs-like

region, it is of Yukawa type, consistent with a Higgs-type mechanism. The correlation

length obtained from the W propagator has a finite maximum between these regions.

The plaquette expectation value shows a smooth cross-over consistent with the Fradkin-

Shenker-Osterwalder-Seiler theorem. From these results, we suggest that there is no phase

transition in two dimensions. We also calculate a gauge-dependent order parameter in

Landau gauge. Unlike gauge invariant quantities, the gauge non-invariant order parameter

has a line of discontinuity separating these two regions. Finally we calculate the gluon

propagtor. We infer from its infrared behavior that the gluon propagator would vanish at

zero momentum in the infinite-volume limit, consistent with an analytical study.
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1 Introduction

The Higgs mechanism, where the gauge boson acquires a mass from spontaneous symmetry

breaking plays an important role in nature [1–3]. In a superconductor, the Abelian Higgs

mechanism, known as the Meissner effect, appears and the magnetic field is expelled. In the

standard model, there is the non-Abelian Higgs mechanism and W and Z bosons become

massive.

The relation between color confinement and the Higgs phenomenon has also been

studied from the perspective of the confinement-Higgs behavior [4–11, 13–16, 18, 19]. In

the SU(2) gauge-Higgs model, a confinement-like region and a Higgs-like region are present

in four dimensions. In the confinement-like region, the static potential between the colored

charges rises linearly until string breaking by pair production, while in the Higgs-like region

it is of Yukawa type, with a massive gauge boson [8–10, 17, 20, 21]. While a line of first-order

phase transition or rapid cross-over separates the confinement-like and Higgs-like regions,

there is always a path connecting the two regions, because gauge-invariant quantities may

be continued analytically between the confinement-like region and the Higgs-like region

according to the Fradkin-Shenker-Osterwalder-Seiler theorem [4, 5].

There are also lattice studies [11, 12] of the order parameter defined below, eq. (4.1).

This order parameter breaks the gauge symmetry, and so is zero without a gauge fixing, in

accordance with Elitzur’s theorem [22]. However for some values of the coupling, the order

parameter may be finite in some gauges such as Landau gauge and Coulmob gauge in which

case the “remnant” global gauge symmetry is spontaneously broken. A transition line or
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a rapid cross-over line separates the confinement-like region from the Higgs-like region.

The gauge non-invariant order parameter Ψ in eq. (4.1) exhibits a line of discontinuity

between these two regions. However, in accordance with the Fradkin-Shenker-Osterwalder-

Seiler theorem, gauge-invariant quantities are continuous across part of this transition line.

Although the gauge non-invariant order parameter seems to show a phase transition where

gauge-invariant quantities are continuous, the location of the line of the transition depends

on the gauge fixing condition and thus it is not physical [11].

To our knowledge, such studies have not been carried out in two dimensions. This case

is of interest from a theoretical and phenomenological viewpoint. From the Coleman theo-

rem and the Hohenberg-Mermin-Wagner theorem [23–25], there are no Nambu-Goldstone

bosons and no phase transitions except for the Kosterlitz-Thouless transition [26]. How-

ever, in the Higgs case, the Nambu-Goldstone bosons are “eaten” by the gauge bosons so

there are no massless bosons, and these theorems are evaded. From the perspective of a

condensed matter system, such as a two-dimensional superconductor, it is of interest to

clarify whether the Higgs mechanism occurs or not [27].

The behavior of the gluon propagator in the Landau gauge is also of interest in two

dimensions from the perspective of the Gribov problem. According to accurate lattice

studies in pure gauge theory, the behavior of the gluon propagator is strongly dependent

on the dimensionality [28–35]. Three- and four-dimensional gluon propagators appear finite

at zero momentum, while the two-dimensional gluon propagator appears to vanish. This

behavior in two dimensions is consistent with the behavior of the same propagator of the

local and renormalizable action, called the GZ action, that includes a cut-off at the Gribov

horizon in pure gauge theory [36–38]. In addition to these lattice studies, there has been an

analytical study recently which shows that in two dimensions, for gauge fixing inside the

Gribov horizon, the gluon propagator vanishes at zero momentum in the infinite-volume

limit whether the action includes other fields such as fermion and scalar fields or not [39].

The aim of this paper is to investigate numerically the phase structure and the gluon

propagator of the SU(2) gauge-Higgs model in the Landau gauge in two dimensions. In

section 3, we calculate the gauge-invariant quantities, in particular the static potential, the

W-propagator and the plaquette expectation value. In section 4, we compare the result for

the gauge-invariant quantities with the order parameter in the Landau gauge which is gauge

non-invariant. In section 5, we show the result of the two-dimensional gluon propagator in

the Landau gauge.

2 SU(2) gauge-Higgs model

We use the SU(2) gauge-Higgs model with the fixed length of the Higgs field in two dimen-

sions. The lattice action is given by

S = β
∑

P

(

1−
1

2
TrUP

)

−
γ

2

∑

µ,x

Tr
[

φ†(x)Uµ(x)φ(x+ µ̂)
]

(2.1)

with Uµ(x) ∈ SU(2)(µ = 1, 2) the link-variable for the gauge field, UP ∈ SU(2) the plaquette

and φ(x) ∈ SU(2) the Higgs field of the frozen length. This action, with frozen length of
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the Higgs fields, is formally obtained from the unfrozen action,

Sl =β
∑

P

(

1−
1

2
TrUP

)

−
1

2

∑

µ,x

(

ϕ†(x)Uµ(x)ϕ(x+ µ̂) + c.c.
)

+
∑

x

λ′
(

ϕ†(x)ϕ(x)− γ
)2

, (2.2)

with ϕ(x) = t(ϕ1(x), ϕ2(x)) in the SU(2) fundamental representation. When we rescale

ϕ(x) by ϕ(x) = γ1/2ϕ̃(x) and take the limit λ′ → ∞ with fixed γ, the radial degree

of freedom for the Higgs field is fixed, ϕ̃†(x)ϕ̃(x) = 1. This action formally reduces to

eq. (2.1) with the SU(2) matrix, φab(x) = (ǫacϕ̃∗c(x), ϕ̃b(x)), although the limit may not

be smooth.

In these models, there always seems to be the Higgs mechanism at the classical level.

However if we consider the quantum effects, whether it occurs or not depends on β and

γ [4, 8–11, 14–16]. A similar discussion is given for the Higgs mass in eq. (2.1): though the

Higgs field with the fixed length has an infinite mass for the radial degree at the classical

level, it is not necessarily infinite at the quantum level [8–10].

In our calculation, we generate Uµ(x) in unitary gauge, φ(x) = 1, with the Monte

Carlo simulation of the action

S = β
∑

P

(

1−
1

2
TrUP

)

−
γ

2

∑

µ,x

Tr [Uµ(x)] . (2.3)

We then obtain Uµ(x) and φ(x) in any gauge by gauge transformation.

In fact, Uµ(x) and φ(x) in the Landau gauge are obtained by the local maximization of

R =
∑

x,µ

ReTr [Uµ(x)] (2.4)

under the gauge transformation and identifying the gauge function with φ(x) as used in

section 4 and 5. This gauge corresponds to the minimal Landau gauge, choosing some

Gribov copy in the Gribov region, this choice being in general algorithm dependent.

3 Gauge invariant quantities

To investigate the two-dimensional phase structure of the SU(2) gauge-Higgs model with

the fixed length, we calculate three gauge-invariant quantities, static potential, W propa-

gator and the plaquette expectation value.

3.1 Phase structure at γ = 0 and β = ∞

Before showing numerical results, we discuss the model at γ = 0 and β = ∞.

At γ = 0, this model reduces to

S = β
∑

P

(

1−
1

2
TrUP

)

, (3.1)
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which is a pure Yang-Mills theory. This is always confined and no transition appears at

any β . At β = ∞, we find UP → 1, corresponding to a pure gauge. Thus after gauge

transformation, the action reduces to

S = −
γ

2

∑

µ,x

Tr
[

φ†(x)φ(x+ µ̂)
]

. (3.2)

This action corresponds to the two-dimensional Heisenberg model, where a transition does

not appear.

Furthermore, according to the Fradkin-Shenker-Osterwalder-Seiler theorem, at small

β, every gauge-invariant quantity is continuous [4, 5], and so no transition at small β

appears for gauge-invariant quantities.

3.2 Static potential

In two dimensional pure Yang-Mills theory, the Wilson-loop potential is exactly linear. On

the other hand, if the Higgs mechanism occurs, the gauge boson becomes a massive vector

boson and the potential behaves like

V (r) ∼ −

∫

dp
e−ipr

p2 +m2
∼ −e−mr, (3.3)

where m is the mass of vector boson.

We calculated the static potential between two charged sources from the Wilson loop:

V (r) = − lim
t→∞

1

t
lnW (r, t), (3.4)

where W (r, t) is the Wilson loop defined as the product of the link variables along an r× t

rectangular loop. The lattice calculation was performed at β = 120, 200 and γ = 2, 8.

The static potential was extracted from the Wilson loop by varying the time direction and

finding the convergent point of − lnW (r, t)/t.

The static potential at β = 120, and γ = 2 and 8 is shown in the top panel of figure 1

and the fit results of the form

−Ae−mr + σr +B, (3.5)

with the parameter A,B,m and σ in the region of r/a < 20, are summarized in table 1.

In the top panel of figure 1, the potential at γ = 2 shows the linear potential and the

string breaking at r/a ∼ 20. In contrast, the potential of γ = 8 does not show the linear

potential, but behaves like −e−mr. Thus γ = 2 corresponds to confinement-like phase and

γ = 8 corresponds to Higgs-like phase.

To investigate whether there is a Higgs-like phase, or string breaking at γ = 8, we have

taken data also at higher β = 200, corresponding to a finer lattice. Also in this case, our

fit shows a very small string tension and is consistent with a potential V ∼ −e−mr of a

massive particle, as a glance at table 1 shows.

These behaviors are also supported from the fit results. Though at γ = 2 the mass

parameter m is not small, the prefactor A is small and so the first term in eq. (3.5) is
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Figure 1. The static potential at β = 120 and γ = 2, 8 (top), and at β = 120, 200 and γ = 8

(bottom) in lattice units. The lines are the fit results.

β γ m σ A B χ/N

120 2 0.19(7) 0.01221(5) 0.0015(7) 0.0015(7) 0.3

120 8 0.207(4) 7(9)× 10−5 0.061(1) 0.060(1) 1.2

200 8 0.165(2) 3(4)× 10−5 0.044(1) 0.044(1) 0.02

Table 1. The fit results of the static potential by the fit form eq. (3.5) for r/a < 20.

negligible compared with the second term σr. At γ = 8, the string tension σ is almost 0,

and it seems that the potential does not show a linear slope. However because the fit is

for r/a < 20 and because of string breaking, the difference between the regions may be

quantitative (though strong) but not necessarily qualitative.
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Figure 2. The zero-spatial-momentum propagator D0

11
(t) on 2562 at β = 120 and γ = 2, 4 and 8

in lattice units.

3.3 W propagator

We investigated another gauge-invariant quantity, the W propagator, defined by

Dµν(x− y) =
1

3

∑

a=1,2,3

〈

W a
µ (x)W

a
ν (y)

〉

, (3.6)

where

W a
µ (x) ≡

1

i
Tr

[

τa
{

φ†(x)Uµ(x)φ(x+ µ̂)
}]

(3.7)

with τa SU(2) generator. By eq. (3.7), the W field is gauge invariant and the effective mass

for the transverse part of the W field corresponds to the two-dimensional analog of a 1−

state [8–10, 14–16], which is a singlet state with negative parity. Note that this propagator

coincides with the gluon propagator in the unitary gauge, φ(x) = 1.

The effective mass for the W field is estimated from the propagator D0
µν(t) at zero-

spatial-momentum,

D0

µν(t) =
1

3V

∑

a,x1,y1

〈

W a
µ (x1, t)W

a
ν (y1, 0)

〉

(3.8)

with the two dimensional volume V . The effective mass of the transverse part is obtained

from D0
11
(t) and that of the longitudinal part is from D0

22
(t) [40, 41]. In this paper we

estimated the transverse effective mass by fitting the linear slope of the logarithm of D0
11
(t).

D0
11
(t) on 2562 lattice at β = 120 and γ = 2, 4 and 8 are shown in figure 2. The log-

arithm of these zero-spatial-momentum propagators seems to be almost linear or convex

upwards, consistent with gauge-invariant fields that satisfy the Kallen-Lehmann represen-

tation, in contrast with the gluon propagator in other gauges like the Landau gauge and MA

gauge [42]. In particular, the two dimensional gluon propagator in the Landau gauge shows

notable violation of the Kallen-Lehmann representation as shown in section 5 [33–35, 39].
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β γ mD AD L2 χ/N

120 2 0.36(3) 0.07(1) 256 0.8

120 4 0.243(4) 0.078(1) 256 0.5

120 5 0.240(2) 0.069(1) 256 0.1

120 6 0.265(5) 0.069(2) 256 0.9

120 8 0.282(1) 0.058(1) 256 0.08

120 10 0.304(2) 0.051(1) 256 0.2

120 4 0.243(2) 0.077(1) 512 1.0

120 5 0.237(3) 0.067(1) 512 0.6

120 6 0.267(2) 0.067(1) 512 1.0

200 2 0.52(2) 0.16(1) 256 1.0

200 4 0.207(1) 0.065(1) 256 0.2

200 5 0.198(1) 0.058(1) 256 0.1

200 6 0.205(2) 0050(1) 256 0.4

200 8 0.219(1) 0.045(0) 256 0.08

Table 2. The fit results of the zero-spatial-momentum propagator by ADe−mDt for t/a = 4− 15

at β = 120 and on 2562 and 5122.

In table 2, we summarize for D0
11
(t) the fit analysis of ADe

−mDt with the parameters

AD and mD for t/a = 4− 15 at β = 120 and 200. The mass parameter mD corresponding

to the physical mass in lattice units decreases in the region of γ < 5, and increases in

the region of γ > 5. In other words the mass parameter is minimum at γ ≃ 5, which

means that the correlation is maximum. The volume-dependence of the mass parameters

at β = 120 is also shown in table 2. There is almost no volume-dependence between 2562

and 5122 at γ = 4, 5 and 6 and the minimum does not seem to go to zero. Therefore it

looks like a first-order phase transition or cross-over. The fitted W-boson mass values at

β = 120 and 200 both at γ = 8 in table 2 are consistent with the fitted mass values using

Yukawa-type potential in table 1. This indicates that at γ = 8, the potential is given by

the massive W-boson exchange, and this region corresponds to the Higgs-like region. This

situation is similar to the four-dimensional case [8–10].

3.4 Plaquette expectation value

We calculated the plaquette expectation value to see if there is a phase transition or not.

The plaquette expectation value is defined as

〈P 〉 ≡
1

2
〈TrUP 〉 (3.9)

with UP the plaquette. This quantity has been investigated in four dimensions to clarify the

line of the first-order transition with an end point [6–11, 13]. These results are consistent

with the Fradkin-Shenker-Osterwalder-Seiler theorem.

In figure 3, we show the two-dimensional result at β = 7.99 and 120 on 2562. The

plaquette expectation values at both β = 7.99 and 120 increase smoothly with increasing γ
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Figure 3. The plaquette expectation value at β = 7.99 and 120 on 2562.

in the region 5 <
∼ γ <

∼ 9 where the gauge-dependent order parameter (that will be discussed

next) shows strong variation, and elsewhere. This is indicative of a smooth cross-over (no

transition). We also investigated the volume-dependence of some γ between 2562 and 5122

lattice and the difference does not appear.

Comparing β = 7.99 with β = 120, the behavior of the plaquette expectation value

seems to become smooth as β increases and thus no transition might appear in the region

of β > 7.99.

According to the Fradkin-Shenker-Osterwalder-Seiler theorem, no transition at small β

appears for gauge-invariant quantities. Therefore also in the region of β < 7.99, there might

be only a smooth cross-over. This accords with the recent work of Cubero and Orland [44],

who find that there is no symmetry-breaking Higgs phase in the continuum theory.

4 Order parameter in the Landau gauge

We calculated the order parameter in the Landau gauge, which does not fix the global

SU(2) symmetry. In four dimensions, in the Higgs-like region, the global remnant gauge

symmetry is broken and the order parameter has a finite value [11].
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Figure 4. The order parameter 〈Ψ〉 =
〈

1

2
Tr

[

Φ†Φ
]〉

on 2562, 5122 and 10242 at β = 7.99.

The order parameter is defined as the magnitude of the spatial average of the

Higgs field,

Ψ =
1

2
Tr

[

Φ†Φ
]

, (4.1)

where Φ is the spatial average of the Higgs field,

Φ =
1

V

∑

x

φ(x). (4.2)

Note that Φ is not invariant under SU(2) global-gauge transformations. If the expectation

of the magnitude of this quantity, 〈Ψ〉, is zero, the global symmetry is not broken. Ψ is also

not invariant under local SU(2) gauge transformations and thus if we do not fix the gauge,

then 〈Ψ〉 = 1/V by the Elitzur theorem, which approaches zero in the infinite-volume

limit [22].

In figure 4, we show the order parameter 〈Ψ〉 in the Landau gauge on 2562, 5122 and

10242 at β = 7.99. Two regions of small γ and large γ appear. There appears to be a

transition region around γ = 5 − 8. However from this data at finite volume we cannot

conclude that there is a phase transition to a symmetry-breaking phase at infinite volume,

especially because for every γ, 〈Ψ〉 decreases as the volume increases in contrast to the

result of the plaquette expectation value.

To investigate the transition region in more detail, we studied the volume dependence

of the susceptibility at β = 7.99,

〈χ〉 ≡ V
(

〈

Ψ2
〉

− 〈Ψ〉2
)

. (4.3)

In figure 5, the susceptibility on 2562, 5122 and 10242 lattice is shown. As the volume

increases, the height of the peak increases and its width becomes narrow, while the peak

point also moves.
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Figure 5. The susceptibility 〈χ〉 on 2562, 5122 and 10242 at β = 7.99 in lattice units.

Here we consider two possibilities about the order parameter and the susceptibility

in the infinite-volume limit: (i) The order parameter approaches a finite value at large

γ and the peak point of the susceptibility also approaches a finite value or (ii) the order

parameter approaches zero for every γ and the peak point of the susceptibility goes to

infinity. In the case of (i), a first-order phase transition or rapid cross-over appears and

the Higgs-like region is characterized by the broken phase of the remnant global symmetry

in the Landau gauge. This indicates that the Nambu-Goldstone bosons appear, which are

not physical particles because of the gauge dependence, and the Coleman theorem cannot

be applied to the remnant global symmetry breaking. On the other hand, in the case of

(ii), the behavior may indicate Kosterlitz-Thouless type transition. It is likely that in the

Higgs-like region, the Higgs correlator decreases polynomially (instead of exponentially)

and this will produce a finite value of 〈Ψ〉 on a lattice of finite volume, which however

vanishes in the infinite-volume limit,

〈Ψ〉 = lim
V→∞

(2V )−1
∑

x

〈Tr[φ†(x)φ(0)]〉 = 0, (4.4)

due to the polynomial fall-off.

Though in order to determine the nature of the transition, further numerical calcu-

lations are needed, both cases (i) and (ii) seem to be different from the result of gauge

invariant quantities in section 3.

5 Gluon propagator in the Landau gauge

Finally, we investigate the gluon propagator in the Landau gauge. In two dimensional

pure gauge theory, the lattice studies show that the gluon propagator in the Landau gauge

approaches zero when the momentum goes to zero, which is consistent with the behavior

of the GZ action [33–35]. Furthermore, the analytical study shows that whether the action

includes other fields in addition to gluon fields or not, the two-dimensional gluon propagator
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must vanish at zero momentum in the infinite-volume limit of lattice gauge theory at fixed

lattice spacing for gauge fixing inside the Gribov region only [39].

In this section, we calculate the gluon propagator in the system with Higgs fields given

by eq. (2.1). The momentum-space gluon propagator is defined as

G̃µν(p) =
1

3

∑

a=1,2,3

〈

Ãa
µ(p̃)Ã

a
ν(−p̃)

〉

, (5.1)

where p̃ and p are defined as

p̃µ ≡
2πnµ

aLµ
, pµ ≡

2

a
sin

(

p̃µa

2

)

, (5.2)

with nµ = 0, 1, 2, . . . , Lµ − 1, and Ãa
µ(p̃) is defined as

Ãa
µ(p̃) =

∑

x

e−ip̃νxν−
i
2
p̃µAa

µ(x). (5.3)

with

Aa
µ(x) ≡

1

i
Tr [τaUµ(x)] . (5.4)

With this definition, the momentum-space gluon propagator in the Landau gauge has just

the transverse part G̃(p2):

G̃µν(p) =

(

δµν −
pµpν
p2

)

G̃(p2). (5.5)

In figure 6, we show the momentum-space gluon propagator in the Landau gauge at

β = 7.99 and γ = 1, 3, 5 on 2562. All of the gluon propagators at γ = 1, 3 and 5 decrease

rapidly with decreasing momentum, which indicates that they go to zero at zero momentum

in the infinite-volume limit. Note that the behavior of these gluon propagators at γ = 1, 3

and 5 seems to be similar qualitatively.

We determine the physical scale so that the peak point of the propagator in the Landau

gage is 0.5GeV as shown in table 3. In two dimensions, the scaling region is determined

by βa2= const. In fact, the lattice spacing a for the two values of β at γ = 1 is consistent

with this scaling. Furthermore, we need one more physical quantity because of the other

bare coupling γ, like quark mass in QCD. For example, we can choose mD/p̂max =const.

as the physical quantity.

To elucidate the infrared behavior of the gluon propagator, we investigate the volume-

dependence at β = 7.99 and γ = 5. In figure 7, we show the gluon propagators on

2562, 5122 and 10242 in the region of p2 < 0.2(GeV)2. These physical volumes correspond

to (28.6fm)2, (57.2fm)2 and (114.4fm)2, respectively. In figure 8, the propagator seems to

approach zero with increasing physical volume.

6 Summary and concluding remarks

First, we studied the phase structure in the two dimensional SU(2) gauge-Higgs model.

We carried out the Monte Carlo simulation and calculated gauge-invariant quantities: the

static potential and the W propagator at β = 120 and 200, and the plaquette expectation

value at β = 7.99 and 120, both at various γ.
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Figure 6. The gluon propagator in the Landau gauge at β = 7.99 and γ = 1, 3, 5 on 2562.

β γ p̂max 1/a[GeV]

7.99 1 0.46 1.09

7.99 3 0.38 1.32

7.99 5 0.28 1.79

120 1 0.12 4.17

120 2 0.11 4.55

120 4 0.09 5.56

Table 3. The peak of the gluon propagator in lattice units, p̂max, and the physical scale.
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respectively.
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Figure 8. The infrared behavior of the gluon propagator in the Landau gauge at β = 7.99 and

γ = 5 on 2562, 5122 and 10242.
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The static potential shows a linear rise and string breaking at γ = 2, but looks like a

Yukawa potential at γ = 8. The effective mass of the W propagator in lattice units has

a minimum at γ ≃ 5 which does not go to zero with increasing volume. These results

suggest that there is a Higgs-type mechanism even in two dimensions, with a confinement-

like region for γ < 5, and a Higgs-like region for γ > 5. The plaquette expectation

value shows a smooth cross-over between the confinement-like region and the Higgs-like

region at β = 7.99 and 120, which is consistent with the Fradkin-Shenker-Osterwalder-

Seiler theorem. There does not appear to be a phase transition in two dimensions for

any gauge-invariant quantities. We also calculated the gauge-dependent order parameter

in the Landau gauge at β = 7.99. As discussed in the Introduction, the behavior of the

gauge non-invariant order parameter seems to show a transition, which does not happen

for gauge-invariant quantities.

Finally, we have studied the two-dimensional gluon propagator in the Landau gauge

at β = 7.99 and 120 on 2562, 5122 and 10242. The qualitative behavior is similar for the

various γ. They all appear to go to zero at zero momentum in the infinite-volume limit,

consistent with the analytical result [39].
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