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Abstract: The gravitational field of a black hole is strongly localized near its horizon

when the number of dimensions D is very large. In this limit, we can effectively replace

the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter

space). The Einstein equations determine the effective equations that this ‘black hole

surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D

for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order

in Minkowski backgrounds, the equations of the effective theory are the same as soap-film

equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is

recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’,

i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
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1 Introduction

Recently it has been demonstrated that black hole physics can be efficiently solved in an

expansion around the limit of large number of dimensions, D → ∞ [1–7]. In this limit

there appears a near-horizon region that is universal for all non-extremal neutral black

holes, and which encompasses the small radial extent ∼ r0/D of the gravitational field

outside of a horizon of radius ∼ r0 [3]. One important feature is that the quasinormal

spectrum of the black hole splits into modes of high frequency, ω ∼ D/r0, and of low

frequency ω ∼ 1/r0 [4, 6–8]. The latter are particularly interesting, since they are fully

localized in the near-horizon region (where they are normalizable excitations) and are

decoupled from the asymptotic ‘far zone’ to all perturbative orders in 1/D. This split

into two scales makes it natural to try to integrate out the high-frequency, short-distance
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degrees of freedom to obtain a fully non-linear effective theory of the long-wavelength,

decoupled dynamics. Such a theory should capture the physics of black holes on lengths

and timescales� r0/D, hence allowing for fluctuations on scales comparable to the horizon

radius, ∼ r0, or (as appropriate for black branes [1, 2]) ∼ r0/
√
D.

We can also motivate this effective theory in a more geometric fashion. In the limit

D → ∞ the gravitational field of the black hole vanishes outside the near-horizon region,

and thus there is a neat separation between the black hole and the background where it re-

sides (e.g., Minkowski or (Anti-)deSitter spacetime). The black hole can then be effectively

identified with a particular surface ΣB in this background. Since ultimately the properties

of the black hole are dictated by Einstein’s equations, it must be possible to derive from

them a set of equations that ΣB must satisfy. These constitute the effective theory of the

black hole in the large D limit.

The black hole is then described by a set of ‘collective coordinates’ which specify

the embedding of ΣB in the background spacetime, and which vary over scales much

larger than r0/D, where r0 is a characteristic length of ΣB. The approach to obtain the

effective theory employs the parametric separation between the large radial gradients and

the smaller temporal and spatial gradients along the horizon, which allows to solve the

radial dependence of the Einstein equations. Then, the vector-constraints in the radial

direction yield the effective equations for the embedding functions. Readers familiar with

other effective theories of black holes, in particular the fluid/gravity correspondence [9]

and the blackfold approach [10, 11], will recognize similarities here. They are all based on

a parametric separation between the fluctuations that are transverse to the horizon and

those that are parallel to it. However, since D is a parameter of the theory instead of

a parameter specific to some solutions, in principle the 1/D expansion allows to tackle a

larger set of problems —at the expense of possibly losing accuracy at finite values of D or

missing phenomena which are non-perturbative in 1/D.

This effective theory is an important step in the program to understand gravity in the

large D limit. General Relativity in vacuum (possibly with a cosmological constant, and

without compactified dimensions) is essentially a theory of black holes and gravitational

waves. The large D effective theory is a reformulation of the black hole sector of General

Relativity in terms of membrane-like variables. The decoupling property of the near-horizon

zone implies that, as long as its gradients remain much smaller than D/r0, the effective

membrane can not radiate any gravitational waves to the far zone at any perturbative order

in the expansion. Conversely, no gravitational waves from the far zone of frequency� D/r0

can interact with the effective membrane; and, while far-zone waves of frequency ∼ D/r0

or larger can penetrate to the near zone, they are perfectly absorbed by the horizon on a

short timescale ∼ r0/D and do not interact with the low-frequency modes of the effective

membrane [2]. So the two sectors of the theory —black holes and gravitational waves—

appear to be well separated, with the coupling between them being non-perturbative in

1/D. However, there do exist black holes that when D → ∞ have large spatial gradients

∼ D/r0 along their horizons. Moreover, in the evolution of some horizons it can occur

that initially small temporal gradients grow to values ∼ D/r0. Such situations imply

breakdowns of the applicability of the effective theory, and are reminiscent of the breakdown

of hydrodynamics when turbulence develops.

– 2 –



J
H
E
P
0
6
(
2
0
1
5
)
1
5
9

In this article we start to develop the large D effective theory of black holes by fo-

cusing on the simplest case of static configurations of neutral black holes, possibly with a

cosmological constant. The equations for the embedding of ΣB in the background take a

remarkably simple form: if the trace of the extrinsic curvature of ΣB is K, and the redshift

factor on ΣB is gtt, then the effective equation at leading order is

√
−gttK = 2κ , (1.1)

where the constant κ gives the surface gravity of the black hole. When this is satisfied, our

results provide explicitly the near-horizon black hole metric that solves the full Einstein-

(A)dS equations in the leading large D limit. Observe that in backgrounds like Minkowski

space where there is no redshift, this is the same as the equation for a soap film. The stress-

energy tensor of the effective membrane that lives on ΣB is also simple: it is a modulation

along the membrane directions of the quasilocal stress tensor of the large-D black hole.

We also obtain the next-to-leading order corrections to the effective theory. Although

in general the form of the equations becomes a little more complicated than (1.1), when

the redshift factor is constant over ΣB we recover the equation K = const. also at the next

order in the expansion.

In order to test the usefulness of the theory, we have applied it to obtain several non-

trivial solutions. Staticity greatly restricts the number of possible black holes. For instance,

in all dimensions the unique asymptotically flat, static black hole of Einstein’s vacuum

equations is the Schwarzschild-Tangherlini solution [12], which is recovered from (1.1) as

a spherical soap bubble — correspondingly, the spherical soap bubble is the unique closed

surface of constant mean curvature in flat space in any dimension.1 However, we will show

that the effective theory easily yields other static solutions: black holes localized at the

boundary of AdS (‘black droplets’) [14], and non-uniform black strings in asymptotically

flat space [15–17]. The construction of these solutions at specific finite values of D required

sophisticated numerical solution of systems of partial differential equations. In contrast,

the large-D equations for these problems are single ordinary differential equations that can

be easily solved, when not in an analytical exact or approximate form, at least with a

one-line command of NDSolve in Mathematica.

In the next section we introduce a formalism that is adequate for the resolution of

the problem. Then in section 3 we solve the Einstein equations at leading order in 1/D

and derive the effective equation for the surface ΣB. We also discuss simple examples, and

obtain the stress-energy tensor for the effective membrane on ΣB. In section 4 the effective

equation is solved to obtain black droplets in AdS. Section 5 contains the derivation of

the effective theory at next-to-leading (NLO) order. This is then applied in section 6 to

the construction of non-uniform black strings. Section 7 finishes the paper with some brief

remarks. The appendices contain technical details and elaborations on asides mentioned

in the main text.

1This is widely believed among differential geometers to be the case, see e.g., [13]. We thank Gary

Gibbons for this reference.
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2 Set up

In our metric ansatz we separate a radial direction ρ, where gradients are of order D, from

all other spacetime directions along which variations are smaller. To this effect, we use a

decomposition in ‘synchronous gauge’

ds2 = N2(ρ, x)
dρ2

(D − 1)2
+ gµν(ρ, x)dxµdxν , (2.1)

where µ, ν run over all the D − 1 directions orthogonal to ρ. The Einstein equations in

vacuum, with a cosmological constant

Λ = −(D − 1)(D − 2)

2`2
, (2.2)

can be written in terms of the intrinsic, Rµν , and extrinsic, Kµν , curvature tensors of the

(D − 1)-dimensional constant-ρ surfaces,

K2 −Kµ
νK

ν
µ = R+

(D − 1)(D − 2)

`2
, (2.3)

∇νKν
µ −∇µK = 0 (2.4)

D − 1

N
∂ρK

µ
ν +KKµ

ν = Rµν + δµν
D − 1

`2
− 1

N
∇µ∇νN, (2.5)

Kµ
ν =

D − 1

2N
gµσ∂ρgσν . (2.6)

Eqs. (2.3) and (2.4) are respectively the scalar and vector constraints, while (2.5) is the

‘dynamical evolution’ equation in the radial direction. Knowing Kµ
ν , eq. (2.6) can be

integrated to obtain the metric. It is convenient to consider separately the equation for K

obtained from eq. (2.5),

D − 1

N
∂ρK +K2 = (D − 1)2K2(ρ, x) , (2.7)

where we define K(ρ, x) by

K2(ρ, x) =
1

`2
+

1

(D − 1)2

(
R− 1

N
∇2N

)
. (2.8)

We take the metric to be static. In the spatial directions orthogonal to ρ, we have non-

trivial dependence on a number p = O(D0) of spatial directions za, which are orthogonal

to a n+ 1-dimensional space that we take to be a sphere Sn+1.2 We introduce

n = D − p− 3 , (2.9)

which can be used as the large expansion parameter instead of D. Our metric ansatz is then

ds2 = N2(ρ, z)
dρ2

(D − 1)2
− V2(ρ, z)dt2 + gab(ρ, z)dzadzb + R2(ρ, z)qijdx

idxj (2.10)

where a = 1, . . . , p, and qij is the metric on the unit Sn+1.

2This can be extended to other spaces with intrinsic curvature ∝ n2 at large n.
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The different metric functions will be assumed to scale with n in specific ways. In

order to get oriented, note that one solution that we intend to recover is the leading-order

near-horizon geometry of the Schwarzschild black hole [3], which can be written in the

ansatz (2.10) with p = 1 as3

ds2 = r2
0

dρ2

n2
− r2

0 tanh2(ρ/2)dt2 + r2
0

(
1 +

4

n
ln cosh(ρ/2)

)(
dz2 + sin2 z dΩn+1

)
.(2.11)

Observe that in the sphere radius we are keeping terms of order 1/n: due to the large di-

mensionality of the sphere, such terms enter (through traces) in the leading order equations

and thus must be kept at this order. The takeaway here is that, while the ρ-dependence

in V appears at the leading order, instead in gab and R it is at O(1/n).

We then assume that

Kt
t , K = O(n) , Ka

b , K
i
j = O(1) , R = O(n2) . (2.12)

We also assume that N , V, R are O(1) and that

gab, ∂aR = O(1), or O(1/n) . (2.13)

In these two cases the Ricci tensor of gab is, respectively,

(g)Rab = O(1), or O(n) . (2.14)

The first instance in (2.13) will be exemplified in section 4, and the second one in section 6.

3 Effective theory: leading order

Our strategy is to first solve eqs. (2.3) and (2.5) for the radial dependence of the extrinsic

curvature with regularity at the black hole horizon, and then obtain the metric from (2.6).

Radial integrations leave an undetermined function of za which cannot be eliminated by

gauge choices: this is the one collective degree of freedom of the static horizon. The vector

constraint (2.4) then yields a non-linear differential equation, on z only, for this degree of

freedom, which is the effective equation we seek.

3.1 Solving the leading order equations

According to our assumptions we can separate the leading-order, ρ-independent terms as

N(ρ, z) = N0(z) +O(1/n), (3.1)

gab(ρ, z) = γab(z) +O(1/n), (3.2)

R(ρ, z) = R(z) +O(1/n), (3.3)

K(ρ, z) =
1

r0(z)
+O(1/n) . (3.4)

3Here ρ is twice the one in [3].
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In this case we can integrate (2.7) to find4

K =
n

r0(z)
coth

(
N0(z)

r0(z)
(ρ− ρ0(z))

)
. (3.5)

The divergence at ρ = ρ0(z) is the expected pole at the horizon, coming from Kt
t (all other

components of the extrinsic curvature must be regular there). The metric to leading order

is invariant under ρ → ρ + f(z), which we use to set ρ0(z) = 0. Similarly, by rescaling ρ

by an O(1) function of za we can reach a gauge in which, to leading order,

N0(z) = r0(z) . (3.6)

Then

K =
n

r0(z)
coth ρ. (3.7)

Next, the equation for Kt
t is

n

r0(z)
∂ρK

t
t +KKt

t = 0, (3.8)

since Rtt + n/`2 can be neglected as it is of lower order. This equation is solved as

Kt
t =

n

r0(z) sinh ρ
, (3.9)

where the integration function of z has been fixed again by requiring that Kt
t have a pole

at ρ = 0.

Since Ka
b and Ki

j are O(1), in order to solve for them we need Rab and Rij . The

components of the curvature in a constant-ρ section

gµνdx
µdxν = −V2(ρ, z)dt2 + γab(z)dzadzb +R2(z)qijdx

idxj (3.10)

are readily obtained (see appendix A). The scalar curvature gets negligible contributions

from the time direction, and is given at leading order by

R = n2 1

R2

(
1− (DR)2

)
, (3.11)

where we abbreviate

(DR)2 = γab∂aR ∂bR . (3.12)

Comparing (3.11) to eqs. (2.8) and (3.6) we find

1

r2
0(z)

=
1

`2
+

1

R2

(
1− (DR)2

)
. (3.13)

It is easy to see that this equation is actually equivalent to the scalar constraint (2.3) at

leading order.

4Henceforth in this section we omit the symbol O(1/n) to unburden the notation. In addition, the

subsequent analysis is valid only when r20 > 0.
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Since the scalar curvature is dominated by the components along the sphere we have

Rij =
1

n
δij R = n δij

(
1

r2
0

− 1

`2

)
. (3.14)

Using the covariant derivative Da for the metric γab, the curvature along the za direc-

tions, obtained from (A.3), is

Rab = −nD
aDbR
R

+ (γ)Rab . (3.15)

Here we take into account that in the second case in (2.13), (2.14) the intrinsic curvature

of γab can contribute at the same order.

Now we have all the terms needed to integrate the equations from (2.5),

n

r0
∂ρK

a
b +KKa

b = Rab +
n

`2
δab , (3.16)

n

r0
∂ρK

i
j +KKi

j = Rij +
n

`2
δij . (3.17)

Imposing regularity at ρ = 0 we find

Ka
b = r0f

a
b tanh(ρ/2) , (3.18)

Ki
j = δij

1

r0
tanh(ρ/2) , (3.19)

where we have defined the tensor

fab(z) =
γab(z)

`2
− DaDbR

R
+

(γ)Rab
n

. (3.20)

It is now straightforward to integrate the extrinsic curvatures (3.9), (3.18) and (3.19)

to obtain the metric components. This gives

V(ρ, z) = V0(z) tanh(ρ/2) , (3.21)

gab(ρ, z) = γab(z) +
4

n
r2

0(z) fab(z) ln cosh(ρ/2) , (3.22)

R(ρ, z) = R(z)

(
1 +

2

n
ln cosh(ρ/2)

)
. (3.23)

V0(z) is an integration function from the ρ-integration of Kt
t. For the ab and ij components

the integration functions of z have been absorbed in a O(1/n) redefinition of γab(z) and

R(z). However, V0(z) cannot be absorbed in that way.

Up to this point we have solved all the radial dependence of the metric and it only

remains to impose the vector constraint (2.4), whose only non-trivial component is along

za. To leading order it takes the form

ΓtatK
t
t + ΓjaiK

i
j +

(
∂b ln

√
−g
)
Kb

a + DaK = 0 . (3.24)

Plugging in our previous results and using the identity

(∂b lnR)

(
δba
`2
− DbDaR

R

)
=

1

r2
0

(∂a lnR− ∂a ln r0) , (3.25)

– 7 –
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derived from (3.13), we find,

∂a lnV0(y)− ∂a ln r0(z)− 2r2
0

n
(∂b lnR) (γ)Rba sinh2(ρ/2) = 0 . (3.26)

Under either of the two cases in (2.13), (2.14), the last term is subleading and can be

neglected. Thus, consistently, the ρ-dependence cancels out of the leading-order equation,

which requires that V0 be proportional to r0. Observe that this condition is equivalent

to requiring that the surface gravity κ be uniform on the horizon. Indeed, the precise

relation is

V0(z) =
2κ

n
r0(z) . (3.27)

Defining a rescaled surface gravity

κ̃ =
κ

n
, (3.28)

our solution of the Einstein equations, valid in the near-horizon region to leading order in

1/n, is

ds2 = r2
0(z)

(
−4κ̃2 tanh2(ρ/2)dt2 +

dρ2

n2

)
+

(
γab(z) +

4

n
r2

0(z)fab(z) ln cosh(ρ/2)

)
dzadzb

+R2(z) (cosh(ρ/2))
4
n dΩn+1 . (3.29)

Although κ̃ could be absorbed by rescaling the time coordinate, this may not be convenient,

since the normalization of t is fixed by matching to the far-zone.

The geometry (3.29) can be interpreted as a modulation along za of a near-horizon

Schwarzschild black hole solution. The functions r0(z), γab(z) and R(z) vary slowly com-

pared to radial gradients, and one of them, say R(z), can be regarded as the single collective

degree of freedom for the black hole. Indeed, it is possible to give an alternative derivation

of the effective theory following these ideas, as described in appendix B.

3.2 Effective equation

The metric (3.29) in the near-horizon geometry must be matched to the far-zone back-

ground in the common ‘overlap zone’, which corresponds to 1 � ρ � n in (3.29). The

matching must be such that the metric induced on a constant-ρ surface ΣB there, namely,

ds2
∣∣
ΣB

= −V 2
0 (z)dt2 + γab(z) dzadzb +R2(z)dΩn+1 , (3.30)

and its extrinsic curvature, are the same when approached from either zone. From (3.21)

and (3.7) we see that

K
∣∣
ΣB

=
n

r0(z)
,

√
−gtt

∣∣
ΣB

= V0(z) . (3.31)

Therefore eq. (3.27) can be written in the simple form

√
−gttK

∣∣
ΣB

= 2κ (3.32)

with constant κ.

– 8 –
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That is, if in a given background spacetime we find a surface that satisfies (3.32), then

we can ‘resolve’ this surface by replacing it and its interior with the static black hole with

geometry (3.29), whose surface gravity is κ. Let us remark that
√
−gttK in the limit to

the horizon is, by definition, equal to 2κ. The vector constraint is independent of ρ, but it

is non-trivial that
√
−gttK takes the same value on the horizon and on ΣB.

Using (3.13) we can write (3.32) more explicitly. For metrics on ΣB of the form (3.30),

the square of (3.32) is

V 2
0 (z)

R2(z)

(
1− (DR)2 +

R(z)2

`2

)
= 4κ̃2 . (3.33)

When there is only one z coordinate, p = 1, this equation takes the form

V 2
0 (z)

R2(z)

(
1− γzzR′(z)2 +

R(z)2

`2

)
= 4κ̃2 . (3.34)

This is the version that we will employ in the examples in this paper.

Finally, observe that in our construction of the black hole solution, K is positive when

the radial normal points outwards of the horizon. This resolves any possible ambiguity

about which side of ΣB in the background spacetime corresponds to the exterior of the black

hole: if K
∣∣
ΣB
> 0, the exterior of the black hole lies in the direction of the normal to ΣB.

3.3 Simple solutions

We verify that the effective theory correctly reproduces known exact solutions.

Schwarzschild-(A)dS black holes. In global AdS spacetime (extending to Minkowski

and deSitter when 1/`2 ≤ 0),

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2

1 + r2

`2

+ r2
(
dθ2 + sin2 θdΩn+1

)
, (3.35)

take a surface Σ at r = r̄(θ), so that

V 2
0 (θ) = 1 +

r̄2(θ)

`2
, γθθ(θ) = r̄(θ)2 +

(r̄′(θ))2

1 + r̄(θ)2

`2

, R(θ) = r̄(θ) sin θ . (3.36)

It is immediate to see that a spherical surface

r̄ = rh (3.37)

solves (3.34) with the correct surface gravity

κ̃ =
1

2rh

(
1 +

r2
h

`2

)
. (3.38)

The static planar and hyperbolic black holes in AdS are similarly easy to obtain.

In a Minkowski background, 1/` = 0, we can also find the same solution starting from

ds2 = −dt2 + dz2 + dr2 + r2dΩn+1 . (3.39)

– 9 –
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Setting r = r̄(z), so that γzz = 1 + (r̄′)2 and R = r̄, eq. (3.34) is solved by r̄ =
√
r2
h − z2

with κ̄ = 1/(2rh). Thus the Schwarzschild solution when D →∞ is obtained as a spherical

soap bubble with mean curvature
1

n
K =

1

rh
. (3.40)

Black strings. Both in the Minkowski background (3.39) and in Poincaré AdS,

ds2 =
`2

z2

(
−dt2 + dr2 + r2dΩn+1 + dz2

)
, (3.41)

the black string is just r = rh, with κ̃ = 1/(2rh).

Intersecting black hole and deSitter horizons. Let us describe a less simple, lesser-

known solution in the deSitter background,5 with H2 = −`−2 > 0,

ds2 = −
(
1−H2r2

)
dt2 +

dr2

1−H2r2
+ r2

(
dθ2 + sin2 θdΩn+1

)
. (3.42)

We change coordinates (r, θ)→ (r̃, θ̃) as

sin θ̃ = Hr sin θ , r̃ cos θ̃ = r cos θ , (3.43)

so that (3.42) becomes

ds2 = cos2 θ̃

(
−
(
1−H2r̃2

)
dt2 +

dr̃2

1−H2r̃2
+ r̃2dΩn

)
+

1

H2

(
dθ̃2 + sin2 θ̃dφ2

)
. (3.44)

In this case,

r̃ = rh (3.45)

is a solution of (3.34) (where z = θ̃ and R(θ̃) = rh cos θ̃), with

κ̃ =
1

2rh

(
1−H2r2

h

)
. (3.46)

This black hole is actually known exactly in all D [18]: it is the metric

ds2 = cos2 θ̃

(
−fdt2 +

dr̃2

f
+ r̃2dΩn

)
+

1

H2

(
dθ̃2 + sin2 θ̃dφ2

)
(3.47)

with

f = 1−
(r0

r̃

)n−1
−H2r̃2 , (3.48)

which arises in the Kerr-deSitter family of black holes in the limit in which the equator

of the rotating black hole touches the deSitter horizon and the configuration becomes

static. The two horizons correspond to the cosmological and black hole horizons of the

submetric (t, r̃,Ωn), which extend separately along the coordinate θ̃ until they meet at the

equator θ̃ = π/2. It is a simple exact instance of a horizon intersection. By the same

5We thank Jorge Santos for discussions that led to this example.
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reasoning as used in [2], in the large n limit the black hole of (3.47) becomes a ‘hole’ at

r̃ = rh = r0 +O(1/n) in the geometry (3.44).

In the coordinates of (3.42), the solution (3.45) is the surface

r = r̄(θ) =
rh√

1− sin2 θ
(
1−H2r2

h

) . (3.49)

If we write

x = r̄ cos θ , y = r̄ sin θ , (3.50)

then (3.49) becomes the ellipse
x2

r2
h

+H2y2 = 1 . (3.51)

Since r̄(0) = rh < 1/H and r̄(π/2) = 1/H, the surface r̄(θ) is an oblate ellipsoid that

touches the deSitter horizon at its equator, in agreement with our interpretation above.

3.4 Effective stress tensor

In order to match the near-zone solution to the far zone, they must share the metric (3.30)

at their common boundary (in the overlap zone), and also their extrinsic curvatures. In

this way the full geometry is smoothly glued between the two zones. This construction is

equivalent to substituting the near-zone by a membrane with geometry (3.30) and with a

stress-energy tensor given by the quasilocal stress-energy tensor of the near-horizon geom-

etry measured in the overlap zone. Having this membrane stress-energy tensor as a source

for the gravitational field in the background, ensures that the matching of the near- and

far-zone geometries is C1.

The overlap zone is the asymptotic region of the near-zone. Asymptotically at large

ρ, and neglecting terms O(e−ρ), the metric (3.29) becomes

ds2 → −V 2
0 (z)dt2 + r2

0(z)
dρ2

n2
+

(
γab(z) +

2ρ

n
r2

0(z)fab(z)

)
dzadzb

+R2(z)

(
1 +

2ρ

n

)
dΩn+1 . (3.52)

with the condition (3.27). When the scalar constraint (3.13) is satisfied, this is in fact a

solution at all ρ: it corresponds to empty space (Minkowski or AdS) at large n. There-

fore (3.13) is not specific to black holes. Instead, it pertains to the definition of near-zone

asymptotics of large n gravity.

The geometry (3.52) is then the reference metric required to define the effective stress

tensor. In general there can be terms in the metric at large ρ of the type aµν(z) ρ/n,

but all the functions aµν(z) that appear are fully determined, up to gauge, by the Einstein

equations in the overlap zone in terms of r0(z) andR(z) and their derivatives. In this sense,

they are analogous to the first terms in the Fefferman-Graham (FG) expansion in AdS,

which are fixed by the boundary metric. The terms at large ρ that behave like e−ρ, e−2ρ. . . ,

correspond to normalizable perturbations in the near-zone and are not determined by the

boundary metric. The leading terms ∝ e−ρ will give the quasilocal stress-energy tensor.
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To leading order at large ρ, the quasilocal stress-energy tensor from (3.52) is the same

for empty space and for the black hole. Thus this stress tensor cannot give any non-trivial

gravitational effect on the background. Such effects come from the difference between the

quasilocal stress energy tensors of empty space and of the black hole, i.e.,

8πGTµν = −[Kµ
ν ] + δµν [K] (3.53)

where the subtraction in [Kµ
ν ] = Kµ

ν− (0)Kµ
ν is from empty space with the same asymp-

totic boundary metric. The subtraction removes the terms ∝ ρ at large ρ, and leaves those

that decay like e−ρ (or faster). Typically, in the far zone we have e−ρ ∼ (r0/r)
n, which is

the fall-off of the gravitational field away from a localized source.

For the black hole solution (3.29), expanding at large ρ, neglecting terms O(e−2ρ), and

subtracting the background values we find

[Kt
t] =

2n

r0(z)
e−ρ +O(n0) , (3.54)

[Ka
b] = −2r0(z)fab e

−ρ +O(1/n) , (3.55)

[Ki
j ] = −δij

2

r0(z)
e−ρ +O(1/n) , (3.56)

[K] = O(n0) . (3.57)

It is easy to check that

∇µ[Kµ
a]− ∂a[K] = O(n0) (3.58)

since this indeed follows from the vector constraint. It implies the conservation of the

stress-energy tensor (3.53), which is given by

8πGT tt = − 2n

r0(z)
e−ρ +O(n0) ,

8πGT ab = O(n0) , (3.59)

8πGT ij = O(n0) ,

with the constraint that

n(∂b lnR)T ba − (∂a lnR)δj iT
i
j = T tt(∂a ln r0) +O(n0) . (3.60)

That is, at this order the values of T ba and T ij are not fully determined, since terms of

O(n0) in [K], which remain undetermined at this order, can make a contribution to these

components. However, the combination in (3.60) does not suffer from this indeterminacy

and this equation is required for the conservation of the stress-energy tensor at leading

order. It is not surprising that the tensions (or pressures) play a subleading role: it was

already observed in [2] that the pressure of black branes is suppressed relative to their

energy density when D � 1.

This effective stress tensor is enough to obtain the backreaction of the black hole on

the background, by computing the linearized gravitational field created by this source. The
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specific values of T ab and T ij are not important at this order, so one may choose them

arbitrarily as long as (3.60) (which is necessary for a consistent coupling of the source to

the gravitational field) is satisfied. While these components may be determined at the next

order in the expansion, one way of choosing them is by requiring that, as is the case in all

known black hole solutions, the ‘hoop stresses’ T ij vanish. Under this assumption we have

8πGT ba ∂b lnR(z) = − 2

r0(z)
∂a ln r0(z)e−ρ +O(1/n) , (3.61)

8πGT ij = 0 . (3.62)

In the case p = 1 we can solve (3.61) to find

8πGT zz = − 2

r0(z)

∂z ln r0(z)

∂z lnR(z)
e−ρ +O(1/n) . (3.63)

3.4.1 Effective membrane source

Since the stress tensor is homogeneous on Sn+1, we can integrate it over the angular

directions. At large ρ this yields a factor Ωn+1Rn+1eρ/4. Then the integrated energy

density is

〈T tt〉 = −nΩn+1

16πG

R(z)n+1

r0(z)
+O(n0) , (3.64)

and the stresses are, as mentioned above, O(n0) and therefore subleading but must satisfy

〈T ba〉 ∂b lnR(z) = −Ωn+1

16πG

R(z)n+1

r0(z)
∂a ln r0(z) +O(1/n) . (3.65)

When p = 1 we can explicitly solve this to obtain

〈T zz〉 = −Ωn+1

16πG

R(z)n+1

r0(z)

∂z ln r0(z)

∂z lnR(z)
+O(1/n) . (3.66)

The energy density (3.64) admits a very simple physical interpretation: it is the energy

density of a black brane of radius R(z), redshifted by the local redshift factor 1/r0(z). The

tension (3.66) is also the tension for that type of black brane, with an additional correction

that accounts for the bending tension.

The backreaction of the black hole on the background is obtained by taking a membrane

with this stress-energy tensor, extended along the directions za in the background, and at

the origin of the Sn: by homogeneity in the sphere direction, in linearized gravity and at

large n, we need not consider that the membrane extends on a sphere of finite radius but

rather we can collapse it to zero radius.

In appendix C we describe how the field created by this stress tensor correctly yields

the large-n linearized Schwarzschild field, when it is interpreted as a solution of (3.34) in

the background (3.39).
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4 Black droplets

Now we construct solutions of (3.34) in the AdS spacetime (3.41) that are rather more

complicated than in section 3.3. We seek surfaces ΣB that end at the boundary at z = 0

on a sphere Sn+1, and extend a finite distance into the bulk at z > 0 until the Sn+1 shrinks

to zero. They correspond to black holes localized at the AdS boundary. These were

investigated in the context of cutoff-AdS/CFT (the holographic duality for the Randall-

Sundrum-II braneworld) for the purpose of studying Hawking radiation of the dual CFT

at planar (leading large N) order, and its backreaction on the black hole [19, 20]. In [14]

they were reconsidered without the UV cutoff, in which case they are dual to the CFT

in a fixed black hole background. After several years of controversy, the existence of such

regular static black hole solutions seems to be settled after the numerical construction

in [21]. Nevertheless, a simpler solution to the problem, such as afforded by the large D

expansion, may be desirable.

We seek solutions for surfaces ΣB embedded in (3.41) in the form

r = r̄(z) . (4.1)

Choosing a normal that near the boundary points outwards from ΣB in the direction of

increasing r, a direct computation of the mean curvature to leading order in 1/n gives

1

n
K =

z + r̄r̄′

`r̄
√

1 + (r̄′)2
. (4.2)

In this case eq. (3.32) becomes

`

nz
K =

z + r̄r̄′

zr̄
√

1 + (r̄′)2
= 2κ̃ . (4.3)

Note that ` disappears from this equation, as it must, without having set it to 1.

Eq. (4.3) is a non-linear equation that requires numerical integration, but it is conve-

nient to first analyze its main properties. The equation simplifies for κ̃ = 0 to

r̄ r̄′ + z = 0 , (4.4)

which is solved by a circular profile,

r̄2 + z2 = const. (4.5)

The extrinsic curvature K of this solution vanishes: the curvature of the sphere is exactly

cancelled by the cosmological curvature. Other simple solutions of (4.3) are:

— the AdS black brane, with z = 1/(2κ̃) and r̄′ → +∞;

— the black string solution, with r̄ = 1/(2κ̃).
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Eq. (4.3) is invariant under z → −z, and it requires that r̄′ vanish at the boundary

z = 0. Therefore, the surface ΣB always meets the boundary orthogonally.

When extended into the bulk, we want ΣB to cap off smoothly at a finite value z = zm
where r̄ = 0. The smoothness is guaranteed by eq. (4.3): for small r̄ and large |r̄′|,
it becomes

r̄|r̄′| ≈ zm
1 + 2κ̃zm

, (4.6)

which shows that if ΣB closes off away from the boundary, zm > 0, it does it smoothly.

The solutions of (4.3) are completely determined once the boundary radius

rb = r̄(z = 0) (4.7)

is specified. Therefore, the solutions are parametrized by the surface gravity, i.e., by κ̃,

and by the radius at the boundary rb. These parameters can be varied independently, but

only their dimensionless product

λ = 2κ̃rb (4.8)

is invariant under the scaling symmetry of the background. Therefore we obtain a one-

parameter family of inequivalent solutions labeled by λ.

Observe that, even if the near-horizon geometries for different values of λ are all locally

equivalent, they will match to different far-zone geometries. For instance, if we fix rb, then

as κ̃ varies we get boundary black hole geometries with the same horizon radius but with

different radial dependence in gtt. Ref. [14] proposed the existence of a one-parameter

family of black droplets of this kind. Our construction realizes it in a natural way.

When κ̃ is finite and non-zero we can rescale t, r, z such that we effectively set

2κ̃ = 1 , (4.9)

in which case the solutions are parametrized by λ = rb. This choice is slightly convenient.

With it, the two branches of solutions for r̄′ in eq. (4.3) are

r̄′ = −z
r̄

1±
√
z2 + r̄2(1− z2)

1− z2
, (4.10)

Consider first the − sign solution. Substituting in (4.2) one finds that

1

n
K(−) =

z

`
. (4.11)

Given our choice of normal in (4.2), since K > 0 the criterion discussed at the end of

section 3.2 tells us that the black hole exterior is in the direction of increasing r. Thus,

the − sign in (4.10) gives black droplets.

On the other hand, for the + sign in (4.10) we obtain6

1

n
K(+) = −z

`
, (4.12)
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1

2

3

4

z

Figure 1. Black droplet solutions for fixed horizon radius at the boundary (rb = 1) and varying

surface gravity κ̃. The AdS boundary z = 0 is at the top, and z increases towards the bottom.

The solutions correspond to λ = 2κ̃rb = 0.01, 0.5, 0.95, 0.9995, with the elongation growing as λ

increases towards 1.

so this gives solutions where the exterior is inverted relative to the previous case. Therefore

these are not black droplets. It is less clear whether these solutions are relevant. We discuss

them briefly in appendix D.

Numerical integration of (4.10), with the − sign, yields the expected droplet-shaped

solutions. In figure 1 we plot them with fixed rb = 1 and different values of κ̃.

We see that as κ̃ grows with rb fixed, the droplets extend more into the bulk. The

parameter λ ranges between 0 and 1, and as λ→ 0 the solutions approach (4.5). Eq. (4.4)

is actually recovered from (4.3) in the limit in which both r̄ and z go to zero at the same

rate. At the opposite end, when λ→ 1, the solutions approach the black string. Near the

black string limit, with λ . 1, the solution at small z is close to a black string,

2κ̃ r̄ = 1− (1− λ)e2κ̃2z2 . (4.13)

Close to the cap it is instead described by (4.6).

It is not fully clear from this study which of these black droplets should correspond to

the solution whose boundary geometry is the Schwarzschild black hole, although a plausible

candidate is the solution (4.5). This, as well as the calculation of the holographic stress-

energy tensor of these solutions, requires a more detailed analysis which we postpone to

the future.

Black droplets with black branes, and black funnels. In AdS one expects other

classes of static black hole solutions that are related to droplets [14, 22–28]. Black droplets

6To obtain this we assume that 0 ≤ z < 1, which is appropriate since we want solutions connected to

the boundary.
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are often considered in conjunction with a black brane of infinite extent in directions par-

allel to the boundary. The two horizons are separated in the bulk, and in the large D

limit the interaction between them is suppressed exponentiallly in D. Then we can ob-

tain these configurations by simply superimposing a flat black brane and one of our black

droplets. Their interaction through graviton exchange across the bulk is non-perturbative

in 1/D but in principle it is possible to incorporate such effects by computing the gravi-

tational attraction between the two membranes with the effective stress-energy tensor of

section 3.4.1.

‘Black funnels’ can be regarded as the merger of a black brane and a black string (or

a long enough black droplet) that hangs from the boundary. Our effective equations do

not seem to allow to obtain these solutions. The apparent reason is that the ‘shoulder’ at

which the black string and the black brane are joined involves large gradients along the

horizon, of order D, which fall outside the remit of the effective theory.

5 Effective theory: next-to-leading order

At the next order we must take into account the ρ-dependence in K in (2.8). It is convenient

to separate it in the form

K(ρ, z) =
1

r0(z)

(
1− 1

n
δr(ρ, z)

)
. (5.1)

Here r0(z) is different than the leading-order function r0(z) in (3.4), since it also contains

1/n contributions. Since we will want to keep the horizon at ρ = 0, we fix the ambiguity

in this split by demanding that

δr(0, z) = 0 . (5.2)

We can obtain r0 and δr using eq. (A.5) in (2.8) and taking into account that, at

this order,
1

N
∇2N = n

Dar0D
aR

r0R
. (5.3)

Then we get

1

r20
=

1

r2
0

− 2p+ 3

n

1

R2

(
1− (DR)2

)
− 2

n

D2R
R
− 3

n

Dar0D
aR

r0R
+

1

n2
(γ)R

=
1

r2
0

+
2p+ 3

n

(
1

`2
− 1

r2
0

)
− 2

n

D2R
R
− 3

n

Dar0D
aR

r0R
+

1

n2
(γ)R , (5.4)

(recall that n and D are related by (2.9)) and

δr = r1(z) ln(cosh(ρ/2)) , (5.5)

with

r1(z) =
2r20
R2

(
1− r20f

abDaRDbR
)
, (5.6)
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and fab given in (3.20). In these equations R(z) and the metric γab(z) with connection Da
are the ones obtained in the previous section, which already had absorbed 1/n contributions

from radial integrations. As with r0(z), they satisfy

R(0, z) = R(z) , gab(0, z) = γab(z) . (5.7)

If we rescale ρ by a function f(z)+g(ρ, z)/n and shift z → z+h(ρ, z)/n2, we can reach

a gauge with

N(ρ, z) = r0(z) . (5.8)

We now write

K =
D − 1

r0(z)
coth ρ+ δK(ρ, z) , (5.9)

where the z-dependence ambiguity is fixed by demanding that δK(0, z) be finite. The

radial equation for δK is

∂ρδK + 2 coth ρ δK = −2δr

r0
, (5.10)

and its solution regular at ρ = 0 is

δK = − 2

r0 sinh2 ρ

∫ ρ

0
dρ′ sinh2(ρ′)δr(ρ′, z)

= − r1
r0
F1(ρ) , (5.11)

where we define

F1(ρ) =
2

sinh2 ρ

∫ ρ

0
dρ′ ln

(
cosh(ρ′/2)

)
sinh2(ρ′) . (5.12)

Next, setting

Kt
t =

D − 1

r0(z) sinh ρ
+ δKt

t (5.13)

and using eq. (A.2) in (2.5) we obtain the equation

∂ρδK
t
t + coth ρ δKt

t =
r1
r0

F1(ρ)

sinh ρ
+ r0

(
1

r2
0

− Dar0D
aR

r0R

)
, (5.14)

which we integrate requiring regularity at ρ = 0,

δKt
t =

r1
r0

F2(ρ)

sinh ρ
+ r0

(
1

r2
0

− Dar0D
aR

r0R

)
tanh(ρ/2) , (5.15)

with

F2(ρ) =

∫ ρ

0
dρ′F1(ρ′) . (5.16)

We can now integrate (2.6) to obtain gtt = −V2(ρ, z). If we write it in the form

V(ρ, z) = V0(z) tanh(ρ/2)

(
1 +

1

n
δV (ρ, z)

)
, (5.17)
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with δV (0, z) = 0, the result is

δV = r1F3(ρ) + 2r20

(
1

r2
0

− Dar0D
aR

r0R

)
ln cosh(ρ/2) , (5.18)

where

F3(ρ) =

∫ ρ

0
dρ′

F2(ρ′)

sinh ρ′
. (5.19)

At this moment we can compute δKa
b and δKi

j and use them in the vector con-

straint to obtain the NLO corrections to the effective equation. We have done this, but a

quicker route to the equation is to impose directly the condition that the surface gravity

on the horizon is constant, which must hold at all orders. Both conditions can be seen to

be equivalent.

Since we are fixing V(0, z) = V0(z) and N(0, z) = r0(z) at the horizon, the surface

gravity is simply

κ =
D − 1

2

V0(z)

r0(z)
. (5.20)

However, the effective theory uses functions of z in the asymptotic overlap zone, 1� ρ� n.

In this region,

F3(ρ) =
1

4
+O(e−ρ) , (5.21)

so we find

V(ρ, z) = V0(z)

(
1 +

r1(z)

4n

)
+O(ρ/n) +O(e−ρ) . (5.22)

In order to match this to a value

√
−gtt

∣∣
ΣB

= V (z) (5.23)

computed in the far-zone background, we set7

V0(z) = V (z)

(
1− r1(z)

4n

)
. (5.24)

Finally, in the asymptotic zone we have R(ρ, z)
∣∣
ΣB

= R(z) and gab(ρ, z)
∣∣
ΣB

= γab(z).

Then K(ρ, z)
∣∣
ΣB

= 1/r0(z) and we can use its form (5.4) in (5.20).

5.1 Effective equation at NLO

Inserting (5.4) and (5.24) in (5.20) we obtain

4κ2

n(n+ 1)
= V 2(z)

(
1

r2
0

(
1− r1

2n

)
+

2p+ 3

n`2
− 2

n

D2R
R
− 3

n

Dar0D
aR

r0R
+

1

n2
(γ)R

)
, (5.25)

where r0 is the leading-order function given in (3.13), namely,

r0(z) =
R(z)√

1− (DR(z))2 + R(z)2

`2

. (5.26)

7The subleading terms at O(ρ/n) and O(e−ρ) have to match between zones if they solve the equations

of motion, since we have fixed the radial gauge and these terms do not correspond to any collective degrees

of freedom. See the related remarks in section 3.4.
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Using (3.25) in (5.6), after a short calculation this equation can finally be written as

4κ2

n2
= V 2(z)

(
1

r2
0

+
1

n

(
2p+ 4

`2
− 2D2R
R

− 4Dar0D
aR

r0R

)
+

1

n2
(γ)Rab

(
γab +

DaRDbR
R2

))
,

(5.27)

which is the effective equation at NLO we sought. The last terms, with the Ricci tensor of

γab, must be included in the second case of (2.14).

In the particular case when p = 1 this effective equation is

4κ2

n2
= V 2(z)

(
1

r2
0

+
1

n

(
6

`2
− 2γzz

R′′

R
− (γzz)′

R′

R
− 4γzz

r′0R′

r0R

))
(5.28)

with

r0(z) =
R√

1− γzz(R′)2 + R2

`2

. (5.29)

These NLO equations admit as solutions the ones discussed in section 3.3. Moreover, they

also reproduce correctly the surface gravity of the corresponding exact black holes to this

order.

It is easy to see that if gtt is constant on ΣB and the intrinsic curvature (γ)Rab vanishes

(or can be neglected), then r1 is a constant (for any p) when the leading-order equation is

satisfied. In this case, which typically includes surfaces in the flat Minkowski background,

the effective equation at NLO is equivalent to the soap-film equation

K
∣∣
ΣB

= constant (5.30)

expanded to NLO in 1/n. In other cases, the covariant form of (5.27) is less straightforward.

6 Non-uniform black strings

In the Minkowski background (3.39) the only solutions to the leading-order equation (3.34)

are the spherical Schwarzschild black hole and the uniform black strings. However, at finite

values of D it is known that non-uniform strings are possible [16, 17, 29–32]. Since they are

absent from the leading-order large D theory, we seek them using the equation (5.30) at

the next-to-leading order. Moreover, the wavelength of Gregory-Laflamme perturbations

in the large D limit [1, 2] is ∼
√
n, which implies that non-uniform black strings must be

sought among solutions of the second kind in (2.13).

Following these remarks, we write the background geometry as

ds2 = −dt2 +
dz2

n
+ dr2 + r2dΩn+1 , (6.1)

and take

R(z) = 1 +
2P(z)

n
. (6.2)

Here we have fixed the overall scale by setting the Sn+1-area-radius of the uniform string

to one.
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As a consequence of (6.2), we are limited to considering non-uniformities along the

string of relative amplitude O(1/n). Nevertheless, although small, these fluctuations are

treated non-linearly.

For (6.1) and (6.2), eq. (5.28) takes the form

P ′′(z) + P(z) + P ′(z)2 = P0, (6.3)

where P0 is related to the surface gravity κ by

κ =
n

2
− P0 . (6.4)

Eq. (6.3) is non-linear in P, but already its linear approximation at small P imme-

diately reveals the existence of static, slightly non-uniform black strings with wavelength

∆z ' 2π, which agrees with the value obtained in the small-amplitude perturbative analysis

of the Gregory-Laflamme problem at D →∞ [1, 2].

Multiplying (6.3) by e2P(z)P ′(z), we obtain the first integral,

P ′(z)2 = −P(z) + P0 +
1

2
− k1e

−2P(z) . (6.5)

It is useful to regard this equation as the classical mechanics of a particle in

the potential

V (P) = P + k1e
−2P , (6.6)

with the coordinate z taking the role of time. Both positive and negative values of P
are allowed as long as |P| � n. When k1 > 0 the potential is bounded below and has a

minimum at P = 1
2 ln(2k1). In this case there are solutions in which P oscillates between

two turning points: these solutions are non-uniform black strings. When k1 ≤ 0 the

potential is unbounded below for negative P, which is not acceptable since then P will

roll down to arbitrarily negative values, violating the condition |P| � n. Thus we only

consider k1 > 0.

We use the symmetry of eq. (6.5) under P → P + α, P0 → P0 + α, k1 → k1e
2α to fix

k1 = 1/2 so the equation is

P ′(z)2 = P0 − P(z) +
1

2

(
1− e−2P(z)

)
. (6.7)

The constant P0 corresponds to the energy of the particle and thus controls the range of

oscillation of P(z) i.e., the amount of deformation. For P0 = 0 we find the uniform black

string with P(z) = 0, and if P0 & 0 we recover the small oscillations mentioned above.8

We are now interested in larger deformations, 1� P0 � n. The potential in (6.7) has

two regions. To the right, where P > 0, it is dominated by the linear term ∼ P . To the left,

with P < 0, it is dominated by the exponential ∼ e2|P|. In terms of particle motion, the

particle will spend much more time (i.e., long extent in z) moving relatively slowly in the

right side of the potential, than in the left side where it will move very quickly (i.e., very

8Eq. (6.7) is the equation for the undamped Toda oscillator. An analysis of some of its properties can

be found in [33]. We thank the referee for pointing this out.
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short extent in z) since the potential is very steep there. So the deformation of the string

will have one large bulge (where P > 0) extending over a long distance, and a smaller neck

(where P < 0) that extends over a small length.

We can make this quantitative by solving (6.7) in an approximate way for large P0.

In the right side of the potential, for P > 0, we solve

P ′(z)2 ≈ P0 +
1

2
− P(z) (6.8)

i.e., a parabolic profile

P ≈ P0 +
1

2
− 1

4
(z − zmax)2 , zmax = 2

√
P0 +

1

2
. (6.9)

Here zmax measures the distance from the point z = 0 of no-deformation, P = 0, to the

maximum deformation where P = Pmax ≈ P0. In the left side, where P < 0, we solve

P ′(z)2 ≈ P0 +
1

2

(
1− e−2P(z)

)
, (6.10)

i.e.,

P(z) ≈ −1

2
ln

[
(2P0 + 1)

(
1− tanh2

(√
P0 +

1

2
(z + zmin)

))]
(6.11)

where

zmin =
1√
P0 + 1

2

arctanh

√
1− 1

2P0 + 1
' 1

2
√
P0

ln(8P0) , (6.12)

is the length of the negative deformation from z = 0 to the minimum where P = Pmin ≈
−1

2 ln(2P0).

The complete solution obtained by taking (6.9) for P > 0 and (6.11) for P < 0,9 gives

an excellent approximation, as compared to numerical integration, to the entire profile of

the deformation at large P0. It also remains fairly good even for relatively small P0 (in

particular if we keep the 1/2 offset for P0 in (6.9) and (6.11)). We present the two types

of calculation in figure 2.

Let us now investigate the breakdown of the large-D expansion when the amplitude

of the deformation grows large. Using the proper coordinate

Z =
z√
n
, (6.13)

we find that, according to (6.9), the large bulge has extent

(∆Z)bulge ≈ 2

√
P0

n
, (6.14)

whereas from (6.12), the short neck has extent

(∆Z)neck ≈
1

2
√
nP0

ln(8P0) . (6.15)

9The match at z = 0 is not completely smooth since the slopes differ at each side, but the difference is

small for large P0.
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P(z)

Figure 2. Profile of the non-uniformity of black strings for increasing values of the deformation

parameter P0 = 1, 5, 10 (with P0 = 0 corresponding to no deformation). Solid blue: numerical

integration of (6.7). Dashed black: analytic approximation (6.9) (z > 0), (6.11) (z < 0). For clarity,

we show only a half-period of the numerical results, and a full period of the analytical ones. The

relative non-uniformity is ∆R/R = 2P(z)/n and the proper length along the string is z/
√
n.

If we consider a deformation at the limit of validity of our approximations, P0 ∼ n, then

(∆Z)bulge = O(1) , (∆Z)neck = O
(

lnn

n

)
. (6.16)

Therefore, as the non-uniformity of the black string grows, it goes from having wavelength

∼ 1/
√
n and amplitude P0/n = O(1/n), to developing bulges of size P0/n = O(1), which

resemble spherical black holes of O(1) radius that are joined by thin necks. At these necks

the approximation breaks down since the gradients are large, ∼ n/ lnn.

7 Outlook

In this article we have shown that an effective theory of black holes using membrane-like

variables can be constructed in the large D limit. In spite of broad similarities to the

membrane paradigm of [35, 36], this theory differs from it in significant ways that may be

worth spelling out. The basic idea in the membrane paradigm is to exploit large boosts

near a null surface. Then it depends only on the Rindler geometry. In contrast, the large-D

effective membrane does not reside at the black hole horizon but at the outer boundary

of the near-horizon region, which contains much more structure of the geometry than the

Rindler limit. The large D theory is based on a neat separation between the black hole

and the background, absent at finite D, which permits the explicit integration of short-

wavelength degrees of freedom and gives an equation for the shape of the black hole. The

membrane paradigm of [35, 36], instead, does not yield any constraints nor information on

the black hole shape. An equation for black hole horizons that is similar to (1.1) has been

derived, in any D, in [34], but it is unclear to us if there is a connection to our approach.
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As in the case of the effective black hole theories of [9–11], finding solutions using the

large-D equations is considerably simpler than in the full Einstein theory. This is because:

(i) the radial direction has already been integrated, resulting in a reduction by one in the

cohomogeneity of the system, i.e., in the effective dimensionality of the equations to solve;

(ii) there is only one degree of freedom (for static black holes), hence one equation to solve,

instead of a system of coupled differential equations.

We have demontrated that two classes of non-trivial solutions are simply obtained with

this method, but the detailed study of their physical properties has been outside the scope

of this article. This includes the computation of the holographic stress-energy tensor for

the black droplets, which requires to consider how the effective stress-energy tensor affects

the far zone. The thermodynamic properties of the non-uniform black strings will be the

subject of [37].

Clearly, there is much scope for extending the theory. The generalization to stationary

black holes, which have an additional collective coordinate corresponding to a local boost

along the horizon, will be presented elsewhere [38]. Including charge for the black holes is

similarly straightforward. The natural next step is the more general theory that includes

not only spatial fluctuations but also time evolution on timescales ∆t � r0/D — this is

being pursued in [39].
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A Curvature on sections at constant ρ

For a metric of the form

gµνdx
µdxν = −V2(ρ, z)dt2 + gab(ρ, z)dzadzb + R2(ρ, z)dΩn+1 , (A.1)
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the Ricci tensor at any given value of ρ is (exactly in n)

Rtt = − D̄2V

V
− (n+ 1)gab

∂aR ∂bV

RV
, (A.2)

Rab = gRab −
D̄aD̄

bV

V
− (n+ 1)

D̄aD̄
bR

R
, (A.3)

Rij = δij

(
n

R2

(
1− (D̄R)2

)
− D̄2R

R
− gab

∂aR ∂bV

RV

)
, (A.4)

and the scalar curvature

R =
n(n+ 1)

R2

(
1− (D̄R)2

)
− 2(n+ 1)

(
D̄2R

R
+ gab

∂aR ∂bV

RV

)
− 2

D̄2V

V
+ (g)R . (A.5)

Here D̄ and (g)Rab are the connection and Ricci tensor for the metric gab, and they are

ρ-dependent. With our choice of fixing the z dependence at the horizon, up to NLO they

coincide with the D and (γ)Rab of the metric γab both at the horizon and at the surface ΣB

in the asymptotic overlap zone.

B Another derivation of the effective equation

In this appendix we take a quicker route to deriving (admittedly, with some hindsight)

the effective equation (3.33). Instead of solving the large D Einstein equations ab initio,

as we have done in section 3, here we take an already known solution, from the large D

limit of Schwarzschild(-AdS), and make its parameters become slowly-varying functions

along directions za parallel to the horizon. Then we impose Einstein’s equations to find

the equations that the deformation functions must satisfy, and solve for any ρ-dependent

correction to the metric required to obtain a solution. Although this approach is less

systematic and complete than the one followed in section 3, it affords a quicker route to

the derivation of the equations that can be useful in other instances.

Consider the large D limit of a Schwarzschild black p-brane

ds2 = −4κ̃2r2
0 tanh2(ρ/2)dt2 +

r2
0

n2
dρ2 + δabdz

adzb +R2
0 (cosh(ρ/2))

4
n+1dΩn+1 . (B.1)

The solution is naturally parametrized by the sphere radius R0, by the surface gravity,

which we parametrize with the radius r0, and by the metric along the z directions. In

order for this to be a solution, it must be that r−2
0 −R

−2
0 = `−2 and that the metric along

the z directions be flat.

Now we promote these parameters to functions of z, taking the metric ansatz

ds2 = −V 2
0 (z) tanh2(ρ/2)dt2 +

r2
0(z)

n2
dρ2 +

(
γab(z) +

1

n
δγab(ρ, z)

)
dzadzb

+R2(z)(cosh(ρ/2))
4
ndΩn+1 , (B.2)

where we make the same assumptions about the dependence on ρ and z as in section 3.

We have added a term δγab(ρ, z) expecting that it will be required in order to obtain a

solution.10

10Other terms could be added, but when solving the equations one easily sees that either they do not

enter at leading order, or they must vanish.
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At this point we may proceed to impose the Einstein equations. However, we can

anticipate that these equations will require uniform surface gravity on the horizon (for the

Killing vector ∂t). So, in the interest of expediency, we fix this already by imposing (3.27).

For obtaining the Einstein equations we perform a Kaluza-Klein reduction on the

large-dimension sphere Sn+1. Consider a metric of the warped-product form

dŝ2 = gµν(x)dxµdxν + e2φ(x)dΩn+1 (B.3)

with µ, ν = 0, . . . , p + 1 so the total dimension is p + n + 3. Hatted quantities are for the

complete metric, unhatted ones for the (p+ 2)-metric. The Einstein-AdS action is

I =

∫
dp+n+3x

√
−ĝ
(
R̂+

(p+ n+ 2)(p+ n+ 1)

`2

)
= Ωn+1

∫
dp+2x

√
−g e(n+1)φ

(
R+ n(n+ 1)

(
(∂φ)2 + e−2φ

)
+

(p+ n+ 2)(p+ n+ 1)

`2

)
. (B.4)

The Einstein equations along the directions xµ are (see appendix A)

Ĝµ
ν = Gµ

ν − (n+ 1)(∂µφ∂
νφ+∇µ∂νφ)

+
1

2
δµ
ν
(

(n+ 1)(n+ 2) (∂φ)2 + 2(n+ 1)�φ− n(n+ 1)e−2φ
)

=
(p+ n+ 2)(p+ n+ 1)

2`2
δµ
ν . (B.5)

The remaining equation is the one for the dilaton

�φ+ (n+ 1) (∂φ)2 − ne−2φ =
p+ n+ 2

`2
. (B.6)

Now we apply this to the metric (B.2) and take the large n limit. To illustrate the

method more clearly, we restrict ourselves to the case p = 1.

From (B.2) we have

φ = lnR(z) +
2

n
ln(cosh(ρ/2)) . (B.7)

It is straightforward to see how the different terms in the equations scale with n. To leading

order one easily computes

�φ =
n

r2
0(y) cosh2(ρ/2)

, (∂φ)2 =
tanh2(ρ/2)

r2
0(y)

+ (D lnR)2 , (B.8)

so that (B.6) requires that

1

r0(z)2
− 1

R(z)2
+ (D lnR)2 =

1

`2
, (B.9)

i.e., the same as (3.13), which is indeed the effective equation that one solves in order to

determine the embedding of the surface

ds2
∣∣
ΣB

= −4κ̃2r2
0(z)dt2 + γzz(z) dz2 +R2(z)dΩn+1, (B.10)

in the background spacetime.
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When this equation is satisfied, one easily sees that all the other equations (B.5) are also

solved to leading order, except for the one for Ĝa
ρ = 0, since both ∂aφ∂

ρφ and ∇a∂ρφ are

O(n) (unlike all other off-diagonal entries) and thus enter at leading order. This equation

requires that

∂z ln r0 = ∂z lnR
(

1− ∂ρδγzz
2 tanh(ρ/2)

)
. (B.11)

When r0 and R are not constant, this is solved by

δγzz = 4

(
1− ∂z ln r0

∂z lnR

)
ln cosh(ρ/2)

= 4r2
0

(
1

`2
− D2R
R

)
ln cosh(ρ/2) , (B.12)

where in the last line we have used (B.9). We have also absorbed any integration function

of z into γzz so that δγzz(0, z) = 0.

In this form, we have arrived at the metric (3.29) and the equation (3.33).

C Far-zone Schwarzschild field from the effective stress tensor

In this appendix we show how the effective stress tensor (3.64) yields the correct field for

the large-n Schwarzschild solution, when this is obtained as a solution of the p = 1 effective

equation (3.39) of the form

r0(z) = rh , R(z) = rh

√
1− z2

r2
h

. (C.1)

We want to recover the large n linearized field of the Schwarzschild black hole as the

field created by a line source (a string) along the segment z ∈ [−rh, rh], with an energy

density (3.64) of the form

〈Ttt(z)〉 =
nΩn+1

16πG
rnh

(
1− z2

r2
h

)(n+1)/2

. (C.2)

At finite n such a string segment would give rise not just to a spherically symmetric

monopolar field but also to higher multipoles. However we will see presently that when

n→∞ these multipoles become subdominant.

In the linearized approximation we need to consider the Newtonian potential created

by this linear mass distribution. For a point mass source, the solution of

∇2Φ = 16πGMδ(n+3)(x) (C.3)

in the cylindrical coordinates of (3.39) is

Φ = − 16πGM

(n+ 1)Ωn+2

1

(r2 + z2)(n+1)/2
. (C.4)
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Hence, for the source (C.2) along the segment y ∈ [−rh, rh] we have

Φ(r, z) = −Ωn+1

Ωn+2
rnh

∫ rh

−rh
dẑ

(1− ẑ2/r2
h)(n+1)/2

(r2 + (z − ẑ)2)(n+1)/2
. (C.5)

We are in the far-zone outside ΣB and therefore at r2 + z2 > r2
h (1 +O(1/n)). Therefore

in the region near the tip of the segment along r = 0, we have |z| − rh > rh/n. due to the

numerator, at large n the integrand is always strongly peaked around ẑ2/r2
h . 1/n and we

can use the saddle point approximation. A simple way to do the calculation is by writing

ẑ2

r2
h

≈ x2

n
(C.6)

so that

Φ(r, y) ≈ −Ωn+1

Ωn+2
rnh

rh√
n

∫ ∞
−∞

dx
e−x

2/2

(r2 + (z − rhx/
√
n)2)

(n+1)/2

≈ −Ωn+1

Ωn+2
rnh

rh√
n

1

(r2 + z2)(n+1)/2

∫ ∞
−∞

dx e−x
2/2

≈ −
rn+1
h

(r2 + z2)(n+1)/2
(C.7)

where we have used that, at large n,

Ωn+2 ≈
√

2π

n
Ωn+1 . (C.8)

eq. (C.7) is the correct linearized field of the Schwarzschild black hole in cylindrical coordi-

nates in D = n+4 dimensions. The essential point is that at large n the main contribution

comes from the energy density near |z| . 1/
√
n, i.e., a point-like source, while the higher

multipoles of field of the rest of the segment are strongly suppressed.

D Black cavities?

Taking the + sign in (4.10), the exterior of the black hole is reversed relative to black

droplets. We refer to these putative solutions as ‘black cavities’, since they describe a

spherically symmetric region of space enclosed inside a horizon. An example of what we

mean by this is given by the deSitter foliation of AdS spacetime,11

ds2 =
`2

z2

(
dz2

1 + z2/`2
−
(

1− ρ2

`2

)
dt2 +

dρ2

1− ρ2

`2

+ ρ2dΩn+1

)
. (D.1)

This metric describes a region inside a horizon at ρ = `, which extends in the z-direction

from the boundary at z = 0 until it closes off in the bulk at z → ∞. In (D.1), however,

there are no large radial gradients ∼ D close to the horizon, so this is generically different

than the solutions we study here (even though ρ = ` is a minimal surface with K = 0).

11We thank Hong Liu for a discussion of this example.
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Figure 3. ‘Black cavity’ (?) solutions for fixed surface gravity (κ̃ = 1/2). The AdS boundary

z = 0 is at the top, and z increases towards the bottom. The exterior of the horizon is the region

that extends towards smaller z (i.e., reversed relative to figure 1), so at the boundary, the exterior

of the black hole is the region 0 ≤ r < rb. The solutions correspond to rb = 0.15, 0.5, 1, 2, 5.

As in the case of black droplets, there is a one-parameter family of solutions to (4.10)

with + sign, labeled by λ in (4.8). They range from λ = 0 for the half-spherical cap (4.5)

to λ → ∞ for the black brane at z = 1/(2κ̃). In figure 3 we plot some of them, keeping

fixed the surface gravity and varying the boundary horizon radius rb. As rb increases, the

horizon grows in directions parallel to the boundary. The solutions resemble an AdS black

brane with a horizon that is almost planar for r � rb, but as r approaches rb, it bends

towards the boundary and meets it at r = rb.

It is not clear whether such solutions can be completed into far-zone geometries that

are regular, in particular along the line r = 0 at the origin of the Sn+1. In principle one

can fix arbitrarily the geometry at the AdS boundary, and it may be possible to write

down boundary geometries with the required behavior, namely, a boundary geometry that

is regular on and inside a horizon of finite radius r = rh, and which develops large radial

gradients close to the horizon, as required for the large D expansion. If such a boundary

geometry can be found, it must admit an extension into the bulk. If this is regular in

the cavity enclosed by the bulk horizon, then one might legitimately characterize it as a

‘black cavity’.
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