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A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer
(with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star
polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The
cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a
cationic 1-armpolymer.These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.

1. Introduction

Since the discovery of RNA interference (RNAi) [1] and the
achievement of gene silencing by synthetic small interfering
RNAs (siRNAs) [2], siRNA has become established as a
new tool for silencing target genes. siRNAs have, therefore,
been widely recognized as novel potential therapeutics. To
date, there has been considerable effort to develop siRNA
therapeutics for treating viral infections and cancers [3].
For siRNA therapeutic applications, appropriate gene carriers
are required because naked siRNA is readily degraded by
nucleases. Moreover, siRNAs are too large and hydrophilic
to cross cell membranes without a delivery method [4, 5].
To successfully deliver siRNAs, the carriers must penetrate
biological barriers. Therefore, the development of gene car-
riers to efficiently deliver siRNAs remains an important
challenge.

Various types of carriers for nucleic acids and other
macromolecules have been developed, including viruses,
nanoparticles, lipids, and polymers [6–9]. Though viral
carriers are undeniably the most efficient for gene delivery,
their use is encumbered by potential safety issues such as
pathogenicity and immunogenicity.This has prompted devel-
opment of nonviral carriers using biocompatible materials.

Among themost commonly used polymer building blocks for
these carriers are poly(ethylene glycol) [10, 11], poly(peptoid)s
[12–14], and poly(amino acid)s [15].

Among materials under development for use as gene
carriers, polysaccharides are one of the most promising
because of low toxicity, biocompatibility, and biodegrad-
ability. Examples include amylopectin [16], chitosan [17],
dextran [18], cellulose [19], pullulan [20], and schizophyllan
[21]. We have described several series of spermine-modified
cycloamylose derivatives that effectively delivered pDNA,
siRNA, and CpG DNA in vitro and in vivo [22–24].

Amylose, a linear 𝛼(1, 4) glucan with low polydispersity,
can be enzymatically synthesized. We previously reported
that a series of amylose-based star polymers can be prepared
chemoenzymatically [25]. Spermine-modified 8-armed amy-
lose star polymer, through its multivalent interactions with
DNA, effectively catalyzed DNA strand exchange reactions.
This multivalent character is also an important feature for
a siRNA carrier. siRNA has a lower molecular weight than
pDNA and strong interactions between the carrier and the
siRNA would be required to form stable and compact com-
plex nanoparticles.We therefore decided to take advantage of
these properties and investigate amylose-based star polymers
as potential siRNA carriers.
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In this study, we report that a spermine-modified
amylose-based star polymer acts as a siRNA carrier. siRNA-
polymer complexes were characterized with respect to their
sizes and charge ratios. In addition, their cytotoxicity and
cellular uptake were evaluated by WST-8 assay and confo-
cal laser-scanning microscopy (CLSM), respectively. Finally,
delivery of a vascular endothelial growth factor specific
siRNA (denoted by siVEGF) was evaluated at the mRNA
level. For comparison, a monoarm glycopolymer with the
same degrees of polymerization (D.P.) as the amylose arm of
the star polymers was also characterized and evaluated for
siRNA transfection efficiency.

2. Materials and Methods

2.1. Synthesis of Cationic Glyco-Star Polymers. Glycopoly-
mers with a degree of polymerization of about 60 per arm
were synthesized as described previously [25]. Spermine-
modified glycopolymerswere prepared by a conventional 1,1󸀠-
carbonyldiimidazole method. Briefly, carbonyldiimidazole
(0.025 g) in DMSO (15mL) was added dropwise to a solution
of 8-arm glycopolymer (C8A, 0.10 g) in 10mL dry DMSO
at room temperature under argon and the reaction mixture
was stirred for 5 h at room temperature. Spermine (0.32 g)
in DMSO (10mL) was then added to the reaction mixture
and the mixture was stirred for 18 h at room temperature.
The reaction solution was dialyzed against distilled water in a
dialysis membrane (1000 MWCO) for 3 days and lyophilized
to yield the solid products. One-arm cationic glycopolymer
(C1A) was synthesized in an analogous manner.

2.2. siRNA and siRNA/Cationic Polymer Complexes. The
siRNA species used were siRNA targeting murine VEGF
(5󸀠-CAG CUU GAG UUA AAC GAA CGU ACU U-3󸀠,
5󸀠-AAG UAC GUU CGU UUA ACU CAA GCU G-3󸀠),
denoted by siVEGF; nonsense siRNA (MISSION siRNA
Universal Negative Control, Sigma-Aldrich, St. Louis, MO,
USA), denoted by siCont; and Alexa488-labeled negative
control siRNA (Invitrogen, Thermo Fisher Scientific, Grand
Island, NY, USA).

To form siRNA/cationic polymer complexes, each siRNA
(0.30 nM) and each cationic polymer (0.13 nM) was mixed
gently and incubated for 30min at room temperature.

2.3. Size and Zeta Potentials. Dynamic light scattering (DLS)
and zeta potential (𝜁) measurements were performed using
a Malvern Zetasizer nano ZPS (Malvern Instruments Inc.,
USA) and data analyzed using Malvern software.

2.4. Transmittance Electron Microscopy (TEM). Morphology
of siRNA/cationic polymers complexes was observed with a
TEM (HT-7700, Hitachi, Japan) at an acceleration voltage of
100 kV and a beam current of 20𝜇A. Complexes were stained
prior to TEM with 1 wt% phosphotungstic acid.

2.5. Confocal Laser-ScanningMicroscopy (CSLM). Renca cells
were cultured in glass bottom culture dishes at a density of 1
× 105 cells per dish at 37∘C in 5% CO

2
/95% humidified air.

After 24 h incubation, Alexa488-labeled siRNA/cationic
polymer complexes were added. After 24 h, cells were
observed with LSM 780 confocal fluorescence microscope
(Carl Zeiss, Jena, Germany).

2.6. Cytotoxicity Assay. Renca cells were seeded at a density
of 1 × 104 cells/well on 96-well plates for 24 h in RPMI1640
medium supplemented with 100U/mL penicillin, 100𝜇g/mL
streptomycin, and 10% FBS in advance. The culture media
were replaced with fresh medium, and the polymers or
siRNA/the polymer complexes were applied. After 24-hour
incubation, the cell cytotoxicity was evaluated with Cell
Counting Kit-8 (Dojin, Japan) according to the manufac-
turer’s instructions. The absorbance was measured using a
microplate readerwith a filter of 450 nm.The cell viability was
determined as a percentage of the absorbance of nontreated
cells. The results were expressed as mean and standard
deviation obtained from three samples.

2.7. siRNA Transfection In Vitro and RNA Isolation. Renca
cells, cultured in RPMI1640 medium supplemented with
100U/mL penicillin, 100 𝜇g/mL streptomycin, and 10% FBS,
were seeded into 12-well tissue culture plates (1 × 105 cells
per well) at 37∘C in 5% CO

2
/95% humidified air. After

24 h, siRNA/cationic polymer complexes, at concentrations
as indicated in the figures, were added to the cells and
incubation was continued under standard culture conditions.
After 24 hours, total RNA was collected by RNeasy Micro Kit
(Qiagen) according to the manufacturer’s instructions.

2.8. Quantitative Real-Time PCR. Formeasurement of VEGF
RNA expression, q-PCR was performed using LightCycler
480 Probe master (Roche). For the detection of VEGF
mRNA, cDNA was synthesized from 500 ng of total RNA
using the reverse reaction kit (ReverTra Ace qPCRRTMaster
Mix (Toyobo, Japan)) with the manufacturer’s instruction. A
LightCycler 480 Real-Time PCR System (Roche) was used for
quantitative mRNA detection. The relative expression levels
ofmRNAwere normalized to the expression of 18S ribosomal
RNA.The expression of the genewas quantified bymeasuring
cycle threshold (Ct) values and normalized using 2−ΔΔCt Ct
method relative to 18S ribosomal RNA.

3. Results and Discussion

Glycopolymers were prepared by a chemoenzymatic method
as reported previously [25]. Cationic spermine groups were
introduced to the glycopolymers by a carbonyldiimidazole-
mediated amide coupling reaction between the primary
alcohol groups of amylose and the amino groups of spermine.
The degree of substitution was about 30 spermine residues
per 100 glucose units of the polysaccharide. The spermine
functionalized mono- and octa-armed glycopolymers are
denoted by C1A and C8A, respectively (Figure 1).

Polymer solutions in phosphate buffered saline (PBS, pH
7.4) were characterized with DLS and zeta potential analysis.
The hydrodynamic diameters of C1A and C8A in PBS were
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Figure 1: Chemical structures and illustrations of spermine-modified glycopolymers.

7 and 10 nm, respectively. The 𝜁 potentials of C1A and C8A
were +6mV and +7mV, respectively.

siRNA/C1A and siRNA/C8A complexes were prepared
as described in Materials and Methods by mixing siRNA
in nuclease-free H

2
O with the appropriate volumes of C1A

or C8A solution (1.0mg/mL), such that C/P ratios (ratio of
cationic group in the glycopolymer to phosphate group in
DNA) were 1.3. The size distributions and 𝜁 potentials of
the resulting complexes were determined (Figure 2). Both
complexes showed a positive 𝜁 potential (5–12) at C/P = 1.3.
The siRNA/C8A complexes had an average hydrodynamic
diameter of 234 ± 0.8 nm. In contrast, the siRNA/C1A
complexes had an average hydrodynamic diameter of 575 ±
48 nm. By TEM observation, both complexes were spherical
objects with size distributions comparable to what was found
by DLS analysis. Compared with C1A, C8A had highly
localized positive charges. This characteristic enables C8A to
bind strongly to RNA. In fact, the binding affinity of C8A
to DNA (20 base pairs) is 44 times greater than that of C1A
[25].The higher affinity of C8A for nucleic acids is believed to

explain its formation of smaller complexes, as compared with
those formed with C1A.

Since in vitro cytotoxicity of gene carriers is considered
an important factor of biocompatibility, we investigated that
cytotoxicity of our polymers with concentrations varied
from 0 to 50 𝜇g/mL by WST-8 assay. As shown in Figure 3,
exposure of the cells to the cationic polymers led to a slight
decrease in cell viability (greater than 80%) for all polymer
concentrations tested. Moreover, siRNA/cationic polymer
complexes with various C/P ratios also showed no significant
toxicity.

Cellular uptake of siRNA and siRNA/cationic polymer
complexes was then investigated in Renca cells with confocal
laser-scanning fluorescence microscopy (CLSM). C1A and
C8A solutions were mixed with Alexa488-labeled siRNA at a
C/P of 1.3 and incubated for 30min at room temperature.The
resulting solutions were added to Renca cells and incubated
in culture medium, as described in Materials and Methods,
for 24 h. Cellular distributions of Alexa488-labeled siRNA,
visualized by confocal laser-scanning microscopy (CLSM),
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Figure 2: Size distributions of siRNA/C1A (a) and siRNA/C8A (b) complexes at C/P = 1.3 in PBS buffer. Inset: TEM images of the complexes.
[polymer] = 0.098𝜇g/𝜇L; [siRNA] = 0.032 𝜇g/𝜇L. The bars in the TEM images represent 1.0𝜇m.
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Figure 3: Cytotoxicity of the cationic polymers and siRNA/polymer complexes ([siRNA] = 0.1 nM). The complexes were incubated with
Renca cells for 24 hours, and cell viability was evaluated by the WST-8 assay.

are shown in Figure 4. Free siRNA was not internalized,
remaining localized outside the cell. In contrast, green fluo-
rescencewas detected in the Renca cells using siRNA/cationic
polymer complexes. Moreover, complexes formed with the
C8A polymer resulted in greater cellular siRNA uptake than
those with the C1A polymer.

Next, we investigated RNAi effectiveness of the C1A-
and C8A-based delivery systems. VEGF mRNA levels were
evaluated by real-time RT-PCR analysis. Renca cells were
treated with siRNA/C1A, siRNA/C8A complexes (C/P =
1.3, [siRNA] = 0.3 nM), and siRNA/lipofectamine 2000 as
a positive control. As shown in Figure 5, VEGF mRNA
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(a) (b) (c)

Figure 4: CLSM images of the glycopolymer delivery of Alexa488-labeled siRNA to Renca cells. (a) Naked siRNA, (b) siRNA/C1A complex,
and (c) siRNA/C8A complex. Both complexes ([C1A] = 0.34 nM; [C8A] = 0.042 nM; [siRNA] = 0.1 nM, C/P = 1.3) were incubated with cells
for 24 h. The bars represent 20 𝜇m.
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Figure 5: Gene silencing effect of nonsense siRNA (siCont)/C1A,
sense siRNA (siVEGF)/C1A, siConc/C8A, siVEGF/C8A, SiCont/li-
pofectamine 2000, and siVEGF/lipofectamine 2000 complexes. [The
polymer] = 5 𝜇g; [lipofectamine 2000] = 2𝜇g. Dose of siRNA
for the cationic polymers was 0.3 nM, while dose of siRNA for
lipofectamine 2000 was 0.1 nM. C/P ratio was 1.3 for the siRNA/the
cationic polymer complexes.

levels were decreased after incubation with siVEGF/C8A
or siVEGF/C1A complexes, relative to those in cells incu-
bated with the corresponding nonsense siRNA complexes.
Therefore, it is clear that both C1A- and C8A-based systems
deliver siRNA into cells, enabling silencing of the target gene.

The gene silencing effect of the C8A-based system (34%
of control mRNA levels) was higher than that of C1A-
based system (52% of control mRNA levels) and was almost
comparable to that of lipofectamine 2000 system. Physical
properties, including size, charge, and shape, of such com-
plexes contribute greatly to cellular uptake efficiency [26,
27]. For the moment, the reason for the difference of the
gene silencing efficiency is not clear. The relative sizes of
the complexes might be attributed to this difference. The
formation of smaller complexes between siRNA and the
C8A polymer, as compared with the C1A polymer, might
enhance cell internalization, leading to higher gene silencing
efficiency.

4. Conclusions

In summary, we have demonstrated the utility of cationic
glyco-star polymers as carriers for siRNA delivery. As com-
pared with C1A, C8A can form more compact complexes
with siRNA. The siRNA/C8A complexes were effectively
internalized by cells and suppressed VEGF mRNA levels by
about 65%. Our results show that the cationic glyco-star
polymer is a promising platform for siRNA delivery.
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