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Porous coordination polymers with ubiquitous
and biocompatible metals and a neutral
bridging ligand
Shin-ichiro Noro1,2,3,4, Junya Mizutani2, Yuh Hijikata5, Ryotaro Matsuda3,6, Hiroshi Sato6, Susumu Kitagawa6,

Kunihisa Sugimoto7, Yasutaka Inubushi8,w, Kazuya Kubo1,2 & Takayoshi Nakamura1,2

The design of inexpensive and less toxic porous coordination polymers (PCPs) that show

selective adsorption or high adsorption capacity is a critical issue in research on applicable

porous materials. Although use of Group II magnesium(II) and calcium(II) ions as building

blocks could provide cheaper materials and lead to enhanced biocompatibility, examples

of magnesium(II) and calcium(II) PCPs are extremely limited compared with commonly

used transition metal ones, because neutral bridging ligands have not been available

for magnesium(II) and calcium(II) ions. Here we report a rationally designed neutral and

charge-polarized bridging ligand as a new partner for magnesium(II) and calcium(II) ions. The

three-dimensional magnesium(II) and calcium(II) PCPs synthesized using such a neutral

ligand are stable and show selective adsorption and separation of carbon dioxide over

methane at ambient temperature. This synthetic approach allows the structural diversification

of Group II magnesium(II) and calcium(II) PCPs.

DOI: 10.1038/ncomms6851 OPEN

1 Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan. 2 Graduate School of Environmental Earth Science, Hokkaido
University, Sapporo 060-0810, Japan. 3 PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan. 4 Creative
Research Institute (CRIS), Hokkaido University, Sapporo 001-0021, Japan. 5 Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University,
Chikusa-ku, Nagoya 464-8602, Japan. 6 Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan. 7 Research and
Utilization Division, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan. 8 Synthesis Research Laboratory, Kurashiki Research Center,
Kuraray Co. Ltd., Sakazu, Kurashiki, Okayama 710-0801, Japan. w Present address: EVAL Research and Development Department, EVAL Division, Vinyl
Acetate Company, Kuraray Co. Ltd., 7471, Tamashimaotoshima, Kurashiki, Okayama 713-8550, Japan. Correspondence and requests for materials should be
addressed to S.-i.N. (email: noro@es.hokudai.ac.jp) or to T.N. (email: tnaka@es.hokudai.ac.jp).

NATURE COMMUNICATIONS | 6:5851 | DOI: 10.1038/ncomms6851 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:noro@es.hokudai.ac.jp
mailto:tnaka@es.hokudai.ac.jp
http://www.nature.com/naturecommunications


P
orous coordination polymers (PCPs) or metal-organic
frameworks (MOFs) constructed from metal ions and
organic bridging ligands have attracted much attention as

intriguing porous materials because of their high structural
regularity and diversity, easy modification of frameworks, high
porosity and structural flexibility1–13. One of the main trends in
work on these materials is the development and improvement of
their porous functions, such as storage14,15, separation16–18 and
catalysis19–21. Towards industrial and biological applications,
however, we must consider costs and safety of PCPs in addition
to their porous performances. Generally, first-transition-row
divalent metal ions such as Co(II), Ni(II), Cu(II) and Zn(II)
have been utilized as metal sources of PCPs. On the other hand,
Group II metal ions, Mg(II) and Ca(II), belonging to the light
metal ions are in abundant supply on the Earth and
biofriendly22,23. If Group II Mg(II) or Ca(II) ions are
embedded in PCP frameworks instead of first-transition-row
metal ions, the resulting PCPs could become cheaper and have
higher biocompatibility.

Nevertheless, the examples of Mg(II) and Ca(II) PCPs are
extremely limited to date compared with transition metal
PCPs23–29, because neutral bridging ligands have not been
available for the construction of Group II Mg(II) and Ca(II)
PCPs. Transition metal ions are classed as medium acids
according to the hard and soft acids and bases theory.
According to this theory, a variety of organic bridging ligands
containing anionic carboxylate or imidazolate, and neutral
pyridine or imidazole units, tend to be coordinated to them,
which makes the PCP frameworks diversified. Furthermore, the
combination of anionic and neutral organic bridging ligands is
much more effective in diversifying transition metal PCP
frameworks. By contrast, Mg(II) and Ca(II) ions are hard acids
and, therefore, organic ligands with hard basicity, that is, anionic
multicarboxylates have been their sole partners. This is one of the
reasons why Mg(II) and Ca(II) PCPs have not been thoroughly
investigated.

To overcome this problem, we introduce a new partner, 4,40-
bipyridine-N,N0-dioxide (bpdo), which is a neutral and charge-
polarized bridging ligand with pyridine-N-oxide (pyo) moieties,
to Group II Mg(II) and Ca(II) ions. Although the structure of the
neutral bpdo ligand is similar to that of the neutral ligand 4,40-
bipyridine (4,40-bpy), we expect that it can coordinate to hard
Group II Mg(II) and Ca(II) ions through negatively charged
oxygen atoms with hard basicity, despite a totally neutral ligand
(Fig. 1a). In this study, using the neutral and charge-polarized
bridging ligand bpdo, we demonstrate rational design and
syntheses of Mg(II) and Ca(II) PCPs connected by neutral
organic ligands. The resulting Mg(II) and Ca(II) PCPs, which are
the uncommon examples including neutral bridging ligands, are
stable after the removal of guest molecules and show selective
adsorption and separation of CO2 over CH4 at
ambient temperature. Our finding contributes to the structural
diversification of PCP frameworks with ubiquitous and biocom-
patible metals.

Results
Charge distribution. First, we evaluated the hard basicity of the
bpdo ligand. Generally, the bond between a hard acid and a hard
base is dominated by an ionic interaction. The bpdo ligand has
two coordinated oxygen atoms, which are better coordination
sites for hard acids than nitrogen atoms because of their larger
negative charge. We calculated the charge distribution of a bpdo
ligand with other typical and similar organic ligands, pyo,
4,40-bpy, benzoate (bza� ) and 4,40-biphenyldicarboxylate
(4,40-bpdc2� ) to compare the strengths of ionic interactions. It is

well known that pyo and their derivatives show a variety of
resonance structures. We investigated which resonance structures
mainly contribute to the actual structure. Figure 1b shows five
resonance structures of a pyo derivative and Fig. 1c shows
electron occupation numbers for each bond and natural bond
orbital (NBO) charges for each atom in bpdo, which were
obtained by the density functional theory. The negative charges
are localized on the oxygen atoms, and little p-bond character is
observed between the nitrogen and oxygen atoms, supporting the
main contribution of the resonance structures (I), (II) and (III).
Figure 1d and Supplementary Fig. 1 show NBO charges. The
oxygen atoms of the neutral bpdo and pyo ligands have negative
charges of � 0.543 e and � 0.568 e, respectively, which are
smaller than those for anionic carboxylate-type bza� and 4,40-
bpdc2� ligands (� 0.795 e and � 0.805 e, respectively) but larger
than the negative charges of the nitrogen atoms of the neutral
4,40-bpy ligand (� 0.446 e). All calculation results conclude that
the neutral ligands with pyo moieties should act as stronger hard
bases than 4,40-bpy and be good partners for hard Group II
Mg(II) and Ca(II) ions.

Structural characterization. To experimentally prove this new
strategy, we next attempted to synthesize Group II Mg(II) and
Ca(II) coordination polymers using the neutral bpdo ligand. The
reaction of Mg(AcO)2�4H2O with bpdo yielded the two-dimen-
sional coordination polymer [Mg2(AcO)4(bpdo)]n (1). Further,
the reaction of MgCl2�6H2O or Ca(NO3)2�4H2O with 1,4-ben-
zenedicarboxylic acid (1,4-H2bdc) and bpdo in N,N-dimethyl-
formamide (DMF) afforded the three-dimensional PCPs,
{[Mg2(1,4-bdc)2(bpdo)]�2DMF}n (2*2DMF) and {[Ca(1,4-
bdc)(bpdo)]�0.5DMF}n (3*0.5DMF). As expected, 1,
2*2DMF and 3*0.5DMF included the neutral bpdo ligands
that bridge the metal centres. The crystal structures of 1,
2*2DMF and 3*0.5DMF were determined using single-crystal
X-ray crystallography at 173 K. 1 has an octahedral Mg(II)
environment with four AcO� oxygen atoms and two bpdo
oxygen atoms. The Mg–O(AcO� ) bond distances (2.017(6)–
2.085(6) Å) are slightly shorter than the Mg–O(bpdo) bond dis-
tances (2.154(4) and 2.161(4) Å). The Mg(II) centres are bridged
by two carboxylate parts and one pyo part to form one-dimen-
sional Mg(II) chains with the corner-shared MgO6 octahedral
units running along the b-axis. These one-dimensional chains are
further linked by bpdo ligands, resulting in the two-dimensional
coordination network (Fig. 2a).

In 2*2DMF, the Mg(II) centre has an octahedral environ-
ment with four 1,4-bdc2� oxygen atoms and two bpdo oxygen
atoms (Fig. 2b). The corner-shared MgO6 octahedral units
interconnected by both organic moieties form infinite chains
(Supplementary Fig. 2). These chains are further bridged by both
bpdo and 1,4-bdc2� ligands, affording a three-dimensional
porous coordination framework with one-dimensional channels
(Fig. 2c, channel size: 4.5� 4.1 Å2) occupied by guest DMF
molecules. The accessible volume of the fully desolvated 2 is ca
35.6%, which was calculated using the PLATON programme
(probe radius: 1.2 Å)30.

In 3*0.5DMF, the Ca(II) centre has an octahedral environ-
ment with four 1,4-bdc2� oxygen atoms and two bpdo oxygen
atoms arranged in a cis conformation (Fig. 2d). The CaO6

octahedral units are interconnected by two carboxylate parts to
form one-dimensional Ca(II) chains (Supplementary Fig. 3).
These chains are bridged by 1,4-bdc2� ligands, affording two-
dimensional layers parallel to the ac plane. These layers are
further connected by bpdo ligands, forming a three-dimensional
porous coordination framework with one-dimensional channels
(Fig. 2e, channel size: 3.4� 3.2 Å2) that contain guest DMF
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molecules. From the calculation using the PLATON programme,
the accessible volume of the fully desolvated 3 was found to be ca
21.1%, smaller than that in 2 (ref. 30).

It was confirmed from theoretical and experimental results that
the neutral organic bpdo ligand has hard basicity and is a good
partner to hard Group II Mg(II) and Ca(II) ions. It should be
noted that the NBO charge of oxygen atoms in the bpdo ligand
(� 0.543 e) is considerably smaller than � 1 e, which is the
maximum value when only the resonance structures of (I), (II)
and (III) contribute to the electronic structure of bpdo. This
means that the negative charge on the oxygen atoms of the bpdo
ligand may further increase by ionic interactions with cationic
Group II metal ions. To clarify this, infrared spectra were
measured (Supplementary Figs 4 and 5); these showed that the
N–O stretching band of bpdo in 2*2DMF (1,225 cm� 1) shifts

to a lower wavenumber than that of free bpdo ligand
(1,242 cm� 1), suggesting an enhanced single bond character
and negative charge accumulation by coordination to Mg(II) ions.
Furthermore, the NBO charge of the model structure of 2,
[Mg4(bza)4(OH)4(bpdo)(H2O)8] (Supplementary Fig. 6), was
calculated. As shown in Supplementary Fig. 7, the coordinated
bpdo ligand has oxygen atoms with an NBO charge of � 0.660 e,
21.5% higher than that of coordination-free bpdo, whereas the
NBO charge of the oxygen atoms in the carboxylate ligand,
bza� , is only changed by � 1.1 to 2.1% before and after the
coordination, indicating that the hard basicity of the bpdo ligand
indeed increases by coordination to cationic Group II Mg(II)
ions. The N–O bond of bpdo in the model structure increases
in length by further negative charge accumulation on bpdo
oxygen atoms (Supplementary Table 1). On the other hand, the
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Figure 1 | Designing organic ligands for magnesium(II) and calcium(II) porous coordination polymer. (a) New neutral partner, 4,40-bipyridine-N,N0-

dioxide (bpdo), for hard Group II Mg(II) and Ca(II) ions. (b) Five resonance structures in a pyridine-N-oxide derivative. (c) Electron occupation numbers for

each bond and natural bond orbital (NBO) charges for each atom in bpdo. (d) NBO charges for selected atoms in organic bpdo, 4,40-bipyridine and

4,40-biphenyldicarboxylate ligands.
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corresponding N–O stretching band position in 3*0.5DMF
(1,240 cm� 1) is almost the same as that of the free bpdo ligand,
because a Ca(II) ion (effective ion radius: 1.00 Å (ref. 31)) with
lower charge density than a Mg(II) ion (effective ion radius:
0.720 Å (ref. 31)) cannot induce further charge accumulation.
These results indicate that 2 has more polar channels than 3,
which affects the adsorption properties (vide infra).

Framework stability. To evaluate the framework stability, ther-
mogravimetry-differential thermal analyses (TG-DTA) and
powder X-ray diffraction (XRD) analyses of the desolvated 2 and
3 were performed. 2 was prepared by heating the EtOH-
exchanged sample at 373 K under vacuum, whereas 3 was
obtained by the direct removal of DMF molecules from

3*0.5DMF at 423 K under vacuum. TG-DTA analysis suggests
that 2 and 3 are stable up to 573 and 473 K, respectively
(Supplementary Figs 8 and 9). The powder XRD patterns of the
desolvated 2 and 3 (Supplementary Figs 10 and 11) show that the
original frameworks are stable after the removal of guest
molecules.

Porosity. We first measured the adsorption/desorption isotherms
for N2 and CO2 at low temperature to investigate the fundamental
porous properties. 1 shows no CO2 adsorption at 195 K
(Supplementary Fig. 12), consistent with the fact that 1 has no
permanent pores in the X-ray crystal structure. In the PCPs 2 and
3, CO2 and N2 gases are adsorbed (Supplementary Figs 13 and 14).
The N2 adsorption isotherms show type-I curves, indicative of
permanent micropores. The Dubinin–Radushkevich plots give the
micropore volumes of 0.19 and 0.085 cm3 g� 1 for 2 and 3,
respectively. The CO2 adsorption/desorption isotherms in 3 also
show type-I curves, whereas 2 shows a stepwise adsorption curve
(Supplementary Fig. 14). Coincident infrared/adsorption mea-
surements were performed for various CO2 pressures at 195 K to
confirm the structural change. If the structural change occurs, an
increase in infrared intensity at one point should be observed, with
a decrease in infrared intensity at another point. In 3, the inten-
sities of bands derived from the framework decrease with
increasing adsorption (Supplementary Fig. 15), whereas the
intensities of some bands increase at first and second adsorption
events in 2 (Supplementary Fig. 16), suggesting the structural
change of 2 associated with first and second CO2 adsorption. To
investigate the structural changes of 2 in more detail, coincident
XRD/adsorption measurements were conducted. Upon CO2

adsorption and desorption, pronounced changes in the XRD
patterns were observed (Fig. 3 and Supplementary Fig. 17). The
XRD pattern does not change dramatically in the initial CO2

adsorption (ads1 to ads5). After ads5, the XRD pattern changes
and the structural change finishes at ads10. The structure again
begins to change after ads12, and the peak positions in the XRD
pattern at ads19 where the second adsorption event is completed
are similar to those of the desolvated 2. Further gradual CO2

adsorption after ads19 leads to the slight structural change. In the
desorption process, the reverse change in the XRD patterns was
observed. Because the crystal structure and the change in the XRD
patterns upon CO2 adsorption and desorption in 2 are similar to
those observed in [Cr(OH)(1,4-bdc)]n (MIL-53)32, we speculate
that the pore contraction and re-expansion occur during CO2

adsorption/desorption in 2 (Supplementary Fig. 18).

Adsorption selectivity. The low-pressure CO2, CH4, N2, O2, Ar
and H2 adsorption isotherms for 2 at 298 K are compared in
Fig. 4a. 2 adsorbs very small amounts of N2, O2, Ar and H2, and a
small amount of CH4 at 298 K. On the other hand, the uptake of
CO2 at 97 kPa is B12 times higher than the uptake of N2. The
effective interaction with polar CO2 gas causes a high selectivity
for the adsorption of CO2 over other gases, which is a prerequisite
for the application of a separation material. The adsorption of gas
mixtures in porous materials can be reliably estimated from the
ideal adsorbed solution theory (IAST), which is a precise method
used to describe gas-mixture adsorption in representative zeolites
and PCPs from the experimental single-component gas adsorp-
tion isotherms33. The predicted adsorption selectivities for CO2/
CH4 and CO2/N2 for a bulk gas composition of CO2:CH4¼ 40:60
(typical composition of biogas) and CO2:N2¼ 10:90 (typical
composition of flue gas) are 21–16 and 87–67, respectively
(Fig. 4b), high enough (48) for the potential feasibility of the
practical procedure34. The IAST selectivity for other
compositions (including typical compositions in the air or

Figure 2 | Crystal structures. (a) Two-dimensional structure of 1. (b)

Coordination environment around the Mg(II) centre in 2*2DMF

(DMF¼N,N-dimethylformamide). (c) Porous structure in 2*2DMF (the

guest DMF molecules are omitted). (d) Coordination environment around

the Ca(II) centre in 3*0.5DMF. (e) Porous structure in 3*0.5DMF (the

guest DMF molecules are omitted). In a,b and d, the hydrogen atoms are

omitted for clarity. Green represents magnesium; orange, calcium; red,

oxygen; blue, nitrogen; grey, carbon and white, hydrogen.
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ternary mixture) is also high (Supplementary Figs 19–24). In
addition, high-pressure adsorption measurements were
performed at 298 K (Fig. 4c,d), which confirmed the favourable
adsorption of CO2 and C2 hydrocarbons (C2H6 and C2H4)
relative to CH4 (see Supplementary Figs 25 and 26). The IAST

selectivity of CO2 relative to CH4 is still larger than 8 for 2 and
slightly smaller than 8 for 3 (Fig. 4e), indicating the practical
implementability for biogas purification (vide infra).

Recently, Snurr et al. have used five adsorbent evaluation
criteria from the chemical engineering literature for the potential
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use of PCPs/MOFs in CO2 separation processes35. We focus on
flue gas separation, which is currently an important research area.
The typical composition of flue gas, that is, the CO2/N2 ratio, is
assumed to be 10:90 and the adsorption/desorption pressures are
set to 100/10 kPa, respectively. Based on this condition, 2 was
evaluated and compared not only with other PCPs/MOFs but also
with commercially available inorganic and organic adsorbents
(see Supplementary Table 2). As shown in Supplementary
Table 2, 2 has high working capacity (or regenerability) and
selectivity under these conditions, resulting in a high sorbent
selection parameter (S) that combines the working capacity and
the adsorption selectivity. The S value obtained (314) is
considerably higher than those of zeolites (163 for zeolite 5A
and 128 for zeolite 13X) and one of the best among the PCPs/
MOFs.

The regenerability of the CO2 adsorption process in 2 was
measured at 298 K (Supplementary Fig. 27). Significantly, the
CO2 adsorption ability of 2 is maintained over repeated cycling,
and the material can be regenerated by short vacuum processing
without additional heating, in contrast to zeolites, which require
high temperatures for complete regeneration (Supplementary
Figs 28 and 29). The isosteric heat of CO2 adsorption, Qst, shows
values 32–36 kJ mol� 1 (zero-coverage Qst¼ 34.9 kJ mol� 1,
Supplementary Fig. 30), which are smaller than those of amine-
functionalized PCPs and zeolites36,37. Such a moderate Qst value
is a strong advantage for the implementation of low-energy
regeneration for CO2 separation.

To evaluate the gas separation ability of adsorbents, it is
important to study not only the single-gas adsorption properties
and IAST simulation under equilibrium conditions, but also
mixed gases under flowing (kinetic) conditions. Thus, we
conducted a breakthrough experiment, which is a typical way
of evaluating the gas separation ability of adsorbents under
flowing gas conditions that are related to the pressure swing
adsorption (PSA) process. We measured the gas separation
properties of 2 and 3 for the CO2:CH4¼ 40:60 mixture at
298 K and under a total pressure of 0.8 MPa. The separation of
CO2 from CO2/CH4 mixtures in biogas has become increasingly
important in recent times. The PSA process is a well-known
technology and the selective binding of the target gas and
gas adsorption kinetics are important factors in the design of
adsorbent materials. PSA typically runs at ambient temperature
and under a total pressure of 0.4–0.8 MPa, and the cycle
time is several minutes. As shown in Fig. 5, the gas detected
first by gas chromatography was CH4 only, with no detection
of CO2, indicating high selectivity for CO2 over CH4

under flowing conditions. After a few minutes, the process
reached the breakpoint, and then returned to the original gas
ratio. It therefore seems that 2 and 3 have favourable
characteristics for CO2 capture, yielding good separation
behaviour.

Although high water stability and hydrophobicity are also one
of important factors in using gas separation materials under
practical conditions, syntheses of PCPs/MOFs showing high CO2

selectivity and no degradation of frameworks under humid
environments have been just started38–40. Here we tested the
stability of frameworks after exposure of 2 and 3 to water vapour.
2 adsorbs a large amount of H2O (Supplementary Fig. 31), and
the adsorbed amount of CO2 in 2 after the H2O adsorption shows
a decrease of 65% compared with the as-synthesized 2
(Supplementary Fig. 32), suggesting that 2 is not stable in
humid conditions. On the other hand, a few amount of H2O is
adsorbed to 3 at 37% relative humidity, and the adsorbed amount
of CO2 is unchanged after the H2O adsorption experiment
(Supplementary Fig. 33), indicating higher water stability of 3
than 2. However, it is necessary to further improve the stability to

water and evaluate gas separation properties under humid
conditions.

Discussion
To our knowledge, almost all PCPs with Group II Mg(II) and
Ca(II) ions contain only anionic organic ligands; there are few
examples including bridging neutral organic ligands. 2 and 3 are
the uncommon examples of Group II Mg(II) and Ca(II) PCPs
including bridging neutral organic ligands. Note that we can
use a variety of neutral organic ligands with pyo moieties, as
shown in Supplementary Fig. 34a. In contrast to a monodentate
neutral pyridine ligand, even the most simple pyo ligand is
capable of bridging metal cations because the coordinated oxygen
has two lone-pair electrons. Furthermore, pyo ligands with
carboxylate substituents (for example, pyridine-4-carboxylate-N-
oxide; see Supplementary Fig. 34b) are also useful building
blocks for the construction of Group II Mg(II) and Ca(II) PCPs.
These considerations strongly suggest that our proposed strategy
to use pyo-type ligands will be quite effective for the diversifica-
tion of Group II Mg(II) and Ca(II) PCP frameworks. We can
expect the pyo-type ligands to also be good partners to
monovalent Group I alkali Na(I) and K(I) ions. Although
successful studies on syntheses of coordination polymers with
Group I alkali metal ions have recently been performed using the
neutral cyclodextrin and polyether ligands22,41–43, there are still
few PCPs containing Group I alkali Na(I) and K(I) ions.
Their hard acidity impedes the coordination of neutral organic
ligands, and the monovalence restricts the number of anionic
multicarboxylate ligands (such as 1,4-bdc2� and 1,3,5-
benzenetricarboxylate) coordinating to one Group I alkali Na(I)
and K(I) ion, which causes difficulty in the formation of porous
frameworks. Because of their neutrality and hard basicity, the
pyo-type ligands are good candidates to resolve this problem.
Therefore, we conclude that the structural diversification of
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PCPs with Group I Na(I) and K(I) ions and Group II Mg(II) and
Ca(II) ions that are more abundant on the Earth and more
biofriendly than commonly used transition metal ions would be
realized by utilizing pyo-type ligands.

In conclusion, we succeeded in finding a new partner, charge-
polarized neutral ‘bpdo’ ligand, for Group II Mg(II) and Ca(II)
ions in order to realize the structural diversification of Mg(II) and
Ca(II) PCPs. The bpdo ligand has hard basicity, derived from its
polarized structure, which causes the neutral bpdo to bridge hard
Mg(II) and Ca(II) ions. The obtained Mg(II) and Ca(II) PCPs
with neutral bpdo ligands show sufficient framework stability and
good gas separation ability. Our finding opens up the science and
engineering of PCPs with cheap and biocompatible Group I and
Group II metal ions.

Methods
Materials. All commercially available starting materials were purchased from
Wako Pure Chemical Industries, Ltd., and used as received. The solvents for the
syntheses were used without further purification. bpdo was synthesized according
to the literature44.

Synthesis of [Mg2(AcO)4(bpdo)]n (1). A DMF solution (5 ml) of Mg(A-
cO)2�6H2O (107 mg, 0.50 mmol) and bpdo (94 mg, 0.50 mmol) was heated at 423 K
for 6 h. The obtained colourless microcrystals were filtered, dispersed in a DMF
solution (20 ml) and heated at 373 K for 10 min. The obtained colourless micro-
crystals of [Mg2(AcO)4(bpdo)]n (1) were filtered, washed with MeOH and dried at
298 K under vacuum for 2 h. Yield: 97 mg, 82%. Elemental analysis: Calcd for 1
(C18H20Mg2N2O10): C¼ 45.71; H¼ 4.26; N¼ 5.92. Found: C¼ 44.10; H¼ 4.32;
N¼ 5.44%.

Synthesis of {[Mg2(1,4-bdc)2(bpdo)]�2DMF}n (2*2DMF). A DMF solution
(5 ml) of MgCl2�6H2O (203 mg, 1.00 mmol), 1,4-H2bdc (166 mg, 1.0 mmol) and
bpdo (94 mg, 0.50 mmol) was heated at 423 K for 24 h. The obtained colourless
microcrystals of {[Mg2(1,4-bdc)2(bpdo)]�2DMF}n (2*2DMF) were filtered,
washed with DMF and dried at 298 K under vacuum for 2 h. Yield: 292 mg, 41%.
Elemental analysis: Calcd for 2*1.8DMF�0.6H2O (C31.4H29.8Mg2N3.8O12.4):
C¼ 53.31; H¼ 4.25; N¼ 7.52. Found: C¼ 52.69; H¼ 4.43; N¼ 7.63%.

Synthesis of {[Ca(1,4-bdc)(bpdo)]�0.5DMF}n (3*0.5DMF). A DMF solution
(40 ml) of Ca(NO3)2�4H2O (708 mg, 3.00 mmol), 1,4-H2bdc (498 mg, 3.00 mmol)
and bpdo (1.13 g, 6.00 mmol) was heated at 423 K for 48 h. The obtained colourless
microcrystals of {[Ca(1,4-bdc)(bpdo)]�0.5DMF}n (3*0.5DMF) were filtered,
washed with DMF and dried at 298 K under vacuum for 2 h. Yield: 1.20 g, 97%.
Elemental analysis: Calcd for 3*0.3DMF (C18.9H4.1CaN2.3O6.3): C¼ 54.79;
H¼ 3.43; N¼ 7.78. Found: C¼ 53.44; H¼ 3.68; N¼ 7.73%.

Physical measurements. Elemental analyses (C, H and N) were performed using
a Yanaco CHN corder MT-6. The infrared spectra were recorded using KBr disks
on a Thermo Nicolet 6700 FT-IR spectrometer with a resolution of 4 cm� 1. TG-
DTA analysis was performed using a Rigaku ThermoPlus2/TG-DTA8129 over the
temperature range r.t.–500 �C under a N2 flow at a heating rate of 10 �C min� 1.
Powder XRD data of microcrystals were collected using a Rigaku RINT-Ultima III
diffractometer employing Cu Ka radiation. The adsorption and desorption iso-
therms for CO2 (195, 288 and 298 K), CH4 (298 K), N2 (77 and 298 K), O2 (298 K),
Ar (298 K) and H2 (298 K) were recorded on a BELSORP-max volumetric
adsorption instrument (BEL Japan, Inc., Supplementary Table 3). The adsorption
isotherm measurements for H2O at 298 K were performed using a BELSORP-aqua
volumetric adsorption instrument (BEL Japan, Inc.). The high-pressure adsorption
and desorption isotherms for CO2, CH4, C2H4 and C2H6 (298 K) were measured
with a BELSORP-HP volumetric adsorption equipment (BEL Japan, Inc.,
Supplementary Tables 4 and 5). We estimated the total adsorbed amount using the
simple equation (1)45:

Ntotal ¼ Nex þ rbulkVpore ð1Þ

where Ntotal is the total adsorbed amount, Nex is the surface excess amount, rbulk is
the bulk density of the gases and Vpore is the pore volume of the PCPs. Total
adsorption was calculated using NIST Thermochemical Properties of Fluid
Systems: CO2, CH4, C2H4 and C2H6 densities between 0 and 2,000 kPa were fitted
using a sixth-order polynomial, then multiplied by the pore volume of each
material46. The IAST of Prausnitz and Myers was used to estimate the composition
of the adsorbed phase from pure component isotherm data33. Experimental
isotherm data were fitted to the single-site or dual-site Langmuir–Freundlich model
(Supplementary Table 6). Selectivities were calculated using the following

expression (2):

S ¼ xiyj

xjyi
ð2Þ

where xi is the mole fraction of component i in the adsorbed phase and yi is the
mole fraction of component i in the bulk. The coverage-dependent isosteric heat of
adsorption was evaluated by first fitting the temperature-dependent isotherm data
(288 and 298 K, Supplementary Figs 35 and 36) to a virial-type expression47, which
can be written as follows:

ln P ¼ ln N þ 1
T

Xm

i¼0

aiN
iþ
Xn

i¼0

biN
i ð3Þ

where P is the pressure, N is the quantity of CO2 adsorbed, T is the temperature, ai

and bi are virial coefficients, and m and n are the number of virial coefficients
required for adequate fitting of the isotherms. Then, the isosteric heat of adsorption
was evaluated using the following expression (4):

Qst ¼ �R
Xm

i¼0

aiN
i ð4Þ

where R is the universal gas constant. The zero-coverage isosteric heat of
adsorption is given by:

Qst ¼ �Ra0 ð5Þ
Repeated adsorption measurements were performed at 298 K using the BELSORP-
max. The samples after the adsorption measurement were degassed at 298 K under
vacuum for 1 min and used for the next measurement. Molecular Sieves 13X was used
as a reference sample. Coincident infrared/adsorption measurements were carried out
at 195 K using a JASCO model VIR-200 Fourier transform infrared spectrometer
connected to a BELSORP-18PLUS volumetric adsorption instrument (BEL Japan,
Inc.) with neat samples. Those apparatuses were synchronized with each other and
each infrared spectrum was obtained at each equilibrium point of the adsorption/
desorption isotherms. The initial infrared spectrum before CO2 dosage was used as
the reference for obtaining the background-subtracted spectra. Coincident XRD/
adsorption measurements were performed at 195 K using a Rigaku UltimaIV with Cu
Ka radiation connected to a BELSORP-18PLUS. Those apparatuses were
synchronized with each other and each powder XRD pattern was obtained at each
equilibrium point of the adsorption/desorption isotherms. Breakthrough curve
measurements were performed using a hand-made gas flowing system. The sample
cell was filled with sample powders, and the temperature of the cell was controlled by
a refrigerant circulating system. The gas ratio was CO2:CH4¼ 40:60 (vol) and the
measurements were executed at 0.80 MPa of total pressure at 298 K with a space
velocity of 3 min� 1. The pressure of CO2 was 0.32 MPa.

Computational details. Geometry optimizations of organic ligands and a model of
2 were carried out using density functional theory with the B3LYP functional48–51.
We constructed a finite model based on the X-ray crystal structure of 2, where four
oxygen atoms of bpdo and eight oxygen atoms of bridging carboxylate ligands were
replaced by hydroxide ions and water molecules to retain the coordinative
environments of Mg, as shown Supplementary Fig. 6. In an optimization process,
we fixed the four Mg atoms to the relative positions observed in the crystal
structure, whereas all geometries of organic ligands were optimized. The 6-31G(d,
p) basis sets were employed for all atoms, where one set of diffuse functions was
added to the O atoms in carboxylate ligands, bpdo ligands and hydroxide ions. All
geometry optimizations, NBO analysis and evaluation of NBO atomic charges were
performed using the Gaussian 09 package52.

Crystal structure determination. Single-crystal XRD measurements of 1,
2*2DMF and 3*0.5DMF were performed using a Rigaku RAXIS–RAPID
imaging plate diffractometer with graphite-monochromated Mo Ka radiation
(l¼ 0.71075 Å). The data were corrected for Lorentz and polarization effects. The
structures were solved using direct methods (SIR2004 (1) and SHELXS-97
(2*2DMF and 3*0.5DMF)) and expanded using Fourier techniques53,54. All
nonhydrogen atoms were refined anisotropically. All hydrogen atoms were refined
using the riding model. The refinements were carried out using full-matrix least-
squares techniques on F2 using SHELXL-97 (1 and 2*2DMF) and SHELXL-2014
(3*0.5DMF)54 (Supplementary Table 7 and Supplementary Data 1–3). For
3*0.5DMF, the thermal displacement parameters for one of the disordered bpdo
molecules were restrained using the DELU and SIMU commands, and the
disordered DMF solvent was refined using the DFIX, DANG, FLAT and EADP
commands. For 1 and 2*2DMF, all calculations were performed using the
CrystalStructure software package55. For 3*0.5DMF, all calculations were
performed using the WinGX software package56.
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