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Charge-Transfer Matrix Elements by FMO-LCMO Approach: Hole Transfer in DNA with
Parameter Tuned Range-Separated DFT

Hirotaka Kitoh-Nishioka∗ and Koji Ando†

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

A scheme for computing charge-transfer matrix elements with the linear combination of fragment molecular
orbitals and the ‘nonempirically tuned range-separated’ density functional is presented. It takes account of
the self-consistent orbital relaxation induced by environmental Coulomb field and the exchange interaction in
fragment pairs at low computational scaling along the system size. The accuracy was confirmed numerically
on benchmark systems of imidazole and furane homo-dimer cations. Applications to hole transfers in DNA
nucleobase pairs and in a π-stack adenine octomer highlight the effects of orbital relaxation.

I. INTRODUCTION

Charge transfer (CT) reactions are of fundamental and
broad importance in chemistry, biochemistry, and materials
science [1, 2]. The CT rate and mechanism are determined
by diagonal site energies and off-diagonal transfer integrals of
the Hamiltonian matrix, which are thus key to elucidating and
potentially controlling the reaction [3, 4].

For quantitative evaluation of the Hamiltonian matrix ele-
ments, the effects of orbital relaxation and electron correla-
tion can be significant. The state-of-the-art wave function ap-
proaches such as the multi-reference configuration-interaction
and the coupled-cluster methods are still computationally ex-
pensive [5], especially for combining with molecular dynam-
ics simulations [6]. In this regard, the recently emerging long-
range corrected (LC) density functional theory (DFT) is at-
tractive, as it takes an improved account of the CT interaction
by reducing the self-interaction error in DFT while maintain-
ing the short-range dynamic correlation effects [7, 8]. This as-
pect on the redox site energies has been examined recently by
a ‘nonempirically tuned range-separated (NET RS)’ DFT [9],
in which the range-separation parameter for decomposing the
two-electron Coulomb interaction is optimized in accord with
Janak’s theorem to reproduce the ionization potential (IP) and
electron affinity by the orbital energies of highest-occupied
(HO) and lowest-unoccupied Kohn-Sham (KS) molecular or-
bitals (MOs) [10]. The optimal parameters for the nucleobases
of DNA and RNA have been thus reported [9].

However, the parameters optimal for the intramolecular site
energies are not necessarily equally appropriate for the off-
diagonal intermolecular transfer integrals. Nonetheless, we
know empirically that the off-diagonal energies are approxi-
mated by the average of diagonal energies multiplied by the
overlap integral and an empirical factor, as known prototypi-
cally for the extended Hückel method. In addition, the one-
electron mean-field picture has been considered appropriate
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for the transfer integrals [11–13] due to cancelation of the
dynamic electron-correlation effect, as the transfer integrals
correspond to the difference between the energies of two adi-
abatic electronic states at the diabatic surface crossing. These
aspects are thus intriguing for quantitative evaluation.

The method for computing the off-diagonal transfer inte-
grals is not unique: it depends on the definition of basis states.
This is analogous to the arbitrariness in defining the diabatic
states for non-adiabatic transitions [14–16]. When the redox
sites or moieties are spatially well-defined, as is the case for
the π-stack DNA nucleobases, the MOs of isolated fragments
provide a reasonable choice, as employed in the conventional
fragment-orbital approaches [17–19]. However, the MOs op-
timized for isolated fragments lack the orbital relaxation in-
duced by the long-range Coulomb and short-range exchange
interactions. If we are to include these interactions, we need to
handle large systems and have to determine the procedure for
transforming the resulting delocalized canonical MOs to lo-
calized diabatic bases. Thus, there exists a practical trade-off
between the inclusion of orbital relaxation and the diabatiza-
tion. The methods of constrained DFT [20, 21] and frozen
density embedding [22] are recently proposed prescriptions to
this problem.

In this work we put forward another solution by employ-
ing the method of fragment molecular orbitals (FMO) [23–
26] and their linear combinations (FMO-LCMO) [27–30].
The FMO-LCMO method was originally proposed to obtain
canonical MOs of large systems [27, 28]. The FMO method
first decomposes the total system into fragments and opti-
mizes the MOs of each fragment self-consistently under the
Coulomb field of other fragments. Then, dimer, trimer, or
tetramer calculations are carried out to take account of the
exchange interactions. In the FMO-LCMO method, the di-
agonal elements of Hamiltonian matrix of the total system are
computed from the results of these fragment calculations in
a form to remove the excess counting of energy, whereas the
off-diagonal elements are constructed from the dimer or trimer
matrices projected to the monomer FMO space. The total
Hamiltonian matrix is then diagonalized to find the canoni-
cal MOs of the entire system. Now, it is seen that the Hamil-
tonian matrix before the diagonalization provides appropriate
diagonal site energies and off-diagonal transfer integrals for
the study of CT reactions.

After formulating this idea in Section II, Section III
presents an assessment of the scheme on benchmark systems
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and numerical applications to π-stack DNA nucleobases. Sec-
tion IV summarizes and concludes.

II. METHOD

Here we outline the FMO-LCMO method [27–30]. For
simplicity, we restrict to the FMO2 version with dimer ex-
change, although extension to the trimer FMO3 is straightfor-
ward [28]. In the FMO2 method, the orbitals of each frag-
ment are optimized self-consistently under the Coulomb field
of other fragments. The resultant pth orbital of fragment I is
denoted by φI

p. The fragment dimer calculations are then car-
ried out under the Coulomb field of other monomer fragments
determined above. In the FMO-LCMO method, the intra- and
inter-fragment Hamiltonian matrix elements are defined by

H
(total)
Ip,Iq =

∑
J ̸=I

⟨φI
p|h

IJ |φI
q⟩ − (N − 2)⟨φI

p|h
I |φI

q⟩ (1)

H
(total)
Ip,Jq = ⟨φI

p|h
IJ |φJ

q ⟩ (I ̸= J), (2)

in which hI and hIJ are the KS (or Fock) matrices of frag-
ment I and fragment dimer IJ , respectively. In Eqs. (1) and
(2), the notation ⟨φI

p|h
IJ |φJ

q ⟩ represents the dimer KS matrix
projected to the monomer orbital space. The diagonalization
of this H(total) has been demonstrated to give accurate ap-
proximations to the canonical MOs and MO energies of large
systems [27–30].

The proposal in this work is to employ the matrix elements
of H(total) for the orbital site energies εIp and the transfer
integrals TIp,Jq of CT systems. As seen from the procedure
described above, they include the orbital relaxation from the
self-consistent Coulomb field and the pairwise exchange inter-
actions. This can be an advantage over methods that employ
orbitals optimized for isolated fragments.

Because the orbitals of different fragments are optimized
separately in the FMO method, they are in general non-
orthogonal with finite overlaps SIp,Jq ≡ ⟨φI

p|φJ
q ⟩ ̸= 0 for

I ̸= J . Thus, the transfer integrals appropriate for description
of CT processes are

T ′
Ip,Jq = (H

(total)
Ip,Jq − SIp,Jq(H

(total)
Ip,Ip +H

(total)
Jq,Jq )/2)

/(1− S2
Ip,Jq)

= (TIp,Jq − SIp,Jq (εIp + εJq)/2) /(1− S2
Ip,Jq), (3)

from symmetric-orthogonalized orbitals [31].
In what follows, we will compare the FMO-LCMO with

the fragment-orbital approach (FOA) [17–19] and the gener-
alized Mulliken-Hush (GMH) method [32]. Both FOA and
GMH have been often employed and well documented in the
literature [30, 33–35]. However, we outline them below for
convenience.

In the FOA, the orbitals ϕi are first optimized for isolated
monomers. Next, the KS matrix of aimed complex (a dimer
or larger assembly of fragment monomers), h(cmplx)

KS , is con-
structed with or without orbital optimization. The site ener-

gies εi and transfer integrals Tij are then computed with

εi = ⟨ϕi|h(cmplx)
KS |ϕi⟩ (4)

Tij = ⟨ϕi|h(cmplx)
KS |ϕj⟩ (5)

Because the orbitals of different fragments are not orthogonal,
similarly to the case of FMO-LCMO noted above, the transfer
integrals T ′

ij are computed with the formula equivalent to Eq.
(3).

In the GMH method for hole transfers with a one-electron
KS-MO approach [33], the transfer integral T ′

ij is approxi-
mated by the HOMO (H) and HOMO-1 (M) energy difference
for the neutral dimer fragment of sites i and j, scaled by the
dipole moment matrix elements with respect to the two MOs
as

T ′
ij =

(ε
(dim)
H − ε

(dim)
M )|µH,M|√

(µH,H − µM,M)2 + 4(µH,M)2
, (6)

µH,M = −
∑
αβ

C
(dim)
α,H C

(dim)
β,M dαβ , (7)

µH,H − µM,M =
∑
αβ

(C
(dim)
α,H C

(dim)
β,H − C

(dim)
α,M C

(dim)
β,M )dαβ .

(8)

Here, C(dim)
α,H and C

(dim)
α,M are the MO coefficients for the dimer

fragment in the atomic orbital (AO) representation and dαβ
are the dipole matrix element between the AOs α and β.

All electronic calculations in this Letter were performed on
neutral monomers, dimers, and octomers using the GAMESS
program [36].

III. RESULTS AND DISCUSSION

A. Assessment on benchmarks: imidazole and furane
homo-dimer cations

We first assess the nonempirically tuned range-separated
(NET RS) functional for transfer integrals. The reference data
are taken from a benchmark database [37] with high-level ab
initio calculations of multireference configuration interaction
(MRCI+Q) and n-electron valence state perturbation theory
(NEVPT2). From the database we have chosen imidazole and
furane homo-dimer cations because their molecular structures
are most related to the nucleobases.

The optimal values of range-separation parameter µ in the
formula 1/r12 = (1 − erf(µr12))/r12 + erf(µr12)/r12 with
the LC-Becke[38]-Lee-Yang-Parr[39] (LC-BLYP) functional
[8] for imidazole and furane monomers were searched with
the procedure described in Ref. [9], and were found to be
µ = 0.33 bohr−1 for both molecules. Here we used the cc-
pVTZ basis set for heavy atoms and cc-pVDZ for hydrogens,
although Ref. [37] employed aug-cc-pVTZ for the former.
However, the results displayed in Figure 1 present high accu-
racy. By contrast, the standard B3LYP functional [40] system-
atically underestimates the transfer integrals for both systems.
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FIG. 1: Transfer integrals for (a) imidazole and (b) furane homo-dimer cations compared with the high-level ab initio references [37]. In both
(a) and (b), FMO-LCMO and FOA with the same functional almost completely overlap.
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FIG. 2: HOMO energies with LC-BLYP functional and experimental
IPs of four nucleobases, guanine (G), adenine (A), cytosine (C), and
thymine (T). Each experimental IP has an uncertainty of ±0.1 eV.

The figure also indicate that the results from FMO-LCMO and
FOA with the same functional are almost identical. The nu-
merical values are listed in Table S1 of the Supplementary
materials.

B. Isolated nucleobases with a single range-separation
parameter

We now proceed to the nucleobase molecules. The optimal
values of the parameter µ with the LC-BLYP functional and
cc-pVTZ basis set have been reported (in bohr−1) as 0.2738
for guanine (G), 0.2853 for adenine (A), 0.2948 for cytosine
(C), and 0.2850 for thymine (T) [9]. These were optimized
separately for each nucleobase. However, we need to de-
termine a single value for the computation of intermolecu-
lar transfer integrals, for which we have chosen µ = 0.29
because the latter three nucleobases have approximately this
value. With this we then reexamined the site energies. The
nuclear coordinates are taken from Ref. [9].

The resultant HOMO-1 and HOMO energies are displayed
in Figure 2. They are compared with those from the original
optimal µ for each nucleobase and with the corresponding ex-
perimental IPs [41]. The numerical values are listed in Table
S2 of the Supplementary materials. We see that the parameter
µ = 0.29 yields the orbital energies sufficiently close to those
with the optimal µ for each nucleobase. We have also carried
out calculations with 6-31G(d) basis set in an aim to compare
with the previous works [33, 34], which will be discussed in
Section III C. Although the 6-31G(d) basis set systematically
underestimate the absolute values, the relative HOMO ener-
gies among the nucleobases, the most relevant quantities for
the hole transfers, indicated by the slope of the plots are sim-
ilar among the methods and the experiment. Having in scope
the calculations of larger systems, it is desired to keep the size
of basis-set as small as possible. We thus employ the 6-31G(d)
basis-set hereafter, until we examine the basis-set dependence
in Section III E.

C. Hole transfer integrals for nucleobase pairs

Here we examine the CT energies for nucleobase pairs in a
π-stack configuration. As guanine is the key donor with the
lowest IP, we study GG, GA, AG, GT, and TG pairs. The
nuclear coordinates are taken from Ref. [34]. Because the
reference data from CASPT2 calculation [34] corresponds to
the adiabatic energy gap rather than the diabatic site energy
difference, we have also calculated the adiabatic energy gaps
from the diabatic site energies and the transfer integrals. The
numerical values are listed in Table S3 of the Supplementary
materials.

The resultant adiabatic energy gaps and transfer integrals
are plotted in Figure 3 for the LC-BLYP functional with
µ = 0.29 compared to B3LYP and CASPT2. Figure 3a indi-
cates that the adiabatic energy gaps from LC-BLYP are closer
to CASPT2. We also see that the values from FMO-LCMO
and FOA with the same functional coincide well to be indistin-
guishable in the figure; the difference is approximately 1 meV
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FIG. 3: Adiabatic energy gaps ∆E′
ij (a) and hole-transfer integral |T ′

ij | (b) of nucleobase pairs GG, GA, AG, GT, TG, with 6-31G(d) basis-set.
In (b), ‘µ-alt’ refers to a GMH calculation with the energy gap from CASPT2 and the dipole moment matrix elements from LC-BLYP. In (a),
FMO-LCMO and FOA with the same functional almost completely overlap. In (b), FMO-LCMO and GMH overlap for AG, GT, and TG for
both functionals.

as seen in Table S3. The difference between FMO-LCMO and
FOA is in the treatment of orbital relaxation of the basis MOs.
It is included in the former while not in the latter. This effect
is more apparent in the transfer integrals discussed next.

Figure 3b compares the transfer integrals T ′. For both LC-
BLYP and B3LYP functionals, FMO-LCMO and GMH coin-
cide well for AG, GT, and TG. Notably, their deviation from
FOA is now apparent. This is due to the effect of orbital re-
laxation that is included in GMH and FMO-LCMO but not in
FOA. The numerical values of the transfer integrals are listed
in Table S4 of the Supplementary materials.

Figure 3b also indicates that the transfer integrals from
CASPT2 notably deviate from both LC-BLYP and B3LYP.
Considering the accuracy of LC-BLYP confirmed in Figure 1
and the limited active orbital space employed in the CASPT2
[34], we have tested a GMH calculation with the energy gap
from CASPT2 and the dipole moment matrix elements from
LC-BLYP. The results denoted by ‘µ-alt’ in Figure 3b are
now close to LC-BLYP. It would be plausible that the lim-
ited CASPT2 calculations yield more reliable energy gaps
than dipole matrix elements. We also note in Figure 3b that
B3LYP underestimates the transfer integrals for all the nucle-
obase pairs, the same tendency as was observed in Figure 1.

D. π-Stack adenine molecules

Next, we study a larger system, an adenine octomer in the
idealized B-DNA π-stack configuration (Figure 4). The struc-
ture of atoms other than hydrogen are constructed by using the
Web-3DNA software [42]. The positions of hydrogen atoms
are optimized for each isolated adenine by B3LYP/6-31G(d)
calculation.

As discussed above, one major difference between FOA
and FMO-LCMO is in the treatment of orbital relaxation. An-
other difference is in the scaling of computational cost along
the system size. In the standard use of FOA, the basis MOs are
computed for each isolated monomer of donor and acceptor

FIG. 4: Structure of adenine octomer in the idealized B-DNA π-stack
configuration.

molecules. Then, the KS matrix of the entire donor-acceptor
system is constructed, over which the matrix elements on the
basis MOs from the monomer calculation are computed (see
Eqs. (4) and (5)). Therefore, to study the system of Figure
4, for instance, the full KS matrix h

(total)
KS of the entire eight

molecules should be calculated. This will quickly become
computationally prohibitive as the system size increases.

An evasion of this size-scaling problem in FOA would be
to reduce the size of KS matrix to the dimer h(dim)

KS for each
donor-acceptor pair. In such cases, in order to take account
of the orbital relaxation, the calculations may be performed
under the classical electrostatic, or the ‘molecular-mechanical
(MM)’, field from the other molecules. [15, 19, 35] We thus
first determine the effective atomic charges derived from the
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FIG. 5: Site energies and their differences in the adenine octomer
with 6-31G(d) basis-set.

electrostatic potential (ESP) of an isolated alanine monomer,
in which both the structure and MOs are computed at the
B3LYP/6-31G(d) level. The results displayed in Figure S1 of
the Supplementary materials indicate that they are consistent
with the AMBER 94 force-field [43].

We now compute the basis MOs of each monomer in Figure
4 under the classical field from the ESP charges of others. The
KS matrix of donor-acceptor pairs are similarly computed un-
der the classical field of remaining molecules. This procedure
is denoted by ‘Dimer in MM’. The ordinary FOA without the
MM field is denoted by ‘Dimer in Vac(uum)’. These methods
are summarized in Table 1 with respect to the orbital relax-
ation effect in the basis MOs and the KS matrix.

Figure 5 plots the site energies of each adenine molecule
and their differences ∆Eij in the adjacent pairs. The numer-
ical values are listed in Table S5 of the Supplementary mate-
rials. Figure 5a indicates that the site energies by the ‘Dimer
in Vac’ method are almost independent of the position, natu-
rally because the pairs are treated independently. We also see
that the absolute site energies are notably overestimated in the
isolated pairs. Contrastingly, the maximum of the site energy
near the middle of the chain A4-A5 is qualitatively captured
by the ‘Dimer in MM’ method, although the absolute ener-
gies are generally underestimated by approximately 0.1 eV.
Finally, we note that the site energies by the FMO-LCMO and
the full FOA are consistent, while the computational cost is
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FIG. 6: Transfer integrals between the adenine octomer with 6-
31G(d) basis-set.

notably reduced in the former. Figure 5b indicates that the
cancelation of errors in the site energies from the ‘Dimer in
MM’ method results in correct profile of the site energy dif-
ference ∆Eij , particularly in the region excluding the pairs at
both ends of the chain.

Figure 6 plots the transfer integrals T ′
ij between the HO-

MOs of adjacent adenine molecules. The numerical values
are listed in Table S6 of the Supplementary materials. We
first note that the results obtained from full FOA and FOA
with ‘Dimer in MM’ coincide well, with the exceptions in the
A1/A2 and A7/A8 pairs at both ends. To these two curves,
that of FOA with ‘Dimer in Vac’ is nearly parallel. The same
applies to the GMH with ‘Dimer in Vac’, although the quanti-
tative values are overestimated. The profile of FMO-LCMO is
overall different, which is similar to that of GMH with ‘Dimer
in MM’. The differences are most significant at both ends,
A1/A2 and A7/A8, which may be comprehended in terms of
the balance between the inclusion of orbital relaxation effects
in the basis MOs and in the KS matrix, as presented in Table
1.

E. Dependence on the basis-set

Finally, we confirm that the pictures obtained in the previ-
ous sections are basically independent of the size of the basis-
set. Figure 7 compares between 6-31G(d) and cc-pVTZ basis-
sets for the site energy differences and the transfer integrals.
The numerical values are listed in Table S7 of the Supplemen-
tary materials. Note that the values from 6-31G(d) are shifted
by +10 meV in Figure 7b for better view. Except this quanti-
tative shift, the overall qualitative behavior is mostly identical
between the two basis-sets. Therefore, the use of 6-31G(d)
can be recommended for major part of studies, with additional
quantitative corrections with larger basis-sets, for instance, at
selected key configurations according to specific necessities.
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Table 1. Orbital relaxation in different computational schemes.

FMO-LCMO Full FOA Dimer in MM Dimer in Vac
Orbital relaxation FOA GMHc FOA GMH
Basis MOs Yes No MMa — No —
KS matrix Yes Yes MM+dimerb MM+dimer Dimer Dimer

a The orbital relaxation is included via the MM field of point charges.
b The orbital relaxation is included in the dimer calculation.

c GMH computes the transfer integral from the dipole matrix and does not involve the ‘basis MOs’.
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FIG. 7: Comparison between 6-31G(d) and cc-pVTZ basis-sets for the (a) site energy differences and (b) transfer integrals in the adenine
octomer. In (b), the values from 6-31G(d) basis-set were shifted by +10 meV for better view (see Figure 6).

IV. CONCLUSION

A scheme for computing CT energies with a combination
of the FMO-LCMO method and the NET RS DFT was pro-
posed, assessed on the benchmark systems of imidazole and
furane homo-dimer cations, and applied to hole transfers in
DNA nucleobases. The NET RS functional optimized for in-
tramolecular site energies was found to give the intermolecu-
lar CT integrals notably close to the MRCI+Q and NEVPT2
references. In the applications to nucleaobases, the FMO-
LCMO gave the CT energies comparable to those with the full
FOA at lower computational cost: the efficiency will become
more prominent as the system size increases. The use of clas-
sical point charges to remedy the lack of orbital relaxation in
the dimer FOA calculations gave reasonable results due to the
cancelation of errors in the site energy differences and transfer
integrals. Further details in the computational schemes were
investigated in terms of the orbital relaxation effect.

We have chosen to examine the hole transfer integrals of
DNA nucleobases partly because of their own importance and
partly in an aim to compare with the previous works. How-
ever, the proposed combination of FMO-LCMO and NET RS
DFT will be more effective in broad cases where the orbital
relaxation and the exchange interactions are more significant.

For instance, when interactions with solvent and counter ions
are involved, the classical point-charge approximation will be
less appropriate, particularly when their configurations ther-
mally fluctuate. This will come out crucial when positive
classical charges without the short-range exchange repulsion
overly attract the electrons. Studies on such cases will be re-
ported in due course.
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