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in Musielak-Orlicz spaces
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and Tetsu SHIMOMURA

Abstract

Our aim in this paper is to show mean continuity in a certain strong sense at points except
in a small set for potentials of functions in Musielak-Orlicz spaces.

§1. Introduction

For the Riesz potential

Tf@= | le=y* N )y

where 0 < o < N and f € LT (RY) (1 < p < 00) is assumed to satisfy

loc
/ (1+ |2)* N | f(2)] do < oo,
RN

the following mean continuity is known (see, e.g., [1], [10] and [14]):
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If p>1,ap < N and 1/p* = 1/p — a/N, then

1 #
llm ——— I f(x) —Iof(x0)P dz =0
A B o) B(mr)l f(@) = Lo f(xo)]
for 1o € RN \ E with a set E of («,p)-capacity zero. (|B(zo,r)| denotes the
Lebesgue measure of B(xzq,).)

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss
nonlinear partial differential equations with non-standard growth conditions. Mean
continuity of Riesz potentials of functions in variable exponent Lebesgue spaces LP()
was investigated in [3] (also, cf. [2] and [4] for mean continuity of functions in variable
exponent Sobolev spaces). For Riesz potentials on the two variable exponents spaces
LP)(log L)20) | see [11]. These spaces are special cases of so-called Musielak-Orlicz
spaces ([12]).

Our aim in this paper is to show mean continuity in a certain strong sense at
points except in a small set for potentials of functions in Musielak-Orlicz spaces as an
extension of the above results. Recently, a capacity defined by potentials of functions
in Musielak-Orlicz spaces was introduced in [5]. We discuss the size of the exceptional

sets using such capacity.

§2. Preliminaries

In this paper, we consider a function
O(x,t) := to(x,t) : RY x [0,00) — [0,00)
satisfying the following conditions (®1) — (®4):

(®1) ¢(-,t) is measurable on RY for each ¢t > 0 and ¢(x, -) is continuous on [0, co) for
each x € RV;

(®2) there exists a constant A; > 1 such that

Al_l < o¢(x,1) <Ay forall z e RY;

(®3) ¢(z,-) is uniformly almost increasing, namely there exists a constant As > 1 such
that
P(x,t) < Asgp(x,s) for all z € RY  whenever 0 <t < s;

(®4) there exists a constant Az > 1 such that

d(x,2t) < Agp(z,t) for all z € RN and t > 0.
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Note that ($2), ($3) and (®4) imply

0< inf ¢(x,t) < sup ¢(z,t) < 0o
zeRN zeRN

for each ¢ > 0.
If ®(x,-) is convex for each x € R, then (®3) holds with Ay = 1; namely ¢(x, )
is non-decreasing for each € R,

Let ¢(x,t) := SUPg<s<t ¢(x,s) and

D(x,t) ::/0 é(x,r)dr

for z € RY and t > 0. Then ®(z,t) satisfies (®1) — (®4). Furthermore, ®(z, ) is convex
and

(2.1) i@(w,t) < B(x,t) < Ay®(x,t)
3

for all z € RN and t > 0.
By (®3), we see that

< Asa®(x,t) if0<a<l1
(2.2) O(x,at

> Ay a®(z,t) ifa> 1.

Example 2.1.  Let p(-) and ¢(-) be measurable functions on R such that
(P1) 1<p™ =infyern p(z) < SUpyepn P(x) =1 pT < 00
and
(Ql) —oo < ¢~ :=inf,ern q(z) < SUPLern ¢(z) =1 ¢F < oco.

Then, ®,) 4(),a(2,t) = tP(®@) (log(a + 1))@ (a > e) satisfies (1), (®2) and (P4).

It satisfies (®3) if p~ > 1 or ¢~ > 0. As a matter of fact, it satisfies (®3) if and only if
q(x) > 0 at points  where p(x) = 1 and

sup  q(2)log(p(z) — 1) < oo
z:p(z)>1,q9(x)<0

(see section 6: Appendix).

Given ®(x,t) as above and an open set G in R”, the associated Musielak-Orlicz
space on G is defined by

1(G) = {f € (@) [ 2(unlstl) dy < oo},
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which is a Banach space with respect to the norm

1fllzo) =inf{A >0 [ B 1w/ dy < 1}
(cf. [12)).
Lemma 2.2.
247" [ (el f@)) do < ey <2 (42 [ @lalf@) o)

whenever || f||pe ) < 1, where o = log 2/log(243) > 0.
Proof. Let f € L*(G) and suppose A := || f| r#() < 1. Then by (2.1),

/ B(z,|f(2)]) dz < 245 / B, | f(2)]) dr < 243 / B, | f(x)]/A) dz < 245
G G G

On the other hand, suppose A* := [, ®(z,|f(z)|) dz < A3*'. Choose k € N such
that (243)7% < Ao\* < (243)7%*L. Then, by (2.1) and (®4)

/ 6(m,2k*1|f(a:)|)dx < Ag/ <I>(a:,2k*1|f(a:)|)dac < A2(2A3)k*1)\* < 1.
G G

Hence || f||ze ) < 2'7%. Since 277 < (A2X0%)7,

[ fllze ) SQ(AQ/GCIJ(x,lf(x)\)dx)U.

We shall also consider the following conditions:
(®5) for every v > 0, there exists a constant By > 1 such that
o(x,t) < Byo(y,t)
whenever |z — y| < vt~YN and t > 1;

(®3*) t+— t70¢(x,t) is uniformly almost increasing on (0,00) for some gy > 0, namely
there exists a constant As ., > 1 such that

t70@(x,t) < Agys ¢(x,s) for all z € RN whenever 0 < t < s.
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Example 2.3.  Let ®,.) 4(),o(2,?) be as in Example 2.1. It satisfies (®5) if
(P2) p(-) is log-Holder continuous, namely

Cp

<P forlz—y|<
(/e —gp) 1!

Ip(z) — p(y)|

N =

with a constant C), > 0,
and

(Q2) q(+) is log-log-Holder continuous, namely

Cy

< for |z —y <e?
< Toglos /e =g 1Y

lq(z) — q(y)

with a constant C; > 0.
It satisfies (®3*) if p~ > 1 with 0 <egg <p~ — 1.

In this paper, as a kernel function on RY, we consider k(x) = k(|z|) (with the abuse
of notation) with a function k(r) : (0,00) — (0, 00) satisfying the following conditions:

(k1) k(r) is non-increasing and lower semicontinuous on (0, c0);
(k2) [ k(r)rN =t dr < oo
(k3) there exists a constant K7 > 1 such that k(r) < Ky1k(r 4+ 1) for all » > 1.

By (k2), k(-) € LL (RY). We set k(0) = lim, 04 k(r).
Let
_ B N r

k()= —5 | k(p)p™ " dp

0

for r > 0. Then k(r) < k(r), k(r) is non-increasing and

. N7 .
(2.3) T1_1>r51+r k(r) = 0.

For 0 < a < N, the Riesz kernel I,,(z) = |2#|*~" and the Bessel kernel g, of order
« are typical examples of k(z) satisfying above conditions.
We define the k-potential of a locally integrable function f on R™ by

kx* f(x) = / k(x —y)f(y) dy.
RN
Here it is natural to assume that

(2.4 [ KO+l dy < o,
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which is equivalent to the condition that k x |f| # oo by the conditions (k2) and (k3)
(see [10, Theorem 1.1, Chapter 2]). Note that k* f € L (R") under this assumption.

loc

Set
[(z,s) :=s k(s YM)d Y (x,s) (xRN, s>0),

where ®~1(z, s) = sup{t > 0; ®(z,t) < s}.
Here we note:

(2.5) [z, ®(z,t)) ~ t@(x,t)_1%(¢(x,t)_1/N),

since @' (z, ®(z,t)) ~ t (cf. [7, Lemma 5.2 (4)]). (For two functions f and g, f ~ ¢
means that there is a constant C' > 1 such that C~1g < f < Cg.)
We shall consider the following condition (®k):

(k) s+ s I'(x, s) is uniformly almost increasing on (0, c0) for some €7 > 0, namely
there exists a constant Ar > 1 such that

51 T (x, s1) < Apsy “'T(x, $2)
for all x € RN whenever 0 < s; < ss.

Example 2.4. If k is the Riesz kernel I, then @, 4(.),o(7,%) in Example 2.1
satisfies (®k) if ap™ < N.

We consider a function W(x,t) : RN x [0,00) — [0,00) satisfying the following
conditions:

(U1) W(.,t) is measurable on RY for each t > 0 and ¥(x,-) is continuous on [0, o) for
each z € RV;

(U2) there is a constant A4 > 1 such that
U(z,at) < Aga¥(z,t)
forallz e RV, ¢t >0and 0 <a < 1;
(U®E) there exists a constant A5 > 1 such that
U (z, D(z,s)) < Ass
for all z € RN and s > 0.

Note: (¥2) implies that W(z,-) is uniformly almost increasing on [0,00); if we
assume (®k), then I'(z,t) — oo uniformly as ¢ — oo, and hence (V®k) implies that
U(-,t) is bounded on R for every ¢ > 0.
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Example 2.5. For ®,.) 4(),«(z,t) in Example 2.1 and the Riesz kernel I, (0 <
a < N), if ap™ < N, then

F(w, 8) ~ sl/pﬁ(m)[log(e + S)]—q(m)/p(g;)
with
1 1
pi(z)  p(x)

Sk

so that we may take
U(x,t) = 7@ (log(e + t))P" (@) /p@),

We know the following result (see [6, Corollary 6.3]; also cf. [7, Corollary 6.5]; note
that condition (W®k) given there is essentially the same as the above one, in view of

(2.5)).

Lemma 2.6.  Suppose ®(z,t) satisfies ($3*), (®5) and (Pk); V(z,t) satisfies
(U1), (¥2) and (VPEk). Then there exists a constant C* > 0, such that

/ U(z, k* f(x)/C")de <1
B(0,1)

for all f >0 satisfying ||f||L‘1>(B(0,1)) < 1.

§3. Mean continuity

In this section, we prove our main theorem, which gives an extension of Meyers [9],
Harjulehto-Hésto [4] and the authors [3, Theorem 4.5], [11, Theorem 3.4].

For a measurable function v on R¥, we define the integral mean over a measurable
set £ C RY of positive measure by

][Eu(x) dz = %/Eu(x) da.

Theorem 3.1. Let f be a nonnegative measurable function on RY satisfying
(2.4) and set

By:={z e RY : kx f(z) = o0},

Es:= {x c RV : limsup][ ® (z,rVk(r)f(z)) dz > O}.
B(z,r)

r—0+

(1) Suppose k(r) satisfies
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(k4) there is a constant Ko > 0 such that

k(r/2) < Kyk(r) forall0<r <1.

Then

(3.1) lim |k« f(x) —kx f(xo)|dx =0
r—0+ B(woﬂ")

for all zo € RN \ (E1 U E»).

(2) Besides the assumptions on k(r), ®(z,t) and ¥(z,t) given in Lemma 2.6, assume
further that k(r) satisfies

(k5) there is a constant K3 > 0 such that

k(rs) < Ksk(r)k(s) forall0<r<1, 0<s<l1.

Then

(3.2) lim U(z, |k f(z) —k* f(zo)])dx =0
r—0+ B(zo,r)

for all zo € RN \ (E1 U E»).

Note that (k5) implies (k4) with Ko = K3k(1/2). The Riesz kernel I, (0 < a < N)
satisfies (k5).

Lemma 3.2. Let o € RY and let f be a nonnegative measurable function on
RY satisfying
lim ® (z,rNk(r)f(2)) dz = 0.
7‘—)0-{- B(QZo,T) ( )
Then

lim E(r)/ fly)dy = 0.
T—)0+ B(.To,’l“)

Proof. For e >0 (¢ <1), we see from ($3), ($2) and (P4) that

_NT— ¢y, e rVk(r) f(y))
N 1 A
L(xo,r) f(y) dy = /B(mO,T) = k(r) dy o L(mo,r) f(y) ¢(y7 1) a

< unek(r)~! + Ay Ager—Ni(r)~? / R R S dy
B(xg,r

< unek(r)L + Ay NE(r) ! / By, vV E(r) £ (y)) dy,

B(zo,r)

Y
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where vy = |B(0,1)|, so that
lim sup l;:(r)/ fy)dy < wvye.
B(zo,r)

r—0-+

Hence, we have the required result. O

Proof of Theorem 8.1. Let o € RN \ (E1 U Ey) and write

ks f(x) — k* f(zo) = / k(z — ) f(y) dy

B(zo,2|x—x0])

N / k(z — )£ (y) dy — k * f(x0)
RN\ B(xg,2|z—1x0|)

(1) If y € RN\ B(x, 2|z — x0]), then |zg — y| < 2|z — y|. Hence, if |zg — y| < 1,
then k(z —y) < k(|xo —y|/2) < Kak(zo —y) by (k1) and (k4); if 1 < |zo —y| < 2, then
|z —y| > |ro —y|/2 > 1/2, so that k(x —y) < k(1/2) < k(1/2)k(2) " k(xo — y) by (k1);
if [xg —y| > 2 and |z — xo| < 1, then k(z —y) < k(Jzo —y| — 1) < K1k(zo — y) by (k1)
and (k3). Thus,

(3:3) k(z —y) < K'k(zo — y)
with K’ = max{K>, k(1/2)/k(2), K1}, whenever y € RN\ B(z0, 2|z—¢|) and |z—z¢| <
1.

By (k1), k(r) is continuous a.e. on (0,00), so that k(x —y) — k(xg —y) as x — zo

for almost every y € R™. Since k x f(x9) < oo, noting (3.3) we can apply Lebesgue’s
dominated convergence theorem to obtain

(3.4) mlLrgO I(z) = 0.
Hence
(3.5) lim |Io(x)| dx = 0.

r—0-+ B(.Z‘o,’l“)

For I, note that

0< () < / k(z — y)f(y) dy = k * fi(2)

B(zo,r)

for x € B(x,r/2), where f, := fXB(zo,r) and xg is the characteristic function of E.
Hence,

][ I(x)dx g][ kx fr(x)dx
B(zo,r/2) B(zo,r/2)

- / (][ k(e —y) d:c) £(v) dy.
B(zo,r) B(zo,r/2)
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Since

][ k(x —y)dz §f k(zo — x)dr = k(r/2) < 2Nk(r),
B(z0,r/2) B(zo,7/2)

we have

lim Li(x)dx =0
r—0+ B(mo,r)

by Lemma 3.2. Thus, together with (3.5), we obtain (3.1).
(2) Since (k5) implies (k4), (3.4) holds under our assumptions. Hence

3.6 lim U(z,2|I3(z)|)de =0
(36) v dh)

by (¥2) and the boundedness of ¥(x,1).
We will show that

3.7 lim U (z, 2k * f,(z)) dz = 0.
(3.7) A e (2))

Let 0 < r <1,z = z9+ rz with |2|] < 1. For y € B(xg,r), write y = z¢ + rw with

lw| < 1. If |z — w| < 1, then by (k5) k(z —y) < Kzk(r)k(z —w). If 1 < |z —w| < 2,
then r < |z — y| < 2r, so that by (k1), (k5) and (k3)

k(x —y) < k(r) < Ksk(r)k(1) < KsK1k(r)k(2) < K1 K3k(r)k(z — w).
Hence

befe) = [ He -0 dy < KaKa [ YRR w) o + ) du
B(zo,r) B(0,1)
if 0 < r < 1. Thus, to prove (3.7) it is enough to show

(3.8) lim U(xg + 12,2k % g.(2)) dz = 0,
r—0+ B(O,l)

where g, (w) = rNE(r) f.(zo + Tw).
Let
Dy r(m,t) = (20 + T2, 1) and W,y r(,t) = U(xg + 7, ).

Then, ®,, , satisfies (®1), (92), (©3*), (®4) and (Pk) with the same constants Aq, o,
Ay, As, €1 and Ar. Further, it satisfies (®5) with the same B, whenever 0 < r < 1.
As to Uy, ,, it satisfies (V1) and (¥2) with the same constant A4. The pair
(Pyy.r, Vy,r) satisfies (UPK) with the same constant As.
Therefore, by Lemma 2.6, there exists a constant C* > 0 independent of zy and

0 < r <1 such that
/ Wooor <z, k*‘f—M) dz <1,
B(0,1) C* Ay
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/ \If(:co+rz,k*f—r(z)) dz <1,
B(0,1) C* Ay

where Ar = [|gr[| L#20.r (p(0,1))- Then, by (¥2), we have

or

/ U (2o + 72,2k * g7 (2)) dz < 24,C* )\,
B(0,1)
whenever 2C*\,. < 1. Now, x¢ ¢ FE5 implies

/ Dy (2,9r(2)) dz = / ®(zo + 2,7V k(r) fr(zo + 72)) dz
B(0,1) B(0,1)

=|B(0,1)] O(x,rNE(r) f(x))dz — 0 asr — 0+.
B(zo,r)

Hence, by Lemma 2.2, A, — 0 as » — 0+. Thus (3.8), and hence (3.7) holds.

Since
U(x, |k * f(x) = k* f(xo)]) < AaW(z, [1(x) + [I2(2)])
< A} (U(z, 21 (2)) + U(z,2[I2()]))
by (¥2), and
][ U(z, 2L (z))dr < Ay ][ U(x, 2k * fr(x)) dx
B(zo,r/2) B(zo,r/2)
<A, ][ W, 2k * £, (x)) da,
B(zo,r)
(3.2) follows from (3.6) and (3.7). O
§4. Mean continuity (II)
Set

UB(z0,r) 12][8( )u(y) dy
(Z?(),’I’

for u € LL _(RM).

loc

Combining (3.1) and (3.2) in Theorem 3.1, we see that

(4.1) lim U, [k * F(2) = (k5 F)gagm]) do =0
r—>0+ B(Cﬁoﬂ")

holds for zo € RV \ (E; U Ey). In this section, we shall show that this holds also for
xo € FEq \ E2 under the following additional condition for k:
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(k6) there exists a constant K4 > 0 such that
k(r) —k(s) < Kq(s —r)r tk(r)
whenever 0 < r < s.

The Riesz kernel I,(z) = |2|*™" (0 < a < N) satisfies this condition.

Note that if k satisfies (k6), then k is continuous and
d
(4.2) d(=r~"k(r)) < (1+ Ka)r~'k(r) =,
r
Theorem 4.1.  Besides the assumptions on k(r), ®(x,t) and ¥(x,t) given in
Lemma 2.6, assume further that k(r) satisfies (k5) and (k6). Let f be a nonnegative
measurable function on R satisfying (2.4). Then (4.1) holds for all zg € RN \ Es,

where

Es = {x e RV : limsup][ d (z,er;:(r)f(z)) dz > O}.
r—0+ JB(z,r)

Lemma 4.2. Let zo € RY and let f be a nonnegative measurable function on
RY satisfying (2.4). Then

ot)=kt) [ f(w)dy
B(.To,t)
is bounded on [§, 00) for 6 > 0.

Proof. 1t is enough to show that g(t) is bounded on [1, 00), since fB(xO’l) fly)dy <
oo by (2.4).

If 1 <|xg—y| <t then 1+ |y| < m 4+t for an integer m such that m > 1 + |xg|.
Hence, by (k3), k(t) < K1™k(m +t) < K1™k(1 + |y|). Therefore

o(t) < k(1) / () dy + K™ / B(L+ [y]) () dy

B(;z:o,l) B(mo,t)\B(:co,l)
< k(1) / ) dy + Ko™ / R(L+ [y])f (y) dy < oo
B(zo,1) RN

for t > 1. O

Lemma 4.3. Let o € RY and let f be a nonnegative measurable function on
RY satisfying (2.4) and

lim ® (z,7Vk(r)f(2)) dz = 0.
r—0+4+ B(zo,7) ( ( ) ( ))

> dt
lim 7“/ t 1k (t / fly)dy | — =0.

Then



MEAN CONTINUITY FOR POTENTIALS OF FUNCTIONS IN MUSIELAK-ORLICZ SPACES 93

Proof. Let ¢ > 0. Then, by Lemma 3.2 and k(t) < k(t), there exists a constant
0 < 6 <1 such that

W)/B( t)f(y)dyﬁe

for all t € (0,0). By the previous lemma, there exists M > 0 such that
W) [ rwdy< <o
B(zo,t)

for all t € [0, 00). Hence, for 0 < r < §/2, we have

o dt o L dt L dt
/ t k(1) / fly)dy| — < 5/ 71—+ M/ Tt <er 4 MSTH
2r B(zo,t) t 2r t ) t

so that
. *® 1 dt
limsup r t™k(t) fly)dy | — <e.
r—0+  Jor B(zo,t) t

Hence, we have the required result. O

Proof of Theorem 4.1. Let zg € RN\ Eq and let € B(wg,7). Also, let 0 < r < 1.
Write

ko f(2) — (k% ) agr) = / k(z — y) f(y) dy

B(.TQ,27”)

+f K =)@ dy — (% 1) o
RN\ B(x0,27)

- / B(z — ) f(y) dy
B(zo,2r)

! /RN\B(meT) (J{B(fo,r) (k@ —y) = kly = 2)) dz) f(y)dy

-/ (f Ky~ 2) dz) () dy
B(zo,2r) B(zo,r)

=I1(x) + Ix(z) — Is.
For Iy, let |zg — x| < r, |xg — 2| < r and |z¢g — y| > 2r. Then, by (k6)
[k(z —y) — k(z — y)| < 2Ky|z — z[|zo — y| ™ max{k(z — y), k(z — y)}.
As in the proof of Theorem 3.1, we see that

k(x —y) < K'k(xo—y) and  k(z—y) < K'k(zo — y)
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with K’ = max{K3k(1/2), k(1/2)/k(2), K1}. Hence

n@) <2k (f fo—zlaz) | 20—yl k(o — ) F(y) dy
B(zg,T) RN\ B(z0,27)

< C’r/ t~ k(t)dE,, (1),
2

T

where F, (t) = fB(mo " f(y)dy. In view of (4.2) and Lemma 4.2, integration by parts

yields
dt

/oot_lk(t)dFmo (t)<C b t_lk(t)Fmo(t)7.

r 2r

Therefore by Lemma 4.3,

lim sup |Ix(x)| =0.
""_>0+x€B(x0,r)| ( )|

As to I3, we have by Lemma 3.2

ogggam/

B(zo,27)

F(y) dy < 2VF(2r) / Fly)dy — 0

B(zo,27)

as r — 0+.
Hence, by (¥2)

lim U (z,2|I2(x) — I3]|) de = 0.
r—0+ B(CL‘(),T')
On the other hand, the arguments to obtain (3.7) in the proof of Theorem 3.1 show
that

lim U(z,2I(z))dx = 0.
T’—>0+ B(xo,r)

Hence again using (V2) we see that

r—1>I(IJ1+ B(zo,r) (.flf,’ *f(il?) ( *f)B(:Eo,T)D z

§ 5. Size of exceptional sets

First, we introduce a notion of capacity (cf. [5]). For a set E C R¥ and an open
set G C RV, we define the (k, ®)-capacity of E relative to G by

Cro(E;G) = inf ) d
co(E:G) = _nt B (. ) do

where Sy (FE;G) is the family of all nonnegative measurable functions f on RY such
that f vanishes outside G and k * f(x) > 1 for every x € E. Here, note that £ C G is
not required.
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Lemma 5.1 ([5, Proposition 3.1]).  The set function Cy (- ; G) is countably sub-

additive and nondecreasing.
We say that E is of (k, ®)-capacity zero, written as C ¢(E) = 0, if
Cro(ENG;G)=0 for every bounded open set G.

Lemma 5.2 ([5, Proposition 3.3]). For E C R, Cy4(E) = 0 if and only if
there exists a nonnegative function f € L®(RY) such that k * f # oo and

kx f(xr) =00  whenever x € E.

By Lemma 5.2 we have

Proposition 5.3. If f € L*(RY), then E; in Theorem 3.1 has (k, ®)-capacity

zero .

To estimate the size of F5 in Theorem 3.1, we introduce a Hausdorff measure

defined by the (variable) measure function
h(r;z) = rN®(z, 7 NEk(r)™)

for + € RN and r > 0.
We define the Hausdorff h-measure of E C RN by

Hy(E) =inf ¢ > h(rjiz;) : | JB(zj,r)) DE, 0<r; <1
J J

Here we note that

(h1) there exists a constant A > 0 such that h(5r;z) < Ah(r;z) for all x € RY and
r > 0;

(h2) lim, o7~ (inf, h(r;z)) = co.

We show the following result (cf. Meyers [8, 9]; also cf. [10, Chapter 5, Lemma
8.2]).

Lemma 5.4. If f € L*(RY), then Hy,(E} ) = 0, where

1
Ep ;=< zeRY :limsu / d(y, dy>0,.
hJ { N F 0 a) e (v, [f(w)]) dy }
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Proof. 1t suffices to show that Hy,(FE(a)) = 0 for each a > 0, where

E(a) := {xERN:limsupﬁ/B( )q)(y,]f(y)\)dy>a}.

r—04+

For € > 0, by (h2) we can find § > 0 (6 < 1) such that

h(r;x) > e~ 1pN

forallz € RY and 0 < r < §. For each x € E(a), take B(x,7(x)) such that 0 < r(z) < §

and
1

W /B(m,r) Q)(y, |f(y)|) dy > @

By a covering lemma (see, e.g., [1, Theorem 1.4.1]), we can take a disjoint subfamily
{B(xj,r(z;))} such that E(a) C UJ; B(zj,5r(z;)). Then

Hy(E(a)) < Z h(5r(z;); ;)
< AZ h(r(z;); x;)

J

< Aa! / By, £ ()]) dy.
U; B(zj,r(z;))

Note here that

so that

U By, ()| < Ca~le / By, £(y)]) dy.

- N
j R

Since f € L*(RY), by the absolute continuity of integrals we see that Hj(FE(a)) = 0,
as required. O

On the other hand, by [5, Corollary 4.8], we have the following result.

Lemma 5.5.  Suppose ®(z,t) satisfies (®5). If f € L*(RY), then Cy o (Ep ¢) =
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Here note that the condition

su Oy, r Nk(r)~!
(5.1) lim sup - PyeB.r) y N—( ) 1) < 00
r—0+ 1nfyeB(m,r) @(y,r— k(T’)_

in [5, Corollary 4.8] is satisfied by (®5), since rVk(r) < 1 for small r > 0 by (2.3).

Now, we consider a further condition on ®(z,1):
(®6) there exists a constant Ag > 0 such that
O(x,s) P(z,t) < Ag P(x, st)
forallz €e RV, s >1and t > 0.

Example 5.6. Let @) (),a(z,?) be as in Example 2.1. It satisfies (®6) if and
only if g7 < 0; cf. [11, Proposition 3.7].

Lemma 5.7.  Suppose ®(z,t) satisfies ($5) and ($6). Let f be a nonnegative
measurable function on RY and let Ey be as in Theorem 3.1. Then E; C Ey .

Proof. Let f be a nonnegative measurable function on RY and let x € RY. By
(2.3), there is 0 < r; < 1 such that r¥k(ry) < 1. If 0 < r < r; and y € B(x,7), then by
(®6) and (P5),

®(y,rVk(r)f(y)) < A¢B

where v = l%(rl)_l/N. Hence Ey C Ej, ¢. O
Combining this lemma with Lemmas 5.4 and 5.5, we obtain

Proposition 5.8.  Assume that ® satisfies (®5) and (®6). If f € L*(RY), then
Es in Theorem 3.1 has Hausdorff h-measure zero, that is, Hy(E2) = 0, and it has
(k, ®)-capacity zero.

Remark 1. The above definition of the Hausdorff measure is slightly different
from the one in [5]. However, noting (5.1), we see that the proof of [5, Theorem 4.10] is
valid for H;, and we have the following result:

Suppose ®(z,t) satisties (®5). If H,(F) = 0, then Cj o(E) = 0.

Applying Theorem 3.1, Proposition 5.3 and Proposition 5.8 to k = I, we can state:

Corollary 5.9. Let 0 < o < N and let f € L*(RY) satisfy (2.4) with k = I,.
Suppose ®(z,t) satisties (#3*), (®5), (P6) and
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(®I,) s+ s =17/No~1(z, 5) is uniformly almost increasing on (0,00) for some &1 > 0;
U(x,t) satisfies (V1), (¥2) and
(U®I,) there exists a constant AL > 1 such that
1\ (x,s_a/N(I)_l(a:, 5)) < ALs

for all z € RN and s > 0.

Then

lim U(x, Lo * f(x) — Lo * f(x0)])dx =0
T—)0+ B(:Uo,?”)

holds for all zo € RN \ E for a set E of (1, ®)-capacity zero.

§6. Appendix: uniform almost-increasingness of t*(¢) (log(e + t))qw

In this section, we give an outline of a proof of the equivalence stated in the last
part of Example 2.1.

For a positive function f(¢) on (0,00), set

A[f] = sup )

t>0>1 J(AE)

f is almost increasing on (0, c0) if and only if A[f] < co. Note that f is non-decreasing
on (0,00) iff A[f] =1.
A family {f¢(t)}eex of positive functions on (0, 00) is uniformly almost increasing
if and only if
sup A[fe] < oo.
£eXx

For p > 0 and ¢ € R, we consider the function
Fp,Q@) :tp(log(€+t))q, te [07 OO)

Obviously, if ¢ > 0, then F), ,(¢) is non-decreasing on (0,00). If p = 0 and ¢ < 0, then
Fp,4(t) is not almost increasing. In case p > 0 and ¢ < 0, it is easy to see that F), ,(t)
is almost increasing. We are interested in the evaluation of A[F}, ;| in this case. Since

A[Fp,q] = A[Fp/(—q),—l]iqa

we will evaluate A[F, _4] for r > 0.
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Let ¢y :=log(e + 1). We see that

< 1+logA < 2log(e+ A)

1 log(e + At)
—log(e+A\) < sup ————=
Co &l ) t>18 log(e +1)

for A > 1. Hence, letting

L(r) :=sup A" " log(e + M),
A>1

we have
(6.1) —L(r) < A[F, 1] < 2L(r) (r > 0).
Here note that sup; <<, A™" log(e + A) < 2,
_ _ 2
sup A~ "log(e + A) < 2sup A" log A < —,
A>e A>e er

L(r) > log(e +1) = ¢o and
1 1
L(r) > —log (e—l—el/r> > —,
e er
so that

mm(igw)glﬁﬁg2mw<lgg (r>0).

er er

Hence, by (6.1),

mm<;L1)§AM@ﬂ§4mw(iJ> (r>0).

coer’ er

Thus, for p > 0 and ¢ < 0,

max (=2 0)] " < Al ) < [amax (1))

Note that e=1/¢ < (—¢)~% < max(1,(—qo)~%) if go < ¢ < 0. Then from the above
inequalities we have:

Proposition 6.1.  Let X be a nonepmty set and let p(-) and q(-) be real valued
functions on X such that p(§) > 0 for all £ € X and infeex q(§) > —oo. Then, the
following (1) and (2) are equivalent to each other:

(1) The family {Fpye),q¢)(t) }eex is uniformly almost increasing on (0, 00);
(2) q(&) > 0 at points £ € X where p(§) =0, and

sup q(§)logp(§) < oo.
£eX, p(§)>0, q(£)<0
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