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RIMS Kôkyûroku Bessatsu
B40 (2013), 001–014

Massera type theorems in hyperfunctions with

reflexive Banach values

By

Yasunori Okada∗

Abstract

For some classes of periodic linear ordinary differential equations and functional equations,

it is known that the existence of a bounded solution in the future implies the existence of

a periodic solution. They are called the Massera type phenomena. Being interested in such

results, we introduced the notion of bounded hyperfunctions at infinity, and studied the Massera

type phenomena for hyperfunction solutions to periodic linear functional equations.

In this article, we continue this study, and after recalling the terminologies, we will observe

the Massera type phenomena in the settings of hyperfunctions with reflexive Banach values.

§ 1. Introduction

In 1950, Massera studied in [6] the existence of periodic solutions to periodic ordi-
nary differential equations. In the linear case, he gave the result that for a 1-periodic
linear ordinary differential equations of normal form with continuous coefficients, the
existence of a bounded solution in the future implies that the existence of a 1-periodic
solution. After Massera, many generalizations appeared in the case of periodic linear
functional equations. The author studied in [7] such phenomena in the framework of hy-
perfunctions. We introduced a notion of bounded hyperfunctions at infinity and classes
of operators, and gave the following result. (We recall relevant terminologies later.)

Theorem 1.1. Let E be a sequentially complete Hausdorff locally convex space,
K a closed interval in R, and ω a positive number. Consider an ω-periodic operator P

of type K on a strip domain D1 + i]−d, d[ for EOL∞ with some d > 0 and an ω-periodic
E-valued hyperfunction f . Assume that E satisfies the sequential Montel property (M).
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Then the equation Pu = f has an ω-periodic E-valued hyperfunction solution if and
only if it has an EBL∞-solution in a neighborhood of +∞.

It is known that many useful function spaces appearing in the study of differential
equations admit the sequential Montel property. But there are also many useful spaces
which do not. For example, infinite dimensional Banach spaces never admit it. Therefore
we are interested in the problem if we can observe similar phenomena for the case that
E does not admit the sequential Montel property, for example, the case that E is a
Banach space.

The purpose of this article is to give a partial answer. First, in the section 2, we
briefly recall the notion of bounded hyperfunctions at infinity and that of operators of
type K, which we introduced in [7]. In the section 3, we study some functional analytic
properties of the spaces of holomorphic functions taking values in a reflexive locally
convex space. After these preparations, we give our main result in the section 4, that
is, a Massera type theorem in a reflexive Banach valued case. (See Theorem 4.4.)

§ 2. Bounded hyperfunctions at infinity and operators

We recall the notion of bounded hyperfunctions at infinity and that of operators
of type K, introduced in [7]. The definition of bounded hyperfunctions is similar to the
original cohomological definitions of hyperfunctions and Fourier hyperfunctions given
in the one-dimensional case in Sato [8]. Refer also to Sato [9], Kawai [5], Sato-Kawai-
Kashiwara [10], and Kaneko [4], for hyperfunctions, Fourier hyperfunctions, and related
topics.

In this section, E denotes a sequentially complete Hausdorff locally convex space
over C. We denote by N (E) the family of continuous seminorms of E.

§ 2.1. Sheaf EBL∞ of E-valued bounded hyperfunctions

In this subsection, we define the sheaf EBL∞ of E-valued bounded hyperfunctions
at infinity on a compactification D1 := [−∞, +∞] = Rt {±∞} of R. In the scalar case
(that is, the case E = C), the space of the global sections of our sheaf can be identified
with the space BL∞ of bounded hyperfunctions due to Chung-Kim-Lee [2].

We consider the following diagram

C = R + iR ↪→ D1 + iR
∪ ∪

R = ]−∞, +∞[ ↪→ D1 = [−∞,+∞]

and identify C with an open subset R + iR in D1 + iR. Let EO be the sheaf of E-
valued holomorphic functions on C. Refer to Bochnak-Siciak [1] for the properties of
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holomorphic functions taking values in a sequentially complete Hausdorff locally convex
space.

Definition 2.1. We define the sheaf EOL∞ of E-valued bounded holomorphic
functions at infinity on D1 + iR, as the sheaf associated with the presheaf given by the
correspondence

D1 + iR
open
⊃ U 7→ {f ∈ EO(U ∩ C); f is bounded.}.

For a compact set L b U , a continuous seminorm p ∈ N (E), and a section f ∈
EO(U ∩ C), we use the notation

(2.1) ‖f‖L,p := sup
w∈L∩C

p(f(w)).

Then, the space EOL∞(U) can be written as

(2.2) EOL∞(U) := {f ∈ EO(U ∩ C); ‖f‖L,p < +∞, ∀L b U, ∀p ∈ N (E)},

and is endowed with a locally convex topology by the family of seminorms ‖·‖L,p with
L b U and p ∈ N (E). We sometimes use OL∞ instead of COL∞ for the scalar case
(E = C), and ‖f‖L instead of ‖f‖L,|·| for f ∈ OL∞(U).

Note that EOL∞ |C = EO, that is, EOL∞(U) = EO(U) for U ⊂ C.

Definition 2.2 (Sheaf of E-valued bounded hyperfunctions at infinity). We de-
fine the sheaf EBL∞ of E-valued bounded hyperfunctions at infinity on D1 as the sheaf
associated with the presheaf

(2.3) D1
open
⊃ Ω 7→ lim−→

U

EOL∞(U \ Ω)
EOL∞(U)

,

where U runs through complex neighborhoods of Ω, that is, open sets in D1 + iR
including Ω as a closed subset.

We also write EBL∞ |R by EB, and sometimes abbreviate CBL∞ and CB as BL∞

and B, respectively. These notations are compatible with the sheaf B of usual hyper-
functions due to Sato, and with the sheaf EB of E-valued hyperfunctions introduced by
Ion-Kawai [3] when E is a Fréchet space.

A section of EBL∞ on a compact set admits a boundary value representation. In
the sequel, we use the conventions Bd := ]−d, d[ and Ḃd := Bd \ {0} for d > 0. We cite
the following proposition, which is a part of [7, Proposition 2.3].

Proposition 2.3. For a compact set K ⊂ D1, we have

(2.4) EBL∞(K) = lim−→
Ω,d>0

EOL∞(Ω + iḂd)
EOL∞(Ω + iBd)

,

where Ω runs through open neighborhoods of K in D1.
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§ 2.2. Operators of type K

We recall the notion of operators of type K in [7, §3].

Definition 2.4. Let U ⊂ D1 + iR be an open set and K a closed interval [a, b] ⊂
R. We admit the case a = b, i.e., K = {a}. A family P = {PV : EOL∞(V + K) →
EOL∞(V )}V ⊂U of linear maps is said to be an operator of type K for EOL∞ on U , if
each PV is continuous and each diagram below commutes for any pair V1 ⊃ V2 in U .

EOL∞(V1 + K)
PV1 //

��

EOL∞(V1)

��
EOL∞(V2 + K)

PV2 // EOL∞(V2)

Here the vertical arrows are the restriction maps.

Note that the meaning of the vector sum V + K can be naturally defined also in
case V 6⊂ C.

An operator P of type K automatically induces a family {PΩ : EBL∞(Ω + K) →
EBL∞(Ω)}Ω⊂U∩D1 of linear maps, where the following diagram commutes

EBL∞(Ω1 + K)
PΩ1 //

��

EBL∞(Ω1)

��
EBL∞(Ω2 + K)

PΩ2 // EBL∞(Ω2)

for any Ω1 ⊃ Ω2 in U ∩ D1.
Consider the case U ⊂ C. Then the sets V and V + K are included in C, and the

entries of the family P are linear maps PV : EO(V + K) → EO(V ). Therefore, in this
case, we say that P is an operator of type K for EO on U .

Let P be again an operator of type K for EOL∞ on U , and we define the notion of
EOL∞-solutions on an open set V ⊂ U to an equation given by P . For f ∈ EOL∞(V ), we
say that u is an EOL∞ -solution to the equation Pu = f on V , or simply an EOL∞(V )-
solution to Pu = f , if u belongs to EOL∞(V + K) and satisfies PV u = f . Note that
the domain of definition of u is not V but V + K. Similarly, for f ∈ EBL∞(Ω), an
EBL∞-solution to Pu = f on Ω is a section u ∈ EBL∞(Ω + K) satisfying PΩu = f .
Moreover, when f is a germ of EBL∞ at +∞ (that is, f ∈ (EBL∞)+∞), it makes sense
to consider an (EBL∞)+∞-solution to an equation Pu = f .

Note also that we sometimes omit the subscripts V and Ω in PV and PΩ if it causes
no confusion. A simple example is the differentiation ∂w.
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§ 2.3. Periodicity for bounded hyperfunctions and operators

We take a positive constant ω and give a notion of ω-periodicity for our hyperfunc-
tions and operators. Roughly speaking, we denote by Tω the ω-translation operator
f 7→ f(·+ω), and by Tω − 1 the ω-difference operator f 7→ f(·+ω)− f(·). Then we de-
fine the ω-periodicity for bounded holomorphic functions and bounded hyperfunctions
by the equation (Tω − 1)f = 0, and the ω-periodicity for operators of type K by the
commutativity with Tω. Let us see this process a little bit more precisely.

As we have seen in (2.2), a section f ∈ EOL∞(V + ω) is actually a section f ∈
EO((V + ω) ∩ C) satisfying ‖f‖L,p < +∞ for any L b V + ω and p ∈ N (E). We define
Tωf ∈ EO(V ∩ C) by (Tωf)(w) := f(w + ω) for w ∈ V ∩ C. Then, it immediately
follows that ‖Tωf‖L,p = ‖f‖L+ω,p < +∞ for L b V and p ∈ N (E), which implies
the continuity of Tω : EOL∞(V + ω) → EOL∞(V ). Since these maps for open sets
V ⊂ D1 + iR commute with restrictions, they form an operator of type {ω} for EOL∞

on D1 + iR. Similarly Tω −1 becomes an operator of type [0, ω], which can be seen from
the estimate ‖(Tω − 1)f‖L,p ≤ ‖f‖L+ω,p + ‖f‖L,p ≤ 2‖f‖L+[0,ω],p.

A section f ∈ EOL∞(V +[0, ω]), (resp. f ∈ EBL∞(Ω+[0, ω])) is called ω-periodic if it
satisfies (Tω−1)f = 0 in EOL∞(V ), (resp. in EBL∞(Ω)), and an operator P = {PV }V ⊂U

of type K ⊂ R on a strip domain U is called ω-periodic if the diagram

EOL∞(V + ω + K)
PV +ω

//

Tω

��

EOL∞(V + ω)

Tω

��
EOL∞(V + K)

PV // EOL∞(V )

commutes for any V ⊂ U . Note that ω-periodic operator induces the commutative
diagram

EBL∞(Ω + ω + K)
PΩ+ω

//

Tω

��

EBL∞(Ω + ω)

Tω

��
EBL∞(Ω + K)

PΩ // EBL∞(Ω)

for any Ω ⊂ U ∩ D1, and preserves the ω-periodicity of its operands.
Now we cite a result concerning ω-periodicity.

Proposition 2.5 ([7, Proposition 3.8]). Let Ω ⊂ R be an open interval and K

the closed interval [0, ω]. The restriction maps EBL∞(D1) → EB(R) and EB(R) →
EB(Ω + K) induce the following isomorphisms respectively.

{f ∈ EBL∞(D1); (Tω − 1)f = 0} → {f ∈ EB(R); (Tω − 1)f = 0},(2.5)

{f ∈ EB(R); (Tω − 1)f = 0} → {f ∈ EB(Ω + K); (Tω − 1)f = 0}.(2.6)
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Moreover, any ω-periodic hyperfunction g ∈ EB(R) has an ω-periodic defining function
f ∈ EOL∞(D1 + iḂd) with some d > 0.

Consider an equation Pu = f on R, where P is an ω-periodic operator of type
K ⊂ R for EOL∞ on D1 + iBd, and f is an ω-periodic E-valued hyperfunction on R.
We can take a unique ω-periodic extension f̃ ∈ EBL∞(D1) of f using the isomorphism
(2.5), and associate an equation Pũ = f̃ on D1 to the original equation Pu = f . Under
this situation, we give the following corollary of Proposition 2.5, which is explained at
the end of section 3 in [7].

Corollary 2.6. The restriction EBL∞(D1) → EB(R) induces the isomorphism
between the spaces of the ω-periodic solutions.

{ũ ∈ EBL∞(D1); (Tω − 1)ũ = 0, P ũ = f̃} ∼→ {u ∈ EB(R); (Tω − 1)u = 0, Pu = f}.

§ 3. Duality results on EO

Throughout this section, E denotes a reflexive Hausdorff locally convex space over
C. We denote by E′ its strong dual space. By the very definition of the reflexivity, the
standard embedding ı : E → E′′ given by ı(x)(y) = y(x) for x ∈ E and y ∈ E′ becomes
a topological isomorphism. Since the reflexivity implies the sequential completeness, we
can consider EO as we did in the previous section, as well as E′

O by the same reason.
We study some functional analytic properties on EO.

Note that, unlike in other sections, we do not consider D1 + iR, (nor EOL∞ , EBL∞)
in this section. Instead, we take the Riemann sphere P1 := Ct{∞}, where “∞” denotes
its point at infinity.

§ 3.1. A weak form of the Köthe duality

Let L be a compact set in C and consider the space EO(L) := lim−→V cL
EO(V ) of

E-valued holomorphic functions defined in a neighborhood of L, where V runs through
open neighborhoods of L in C. We endowed the space EO(L) with the locally convex
inductive limit topology, and give a weak form of the Köthe duality.

Definition 3.1. For open neighborhoods V, W ⊂ C of L, we take a compact
neighborhood M of L in W ∩ V whose boundary γ := ∂M consists of finite piecewise
smooth simple closed curves, and define a bilinear form

〈·, ·〉L : E′
O(W \ L) × EO(V ) → C

by

(3.1) 〈F, f〉L :=
∫

γ

F (w)(f(w))dw
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for F ∈ E′
O(W \ L) and f ∈ EO(V ). Here F (w)(f(w)) is a value of the continuous

linear functional F (w) ∈ E′ evaluated at f(w) ∈ E.

Let us explain in the followings the fact that 〈·, ·〉L is well-defined and that it
induces the duality between E′

O(W \ L)/E′
O(W ) and EO(L).

The first remark is on the existence of M satisfying the requirements in Defini-
tion 3.1, that we may take as M a union of finite closed disks with L b M b V ∩ W .

Lemma 3.2. F (w)(f(w)) is holomorphic in w ∈ (W ∩ V ) \ L. Therefore the
integral (3.1) does not depend on the choice of γ, and induces a bilinear form on E′

O(W \
L) × EO(L).

Proof. For the former statement, we shall show that F (z)(f(z))−F (w)(f(w))
(z−w) con-

verges as z → w. This quotient is equal to

F ′(w)(f(z)) + F (w)
(f(z) − f(w)

z − w

)
+

(F (z) − F (w)
z − w

− F ′(w)
)
(f(z)),

whose first two terms converge to F ′(w)(f(w)) + F (w)(f ′(w)). To see that the third
term converges to 0, note that f(z) belongs to a bounded set in E when z belongs to
a compact neighborhood of w, and that a convergence in E′ is nothing but a uniform
convergence as functionals on bounded sets in E.

The latter statement directly follows from the former.

Definition 3.3. Let L be a compact set in C and W an open neighborhood. We
define linear maps α : (EO(L))′ → E′

O(W \ L) and β : E′
O(W \ L) → (EO(L))′ by

(3.2) α(ϕ)(w)(x) := ϕ
( 1

2πi

1
w − ·

x
)
∈ C,

for ϕ ∈ (EO(L))′, x ∈ E and w ∈ W \ L, and by

(3.3) β(F )(f) := 〈F, f〉L,

for F ∈ E′
O(W \ L) and f ∈ EO(L). Here we regard 1

2πi
1

w−·x as an element of EO(L)
in the right hand side of (3.2).

The linearity of the functional α(ϕ)(w) : E → C is trivial, and that of the map α

is also trivial provided it is well-defined. Let us show the well-definedness of α.

Lemma 3.4. α(ϕ)(w) : E → C is continuous.

Proof. For any w ∈ W \ L, we take ε > 0 and a neighborhood V of L with
dist(w, V ) > ε. For any compact set M ⊂ V and continuous seminorm p ∈ N (E), we
have

‖ 1
2πi

1
w − ·

x‖M,p = ‖ 1
2πi

1
w − ·

‖M · p(x) ≤ p(x)
2πε

,
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which implies the continuity of E 3 x 7→ 1
2πi

1
w−·x ∈ EO(V ). Since the restriction

EO(V ) → EO(L) is also continuous, so is the composition α(ϕ)(w) of these maps.

Lemma 3.4 implies that α(ϕ)(w) ∈ E′.

Lemma 3.5. α(ϕ) ∈ E′
O(W \ L).

Proof. Thanks to [1, Theorem 3.1], it suffices to show that W \ L 3 w 7→
x∗(α(ϕ)(w)) ∈ C is holomorphic for any x∗ ∈ E′′. Since E is reflexive, there exists
x ∈ E such that ı(x) = x∗, that is, x∗(y) = y(x) for any y ∈ E′. Therefore, we shall
prove that α(ϕ)(w)(x) is holomorphic in w. By a direct calculation, we have

α(ϕ)(z)(x) − α(ϕ)(w)(x)
z − w

= ϕ
( 1

2πi

−1
(z − ·)(w − ·)

x
)
,

for w, z ∈ W \ L. Now the conclusion follows from the fact that −1
(z−·)(w−·)x → −1

(w−·)2 x

as z → w in EO(L).

Lemma 3.6. β(F ) ∈ (EO(L))′, i.e., β(F ) : EO(L) → C is continuous.

Proof. By the definition of the locally convex inductive limit topology, it suffices
to show that β(F ) is continuous as EO(V ) → C for any open neighborhood V of L.
Once we fix V and W , then we can fix a contour γ in the calculation of 〈F, f〉L for any
F ∈ E′

O(W \ L) and f ∈ EO(V ).
Since the subset M := {F (w)}w∈γ ⊂ E′ is compact and therefore bounded, and

also since ı : E → E′′ is a topological isomorphism, pM(x) := supy∈M|ı(x)(y)| =
supy∈M|y(x)| for x ∈ E defines a continuous seminorm on E. Now we have

|β(F )(f)| ≤
∫

γ

|F (w)(f(w))| · |dw| ≤
∫

γ

pM(f(w)) · |dw|

≤ |γ| · sup
w∈γ

pM(f(w)) = |γ| · ‖f‖γ,pM ,

which concludes the proof.

Lemma 3.7. If F ∈ E′
O(W ), then β(F ) = 0.

Proof. Under the same terminologies as in Definition 3.1, we have β(F )(f) =∫
∂M

F (w)(f(w))dw for any f ∈ EO(V ). By the same proof of Lemma 3.2, we can show
F (w)(f(w)) ∈ O(M). Therefore β(F )(f) = 0.

Lemma 3.8. β ◦ α = id(EO(L))′ .
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Proof. We shall show β(α(ϕ))(f) = ϕ(f) for any ϕ ∈ (EO(L))′ and any f ∈ EO(L).
By the definition, we have

(3.4) β(α(ϕ))(f) =
∫

γ

α(ϕ)(w)(f(w))dw =
∫

γ

ϕ
( 1

2πi

1
w − ·

f(w)
)
dw,

where γ := ∂M with L b M b W .
Now we claim that the map γ 3 w 7→ 1

2πi
1

w−·f(w) ∈ EO(L) is continuous. In fact,
for any choice of L1 with L b L1 b M (∂M = γ), we have the estimate

‖ 1
z − ·

f(z) − 1
w − ·

f(w)‖L1,p ≤ ‖ w − z

(z − ·)(w − ·)
f(z)‖L1,p + ‖f(z) − f(w)

w − ·
‖L1,p

≤ |w − z|
dist(γ, L1)2

‖f‖γ,p +
1

dist(γ, L1)
p(f(z) − f(w)),

for p ∈ N (E) and w, z ∈ γ. The right hand side converges to 0 as z → w.
Therefore the calculation (3.4) can be continued to

β(α(ϕ))(f) = ϕ
(∫

γ

1
2πi

1
w − ·

f(w)dw
)

= ϕ(f).

Lemma 3.9. For any F ∈ E′
O(W \ L), α(β(F )) − F ∈ E′

O(W ).

Proof. We take an arbitrary relatively compact open set U with piecewise smooth
boundary Γ = ∂U satisfying L b U b W , and we shall show that

(
α(β(F ))−F

)
|U\L ∈

E′
O(U \ L) can be extended to a section in E′

O(U).
For any w ∈ U \ L, we choose M as in Definition 3.1 satisfying w /∈ M and

L b M b U , and define γ := ∂M . We can show α(β(F ))(w) = 1
2πi

∫
γ

F (z)
w−z dz using a

test with an arbitrary x ∈ E as

α(β(F ))(w)(x) = β(F )
( 1

2πi

1
w − ·

x
)

=
∫

γ

F (z)
( 1

2πi

1
w − z

x
)
dz =

1
2πi

∫
γ

F (z)(x)
w − z

dz

=
( 1

2πi

∫
γ

F (z)
w − z

dz
)
(x).

On the other hand, we have F (w) = 1
2πi

∫
Γ−γ

F (z)
z−w dz, since w ∈ U \M and ∂(U \M) =

Γ − γ. It follows from these equalities that(
α(β(F )) − F

)
(w) =

1
2πi

∫
Γ

F (z)
w − z

dz,

which can be extended to U .

By these preparations, we give
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Theorem 3.10. The maps α and β induce the isomorphism between vector
spaces

(EO(L))′ ∼−→ E′
O(W \ L)/E′

O(W ).

Consider the case W = C.

Corollary 3.11. The maps α and β also induce the isomorphism between vector
spaces

(EO(L))′ ∼−→ E′
O◦(P1 \ L).

Here E′
O◦(P1 \ L) denotes the subspace {F ∈ E′

O(P1 \ L); F (∞) = 0} of E′
O(P1 \ L).

This corollary follows from Theorem 3.10 and the lemma below.

Lemma 3.12. For any ϕ ∈ (EO(L))′, α(ϕ) ∈ E′
O(C \ L) extends holomorphi-

cally to P1 \ L and satisfy α(ϕ)(∞) = 0.

Proof. We define a map F : P1 \ L → E′ by F (w) = α(ϕ)(w) for w ∈ C \ L

and F (∞) = 0. Since 1
2πi

1
w−·x → 0 in EO(L) as w → ∞ for any x ∈ E, we have

α(ϕ)(w)(x) → 0 as w → ∞. Then it follows from [1, Theorem 3.1] that F ∈ E′
O(P1 \

L).

By abuse, we denote the isomorphism in Corollary 3.11 again by α, and its inverse
by β.

§ 3.2. Closedness of an operator of type K in weak topologies

We denote by Ew the space E endowed with the weak topology. Since E is reflexive,
Ew is isomorphic to the dual space of the barrelled space E′ endowed with the weak
star topology. Therefore it follows from the Banach-Steinhaus theorem that Ew is also
sequentially complete. Refer, for example, to Schaefer-Wolff [11, III.4.6 and IV.5.6].

In this subsection, we consider an operator P = {PV : EO(V + K) → EO(V )}
of type K = [a, b] ⊂ R for EO on U ⊂ C, and we shall show that each PV becomes
sequentially closed as a map EwO(V + K) → EwO(V ). Note that EO(V ) = EwO(V ) as
vector spaces. In fact, the inclusion EO(V ) ⊂ EwO(V ) follows from the very definition,
and the equality follows again from [1, Theorem 3.1].

For a compact set L in U , we denote by PL : EO(L + K) → EO(L) the inductive
limit of PV in V with L b V ⊂ U , and by P ∗

L : E′
O◦(P1 \ L) → E′

O◦(P1 \ (L + K))
its adjoint given by Corollary 3.11. In other words, P ∗

L is a linear map satisfying
〈P ∗

L(F ), f〉L1 = 〈F, PL(f)〉L2 for any F ∈ E′
O◦(P1 \ L) and f ∈ EO(L + K).

Lemma 3.13. Consider L b V , F ∈ E′
O◦(P1 \ L) and a convergent sequence

{fn}n in EwO(V ) with limit f . Then 〈F, fn〉L → 〈F, f〉L.
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Proof. We can take L b M b V and γ := ∂M such that 〈F, g〉L =
∫

γ
F (w)(g(w))dw

for any g ∈ EwO(V ). Since {fn} is a convergent sequence, L := {fn(w); w ∈ γ, n ∈ N}
is bounded in Ew, and therefore bounded also in E by virtue of Mackey’s theorem.
The seminorm qL on E′ defined by qL(y) := supx∈L|y(x)| is continuous and we have
C := supw∈γ qL(F (w)) < +∞. Therefore |F (w)(fn(w))| ≤ C for any w ∈ γ and
any n ∈ N. On the other hand, we have F (w)(fn(w)) → F (w)(f(w)) for each fixed
w ∈ γ since fn(w) → f(w) in Ew. Now the conclusion follows from Lebesgue’s bounded
convergence theorem.

Lemma 3.14. Let P = {PV : EO(V +K) → EO(V )}V ⊂U be an operator of type
K = [a, b] for EO on U . Then, each PV : EwO(V +K) → EwO(V ) is sequentially closed.

Proof. Consider a sequence {fn}n ⊂ EO(V + K) convergent in EwO(V + K) with
limit f ∈ EO(V + K), such that PV (fn) converges to g ∈ EO(V ) in EwO(V ). We shall
show that PV (f) = g.

The equality PV (f) = g in EO(V ) is reduced to the equalities PV (f)|L = g|L
for compact subsets L b V , which can be checked by duality. Therefore, thanks to
Corollary 3.11 and the definition of P ∗

L, it suffices to prove that 〈P ∗
L(F ), f〉L = 〈F, g〉L

for any L b V and any F ∈ E′
O◦(P1 \ L). We get this equality from the equalities

〈P ∗
L(F ), fn〉L+K = 〈F, PV (fn)〉L for n ∈ N, by applying Lemma 3.13 to the both sides.

§ 4. Main result

We recall the notion of the sequential Montel property (M) for locally convex spaces.
Refer to section 4 of [7]. (See also Zubelevich [13].)

Definition 4.1. Let E be a sequentially complete Hausdorff locally convex space.
E is said to admit the Montel property if it satisfies the condition:

(M) Any bounded sequence in E has a convergent subsequence.

When E admits the Montel property, we have the following weak variant of the
Montel type theorem for EOL∞(U).

Theorem 4.2 ([7, Theorem 4.1]). Assume that E satisfies the Montel property
(M). Then for any bounded sequence (fj)j in EOL∞(U), we can take a subsequence
(fjk

)k which converges in EO(U ∩ C). The limit f ∈ EO(U ∩ C) of such a convergent
subsequence belongs to EOL∞(U).
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As we mentioned in the introduction, infinite dimensional Banach spaces never
admit the Montel property. But it is well-known that the weak topology of a reflexive
Banach space does.

Theorem 4.3. Let E be a reflexive Banach space. Then any bounded sequence
in E has a subsequence which converges in the weak topology. In particular, Ew admits
the Montel property (M).

Refer to Yosida [12, V. §2 Theorem 1] for the former, and recall again that a subset
in E is bounded if and only if it is bounded in Ew.

Now we give our main result.

Theorem 4.4. Let E be a reflexive Banach space, K a closed interval in R, and
ω a positive number. Consider an ω-periodic operator P of type K for EOL∞ on a strip
domain D1 + i]−d, d[ with some d > 0 and an ω-periodic E-valued hyperfunction f . The
equation Pu = f has an ω-periodic E-valued hyperfunction solution if and only if it has
an (EBL∞)+∞-solution.

Proof. The necessity follows from Corollary 2.6, and we shall prove the sufficiency.
Assume that Pu = f has an (EBL∞)+∞-solution u. Then, under the notations

Ω := ]a, +∞], U := ]a, +∞] + iBd′ , U̇ := ]a,+∞] + iḂd′ = U \ D1,

we can take ũ ∈ EOL∞(U̇ + K), f̃ ∈ EOL∞(D1 + iḂd′) satisfying (Tω − 1)f̃ = 0 and
g ∈ EOL∞(U) for some a ∈ R and 0 < d′ < d, such that

[ũ] = u on Ω, [f̃ ] = f on D1, PU̇ ũ − g = f̃ on U̇ .

In fact, we can first choose, for some choice of a and d′, a local defining function
ũ ∈ EOL∞(U̇ + K) of u by Proposition 2.3 and an ω-periodic defining function f̃ ∈
EOL∞(D1+iḂd′) of f by Proposition 2.5. Next, since PU̇ ũ−f̃ represents 0 in (EBL∞)+∞,
it extends to a germ g ∈ (EOL∞)+∞. Finally we shrink U (i.e., increase a and decrease
d′) if necessary, so that g belongs to EOL∞(U). Here we used the commutativity of P

with restrictions.
Now, in the same way as the proof of Theorem 4.3 of [7], we define

Skũ :=
1
k

k−1∑
j=0

Tjωũ|U̇+K ∈ EOL∞(U̇ + K), Skg :=
1
k

k−1∑
j=0

Tjωg|U ∈ EOL∞(U),

for k ∈ N. It follows, again from the commutativity of P with restrictions and from the
ω-periodicity of P and f̃ , that

(4.1) PU̇Skũ − Skg = f̃ on U̇ for any k ∈ N.
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Moreover, ũ ∈ EOL∞(U̇ + K) and g ∈ EOL∞(U) imply that {Skũ}k∈N ⊂ EOL∞(U̇ + K)
and {Skg}k∈N ⊂ EOL∞(U) are bounded.

Recall that EO(V ) = EwO(V ) for any open V ⊂ C, and that the boundedness in E

and that in Ew coincide. These two properties imply that EOL∞(V ) = EwOL∞(V ) as
vector spaces for any open V ⊂ D1 + iR, and that the two notions of the boundedness in
both topologies coincide. Therefore, we have the inclusions {Skũ}k∈N ⊂ EwOL∞(U̇ +K)
and {Skg}k∈N ⊂ EwOL∞(U), and the left hand sides of both are bounded. Now, thanks
to Theorem 4.3, we can apply Theorem 4.2 with E replaced by Ew to these sequences,
and get a subsequence {k(l)}l∈N, v ∈ EOL∞(U̇ + K) and h ∈ EOL∞(U) such that

Sk(l)ũ → v as l → ∞ in EwOL∞((U̇ + K) ∩ C),(4.2)

Sk(l)g → h as l → ∞ in EwOL∞(U ∩ C).(4.3)

Let us show the equality PU̇v − h = f̃ in EOL∞(U̇), and the ω-periodicity of v.
For the equality above, it suffices to prove it in EOL∞(U̇ ∩ C), since EOL∞(U̇) ⊂

EOL∞(U̇ ∩ C). By restricting (4.1) to U̇ ∩ C with k = k(l), we get

PU̇∩CSk(l)ũ = Sk(l)g + f̃ for l ∈ N.

Applying Lemma 3.14 with V = U̇ ∩C, the desired equality follows from (4.2) and (4.3).
In order to show the ω-periodicity of v, note that (Tω − 1)Skũ → 0 as k → ∞ in

EO(U̇ + K) since (Tω − 1)Skũ = k−1(Tkω − 1)ũ. Therefore (Tω − 1)Skũ → 0 holds also
in EwO(U̇ + K), and by applying Lemma 3.14 to the sequence {(Tω − 1)Sk(l)ũ}l∈N for
operator Tω − 1 on the set (U̇ + K)∩C, we have (Tω − 1)v = 0 on that set, and also on
U̇ + K.

Due to the ω-periodicity, v has a unique ω-periodic extension in EOL∞(D1 + iḂ′
d).

Moreover h has a unique ω-periodic extension in EOL∞(D1 + iB′
d). In fact, since h =

PU̇v − f̃ is ω-periodic on U̇ , it is ω-periodic also in U , and can be extended.
Finally note that [v] ∈ EBL∞(D1) becomes a desired ω-periodic solution.
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to the memory of André Martineau). Springer, Berlin, 1973, pp. 265–529. Lecture Notes

in Math., Vol. 287.

[11] Schaefer, H. H., and Wolff, M. P., Topological vector spaces, second ed., vol. 3 of Graduate

Texts in Mathematics, Springer-Verlag, New York, 1999.

[12] Yosida, K., Functional analysis, fifth ed, Springer-Verlag, Berlin, 1978. Grundlehren der

Mathematischen Wissenschaften, Band 123.

[13] Zubelevich, O., A note on theorem of Massera, Regul. Chaotic Dyn. 11, 4 (2006), 475–481.


