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RIMS Kôkyûroku Bessatsu
B39 (2013), 183–195

On vector partition functions with negative weights

By

Tatsuru Takakura∗

Abstract

We introduce the notion of weights into the vector partition function and the volume

function associated to a sequence of vectors. We prove an explicit formula for the volume

function with possibly negative weights. It is a generalization of a formula given by Brion and

Vergne in [2].

§ 1. Introduction

The vector partition function and the volume function associated to a sequence

of vectors have been studied from various point of view. For instance, the Kostant

partition function for a root system, which is a typical example of vector partition

functions, plays an important role in representation theory of Lie groups. We note that

a vector partition function (resp. a volume function) counts the number of the lattice

points in (resp. measures the volume of) a certain polytope. Hence they are closely

related to combinatorics of convex polytopes. We refer to [2], [7], and [1] for known

results. For example, in [2] Brion and Vergne gave explicit closed formulas for vector

partition functions and volume functions.

In this paper, we introduce the notion of a vector partition function (or volume

function) with weights, where each weight is an integer. A positive weight merely

corresponds to the multiplicity of a vector in the given set of vectors used to define

the vector partition function (or volume function). The known results cited above are

also available in this positive weight case. On the other hand, the notion of negative

weights seems to be new, although it is quite natural when we characterize a vector
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partition function (or volume function) by its generating function. Such negative weights

appear, for example, in the computation of the dimension of the invariant subspace

(Vλ1 ⊗ · · · ⊗ Vλn)
G in a tensor product representation, where Vλi is the irreducible

representation of a compact Lie group G with highest weight λi, if some of λi (i =

1, . . . , n) lie on the boundary of the Weyl chamber (see, e.g., [5]).

Our main result Theorem 4.1 gives explicit formulas for the volume functions with

possibly negative weights, which generalize some of the Brion-Vergne formulas men-

tioned above. It is stated as follows.

Theorem 4.1. Let ∆ = (α1, . . . , αN ), m = (m1, . . . ,mN ) be as in Definition

3.1 and let M = m1 + · · ·+mN . Suppose h is in a chamber γ and y ∈ RN is generic.

Then we have

V∆(y, h;m) =
∑

σ∈B(∆,γ)

1

µ(σ)

∏
j∈σ

(−∂j)
mj−1

(mj − 1)!

(
e−⟨y,vσ(h)⟩∏

k/∈σ(yk −
∑

j∈σ cjkyj)
mk

)
,

V∆(h;m) =
1

(M − d)!

∑
σ∈B(∆,γ)

1

µ(σ)

∏
j∈σ

∂
mj−1
j

(mj − 1)!

(
⟨y, vσ(h)⟩M−d∏

k/∈σ(−yk +
∑

j∈σ cjkyj)
mk

)
,

where if mi ≤ 0, we set
∂
mj−1
j

(mj − 1)!
= 0.

See sections 2, 3, and 4 for the details. Applications to geometry and topology of

certain spaces will be discussed in another article. We mention that an example in this

direction was given in [5].

This paper is organized as follows. In section 2, after giving the definitions of the

vector partition function and the volume function associated to a sequence of vectors,

we review the Brion-Vergne formulas from [2]. Weights are introduced in section 3. The

main theorem above and its example are given in section 4. We prove the theorem in

section 5.

§ 2. Vector partition function and volume function

In this section, we review some contents of [2].

§ 2.1. Definitions

Let E be a real vector space of dimension d and let Λ be a lattice in E. Let

∆ = (α1, . . . , αN ) be a sequence of vectors in Λ, all lying in an open half space and

spanning E as vector space. For λ ∈ Λ, we denote by P∆(λ) the number of ways to
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express λ as a linear combination of α1, . . . , αN with coefficients in Z≥0. Namely, we

set

P∆(λ) := ♯{(x1, . . . , xN ) ∈ (Z≥0)
N |x1α1 + · · ·+ xNαN = λ}.

The function P∆ is called the vector partition function associated to ∆. Its generating

function is given by∑
λ

P∆(λ)e
λ =

1∏N
i=1(1− eαi)

= (1 + eα1 + e2α1 + · · · ) · · · · · (1 + eαN + e2αN + · · · ),

where ev (v ∈ Λ) are elements in the group ring Z[Λ], obeying ev1ev2 = ev1+v2 .

More generally, for y = (y1, . . . , yN ) ∈ RN , we define

P∆(y, λ) :=
∑

x1α1+···+xNαN=λ

e−(x1y1+···+xNyN ),

whose generating function is given by

∑
λ

P∆(y, λ)e
λ =

N∏
i=1

1

1− e−yieαi
.

By definition, we have P∆(0, λ) = P∆(λ).

For h ∈ E, we define

H∆(h) := {(x1, . . . , xN ) ∈ RN |x1α1 + · · ·+ xNαN = h},
X∆(h) := {(x1, . . . , xN ) ∈ (R≥0)

N |x1α1 + · · ·+ xNαN = h}.

We call X∆(h) the partition polytope associated to ∆. Note that it is compact and

P∆(λ) is the number of lattice points in it.

Next, we introduce continuous analogues of P∆(λ) and P∆(y, λ). We normalize the

Lebesgue measure on E so that the volume of E/Λ is 1, and we consider the standard

Lebesgue measure on RN . They determine the Lebesgue measure ds on H∆(h). For

h ∈ E and y = (y1, . . . , yN ) ∈ RN , let us define

V∆(h) : = volume of X∆(h) =

∫
X∆(h)

ds,

V∆(y, h) : =

∫
X∆(h)

e−(x1y1+···+xNyN )ds.

The function V∆ is called the volume function (or asymptotic partition function) asso-

ciated to ∆.
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Remark 1. Under some conditions on ∆ and λ, the partition polytope X∆(λ)

becomes an integral polytope and P∆(k · λ) turns out to be a polynomial of k ∈ Z≥0,

which is called the Ehrhart polynomial. Then the coefficient of the top term of P∆(k ·λ)
is equal to V∆(λ). See, e.g., [7].

Moreover, P∆(λ) and V∆(λ) are related to certain invariants, the Riemann-Roch

number and the volume, of the toric variety associated to the partition polytope X∆(λ).

§ 2.2. Brion-Vergne formula

In [2], Brion and Vergne gave explicit closed formulas for P∆(y, λ), V∆(y, h), and

V∆(h). Let us recall those for V∆(y, h) and V∆(h). In order to state them, we need

some notation.

A subset σ of {1, . . . , N} is called a basis of ∆ if the sequence (αj)j∈σ is a basis of

E. The set of all bases of ∆ is denoted by B(∆).

Let C(∆) :=
N∑
i=1

R≥0αi and let C(σ) :=
∑
j∈σ

R≥0αj for σ ∈ B(∆). Consider the

subdivision of C(∆) given by the intersections of the cones C(σ) (σ ∈ B(∆)). The

interior of a maximal cone of this subdivision is called a chamber. For a chamber γ, we

denote by B(∆, γ) the set of all bases σ ∈ B(∆) such that γ ⊂ C(σ).

Let σ ∈ B(∆). We define a linear map vσ : E → RN by vσ(αj) = wj for j ∈ σ,

where (w1, . . . , wN ) is the standard basis of RN . We denote by µ(σ) the volume of the

parallelepiped ∑
j∈σ

tjαj

∣∣∣∣∣∣ 0 ≤ tj ≤ 1 (j ∈ σ)

 .

Finally, for σ ∈ B(∆), j ∈ σ and k /∈ σ, we define a real number cjk = cσjk by

αk =
∑
j∈σ

cjkαj .

Remark 2. For h ∈ γ, the set of vertices of the partition polytopeX∆(h) coincides

with {vσ(h) |σ ∈ B(∆, γ)}. See [2, 3.1].

Now, their formulas are stated as follows.

Theorem 2.1 ([2]). Let γ be a chamber and let h ∈ γ. Suppose y ∈ RN is

generic. Then we have

V∆(y, h) =
∑

σ∈B(∆,γ)

e−⟨y,vσ(h)⟩

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
,(2.1)

V∆(h) =
1

(N − d)!

∑
σ∈B(∆,γ)

⟨y, vσ(h)⟩N−d

µ(σ)
∏

k/∈σ(−yk +
∑

j∈σ cjkyj)
.(2.2)
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Remark 3.

• The assumption that y ∈ RN is generic means that yk −
∑

j∈σ cjkyj ̸= 0 for any

σ ∈ B(∆, γ) and k /∈ σ.

• In fact, both formulas hold for h in the closure γ̄ of γ.

• The right hand side of (2.2) does not depend on y.

§ 3. Weights

§ 3.1. Positive weights

In the argument above, some of α1, . . . , αN may coincide. In order to treat such a

case more definitely, we proceed as follows. Let m = (m1,m2 . . . ,mN ) be a sequence

of positive integers. Each m1, . . . ,mN is called a weight or a multiplicity. Consider the

sequence ∆m = (α1, . . . , α1, . . . , αN , . . . , αN ), where each αi is repeated mi times, and

set

P∆(λ;m) : = P∆m(λ)

= ♯
{
(x

(1)
1 , . . . , x(1)

m1
, . . . , x

(N)
1 , . . . , x(N)

mN
) ∈ (Z≥0)

M
∣∣∣(

x
(1)
1 + · · ·+ x(1)

m1

)
α1 + · · ·+

(
x
(N)
1 + · · ·+ x(N)

mN

)
αN = λ

}
for λ ∈ Λ. Here M = m1+ · · ·+mN . Then the generating function of P∆(λ;m) is given

by

(3.1)
∑
λ

P∆(λ;m)eλ =
1∏N

i=1(1− eαi)mi

.

If we set

Σ(x) := {(x1, . . . , xm) ∈ (R≥0)
m | x1 + · · ·+ xm = x}

for a fixed x ∈ R≥0, then we have∫
Σ(x)

dx1 · · · dxm =
xm−1

(m− 1)!
.

Hence the volume function associated to ∆ and m should be defined by

(3.2) V∆(h;m) :=

∫
X∆(h)

xm1−1
1

(m1 − 1)!
· · ·

xmN−1
N

(mN − 1)!
ds

for h ∈ E.
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Remark 4. This is a special case of Gel’fand-Kapranov-Zelevinsky (GKZ, for

short) hypergeometric integral. See [6] for an approach to investigate V∆(h;m) via

the GKZ theory.

As before, for y ∈ RN , variants of P∆(λ;m) and V∆(h;m) are defined by∑
λ

P∆(y, λ;m)eλ =
1∏N

i=1(1− e−yieαi)mi

,(3.3)

V∆(y, h;m) :=

∫
X∆(h)

xm1−1
1

(m1 − 1)!
· · ·

xmN−1
N

(mN − 1)!
e−⟨y,x⟩ds.(3.4)

§ 3.2. Negative weights

Even if some of m1, . . . ,mN are nonpositive, (3.1) and (3.3) still define P∆(λ;m)

and P∆(y, λ;m). (When mi = 0, we can omit αi from ∆ beforehand.) Moreover, (3.2)

and (3.4) still make sense, where for m = 0,−1,−2, . . . ,
xm−1

(m− 1)!
is understood to be

xν
+

Γ(ν + 1)

∣∣∣∣
ν=m−1

= δ(|m|)(x),

the |m|-th derivative of the delta function with support at x = 0. (See, e.g., [3, 4].)

We note that, in the situation above, a product of derivatives of delta functions, its

restriction to H∆(h), and the integrals (3.2) and (3.4) over X∆ are well-defined by

virtue of the theory of Sato hyperfunction ([4]).

In conclusion, we have introduced the following definition.

Definition 3.1. Let ∆ = (α1, . . . , αN ) be a sequence of vectors in Λ, lying in

an open half space of E and spanning E as vector space, and let m = (m1, . . . ,mN ) ∈
ZN . For λ ∈ Λ, h ∈ E, and y ∈ RN , we define P∆(λ;m), V∆(h;m), P∆(y, λ;m),

and V∆(y, h;m) respectively by (3.1), (3.2), (3.3), and (3.4). We call P∆(λ;m) (resp.

V∆(h;m)) the vector partition function with weights (resp. the volume function with

weights).

§ 4. Result

Let y = (y1, . . . , yN ) ∈ RN . For i = 1, . . . , N , we denote ∂i =
∂

∂yi
. Our main result

is the following, which generalizes the Brion-Vergne formulas (2.1) and (2.2).

Theorem 4.1. Let ∆ = (α1, . . . , αN ), m = (m1, . . . ,mN ) be as in Definition

3.1 and let M = m1 + · · ·+mN . Suppose h is in a chamber γ and y ∈ RN is generic.
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Then we have

V∆(y, h;m) =
∑

σ∈B(∆,γ)

1

µ(σ)

∏
j∈σ

(−∂j)
mj−1

(mj − 1)!

(
e−⟨y,vσ(h)⟩∏

k/∈σ(yk −
∑

j∈σ cjkyj)
mk

)
,

(4.1)

V∆(h;m) =
1

(M − d)!

∑
σ∈B(∆,γ)

1

µ(σ)

∏
j∈σ

∂
mj−1
j

(mj − 1)!

(
⟨y, vσ(h)⟩M−d∏

k/∈σ(−yk +
∑

j∈σ cjkyj)
mk

)
,

(4.2)

where if mi ≤ 0, we set
∂
mj−1
j

(mj − 1)!
= 0.

A proof is given in the next section. Let us consider a simple example.

Example 4.2 (Volume function for A2). Let ∆ = (α1, α2, α3) be the positive

root system of type A2, where α3 = α1 + α2. There are two chambers γ1 = {p1α1 +

p2α2 | p1 > p2 > 0} and γ2 = {p1α1 + p2α2 | p2 > p1 > 0} in C(∆). For simplicity,

suppose h = p1α1 + p2α2 is in γ1. Then for m = (m1,m2,m3) ∈ Z

VA2(h;m) =

∫ p2

0

(p1 − t)m1−1

(m1 − 1)!

(p2 − t)m2−1

(m2 − 1)!

tm3−1

(m3 − 1)!
dt.

Direct calculation shows

VA2
(h;m) =

m1−1∑
i=0

(m2 + i− 1)!

(m2 − 1)!(m1 − i− 1)!i!(m2 +m3 + i− 1)!
(p1 − p2)

m1−i−1pm2+m3+i−1
2 ,

while our theorem shows

(M − 2)! · VA2(h;m) =

∂m1−1
1

(m1 − 1)!

∂m2−1
2

(m2 − 1)!

(p1y1 + p2y2)
M−2

(−y3 + y1 + y2)m3
+

∂m1−1
1

(m1 − 1)!

∂m3−1
3

(m3 − 1)!

((p1 − p2)y1 + p2y3)
M−2

(−y2 − y1 + y3)m2

with M = m1 +m2 +m3. It might be natural to ask if there is any relation between

our formula and the GKZ hypergeometric theory.

§ 5. Proof of Theorem 4.1

The formula (4.2) follows from (4.1) in the same way with the proof of (2.2) in [2,

3.3]. Hence let us prove (4.1).
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Step 1. If all the mj (j = 1, . . . , N) are positive, the proof is quite easy. In fact, by

applying
N∏
j=1

(−∂j)
mj−1

(mj − 1)!
to the Brion-Vergne formula ((2.1) in Theorem 2.1)

∫
X∆(h)

e−⟨y,x⟩ds =
∑

σ∈B(∆,γ)

e−⟨y,vσ(h)⟩

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
mk

,

we have ∫
X∆(h)

xm1−1
1

(m1 − 1)!
· · ·

xmN−1
N

(mN − 1)!
e−⟨y,x⟩ds

=
∑

σ∈B(∆,γ)

∏
j∈σ

(−∂j)
mj−1

(mj − 1)!

(
e−⟨y,vσ(h)⟩

µ(σ)
∏

k/∈σ(yk −
∑

j∈σ cjkyj)
mk

)
,

as required. Here note that if k /∈ σ, then ⟨y, vσ(h)⟩ does not contain the variable yk

and hence

(−∂k)
mk−1

(mk − 1)!

(
e−⟨y,vσ(h)⟩

yk −
∑

j∈σ cjkyj

)
=

e−⟨y,vσ(h)⟩

(yk −
∑

j∈σ cjkyj)
mk

.

Step 2. In order to treat general case, we proceed by induction on N = ♯∆.

First, let N = 1. If m1 > 0, (4.1) holds by Step 1. If m1 ≤ 0, then V(y, h;m) = 0

since X∆(h) and {x1 = 0}, the support of δ(|m1|)(x1), are disjoint. On the other hand,

the right hand side of (4.1) is also 0 by
(−∂1)

m1−1

(m1 − 1)!
= 0.

Next, let us suppose that our formula for V∆(y, h;m) holds for all ∆ and m with

♯∆ ≤ N − 1, whether or not all of the mj are positive.

Taking Step 1 into account, we consider the case where some of mj are nonpositive.

Without loss of generality, we may assume that mN ≤ 0. Then since

xmN−1
N

(mN − 1)!
= δ(|mN |)(xN ),

we have

(5.1) V∆(y, h;m) =

∫
X∆(h)

(
− ∂

∂xN

)|mN |
N−1∏

j=1

x
mj−1
j

(mj − 1)!
e−⟨y,x⟩

∣∣∣∣∣∣
xN=0

ds.

Let us fix a σ0 ∈ B(∆, γ) such that N /∈ σ0. (If such a σ0 does not exist, (4.1)

obviously holds. In fact, it is easy to see that X∆(h)∩{xN = 0} = ∅ in this case. Hence

we have V∆(y, h;m) = 0. On the other hand, the right hand side of (4.1) is also 0 by
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(−∂N )mN−1

(mN − 1)!
= 0.) Let us set h =

∑
j∈σ0

pjαj . We take (xj)j /∈σ0
as a coordinate of the

hyperplane H∆(h). Recall that αk =
∑

j∈σ0
cσ0

jkαj for k /∈ σ0. Hence we see that

xj = pj −
∑
k/∈σ0

cσ0

jkxk (j ∈ σ0)

and

⟨y, x⟩ =
∑
j∈σ0

yjpj +
∑
k/∈σ0

yk −
∑
j∈σ0

cσ0

jkyj

xk.

It follows that

∂xj

∂xN
=

−cσ0

jN (j ∈ σ0)

0 (j /∈ σ0).

and

∂

∂xN
e−⟨y,x⟩ = −

yN −
∑
j∈σ0

cσ0

jNyj

 e−⟨y,x⟩.

Hence the integrand in (5.1) is computed as follows.

(
− ∂

∂xN

)|mN |
N−1∏

j=1

x
mj−1
j

(mj − 1)!
e−⟨y,x⟩

∣∣∣∣∣∣
xN=0

=
∑
uj ,ue

(
|mN |
uj , ue

)N−1∏
j=1

(
− ∂

∂xN

)uj x
mj−1
j

(mj − 1)!

(
− ∂

∂xN

)ue

e−⟨y,x⟩

∣∣∣∣∣∣
xN=0

=
∑
uj ,ue

(
|mN |
uj , ue

) ∏
j∈σc

0

x
mj−1
j

(mj − 1)!

∏
j∈σ0

(cσ0

jN )ujx
mj−uj−1
j

(mj − uj − 1)!

yN −
∑
j∈σ0

cσ0

jNyj

ue

e−⟨y′,x′⟩,

where the sum is taken over all uj ∈ Z≥0 (j ∈ σ0) and ue ∈ Z≥0 such that
∑

j∈σ0
uj +

ue = |mN |. and we set (
|mN |
uj , ue

)
:=

|mN |!
(
∏

j∈σ0
uj !)ue!

.

Note that y′ = (y1, . . . , yN−1), x
′ = (x1, . . . , xN−1), and σc

0 is the complement of σ0 in

{1, . . . , N − 1}.
Therefore, we see that V∆(y, h;m) becomes a linear combination of integrals over
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X∆′(h), where ∆′ := {α1, . . . , αN−1}, as follows.

V∆(y, h;m) =
∑
uj ,ue

(
|mN |
uj , ue

) ∏
j∈σ0

(cσ0

jN )uj

yN −
∑
j∈σ0

cσ0

jNyj

ue

(5.2)

∫
X∆′ (h)

∏
j∈σc

0

x
mj−1
j

(mj − 1)!

∏
j∈σ0

x
mj−uj−1
j

(mj − uj − 1)!
e−⟨y′,x′⟩ds′,

where ds′ is the Lebesgue measure on

H∆′(h) = {(x1, . . . , xN−1) ∈ RN−1 |x1α1 + · · ·+ xN−1αN−1 = h}.

Step 3. Let γ′ be the chamber in C(∆′) that contains h. By the assumption of our

induction, the integral

∫
X∆′ (h)

∏
j∈σc

0

x
mj−1
j

(mj − 1)!

∏
j∈σ0

x
mj−uj−1
j

(mj − uj − 1)!
e−⟨y′,x′⟩ds′

in (5.2) is computed as follows.

∑
σ∈B(∆′,γ′)

1

µ(σ)

∏
j∈σ∩σc

0

(−∂j)
mj−1

(mj − 1)!

∏
j∈σ∩σ0

(−∂j)
mj−uj−1

(mj − uj − 1)!
(5.3)

 e−⟨y′,vσ(h)⟩∏
k∈σc∩σc

0

(
yk −

∑
j∈σ c

σ
jkyj

)mk ∏
k∈σc∩σ0

(
yk −

∑
j∈σ c

σ
jkyj

)mk−uk


=

∑
σ∈B(∆′,γ′)

1

µ(σ)

∏
j∈σ∩σc

0

(−∂j)
mj−1

(mj − 1)!

∏
j∈σ∩σ0

(−∂j)
mj−uj−1

(mj − uj − 1)!e−⟨y′,vσ(h)⟩
∏

k∈σc∩σ0

(
yk −

∑
j∈σ c

σ
jkyj

)uk

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 ,

where σc is the complement of σ in {1, . . . , N − 1}.

Let σ ∈ B(∆′, γ′). Then the factor
∏
j∈σ0

(cσ0

jN )uj

yN −
∑
j∈σ0

cσ0

jNyj

ue

in (5.2) is
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rewritten as follows.

∏
j∈σ0

(cσ0

jN )uj

yN −
∑
j∈σ0

cσ0

jNyj

ue

(5.4)

=
∏

j∈σ∩σ0

(cσ0

jN )uj

yN −
∑
j∈σ0

cσ0

jNyj

ue ∏
k∈σc∩σ0

(cσ0

kN )uk

=
(
∏

j∈σ∩σ0
uj !)ue!

(ue + uσ∩σ0)!

∏
j∈σ∩σ0

(−∂j)
uj

uj !

yN −
∑
j∈σ0

cσ0

jNyj

ue+uσ∩σ0 ∏
k∈σc∩σ0

(cσ0

kN )uk ,

where uσ∩σ0 =
∑

j∈σ∩σ0
uj .

Step 4. It follows from (5.2), (5.3), and (5.4) that

(5.5) V∆(y, h;m) =
∑
uj ,ue

∑
σ∈B(∆′,γ′)

1

µ(σ)

∏
j∈σ∩σc

0

(−∂j)
mj−1

(mj − 1)!
F (uj , ue, σ),

where

F (uj , ue, σ)

=
|mN |!

(
∏

k∈σc∩σ0
uk!)(ue + uσ∩σ0)!

∏
j∈σ0∩σ

(−∂j)
uj

uj !

yN −
∑
j∈σ0

cσ0

jNyj

ue+uσ∩σ0

∏
j∈σ∩σ0

(−∂j)
mj−uj−1

(mj − uj − 1)!

e−⟨y′,vσ(h)⟩
∏

k∈σc∩σ0

(
cσ0

kN

(
yk −

∑
j∈σ c

σ
jkyj

))uk

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 .

Furthermore,
∑
uj ,ue

F (uj , ue, σ) is equal to

∑
uk

(
|mN |

uk, |mN | − uσc∩σ0

) ∏
j∈σ∩σ0

(−∂j)
mj−1

(mj − 1)!


yN −

∑
j∈σ0

cσ0

jNyj

|mN |−uσc∩σ0

×
e−⟨y′,vσ(h)⟩

∏
k∈σc∩σ0

(
cσ0

kN

(
yk −

∑
j∈σ c

σ
jkyj

))uk

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 ,

the sum over all uk ∈ Z≥0 (k ∈ σc ∩ σ0) such that uσc∩σ0 = |mN |, where we set
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uσc∩σ0 =
∑

k∈σc∩σ0

uk. By the following lemma, this implies that

∑
uj ,ue

F (uj , ue, σ)(5.6)

=
∏

j∈σ∩σ0

(−∂j)
mj−1

(mj − 1)!

e−⟨y′,vσ(h)⟩
(
yN −

∑
j∈σ c

σ
jNyj

)|mN |

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 .

Lemma 5.1.

yN −
∑
j∈σ0

cσ0

jNyj +
∑

k∈σc∩σ0

cσ0

kN

yk −
∑
j∈σ

cσjkyj

 = yN −
∑
j∈σ

cσjNyj .

Proof. We see that

αN =
∑
k∈σ0

cσ0

kNαk =
∑

k∈σc∩σ0

cσ0

kNαk +
∑

k∈σ∩σ0

cσ0

kNαk

=
∑

k∈σc∩σ0

cσ0

kN

∑
j∈σ

cσjkαj +
∑

k∈σ∩σ0

cσ0

kNαk

=
∑

j∈σ∩σc
0

∑
k∈σc∩σ0

cσ0

kNcσjkαj +
∑

j∈σ∩σ0

( ∑
k∈σc∩σ0

cσ0

kNcσjk + cσ0

jN

)
αj .

Hence we have

cσjN =


∑

k∈σc∩σ0
cσ0

kNcσjk (j ∈ σ ∩ σc
0)

cσ0

jN +
∑

k∈σc∩σ0
cσ0

kNcσjk (j ∈ σ ∩ σ0),

which implies the lemma.

Step 5. From (5.5) and (5.6) we have

V∆(y, h;m)

=
∑

σ∈B(∆′,γ′)

1

µ(σ)

∏
j∈σ∩σc

0

(−∂j)
mj−1

(mj − 1)!

∏
j∈σ∩σ0

(−∂j)
mj−1

(mj − 1)!e−⟨y′,vσ(h)⟩
(
yN −

∑
j∈σ c

σ
jNyj

)|mN |

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk


=

∑
σ∈B(∆′,γ′)

1

µ(σ)

∏
j∈σ

(−∂j)
mj−1

(mj − 1)!

e−⟨y′,vσ(h)⟩
(
yN −

∑
j∈σ c

σ
jNyj

)|mN |

∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 .
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Since
(−∂j)

mj−1

(mj − 1)!
= 0 if mj ≤ 0, the sum above is actually taken over σ ∈ B(∆′, γ′)

such that mj > 0 for ∀j ∈ σ. Moreover, since h belongs to both γ′ and γ, we see that

γ′ ⊂ C(σ) ⇐⇒ γ ⊂ C(σ).

for σ ∈ B(∆′). Therefore, we obtain

V∆(y, h;m) =
∑

σ∈B(∆,γ) s.t.N /∈σ

1

µ(σ)

∏
j∈σ

(−∂j)
mj−1

(mj − 1)!

 e−⟨y,vσ(h)⟩∏
k∈σc

(
yk −

∑
j∈σ c

σ
jkyj

)mk

 ,

where this time σc is the complement of σ in {1, . . . , N}. Since
(−∂j)

mN−1

(mN − 1)!
= 0, the

formula above is nothing but (4.1). This completes the proof of Theorem 4.1.
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