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An acoustic metasurface design for wave motion conversion of longitudinal
waves to transverse waves using topology optimization
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1Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University,
Kyoto 615-8540, Japan
2AISIN AW Co., Ltd., Aichi 444-1192, Japan

(Received 11 October 2015; accepted 21 November 2015; published online 2 December 2015)

This letter presents an acoustic metasurface that converts longitudinal acoustic waves into

transverse elastic waves in an acoustic-elastic coupled system. Metasurface configurations are

obtained by a level set-based topology optimization method, and we describe the mechanism that

changes the direction of the wave motion. Numerical examples of 2D problems with prescribed fre-

quencies of incident acoustic waves are provided, and transverse elastic wave amplitudes are maxi-

mized by manipulating the propagation of the acoustic waves. Frequency analysis reveals that each

of the different metasurface designs obtained for different wavelengths of incident waves provides

peak response at the target frequency. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936997]

Achieving comfortable modern environments often

requires noise reduction1 measures that control the propaga-

tion of acoustic waves. A typical acoustic device for control-

ling such waves is a sound barrier wall for selective noise

reduction, where the surface reflects acoustic waves propa-

gating in air and the elastic oscillations induced by these

waves are attenuated in the wall structure to reduce the trans-

mission of noise.

In acoustic devices, including sound barrier walls,

acoustic-elastic coupling effects are present. That is, acous-

tic waves in air and elastic waves in the elastic medium

comprising the device are coupled. Acoustic waves operate

as an oscillating force on the boundaries between air and

elastic regions, while elastic waves generate acoustic

waves at such boundaries. Two wave types, longitudinal

and transverse, propagate in an elastic medium, but only

longitudinal waves propagate in an acoustic medium.

Therefore, although transverse elastic waves cannot be

transferred to an acoustic medium, longitudinal elastic

waves can be transferred. Considering elastic to acoustic

coupling effects and the types of wave motion in each me-

dium, the reduction of sound noise depends on the control

of longitudinal elastic waves. The conversion of longitudi-

nal elastic waves into transverse waves is one way of exer-

cising such control, since this inhibits the transmission of

acoustic waves from the surface of the elastic medium.

Topology optimization methods are particularly useful

for the design of acoustic devices.2 The basic concept of to-

pology optimization is that the design problem is replaced

with a material distribution problem. In level set-based

shape3 and topology4 optimization methods, clear structural

boundaries can be obtained because they are represented by

the iso-surface of the level set function. Yamada et al.4 pro-

posed a level set-based topology optimization method that

guarantees the smoothness of design boundaries, by incorpo-

rating a reaction-diffusion equation that includes a

regularization term, used when updating level set function.

This method has been applied to many physics problems

such as elastic wave,5 electromagnetic wave,6 and acoustic

wave7 problems.

In this work, we develop a wave-motion-converting

metasurface (WMCM) that can convert longitudinal acoustic

waves into transverse elastic waves in a thin elastic region,

and we also describe how the operation of the WMCM can

be controlled. Obtaining desirable WMCM configurations is

difficult because the propagation of acoustic and elastic

waves is greatly affected by the structural details. To avoid

the pitfalls of a trial and error approach, we use a topology

optimization method.

Figure 1 shows the two-dimensional computational

model used here. We assume a semi-infinite elastic material

and an air region upon which plane acoustic waves impinge

(upper figure), and the rectangular analysis area enclosed by

FIG. 1. Fixed design domain and boundary conditions. The bottom illustra-

tion provides a magnified view of the unit cell depicted in the upper figure.a)Electronic mail: noguchi.yuuki.34s@st.kyoto-u.ac.jp
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the dotted line represents a unit cell. In the unit cell (magni-

fied view in lower figure), the air domain Xa, the fixed design

domain D, and the elastic material domain Xe are arranged

along the x-axis. The left boundary of the air domain, Cin,

represents the input boundary for plane acoustic waves prop-

agating in the x direction, and the left boundary of the elastic

domain Xe is the input boundary for elastic oscillations gen-

erated by the acoustic waves propagating through the air do-

main Xa. Since our research for this letter deals with a

metasurface composed of a periodic array of unit cells, we

consider an infinite region subject to periodic conditions. If

the elastic domain Xe were finite, elastic waves would be

reflected from boundary surfaces other than the input bound-

ary, and the displacement distribution would be strongly

affected near these boundaries. However, even in such a

case, appropriate WMCM configurations could be obtained

by enlarging the computational model so that the reflected

waves do not affect the overall distribution of elastic waves.

Here, we use periodic conditions for simplicity.

To focus on the mechanism that converts longitudinal

waves into transverse waves in our model, all surfaces in the

elastic domain Xe other than the input boundary have a peri-

odic boundary condition imposed in the y direction and a

perfectly matched layer (PML) in the XPML domain. Note

that the obtained optimal configurations are unaffected by

the width of elastic domain Xe, because the imposition of the

ideal conditions prevents the reflection of the elastic waves.

As mentioned above, there are coupling effects between

elastic and acoustic waves on Cea, the boundary between the

elastic and acoustic mediums. Assuming harmonic oscilla-

tions with angular frequency x, these coupling conditions

are expressed as

rs
ijðuÞns

j ¼ �pns
i on Cea; (1)

p;in
a
i ¼ x2qauin

a
i on Cea; (2)

where u is the displacement vector, rs
ijðuÞ is the stress tensor

in the elastic medium, p is the acoustic pressure, qa is the

density of the acoustic medium, and ns and na are the unit

outward vectors normal to the external boundary of the elas-

tic and acoustic mediums, respectively.

Eq. (1) represents the condition for the acoustic to elas-

tic wave coupling, and Eq. (2) represents the condition for

elastic to acoustic wave coupling. From Eq. (2), we see that

when the amplitude of longitudinal waves in the elastic me-

dium is lowered, the amplitude of the acoustic waves trans-

mitted from the elastic to the acoustic medium is also

lowered. Furthermore, maximizing the amplitude of trans-

verse waves propagating in the elastic medium reduces the

amplitude of longitudinal waves in the elastic medium, pro-

vided that the input condition for the acoustic waves is con-

stant, which is equivalent to the input condition for the

elastic waves, since the elastic waves are generated by the

acoustic waves, as expressed in Eq. (1). Therefore, we aim to

obtain an optimal configuration for the WMCM unit cell that

maximizes the amplitude of the transverse elastic waves. If,

on the other hand, the longitudinal elastic waves were

directly minimized, the obtained optimal configuration

would be a simple structure that merely insulates the elastic

domain Xe from the acoustic waves. Similar structures could

be obtained by minimizing transmission of acoustic waves,

which has been investigated in prior research on the optimi-

zation of soundproof walls.8,9

The displacement u in an elastic medium can be decom-

posed into a longitudinal component, ui;i, and a transverse

component, ðrotuÞz ¼ u2;1 � u1;2. To maximize the ampli-

tude of transverse waves in the elastic region Xe, we formu-

late the objective functional as

sup
v

F ¼
ð

Xe

ðrotuÞzðrotuÞ�z dX; (3)

where * represents the complex conjugate and v is the char-

acteristic function, defined as

vðxÞ ¼ 1 if x 2 Xelastic;
0 if x 2 D n Xelastic;

�
(4)

where Xelastic represents the elastic domain in D.

Because both elastic and acoustic mediums are present

in the design domain D, the coupling conditions expressed in

Eqs. (1) and (2) must be imposed on the boundaries between

these mediums when using a conventional analysis method

in which the acoustic Helmholtz equation and elastic equa-

tion are coupled. However, since the elastic configuration

changes at every iteration during the topology optimization,

changes in these boundaries must be followed. To avoid this

difficulty, we use the unified multiphase (UMP) modeling

technique proposed by Lee et al.10,11 In the cited method, the

weak form of Biot’s equations, originally used for analyzing

wave propagation in poroelastic media, are introduced. For

harmonic oscillations with angular frequency x, these are

expressed as

ð
X

rs
ij uð Þ�s

ij euð Þ � x2equieui � ec þ en� �
@p

@xi
eui � enp

@eui

@exi

� �
dX

�
ð
@X

rt
ij uð ÞnjeuidC ¼ 0; ð5Þ

ð
X

/2

x2fq22

@p

@xi

@ep
@xi
� /2eR pep � ec þ en� �

@p

@xi
ui � enep @ui

@xi

" #
dX

�
ð
@X

/ Ui � uið ÞniepdC ¼ 0; ð6Þ

where u is the displacement vector in the elastic medium and

p is the acoustic pressure in the air domain, while eu and ep
are test functions corresponding to u and p. In the elastic

domain, the strain and stress tensors are defined as �s
ij

¼ ðui;j þ uj;iÞ=2 and rs
ij ¼ Âui;jdij þ 2 eN�s

ij, respectively,

where Â is the first Lam�e constant of the solid phase in vacuo
and eN is the elastic shear modulus. / is the porosity and eq
¼eq11�eq2

12=eq22 denotes the effective density. ec¼/ðeq12=eq22� eQ=eRÞ and en¼/ð1þ eQ=eRÞ are coupling coefficients,

where eQ and eR are the equivalent bulk moduli of the poroe-

lastic material. The remaining symbols are described in the

cited method.10

221909-2 Noguchi et al. Appl. Phys. Lett. 107, 221909 (2015)
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The expression of air and elastic regions is implemented

by adjusting six parameters, fÂ; eN ; eq;en;/2=fq22 ;/
2=eRg, in

Eqs. (5) and (6). In air regions, fÂ; eN ; eq;en;/2=fq22 ;/
2=eRg

¼ f0; 0; 0; 1; q�1
air ;K

�1
air g, and in elastic regions, fÂ; eN ; eq;en;/2=fq22 ;/

2=eRg ¼ fÂelastic; eNelastic; eqelastic; 0; 0; 0g, where

the subscripts “air” and “elastic” indicate quantities in an air

or elastic region, and qair and Kair are the density and bulk

modulus of air, respectively. Certain parameters must be set

to zero, which causes numerical singularities. To avoid this

problem, we introduce extremely small values for such pa-

rameters, setting �a ¼ 1� 10�3 for air and �e ¼ 1� 10�9 for

the elastic representation.10 We replace coefficients that have

zero values with small values using �a or �e, i.e., Âair ¼ �aÂp,

where subscript “p” indicates the value of a certain poroelas-

tic material. Therefore, we interpolate the six parameters in

the weak form of Biot’s equations as follows:

Â ¼ ð1� vÞ�aÂp þ vÂelastic in D;

eN ¼ ð1� vÞ�a
eNp þ v eNelastic in D;eq ¼ ð1� vÞ�aeqp þ veqelastic in D;

en ¼ ð1� vÞ � 1þ v�e
enp in D;

/2=fq22 ¼ ð1� vÞq�1
air þ v�eð/2=fq22Þp in D;

/2=eR ¼ ð1� vÞK�1
air þ v�eð/2=eRÞp in D:

The optimization problem is based on these formulations and

we employ the level set-based optimization method proposed

by Yamada et al.4 See this reference for more detailed infor-

mation concerning the optimization algorithm.

The finite element method and quadrilateral bilinear ele-

ments are used for solving the weak form of Biot’s equation, as

formulated in Eqs. (5) and (6). In this paper, we use air as the

acoustic material and steel as the elastic material and set the

following parameter values: mass density qair¼1:18kg=m3

and bulk modulus Kair¼1:42�105 Pa; mass density qelastic

¼7980kg=m3, bulk Young’s modulus Eelastic¼210�109 Pa,

and bulk Poisson’s ratio �elastic¼0:29. For simplicity, these pa-

rameters all have real values, so dissipative effects are ignored.

The initial configuration has D filled with air.

Figure 2(a) shows an optimal configuration for a WMCM

and Figure 2(b) shows the acoustic pressure distribution for

this optimal configuration, where the frequency and amplitude

of the incident plane waves are 1000 Hz and 100 Pa, respec-

tively. Notable features of the optimal configuration are its

repeating protuberances along the y-axis, which have perio-

dicity of about 1/3 m, and its thickness is less than the wave-

length of the impinging acoustic waves. In the left portion of

Xa, the wavefronts are parallel to the y-axis due to the charac-

teristics of the input plane waves, but in D, the phases of the

acoustic waves are arranged vertically at the boundary of the

optimized structure and extend throughout D. The alternation

of phases is caused by the reflection of the acoustic waves

from the structural boundary. When the incident plane waves

impinging on the optimized elastic surface are reflected, some

propagate toward the left along the x-axis while others pro-

pagate up or down along the y-axis. As a result, stationary

waves along the y-axis are generated by superposition of the

reflected waves propagating vertically, and the phases of the

acoustic waves are thereby arranged along the y-axis.

Figure 3 shows the frequency dependence of the objective

functional, with objective functional values along the y-axis

and frequency along the x-axis. The peak of the objective func-

tional is at the set frequency of 1000 Hz, which indicates that

the amplitude of transverse waves is maximized at this fre-

quency. The objective functional also has a peak at 2000 Hz

because the acoustic wave length at 2000 Hz is precisely half

the distance between the periodic protuberances of the optimal

structure, and superposition of reflected waves propagating up

and down along the y-axis at this frequency is strong.

From Eq. (1), acoustic pressure p works as a boundary

load Ti on the boundary between the acoustic and elastic

regions. Figure 4(a) shows a schematic image of these

boundary loads, and Fig. 4(b) shows the deformation caused

by the boundary loads. The alternating signs of p along the

optimized boundary, illustrated with blue and red arrows rep-

resenting negative and positive values, respectively, indicate

that shearing forces are propagating into the elastic region

Xe as transverse waves.

Figures 5 and 6 show the distribution of the x-axis dis-

placement u and y-axis displacement v in the elastic medium

for the initial and optimal configurations, respectively. In the

FIG. 2. (a) Optimal configuration in D, with black representing the elastic

medium and white the acoustic medium. (b) Acoustic pressure distribution

in Xa and D when an incident acoustic wave at 1000 Hz impinges on the

structure. The black line near the right edge indicates the optimized surface.

FIG. 3. Frequency f versus objective functional F with incident wave target

frequency of 1000 Hz.

221909-3 Noguchi et al. Appl. Phys. Lett. 107, 221909 (2015)
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analysis model used in this work, displacement u corresponds

to the propagation of longitudinal waves, while v corresponds

to that of transverse waves. In the initial configuration,

longitudinal waves dominate and transverse waves are almost

nonexistent. However, in the optimal configuration, this rela-

tionship is practically reversed: transverse waves dominate

and longitudinal waves are weak. Comparing the initial and

optimal configurations, we find that longitudinal waves are

converted to transverse waves by the presence of the opti-

mized surface of the elastic medium.

Next, we examine additional examples in which the tar-

get frequency is set to higher frequencies. Figure 7 shows

optimal configurations for prescribed frequencies of (a)

1000 Hz, (b) 1333 Hz, (c) 1666 Hz, and (d) 2000 Hz, respec-

tively. The proportional relation between the number of

bumps in a unit cell and the target frequency is readily

observed; the higher the incident wave frequency, the larger

the number of tooth-like projections. This is a natural conse-

quence of the acoustic wavelength, since the interval

between the projections in each optimal configuration must

match the corresponding acoustic wavelength. Any mis-

match in this relationship would spoil the superposition of

the reflected waves propagating up and down and thereby

impair the vertical arrangement of the acoustic waves.

Figure 8 plots objective functional value versus frequency

for each configuration obtained with prescribed frequencies

of 1333 Hz, 1666 Hz, and 2000 Hz. As shown in Figure 3,

each optimal configuration here ensures that transverse

waves are maximized at the prescribed frequency.

In conclusion, we constructed a level set-based topology

optimization method to obtain optimal configurations for a

wave-motion-converting metasurface and showed how lon-

gitudinal acoustic waves can be converted to transverse elas-

tic waves by reflection from a region of elastic material in D
whose thickness is less than that of the wave length of the

input acoustic waves. The results of two-dimensional prob-

lems in which single frequencies of incident acoustic waves

were set in a range from 1000 to 2000 Hz indicate that the

transverse waves are maximized at the prescribed frequen-

cies due to phase manipulation. Clear structural boundaries

were obtained in all optimal configurations, a desirable man-

ufacturing requirement. For this letter, we adopted ideal con-

ditions in the computational model, namely, a periodic

boundary condition and a PML region for the elastic domain.

In future research, we hope to extend these results to experi-

mental models that have finite thickness and models that

function over a range of frequencies. By verifying such

FIG. 4. (a) Schematic image of shear forces generated by acoustic pressure.

(b) Deformation caused by the shear forces in the elastic material.

FIG. 5. Elastic medium in the initial configuration: (a) distribution of dis-

placement u along the x-axis and (b) displacement v along the y-axis.

FIG. 6. Elastic medium in the optimal configuration: (a) distribution of dis-

placement u along the x-axis and (b) distribution of displacement v along the

y-axis.

FIG. 7. Optimal configuration targeting (a) 1000 Hz, (b) 1333 Hz, (c)

1666 Hz, and (d) 2000 Hz incident acoustic waves. These have correspond-

ing periodicities of roughly (a) 1/3 m, (b) 1/4 m, (c) 1/5 m, and (d) 1/6 m.

FIG. 8. Frequency f versus objective functional F, with incident wave fre-

quencies of 1333 Hz (red line), 1666 Hz (green line), and 2000 Hz (blue

line), respectively.
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models through experiment, we hope to demonstrate that the

obtained optimal configurations enable the realization of

advanced acoustic devices.
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