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1 Introduction

Observational cosmology reveals how small our knowledge of the Universe is. For example,
two of the main unsolved mysteries are periods of accelerated expansion of the Universe,
inflation and dark energy, whose underlying sources remain unknown. Plenty of theoretical
models (for an extensive review see [1]) point towards a scalar field as the main responsible
for such an accelerated expansion. Interestingly, despite the good agreement of the standard
ΛCDM model with current data [2, 3], some tension appears from direct measurements of
the time evolution of the Hubble parameter [4]. Furthermore, a recent release of the CMB
observation by Planck [5], which supports inflation, seems to favour those inflationary models
with a non-minimal coupling, a.k.a. the scalar-tensor theory of gravity [6–8] that includes
the so-called f(R) theory [9, 10].

Conformal transformations have been proved to play a very important role in physics
[11]. In particular, in the scalar-tensor theory they are not only a useful mathematical tool
but they leave observational physics invariant at a classical level (for a discussion supporting
this point of view see [12–21]; also see [22–25] for a discussion in a different point of view in the
context of F (R) gravity). Consequently, the notion of conformally related frames naturally
appears. The Jordan frame or matter frame, where the scalar field is non-minimally coupled
to the metric g̃µν but matter is minimally coupled, and the Einstein frame or gravitational
frame, where the scalar field is minimally coupled to the metric gµν but matter is dilatonically
coupled to the scalar field. An alternative way to understand conformal transformations in
the scalar-tensor theory is the following. One has a gravitational metric gµν which satisfies the
Einstein equations and a matter metric related to the former by a field dependent rescaling,
say g̃µν = Ω(φ)2gµν .

– 1 –



From this point of view, one may wonder whether there are more general transformations
that lead to a new form of the matter metric. In other words, is there any other way that
matter can non-trivially couple to gravity through a scalar field? This question was studied
by Bekenstein in [26] where a new class of transformations, called disformal transformations,
were proposed. The idea behind such transformations is that matter is coupled to a metric
which is not just a rescaling of the gravitational metric but it is stretched in a particular
direction, given by the gradient of a scalar field.

Disformal transformations can be motivated from brane world models and from mas-
sive gravity theories (see [27, 28] and references therein) and have been applied to inflation
[29], dark energy [30–32], varying speed of light models [33–36], atomic physics [37] and
mimetic gravity [38]. Consequently, considerable effort has been made to look for constraints
and how to avoid them, e.g. screening mechanisms, for disformally coupled matter models
[27, 28, 31, 32, 39–44]. In addition, with the recent rediscovery of the Horndeski theory [45–
47], which is the general scalar-tensor theory with second order field equations of motion,
and its generalization, known as beyond Horndeski or GLPV theory [48–51] (see also its fur-
ther extension [52]), attention has been paid to its mathematical invariance under disformal
transformations in those theories [53, 54]. If observational physics turns out to be invariant
under disformal transformations that will provide us with a powerful mathematical and phys-
ical tool to classify or work within the Horndeski theory (for example [28, 55]), and to make
progress in our understanding of the symmetries of gravity. In this direction, refs. [56–58]
study the disformal invariance of cosmological perturbations at the linear level with a pos-
itive answer. For a recent development see references [59–61]. In particular, see [59] for a
multi-field extension of disformal transformations.

That being said, a note is in order. It is generally believed that physics does not
change under a non-singular field redefinition. However, a field redefinition of a metric is
more subtle when it comes to interpretations. A simple example would be a conformal
transformation which could lead us from an homogeneous and isotropic expanding universe
to a static spacetime (see Deruelle & Sasaki [14]). The invariance of physically observable
quantities before and after the transformation is not immediately clear. Therefore, and also
to clearly understand how to interpret the results, one has to explicitly check the invariance.

Turning to the case of a disformal transformation, it is no longer just a simple field
redefinition, because it involves derivatives of the scalar field. Thus there may be a higher
level of subtlety than in the case of a conformal transformation. For this reason, we dedicate
this work to study the effects of a pure disformal transformation, its interpretations and the
invariance of physical observables in cosmology.

For the sake of simplicity and clarity, we restrict ourselves to work in the comoving, or the
uniform φ slicing, on which the scalar field is homogeneous. In this sense, we discuss cosmo-
logical disformal transformations by implicitly assuming the existence of φ-constant spacelike
hyper-surfaces, which is a common and reasonable assumption in cosmology. We show that
a pure cosmological disformal transformation without any conformal factor is equivalent to
rescaling the time coordinate, which could even be regarded as a time coordinate transfor-
mation. This is checked at the action level for gravitational and matter fields, which ensures
that physics is invariant under disformal transformations. Consequently, one can work in the
frame one considers most suitable for either computations or interpretations.

The paper is organized as follows. In section 2 we briefly review disformal transfor-
mations and we focus on pure disformal transformations, which are intuitively shown to be
equivalent to rescaling the time coordinate when applied to cosmology. Afterwards, in section

– 2 –



3 we proceed to check that this is the case for gravitational and matter fields at the action
level, with a comparison to Horndeski theory. Let us stress that throughout sections 2 and
3 we focus on the effects of a disformal transformation itself, i.e. no comparison between
fields, c.f. scalar and matter fields is made. Afterwards, in section 4 we explicitly compute
the disformal invariance of some observable quantities considering the system as a whole, i.e.
gravitational and matter sector altogether, and we emphasise on the choice of frames and its
invariance. Finally, in section 5 we summarize our results.

2 Pure disformal transformation

The general form of a disformal transformation is given by [26]

ḡµν = G(φ,X)gµν + F (φ,X)φ,µφ,ν , (2.1)

where X = −1
2g
µνφ,µφ,ν and φ,µ ≡ ∂µφ. The first term in the right hand side corresponds

to a conformal transformation, i.e. a rescaling of the metric, whereas the latter is a pure
disformal transformation, i.e. the metric is stretched in the direction of φ,µ. In this work, we
restrict ourselves to the case of a pure disformal transformation, that is G(φ,X) = 1, as any
conformal transformation can be generally done afterwards.

In cosmology it is a reasonable assumption that φ,µ is regular and timelike everywhere,
and hence one can choose the comoving, or the uniform φ slicing on which the scalar field
is homogeneous. Throughout this paper, we take the comoving slicing to simplify the ar-
gument and make clear physical interpretations and consequences. In fact one immediately
notices from (2.1) that under this pure cosmological disformal transformation only the time-
component of the metric, namely the lapse function, is modified. To see this explicitly, let us
express a pure “disformation” in the form of the (3 + 1)-decomposition,

g ≡ ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt)

→ ḡ ≡ ds̄2 = −N̄2dt2 + ḡij(dx
i + N̄ idt)(dxj + N̄ jdt) , (2.2)

where

N̄2 = N2α2 , N̄ i = N i , ḡij = gij , (2.3)

where for the sake of simplicity we defined

α2 = 1− 2F (φ,X)X. (2.4)

It should be noted that now X reduces to −(1/2)gttφ̇2 where the scalar field only depends
on the time coordinate but gtt = −N−2 has spatial dependence in general, which implies the
spatial dependence of the disformal factor, F , as well as of α. From (2.3) we infer that in
order to preserve the Lorentzian signature of the metric one must require α2 > 0 [26], which
is assumed throughout this paper. Due to the fact that just a particular component of the
metric is modified, one may naively think that the causal structure and the propagation speed
are altered as well. In fact, it is rather the opposite as shown later.

A note is in order. Deruelle and Rua [38] showed that a disformal transformation does
not alter Einstein’s equations in general, although the form of such is quite different when
expressed in terms of the transformed metric. One may naively expect this result due to the
fact that a disformal transformation is a re-parametrization of the metric.
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However, there is a particular class of disformal transformations which leads to a depar-
ture from usual General Relativity (GR). In fact, its effect is to give rise to a source term in
Einstein’s equations even in the absence of matter fields. This particular class includes the
Mimetic Dark Matter model [62, 63] where this new source term imitates a dark matter com-
ponent. Concretely, the mimetic gravity condition gives a constraint between the conformal
and disformal factors. In our notation it reads

F (φ,X) =
1

2X
G(φ,X)− f(φ), (2.5)

where f(φ) is an arbitrary positive function of the scalar field alone. For a pure disformal
transformation (G=1) it reduces to

F (φ,X) =
1

2X
− f(φ), (2.6)

which plugged back in (2.3) leads us to a degenerate metric without lapse, that is

ds̄2 = −f(φ)(∂tφ)2dt2 + ḡij(dx
i + N̄ idt)(dxj + N̄ jdt) . (2.7)

Note that there will no longer be any constraint equation from the variation with respect to
the lapse. The absence of this constraint seems to be the origin of a new “mimetic” degree of
freedom. In this work, we will not pursue this particular case further, leaving its interesting
implications for future work.

In the next subsection 2.1 we shall see how the physics can be changed/unchanged under
a disformal transformation focusing first on the homogeneous and isotropic background. And
then the discussion is extended to deal with the general situation in the next subsection 2.2
obtaining the same conclusion.

2.1 Cosmological background

Before going in depth let us clarify our starting point in order to avoid any confusion. We
begin with a given action for a given metric and we are interested in the change of physics
under a transformation of the metric. Obviously, we do not want to alter our model, i.e.
our action. For this reason, we must take a passive approach. What we mean by a passive
transformation is the following. For simplicity, let us consider two metrics ḡ = ds̄2 and
g = ds2 which are related by a conformal transformation ḡ = Ω2g. Let us assume that we are
given a model with the metric ḡ and the action S[ḡ]. Now, we perform the transformation
to the metric. Basically, we have two options. We can rewrite the action in terms of the
transformed metric S[ḡ] = S[Ω2g], or replace the metric ḡ → g = Ω−2ḡ while keeping the
same functional form of the action, which yields a different value of the action S[ḡ] 6= S[g].
We call the former a passive transformation and the latter an active one. As we stated above,
we consider the former. From this point of view, we should expect at most a change in the
interpretation of the physics but not a change in observational results. We will come back to
this point later with an explicit form of the action in section 3.

That being said, we can readily have an idea of the effect of a disformal transformation
by expressing our original line element in terms of the disformally transformed one. To be
specific, we consider a model with a metric ḡ and by means of a disformal transformation we
choose to work in terms of g, i.e. we passively transform the barred frame to the unbarred
frame by ḡ = ḡ(g).
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Let us focus on a spatially homogeneous and isotropic background with the metric,

ds2 = gµν(t)dxµdxν = −dt2 + gijdx
idxj , (2.8)

where we have chosen the cosmic proper time, gtt = −1 (N = 1), and gij = a2(t)Ωij with
Ωij being the metric of a homogeneous and isotropic 3-space. The disformal transformation
(2.1) ,

ds̄2 = ḡµν(t)dxµdxν =
(
gµν + F (φ,X)φ,µφ,ν

)
dxµdxν , (2.9)

with N = 1 (2.3) can be read as

ds̄2 = ds2 +
(

1− α2(t)
)
dt2 = −α2(t)dt2 + gijdx

idxj . (2.10)

It should be noted that α here depends only on the time coordinate. This enables us to
perform a time coordinate transformation given by

dt̄ = α(t)dt . (2.11)

With this new time coordinate, the barred metric is expressed simply as

ds̄2 = −dt̄2 + gijdx
idxj . (2.12)

As clear from this, the time coordinate t̄ is in fact the cosmic proper time in the barred frame.
One readily see that the above form of the metric is exactly in the same form as the

unbarred metric with the replacement t → t̄, with the understanding that the scale factor
in the transformed frame, say A(t̄), is regarded as a function of t̄ through its t-dependence,
A(t̄) = a

(
t(t̄)
)
. In the sense of the foregoing discussion, if one were to start from an action

with the barred metric ḡµν , one would find that the form of the action in terms of the
unbarred metric gµν can be interpreted as a rescaling of time from t to t̄, or in a symbolic
form S[ḡ(g); t] = S[g; t̄]. See section 3 for an explicit proof.

This indicates an important fact that a (cosmological) disformal transformation (2.3) is
essentially equivalent to a rescaling of the time coordinate (2.11). Since this rescaling applies
to all the physical quantities equally in the transformed frame, it implies the invariance of
the physics under the disformal transformation. In other words, since we work with the same
action but expressed in terms of new variables, observed physics should not change. If this
reasoning is valid, it is straightforward that in particular neither the causal structure nor the
propagation speed are modified under the disformal transformation.

Wave propagation. We now consider the effect of a disformal transformation on the prop-
agation of waves. For simplicity, let us focus on a scalar wave of comoving wavenumber k
living in the barred frame, [

1

a3

d

N̄dt

(
a3 d

N̄dt

)
+
c̄2
sk

2

a2

]
φ̄k(t) = 0 , (2.13)

where c̄s is the sound velocity. Applying the passive disformal transformation (2.3), it becomes[
1

a3α

d

Ndt

(
a3

α

d

Ndt

)
+
c̄2
sk

2

a2

]
φ̄k(t) =

1

α2

[
α

a3

d

dt

(
a3

α

d

dt

)
+
α2c̄2

sk
2

a2

]
φ̄k(t) = 0 , (2.14)
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where in the last step we set N = 1 so that we chose t to be the cosmic proper time of the
unbarred frame. Thus it appears that the sound velocity is changed to cs,ap = αc̄s, where
cs,ap stands for apparent sound speed. However, recalling that the cosmic proper time in the
barred frame is given by dt̄ = αdt, the actual sound velocity in the transformed frame should
be read off from the equation rewritten in terms of t̄,[

1

a3

d

dt̄

(
a3 d

dt̄

)
+
c̄2
sk

2

a2

]
φk(t̄) = 0 , (2.15)

where φk(t̄) = φ̄k
(
t(t̄)
)
or equivalently φ̄k(t) = φk(t̄(t)). Here it is important to note that

no scalar function is modified by such a passive disformal transformation. Essentially, the
functional form has apparently changed but not its value as indicated above. It is apparent
that the physical sound velocity c̄s is the same in both frames. In fact, this is similar to that
pointed out by Ellis and Uzan in [64, 65]. We further use this result in section 4.

Causal structure. Bearing in mind the above result, let us discuss the causal structure.
Consider the norm of a vector kµ in the barred frame, i.e.

k2 ≡ ḡµν k̄µk̄ν = −N̄2(k̄t)2 + gij k̄
ik̄j , (2.16)

where k2 > 0, = 0 or < 0 for a spacelike, null or time-like vector, respectively. Actually, k2 is
a scalar and consequently is invariant under passive disformal transformations. By imposing
such a condition, the invariance of the causal structure is automatic. Conversely, the vector
components must change in order to balance the transformation of the metric and to keep k2

invariant.
Let us briefly discuss its consequences. The passive disformal transformation (2.3) in k2

leads us to

k2 = ḡµν k̄
µk̄ν

= (gµν + F (φ,X)φ,µφ,ν) k̄µk̄ν = −α2(k̄t)2 + gij k̄
ik̄j , (2.17)

where again we have set N = 1 so that t is the proper time in the unbarred frame. From the
above we can identify the transformation rule for the vector components under the disformal
transformation, that is

k̄t = α−1kt and k̄i = ki. (2.18)

The covariant components transform according to

k̄t = αkt and k̄i = ki. (2.19)

A straightforward consequence is that the sound speed is seemingly modified, i.e.

c−1
s ≡

dkt

d|k|
= α

dk̄t

d|k|
= αc−1

s,ap , (2.20)

where cs,ap is the apparent sound speed, similar to the case of a scalar wave equation. Actually,
this change in the sound speed is an artifact of working with time t not proper to the barred
frame. With the proper time t̄ in the barred frame given by (2.11), we can rewrite k2 as

k2 = −(k̄t̄)2 + gij k̄
ik̄j , (2.21)
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where k̄t̄ = αk̄t. Notice that the physical sound speed is frame independent as well, namely

c̄−1
s ≡

dk̄t̄

d|k|
= c−1

s . (2.22)

Before ending this subsection, let us stress again that we consider passive disformal transfor-
mations throughout this paper unless otherwise stated.

2.2 Non-linear considerations

In this subsection we shall extend the previous discussion by taking into account the spatial
dependence of the scalar field, which leads to the spatial dependence of the metric and the
disformal factor. Here we assume that the perturbation expansion is valid, i.e., we assume the
existence of a spatially homogeneous background solution on which the physical spacetime
can be constructed. Note that, however, the perturbation can be fully nonlinear. In this
case, it is crucial to require the existence of a comoving slicing, i.e. the normal vector of
constant φ hyper-surfaces is assumed to be time-like everywhere, which ensures that time is
the only component stretched by a disformal transformation. Even so, there is still a spatial
dependence of the disformal factor through X due to the fluctuations of the metric.

Under this assumption, the previous discussion can be generalized, in practice, by in-
troducing a local Lorentz frame where the spatial dependence of the disformal factor can
be neglected since the scalar field can be considered spatially homogeneous in this frame.
Consequently, the essential effect due to a disformal transformation is a mere change of the
local Lorentz lapse function, which in turn can be absorbed by a redefinition of the local
time coordinate. Hence, it implies the equivalence between a disformal transformation and a
rescaling of time. In this way, the previous discussion for the background can be generalised
a priori to include non-linear perturbations without any difficulty.

3 Action invariance

Thus far, we have shown that at the metric level a disformal transformation is equivalent
to rescaling time. The next point to deal with is to show whether this expectation holds at
the action level for gravitational and matter fields. Before going into details, let us clarify
the notation. We start from a metric ḡµν , which we refer to it as the barred frame, and we
consider the change of the action under a passive disformal transformation, that is we re-
express the action in terms of the disformally related metric gµν , which we call the unbarred
frame. We shall do the same procedure for all fields. In the next subsection we consider
the Einstein-scalar action in the (3+1)-decomposition including nonlinear cosmological per-
turbations. Afterwards, we consider the action for several kinds of matter fields in the same
decomposition of the metric.

3.1 Einstein-scalar action

Let us address the disformal transformation of the gravitational action, for the sake of sim-
plicity the Einstein-Hilbert action with a canonical scalar field. At the end of this section we
clearly show that the same procedure applies to its scalar-tensor theory extensions. For this
purpose, a crucial point is to work in the comoving, or the uniform φ slicing (δφ = 0) which
ensures that only the time derivative of the scalar field plays a role in the disformal transfor-
mation as no perturbations of the scalar field are present on this slicing.1 It is appropriate to

1This is always possible in the single field case.
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work within the (3+1)-decomposition of the unbarred/barred metrics which are given by

ds2 = −N2(t,x)dt2 + hij(t,x)dxidxj and ds̄2 = −N̄2(t,x)dt2 + hij(t,x)dxidxj , (3.1)

where N , N̄ and hij are the unbarred/barred lapse and the spatial metric, respectively.2

Note that we set to zero the shift vector, N̄ i = N i = 0, by choosing a particular set of
spatial coordinates. This fact will make the disformal transformation much clearer afterwards,
though one can include a non-vanishing shift vector without essential difficulties. In this
decomposition the action reads

Sg =
1

2

∫
d3xdtN̄

√
h
{
R(3) + K̄ijK̄

ij − K̄2 + N̄−2 (∂tφ)2 − 2V (φ) + 2∇̄µ
(
n̄µ∇̄ν n̄ν − n̄ν∇̄ν n̄µ

)}
,

(3.2)

where (3)R, K̄ij and n̄µdx
µ = −N̄dt respectively are the spatial Ricci scalar, the extrinsic

curvature and the normal vector of the spatial hyper-surface. The extrinsic curvature and
the gradient of the normal vector given in terms of (3.1) read

Kij = 1
2N̄
∂thij , K̄ = hijK̄ij , (3.3)

and

∇̄µn̄ν = δ0
µδ
i
νN̄,i + δiµδ

j
νK̄ij . (3.4)

In this way, we can explicitly express the action in terms of the N̄ and hij , i.e.

Sg =
1

2

∫
d3xdtN̄

√
h

{
R(3) + K̄ijK̄

ij − K̄2 + N̄−2 (∂tφ)2 − 2V (φ)

+
2√
hN̄

∂t(
√
hK̄)− 2√

hN̄
∂i(
√
hhij∂jN̄)

}
, (3.5)

where we have kept the last two total derivative terms as they contribute if a non-minimal
coupling is present.

Let us now perform a disformal transformation to the unbarred frame where the action
takes the form,

Sg =
1

2

∫
d3xdtαN

√
h

{
R(3) + α−2

(
KijK

ij −K2 +N−2 (∂tφ)2
)
− 2V (φ)

+
2√
hαN

∂t(
√
hα−1K)− 2√

hαN
∂i

(√
hhij∂j(αN)

)}
,

(3.6)

where we used the fact that N̄(t, xi) = α(φ,X)N(t, xi) from Eq. (2.3) and thatKij = 1
2N ∂thij .

At this point, we have to be careful due to the hidden dependence of the old lapse in the
disformal factor, i.e.

α(φ,X) = α(t,N) = α(t, xi), (3.7)

2We are using the fact that a disformal transformation does not affect the spatial components. We use hij

not to overload notation.

– 8 –



which does not allow us to do a straightforward time redefinition. However, we can split the
lapse and disformal factor into the background and the perturbed values. In our notation
they are defined by

N(t, xi) = en(t,xi) and α(t, xi) = α0(t)eσ(t,xi), (3.8)

where α0(t) is the background value of the disformal factor which is only a function of time.
Likewise, the barred lapse is decomposed by N̄(t, xi) = α0(t)en̄(t,xi). Note that thanks to this
decomposition we can absorb the background disformal transformation in a time redefinition
(2.11) given by

dt̄ = α0(t)dt. (3.9)

As a result, physics is invariant at the background level. It should be noted that this is valid
as long as perturbation theory applies.

Implications for cosmological perturbations. For simplicity we do not consider a non-
minimal coupling here and, therefore, we drop the total derivative terms in (3.6). In this way,
the action in the unbarred frame is now given by

Sg =
1

2

∫
d3x dt̄

√
h en(t,xi)+σ(t,xi)

{
R(3) + e−2[n(t,xi)+σ(t,xi)]

(
EijE

ij − E2 + (∂t̄φ)2
)
− 2V (φ)

}
,

(3.10)

where we defined Eij ≡ 1
2∂t̄hij and E = hijEij , following the notation of Maldacena [66], so

that every quantity is expressed in terms of the new time t̄ but for the perturbed lapse n(t, xi)
and the perturbed disformal factor σ(t, xi). We deliberately kept the old time dependence in
the latter for the reason shown below. In the Hamiltonian formalism, the lapse is a Lagrange
multiplier and, hence, a redefinition of it has no effect in the dynamics. For this reason, let
us redefine the lapse so that it absorbs the perturbed disformal factor, i.e.

n(t, xi) + σ(t, xi) = n̄(t, xi). (3.11)

In terms of this lapse, the Hamiltonian constraint is given by

R(3) − e−2n̄(t,xi)
[
EijE

ij − E2 + (∂t̄φ)2
]
− 2V (φ) = 0, (3.12)

which at the background level has the same solution as (3.2) but given in terms of the redefined
time t̄. Due to this fact, the perturbed barred lapse must be exactly equal to the unbarred
one but expressed in terms of the redefined time t̄, in other words

n̄(t, xi) = n(t̄, xi). (3.13)

Consequently, the action (3.10) takes exactly the same form as (3.2) but in terms of the
redefined time t̄.

We may go further and consider a non-minimal coupling or a Horndeski-type Lagrangian.
The lapse N is always accompanied by a factor α which at the background level is successfully
absorbed by the time redefinition and at the perturbation level gives rise to a factor en̄(t,xi).
For example, consider one of the total derivative terms in (3.6) which in presence of a non-
minimal coupling gives a non-trivial contribution to the action as

Sg ⊃
∫
d3xdt αN

√
hΩ(φ,X)

1√
hαN

∂t(
√
hα−1K), (3.14)
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where Ω(φ,X) is the non-minimal coupling. Absorbing the background value of the disformal
function and integrating by parts we are led to

Sg ⊃ −
∫
d3xdt̄

√
h e−n̄(t,xi)E ∂t̄Ω, (3.15)

where the factor X changes as well according to

X =
1

2α2N2
(∂tφ)2 =

e−2n̄(t,xi)

2
(∂t̄φ)2. (3.16)

In this way, the function n̄(t, xi) appears exactly in the same place where the original lapse
n(t, xi) is in the original action (3.2). The only difference is the time coordinate t̄ which is
used in any other variables except for the perturbed lapse, which gives us no other choice but
to conclude that n̄(t, xi) = n(t̄, xi).

In summary, a cosmological disformal transformation in the comoving, or the uniform φ
slicing is equivalent to a rescaling of the time coordinate even at higher orders in perturbative
expansion. Therefore, as long as perturbation theory is valid, cosmological perturbations are
invariant under a disformal transformation. This result is in agreement with [56–58] where
it was found that scalar and tensor power spectra are frame independent at leading order in
the perturbation.

3.2 Towards a Horndeski Lagrangian

Once we know how the gravitational action transforms, it is appropriate to take a look at
the resulting Horndeski-type action if we stick to the original time, i.e., without rescaling
the time coordinate. The beyond-Horndeski or GLPV Lagrangian can be written in terms of
geometrical quantities [48–50] and it consists of the following four terms:

L2 = A2(φ,X), (3.17)
L3 = A3(φ,X)K, (3.18)

L4 = A4(φ,X)R(3) +B4(φ,X)(KijK
ij −K2), (3.19)

L5 = A5(φ,X)

(
R

(3)
ij K

ij − R(3)K

2

)
+B5(φ,X)

(
K3 − 3KKijK

ij + 2KijK
ikKj

k

)
. (3.20)

The GLPV Lagrangian reduces to the Horndeski Lagrangian when the functions B4 and B5

are respectively related to A4 and A5 by

B4(φ,X) = A4 − 2XA4,X and B5(φ,X) = −1

2
XA5,X . (3.21)

A glance at the disformally transformed action in terms of the original time (3.6) tells us
that the existence of an Einstein frame from the Horndeski theory point of view is closely
related to the absence of the term L5. In addition, we can identify the following terms for a
cosmological background with a canonical scalar field with a potential:

A2(φ,X) = α−1X − αV , A3(φ,X) = 0 , A4(φ,X) = α and B4(φ,X) = α−1, (3.22)
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where we remind the reader that α(φ,X) =
√

1− 2XF (φ,X). The first condition in (3.21),
which a Horndeski Lagrangian must satisfy, implies that the disformal factor must fulfil

α−1 = α− 2Xα,X , (3.23)

which means F (φ,X) = F (φ). As a result, only a field dependent disformal transformation
leads us to a Horndeski Lagrangian. This is also pointed out by Bettoni and Liberati in
[54] with a general treatment. In other words, a general disformal transformation of the
Einstein-scalar theory does not satisfy the condition that the field equations are at most
second order in time derivatives. This implies the existence of higher time derivatives and
hence of Ostrogradsky ghosts. Nevertheless, despite the apparent appearance of Ostrogradsky
ghosts for a X dependent disformal transformation, no real ghost should actually be present
as the theory in the transformed frame is equivalent to the healthy Einstein-scalar theory.
This is discussed by Zumalacárregui and García-Bellido in [53] where they show the existence
of hidden constraints. We leave its application to cosmology for future work.

3.3 Matter action

Now let us consider matter fields. We work under the same decomposition of the metric
given by (3.1) but only considering the background dynamics. As explained in section 2.2,
the generalisation to include perturbations is straightforward.

Scalar field. Let us start with a scalar field χ with mass m whose action, in the barred
frame, is given by

S = −1

2

∫
d4x
√
−ḡ
(
ḡµν∂µχ∂νχ+m2χ2

)
, (3.24)

which in terms of the barred metric (3.1) yields

S =
1

2

∫
d3x dtN̄

√
h̄
{
N̄−2(∂tχ)2 − h̄ij∂iχ∂jχ−m2χ2

}
. (3.25)

By means of a disformal transformation (2.3) we find that the action in the unbarred frame
reads

S =
1

2

∫
d3x dt αN

√
h
{
N−2α−2(∂tχ)2 − hij∂iχ∂jχ−m2χ2

}
, (3.26)

where we used that N̄(t) = α(t)N(t). Note that one may argue that the sound speed in the
unbarred frame is modified compared to that in the barred frame. However, there is a factor
α in front of every dt which can be successfully absorbed by the time redefinition (2.11) that
leads us to

S =
1

2

∫
d3x dt̄N

√
h
{
N−2(∂t̄χ)2 − hij∂iχ∂jχ−m2χ2

}
, (3.27)

which is the action one would expect in the unbarred frame (3.1) with the relabelling t→ t̄.
In other words, if we denote a solution of the field equation in the barred frame by χ̄(t), the
corresponding solution in the unbarred frame χ(t) is related to it as χ(t̄) = χ̄(t).
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Electromagnetic field. Let us move towards the disformal transformation of the electro-
magnetic field. It is known that the Maxwell field is conformally invariant [67] but in general
it may not be disformally invariant. This is an important point since observations mainly use
photons. However, we want to stress that as long as matter is universally coupled to a unique
metric, no issue arises (see appendix B for an example). The action for the electromagnetic
field Aµ in the barred frame reads

S = −1

4

∫
d4x
√
−ḡḡαµḡβνFαβFµν , (3.28)

where Fαβ = ∂αAβ − ∂βAα. We expand the action (3.28) in terms of the barred metric (3.1)
to explicitly split the time components from the spatial ones, i.e.

S =
1

4

∫
d3x dt N̄

√
h̄
(

2N̄−2h̄ijFtiFtj − h̄ij h̄klFikFjl
)
, (3.29)

and perform the disformal transformation (2.3) to obtain

S =
1

4

∫
d3x dtαN

√
h
(

2α−2N−2hijFtiFtj − hijhklFikFjl
)
. (3.30)

Note that Fti = ∂tAi−∂iAt and, therefore, in order to successfully absorb the α factor in the
time redefinition (2.11) the time component of the electromagnetic field must be transformed
as

At̄ = α−1At . (3.31)

The resulting action is given by

S =
1

4

∫
d3x dt̄N

√
h
(

2N−2hijFt̄iFt̄j − hijhklFikFjl
)
, (3.32)

where we have used the fact that ∂iAt̄ = α−1∂iAt for a spatially homogeneous α = α(t).
Again this action is the one for the electromagnetic field in the metric (3.1) but labelled in
terms of t̄.

The redefinition of the electromagnetic field given by equation (3.31) is not surprising
within the differential form approach, where the 1-form is given by

A = Aµdx
µ = Atdt+Aidx

i

= Atα
−1dt̄+Aidx

i = At̄dt̄+Aidx
i. (3.33)

Thus, the 1-form A is invariant under cosmological disformal transformations.

Dirac field. For the sake of completeness let us quickly consider the disformal transforma-
tion of a Dirac field, e.g. an electron. The action for a fermion field Ψ with mass m and
charge e in curved space-time is given by [68]

S = − i
2

∫
d4x
√
−ḡ
(

Ψ̆γ̄µD̄µΨ +mΨ̆Ψ
)
, (3.34)

where Ψ̆ = Ψ†γ0 is the adjoint spinor, D̄µ = ∂µ + ieAµ + Γ̄µ and the tetrad components ēµ(a)
are defined by

ηab = ēµ(a)ē
ν
(b)ḡµν , (3.35)
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which relate the gamma matrices and the spin connection in curved space-time to the gamma
matrices in flat space-time, i.e. γ̄µ = γaēµ(a) and Γ̄µ = 1

8 [γa, γb]ēλ(a)∇̄µē(b)λ. In the (3+1)-
decomposition the action reads

S = − i
2

∫
d3x dt N̄

√
h̄
(

Ψ̆γ0N̄−1D̄tΨ + Ψ̆γ̄iD̄iΨ +mΨ̆Ψ
)
, (3.36)

where ēt(a) = δ0
(a)N̄

−1 and ēi(a)ē
j
(b) = δabh̄

ij so that γ̄t = γ0N̄−1. The effect of the disformal
transformation (2.3) can be summarised as follows. The tetrad is modified according to (3.35),

ēt(a) = et(a)α
−1 and ēi(a) = ei(a), (3.37)

which yields a similar transformation for the gamma matrices,

γ̄t = γtα−1 , γ̄i = γi. (3.38)

The modification of the spin connection Γ̄µ is slightly more involved. Essentially, there is a
contribution not only from the transformation of the tetrad ēλ(a) but also from its covariant
derivative ∇̄µē(b)λ. The latter is due to the change of the Christoffel symbols, which are
defined by Γλµν = 1

2 ḡ
λσ (∂µḡσν + ∂ν ḡµσ − ∂σ ḡµν). Specifically, the non-vanishing Christoffel

symbols for the metric (2.10) which are affected by the disformal transformation are explicitly
given by

Γ̄ttt = 1
2N̄
−2∂tN̄

2 , Γ̄itt = 1
2 h̄

ij∂jN̄
2 ,

Γ̄tit = 1
2N̄
−2∂iN̄

2 , Γ̄tij = −1
2 N̄

−2∂th̄ij ,

Γ̄ijt = 1
2 h̄

ik∂th̄kj ,

(3.39)

where the spatial component Γ̄ijk is not modified under such a disformal transformation. This
result greatly simplifies the expression for the spin connection. The time component Γ̄t is
proportional to

ēλ(a)∇̄tē(b)λ = ēt(a)∂tē(b)t + ēi(a)∂tē(b)i − ēt(a)Γ̄
t
ttē(b)t − ēi(a)Γ̄

j
tiē(b)j − ēt(a)Γ̄

i
ttē(b)i − ēi(a)Γ̄

t
tiē(b)t ,

(3.40)

and the spatial component Γ̄j is proportional to

ēλ(a)∇̄j ē(b)λ = ēt(a)∂j ē(b)t + ēi(a)∂j ē(b)i − ēt(a)Γ̄
t
jtē(b)t − ēi(a)Γ̄

k
jiē(b)k − ēi(a)Γ̄

t
ij ē(b)t − ēt(a)Γ̄

i
jtē(b)i .

(3.41)

The dependence of Γµ on α after the disformal transformation (2.3) can be seen from
the above two equations. Let us first look at the time component, i.e.

Γ̄t =
1

8
[γa, γb] ēλ(a)∇̄tē(b)λ. (3.42)

From equation (3.40) we see that any term containing a time derivative, namely the first four
terms on the right hand side of it, has no α dependence. In particular, the ∂tα term arising
from ∂tē(b)t is canceled with that coming from the Γ̄ttt term. The last two terms on the right
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hand side contain spatial derivatives and each spatial derivative is accompanied by a factor
α. Next let us move to the spatial component, i.e.

Γ̄j =
1

8
[γa, γb] ēλ(a)∇̄j ē(b)λ. (3.43)

From (3.41) we realise that the first four terms on the right hand side of it which contain spatial
derivatives has no α dependence. On the other hand, those which contain time derivatives,
i.e. the last two terms, have a factor α−1 for each time derivative. At the end of the day, we
can schematically express the effect of a disformal transformation on the spin connection as

Γ̄t[∂t, ∂i] = Γt[∂t, α∂i] = αΓt[α
−1∂t, ∂i] and Γ̄i[∂t, ∂i] = Γi[α

−1∂t, ∂i], (3.44)

where Γµ = 1
8 [γa, γb] eλ(a)∇µe(b)λ is the spin connection in the unbarred frame. It is clear now

that the factor α−1 in N̄−1 in front of D̄t in (3.36) cancels the factor α from Γ̄t, and the
factor α−1 associated with each ∂t is successfully absorbed in the time redefinition (2.11). As
a result, the disformal transformation of the full action can be rewritten as

S = − i
2

∫
d3x dt̄N

√
h
(

Ψ̆γ0N−1Dt̄Ψ + Ψ̆γiDiΨ +mΨ̆Ψ
)
, (3.45)

where Dt̄ = ∂t̄ + ieAt̄ + Γt̄, Γt̄ ≡ Γt[∂t̄, ∂i] and we have used the previous result for the elec-
tromagnetic field (3.31). In this form, the disformal invariance is certainly manifest. Lastly,
we note that neither the charge e nor the mass m is affected by a disformal transformation.

4 Frame independence

In this section, we shall consider the system, gravity plus matter, as a whole. We assume
that matter is universally coupled to ḡµν , which we call the matter frame, and is related by a
disformal transformation to gµν which we call the gravitational frame. For example, we may
have the Einstein-Hilbert action for the metric gµν . Thus, the weak equivalence principle is
preserved. This is in contrast with [42, 43] where different disformal couplings for matter and
radiation are considered.

4.1 Gravity plus matter

In the preceding section we explicitly showed the invariance under disformal transformations
field by field. In this subsection, we consider the whole system. For example, the simplest
and commonly used action [34–36, 39–43] is given by

S =

∫
d4x

{√
−g
(
R[g] + Lφ(g, φ)

)
+
√
−γLm(γ, ψI)

}
, (4.1)

where the gravitational sector is the Einstein-Hilbert action in terms of the metric g plus and
a scalar field φ,3 the latter being responsible for a disformal coupling with matter fields ψI
through

γµν = gµν +H(φ,X)φ,µφ,ν . (4.2)

3In principle, one could choose any form for the gravitational sector [28].
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Under the cosmological assumption we adopt throughout this paper, this amounts to the
replacement of the lapse function in the matter sector by

N2
γ = N2

g

(
1− 2XH(φ,X)

)
≡ N2

g β
2(φ,X) . (4.3)

One may wonder whether the system is still disformally invariant as a whole. Let us show
that this is the case.

Let us perform a disformal transformation given by

gµν = ḡµν + F (φ, X̄)φ,µφ,ν , (4.4)

which introduces a new lapse function related to the original one by

N2
g = N̄2

g (1− 2XF (φ, X̄)) ≡ N̄2
gα

2(φ, X̄) , (4.5)

where X̄ = (∂tφ)2/2N̄2
g . As before, we introduce a new time coordinate by dt̄ = α0(t)dt and

absorb the perturbation of α into N̄g by redefining it. This means

Ngdt = N̄gαdt = en̄gα0(t)dt = en̄gdt̄ , (4.6)

where we used equation (3.8) to define en̄g ≡ N̄ge
σ(t,xi). To apply the passive disformal

transformation to the action we first express the matter sector in terms of Ng,

S =

∫
d3x dtNg

√
h
{
R[g] + Lφ(g, φ) + β(φ,X)Lm

(
h, (βNg)

−1∂tψI , · · ·
)}
. (4.7)

Using (4.6), we can then rewrite the action in terms of the barred time as

S =

∫
d3x dt̄N̄g

√
h
{
R[ḡ] + Lφ(ḡ, φ) + β(φ,Xḡ)Lm

(
h, (βN̄g)

−1∂t̄ψI , · · ·
)}
, (4.8)

where it should be noted that Xḡ is in fact equal to X but rewritten in terms of barred
quantities,

Xḡ ≡
2

N̄2
g

(
∂φ

∂t̄

)2

= X . (4.9)

Once the disformal transformation is done we can go back to the original form of the action
but in terms of barred quantities, i.e.

S =

∫
d3x dt̄

{√
−ḡ
(
R[ḡ] + Lφ(ḡ, φ)

)
+
√
−γ̄Lm(γ̄, ψI)

}
, (4.10)

by defining γ̄ through N̄γ ≡ N̄gβ(φ,Xḡ) or alternatively

γ̄µν = ḡµν +H(φ,Xḡ)φ,µφ,ν , (4.11)

which is identical to the original relation (4.2) but in terms of barred quantities.
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4.2 Propagation speed of gravitons and photons

One effect that we may be able to detect which is not present in the case of a conformal
coupling was already pointed out by Bekenstein [26]. It was argued that gravitons may travel
faster or slower than light, depending on the sign of the disformal factor (2.1). This is true
when matter and gravity are expressed in terms of two different metrics which are related by
a disformal transformation like (4.2). However, as we have seen, we should keep in mind that
the disformal transformation itself does not change the propagation speed. The difference in
the propagation speed exists independent of frames.

To illustrate this fact let us consider the previous action given by

S =

∫
d4x

{√
−g
(
R[g] + Lφ(g, φ)

)
+
√
−ḡLm(ḡ, ψI)

}
, (4.12)

where the propagation speed of gravitons may be different from that of photons, for example,
due to the disformal coupling. Note that we renamed γ as ḡ in order to be consistent with
notation in section 3. Let us express the gravitational sector in terms of the matter metric as

S =

∫
d4x

{√
−g[ḡ]

(
R[g[ḡ]] + Lφ(g[ḡ], φ)

)
+
√
−ḡLm(ḡ, ψI)

}
, (4.13)

as given by the disformal transformation from (3.5) to (3.6), interchanging the roles of the
barred and unbarred metrics (see appendix A). This gives rise to a Horndeski action schemat-
ically given by

S =

∫
d4x
√
−ḡ
{
Lhorn(ḡ, K̄, R̄, φ, X̄) + Lm(ḡ, ψI)

}
. (4.14)

The interpretation in this form is different. Now, the relative difference of the propagation
speed between gravitons and photons is not due to the disformal coupling of matter but due
to a modification of gravity. The resulting Horndeski action in terms of the matter metric
has a tensor propagation speed given by cT = α−1.4 However, we emphasize that this is not
an observable feature in the primordial power spectrum [56], which may be understood by
the fact that the coupling in the matter sector is irrelevant during inflation.

The above discussion has an important implication. It means that as long as the tensor
power spectrum is concerned, the tensor propagation speed may be always set to unity by a
disformal transformation, a definition for the Einstein frame (at least perturbatively). This
consequence has been also discussed by Creminelli et al. [56]. In any case, a disformal coupling
with matter should be in principle observable if we could measure the relative difference in
the propagation speed between gravitons and matter, which is frame independent.

In this sense, if one is interested in the causal structure of the whole system, by means of
a disformal transformation one may go to the frame where the propagation speed of the fastest
species (e.g. either gravitons or photons) is equal to unity, i.e. equal to the geometrical factor
c which defines the causal structure. In this frame, any other field will have a propagation
speed less than unity and hence the standard causal structure is preserved.

5 Conclusions

Disformal transformations play an important role as a generalization of conformal transfor-
mations. The latter is widely used in modifications of gravity as well as in cosmology and

4Alternatively, it can be inferred from the relative factor α2 relating both metrics (2.3).
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it has been proven to leave observable physics invariant. In this paper, we focused on pure
disformal transformations, i.e. those without any transformation in the conformal factor.
Further we assumed a cosmological setting, i.e. under the assumption that a scalar field
responsible for the disformal transformation is regular everywhere and its derivative is time-
like, which allows us to choose the time slicing on which the scalar field is homogeneous. Any
posterior conformal transformation can be independently done in general. Our main result is
that such a disformal transformation, which we call a cosmological disformal transformation,
is equivalent to a rescaling of the time coordinate, which is valid full non-linearly, provided
that perturbation theory is applicable. From this result, it follows that observable physics
must be invariant under cosmological disformal transformations. In this sense, we extended
the work for cosmological perturbations in the literature [57, 58] which showed the disformal
invariance at leading order in the perturbation. We placed emphasis on the fact that neither
the causal structure, propagation speed nor any other property of the fields is affected by a
disformal transformation itself, although it may seem so if an appropriate time is not used.

The physical invariance under disformal transformations is an interesting result. It may
help us to better understand Horndeski or Galileon theory. It may simplify calculations by
going to the frame where the speed of sound of the tensor modes is equal to unity, i.e. to
the Einstein frame. For example, if applied to inflation, the subset of Horndeski theory with
coefficients (3.22) satisfying (3.23) is observationally indistinguishable from the corresponding
Einstein-Hilbert action with a canonical scalar field with a potential.

On the other hand, if applied to dark energy where gravity and matter may have different
disformal couplings, there are strong constraints from the solar system experiments due to
the appearance of a fifth force [39]. Nevertheless, a slowly rolling field may be able to pass
those constraints as the disformal transformation depends on its first time derivative [40].
Another observationally distinguishable signature is the relative difference of the propagation
speed between gravitons and photons. This may become very important in the near future
when gravitational waves from distant sources will begin to be detected.

In summary, observable physics is invariant under disformal transformations, when ap-
plied to cosmology. We leave as future work the study of the appearance of false Ostrogradsky
ghosts when the conformal or disformal factors include a kinetic term dependence, where hid-
den constraints should arise [53].
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APPENDICES

A Inverse disformal transformation

In the main text we considered a disformal transformation g → ḡ from the passive point of
view. Namely we start from the barred frame ḡ = ds̄2 and express the barred quantities in
terms of the quantities in the unbarred frame ḡ = ḡ(g). Here we briefly discuss the inverse
case where we start from a model in the unbarred frame with the metric g and perform
an inverse passive disformal transformation to work with ḡ. In other words, we begin with
g = ds2 and express the unbarred quantities in terms of the barred one as g = g(ḡ).

Let us fix that the barred metric is given by

ds̄2 = −dt2 + gijdx
idxj , (A.1)

namely we want to work with the proper cosmic time (N̄ = 1) of ḡµν . By means of a disformal
transformation,

ds2 = gµνdx
µdxν = (ḡµν − F (φ,X)φ,µφ,ν)dxµdxν , (A.2)

the unbarred line element reads

ds2 = ds̄2 + (1− α−2(t))dt2 = −α−2(t)dt2 + gijdx
idxj . (A.3)

This time, the suitable proper time redefinition in the unbarred frame is given by

dt̃ = α−1(t)dt (A.4)

which leads us to

ds2 = −dt̃2 + gijdx
idxj . (A.5)

In this form, the metric components are the same as those in the barred frame but with a
rescaling of time t→ t̃. To summarize, starting from an action with the unbarred metric gµν
and rewriting it in terms of the barred metric ḡµν is equivalent to the rescaling of time from
t to t̃, i.e. S[g(ḡ); t] = S[ḡ, t̃].

B Example of an observable: Redshift

Here we examine the frame independence of the measured redshift as a simple example of an
observable quantity. The main point is that once we are given the action of a system, we can
compute observable quantities in any frame and obtain the same result.

Let us assume that the background in the gravitational frame, where the gravitational
action is given by the Einstein-Hilbert one, is well described by a flat FLRW background,

ds2 = a2(η)
(
−dη2 + dx2

)
, (B.1)

where a(η) is the scale factor as a function of the conformal time defined by dη = dt/a. We
assume the matter is coupled to a disformally transformed metric, given by the transformation
(2.3), which we call the matter frame metric. It is expressed as

ds̄2 = −a2(η)α2(η)dη2 + a2(η)dx2 = ā2(η̄)
(
−dη̄2 + dx2

)
, (B.2)
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where ā(η̄) = a(η(η̄)) and in the last step we used the time redefinition dη̄ = αdη. Naturally,
photons follow null geodesics of ḡµν , i.e. ds̄2 = 0. The energy of a photon with four-momentum
k̄µ = (k̄η, k̄) measured by a comoving observer with four-momentum ūµ = (−ā(η̄), 0) is given
by

Ē = −k̄µūµ = ā(η̄)k̄η̄. (B.3)

One of the important points to be remembered when performing a passive disformal trans-
formation is that scalar quantities are invariant under such a transformation. This applies,
in particular, to the above energy measured by a comoving observer. Alternatively, the same
conclusion may be obtained by considering the transformation rules for a vector (2.18), which
implies k̄η = α−1kη. We can compute the energy in the unbarred frame as

E = −kµuµ = a(η)kη. (B.4)

Now since we have k̄η̄ = αk̄η = kη, the measured energy is frame independent, Ē = E .
Consequently the redshift, which is defined as the ratio between the measured photon energy
at emission and observation,

1 + z ≡ Eemit/Eobs =
a(ηobs)

a(ηemit)
=

ā(η̄obs)

ā(η̄emit)
, (B.5)

is frame independent as well. Once more the result is consistent with the fact that a cosmo-
logical pure disformal transformations is equivalent to a rescaling of the time.

Finally, note that the physical speed of light is the same in both frames for a matter
observer, as long as matter and radiation are universally coupled to a single metric. This
can been easily seen from the condition ds̄2 = 0 which implies that the dispersion relation is
k̄η̄ = |k̄| = kη. We can further extend this results by noting that since the observed redshift
is frame independent and the scale factor is not affected by the disformal transformation, the
luminosity distance is frame independent as well. This is in agreement with the work by Brax
et al. [43] when matter is universally coupled. Other possible imprints in the Cosmological
Microwave Background (CMB), such as a modification of the distribution function, are con-
sidered in [42], where it is found that if matter and radiation are universally coupled to the
disformal metric there is no observable difference in the CMB.
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