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Abstract Molecular mechanisms underlying substrate recognition and cleavage by Escherichia coli

RseP, which belongs to S2P family of intramembrane-cleaving proteases, remain unclear. We examined

the function of a conserved region looped into the membrane domain of RseP to form a β-hairpin-like
structure near its active site in substrate recognition and cleavage. We observed that mutations

disturbing the possible β-strand conformation of the loop impaired RseP proteolytic activity and that

some of these mutations resulted in the differential cleavage of different substrates. Co-

immunoprecipitation and crosslinking experiments suggest that the loop directly interacts with the

transmembrane segments of substrates. Helix-destabilising mutations in the transmembrane segments

of substrates suppressed the effect of loop mutations in an allele-specific manner. These results

suggest that the loop promotes substrate cleavage by selectively recognising the transmembrane

segments of substrates in an extended conformation and by presenting them to the proteolytic active

site, which contributes to substrate discrimination.

DOI: 10.7554/eLife.08928.001

Introduction
Regulated intramembrane proteolysis (RIP) is a common mechanism for transmembrane signalling

and is a part of many important cellular processes in both prokaryotes and eukaryotes (Ha, 2009;

Wolfe, 2009; Urban, 2013). Proteases involved in RIP are called intramembrane-cleaving proteases

(I-CLiPs) and catalyse the proteolytic cleavage of transmembrane segments (TMs) of target membrane

proteins within the lipid bilayer. Escherichia coli RseP belongs to S2P zinc metalloproteinase family of

I-CLiPs. It plays a key role in regulating the σE extracytoplasmic stress response (Hizukuri et al., 2013;

Kroos and Akiyama, 2013), in which the dedicated sigma factor σE is activated through the successive

cleavage of a single membrane-spanning anti-σE RseA in response to cell surface stresses. The first

cleavage catalysed by DegS (site-1 cleavage) on the periplasmic side triggers the intramembrane

cleavage by RseP (site-2 cleavage) (Alba et al., 2002; Kanehara et al., 2002). Recent studies

suggest that in addition to being involved in RseA cleavage, RseP acts in the proteolytic removal of

remnant signal peptides from the membrane (Saito et al., 2011). RseP spans the membrane 4 times,

with both the termini facing the periplasm. Its central periplasmic region contains tandem PDZ

domains (PDZ-N and PDZ-C; Figure 1A) (Kanehara et al., 2001; Kinch et al., 2006; Inaba et al.,

2008). The S2P family proteases share a conserved core domain containing 3 TMs. In RseP, these

correspond to TM1–TM3 (Figure 1A,B) (Kinch et al., 2006). The first and the third TM contain HExxH

and LDG active site motifs, respectively. Disulfide crosslinking and co-immunoprecipitation

experiments suggest that TM3 plays a critical role in binding of a substrate TM (Koide et al.,

2008). Helix destabilisation of substrate TMs promotes their binding to and cleavage by RseP

(Akiyama et al., 2004; Koide et al., 2008).
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RseP-catalysed site-2 cleavage of RseA depends on site-1 cleavage (Alba et al., 2002; Kanehara

et al., 2002), which results in stress-dependent σE activation, because site-1 cleavage is induced by

stress signals (Walsh et al., 2003; Kulp and Kuehn, 2011; Lima et al., 2013). Previous studies suggest

that RseP PDZ domains are involved in the site-1 cleavage-dependence of the site-2 cleavage by RseP

(Kanehara et al., 2003; Bohn et al., 2004; Grigorova et al., 2004; Inaba et al., 2008; Hizukuri and

Akiyama, 2012). Although the crystal structure of an S2P homolog (mjS2P) fromMethanocaldococcus

jannaschii (Feng et al., 2007) has been reported, it does not have a PDZ domain, and the three-

dimensional structure of an S2P homolog with PDZ domain(s) is not available. We recently reported

the crystal structure of the PDZ tandem of an Aquifex aeolicus RseP homolog. The structure suggests

that the 2 PDZ domains create a single pocket-like structure that covers the core membrane domain

on the membrane surface (Hizukuri et al., 2014). Structural models and biochemical and genetic

results suggest that the PDZ tandem acts as a size-exclusion filter to allow only the periplasmically

truncated form of RseA to enter the recessed active site in the membrane domain of RseP (Kroos and

Akiyama, 2013; Hizukuri et al., 2014). However, mechanisms underlying substrate proteolysis by

RseP remains elusive. It is unclear whether the size-exclusion function of the PDZ tandem is sufficient

to discriminate between substrates and non-substrates and how a substrate TM, which assumes an

α-helical conformation that needs to be unwound for proteolysis, is recognised and presented to the

proteolytic active site. The mechanism of substrate discrimination and specific cleavage in RIP is one

of the major problems to be solved (Langosch et al., 2015). Detailed knowledge of mechanisms

underlying substrate discrimination and cleavage would help in controlling the cleavage of membrane

proteins by I-CLiPs including S2P proteases.

The structure of mjS2P indicates that it contains a region, located close to the active site, that is

looped into the membrane domain from the cytoplasmic side (Figure 1B,C). This membrane-reentrant

loop is unique because it is in an extended or β-strand conformation, whereas a membrane-

embedded polypeptide is generally in an α-helical conformation. Therefore, we have named this

region membrane-reentrant β-loop (MRE β-loop). The MRE β-loop is conserved in proteins belonging

to groups I and III of S2P subfamilies, including RseP (group I), Bacillus subtilis SpoIVFB (group III) and

mjS2P (group III; Figure 1D) (Ha, 2009; Kroos and Akiyama, 2013; Zhang et al., 2013). A recent

study showed that the MRE β-loop of SpoIVFB can be crosslinked with a substrate through disulfide

bonds, suggesting its possible involvement in substrate interaction (Zhang et al., 2013). However,

eLife digest Cells have communication systems that enable them to respond to potentially

dangerous changes in their external environment. For example, bacteria have an enzyme called RseP

that helps to activate responses to external stresses. This enzyme sits in the membrane that

surrounds the cell and cuts a protein called RseA to release a signal molecule into the cell interior.

This signal molecule then promotes the expression of particular genes to protect the cell from harm.

Previous studies have identified the ‘active site’ of RseP, which is the region of the enzyme that

actually cuts the target protein. However, it is not clear how the enzyme is able to identify and cleave

RseA and its other ‘substrate’ proteins. The enzyme also contains a structure called a β-hairpin-like
loop that is close to the active site, which is not commonly found in membrane proteins. Here,

Akiyama, Mizuno et al. used genetic and biochemical techniques to study the role of this loop

structure in the RseP enzyme of the E. coli bacterium.

The experiments show that the loop specifically binds to a section of substrate proteins—called

the transmembrane segment—that spans the cell membrane. Several genetic mutations that

affected the loop altered the ability of RseP to bind to and cleave substrates. The effect of these

mutations in RseP could be suppressed by introducing genetic mutations in substrates that altered

the transmembrane segments. Akiyama, Mizuno et al. propose that the β-hairpin-like loop of the

RseP enzyme binds the transmembrane segment of a substrate and presents it to the active site.

A previous study showed that another region of RseP called the periplasmic PDZ domains can act

as a filter to stop RseP cutting other membrane proteins in error. Akiyama, Mizuno et al.’s findings

suggest that the β-hairpin-like loop serves as an additional checkpoint to identify RseA and other

proteins that RseP targets. The next step is to carry out further experiments to test this model.

DOI: 10.7554/eLife.08928.002
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functional roles of the MRE β-loop remain largely

unknown. Here, we analysed the function of the

RseP MRE β-loop and found that it could directly

bind to and promotes selective cleavage of RseP

substrates. Therefore, we propose that the MRE

β-loop stabilises substrate TMs in an extended

conformation and presents them to the pro-

teolytic active site.

Results

Importance of the MRE β-loop in
the proteolytic function of RseP
We performed systematic mutational analysis to

investigate the possible role of the MRE β-loop in

RseP function. We constructed an MRE β-loop
deletion mutant (Δloop mutant) containing a

short linker (Gly–Gly) in place of residues Ile-61

to Glu-75. Accumulation level of the Δloop
mutant of RseP-HM (RseP with a C-terminal

His-Myc bipartite tag) was comparable to that

of wild-type RseP-HM (Figure 2), suggesting

that the Δloop mutation did not cause global

structural changes in RseP. The Δloop mutant did

not exhibit complementation activity against a

ΔrseP mutation (Figure 2A). Its protease activity

was examined using model substrates HA-MBP-

RseA148 and HA-MBP-RseA(LY1)148 (Figure 2C,D).

HA-MBP-RseA148 is a derivative of the DegS-

cleaved form of RseA (RseA148) and contains a

maltose-binding protein (MBP) domain with an

N-terminal haemagglutinin (HA) tag in place of

the cytoplasmic region of RseA (Figure 1E)

(Hizukuri and Akiyama, 2012). HA-MBP-RseA

(LY1)148 is essentially similar to HA-MBP-

RseA148, except that it has the first TM (LY1) of

lactose permease (LacY) instead of the RseA TM

(Figure 1E) (Hizukuri and Akiyama, 2012). Our

previous studies showed that an N-terminally-

attached tag has little effect on substrate

cleavage by RseP (Akiyama et al., 2004; Saito

et al., 2011). The model substrates were co-

expressed with RseP-HM or its derivatives in a

ΔrseA/ΔrseP strain. The substrates were con-

verted from the full-length form (FL) to a cleaved

form (CL) after co-expression with wild-type RseP

but not with its proteolytically inactive mutant

having an amino acid alteration (E23Q) in the

H22ExxH active site motif, indicating that these

substrates underwent RseP-mediated proteolysis,

as described previously (Hizukuri and Akiyama,

2012). Co-expression of the substrates with the

Δloop mutant did not convert them from FL to

CL, indicating that the mutant was proteolytically

inactive.

Figure 1. Structures of RseP and the model substrates

used in this study. (A) Schematic representation of RseP.

(B) Crystal structure of mjS2P (PDB code: 3B4R A). The

secondary structure was analysed using STRIDE (Frish-

man and Argos, 1995), and the image was generated

using PyMOL (https://www.pymol.org) (Schrödinger,

2010). In A and B, the 3 TM helices composing the core

membrane domain are shown in light green; the MRE

β-loop, HExxH motif and LDG motif are shown in red,

yellow and orange, respectively, and the coordinated

zinc atom is shown in blue. (C) The structure of the

mjS2P MRE β-loop. The polypeptide backbone is

extracted from the model in Figure 1B and shown as

sticks. C, O and N atoms are shown in pink, red and

blue, respectively. The amino acid residues of the

corresponding region of RseP are assigned on the

model. (D) Sequences of the MRE β-loop of RseP

Figure 1. continued on next page
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We next examined the effects of MRE β-loop
mutations on the cleavage of other substrates.

Recent studies have shown that some small

membrane proteins are encoded by the E. coli

genome and expressed as functional proteins

(Hemm et al., 2008; Alix and Blanc-Potard,

2009; Fontaine et al., 2011). YqfG and YoaJ,

small membrane proteins with unknown func-

tions, are predicted to have type II (NIN-COUT)

membrane orientation according to the TMHMM

program (Krogh et al., 2001). Membrane topol-

ogy of YoaJ was confirmed experimentally

(Fontaine et al., 2011). We examined the

cleavage of these proteins by RseP because their

structural features were analogous to those of

signal peptides that were recently identified as

RseP substrates (Saito et al., 2011).

To facilitate detection, we attached an HA-

MBP domain to the N-termini of YqfG and YoaJ

(Figure 1E) and expressed them in ΔrseA/ΔrseP
strain (Figure 2E,F). Anti-HA immunoblotting showed the accumulation of a protein of the expected

size (approximately 46 kDa) when HA-MBP-YqfG was expressed alone (Figure 2E). The protein was

converted to a slightly smaller fragment upon co-expression with wild-type RseP-HM but not with

RseP-HM E23Q mutant, indicating that HA-MBP-YqfG was cleaved by RseP presumably within its

TM. As expected, the Δloop mutant did not cleave HA-MBP-YqfG. In contrast, HA-MBP-YoaJ did not

undergo any cleavage (Figure 2F). Cell fractionation and alkali extraction showed that most HA-MBP-

YoaJ was integrally associated with the membrane (Figure 2—figure supplement 1), suggesting that

its inability to undergo cleavage was not because of defective membrane localisation. These results

show that the MRE β-loop plays a critical role in the proteolytic function of RseP and that RseP

selectively cleaves type II membrane proteins, even those with a small periplasmic domain.

Pro substitutions in the MRE β-loop lead to the differential cleavage of
the model substrates
Cys-scanning mutagenesis was performed to identify functionally important residues in the MRE

β-loop. We constructed single Cys RseP derivatives by substituting Cys residues in place of the 15

residues in the MRE β-loop of Cys-less RseP-HM, which contained Ala residues in place of the 2

original Cys residues (Cys-33 and Cys-427). Complementation and model substrate cleavage assays

showed that all the single Cys mutants, except G68C supported normal cell growth and cleaved HA-

MBP-RseA(LY1)148 (Figure 2—figure supplement 2). Although the G68C mutant was inactive in

complementation, it cleaved the model substrate with a slightly lower but significant efficiency. These

results indicate that no residue in the MRE β-loop is specifically required for the proteolytic function of

RseP. It is unclear why the G68C mutant failed to complement the ΔrseP mutation despite its

substantial protease activity against the model substrate. G68C mutation might destabilise or

inactivate the mutant protein under conditions employed in the complementation assay or might

impair the cleavage of certain substrates that affect cell viability (see below).

We then performed a Pro-scanning experiment to test whether the secondary or tertiary structure

of the MRE β-loop affects RseP function. Introduction of a Pro residue would disturb the higher-order

structures of the MRE β-loop because Pro lacks the amide proton unlike other amino acids. Because

the MRE β-loop originally had 1 Pro residue at position 65, we replaced other residues with Pro

individually. In contrast to the results for Cys mutants, Pro substitution at positions 67, 68, 69 and 70,

which are thought to be located in the distal part (Leu-66 to Glu-75) of the MRE β-loop, abolished
complementation (Figure 2B). Consistently, the cleavage of HA-MBP-RseA148 was impaired

moderately (G67P) or severely (G68P, Y69P and V70P) by these mutations (Figure 2C). Similar

cleavage defects were observed with HA-MBP-RseA(LY1)148 for G67P, Y69P and V70P mutants

(Figure 2D). Interestingly, the G68P mutant, which was almost completely defective in cleaving

HA-MBP-RseA148, efficiently cleaved HA-MBP-RseA(LY1)148.

Figure 1. Continued

(E. coli), SpoIVFB (B. subtilis) and mjS2P (M. jannaschii).

The regions predicted to form β-strands are boxed. The

secondary structure is assigned based on the analysis of

amino acid sequences by PsiPred (http://bioinf.cs.ucl.ac.

uk/psipred) (for RseP and SpoIVFB) or the analysis of the

crystal structure by STRIDE (for mjS2P). The sequence

alignment and secondary structure prediction suggest

that this region of RseP also assumes the β-hairpin-like
structure. The conserved PxGG motif is boldfaced.

(E) Schematic representation of the model substrates

and their amino acid sequences. RseA- and LacY-TM1

(LY1)-derived regions are shown as white and hatched

rectangles, respectively. YqfG- or YoaJ-derived region is

shown as a gray rectangle. Amino acid sequences of

RseA and LY1 TMs and the entire region of YqfG and

YoaJ are shown. The possible TMs of YqfG and YoaJ are

underlined.

DOI: 10.7554/eLife.08928.003
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Figure 2. Effects of Pro substitutions in the MRE β-loop on RseP function. (A and B) Complementation assay. Strain KK31 [rseP::kan/pKK6 (Para-rseP)]

harbouring a plasmid encoding the indicated mutant form of RseP-His6-Myc (RseP-HM) under the lac promoter or the corresponding vector was grown in L

medium containing 0.02% arabinose. The cultures were serially diluted with saline, and 4 μl of the diluted cultures were spotted on L agar plates containing

0.02% arabinose or 1 mM IPTG. The plates were incubated at 30˚C for 20 hr. (C–F) Immunoblotting analysis of substrate cleavage. KA306 (ΔrseA/ΔrseP/ΔclpP)
cells harbouring a plasmid encoding the indicated model substrate was transformed with plasmids encoding the indicated mutant forms of RseP-HM and

were grown at 30˚C in M9-based medium containing 1 mM IPTG and 1 mM cAMP for 3 hr. Proteins were precipitated using TCA, solubilised in 1% SDS and

analysed by 10% Laemmli–SDS-PAGE and immunoblotting with anti-HA or anti-Myc antibody. FL and CL indicate full-length and RseP-cleaved forms,

respectively, of each model substrate. (G–I) Pulse-chase analysis of substrate cleavage. KA306 cells harbouring an appropriate combination of plasmids

encoding the indicated RseP-HM mutant and the model substrate were grown in M9-based medium containing 1 mM IPTG at 30˚C. The cells were labelled

with [35S]-methionine for 30 s and were chased with unlabelled methionine as indicated. Proteins were immunoprecipitated using agarose-conjugated anti-HA

antibody and were analysed by 10% Laemmli–SDS-PAGE. Cleavage (%) was calculated using the following equation: cleavage (%) = 100 × (CL)/[(FL) + (CL)],

where FL and CL are the intensities of the respective bands that were corrected for methionine content. Two independent experiments were performed, and

mean values are shown along with standard deviations. See Figure 2—source data 1 for gel images and quantitated band intensities data for Figure 2G–I.

See Figure 2—figure supplement 1 for integral association of HA-MBP-YqfG and HA-MBP-YoaJ with membrane. See Figure 2—figure supplement 2 for

complementation and model substrate cleavage activity of the RseP derivatives with a Cys substitution in the MRE β-loop.
DOI: 10.7554/eLife.08928.004

The following source data and figure supplements are available for figure 2:

Source data 1. Zip file containing gel images and quantified band intensity data for the pulse-chase experiments.

DOI: 10.7554/eLife.08928.005

Figure 2. continued on next page
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Pro mutations in the MRE β-loop exerted more profound effects on the cleavage of HA-MBP-YqfG

than on the cleavage of the other 2 model substrates. Cleavage was severely impaired by G67P,

G68P, Y69P and V70P mutations and was moderately impaired by I61P, L66P and K71P mutations.

However, the latter 3 mutations did not inhibit the cleavage of the other 2 model substrates to

detectable levels.

Substrate cleavage kinetics was investigated by pulse-chase experiments (Figure 2G–I and

Figure 2—source data 1). We found that the initial rates of HA-MBP-RseA(LY1)148 and HA-MBP-

YqfG cleavage by co-expressed RseP-HM were slightly lower than that of HA-MBP-RseA148 cleavage

(Figure 2G). During the 15 min chase period, the G68P mutant significantly cleaved HA-MBP-RseA

(LY1)148 (Figure 2H) while the K71P mutant efficiently cleaved HA-MBP-RseA148 and HA-MBP-RseA

(LY1)148 but only slightly cleaved HA-MBP-YqfG, which was consistent with immunoblotting results

(Figure 2I). Thus, the intrinsic susceptibility of each model substrate to wild-type RseP was not

correlated with its susceptibility to MRE β-loop mutants, indicating that the MRE β-loop mutations

resulted in the differential cleavage of different model substrates.

The MRE β-loop is important for stable substrate–RseP interaction
We investigated the possible role of the MRE β-loop in RseP–substrate interaction by co-

immunoprecipitation experiments (Figure 3). Inverted membrane vesicles (IMVs) were prepared from

ΔrseA/ΔrseP strain expressing HA-MBP-RseA and RseP-HM derivatives, solubilised with n-dodecyl-

β-D-maltoside (DDM) and were subjected to immunoprecipitation with agarose-conjugated anti-Myc

or anti-HA antibody. The precipitated proteins were analysed by anti-HA or anti-Myc immunoblotting.

In all the following co-immunoprecipitation/crosslinking experiments, RseP derivatives carried a

mutation (E23Q) in the active site motif to prevent substrate cleavage during expression and

immunoprecipitation/crosslinking. We previously used a similar approach to show that several

residues in TM3, including Asn-389, play important roles in substrate binding (Koide et al., 2008).

Consistent with the previous results, wild-type RseP-HM was co-immunoprecipitated with HA-MBP-

RseA and HA-MBP-RseA was co-immunoprecipitated with RseP-HM, but no co-immunoprecipitation

was observed with RseP-HM having an N389L mutation (Figure 3A). Deletion of the MRE β-loop
almost completely abolished co-immunoprecipitation, suggesting its importance in RseP–substrate

interaction (Figure 3B). We found that all the MRE β-loop Pro mutants, except D74P located in the

C-terminus of the loop, significantly decreased co-immunoprecipitation efficiency, indicating that the

Pro mutations compromised the interaction between RseP-HM and model substrates (Figure 3A).

The result that absence of or mutations in the MRE β-loop interfered with RseP–substrate interaction

suggests that the MRE β-loop is required for stable substrate binding by RseP. Pro substitutions in the

proximal part (Ile-61 to Ile-64) of the MRE β-loop had little effect on substrate proteolysis (Figure 2)

and decreased co-immunoprecipitation. These mutants would exhibit weak but sufficient interaction

with substrates to promote cleavage in a membrane-integrated state.

We then examined the interaction of RseP with YoaJ (Figure 3—figure supplement 1). Anti-HA

co-immunoprecipitation showed that RseP-HM was pulled down with HA-MBP-YoaJ in an MRE

β-loop-dependent manner, indicating that YoaJ can interact with RseP although it is not cleaved by

RseP and that the MRE β-loop can affect this interaction. However, overexpression of HA-MBP-YoaJ

little affected the cleavage of co-expressed HA-RseA148 by RseP. It would be possible that YoaJ

interacts with the MRE β-loop with much lower affinity than RseA does in the membrane, although

similar amounts of RseP-HM were co-immunoprecipitated with HA-MBP-YoaJ and HA-MBP-

RseA148 after membrane solubilisation. Alternatively, YoaJ might bind to RseP at a site different

from that for RseA and other substrate proteins. In this case, deletion of the MRE β-loop might have

indirectly disturbed the former site. The nature of the RseP–YoaJ interaction should be clarified in

future study.

Figure 2. Continued

Figure supplement 1. Membrane localization of the model substrates.

DOI: 10.7554/eLife.08928.006

Figure supplement 2. Effects of the MRE β-loop Cys substitutions on the RseP function.

DOI: 10.7554/eLife.08928.007
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In vivo photo-crosslinking between RseP and RseA
The above results and the presumed location of the MRE β-loop near the proteolytic active site

suggest that the loop is directly involved in substrate binding by RseP. This was examined by site-

directed in vivo photo-crosslinking experiments (Figure 4). Amber suppression-mediated incorpo-

ration of p-benzoylphenylalanine (pBPA), a non-natural photoreactive amino acid (Young et al.,

2010), allowed the expression of RseP-HM derivatives with pBPA in the MRE β-loop. We examined

the crosslinking of plasmid-expressed RseP-HM with chromosomally encoded RseA. We used ΔrseP/
ΔompA/ΔompC strain as the host strain because rseP can be deleted in rseA+ background when

genes encoding outer membrane proteins OmpA and OmpC are deleted (Douchin et al., 2006). The

host strain expressed DegS, which cleaved some amount of RseA to RseA148. Expression of pBPA-

containing RseP-HM proteins decreased the accumulation of RseA148, indicating the functionality of

these proteins, although some exhibited lower proteolytic activity against RseA (Figure 4—figure

supplement 1A). After the exposure of cells to UV irradiation, the proteins were analysed by SDS-

PAGE and immunoblotting. Anti-RseA immunoblotting showed UV irradiation produced bands of

approximately 71 kDa (XL) when pBPA was incorporated at position 69, 71 or 74, suggesting that

these bands represented photo-crosslinked products between RseP-HM and RseA (Figure 4A, upper

panels). However, these bands were not detected by anti-Myc immunoblotting (Figure 4A, lower

panels). As the expression level of plasmid-expressed RseP-HM was much higher than that of

chromosomally encoded RseA, it seemed likely that only a small portion of RseP-HM was crosslinked

with RseA. The over-expression of RseP-HM caused an increased background, making it difficult to

detect weak bands of crosslinked products by anti-Myc immunoblotting. To confirm whether the

71 kDa band represented an RseP–RseA crosslinked product, we conducted immunoprecipitation

Figure 3. Effects of MRE β-loop mutations on RseP–substrate interaction. (A and B) Co-immunoprecipitation assays

of RseP–substrate interaction. IMVs were prepared from KK211 (ΔrseA/ΔrseP) cells harbouring a plasmid encoding

the indicated mutant of RseP-HM and pSTD881 (HA-MBP-RseA140). The IMVs were solubilised with DDM and

were subjected to immunoprecipitation with anti-HA or anti-Myc antibody. The immunoprecipitates and the

DDM-solubilised proteins (input) were analysed by 12.5% Laemmli–SDS-PAGE and immunoblotting with anti-HA

and anti-Myc antibodies. Proteins form approximately fourfold more number of cells were loaded on the gel for the

immunoprecipitated samples as compared with the input samples. All the RseP-HM derivatives carried the E23Q

mutation. See Figure 3—figure supplement 1 for interaction between RseP-HM and HA-MBP-YoaJ.

DOI: 10.7554/eLife.08928.008

The following figure supplement is available for figure 3:

Figure supplement 1. Analysis of RseP–YoaJ interaction.

DOI: 10.7554/eLife.08928.009
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experiments by using total proteins obtained from UV-irradiated RseP(Y69pBPA)-HM-expressing cells

(Figure 4—figure supplement 1B). Anti-RseA antibody precipitated a predominant 71 kDa band that

reacted with both anti-RseA and anti-RseP antibodies (upper panels). Anti-Myc antibody also

precipitated a single anti-RseA-reactive protein of 71 kDa (lower left panel). Although no clear band of

the corresponding size was obtained after anti-RseP immunoblotting (lower right panel), this may be

due to increased background disturbance because of the high expression of RseP-HM. These results

further support the notion that the 71 kDa band was the RseP–RseA crosslinked product.

Figure 4. In vivo photo-crosslinking between RseP and RseA. (A) Analysis of the MRE β-loop/RseA crosslinking.

KA418 (ΔompA/ΔompC/ΔrseP)/pEVOL-pBpF cells were transformed with a plasmid encoding an RseP derivative

with an amber mutation at the indicated position. The cells were grown at 30˚C in M9-based medium containing

0.02% arabinose and 1 mM pBPA for 6 hr and were irradiated with UV light for 0 or 10 min. Proteins were

precipitated using TCA and were analysed by SDS-PAGE with a 10% wide-range gel (Nacalai Tesque, Inc. Kyoto,

Japan) containing 1% SDS and immunoblotting with anti-RseA antibody or by SDS-PAGE with a 10% Laemmli gel

and immunoblotting with anti-Myc antibody. XL indicates crosslinked products. (B) Effect of the N389L mutation on

photo-crosslinking. KA418/pEVOL-pBpF strain was transformed with a plasmid encoding an RseP derivative with an

amber mutation at the indicated position with or without the N389L mutation. The cells were subjected to

photo-crosslinking analysis, as indicated in A. (C) Effect of periplasmic truncation of RseA on photo-crosslinking.

KA418/pEVOL-pBpF or KA438 (KA418, ΔdegS)/pEVOL-pBpF cells were transformed with a plasmid encoding an

RseP derivative with an amber mutation at the indicated position. The cells were subjected to photo-crosslinking

analysis, as indicated in A. All the RseP-HM derivatives in A–C carried the E23Q mutation. See Figure 4—figure

supplement 1 for proteolytic activity of the pBPA-containing RseP derivatives and verification of RseP–RseA

photo-crosslinking.

DOI: 10.7554/eLife.08928.010

The following figure supplement is available for figure 4:

Figure supplement 1. Functionality of the pBPA-containing RseP derivatives and characterization of the photo-

crosslinked product.

DOI: 10.7554/eLife.08928.011
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The N389L mutation that destabilised the RseP–substrate interaction considerably decreased RseA

crosslinking at the 3 positions (Figure 4B), suggesting that the photo-crosslinking reflected the

functional interaction between RseP and RseA. We examined the effect of the cleavage by DegS

(Figure 4C). Periplasmic truncation of RseA was suppressed in the absence of DegS, thus increasing

the accumulation of intact RseA, although few non-specific cleavages by other cellular proteases still

occurred under this condition. RseP(Y69pBPA)-HM generated a significantly lower amount of the

crosslinked product in the ΔdegS strain than in the degS+ strain, indicating that the MRE β-loop mainly

interacts with the DegS-cleaved form of RseA.

Disulfide crosslinking of the MRE β-loop with RseA
To determine whether the MRE β-loop directly interact with RseA TM, we examined disulfide

crosslinking between RseP-HM and HA-RseA140 mimicking the DegS-cleaved form of RseA (Kanehara

et al., 2002). An RseP-HM variant having a unique Cys residue at position 69, 70 or 71 was co-expressed

with HA-RseA140, which has a unique Cys at position 109, or with its variant HA-RseA(A108C/C109A)

140, which has a unique Cys in place of Ala-108 (Cys-109 was replaced with Ala), in a ΔrseA/ΔrseP/
ΔdegS strain. Ala-108 and Cys-109 are located in the middle of the RseA TM, and RseP-catalysed

cleavage occurs between these residues (Akiyama et al., 2004; Flynn et al., 2004). Cells expressing

these proteins were treated with Cu2+(phenanthroline)3 to induce disulfide bond formation. After

quenching the oxidant, proteins were acid-denatured and solubilised in SDS. The samples were

analysed directly by SDS-PAGE or after 2-mercaptoethanol treatment to cleave the disulfide bonds. The

oxidant treatment generated a ∼75 kDa band that reacted with both anti-HA and anti-Myc antibodies

when Y69C and K71C variants but not Cys-less and V70C variants of RseP-HM were co-expressed with

HA-RseA(A108C/C109A)140 (Figure 5A). This band disappeared when the samples were treated with

2-mercaptoethanol before SDS-PAGE (Figure 5B). The same results were obtained when the single Cys

RseP-HM variants were co-expressed with HA-RseA140(C109). These results were consistent with those

of photo-crosslinking experiments because pBPA at positions 69 and 71 but not at position 70 was

crosslinked with RseA, indicating that the MRE β-loop was near the RseP cleavage site. Together, our

results strongly suggest that the MRE β-loop can directly bind to substrate TMs.

Suppression of MRE β-loop mutations by destabilising substrate TM
helices
We previously showed that helix-destabilising residues in substrate TMs promote the binding and

cleavage of a substrate by RseP (Akiyama et al., 2004; Koide et al., 2008). Our current results showed

Figure 5. Disulfide crosslinking of RseP and RseA. AD1840 (ΔrseA/ΔrseP/ΔdegS) cells harbouring a combination of plasmids encoding Cys-less or the indicated

single Cys derivative of RseP-HM and HA-RseA140 were treated with Cu2+(phenanthroline (PT))3 at 37˚C for 5 min. After quenching the oxidant, proteins were

precipitated using TCA and free thiol groups were blocked by treatment withN-ethylmaleimide (NEM). The samples were analysed by 10% Laemmli–SDS-PAGE

and immunoblotting with anti-HA (upper panels) or anti-Myc (lower panels) antibody, followed by treatment without (A) or with (B) 10% 2-mercaptoethanol (ME).

All the RseP-HM derivatives carried the E23Q mutation. Asterisk indicates a possible dimer of RseP-HM (Koide et al., 2008) that was not characterised further.

DOI: 10.7554/eLife.08928.012
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that several Pro substitutions in the MRE β-loop exerted opposite effects, that is, they compromised

substrate binding and cleavage. Therefore, we examined whether destabilisation of a substrate TM

helix improves its cleavage by RseP MRE β-loop mutants. Because the MRE β-loop was inserted halfway

into the membrane from the cytoplasmic side, we replaced each residue in the N-terminal region (Ile-8

to Phe-15) of the presumed YqfG TM by a Pro residue, a strong helix destabiliser, and investigated its

cleavage by RseP G67P and K71P mutants, which showed severe and moderate defects, respectively,

in cleaving HA-MBP-YqfG (Figure 6). Wild-type RseP-HM cleaved all the HA-MBP-YqfG mutants

almost as efficiently as it cleaved the original HA-MBP-YqfG (Figure 6A). L11P and L12P mutations but

not other mutations appreciably increased the cleavage by RseP(G67P)-HM (Figure 6B). In contrast,

cleavage by RseP(K71P)-HM was markedly improved by mutations other than L12P and L13P. L12P and

L13P also improved cleavage, but their effects were much lower (Figure 6C). We focused on 2 YqfG

TM mutations I8P and L12P that resulted in differential cleavage by RseP(G67P)-HM and RseP(K71P)-

HM and confirmed their effects by pulse-chase experiments (Figure 6D–F and Figure 6—source data

1). RseP(WT)-HM efficiently cleaved wild-type HA-MBP-YqfG and its I8P and L12P mutants (Figure 6D).

G67P mutation in the RseP MRE β-loop severely impaired its ability to cleave wild-type HA-MBP-YqfG.

Only some cleavage was observed after the 60 min chase period (Figure 6E). K71P mutation, which

had a weaker effect on immunoblotting, also impaired the ability of RseP to cleave wild-type HA-MBP-

YqfG during the 15 min chase period (Figure 6F). RseP(G67P)-HM significantly cleaved HA-MBP-YqfG

(L12P) but not HA-MBP-YqfG(I8P) (Figure 6E) and RseP(K71P)-HM efficiently cleaved HA-MBP-YqfG

(I8P) but not HA-MBP-YqfG(L12P) (Figure 6F), which was consistent with the immunoblotting results.

Replacement of Leu-12 in YqfG by Asn, another strong helix-destabilising amino acid, also promoted

cleavage by the RseP MRE β-loop Pro mutants. However, replacement of the same residue by a helix-

forming Trp residue resulted in no increase in cleavage (Figure 6A–C), suggesting that helix

destabilisation is important for improving substrate cleavage. The I8P or L12P mutation did not

promote cleavage by the RseP Δloop variant, indicating that these mutations did not bypass the RseP

MRE β-loop function for substrate cleavage (Figure 6—figure supplement 1).

Similar effects of a Pro substitution was also observed for LY1, another substrate TM (Figure 6G);

the F21P mutation in LY1 significantly improved the cleavage of this TM by RseP(V70P)-HM that was

almost inactive in cleavage of wild type LY1, but the Pro substitution of the neighbouring residue, Phe-

20, did not.

The results that helix-destabilising mutations in substrate TMs at least partially suppress the defects

in substrate cleavage induced by Pro substitutions in the RseP MRE β-loop in an allele-specific manner

suggests a specific interaction between substrate TMs and the RseP MRE β-loop.

Discussion
RseP is one of the most extensively characterised proteins among the S2P family of I-CLiPs. However,

detailed mechanisms underlying its substrate recognition and cleavage are not completely

understood. We focused on the MRE β-loop, a conserved intramembrane β-hairpin-like structure,

and investigated its role in substrate proteolysis by RseP. Deletion or Pro substitution in the MRE

β-loop impaired substrate cleavage, indicating its critical role in the proteolytic function of RseP.

Crosslinking and co-immunoprecipitation experiments showed that the MRE β-loop was directly

involved in substrate binding. Several Pro substitutions differentially affected RseP-catalysed

proteolysis of substrates. Helix-destabilising mutations in substrate TMs suppressed the defects

caused by mutations in the MRE β-loop in an allele-specific manner. These results collectively suggest

that the MRE β-loop specifically recognises substrate TMs.

The proximal part of the MRE β-loop has a short β-strand (Ile72-Leu-Leu) in the reported crystal

structure of mjS2P (Feng et al., 2007). However, no secondary structure is assigned for the distal part

of the MRE β-loop. Analysis of the secondary structure with STRIDE (Frishman and Argos, 1995)

suggested that Val80-Ala-Met in the distal part forms a β-strand (Figure 1B–D). This region is in an

extended conformation with the side chains facing the opposite sides in an alternate manner (as

expected for a β-strand) suggesting that this region forms a β-strand. Sequence-based prediction

suggested that the MRE β-loops of RseP and SpoIVFB also have β-strands in the corresponding

regions (Figure 1D), suggesting that the MRE β-loop commonly assumes a β-hairpin-like structure.

Cys-scanning mutagenesis suggest that no specific residue in the MRE β-loop is essential for the

proteolytic function of RseP because the Cys substitutions had little or only slight effect on the

substrate cleavage. In contrast, substrate cleavage was severely impaired by Pro substitutions. These
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observations suggest that a higher-order struc-

ture of the MRE β-loop is important for the

proteolytic function of RseP. Interestingly, some

Pro substitutions in the MRE β-loop resulted in

the differential cleavage of the 3 model sub-

strates. Pulse-chase experiments showed that

RseP(G68P)-HM significantly cleaved LY1 but

only slightly cleaved RseA TM and YqfG TM. In

contrast, RseP(K71P)-HM efficiently cleaved RseA

TM and LY1 but only slightly cleaved YqfG TM.

These 3 substrates were rapidly cleaved by wild-

type RseP-HM. Therefore, the effects of MRE

β-loop mutations cannot be simply explained by

the intrinsic susceptibility of these substrates to

RseP. In addition, some mutations in YqfG TM

suppressed G67P and K71P mutations of the

RseP MRE β-loop in an allele-specific manner.

The I8P mutation improved the proteolysis by

RseP(K71P)-HM but not by RseP(G67P)-HM,

whereas the L12P mutation improved the pro-

teolysis by RseP(G67P)-HM compared with that

of RseP(K71P)-HM. Similarly the F21P, but not

F20P, mutation in the LacY TM1 region (LY1)

partially suppressed the V70P mutation of the

RseP MRE β-loop. These results suggest that the

MRE β-loop specifically recognises substrate TMs.

Direct evidence of MRE β-loop–substrate in-

teraction was obtained by co-immunoprecipitation

and crosslinking experiments. Pro substitutions in

the MRE β-loop markedly decreased the co-

immunoprecipitation of RseP-HM with HA-MBP-

RseA after membrane solubilisation, suggesting

that the integrity of the MRE β-loop is required for

stable RseP–substrate interaction. Disulfide- and

photo-crosslinking experiments showed that resi-

dues at positions 69 and 71 of the MRE β-loop
contact with substrates. Cys residues at these

positions disulfide-bonded with Cys residues on

either side of the scissile bond in RseA. A similar

result was reported recently for SpoIVFB and its

substrate Pro-σK (Zhang et al., 2013). A Cys

residue in place of Val-70 in the MRE β-loop of

SpoIVFB formed disulfide bonds with Cys residues

at several positions around the cleavage site in

Pro-σK, suggesting that the MRE β-loop of

SpoIVFB directly interacts with Pro-σK. However,

the role of the MRE β-loop in SpoIVFB function has

not been investigated experimentally. Although

RseP also has a Val residue at the position

corresponding to Val-70 in SpoIVFB (Figure 1D),

we did not observe any substrate crosslinking at

this position. This might be due to differences in

the mode of enzyme–substrate interaction be-

tween RseP and SpoIVFB. Indeed, the substrates

of these enzymes show some differences. In

contrast to RseA, which is a single-spanning

Figure 6. Suppression of the effect of RseP MRE β-loop
mutations by destabilising substrate TM helix. (A–C)

Immunoblotting analysis of YqfG cleavage. KA306 cells

carrying a combination of plasmids encoding the indicated

RseP-HMmutants and HA-MBP-YqfG mutants were grown

and were subjected to immunoblotting analysis, as

described in Figure 2. (D–F) Pulse-chase analysis of YqfG

cleavage. KA306 cells harbouring a combination of

plasmids encoding the indicated RseP-HM mutants and

HA-MBP-YqfG mutants were grown and subjected to

pulse-chase analysis, as described in Figure 2. Two

independent experiments were performed, and mean

values are shown along with standard deviations. See

Figure 6—source data 1 for gel images and quantitated

band intensities data for Figure 6D–F. (G) Immunoblotting

analysis of LY1 cleavage. KA306 cells carrying a combina-

tion of plasmids encoding the indicated RseP-HM mutants

and HA-MBP-RseA(LY1)148 mutants were grown and were

subjected to immunoblotting analysis, as above.

DOI: 10.7554/eLife.08928.013

The following source data and figure supplement are

available for figure 6:

Source data 1. Zip file containing gel images and quantified

band intensity data for the pulse-chase experiments.

DOI: 10.7554/eLife.08928.014

Figure 6. continued on next page
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membrane protein with type II orientation, Pro-σK

is suggested to be peripherally associated with the

membrane (Zhou et al., 2013). In addition,

although helix-destabilising residues in substrate

TMs are important for their efficient cleavage by

RseP, these residues are not required for the

cleavage of Pro-σK by SpoIVFB (Zhou et al., 2013). Thus, the role of the MRE β-loop in substrate binding

and cleavage might slightly differ between RseP and SpoIVFB.

The N389L mutation in RseP TM3, which was previously shown to weaken the RseP-substrate

interaction (Koide et al., 2008), inhibited the in vivo photo-crosslinking of the MRE β-loop with RseA,

suggesting that the observed crosslinking reflected a functional RseP–substrate interaction. The TM4

(corresponding to RseP TM3) of mjS2P that contains one of the active site residues (corresponding to

Asp-402 in RseP TM3) can be located in the vicinity of the proteolytic active site and the MRE β-loop
(Feng et al., 2007). We previously showed that Cys introduced at the positions of Pro-397 and Pro-399

in RseP TM3 can form a disulfide bond with Cys at multiple positions of RseA TM. In mjS2P, the residues

corresponding to Pro-397 and Pro-399 of RseP reside in a loop-like structure. The region containing

residues 397 and 399 might be flexible and act with the MRE β-loop in stable binding of a substrate.

An α-helix is generally not amenable to proteolysis and unwinds to an extended structure to

undergo cleavage (Wolfe, 2009). Many zinc metalloproteinases have a β-strand (edge strand) close to

their proteolytic active site that binds to substrates in an extended conformation through β-strand
addition and presents them to catalytic residues (Stocker and Bode, 1995; Langklotz et al., 2012).

Our results suggest that the MRE β-loop stabilises the extended conformation of a substrate by

directly binding to it through β-strand addition, thus promoting substrate cleavage in a manner similar

to the edge strand (Figure 7). Crosslinking at alternate positions in the Tyr69-Val-Lys region supports

the idea that this region is in a β-strand conformation during its interaction with a substrate. According

to this model, mutations that disrupt the secondary structure of the distal part of the MRE β-loop
would compromise its interaction with a substrate. Introduction of a Pro residue will disturb substrate

accommodation through β-strand addition or interstrand interaction because Pro residues cannot

serve as hydrogen bond donors because of the absence of the amide proton. Moreover, if the

compromised interaction of the MRE β-loop with a substrate prevents efficient conformational

conversion of the substrate TM and decreases its cleavage efficiency, destabilisation of the α-helical
structure of the substrate TM might improve its cleavage by RseP MRE β-loop mutants, which is

consistent with our results. A recent structural study of E. coli GlpG that belongs to the rhomboid

family of I-CLiPs revealed that the P1–P4 region of a substrate forms a β-sheet with the GlpG loop 3

located near the active site (Zoll et al., 2014). Mutations in loop 3 severely compromise the GlpG

activity, suggesting the interaction between the substrate and loop 3 is functionally important (Baker

and Urban, 2012). Although the loop 3 of GlpG and the MRE β-loop of RseP differ in that the former

is located near the periplasmic surface of the membrane and forms a parallel β-sheet with a substrate

whereas the latter is located near the cytoplasmic surface and forms a anti-parallel β-sheet, they might

have a similar role in stabilising an extended substrate structure and promoting its cleavage.

Differential effects of Pro substitutions in the MRE β-loop on the cleavage of the model substrates and

allele-specific suppression of these mutations by helix-destabilising mutations in substrate TMs suggest

that the MRE β-loop–substrate interaction occurs with some specificity. MRE β-loop-assisted cleavage of a

substrate may be affected by helix stability and amino acid sequence of substrate TMs. We recently

suggested that the periplasmic PDZ tandem of RseP acts as a size-exclusion filter to prevent the cleavage

of substrates with bulky periplasmic domains (Figure 7A) (Hizukuri et al., 2014). In this study, we

observed that RseP did not cleave YoaJ, a type II membrane protein with a very small periplasmic domain,

suggesting the presence of additional mechanism(s) for substrate discrimination. In vivo photo-crosslinking

experiments suggest that the MRE β-loop interacts with RseA after site 1 cleavage (Figure 7B) and that it

acts as the second checkpoint for membrane proteins that passed the first check by the PDZ filter and

contributes to their selective proteolysis. It should be noted that mjS2P does not have PDZ domains. Thus,

the MRE β-loop could play a central role in cleaving specific substrates in this enzyme.

Although the MRE β-loop may not interact with intact RseA, our previous chemical crosslinking and

co-immunoprecipitation experiments showed that RseP directly interacted with intact RseA in the

membrane (Kanehara et al., 2003), suggesting that RseP has a separate binding site (exosite) for

intact RseA. Because the PDZ filter excludes intact RseA from the intramolecular active site, the

Figure 6. Continued

Figure supplement 1. Cleavage of the I8P and L12P

mutants of HA-MBP-YqfG depends on the MRE β-loop.
DOI: 10.7554/eLife.08928.015
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presumed exosite may exist on the external

surface of the enzyme. Other families of I-CLiPs

such as rhomboid and γ-secretase have also been

suggested to have an exosite (Kornilova et al.,

2005; Strisovsky et al., 2009; Watanabe et al.,

2010; Arutyunova et al., 2014). A systematic in

vivo crosslinking approach would help in identi-

fying binding sites for intact RseA. This along

with the structural analysis of RseP, especially in

complex with a substrate, would be essential for

verifying our model and for understanding

molecular mechanisms underlying substrate rec-

ognition and intramembrane proteolysis by RseP.

Further, we would like to study the physiological

significance of RseP-catalysed cleavage of YqfG

and identify additional substrates of RseP to

elucidate all the cellular roles of RseP.

Materials and methods

Bacterial strains
All the bacterial strains used in this study are

derivatives of E. coli K12 and are listed in

Supplementary file 1. KA306 was constructed

by transferring the clpP::cat marker derived from

MC4100 clpP::cat (provided by M. Kitagawa) into

AD2328. The clpP::cat marker was introduced to

stabilise the RseP-cleaved fragment of HA-MBP-

RseA148. KA418 was constructed as follows.

First, ΔompA::kan from JW0940 (Baba et al.,

2006) was introduced into CU141 by P1 trans-

duction, and the kan cassette of the resulting

strain was deleted using pCP20, as described

previously (Datsenko and Wanner, 2000). In-

troduction of ΔompC::kan from JW2203 (Baba

et al., 2006) and deletion of the kan cassette

were performed in a similar manner to yield

YH426. KA363 was constructed by introducing

rseP::kan from KK211 into YH426. We found

that KA363 had spontaneously lost F′lac+ lacIq.

We thus constructed KA418 by re-introducing

F′lac+ lacIq into KA363 by conjugation. KA438

was constructed by transferring degS::tet from

AD1839 (Kanehara et al., 2002) to KA418 by P1

transduction.

Plasmids
Plasmids used in this study are listed in Supplementary file 2. pKA1 and pKA117 were constructed by

replacing the region encoding the MRE β-loop (Ile61 to Glu75) in rseP-his6-myc on pKK49 or a

corresponding region in rseP(Cys-less)-his6-myc on pSTD892 with GGCGGT (encoding Gly–Gly) by

site-directed mutagenesis. pKA19 was constructed by introducing the E23Q mutation into pSTD892.

pKA52 was constructed by replacing a 1.5 kb BamHI–SacI fragment of pKA1 with a corresponding

fragment of pKK34. pKA65 was constructed by cloning a 1.4 kb EcoRI–HindIII fragment of pYH19 in

the same site of pSTD689. Other plasmids were constructed by site-directed mutagenesis by using

appropriate combinations of primers and template plasmids. Mutations were confirmed by DNA

Figure 7. A model describing the function of the MRE

β-loop. (A) The periplasmic PDZ tandem of RseP acts as

a size-exclusion filter to discriminate between substrates

based on the size of their periplasmic region. (B) The

binding of the MRE β-loop serves as an additional

checkpoint for substrates with a small periplasmic

region and contributes to selective substrate cleavage.

(C) The MRE β-loop binds to substrate TMs with some

specificity because of β-strand addition, stabilises its

extended conformation and presents the substrate to

the recessed proteolytic active site of RseP.

DOI: 10.7554/eLife.08928.016
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sequencing. pMZ14 was constructed by cloning a PCR-amplified fragment encoding YqfG into the

SalI–PstI site of pSTD835 and by ligating an EcoRI–HindIII fragment of the resulting plasmid with

EcoRI-/HindIII-digested pSTD689. pKA195 was constructed by cloning a 0.6 kb EcoRI–HindIII

fragment of pYH18 in the same site of pSTD689. For construction of pKA210, first, a PCR-amplified

fragment encoding YoaJ was cloned in the SalI–PstI site of pSTD835, and then an EcoRI–HindIII

fragment of the resulting plasmid was ligated with EcoRI-/HindIII-digested pSTD689. pKA268 was

constructed by cloning a 1.4 kb EcoRI–HindIII fragment of pMZ14 in the same site of pUC118.

Media
L medium (10 g/l bactotryptone, 5 g/l yeast extract and 5 g/l NaCl; pH adjusted to 7.2 by using NaOH)

and M9 medium (without CaCl2) (Miller, 1972) were used for bacterial cultivation. Ampicillin (50 μg/ml),

chloramphenicol (20 μg/ml), spectinomycin (50 μg/ml), kanamycin (25 or 12.5 μg/ml) and/or tetracycline

(25 μg/ml) were added for selecting transformants and transductants and for growing plasmid-

harbouring strains.

Cell fractionation and alkali extraction
Cells were grown at 30˚C in L medium containing 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG)

and cAMP and were suspended in 50 mM HEPES-KOH (pH 8.0) containing 50 mM KCl, 10% glycerol

and 1 mM dithiothreitol (DTT). The cells were then fractionated after sonication or subjected to alkali

extraction. For cell fractionation (Kihara et al., 2001), the cells were mixed with 1/10 vol of 1 mg/ml

lysozyme in 100 mM EDTA (pH 8.0) and were incubated at 0˚C for 30 min. The cells were then

disrupted by sonication and ultracentrifuged (99,000×g for 1 hr at 4˚C). The pellet was suspended in

50 mM HEPES-KOH (pH 8.0) containing 50 mM KCl, 10% glycerol and 1 mM DTT. Proteins were

precipitated using 5% (final concentration) trichloroacetic acid (TCA). Alkali fractionation was

performed as described previously (Ito and Akiyama, 1991). The cells were suspended in 50 mM

HEPES-KOH (pH 8.0) containing 50 mM KCl, 10% glycerol and 1 mM DTT. After addition of 1/10 vol of

10 mg/ml lysozyme in 50 mM EDTA (pH 8.0), the cells were incubated at 0˚C for 5 min and were

disrupted by freezing-thawing. The samples were then mixed with an equal volume of cold 0.2 N

NaOH, vortexed vigorously for approximately 10 s and ultracentrifuged in a microfuge (99,000×g for

1 hr at 4˚C). The supernatant was mixed with 1/10 vol of 100% (wt/vol) TCA. Acid denatured protein

precipitates were collected by centrifugation, washed with acetone, and analysed by 12.5% SDS-

PAGE and immunoblotting. Because the chromosomally encoded HflD was expressed at a very low

level and was difficult to detect, we expressed HflD from a multicopy plasmid.

In vivo protease activity of RseP
Cells harbouring an appropriate combination of plasmids encoding an RseP derivative and a model

substrate were grown at 30˚C in M9 medium supplemented with 20 μg/ml of each of the 20 amino

acids, 2 μg/ml thiamine, 0.4% glucose, 1 mM IPTG and 1 mM cAMP for 3 hr. A part of the culture was

mixed with an equal volume of 10% TCA (Hizukuri and Akiyama, 2012). Protein precipitates were

recovered by centrifugation, washed with acetone and dissolved in 1× SDS sample buffer. Proteins

were analysed by 10% Laemmli–SDS-PAGE and immunoblotting with anti-Myc and anti-HA

antibodies, as described previously (Inaba et al., 2008). The blotted proteins were visualised and

quantified using ECL or ECL Prime Western Blotting Detection Reagent (GE Healthcare, Waukesha,

WI) and LAS-3000 Mini Lumino-Image Analyzer (Fujifilm, Tokyo, Japan).

Pulse-chase experiments
Cells harbouring an appropriate combination of plasmids encoding an RseP derivative and a model

substrate were grown at 30˚C in M9 medium supplemented with 20 μg/ml of each of 18 amino acids

(except Met and Cys), 2 μg/ml thiamine and 0.4% glucose to a mid-log phase and were induced with

1 mM IPTG and 5 mM cAMP for 10 min. The cells were then labelled with 370 kBq/ml [35S]-methionine

(American Radiolabeled Chemicals, St. Louis, MO) for 30 s. Chasing was performed using 200 μg/ml

unlabelled methionine for the indicated periods. Proteins were precipitated using 5% (final concentration)

TCA, washed with acetone, dissolved in 50 mM Tris–HCl (pH 8.1) containing 1 mM EDTA and 1% SDS and

immunoprecipitated with anti-HA antibody, as described previously (Akiyama et al., 2004). Labelled
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proteins were separated by SDS-PAGE and were visualised and quantified using a phosphor imager

(BAS1800) (Fujifilm).

Co-immunoprecipitation assay
Co-immunoprecipitation experiments were performed as described previously (Koide et al., 2008). Total

membranes were suspended in 50 mM HEPES-KOH (pH 7.5) containing 50 mM KCl and 20% glycerol,

diluted 10-fold with 50 mMHEPES-KOH (pH 7.5) containing 300 mMKCl and 10% glycerol and solubilised

with 1% DDM on ice for 1 hr. After clarification, the supernatant was incubated with agarose-conjugated

mouse monoclonal anti-HA (F-7) or anti-Myc (9E10) antibody (Santa Cruz Biotechnology, Inc. Santa Cruz,

CA) at 4˚C for 3.5 hr with rotation. Immunocomplexes were collected, washed 3 times with 50 mM

HEPES-KOH (pH 7.5) containing 300 mM KCl, 10% glycerol and 0.1% DDM and dissolved in 1× SDS

sample buffer. The samples were analysed by 12.5% Laemmli–SDS-PAGE and by immunoblotting with

rabbit polyclonal anti-Myc and anti-HA antibodies (Santa Cruz Biotechnology, Inc.).

In vivo crosslinking experiments
Cells harbouring a plasmid encoding an RseP derivative with an amber mutation in the MRE β-loop
region and pEVOL-pBpF (Addgene, Inc., Cambridge, MA) were grown at 30˚C in M9 medium

supplemented with 2 μg/ml thiamine, 0.4% glucose, 0.02% L-arabinose and 1 mM pBPA for 6 hr. After

adding 100 μg/ml (final concentration) spectinomycin to halt protein synthesis, the cells were

irradiated with UV light (365 nm) at 4˚C for 10 min, as described previously (Narita et al., 2013).

Proteins were precipitated by mixing the UV-irradiated cells with 1/20 vol of 100% TCA, washed with

acetone, dissolved in 1× SDS sample buffer and analysed by 10% Laemmli–SDS-PAGE and

immunoblotting with anti-RseA and anti-Myc antibodies.

For verifying the in vivo crosslinked products, TCA-precipitated proteins were dissolved in 50 mM

Tris–HCl (pH 8.1) containing 1% SDS and 1 mM EDTA, diluted 33-fold with 50 mM Tris–HCl (pH 8.1)

containing 150 mM NaCl and 1% NP-40 and immunoprecipitated with TrueBlot Anti-Rabbit IgG IP

Beads (eBioscience, Inc., San Diego, CA) plus anti-RseA antibody or agarose-conjugated anti-Myc

antibody (Akiyama et al., 2004). The proteins were separated by SDS-PAGE on a 10% wide-range gel

(Nacalai Tesque, Inc., Japan) and by immunoblotting with anti-RseA and anti-RseP antibodies by using

Can Get Signal Immunostain Enhancer Solution (Toyobo, Co., Ltd, Osaka, Japan) and TrueBlot Anti-

Rabbit IgG.

Disulfide crosslinking
Cells harbouring an appropriate combination of plasmids encoding an RseP derivative and a model

substrate were grown at 30˚C in L medium containing 1 mM IPTG and 1 mM cAMP for 3.5 hr. Disulfide

bond formation was induced as described previously (Koide et al., 2008). Briefly, the cells were treated

with 0.1 mM Cu2+(phenanthroline)3 or 3 mM 2-phenanthroline at 37˚C for 5 min. Oxidation was

terminated by incubating the cells with 12.5 mM neocuproine. Proteins were precipitated using TCA and

dissolved in 100 mM Tris–HCl (pH 7.5) containing 1.5% SDS, 5 mM EDTA and 25 mM NEM. The samples

were mixed with an equal volume of SDS sample buffer containing no or 10% 2-mercaptoethanol, boiled

at 98˚C for 5 min and analysed by 10% Laemmli–SDS-PAGE and immunoblotting with anti-Myc and anti-

HA antibodies.
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