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We show that odd-parity superconductivity occurs in multilayer Rashba systems without requiring spin-
triplet Cooper pairs. A pairing interaction in the spin-singlet channel stabilizes the odd-parity pair-density-
wave (PDW) state in the magnetic field parallel to the two-dimensional conducting plane. It is shown that the
layer-dependent Rashba spin-orbit coupling and the orbital effect play essential roles for the PDW state in
binary and tricolor heterostructures. We demonstrate that the odd-parity PDW state is a symmetry-protected
topological superconducting state characterized by the one-dimensional winding number in the symmetry class
BDI. The superconductivity in the artificial heavy-fermion superlattice CeCoIn5/YbCoIn5 and bilayer interface
SrTiO3/LaAlO3 is discussed.
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I. INTRODUCTION

Parity is an essential quantum number of quantum phases
unless inversion symmetry is broken. Classification of super-
conducting states is based on the parity of the order parameter
[1]. According to the conventional understanding [1], even-
parity superconductivity is realized by the condensation of
spin-singlet Cooper pairs, while odd-parity superconductivity
is induced by spin-triplet Cooper pairs because of the anticom-
mutation relation of fermions. Even-parity superconductivity
has been observed in a variety of materials, e.g., archetypal
strongly correlated electron systems such as high-Tc cuprate
superconductors (SCs) [2,3] as well as conventional SCs
stabilized by electron-phonon coupling. On the other hand,
only a few materials are considered as possible hosts of
odd-parity superconductivity. This is probably because the
conditions for spin-triplet pairing are unfavorable in most
materials. Since electron-phonon coupling mostly stabilizes
spin-singlet s-wave superconductivity, strong electron corre-
lation is required for the glues of spin-triplet Cooper pairs.
However, d-wave superconductivity is stable in most strongly
correlated electron systems [4].

Odd-parity superconductivity has been attracting attention
because of its multicomponent order parameters that give rise
to multiple superconducting/superfluid phases and intrigu-
ing phenomena related to spontaneous symmetry breaking
[1,5–9]. Furthermore, a great deal of attention has recently
been paid to odd-parity SCs because they are candidates
for topological superconductivity [10–15]. However, only
Sr2RuO4 [8,9] and some uranium-based heavy-fermion com-
pounds such as UPt3 [6,7], UGe2 [16], URhGe, and UCoGe
[17,18] show strong evidence for spin-triplet pairing.

Recent theoretical studies have presented another way to
stabilize the odd-parity superconducting state. It has been
shown that odd-parity superconductivity may occur through
spin-singlet Cooper pairs in crystals lacking local inversion
symmetry. Such locally noncentrosymmetric crystals have a
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sublattice degree of freedom in electronic structures, allowing
the odd-parity spin-singlet superconducting state [19,20].
Although this state is not allowed in the absence of spin-orbit
coupling according to the BCS theory, such an exotic super-
conducting state may be stabilized by the sublattice-dependent
spin-orbit coupling arising from the relativistic effect [20]. It
has been shown that a long-range Coulomb interaction stabi-
lizes odd-parity superconductivity in combination with spin-
orbit coupling [21,22]. On the other hand, two of the authors
have shown that the odd-parity spin-singlet superconducting
state is stabilized by spin-orbit coupling and the paramagnetic
effect without relying on the particular electron correlation
effect [23]. Therefore, conventional electron-phonon coupling
or antiferromagnetic spin fluctuation leading to spin-singlet
Cooper pairing may induce odd-parity superconductivity when
both spin-orbit coupling and the paramagnetic effect play
important roles.

In a previous study, we focused on two-dimensional
(2D) multilayer SCs in which global inversion symmetry
is preserved but some of the layers lack local inversion
symmetry. Then, by applying a magnetic field along the c
axis, the order parameter of spin-singlet superconductivity
changes sign across the center layer, as shown in Fig. 1(a)
[23]. The order parameter spatially modulated in the atomic
length scale ensures the odd parity of superconductivity. Such
a superconducting state is called the pair-density-wave (PDW)
state. Interestingly, the PDW state is classified into topological
crystalline superconductivity protected by mirror reflection
symmetry when the number of superconducting layers is odd
[24]. A nontrivial topological invariant in the symmetry class
D, the mirror Chern number ensures the appearance of the
Majorana edge mode at the edge. A promising candidate
for realizing such a topological superconducting state is
the recently grown artificial superlattice CeCoIn5/YbCoIn5

composed of the quasi-2D heavy-fermion SC CeCoIn5 and
the conventional metal YbCoIn5 [25]. The superconductivity
occurs in CeCoIn5 multilayers, and YbCoIn5 plays the role
of spacer layers. Thus, the superlattice is regarded as a 2D
multilayer SC when the number of YbCoIn5 layers is large.
The strong spin-orbit coupling and the large paramagnetic
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FIG. 1. (Color online) Illustration of superlattice structures stud-
ied in this paper. We show examples of the trilayer system (M = 3).
(a) Binary superlattice that has been realized in CeCoIn5/YbCoIn5.
Closed (blue) and open (red) circles show the superconducting layers
and spacer layers, respectively. The layer-dependent order parameters
in the BCS and PDW states are described on the left. (c) Tricolor
superlattice. Thick (red) and thin (green) open circles show the two
kinds of spacer layers.

effect [26,27] in CeCoIn5 are favorable for the topological
odd-parity superconductivity discussed above. Indeed, the
effects of layer-dependent Rashba spin-orbit coupling (RSOC)
on the superconducting state of CeCoIn5/YbCoIn5 have been
observed [28,29].

On the other hand, assuming a large Maki parameter
αM = √

2H orb
c2 /H P

c2, Ref. [23] neglected the orbital effect that
competes with the paramagnetic effect. H orb

c2 and H P
c2 are

fictitious upper critical fields determined by the orbital effect
(orbital limit) and by the paramagnetic effect (paramagnetic
limit), respectively. Since the Maki parameter of bulk CeCoIn5

is moderate (αM ∼ 3) for the magnetic field along the c axis
[30], the orbital effect may suppress the PDW state. A simple
way to reduce the orbital effect is to apply a magnetic field
along the 2D conducting plane. However, when the orbital
effect is completely neglected, the in-plane magnetic field
induces the complex stripe (CS) state [31], and the PDW state
is not stabilized. In this paper, we show that the odd-parity
PDW state is stabilized by switching on a weak orbital effect.

Furthermore, we find that the PDW state is a topological
crystalline SC protected by magnetic mirror symmetry. Be-
cause mirror reflection symmetry with respect to the ab plane is
broken by the in-plane magnetic field, the mirror Chern number
is no longer a topological invariant. However, magnetic mirror
symmetry is preserved when we apply the magnetic field along
the a axis or the b axis. Using this symmetry, we define
the topological invariant, i.e., the one-dimensional winding
number in the symmetry class BDI. We will show a nontrivial
winding number and the resulting Majorana edge state.

The organization of this paper is as follows. In Sec. II
we introduce the model for multilayer SCs possessing the
layer-dependent RSOC. Various superconducting states ob-
tained by solving the linearized mean-field equation are
illustrated. We study the binary superlattices in Sec. III and
discuss the superconducting state in the artificial superlattice
CeCoIn5/YbCoIn5. The tricolor superlattice in Fig. 1(b) is also
investigated in Sec. IV. In Secs. III and IV, it is shown that the

odd-parity PDW state is stabilized through the RSOC and the
orbital effect. In Sec. V, the topologically nontrivial properties
of the PDW state are clarified, and the Majorana edge state is
demonstrated. A brief summary and discussions are provided
in Sec. VI.

II. MODEL AND FORMULATION

A. Model

First, we introduce the model for 2D multilayer SCs. By
simply neglecting the spacer layers, the binary and tricolor
superlattices in Fig. 1 are described by the multilayer model.
By taking into account the layer-dependent RSOC, the orbital
effect, and Zeeman coupling, the Hamiltonian is described as

H =
∑
k,s,m

ξ (k + pm)c†ksmcksm + t⊥
∑

k,s,〈m,m′〉
c
†
ksmcksm′

+
∑

k,k′,q,m

V (k,k′)c†k+↑mc
†
−k−↓mc−k′−↓mck′+↑m

−
∑

k,s,s ′,m

μB H · σ ss ′c
†
ksmcks ′m

+
∑

k,s,s ′,m

αm g(k + pm) · σ ss ′c
†
ksmcks ′m, (1)

where k, s, and m (=1, . . . ,M) are indexes of momentum,
spin, and layer, respectively. The number of superconducting
layers is M .

The first term is the energy dispersion in the single-layer
limit. We adopt the nearest-neighbor hopping term in the
square lattice for simplicity,

ξ (k) = −2t(cos kxa + cos kya) − μ, (2)

where a is the lattice constant. The orbital effect induced
by the applied magnetic field is taken into account through
the Peierls phase. When we consider the magnetic field
along the [100] axis, H = Hx̂, we can choose the vector
potential A = (0, − Hz,0). Then, the orbital effect leads to
the layer-dependent shift of momentum, k → k + e

�
A. Thus,

we obtain pm = e
�
Hd[m − (M + 1)/2]ŷ, where d is the

lattice spacing between the nearest-neighbor superconducting
layers. For binary superlattices, d = c, with c being the lattice
constant along the c axis. Later we adopt the lattice constant
of CeCoIn5, a = 4.6 Å, and c = 7.5 Å since we focus on the
artificial superlattice CeCoIn5/YbCoIn5 [25]. The second term
of Eq. (1) is the interlayer hopping term. Since we consider
the heterostructures composed of quasi-2D SCs, the interlayer
hopping t⊥ is assumed to be much smaller than the in-plane
hopping, t⊥ � t .

The third term describes the pairing interaction. We assume
s-wave superconductivity for simplicity, and thus

V (k,k′) = −Vs. (3)

We have confirmed that qualitatively the same results are
obtained for d-wave superconductivity. As we will show
layer, a spatially nonuniform superconducting state may be
stabilized. Thus, we take into account the finite center-of-
mass momentum of Cooper pairs q, and k± = k ± q/2. The
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fourth term is the Zeeman coupling term giving rise to the
paramagnetic effect on the superconducting state.

We show that exotic superconducting states are stabilized
by the layer-dependent RSOC represented in the last term of
Eq. (1), which arises from the local violation of inversion
symmetry [20]. Ensured by the global inversion symmetry in
the crystal structure, the RSOC is odd with respect to the mirror
reflection on the center layer, and thus αM+1−m = −αm. For
example, the layer-dependent coupling constant is (α1,α2) =
(α, − α) for bilayers and (α1,α2,α3) = (α,0,−α) for trilay-
ers. We assume a g-vector characterizing the RSOC [32],
g(k) = (− sin kya, sin kxa,0), so as to satisfy the periodicity
in momentum space.

For bilayers, a similar model has been investigated by
noticing the twin boundary of noncentrosymmetric SCs
[33–36]. Then, the intriguing superconducting phase with
broken time-reversal symmetry was investigated by assuming
comparable pairing interactions for the spin-singlet Cooper
pairs and spin-triplet ones [33–35]. We avoid such fine-tuning
of pairing interactions here and consider the dominantly spin-
singlet pairing state, which is realized in most SCs. Aoyama
et al. studied the magnetoelectric effect on the upper and lower
critical magnetic fields, [36] but their Ginzburg-Landau model
does not appropriately take into account the paramagnetic
effect in the high magnetic field region, and therefore the PDW
state that is the focus of this paper is not obtained.

We assume small interlayer hopping t⊥/t = 0.1 and a
moderate RSOC α/t = 0.3 unless explicitly mentioned oth-
erwise. As shown by previous studies [20,23,31], exotic
superconducting states may be stabilized when |α|/t⊥ � 1.
Thus, we assume |α|/t⊥ � 1 throughout this paper. This
condition may be satisfied in heterostructures of quasi-2D
compounds. The chemical potential is μ/t = 2 in Secs. III
and IV while it is μ/t = −2 in Sec. V. We choose the pairing
interaction Vs/t = 1.3 or 1.5. We confirmed that the following
results are almost independent of the choice of Vs/t .

B. Linearized mean-field theory

We study the superconducting state by means of the
linearized mean-field theory. Although we have to fully
solve the Bogoliubov–de Gennes (BdG) equation in order
to obtain the superconducting phase diagram, we can clarify
the superconducting state near the transition temperature by
linearizing the BdG equation while avoiding the numerical
limitations of the full BdG equation. The linearized BdG
equation is formulated by calculating the superconducting
susceptibility,

χ sc
mm′(q) =

∫ β

0
dτ ei�nτ 〈Bqm(τ )B†

qm′ (0)〉, (4)

where q = (q,i�n), and �n = 2πnkBT is the boson Matsub-
ara frequency. The annihilation operator of Cooper pairs is
introduced as

Bqm =
∑

k

ck+q↑mc−k↓m (5)

and Bqm(τ ) = e−HτBqmeHτ .

The superconducting susceptibility is obtained by using the
T-matrix approximation,

χ̂ sc(q) = χ̂0(q)

1̂ − Vsχ̂0(q)
, (6)

where χ̂ sc = (χ sc
mm′) is the M × M matrix. The irreducible

susceptibility is calculated by

χ0
mm′(q) = 1

β

∑
k,l

[G↑↑
mm′ (k + q,iωl)G

↓↓
mm′ (−k,i�n − iωl)

−G
↑↓
mm′ (k + q,iωl)G

↓↑
mm′ (−k,i�n − iωl)], (7)

where Gss ′
mm′ (k,iωl) is the noninteracting Green function and

ωl = (2l + 1)πkBT is the fermion Matsubara frequency.
The superconducting transition occurs at the temperature

where χ̂ sc(q) diverges. Thus, the criterion of the superconduct-
ing instability is obtained as the largest eigenvalue of Vsχ̂

0(q)
is unity. We obtain the layer-dependent order parameter

m(r) = 
meiq·r from the eigenvector, (
1,
2, . . . ,
M )T.
Because the global inversion symmetry is preserved in our
model, the eigenvalues are equivalent between the momentum
±q. Hence, the single-q state or the double-q state may be
stabilized when the center-of-mass momentum of Cooper pairs
is finite. It is expected that the double-q state is stable in
our model because the order parameter almost disappears
in one of the outermost layers in the single-q state with
a small condensation energy. For instance, 
M � 
1 for
momentum q while 
1 � 
M for the opposite momentum
−q. In the double-q state, the order parameter is described as

m(r) = 
(+)

m eiq·r + 
(−)
m e−iq·r, where 
(±)

m is the eigenvector
of Vsχ̂

0(q) for the momentum ±q, respectively. We confirmed
that the bosonic Matsubara frequency is always zero, �n = 0.

C. Superconducting states

In this subsection, we classify the solution of the linearized
BdG equation. As we will show later, various superconducting
states are stabilized in our model. They are illustrated for the
bilayer system in Fig. 2. We discuss the bilayer system for
simplicity, since the extension to more-than-two-layer systems
is straightforward.

The uniform superconducting state [
m(r) = 
] is stable at
zero magnetic field as expected from conventional BCS theory.
Thus, we call the uniform state the “BCS state” [Fig. 2(a)]. On

(a) BCS state (d) PDW state(b) Vortex state (c) CS state

FIG. 2. (Color online) Illustration of superconducting states in
the bilayer system. (a) BCS state, (b) vortex state, (c) CS state, and
(d) PDW state. Thick bars show the superconducting layers. Layer-
dependent order parameters are described in the figures. The spatial
dependence of the superconducting gap is illustrated by thin lines on
top of the figures. The vortex in (b) and the antivortex in (c) are shown
by arrows.
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the other hand, a variety of spatially nonuniform states may be
stabilized in the magnetic field. First, the orbital effect induces
the vortex state illustrated in Fig. 2(b). When the quantum
vortices penetrate inside multilayers, the order parameter is
described as


1(r) = 
0(e−iq·r + δeiq·r), (8)


2(r) = 
0(δe−iq·r + eiq·r), (9)

where |δ| < 1, and q = q(ẑ × Ĥ ) with Ĥ = H/|H| and q >

0. Second, the layer-dependent RSOC stabilizes the CS state
through the paramagnetic effect [31]. The CS state is also
described by Eqs. (8) and (9), however the sign of the center-
of-mass momentum q depends on the band structure and the
sign of RSOC. For our choice of parameters, the RSOC favors
q < 0 when α > 0 while q > 0 when α < 0. Thus, the CS state
is regarded as an antivortex state [Fig. 2(c)] and is distinguished
from the vortex state when α > 0. Then the spin-orbit coupling
competes with the orbital effect and gives rise to an intriguing
superconducting phase diagram, as we show later. We focus
on this case in the following, although the other case, α < 0,
is briefly discussed.

Finally, Fig. 2(d) illustrates the PDW state, where
[
1(r),
2(r)] = (
, − 
) [23]. The order parameter is uni-
form in the 2D conducting plane, but it changes sign between
layers. As we mentioned before, the PDW state is an odd-
parity superconducting state, although the superconductivity
is induced by the spin-singlet s-wave Cooper pairs. Although
we have shown that the PDW state is stabilized in the c-axis
magnetic field near the Pauli limit [23], in this paper we show
that the PDW state is also stabilized in the in-plane magnetic
field when the RSOC competes with the orbital effect.

The BCS, PDW, vortex, and CS states are distinguished
from each other in more-than-two-layer systems too. In Table I,
we summarize the order parameter of these states in trilayers
as well as in bilayers. The order parameter of the so-called
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [37,38] is
also shown for comparison.

TABLE I. Layer-dependent order parameter of the BCS, PDW,
FFLO, vortex, and CS states in bilayers and trilayers.

Bilayer Trilayer

BCS 
1(r) = 
 
1(r) = 



2(r) = 
 
2(r) = 
′


3(r) = 


PDW 
1(r) = 
 
1(r) = 



2(r) = −
 
2(r) = 0

3(r) = −


FFLO 
1(r) = 
 cos(q · r) 
1(r) = 
 cos(q · r)

2(r) = 
 cos(q · r) 
2(r) = 
′ cos(q · r)


3(r) = 
 cos(q · r)

Vortex 
1(r) = 
(e−iq·r + δeiq·r) 
1(r) = 
(e−iq·r + δeiq·r)

2(r) = 
(δe−iq·r + eiq·r) 
2(r) = 
′ cos(q · r)


3(r) = 
(δe−iq·r + eiq·r)

CS 
1(r) = 
(eiq·r + δe−iq·r) 
1(r) = 
(eiq·r + δe−iq·r)

2(r) = 
(δeiq·r + e−iq·r) 
2(r) = 
′ cos(q · r)


3(r) = 
(δeiq·r + e−iq·r)

III. BINARY SUPERLATTICE

A. Bilayer system

In this section we study the binary superlattices [see
Fig. 1(a)], which have been fabricated in CeCoIn5/YbCoIn5

[25]. We begin with the simplest case, namely the bilayer
system (M = 2) illustrated in Fig. 2. Then, the strength of
the orbital effect is controlled by the Fermi energy EF, which
is proportional to the in-plane hopping t . The orbital effect
is estimated from the dimensionless quantity Hξc/�0, with
�0 = h

2e
being the flux quantum. Since the coherence length of

superconductivity is ξ � �vF/kBTc ∼ (EF/kBTc)a, the orbital
effect is enhanced by increasing the Fermi energy. On the
other hand, the paramagnetic effect of the magnetic field is
estimated from another dimensionless quantity μBH/kBTc,
which is independent of the Fermi energy. Thus, the orbital
effect (paramagnetic effect and RSOC) plays an important
role in the superconducting state for large (small) in-plane
hopping t . Note that the RSOC induces the CS state through
the paramagnetic effect.

When we assume small in-plane hopping t = 20 meV
consistent with the heavy effective mass of CeCoIn5, the orbital
effect is negligible. Indeed, we obtain the phase diagram in
Fig. 3(a), which resembles the result in the paramagnetic limit
[31]. The CS state is stable in the high magnetic field region, but
the PDW state is not stabilized. Upon increasing the magnetic
field, the center-of-mass momentum of Cooper pairs gradually
increases through the BCS-CS phase transition [Fig. 3(b)],
indicating the second-order phase transition. Figure 3(c) shows
that 
1 = 
2 in the BCS state while δ in Eqs. (8) and
(9) decreases upon increasing the magnetic field in the CS
state. These behaviors are consistent with the previous study
on the same model [31] where the orbital effect is simply
neglected. Thus, the previous study that was focused on the
heavy-fermion superlattice CeCoIn5/YbCoIn5 is justified.

On the other hand, the orbital effect significantly affects
the superconducting state for large in-plane hopping, t =
200 meV. Figure 4(a) shows that the vortex state is stable in
the high magnetic field region, as expected. The BCS-vortex
phase transition is second order as indicated by the continuous
change of the center-of-mass momentum [Fig. 4(b)] and δ

[Fig. 4(c)]. Although the RSOC and the paramagnetic effect
play less important roles than the orbital effect, they induce
a characteristic magnetic field dependence in the center-of-
mass momentum around the Pauli-Chandrasekhar-Clogston
limit μBH/kBTc0 = 1.25. The RSOC and paramagnetic effect
suppress the orbital effect and thus decrease the center-of-mass
momentum above the Pauli-Chandrasekhar-Clogston limit.

A main result of our study is obtained when the RSOC
competes with the orbital effect. Such a situation is realized
for moderate in-plane hopping t = 80 meV. Then the PDW
state is stabilized in the high magnetic field region, as shown
in Fig. 5. Note that the PDW state is induced neither by the
orbital effect nor by the paramagnetic effect and RSOC. The
PDW state is stable due to a balance of these effects. We
explain this mechanism in detail here. The order parameter of
the CS and vortex states is described by Eqs. (8) and (9), and
these two states are differentiated by the sign of q. The positive
q (vortex state) is favored by the orbital effect, although the
negative q (CS state) is induced by the RSOC. Thus, q ∼ 0

174502-4
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FIG. 3. (Color online) (a) Transition temperatures of various superconducting states in the bilayer system. We assume small in-plane
hopping, t = 20 meV. Thin (red), moderate (blue), and thick (green) lines show the Tc of BCS, CS, and PDW states, respectively. The highest
transition temperature is observable and indicated by the solid line, while the dashed and dot-dashed lines show the fictitious transition
temperatures. (b) Magnetic field dependence of the center-of-mass momentum |q|. (c) Layer dependence of the order parameter. We show

2/
1 for the BCS state and δ for the CS state. In this subsection, we choose the pairing interaction Vs/t = 1.5, which gives the transition
temperature kBTc0 = 0.0124t in the absence of the spin-orbit coupling and magnetic field. The temperature and magnetic field are scaled by
Tc0 in the figures.

when these two effects are in balance. Then, the interlayer
Josephson coupling stabilizes the uniform superconducting
state along the conducting plane, and thus q = 0. The π phase
difference between layers is favored so that the paramagnetic
depairing effect is avoided as in the c-axis magnetic field [23].
In this way, the PDW state is stabilized by the orbital effect,
the paramagnetic effect, RSOC, and interlayer coupling.

B. More-than-two-layer system

Although it is hard to experimentally control the Fermi
energy, the number of superconducting layers M can be
tuned by using the artificial superlattice [25,28,29]. Thus,
we may be able to control the orbital effect by tuning M .
Since the shift of momentum on the outermost layers, |p1| =
|pM | = eHc(M − 1)/2�, increases with M , the orbital effect
is enhanced by increasing the number of superconducting
layers. This is reasonable because vortices easily penetrate
inside of thick SCs. We demonstrate here that the competing

region of the RSOC and the orbital effect is realized by tuning
M , and then the PDW state is stabilized.

We take into account the RSOC on the outermost layers,
(α1,αM ) = (α, − α), while the RSOC on the other layers is
neglected for simplicity. This is a reasonable assumption for
the layer dependence of RSOC because the spin-orbit coupling
is determined by the local environment of atoms [39], and thus
the outermost layers contain the largest spin-orbit coupling.

We fix the in-plane hopping, t = 21 meV, and the pairing
interaction, Vs/t = 1.3. Then, the orbital effect is negligible in
the bilayer system as in Fig. 3. The trilayer system shows the
phase diagram (Fig. 6) similar to Fig. 3, and thus the trilayer
system is still close to the Pauli limit.

On the other hand, the orbital effect plays an important
role in the five-layer system (M = 5). Then, the orbital effect
competes with the RSOC, and therefore the PDW state is
stabilized as expected from the results in Sec. III A. Indeed,
Fig. 7 shows that the BCS state, the CS state, and the PDW state
are stabilized in the low, intermediate, and high magnetic field
regions, respectively. Because the CS-PDW transition is a first-
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FIG. 4. (Color online) Transition temperatures (a), center-of-mass momentum (b), and layer-dependent order parameter (c) for a large
in-plane hopping, t = 200 meV. The other parameters are the same as those in Fig. 3. The moderate (purple) line in (a) shows the transition
temperature of the vortex state.

order phase transition, the upper critical field shows a kink,
although the kink may be weak in some cases [see Figs. 5(a)
and 10(a)]. Generally speaking, a distinct kink appears when
the transition temperature of the PDW state is small. Then,
the Hc2 of the CS state is suppressed while that of the PDW
state shows an upward curvature. The observation of the kink
will be an experimental test for the presence of the PDW
state.

When we furthermore increase the number of supercon-
ducting layers, the superconducting state is dominated by the
orbital effect, and thus the vortex state is stabilized in the
high magnetic field region. For example, we show the phase
diagram of the seven-layer system (M = 7) in Fig. 8. It is
shown that the PDW state is not stabilized.

We focus here on the five-layer system, and we emphasize
the cooperative role of the RSOC, the orbital effect, and the
paramagnetic effect on the thermodynamic stability of the
PDW state. Figure 9(a) shows the phase diagram in the absence
of the orbital effect. The CS state is more stable than the PDW
state, as in the bilayer and trilayer systems. On the other hand,
the vortex state is stable in the high magnetic field region when
we neglect the paramagnetic effect, as shown in Fig. 9(b). Note
that the RSOC does not play an important role in the absence
of the paramagnetic effect.

It should be noticed that the orbital limit of the upper critical
field [Fig. 9(b)] is much larger than the paramagnetic limit [see
Fig. 9(a)], indicating the large Maki parameter. This means
that the upper critical field of five-layer systems is mainly
determined from the paramagnetic effect. In this sense, the
PDW state occurs near the paramagnetic limit, although a weak
orbital effect is needed. Stars in Figs. 6, 7, 8, and 9(a) show the
crossover induced by the paramagnetic effect [23]. Because the
center layer is not protected against the paramagnetic effect by
the RSOC, the order parameter in the center layer 
(M+1)/2

suddenly decreases by increasing the magnetic field through
the crossover. We see that the paramagnetic effect appears even
in the seven-layer system, where the orbital effect is larger than
the effect of RSOC.

C. CeCoIn5/YbCoIn5

In the previous subsections, we designed the odd-parity
PDW state using the artificial heterostructures. It has been
shown that the orbital effect is controlled by the num-
ber of superconducting layers. Indeed, various superlattices
CeCoIn5/YbCoIn5 with M > 2 are superconducting, and we
can tune the number of layers M [25,28,29]. Thus, the artificial
superlattice CeCoIn5/YbCoIn5 may be a new platform for odd-
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FIG. 5. (Color online) Transition temperatures (a) and layer de-
pendence of the order parameter (b) for a moderate in-plane hopping,
t = 80 meV. The other parameters are the same as those in Fig. 3. It is
shown that the PDW state is stable in the high magnetic field region.

parity superconductivity. A reasonable parameter t ∼ 20 meV
leads to the PDW state in the five-layer system.
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FIG. 6. (Color online) Transition temperatures of the BCS, CS,
and PDW states in the trilayer system (M = 3) for small in-plane
hopping, t = 21 meV. In this subsection, we assume Vs/t = 1.3,
which gives rise to the transition temperature at zero magnetic field,
Tc0 = 0.00487t/kB, in the absence of RSOC.
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FIG. 7. (Color online) Transition temperatures of the BCS, CS,
and PDW states in the five-layer system (M = 5) for a small in-plane
hopping, t = 21 meV.

We comment here on the recent experimental obser-
vations of the paramagnetic effect in the superlattice
CeCoIn5/YbCoIn5 [28]. Goh et al. observed the strong
paramagnetic effect by measuring the field-angle dependence
of the upper critical field. They also showed that the para-
magnetic effect is suppressed in a few-layer system M � 3.
Their experimental results are consistent with our model; the
paramagnetic effect is suppressed with decreasing M because
the superconductivity in surface layers, m = 1 and M , is
substantially protected against the paramagnetic effect due
to the RSOC [20,28]. Indeed, the upper critical field of the
trilayer system is larger than that of the five-layer system
near T = Tc0 (see Figs. 6 and 7). Note that the upper critical
field is dominantly determined from the paramagnetic effect
even when the orbital effect competes with the RSOC (see the
discussion in Sec. III B).

Considering the consistency between our calculation and
experiments for CeCoIn5/YbCoIn5 at low magnetic fields, it
is expected that the PDW state may be realized in the artificial
superlattice with M � 5 at high magnetic fields. However,
any indication of the presence of a high-field superconducting
phase has not been reported. For instance, the kink and the
upturn of the upper critical field shown in our calculations have
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FIG. 8. (Color online) Transition temperatures of the BCS, the
vortex, and the PDW states in the seven-layer system (M = 7) for
small in-plane hopping, t = 21 meV.
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FIG. 9. (Color online) Transition temperatures of the superconducting states in the five-layer system. (a) Pauli limit by setting pm = 0. (b)
Orbital limit by eliminating the Zeeman term in the Hamiltonian [Eq. (1)]. The other parameters are the same as those in Fig. 7.

not been observed [25,28,29]. The high-field phase may have
been missed because the measurement has not been carried
out in the low-temperature region. On the other hand, the
discrepancy may be attributed to the two ingredients that are
not taken into account in our model. First, it is expected that
disorders suppress the high-field superconducting phase, as
the FFLO state is suppressed [40]. The artificial superlattice
CeCoIn5/YbCoIn5 indeed contains substantial disorders. Sec-
ond, the number of spacer layers N = 4–6 may not be large
enough to eliminate the coupling between superconducting
multilayers. Intermultilayer coupling is harmful for the PDW
state, and thus it should be decreased by increasing the number
of spacer layers.

IV. TRICOLOR SUPERLATTICE

Next, we discuss the tricolor superlattice illustrated in
Fig. 1(b). As we have shown in Sec. III B, the orbital effect is
controlled by the spacing between the outermost layers. Thus,
the PDW state may be stabilized in a tricolor superlattice
by intercalating the spacer layers into the superconducting
layers. Then, the spacing of neighboring superconducting
layers is multiplied to d = (md + 1)c, with md being the
number of intercalated spacer layers [green open circles
in Fig. 1(b)]. We assume here that the interlayer spacing
between the spacer layer and the superconducting layer is
c. A similar situation in the bilayer δ-doped SrTiO3 [41] has
been realized, and superconductivity in the bilayer interface
LaAlO3/SrTiO3/LaAlO3 has been studied [22].

Multiplying the interlayer spacing by (md + 1) is equivalent
to increasing the in-plane hopping to (md + 1)t while keeping
the ratio, t⊥/t , μ/t , α/t , and Vs/t . For instance, we obtain
the same results for the binary superlattice with t = 80 meV
and for the tricolor superlattice with t = 20 meV and md = 3.
Thus, the PDW state may be stabilized in the tricolor bilayer
superlattice. However, in reality, the interlayer hopping t⊥
between the nearest-neighbor superconducting layers is signif-
icantly decreased by intercalating a spacer layer. For instance,
we obtain t⊥ ∼ t2

ns/(Es − En) in the presence of a single spacer
layer (md = 1), where tns is the hopping integral between the
superconducting layer and the spacer layer and Es − En is
the potential difference between these layers. Therefore, the
stability of the PDW state in the tricolor superlattice should

be examined by investigating the superconducting state for
small t⊥.

We study here the tricolor bilayer superlattice for simplicity.
The in-plane hopping is set to t = 20 meV by considering the
heavy-fermion superlattice. As we discussed above, we obtain
the same phase diagram as Fig. 5 when md = 3 and t⊥/t = 0.1.
On the other hand, Figs. 10(a) and 10(b) show the phase
diagram for t⊥/t = 0.05 and 0.01, respectively. Since the
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FIG. 10. (Color online) Transition temperatures of the BCS, CS,
vortex, and PDW states in the tricolor superlattice with md = 3, t =
20 meV, μ/t = 2, α/t = 0.3, and Vs/t = 1.5. (a) t⊥/t = 0.05 and (b)
t⊥/t = 0.01. The temperature is normalized by Tc0 = 0.0124t/kB.
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interlayer Josephson coupling decreases with t⊥/t , the uniform
states, namely the BCS and PDW states, are suppressed. It is
shown that the PDW state is stable at high magnetic fields,
but the transition temperature of the PDW state is significantly
decreased for t⊥/t = 0.01. The PDW state will be furthermore
suppressed by further decreasing t⊥/t . Thus, it may be hard to
realize the PDW state in a tricolor superlattice by intercalating
many spacer layers.

It should be noticed that Fig. 10(b) is similar to the phase
diagram of the binary five-layer superlattice (Fig. 7). We now
understand that the reduced transition temperature of the PDW
state in the five-layer system is due to the reduced Josephson
coupling between the outermost layers. In other words, the
superconducting inner layers play a role of the spacer layers.
Indeed, the PDW state is mainly induced by the outermost
layers where the superconductivity is protected against the
paramagnetic effect by the RSOC. For example, we obtain
the layer-dependent order parameter (
1,
2,
3,
4,
5) �

(1,0.18,0,−0.18,−1) in the five-layer PDW state.

Finally, we discuss the superconductivity in the bi-
layer δ-doped SrTiO3 [41] and the bilayer interface
LaAlO3/SrTiO3/LaAlO3 [22]. The Fermi velocity estimated
for a carrier density n ∼ 1014 cm−2 on the basis of the
three-orbital tight-binding model [42] is approximately twice
as large as that in our model. Since the lattice constant along the
c axis, c = 3.9 Å, is nearly half of CeCoIn5, the orbital effect in
the SrTiO3 heterostructures is comparable to our model. Thus,
the bilayer system sandwiching three nonsuperconducting
layers may be a platform of the odd-parity PDW state. Then,
the interlayer coupling between superconducting layers may
be small, and therefore the PDW state may appear in the
low-temperature region, as shown in Fig. 10(b). The kink in
the upper critical field would be a signature of the PDW state.

V. TOPOLOGICAL SUPERCONDUCTIVITY

Topologically nontrivial insulators and SCs have evolved
into one of the major research topics of modern condensed-
matter physics recently [43,44]. In particular, topological
superconductivity attracts a great deal of attention since the
Majorana state satisfying the non-Abelian statistics appears
at the edge and dislocations [10–12]. In addition to the
“strong” topological phases classified based on the topological
Periodic Table [13,14], theories on the symmetry-protected
topological superconducting phases (topological crystalline
superconductivity) have developed recently [45–49]. In the
c-axis magnetic field, the odd-parity PDW state is a topological
crystalline SC protected by mirror symmetry [24]. The mirror
symmetry along the ab plane protects the topological invariant,
that is, the mirror Chern number [50] of symmetry class D. We
obtain the finite mirror Chern number ν(±i) = ∓1, marking
the topologically nontrivial properties of superconductivity,
when the number of superconducting layers M is odd [24].
On the other hand, the mirror Chern number is no longer a
topological invariant when the magnetic field is tilted from the
c axis.

In this section, we show that the PDW state may belong to
another kind of topological crystalline SC when the magnetic
field is applied along the a or b axis. We demonstrate the
topologically nontrivial properties on the basis of the BdG

Hamiltonian,

HBdG =
∑
k,s,m

ξ (k + pm)c†ksmcksm + t⊥
∑

k,s,〈m,m′〉
c
†
ksmcksm′

−
∑

k,s,s ′,m

μB H · σ ss ′c
†
ksmcks ′m

+
∑

k,s,s ′,m

αm g(k + pm) · σ ss ′c
†
ksmcks ′m

+ 1

2

∑
k,s,s ′,m

[
ss ′m(k)c†ksmc
†
−ks ′m + H.c], (10)

where 
̂m(k) ≡ [
ss ′m(k)] = [ψm + dm(k) · σ ]iσy describes
the layer-dependent order parameter of superconductivity [1].
Although the purely s-wave superconductivity is considered
in Secs. III and IV, the p-wave component is admixed through
the layer-dependent RSOC by the local violation of inversion
symmetry [51]. The layer dependence of the order parameter
is obtained as

(ψ1,ψ2,ψ3,ψ4,ψ5) = (ψout,ψin,0, − ψin, − ψout), (11)

(d1(k),d2(k),d3(k),d4(k),d5(k)) = (dout,din,d
′
in,din,dout) g(k)

(12)

in the five-layer PDW state. The BdG Hamiltonian is repre-
sented in Nambu space,

HBdG = 1

2

∑
k

ĉ†ĤBdG(k)ĉ, (13)

ĤBdG(k) =
(

Ĥ0(k) 
̂(k)

̂†(k) −Ĥ0(−k)T

)
, (14)

where Ĥ0(k) is the Hamiltonian in the normal state and 
̂(k)
is the order parameter.

Although the mirror symmetry with respect to the ab plane
Mab is broken in the in-plane magnetic field, the magnetic
mirror symmetry T ′ = T Mca (T Mbc) is preserved in the
a-axis (b-axis) magnetic field. For instance, in the magnetic
field along the a axis, the BdG Hamiltonian is invariant under
magnetic mirror symmetry,

T ′ĤBdG(kx,ky)T ′ † = ĤBdG(−kx,ky), (15)

where Mca = iσy is the mirror reflection operator and
T = iσyK is the time-reversal operator, with K being the
complex-conjugate operator. Combining with the particle-hole
symmetry CĤBdG(k)C† = −ĤBdG(−k), where C = τxK and τx

is the Pauli matrix in the particle-hole space, we can define the
mirror chiral symmetry �ĤBdG(kx,ky)�† = −ĤBdG(kx, − ky)
with � = −CT ′ = τx . Thus, the BdG Hamiltonian satisfies the
chiral symmetry

{�,ĤBdG(k)} = 0 (16)

at ky = 0 and ky = π/a. The chiral symmetry ensures that the
one-dimensional winding number

ωky
= 1

4πi

∫ π
a

− π
a

dkxTr
[
q̂(k)−1∂kx

q̂(k) − q̂†(k)−1∂kx
q̂†(k)

]

(17)
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is a topological invariant [52–57] when a finite gap is open at
ky = 0 and ky = π/a. The 2M × 2M matrix q̂(k) is obtained
by carrying out the unitary transformation

UĤBdG(k)U † =
(

0 q̂(k)
q̂†(k) 0

)
. (18)

When we regard the magnetic mirror symmetry T ′ as
pseudo-time-reversal symmetry [58,59], the one-dimensional
Hamiltonian Ĥ

ky=0
1D (kx) = ĤBdG(kx,0) and Ĥ

ky=π/a

1D (kx) =
ĤBdG(kx,π/a) belong to the symmetry class BDI because
T ′2 = +1 [13,14]. Thus, we can define the integer topological
numbers of the BDI class,

νBDI
0 = 1

πi

∫ π
a

0
dkxTr

[
q̂(kx,0)−1∂kx

q̂(kx,0)
]
, (19)

νBDI
π/a = 1

πi

∫ π
a

0
dkxTr

[
q̂(kx,π/a)−1∂kx

q̂(kx,π/a)
]
. (20)

Indeed, these winding numbers are equivalent to Eq. (17),
namely νBDI

0,π/a = ω0,π/a . The pseudo-time-reversal symmetry
considered here has been used for the definition of the
integer topological number in one-dimensional semiconductor
nanowires [58] and quasi-one-dimensional d-wave supercon-
ductors [59]. The magnetic mirror symmetry is the physical
origin of this “hidden” time-reversal symmetry. The difference
of two winding numbers, νBDI

0 − νBDI
π/a , is the strong index

of 2D topological crystalline SCs protected by the magnetic
mirror symmetry [48].

We now discuss the superconducting gap. Figure 11 shows
the gap of the single-particle excitation spectra in the five-layer
PDW state for each ky , which is defined as Emin(ky) =
mini,kx

|Ei(k)|, with Ei(k) being eigenvalues of the BdG
Hamiltonian ĤBdG(k). We assume here μ/t = −2 so that the
Fermi surface encloses the � point (k = 0). Since there is no
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FIG. 11. (Color online) Superconducting gap at each ky in the
five-layer PDW state, defined by Emin(ky) = mini,kx

|Ei(k)|. We as-
sume t = 20 meV, t⊥/t = 0.1, μ/t = −2, α/t = 0.3, and μBH/t =
0.04 is the magnetic field along the a axis. The layer-dependent order
parameters are chosen as ψout = 0.02 and ψin = 0.0036 consistent
with the results in Sec. III B (Fig. 7). We take into account a
small p-wave component d ≡ dout = din = d ′

in = 0.004 induced by
the RSOC [51] (thick solid line), while we obtain the dashed line for
d = 0. We also show the gap for d = 0.004 and μBH/t = 0.001 for a
comparison (thin solid line). The bulk gap opens in the low magnetic
field region, but it closes in the high magnetic field region where the
PDW state is stable. The superconducting gap at ky = 0 is finite even
in the high magnetic field region.
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FIG. 12. (Color online) (a) Winding number and (b) supercon-
ducting gap at ky = 0 as a function of the p-wave component
d ≡ dout = din = d ′

in. The other parameters are the same as those
in Fig. 11.

Fermi surface along ky = π/a, the winding number is trivial,
νBDI

π/a = 0. Therefore, we focus on νBDI
0 . The superconducting

gap is finite at ky = 0, ensuring the topological protection
of the winding number νBDI

0 . At low magnetic fields, the
superconducting gap is finite in the whole Brillouin zone
(thin solid line in Fig. 11), and thus νBDI

0 is the strong
topological index. Although the gap at finite ky is closed at high
magnetic fields due to the paramagnetic effect, the winding
number is regarded as a topological number of an effective
one-dimensional Hamiltonian.

As we show in Fig. 12(a), νBDI
0 discretely changes upon

increasing the p-wave component in the order parameter, d ≡
dout = din = d ′

in. The superconducting gap is closed for special
values of d where the winding number jumps [Fig. 12(b)]. We
ignore here the layer dependence of the p-wave component
for simplicity. This assumption has been justified by the BdG
equation, which shows the nearly layer-independent p-wave
component in the PDW state [51].

Switching on a small p-wave component |d| � 0.05ψout,
we obtain a finite winding number indicating the topologically
nontrivial properties [see Fig. 12(a)]. This is in sharp contrast
to the 2D Rashba SC, where the p-wave component over-
whelming the s-wave component is required for topological
superconductivity [52,60]. This condition is hardly realized
in real materials. On the other hand, a small p-wave com-
ponent induced by the RSOC causes the PDW state to be

174502-10



ODD-PARITY SUPERCONDUCTIVITY BY COMPETING . . . PHYSICAL REVIEW B 92, 174502 (2015)

-0.005 0 0.005

d

-4

-2

0

2

4
 ω

Bilayer
Trilayer
Four-layer

νB
D

I

0

FIG. 13. (Color online) Winding number of the bilayer, trilayer,
and four-layer PDW state. We assume a layer-independent p-wave
component d ≡ dout = din as in Fig. 12. The s-wave component
has a layer dependence (ψ1,ψ2) = (ψout, − ψout), (ψ1,ψ2,ψ3) =
(ψout,0, − ψout), and (ψ1,ψ2,ψ3,ψ4) = (ψout,ψin, − ψin, − ψout).
The parameters are the same as those in Fig. 11.

topologically nontrivial, because the s-wave component of
the order parameter is small on inner layers when M � 3. In
Fig. 13, we show the winding number of the bilayer, trilayer,
and four-layer systems in the PDW state. Although the bilayer
system (M = 2) is trivial, the topologically nontrivial super-
conducting state is induced by a small p-wave component for
M � 3. According to the random-phase-approximation (RPA)
analysis of the three-dimensional Rashba-Hubbard model,
the induced spin-triplet component is approximately 20% of
the spin-singlet component for a moderate RSOC [39,61].
Thus, the p-wave component is likely to be large enough to
realize the topological crystalline superconductivity protected
by the magnetic mirror symmetry for M � 3. Note that
these conditions are different from those for the topological
superconductivity in the magnetic field along the c axis. The
PDW state is a topological crystalline superconductor in the
c-axis magnetic field when the number of superconducting
layers M is odd [24]. Then, the p-wave component is not
required.

A nontrivial winding number may ensure the presence of
the Majorana edge state according to the bulk-edge correspon-
dence. When the magnetic field is applied along the a axis,
the magnetic mirror symmetry T Mca is preserved at the edge
perpendicular to the [100] axis [(100) edge]. Therefore, the
winding number protected by this symmetry corresponds to
the number of zero-energy edge states according to the index
theorem [53]. Indeed, we show the Majorana edge states in
Fig. 14. The trilayer PDW state with a large superconducting
gap is considered for simplicity of numerical calculation. The
energy spectrum is calculated in the open boundary condition
along the a axis. The layer-dependent order parameters
are (ψ1,ψ2,ψ3) = (1,0, − 1)ψout and (d1(k),d2(k),d3(k)) =
(1,1,1)d g(k). We see the two Majorana modes around ky = 0
[Fig. 14(a)] when we assume a small p-wave component
leading to the winding number νBDI

0 = 2. The Majorana states
have a linear dispersion since the chiral symmetry defined in
Eq. (16) is not preserved at 0 < |ky | < π/a. Because another
pseudo-time-reversal symmetry,T ′′ĤBdG(k)T ′′† = ĤBdG(−k)
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FIG. 14. (Color online) Energy spectra in the trilayer PDW state
with open boundaries along the a axis. We consider the magnetic field
along the a axis μBH/t = 0.3 (a) and the b axis μBH/t = 0.1 (b).
We assume t⊥/t = 0.1, μ/t = −2, α/t = 0.3, and we choose the
s-wave order parameter ψout = 0.5 and the p-wave order parameter
d = 0.2. The orbital effect is neglected for simplicity.

with T ′′ = T Mab, is preserved, the two Majorana states form
“Kramers pairs.”

Figure 14(a) also shows the zero-energy flat band at |kya| =
1.35–1.7. This mode is specified by another winding number
ω′

ky
protected by the pseudo-time-reversal symmetry T ′′. The

winding number ω′
ky

is defined at all ky , and we obtain ω′
ky

=
−1 at ky where the flat band appears. Hence, the zero-energy
flat band does not have any degeneracy.

Finally, we comment on the anisotropic response to the
external magnetic field. The magnetic mirror symmetry T Mca

is broken when we apply the magnetic field along the b axis.
Then, the zero-energy Majorana states disappear at the (100)
edge, as expected [Fig. 14(b)]. This field angle dependence
is attributed to the Ising character of the Majorana state.
Similarly, the Majorana mode appears (disappears) at the (010)
edge in the magnetic field along the b axis (a axis), because
the mirror symmetry along the bc plane Mbc is preserved at
the edge.

VI. SUMMARY AND DISCUSSION

In this paper, we studied 2D multilayer SCs influenced by
the layer-dependent RSOC. We showed that the odd-parity
PDW state is stabilized by competing spin-orbit coupling and
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the orbital effect in the magnetic field along the 2D conducting
plane. We also showed that the PDW state is a topological
crystalline SC protected by the magnetic mirror symmetry
when a small p-wave component is induced by the RSOC.
The Majorana state has been demonstrated at the (100) edge
[(010) edge] in the magnetic field along the a axis (b axis).

Our finding paves the way toward realizing odd-parity
superconductivity without a considerable pairing interaction in
the spin-triplet channel. Although spin-triplet superconductiv-
ity is hardly stabilized in most SCs except for a few exceptions,
our proposal provides an alternative way to create odd-parity
SC by using the sublattice degree of freedom.

Indeed, recent developments in the technology of artificial
heterostructures may enable the design of the odd-parity
PDW state. Superconducting 2D electron systems have been
fabricated in the oxide interfaces SrTiO3/LaAlO3 [62] and
SrTiO3/LaTiO3 [63], gate-tuned SrTiO3 [64] and MoS2 [65],
and the heavy-fermion superlattice CeCoIn5/YbCoIn5 [25].
It has been reported that interfacial (intrinsic) spin-orbit

coupling significantly affects the superconducting state in
SrTiO3 heterostructures [42,66–68] and CeCoIn5/YbCoIn5

[28,29] (MoS2 [69,70]). Furthermore, the multilayer structure
has been artificially controlled in CeCoIn5/YbCoIn5 [29]
and δ-doped SrTiO3 [41]. Thus, we expect that odd-parity
topological superconductivity will be created in these sys-
tems by tuning the multilayer structure and the magnetic
field.
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