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1 Introduction

The AdS/CFT correspondence is a fascinating subject in the study of string theory. The

most famous one among a lot of variations is a duality between 10D type IIB string theory

on the AdS5×S5 background and the 4D N = 4 super Yang-Mills theory at large N

limit [1]. A great progress is that an integrable structure has been discovered behind this

duality [2]. On the string-theory side, the Green-Schwarz string action on AdS5×S5 is

constructed as a 2D coset sigma model [3] and the Z4-grading of the supercoset ensures the

classical integrability [4] (For a big review of the AdS5×S5 superstring, see [5]). Although

the essential mechanism of the duality has not been fully understood yet, the integrability

has played a crucial role in checking conjectured relations in the AdS/CFT.

It would be significant to consider integrable deformations of the AdS/CFT. It may

shed light on a deeper structure behind gauge/gravity dualities beyond the conformal

invariance. On the string-theory side, an influential way is to employ the Yang-Baxter sigma

model description [6, 7]. This is a systematic way to study integrable deformations of 2D

non-linear sigma models. By following this approach, an integrable deformation is specified

by picking up a skew-symmetric classical r-matrix which satisfies the modified classical
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Yang-Baxter equation (mCYBE). The original argument [6, 7] was restricted to principal

chiral models. It is generalized to symmetric cosets by Delduc-Magro-Vicedo [8].1 Then

they succeeded in constructing a q-deformed action of the AdS5×S5 superstring [19, 20].

This formulation is also based on the mCYBE.

After that, it has been reformulated in [21] based on the (non-modified) classical Yang-

Baxter equation (CYBE), where the Lax pair and the kappa transformation should be

reconstructed and this generalization is not so trivial. An advantage in comparison to

the mCYBE case is that partial deformations of AdS5×S5 can be considered. This is

because the zero map R = 0 is allowed for the CYBE while not for the mCYBE. Fur-

thermore, one can find many solutions of the CYBE. In fact, in a series of papers [22–29],

many examples of (skew-symmetric) classical r-matrices have been identified with the well-

known backgrounds such as γ-deformations of S5 [30, 31], gravity duals for noncommutative

(NC) gauge theories [32, 33] and Schrödinger spacetimes [34–36], in addition to new back-

grounds [22]. This identification may be called the gravity/CYBE correspondence [23]

(For a short summary, see [37]) and indicate that the moduli space of (a certain class of)

solutions of type IIB supergravity can be described by the CYBE.2

In the recent, this correspondence has been generalized to integrable deformations of

4D Minkowski spacetime [39]. In particular, (T-duals of) 4D (A)dS spaces are reproduced

as Yang-Baxter deformations of the Minkowski spacetimes. Furthermore, this development

has an intimate connection with kappa-Minkowski spacetime [40–42] via preceding works

e.g., [43]. For a recent argument with a gravity dual, see [28, 29].

It is also remarkable that the gravity/CYBE correspondence seems to be valid beyond

the integrability. There are many examples of non-integrable AdS/CFT correspondences.

An example is the case of AdS5×T 1,1 [44], for which the non-integrability has been shown

by the existence of chaotic string solutions on R×T 1,1 [45–47]. Thus TsT transformations of

T 1,1 [30, 48] are regarded as non-integrable deformations. However, these deformations can

be described as Yang-Baxter deformations [49]. Hence the gravity/CYBE correspondence

would be applicable to a much wider class of solutions of type IIB supergravity.

We will proceed to study Yang-Baxter deformations of the AdS5×S5 superstring by

focusing upon Lax pairs. The universal expression of Lax pair, without taking specific clas-

sical r-matrices and concrete coordinate systems, has already been presented in [21]. Then

classical r-matrices are identified and hence the associated Lax pairs are already obtained

in an implicit way. However, explicit expressions of the Lax pairs have not been evaluated

yet, while those are quite useful in studying classical solution by the use of the classical

inverse scattering method. Thus, in this paper, we will derive explicit expressions of Lax

pairs for string theories on popular examples of deformed backgrounds: 1) gravity duals for

NC gauge theories [32, 33], 2) γ-deformations of S5 [30, 31], 3) Schrödinger spacetimes [34–

36] and 4) abelian twists of the global AdS5 [50, 51]. Then we can find out a concise

derivation of Lax pairs based on simple replacement rules. Furthermore, each of the above

deformations can be reinterpreted as twisted boundary conditions with the undeformed

1For earlier arguments related to this generalization, see [9–18].
2This is quite analogous to the bubbling scenario proposed by Lin-Lunin-Maldacena [38]. Here the

moduli space is described by droplet configurations in a free fermion system.
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background by using the rules. As another derivation, the Lax pair for gravity duals for

NC gauge theories is reproduced from the one for a q-deformed AdS5×S5 [19, 20, 52] by

taking a scaling limit introduced in [53].

It would be helpful for readers to summarize the novelties of this paper below:

1. Explicit forms of Lax pairs are computed, while the associated classical r-matrices

have already been obtained in [23, 24, 27].

2. Twisted boundary conditions are determined explicitly, while general arguments for

TsT transformations have been provided in [31, 58].

3. A scaling limit of the q-deformed AdS5×S5 [53] is confirmed at the level of Lax pairs.

This paper is organized as follows. Section 2 gives a brief review of Yang-Baxter

deformations of the AdS5×S5 superstring. In section 3, we explicitly derive Lax pairs for

gravity duals of NC gauge theories with two methods, (i) Yang-Baxter deformation (argued

in [24]) and (ii) a scaling limit of q-deformed AdS5×S5 (introduced in [53]). The resulting

Lax pairs are identical under a unitary transformation. In section 4, we compute Lax pairs

for γ-deformations of S5 by evaluating the abstract expression given in [23]. The resulting

Lax pairs agree with Frolov’s results [31] up to gauge transformations. Section 5 argues

Lax pairs for Schrödinger spacetimes by evaluating the abstract forms given in [27]. In

section 6, we derive Lax pairs for abelian twists of the global AdS5 from the results of [23].

Section 7 is devoted to conclusion and discussion. In appendix A, our convention and

notation are summarized. In appendix B, we explicitly derive a Lax pair for a q-deformed

AdS5×S5 by evaluating the universal Lax pair [19, 20] with a coordinate system [52].

2 Yang-Baxter deformations of string on AdS5×S5

We shall give a brief review of Yang-Baxter deformations of the AdS5×S5 superstring action

based on the CYBE case [21].3

The deformed classical action of the AdS5×S5 superstring is given by

S = −
√
λc

4

∫
∞

−∞

dτ

∫ 2π

0
dσ (γαβ − ǫαβ)STr

[
Aα d ◦

1

1− ηRg ◦ d
(Aβ)

]
, (2.1)

where the left-invariant one-form Aα is defined as

Aα ≡ g−1∂αg , g ∈ SU(2, 2|4) (2.2)

with the world-sheet index α = (τ, σ). Here the conformal gauge is supposed and the

world-sheet metric is taken as γαβ = diag(−1,+1). Hence there is no coupling of the

dilaton to the world-sheet scalar curvature. The anti-symmetric tensor ǫαβ is normalized

as ǫτσ = +1. The constant λc is the ’t Hooft coupling. Note that η is a deformation

parameter and hence the undeformed action [3] is reproduced when η = 0.

3For the mCYBE case [19, 20], see appendix B.
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A key ingredient in our analysis is the operator Rg defined as

Rg(X) ≡ g−1R(gXg−1)g , X ∈ su(2, 2|4) , (2.3)

where a linear R-operator R : su(2, 2|4) → su(2, 2|4) is a solution of the classical Yang-

Baxter equation (CYBE),4

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = 0 . (2.4)

This R-operator is related to a skew-symmetric classical r-matrix in the tensorial notation

through the following supertrace operation on the second site:

R(X) = STr2[r(1⊗X)] =
∑

i

(ai STr[biX]− bi STr[aiX]) , (2.5)

where the classical r-matrix is represented by

r =
∑

i

ai ∧ bi ≡
∑

i

(ai ⊗ bi − bi ⊗ ai) with ai, bi ∈ su(2, 2|4) . (2.6)

The projection operator d is defined as

d ≡ P1 + 2P2 − P3 , (2.7)

where Pi (i = 0, 1, 2, 3) are projections to the Z4-graded components of su(2, 2|4). In

particular, P0(su(2, 2|4)) is a local symmetry of the classical action, so(1, 4)⊕ so(5). Note

that the numerical coefficients are fixed by requiring the kappa-symmetry [21].

It is convenient to introduce the light-cone expression of Aα like

A± ≡ Aτ ±Aσ , (2.8)

when we will study Lax pair in the following sections.

The bosonic part of the Lagrangian. Our aim here is to explicitly derive Lax pairs

for the bosonic part of deformed actions. Hence it is convenient to rewrite the bosonic part

of the deformed Lagrangian (2.1) as

L =

√
λc

2
STr(A− P2(J+)) , (2.9)

where J± is a deformed current defined as

J± ≡ 1

1∓ 2ηRg ◦ P2
A± . (2.10)

4In the original work [21], a wider class of R-operators whose image is given by gl(4|4) has been proposed.

The gl(4|4) image is restricted on su(2, 2|4) in essential under the coset projection d as pointed out in [28, 29].

We will concentrate here on a restricted class in which the image is su(2, 2|4) from the beginning, so as to

deal with pre-projected quantities like the deformed current J itself, without introducing extra generators.

For general cases argued in [22, 25], a more detailed study would be necessary.
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Note here that the factor 2 in front of η comes from the projection operator d given in (2.7).

By solving the following equation,

(1∓ 2ηRg ◦ P2) J± = A± , (2.11)

the deformed current J± is determined.5 Then the metric and NS-NS two-form are evalu-

ated from the symmetric and skew-symmetric parts regarding the world-sheet coordinates

in (2.9), respectively.

Taking a variation of the Lagrangian (2.9), the equation of motion is obtained as follows

E ≡ ∂+P2(J−) + ∂−P2(J+) + [J+, P2(J−)] + [J−, P2(J+)] = 0 . (2.12)

By definition, the undeformed current A± satisfies the flatness condition,

Z ≡ ∂+A− − ∂−A+ + [A+, A−] = 0 . (2.13)

Then, in terms of the deformed current J±, this condition can be rewritten as follows

∂+J− − ∂−J+ + [J+, J−] + 2η Rg(E) + 4η2CYBERg(P2(J+), P2(J−)) = 0 , (2.14)

where we have introduced a new quantity defined as

CYBERg(X,Y ) ≡ [Rg(X), Rg(Y )]−Rg([Rg(X), Y ] + [X,Rg(Y )]) . (2.15)

Note that CYBERg(X,Y ) vanishes if the R-operator satisfies the CYBE in (2.4). The

relation (2.14) means that J± also satisfies the flatness condition with the equation of

motion E = 0. That is, J± satisfies the flatness condition only on the on-shell, while A±

do even on the off-shell.

It is helpful to decompose J± with the projection operators P0 and P2 like

J± = P0(J±) + P2(J±) ≡ J
(0)
± + J

(2)
± , (2.16)

where we have used the completeness condition P0 + P2 = 1. For the concrete expressions

of the projection operators, see appendix A. Then the equation of motion (2.12) can be

rewritten into the following form:

E = ∂+J
(2)
− + ∂−J

(2)
+ + [J

(0)
+ , J

(2)
− ] + [J

(0)
− , J

(2)
+ ] = 0 . (2.17)

The flatness condition (2.13) can also be rewritten in a similar way:

Z = P0(Z) + P2(Z) = 0 . (2.18)

5In order to derive the metric and NS-NS two-form, it is enough to determine P2(J±) by solving the

projected conditions

(1∓ 2ηP2 ◦Rg)P2(J±) = P2(A±) ,

as done in a series of the previous papers [22–29]. However, it is necessary here to determine J± itself so as

to evaluate the form of Lax pair.
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With the help of the linear independence of the grade 0 and grade 2 parts, one can obtain

the following two conditions:

P0(Z) = ∂+J
(0)
− − ∂−J

(0)
+ + [J

(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] + 2η P0(Rg(E)) = 0 ,

P2(Z) = ∂+J
(2)
− − ∂−J

(2)
+ + [J

(0)
+ , J

(2)
− ] + [J

(2)
+ , J

(0)
− ] + 2η P2(Rg(E)) = 0 . (2.19)

Note here that the terms proportional to η vanish on the on-shell, i.e., E = 0.

Then the three conditions in (2.17) and (2.19) can be recast into the following set of

the equations Ci = 0 (i = 1, 2, 3):

C1 ≡ ∂−J
(2)
+ − [J

(2)
+ , J

(0)
− ] ,

C2 ≡ ∂+J
(2)
− + [J

(0)
+ , J

(2)
− ] ,

C3 ≡ ∂+J
(0)
− − ∂−J

(0)
+ + [J

(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] . (2.20)

Namely, Ci = 0 (i = 1, 2, 3) are satisfied on the on-shell and are equivalent to the equation

of motion (2.12) and the flatness condition (2.13).

Lax pair. Finally, a Lax pair for the deformed action is given by

L± = J
(0)
± + λ±1J

(2)
± (2.21)

with a spectral parameter λ ∈ C.6 Note that the existence of the Lax pair (2.21) is based

on the Z2-grading of AdS5×S5.

As a matter of course, the flatness condition of L±

0 = ∂+L− − ∂−L+ + [L+,L−] (2.22)

is equivalent to the equation of motion E = 0 [in (2.12)] and the flatness condition Z = 0

[in (2.13)] . In order to confirm the equivalence, it is helpful to notice that the right-hand

side of (2.22) can be rewritten in terms of Ci as follows:

∂+L− − ∂−L+ + [L+,L−] = −λ C1 +
1

λ
C2 + C3 . (2.23)

Thus we have shown the equivalence.

In the following sections, we will evaluate explicit forms of the Lax pair (2.21) for some

examples of classical r-matrices.

3 Lax pairs for gravity duals of NC gauge theories

In this section, let us study Lax pairs for gravity duals of noncommutative (NC) gauge

theories from the viewpoint of Yang-Baxter deformations. The integrability of this back-

ground was recently shown in [24] in the sense of the kinematical integrability. The Lax

pair was implicitly derived in [24], but the explicit expression has not been computed yet.

First of all, we evaluate explicit forms of Lax pairs with classical r-matrices in [24].

The resulting Lax pairs depend on two deformation parameters. Next, one may consider

another derivation for a special one-parameter case. Then the associated Lax pair can also

be reproduced by taking a scaling limit [53] of the one for a q-deformed AdS5 [19, 20, 52].

6Please do not confuse the spectral parameter λ with the ’t Hooft coupling λc!
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3.1 Lax pairs from Yang-Baxter deformations

In the context of Yang-Baxter deformations, abelian Jordanian classical r-matrices [24]

r = c1 p2 ∧ p3 + c2 p0 ∧ p1 (3.1)

are associated with gravity duals of NC gauge theories [32, 33]. The classical r-matrices

in (3.1) consist of the translation generators pµ in su(2, 2) (For our convention, see ap-

pendix A). Then the deformation parameters c1 and c2 are related to magnetic and electric

NS-NS two-forms in the gravity solutions [32, 33], respectively.

Because the square of the associated R-operator vanishes due to the properties of pµ’s,

the classical r-matrices (3.1) are called Jordanian type. The classical r-matrices do not

contain any generators in su(4), and hence only the AdS5 part is deformed. Therefore we

will concentrate on only the AdS5 part below.

The deformed metric and NS-NS two-form. To derive the metric and NS-NS

two-form from the Lagrangian (2.9), let us introduce a coordinate system through a

parametrization of an SU(2, 2) element as follows:

ga(τ, σ) = exp
[
p0 x

0 + p1 x
1 + p2 x

2 + p3 x
3
]
exp

[
γa5

1

2
log z

]
∈ SU(2, 2) . (3.2)

By solving the relation in (2.11), the deformed current Jα is explicitly determined as

J± =
z

z4 − 4c22η2

[
(z2∂±x

0 ± 2c2η∂±x
1) p0 + (z2∂±x

1 ± 2c2η∂±x
0) p1

]

+
z

z4 + 4c12η2

[
(z2∂±x

2 ± 2c1η∂±x
3) p2 + (z2∂±x

3 ∓ 2c1η∂±x
2) p3

]

+
1

2z
∂±z γ

a
5 . (3.3)

Then the resulting metric and NS-NS two-form are given by

ds2 =
z2[−(dx0)2 + (dx1)2]

z4 − 4c22η
2

+
z2[(dx2)2 + (dx3)2]

z4 + 4c21η
2

+
dz2

z2
,

B = − 2c2η

z4 − 4c22η
2
dx0 ∧ dx1 +

2c1η

z4 + 4c21η
2
dx2 ∧ dx3 . (3.4)

This result exactly agrees with the gravity duals of NC gauge theories [32, 33]. When

c1 = c2 = 0, the Poincaré AdS5 is reproduced.

Lax pair. Let us derive the associated Lax pairs. Now LNC
± are explicitly evaluated as

LNC
± =

z

z4 − 4c22η
2

[
(z2∂±x

0 ± 2c2η∂±x
1)

(
λ±1

2
γa0 − na

05

)

+ (z2∂±x
1 ± 2c2η∂±x

0)

(
λ±1

2
γa1 − na

15

)]

+
z

z4 + 4c21η
2

[
(z2∂±x

2 ± 2c1η∂±x
3)

(
λ±1

2
γa2 − na

25

)

+ (z2∂±x
3 ∓ 2c1η∂±x

2)

(
λ±1

2
γa3 − na

35

)]
+

λ±1∂±z

2z
γa5 . (3.5)

– 7 –
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In the undeformed limit c1, c2 → 0, the above expressions are reduced to

LPAdS5
± =

∂±x
µ

z

(
λ±1

2
γaµ − na

µ5

)
+

λ±1∂±z

2z
γa5 . (3.6)

This is nothing but a Lax pair for the Poincaré AdS5.

Another derivation of Lax pair. It would be of good significance to describe another

derivation of Lax pair (3.5).

The undeformed current is now given by

A± =
1

z
∂±x

µpµ +
1

2z
∂±z γ

a
5 . (3.7)

Then, by comparing the deformed current (3.3) with the undeformed one (3.7), the defor-

mation under our consideration can be reinterpreted as the following replacement rules:

1

z2
∂±x

0 −→ z2

z4 − 4c22η2

[
∂±x

0 ± 2c2η

z2
∂±x

1

]
,

1

z2
∂±x

1 −→ z2

z4 − 4c22η2

[
∂±x

1 ± 2c2η

z2
∂±x

0

]
,

1

z2
∂±x

2 −→ z2

z4 + 4c12η2

[
∂±x

2 ± 2c1η

z2
∂±x

3

]
,

1

z2
∂±x

3 −→ z2

z4 + 4c12η2

[
∂±x

3 ∓ 2c1η

z2
∂±x

2

]
. (3.8)

The above concise rules give rise to another simple derivation of the Lax pair (3.5). By

applying the rules to the undeformed Lax pair (3.6), the desired one (3.5) can be repro-

duced. This derivation is quite similar to Frolov’s construction of Lax pair for string on

the γ-deformed S5 [31].

Twisted boundary condition. In fact, due to the rule (3.8), the deformation can be

regarded as a twisted boundary condition with the undeformed AdS5×S5, as argued in [31].

For simplicity, suppose c1 6= 0 and c2 = 0. The analysis for the case with c2 6= 0 is

quite similar, though there is a subtlety for the signature of the metric (For the detail,

see [32, 33]).

After performing the Yang-Baxter deformation (equivalently the associated TsT trans-

formation) , the original coordinates x̃2 and x̃3 for the undeformed AdS5×S5 are mapped

to x2 and x3. Then the relations are given by

1

z2
∂±x̃

2 =
z2

z4 + 4c12η2

[
∂±x

2 ± 2c1η

z2
∂±x

3

]
,

1

z2
∂±x̃

3 =
z2

z4 + 4c12η2

[
∂±x

3 ∓ 2c1η

z2
∂±x

2

]
. (3.9)

These relations indicate the following equivalence of Noether currents

P̃α
2 = Pα

2 , P̃α
3 = Pα

3 , (3.10)

– 8 –
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where Pα
i and P̃α

i (i = 2, 3) are conserved currents associated with translation invariance

for xi and x̃i directions, respectively. The τ -component of the relations means that the

momentum pi ≡ P τ
i is identical to p̃i ≡ P̃ τ

i , namely pi = p̃i. Then, evaluating the σ-

component of (3.10) leads to the relations:

∂σx̃
2 = ∂σx

2 +
2c1η√
λc

p3 , ∂σx̃
3 = ∂σx

3 − 2c1η√
λc

p2 . (3.11)

Finally, by integrating these expressions, one can figure out that the deformed background

with the usual periodic boundary condition is equivalent to the undeformed AdS5×S5 with

a twisted boundary condition:

x̃2(σ = 2π) = x̃2(σ = 0) +
2c1η√
λc

P3 , x̃3(σ = 2π) = x̃3(σ = 0)− 2c1η√
λc

P2 . (3.12)

Here Pi are Noether charges for translation invariance in the xi directions.

Thus the Yang-Baxter deformation with the classical r-matrix (3.1) can be reinter-

preted as a twisted boundary condition with the usual AdS5×S5.

3.2 A scaling limit of a Lax pair for a q-deformed AdS5

In section 3.1, we have derived the Lax pair (3.5) as Yang-Baxter deformations of AdS5.

Here we shall reproduce it as a scaling limit of a Lax pair for a q-deformed AdS5.

A scaling limit of a q-deformed AdS5×S5. We first give a short review of a scaling

limit of a q-deformed AdS5×S5 [53]. In this limit, the metric and NS-NS two-form in (3.4)

can be reproduced.

The starting point is the q-deformed metric and NS-NS two-form,

ds2AdS5 =
√

1 + κ2

[
1

1− κ2 sinh2 ρ

(
− cosh2 ρ dt2 + dρ2

)

+
sinh2 ρ

1 + κ2 sin2 ζ sinh4 ρ

[
dζ2 + cos2 ζ (dψ1)

2
]
+ sinh2 ρ sin2 ζ (dψ2)

2

]
,

BAdS5 = κ

√
1 + κ2

sinh4 ρ sin 2ζ

1 + κ2 sin2 ζ sinh4 ρ
dψ1 ∧ dζ . (3.13)

Let us next rescale the coordinates as follows:

t =
√
κ x0 , ψ1 =

√
κ

cos ζ0
x2 , ψ2 =

√
κ

sin ζ0
x1 ,

ζ = ζ0 +
√
κ x3 , ρ = arcsinh

[
1√
κ z

]
. (3.14)

Here new coordinates x0 , x1 , x2 , x3 , z and a real constant ζ0 have been introduced.

After taking the κ → 0 limit, the resulting metric and NS-NS two-form are given by

ds2 =
−(dx0)2 + (dx1)2

z2
+

z2[(dx2)2 + (dx3)2]

z4 + sin ζ20
+

dz2

z2
,

B =
sin ζ0

z4 + sin ζ20
dx2 ∧ dx3 . (3.15)
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This result exactly agrees with a one-parameter case of (3.4) through the identification

2c1 η = sin ζ0 , 2c2 η = 0 . (3.16)

For the S5 part, this limit is nothing but the undeformed limit.

Lax pair — the third derivation. Next, we will derive the Lax pair (3.5) by taking

the scaling limit of a Lax pair for the q-deformed AdS5. This is the third derivation.

The Lax pair for the q-deformed AdS5×S5 was originally constructed in [19, 20]. With

a coordinate system [52], the Lax pair can be evaluated explicitly, as shown in appendix B.

The remaining task is to take the scaling limit of the Lax pair (B.22).

The first is to rewrite the Lax pair (B.22) in terms of the coordinates (3.14) with (3.16).

For later convenience, the spectral parameter should be flipped as λ → −λ. Then, taking

the κ → 0 limit leads to the following expression:

L̃± =
∂±x

0

z

[
−λ±1

2
iγa5 + ina

15

]
+

∂±x
1

z

[
−i

λ±1

2
γa0 − ina

01

]

+
z(z2∂±x

2 + η∂±x
3)

z4 + 4c21η
2

[
λ±1

2
γa2 − na

12

]

+
z(z2∂±x

3 − η∂±x
2)

z4 + 4c21η
2

[
λ±1

2
γa3 − na

13

]
− λ±1∂±z

2z
γa1 . (3.17)

In order to see that the result (3.17) is identical to the Lax pair (3.5), it is necessary to

perform a unitary transformation like

L̃± −→ U L̃± U−1 , U ≡
(

U 0

0 1

)
, U ≡




1 i −i 1

i 1 −1 i

−i 1 1 i

−1 i i 1


 . (3.18)

After that, the transformed Lax pair agrees with the one (3.5), namely,

LNC
± = U L̃± U−1 when c2 = 0 . (3.19)

Thus the scaling limit works well at the level of Lax pair.

It would be nice to consider this relation at the level of classical r-matrix. One may

interpret the scaling limit as a rescaling of Drinfeld-Jimbo type classical r-matrix [54–56].

4 Lax pairs for γ-deformations of S5

In this section, we shall study Yang-Baxter deformations with classical r-matrices cor-

responding to γ-deformations of S5. Concretely speaking, the associated Lax pairs are

computed explicitly. The resulting expressions nicely agree with the Lax pairs obtained

via TsT transformations of S5 [31]. We will omit the AdS5 part in the following.

Let us consider abelian classical r-matrices, which have been found in [23] ,

r = µ3 h4 ∧ h5 + µ1 h5 ∧ h6 + µ2 h6 ∧ h4 . (4.1)

Here h4, h5 and h6 are the three Cartan generators in su(4), and µi (i = 1, 2, 3) are deforma-

tion parameters. For our convention of the generators, see appendix A. The r-matrices (4.1)

deform only S5 and correspond to γ-deformations of S5.
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The deformed metric and NS-NS two-form. It is helpful to use the following rep-

resentative of a group element of SU(4),

gs(τ, σ) = exp

[
i

2
(φ1 h4 + φ2 h5 + φ3 h6)

]
exp

[
−ζns

13

]
exp

[
− i

2
r γs1

]
. (4.2)

By solving the equations in (2.11), the deformed current J γ̂1,γ̂2,γ̂3
α is determined as

J γ̂1,γ̂2,γ̂3
± = −i∂±r

γs1
2

− ∂±ζ

[
i sin r

γs3
2

+ cos r ns
13

]

−G(γ̂i)

[
∂±φ1 ± (γ̂3 sin

2 r sin2 ζ∂±φ2 − γ̂2 cos
2 r∂±φ3)

+ γ̂1 sin
2 r cos2 r sin2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
cos ζ

(
i sin r

γs2
2

+ cos r ns
12

)
+ sin ζ ns

23

]

−G(γ̂i)

[
∂±φ2 ± (γ̂1 cos

2 r∂±φ3 − γ̂3 sin
2 r cos2 ζ∂±φ1)

+ γ̂2 sin
2 r cos2 r cos2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
sin ζ

(
i sin r

1

2
γs4 + cos r ns

14

)
+ cos ζ ns

34

]

+G(γ̂i)

[
∂±φ3 ± (γ̂2 sin

2 r cos2 ζ∂±φ1 − γ̂1 sin
2 r sin2 ζ∂±φ2)

+ γ̂3 sin
4 r sin2 ζ cos2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
i cos r

γs5
2

− sin r ns
15

]
. (4.3)

Here the parameters γ̂i are defined as

γ̂i ≡ 8 ηµi , (4.4)

and the scalar function G(γ̂i) is

G−1(γ̂i) ≡ 1 + sin2 r(γ̂21 cos
2 r sin2 ζ + γ̂22 cos

2 r cos2 ζ + γ̂23 sin
2 r sin2 ζ cos2 ζ) . (4.5)

This deformed current (4.3) will play an important role in the following analysis.

Substituting the deformed current (4.3) into the Lagrangian (2.9) leads to the back-

ground

ds2 =
3∑

i=1

(
dρi

2 +G(γ̂i)ρi
2dφi

2
)
+G(γ̂i)ρ1

2ρ2
2ρ3

2

(
3∑

i=1

γ̂idφi

)2

,

B2 = G(γ̂i) (γ̂3ρ1
2ρ2

2dφ1 ∧ dφ2 + γ̂1ρ2
2ρ3

2dφ2 ∧ dφ3 + γ̂2ρ3
2ρ1

2dφ3 ∧ dφ1) . (4.6)
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Here new coordinates ρi (i = 1, 2, 3) are defined as

ρ1 ≡ sin r cos ζ , ρ2 ≡ sin r sin ζ , ρ3 ≡ cos r . (4.7)

The metric and NS-NS two-form in (4.6) agree with 3-parameter γ-deformations of S5 [31].

A particular one-parameter case with

γ̂1 = γ̂2 = γ̂3 ≡ γ̂ (4.8)

corresponds to the Lunin-Maldacena solution [30] described by

ds2 =
3∑

i=1

(
dρi

2 +Gρi
2dφi

2
)
+Gγ̂2ρ1

2ρ2
2ρ3

2

(
3∑

i=1

dφi

)2

,

B2 = G γ̂(ρ1
2ρ2

2dφ1 ∧ dφ2 + ρ2
2ρ3

2dφ2 ∧ dφ3 + ρ3
2ρ1

2dφ3 ∧ dφ1) , (4.9)

where the scalar function G is defined as

G−1 ≡ 1 +
γ̂2

4
(sin2 2r + sin4 r sin2 2ζ) . (4.10)

This background is a holographic dual of the β-deformation of the N = 4 super Yang-Mills

theory [57].

Lax pair. The next task is to evaluate the Lax pair in (2.21) with the classical r-

matrix (4.1). The components Lγ̂1,γ̂2,γ̂3
± are given by

Lγ̂1,γ̂2,γ̂3
± = −i

λ±1

2
∂±r γ

s
1 − ∂±ζ

[
i sin r

λ±1

2
γs3 + cos r ns

13

]

−G(γ̂i)

[
∂±φ1 ± (γ̂3 sin

2 r sin2 ζ∂±φ2 − γ̂2 cos
2 r∂±φ3)

+ γ̂1 sin
2 r cos2 r sin2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
cos ζ

(
i sin r

λ±1

2
γs2 + cos r ns

12

)
+ sin ζ ns

23

]

−G(γ̂i)

[
∂±φ2 ± (γ̂1 cos

2 r∂±φ3 − γ̂3 sin
2 r cos2 ζ∂±φ1)

+ γ̂2 sin
2 r cos2 r cos2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
sin ζ

(
i sin r

λ±1

2
γs4 + cos r ns

14

)
+ cos ζ ns

34

]

+G(γ̂i)

[
∂±φ3 ± (γ̂2 sin

2 r cos2 ζ∂±φ1 − γ̂1 sin
2 r sin2 ζ∂±φ2)

+ γ̂3 sin
4 r sin2 ζ cos2 ζ

3∑

i=1

γ̂i∂±φi

]

×
[
i cos r

λ±1

2
γs5 − sin r ns

15

]
. (4.11)
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Note here that, in the undeformed limit γ̂i → 0, Lγ̂1,γ̂2,γ̂3
± becomes

LS
± = −i ∂±r

λ±1

2
γs1 − ∂±ζ

[
i sin r

λ±1

2
γs3 + cos r ns

13

]

− ∂±φ1

[
cos ζ

(
i sin r

λ±1

2
γs2 + cos r ns

12

)
+ sin ζ ns

23

]

− ∂±φ2

[
sin ζ

(
i sin r

λ±1

2
γs4 + cos r ns

14

)
+ cos ζ ns

34

]

+ ∂±φ3

[
i cos r

λ±1

2
γs5 − sin r ns

15

]
. (4.12)

This is just a Lax pair for the undeformed S5.

Another derivation of Lax pair. Then, let us consider a simple derivation of the Lax

pair (4.11), as in the previous section. The undeformed current is given by

A± = −i∂±r
γs1
2

− ∂±ζ

[
i sin r

γs3
2

+ cos r ns
13

]

− ∂±φ1

[
cos ζ

(
i sin r

γs2
2

+ cos r ns
12

)
+ sin ζ ns

23

]

− ∂±φ2

[
sin ζ

(
i sin r

γs4
2

+ cos r ns
14

)
+ cos ζ ns

34

]

+ ∂±φ3

[
i cos r

γs5
2

− sin r ns
15

]
. (4.13)

By comparing the deformed current (4.3) with the undeformed one (4.13), we can identify

the following replacement rules:

∂±φ1 −→ G(γ̂i)

[
∂±φ1 ± (γ̂3 sin

2 r sin2 ζ∂±φ2 − γ̂2 cos
2 r∂±φ3)

+ γ̂1 sin
2 r cos2 r sin2 ζ

3∑

i=1

γ̂i∂±φi

]
,

∂±φ2 −→ G(γ̂i)

[
∂±φ2 ± (γ̂1 cos

2 r∂±φ3 − γ̂3 sin
2 r cos2 ζ∂±φ1) ,

+ γ̂2 sin
2 r cos2 r cos2 ζ

3∑

i=1

γ̂i∂±φi

]
,

∂±φ3 −→ G(γ̂i)

[
∂±φ3 ± (γ̂2 sin

2 r cos2 ζ∂±φ1 − γ̂1 sin
2 r sin2 ζ∂±φ2)

+ γ̂3 sin
4 r sin2 ζ cos2 ζ

3∑

i=1

γ̂i∂±φi

]
. (4.14)

Due to these replacement rules (4.14), the deformed Lax pair (4.11) can be reconstructed

from the undeformed one (4.12). In fact, the replacement rules (4.14) are identical to a TsT-
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transformation [31],7 and hence the Lax pair (4.11) is equivalent to the one in [31].8 This

result further confirms the correspondence between a Yang-Baxter deformation with (4.1)

and a TsT transformation [23].

Finally, it is worth mentioning the reinterpretation of the deformation as a twisted

boundary condition. This fact was originally shown in [31]. The twisted boundary condition

with the undeformed AdS5×S5 is given by

φ̃1(σ = 2π) = φ̃1(σ = 0) + γ3J2 − γ2J3 + 2πn1 ,

φ̃2(σ = 2π) = φ̃2(σ = 0) + γ1J3 − γ3J1 + 2πn2 ,

φ̃3(σ = 2π) = φ̃3(σ = 0) + γ2J1 − γ1J2 + 2πn3 , (4.15)

with γi ≡ γ̂/
√
λc. Here Ji are Noether charges for rotation invariance in the φi directions.

Integers ni are winding numbers along the φi directions.

5 Lax pairs for Schrödinger spacetimes

Let us consider a classical r-matrix which deforms both AdS5 and S5. Such an r-matrix

contains generators of both su(2, 2) and su(4). A simple example is the following [27]:

r =
i

4
√
2
(p0 − p3) ∧ (h4 + h5 + h6) . (5.1)

For convention of the generators, see appendix A. This r-matrix (5.1) is associated with

Schrödinger spacetimes realized in type IIB supergravity [34–36], as shown in [27].

The deformed metric and NS-NS two-form. The bosonic group elements of SU(2, 2)

and SU(4) are parameterized as follows

ga(τ, σ) = exp
[
x0p0 + x1p1 + x2p2 + x3p3

]
exp

[
γa5

1

2
log z

]
∈ SU(2, 2) ,

gs(τ, σ) = exp

[
i

2
(ψ1h4 + ψ2h5 + ψ3h6)

]
exp

[
−ζns

13

]
exp

[
− i

2
r γs1

]
∈ SU(4) . (5.2)

7In our argument, the rules are identified on the off-shell level, but the one in [31] is done on the on-shell.
8To see this equivalence (up to small differences of convention), we have to perform a gauge

transformation

h = exp[−iζn02] exp

[

i

2
rγ2

]

exp
[π

2
(n12 + in03)

]

and a Möbius transformation for the spectral parameter λ → λ+1

λ−1
.
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The deformed current J± can be expanded in terms of the generators of su(2, 2) ⊕ su(4).

Then, by solving the equation in (2.11), J± is determined as follows

Ja
± =

1

z
∂±x

1p1 +
1

z
∂±x

2p2 +
1

2z
∂±z γ

a
5

+
1√
2 z

∂±x
+ (p0 + p3)

+
1√
2 z

[
∂±x

− ± η∂±χ± η

2
sin2 µ(∂±ψ + cos θ∂±φ) +

η2

z2
∂±x

+

]
(p0 − p3) ,

Js
± = − i

2
∂±µγs1 −

1

2
∂±θ

[
i

2
sinµγs3 + cosµns

13

]

−
[
∂±χ± η ∂±x

+

z2

] [
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
i

2
sinµγs2 + cosµns

12 + ns
34

)
− i

2
cosµγs5 + sinµns

15

]

+
1

2
∂±φ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 − ns
23

)

− cos
θ

2

(
i

2
sinµγs2 + cosµns

12 − ns
34

)]

− 1

2
∂±ψ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
i

2
sinµγs2 + cosµns

12 + ns
34

)]
. (5.3)

Here we have performed a coordinate transformation,

x± =
x0 ± x3√

2
,

r = µ , ζ =
1

2
θ , ψ1 = χ+

1

2
(ψ + φ) , ψ2 = χ+

1

2
(ψ − φ) , ψ3 = χ .

With the deformed current (5.3), the resulting background is given by

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− η2

(dx+)2

z4
+ ds2

S5
,

B2 =
η

z2
dx+ ∧ (dχ+ ω) . (5.4)

Here the S5 metric is written as an S1-fibration over CP2,

ds2S5 = (dχ+ ω)2 + ds2
CP2 ,

ds2
CP2 = dµ2 + sin2 µ

(
Σ2
1 +Σ2

2 + cos2 µΣ2
3

)
. (5.5)

Now χ is the fiber coordinate and ω is a one-form potential of the Kähler form on CP2.

The symbols Σi (i = 1, 2, 3) and ω are defined as

Σ1 ≡
1

2
(cosψ dθ + sinψ sin θ dφ) ,

Σ2 ≡
1

2
(sinψ dθ − cosψ sin θ dφ) ,

Σ3 ≡
1

2
(dψ + cos θ dφ) , ω ≡ sin2 µΣ3 . (5.6)
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It is remarkable that only the AdS5 metric is deformed while the S5 part is not, in spite

of the expression of the classical r-matrix (5.1). On the other hand, the NS-NS two-form

carries two indices, one of which is from AdS5 and the other is S5.

Lax pair. In a similar way, one can evaluate the associated Lax pair. The resulting

expression is a bit messy but given by

LSch
± =

1

z
∂±x

1

[
λ±1

2
γa1 − na

15

]
+

1

z
∂±x

2

[
λ±1

2
γa2 − na

25

]
+

λ±1

2z
∂±z γ

a
5

+
1√
2 z

∂±x
+

[
λ±1

2
γa0 +

λ±1

2
γa3 − na

05 − na
35

]

+
1√
2 z

[
∂±x

− ± η∂±χ± η

2
sin2 µ(∂±ψ + cos θ∂±φ) +

η2

z2
∂±x

+

]

×
[
λ±1

2
γa0 − λ±1

2
γa3 − na

05 + na
35

]

− iλ±1

2
∂±µγs1 −

1

2
∂±θ

[
iλ±1

2
sinµγs3 + cosµns

13

]

−
[
∂±χ± η ∂±x

+

z2

] [
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 + ns
34

)
− iλ±1

2
cosµγs5 + sinµns

15

]

+
1

2
∂±φ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 − ns
23

)

− cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 − ns
34

)]

− 1

2
∂±ψ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 + ns
34

)]
. (5.7)

It would be helpful to check the undeformed limit. As η → 0, the above Lax pair LSch
± is

reduced to the following:

L± =
1

z
∂±x

1

[
λ±1

2
γa1 − na

15

]
+

1

z
∂±x

2

[
λ±1

2
γa2 − na

25

]
+

λ±1

2z
∂±z γ

a
5

+
1√
2 z

∂±x
+

[
λ±1

2
γa0 +

λ±1

2
γa3 − na

05 − na
35

]

+
1√
2 z

∂±x
−

[
λ±1

2
γa0 − λ±1

2
γa3 − na

05 + na
35

]

− iλ±1

2
∂±µγs1 −

1

2
∂±θ

[
iλ±1

2
sinµγs3 + cosµns

13

]

− ∂±χ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 + ns
34

)
− iλ±1

2
cosµγs5 + sinµns

15

]
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+
1

2
∂±φ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 − ns
23

)

− cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 − ns
34

)]

− 1

2
∂±ψ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
iλ±1

2
sinµγs2 + cosµns

12 + ns
34

)]
. (5.8)

Another derivation of Lax pair. Let us consider another derivation of the Lax pair

again. One can see the replacement rules by comparing the deformed current with the

undeformed one, as before.

The undeformed current is decomposed into the AdS5 and S5 components like

A± = Aa
± +As

± , (5.9)

where Aa
± and As

± are given by

Aa
± =

1

z
∂±x

1p1 +
1

z
∂±x

2p2 +
1

2z
∂±z γ

a
5 +

1√
2 z

∂±x
+ (p0 + p3) +

1√
2 z

∂±x
−(p0 − p3) ,

As
± = − i

2
∂±µγs1 −

1

2
∂±θ

[
i

2
sinµγs3 + cosµns

13

]

− ∂±χ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
i

2
sinµγs2 + cosµns

12 + ns
34

)
− i

2
cosµγs5 + sinµns

15

]

+
1

2
∂±φ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 − ns
23

)

− cos
θ

2

(
i

2
sinµγs2 + cosµns

12 − ns
34

)]

− 1

2
∂±ψ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns

14 + ns
23

)

+ cos
θ

2

(
i

2
sinµγs2 + cosµns

12 + ns
34

)]
. (5.10)

Thus, by comparing the deformed current (5.3) with the undeformed one (5.10), one can

see the following replacement rules:

1

z2
∂±x

− −→ 1

z2
∂±x

− ± η

z2

[
∂±χ+

1

2
sin2 µ (∂±ψ + cos θ∂±φ)

]
+

η2

z4
∂±x

+ ,

∂±χ −→ ∂±χ± η

z2
∂±x

+ . (5.11)

Then the Lax pair (5.7) can be reproduced by applying the replacement rules (5.11) to the

undeformed Lax pair (5.8).
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Finally, let us mention about the reinterpretation of the deformation as a twisted

boundary condition. Similarly, one can see that the following boundary condition

x̃−(σ = 2π) = x̃−(σ = 0) +
η√
λc

Jχ,

χ̃(σ = 2π) = χ̃(σ = 0)− η√
λc

P− + 2πnχ , (5.12)

with the undeformed AdS5×S5 is equivalent to the deformed geometry with the usual

periodic boundary condition. Here P− and Jχ are Noether charges for translation and

rotation invariance for the x− and χ directions, respectively. An integer nχ is a winding

number for the χ direction. It may be interesting to consider a relation between the above

argument and the symmetric two-form studied in [59].

6 Lax pairs for abelian twists of the global AdS5

Finally, we will consider abelian twists of the global AdS5 as Yang-Baxter deformations.

The twists are associated with the classical r-matrix,

r = − i

2
na
12 ∧ na

03 . (6.1)

This is composed of two Cartan generators of su(2, 2) (For our convention, see appendix A).

This r-matrix deforms only the AdS5 part, hence we will omit the S5 part hereafter.

The deformed metric and NS-NS two-form. We will work with the following pa-

rameterization of a group element of SU(2, 2):

ga(τ, σ) = exp

[
i

2
(φ1 h1 + φ2 h2 + τ h3)

]
exp [−θ na

13] exp

[
−ρ

γa1
2

]
∈ SU(2, 2) . (6.2)

The deformed current J± is expanded in terms of the basis of su(2, 2). Then, by solving

the equation in (2.11), J± can be determined as follows

J± = −∂±ρ
1

2
γa1 − ∂±θ

[
1

2
sinh ρ γa3 + cosh ρna

13

]

+ i∂±τ

[
1

2
cosh ρ γa5 + sinh ρna

15

]

− Ĝ
(
∂±φ1 ∓ η sin2 θ sinh2 ρ ∂±φ2

)

×
[
cos θ

(
1

2
sinh ρ γa2 + cosh ρna

12

)
+ sin θ na

23

]

+ iĜ
(
∂±φ2 ± η cos2 θ sinh2 ρ ∂±φ1

)

×
[
sin θ

(
1

2
sinh ρ γa0 − cosh ρna

01

)
− cos θ na

03

]
, (6.3)

where Ĝ is a scalar function defined as follows

Ĝ−1 ≡ 1 + η2 sin2 θ cos2 θ sinh2 ρ . (6.4)
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By using the current (6.3), the deformed metric and NS-NS two-form are given by

ds2 = − cosh2 ρ dτ2 + dρ2 + sinh2 ρ

(
dθ2 +

cos2 θ dφ2
1 + sin2 θ dφ2

2

1 + η2 sin2 θ cos2 θ sinh4 ρ

)
,

B2 = − η sin2 θ cos2 θ sinh4 ρ

1 + η2 sin2 θ cos2 θ sinh4 ρ
dφ1 ∧ dφ2 . (6.5)

This result precisely agrees with abelian twists of the global AdS5 [50, 51].

Lax pair. The next is to determine the associated Lax pair. By using the deformed

current (6.3), the Lax pair can be explicitly evaluated as follows

LAT
± = −∂±ρ

λ±1

2
γa1 − ∂±θ

[
λ±1

2
sinh ρ γa3 + cosh ρna

13

]

+ i∂±τ

[
λ±1

2
cosh ρ γa5 + sinh ρna

15

]

− Ĝ
(
∂±φ1 ∓ η sin2 θ sinh2 ρ∂± φ2

)

×
[
cos θ

(
λ±1

2
sinh ρ γa2 + cosh ρna

12

)
+ sin θ na

23

]

+ iĜ
(
∂±φ2 ± η cos2 θ sinh2 ρ∂± φ1

)

×
[
sin θ

(
λ±1

2
sinh ρ γa0 − cosh ρna

01

)
− cos θ na

03

]
. (6.6)

In the η → 0 limit, LAT
± is reduced to the following form:

LGAdS5
± = −∂±ρ

λ±1

2
γa1 − ∂±θ

[
λ±1

2
sinh ρ γa3 + cosh ρna

13

]

+ i∂±τ

[
λ±1

2
cosh ρ γa5 + sinh ρna

15

]

− ∂±φ1

[
cos θ

(
λ±1

2
sinh ρ γa2 + cosh ρna

12

)
+ sin θ na

23

]

+ i∂±φ2

[
sin θ

(
λ±1

2
sinh ρ γa0 − cosh ρna

01

)
− cos θ na

03

]
. (6.7)

This is nothing but a Lax pair for the global AdS5.

Another derivation of Lax pair. Even in this case, one can read off the replacement

rules as well.

The undeformed current is

A± = −∂±ρ
1

2
γa1 − ∂±θ

[
1

2
sinh ρ γa3 + cosh ρna

13

]

+ i∂±τ

[
1

2
cosh ρ γa5 + sinh ρna

15

]

− ∂±φ1

[
cos θ

(
1

2
sinh ρ γa2 + cosh ρna

12

)
+ sin θ na

23

]

+ i∂±φ2

[
sin θ

(
1

2
sinh ρ γa0 − cosh ρna

01

)
− cos θ na

03

]
. (6.8)
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Then, by comparing the deformed current (6.3) with the undeformed one (6.8), the re-

placement rules are identified as follows

∂±φ1 −→ Ĝ
(
∂±φ1 ∓ η sin2 θ sinh2 ρ ∂±φ2

)
,

∂±φ2 −→ Ĝ
(
∂±φ2 ± η cos2 θ sinh2 ρ ∂±φ1

)
. (6.9)

By applying the replacement rules to the undeformed Lax pair (6.7), one can reproduce

the Lax pair (6.6) as well.

Again, one can reinterpret the deformation as a twisted boundary condition. After

performing a similar analysis, the twisted boundary condition

φ̃1(σ = 2π) = φ̃1(σ = 0) +
η√
λc

J2 + 2πn1 ,

φ̃2(σ = 2π) = φ̃2(σ = 0)− η√
λc

J1 + 2πn2 (6.10)

with the undeformed AdS5×S5 is equivalent to the deformed background with a usual

periodic boundary condition. Here Ji are Noether charges for rotation invariance in the φi

directions. Integers ni are winding numbers along the φi directions.

7 Conclusion and discussion

We have explicitly derived Lax pairs for string theories on Yang-Baxter deformed back-

grounds, 1) gravity duals for NC gauge theories, 2) γ-deformations of S5, 3) Schrödinger

spacetimes and 4) abelian twists of the global AdS5. As another derivation, the Lax pair

for gravity duals for NC gauge theories has been reproduced from the one for a q-deformed

AdS5×S5 by taking a scaling limit.

As a byproduct, we have found a simple derivation of Lax pairs at least for all of the

examples we have discussed here. After choosing a classical r-matrix and introducing a

coordinate system, the replacement rules have been found out by comparing the deformed

current J with the undeformed current A. Then, by applying the rules to a Lax pair

for the undeformed AdS5×S5, one can construct the resulting Lax pair associated with the

deformation. In addition, we have shown that each of the deformations considered here can

be reinterpreted as a twisted boundary condition with the undeformed AdS5×S5, as in the

work of [31]. It would be interesting to study the fermionic sector by following the work [58].

This simple derivation really helps us to check the direct computation of Lax pairs

based on Yang-Baxter deformations. In addition, it enables us to derive Lax pairs for

Yang-Baxter deformations of Minkowski spacetime [39], for which the universal expression

of Lax pair has not been obtained yet. Our procedure can play a significant role in studying

along this direction. The result would be reported in another place [60].

A more general question is what is the class of classical r-matrix for which one can

deduce the replacement rule. Probably, it would be possible for some restricted r-matrices.

This is also concerned with another question, what is the class of classical r-matrices for

which the insertion of the operator can be eliminated by changing a boundary condition

on the string world-sheet. It would be quite important to answer these questions.
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We believe that our concise prescription to construct Lax pairs would be helpful for

further understanding of the gravity/CYBE correspondence.
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A Notation and convention

We summarize here our notation and convention of the su(2, 2) and su(4) generators.

The gamma matrices. Let us first introduce the following gamma matrices:

γ1 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 , γ2 =




0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


 , γ3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

γ0 = iγ4 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 , γ5 = iγ1γ2γ3γ0 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 . (A.1)

To embed su(2, 2) and su(4) into su(2, 2|4), we follow an 8× 8 matrix representation as

γaµ =

(
γµ 0

0 0

)
, γa5 =

(
γ5 0

0 0

)
with µ = 0, 1, 2, 3 ,

γsi =

(
0 0

0 γi

)
, γs5 =

(
0 0

0 γ5

)
with i = 1, 2, 3, 4 . (A.2)

Note that each block of the matrices is a 4× 4 matrix.

The su(2, 2) and su(4) generators. The Lie algebras su(2, 2) ∼ so(2, 4) and su(4) ∼
so(6) are spanned as follows:

su(2, 2) = spanR

{
γaµ , γ

a
5 , n

a
µν =

1

4
[γaµ , γ

a
ν ] , n

a
µ5 =

1

4
[γaµ , γ

a
5 ] | µ , ν = 0, 1, 2, 3

}
,

su(4) = spanR

{
γsi , γ

s
5 , n

s
ij =

1

4
[γsi , γ

s
j ] , n

s
i5 =

1

4
[γsi , γ

s
5] | i, j = 1, 2, 3, 4

}
. (A.3)
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The subalgebras so(1, 4) and so(5) in the spinor representation are formed as follows

so(1, 4) = spanR{na
µν , n

a
µ5 | µ , ν = 0, 1, 2, 3 } ,

so(5) = spanR{ns
ij , n

s
i5 | i, j = 1, 2, 3, 4 } . (A.4)

For a coset construction of Poincaré AdS5, it is useful to employ the following basis:

su(2, 2) = spanR{ pµ , kµ , h1 , h2 , h3 , na
13 , n

a
10 , n

a
23 , n

a
20 | µ = 0, 1, 2, 3 } . (A.5)

Here the generators pµ, kµ and the Cartan generators h1 , h2 , h3 are defined as follows

pµ ≡ 1

2
γaµ − na

µ5 , kµ ≡ 1

2
γaµ + na

µ5 ,

h1 ≡ 2i na
12 = diag(−1, 1,−1, 1, 0, 0, 0, 0) ,

h2 ≡ 2na
30 = diag(−1, 1, 1,−1, 0, 0, 0, 0) ,

h3 ≡ γa5 = diag(1, 1,−1,−1, 0, 0, 0, 0) .

Note that the generators pµ and kµ commute each other,

[pµ , pν ] = [kµ , kν ] = [pµ , kν ] = 0 for µ , ν = 0, 1, 2, 3 . (A.6)

For the S5 part, the Cartan generators h4 , h5 , h6 of su(4) are given by

h4 ≡ 2i ns
12 = diag(0, 0, 0, 0,−1, 1,−1, 1) ,

h5 ≡ 2i ns
34 = diag(0, 0, 0, 0,−1, 1, 1,−1) ,

h6 ≡ γs5 = diag(0, 0, 0, 0, 1, 1,−1,−1) . (A.7)

Since non-Cartan generators of su(4) are not used in our analysis here, we will not write

them down explicitly.

The bosonic coset projectors. In deriving the bosonic part of Lax pairs, it is necessary

to employ the coset projectors P0 and P2 regarding the Z2-grading property. The projectors

P0 and P2 are decomposed into the AdS5 part and the S5 part like

P0(x) = P a
0 (x) + P s

0 (x) , P2(x) = P a
2 (x) + P s

2 (x) , (A.8)

where P a,s
0 and P a,s

2 are the following coset projectors for so(2, 4) and su(4),

P a
0 : su(2, 2) −→ so(1, 4) , P a

2 : su(2, 2) −→ su(2, 2)

so(1, 4)
,

P s
0 : su(4) −→ so(5) , P s

2 : su(4) −→ su(4)

so(5)
. (A.9)
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These coset projectors can be represented by the su(2, 2) and su(4) generators as follows:

P a
0 (x) =

1

2

3∑

µ,ν=0

Tr[na
µνx]

Tr[na
µνn

a
µν ]

na
µν +

3∑

µ=0

Tr[na
µ5x]

Tr[na
µ5n

a
µ5]

na
µ5 ,

P a
2 (x) =

3∑

µ=0

Tr[γaµx]

Tr[γaµγ
a
µ]
γaµ +

Tr[γa5x]

Tr[γa5γ
a
5 ]
γa5 ,

P s
0 (x) =

1

2

4∑

µ,ν=1

Tr[ns
µνx]

Tr[ns
µνnµν ]

ns
µν +

4∑

µ=1

Tr[ns
µ5x]

Tr[ns
µ5n

s
µ5]

ns
µ5 ,

P s
2 (x) =

4∑

µ=1

Tr[γsµx]

Tr[γsµγ
s
µ]
γsµ +

Tr[γs5x]

Tr[γs5γ
s
5]
γs5 . (A.10)

The projectors are utilized in evaluating the deformed metric, NS-NS two-form and

Lax pair.

B A Lax pair for a q-deformed AdS5×S5

In this appendix, let us consider a q-deformed AdS5×S5 by employing the Yang-Baxter

sigma model based on the mCYBE. Then we explicitly present a Lax pair for a string

theory on this background.

A typical skew-symmetric solution of the mCYBE is Drinfeld-Jimbo type [54–56]. The

classical action of the deformed AdS5×S5 superstring associated with this r-matrix was

constructed by Delduc-Magro-Vicedo [19, 20]. The metric (in the string frame) and NS-

NS two-form have been computed in [52]. The deformed background is often called the

η-deformed AdS5×S5. Some specific limits [61] and a mirror description [62–64] have been

studied. For various classical solutions, see [65–76]. Two-parameter generalizations have

also been studied in [61, 77]. For some arguments towards the complete supergravity

solution, see [53, 78, 79]. More recently, another integrable deformation (called the λ-

deformation) has been argued in [80–87]. This deformation is closely related to the Yang-

Baxter deformation by a Poisson-Lie duality [80–83, 88–90].

B.1 Yang-Baxter deformations from the mCYBE

Let us first give a short review on the Yang-Baxter deformations of the AdS5×S5 superstring

based on the mCYBE case [19, 20].

A q-deformed classical action of the AdS5×S5 superstring [19, 20] is given by

S = −
√
λc

4
(1 + η2)

∫
∞

−∞

dτ

∫ 2π

0
dσ (γαβ − ǫαβ)STr

[
Aα d ◦

1

1− ηRg ◦ d
(Aβ)

]
, (B.1)

The definition of Aα and Rg is the same as in section 2. A main difference is that the linear

R-operator should satisfy the mCYBE

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = [X,Y ] . (B.2)
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The projection operators d is slightly different from the CYBE case like

d ≡ P1 +
2

1− η2
P2 − P3 . (B.3)

Namely, the coefficient in front of P2 depends on η. This comes from the difference of the

kappa transformation.

The bosonic part of the Lagrangian. We consider here the bosonic part of the de-

formed action (B.1). The Lagrangian can be rewritten into a simple form,

L =

√
λc

2

1 + η2

1− η2
STr(A− P2(J+)) , (B.4)

with the deformed current J± defined as

J± ≡ 1

1∓ κRg ◦ P2
A± , κ ≡ 2η

1− η2
. (B.5)

The expression of J± is determined by solving the following equations:

(1∓ κRg ◦ P2) J± = A± . (B.6)

By taking a variation of (B.4), the equation of motion is given by

E ≡ ∂+P2(J−) + ∂−P2(J+) + [J+, P2(J−)] + [J−, P2(J+)] = 0 . (B.7)

The undeformed current A± automatically satisfies the flatness condition

Z ≡ ∂+A− − ∂−A+ + [A+, A−] = 0 , (B.8)

which can be rewritten in terms of J± as follows

∂+J− − ∂−J+ + [J+, J−] + κRg(E) + κ
2CYBERg(P2(J+), P2(J−)) = 0 . (B.9)

Note that the quantity

CYBERg(X,Y ) ≡ [Rg(X), Rg(Y )]−Rg([Rg(X), Y ] + [X,Rg(Y )]) (B.10)

results in [X,Y ], if the R-operator we are dealing with satisfies the mCYBE (B.2). Thus,

due to the mCYBE, the condition (B.9) is reduced to

Z = ∂+J− − ∂−J+ + [J+, J−] + κRg(E) + κ
2 [P2(J+), P2(J−)] = 0 . (B.11)

In comparison to the CYBE case, the deformed current J± no longer satisfies the flatness

condition, even if the equation of motion (B.7) is imposed.

Finally, a Lax pair [19, 20] is given by

L± = P0(J±) + λ±1
√

1 + κ2 P2(J±) (B.12)

with a spectral parameter λ ∈ C. The flatness condition of L±

∂+L− − ∂−L− + [L+,L−] = 0 (B.13)

leads to the equation of motion (B.7) and the flatness condition (B.9).
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B.2 A Lax pair for a q-deformed AdS5×S5

We shall study the bosonic part with a classical r-matrix of Drinfeld-Jimbo type [54–56],

rDJ = −i
∑

a<b

Eab ∧ Eba − i
∑

c<d

Ecd ∧ Edc , (B.14)

where Eab (a, b = 1, . . . , 4) and Ecd (c, d = 5, . . . , 8) are the fundamental representations of

su(2, 2) and su(4), respectively. This is a solution of the mCYBE (B.2).

To construct the bosonic part of the deformed AdS5×S5 with the global coordinates,

we will work with a bosonic element represented by

g = ga · gs ∈ SU(2, 2)× SU(4) , (B.15)

where the group elements of SU(2, 2) and SU(4) are parameterized as follows, respectively,

ga(τ, σ) = exp

[
i

2

3∑

i=1

ψihi

]
exp[−ζ na

13] exp

[
−1

2
ρ γa1

]
,

gs(τ, σ) = exp

[
i

2

3∑

i=1

φihi+3

]
exp[−ξ ns

13] exp

[
− i

2
r γs1

]
. (B.16)

The AdS5 part is described by the coordinates ψ3 (≡ t) , ψ1 , ψ2 , ζ , ρ. The S5 part is

parameterized by the angle variables φ1 , φ2 , φ3 , ξ , r.

In the present case, the deformed current J± is decomposed into two pieces: J± =

Ja
± + Js

±. Then, by solving the equation in (B.6), Ja
± and Js

± are determined as follows

Ja
± = −fa(ρ)∂±ρ

[
1

2
(γa1 ± iκ sinh ρ γa5 )± iκ cosh ρna

15

]

+ fa(ρ)∂±t

[
1

2
cosh ρ (iγa5 ± κ sinh ρ γa1 ) + i(1 + κ

2) sinh ρna
15

]

− ga(ρ , ζ)∂±ζ

[
1

2
sinh ρ

(
γa3 ± κ sin ζ sinh2 ργa2

)

± iκ sinh ρ cosh ρ
(
na
35 ± κ sin ζ sinh2 ρna

25

)
∓ κ cos ζ sinh2 ρna

23

+ cosh ρ
(
na
13 ± κ sin ζ sinh2 ρna

12

)]

− ga(ρ , ζ)∂±ψ1

[
1

2
cos ζ sinh ρ(γa2 ∓ κ sin ζ sinh2 ρ γa3 )

+ sin ζ(1 + κ
2 sinh4 ρ)na

23 + cos ζ cosh ρ (na
12 ∓ κ sin ζ sinh2 ρna

13)

± iκ cos ζ sinh ρ cosh ρ(na
25 ∓ κ sin ζ sinh2 ρna

35)

]

+ ∂±ψ2

[
i sin ζ sinh ρ

(
1

2
γa0 ± iκ cosh ρna

05

)

− i sin ζ cosh ρna
01 − i cos ζ(na

03 ∓ κ sin ζ sinh2 ρna
02)

]
, (B.17)
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Js
± = −fs(r)∂±r

[
i
1

2
(γs1 ∓ κ sin r γs5)∓ κ cos r ns

15

]

− gs(r, ξ)∂±ξ

[
i
1

2
sin r

(
γs3 ∓ κ sin ξ sin2 r γs2

)

± κ cos ξ sin2 r ns
23 ∓ κ sin r cos r

(
ns
35 ∓ κ sin ξ sin2 r ns

25

)

+ cos r
(
ns
13 ∓ κ sin ξ sin2 r ns

12

) ]

− gs(r, ξ)∂±φ1

[
i
1

2
sin r cos ξ

(
γs2 ± κ sin ξ sin2 r γs3

)

+ sin ξ
(
1 + κ

2 sin4 r
)
ns
23 ∓ κ sin r cos r cos ξ

(
ns
25 ± κ sin ξ sin2 r ns

35

)

+ cos r cos ξ
(
ns
12 ± κ sin2 r sin ξ ns

13

)]

− ∂±φ2

[
sin r sin ξ

(
i
1

2
γs4 ∓ κ cos r ns

45

)

+ sin ξ sin r cos r ns
14 + cos ξ(ns

34 ± κ sin ξ sin2 r ns
24)

]

+ fs(r)∂±φ3

[
i
1

2
cos r (γs5 ± κ sin r γs1)− (1 + κ

2) sin r ns
15

]
, (B.18)

where we have introduced new functions defined as

fa(ρ) ≡
1

1− κ2 sinh2 ρ
, ga(ρ, ζ) ≡

1

1 + κ2 sin2 ζ sinh4 ρ
,

fs(r) ≡
1

1 + κ2 sin2 r
, gs(r, ξ) ≡

1

1 + κ2 sin2 ξ sin4 r
. (B.19)

The deformed currents in (B.17) and (B.18) enable us to compute (i) the metric and NS-NS

two-form and (ii) the explicit form of the Lax pair.

Firstly, the resulting metric and NS-NS two-form are given by [52]

ds2AdS5 =
√
1 + κ2

[
1

1− κ2 sinh2 ρ

(
− cosh2 ρ dt2 + dρ2

)

+
1

1 + κ2 sin2 ζ sinh4 ρ
sinh2 ρ

(
dζ2 + cos2 ζ (dψ1)

2
)
+ sinh2 ρ sin2 ζ (dψ2)

2

]
,

BAdS5 = κ

√
1 + κ2

sinh4 ρ sin 2ζ

1 + κ2 sin2 ζ sinh4 ρ
dψ1 ∧ dζ , (B.20)

ds2
S5

=
√
1 + κ2

[
1

1 + κ2 sin2 r

(
cos2 r(dφ3)

2 + dr2
)

sin2 r

1 + κ2 sin2 ξ sin4 r

(
dξ2 + cos2 ξ (dφ1)

2
)
+ sin2 r sin2 ξ (dφ2)

2

]
,

BS5 = κ

√
1 + κ2

sin4 r sin 2ξ

1 + κ2 sin2 ξ sin4 r
dφ1 ∧ dξ . (B.21)

Here total derivative terms in the NS-NS two-form have been ignored.
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Secondly, the Lax pair (B.12) is also decomposed into two parts: L± = La
±+Ls

±. Then

the explicit forms of La
± and Ls

± turn out to be

La
± = −fa(ρ)∂±ρ

[
λ±1

2

√
1 + κ2(γa1 ± iκ sinh ρ γa5 )± iκ cosh ρna

15

]

+ fa(ρ)∂±t

[
λ±1

2

√
1 + κ2 cosh ρ (iγa5 ± κ sinh ρ γa1 ) + i(1 + κ

2) sinh ρna
15

]

− ga(ρ , ζ)∂±ζ

[
λ±1

2

√
1 + κ2 sinh ρ

(
γa3 ± κ sin ζ sinh2 ργa2

)

± iκ sinh ρ cosh ρ
(
na
35 ± κ sin ζ sinh2 ρna

25

)
∓ κ cos ζ sinh2 ρna

23

+ cosh ρ
(
na
13 ± κ sin ζ sinh2 ρna

12

)]

− ga(ρ , ζ)∂±ψ1

[
λ±1

2

√
1 + κ2 cos ζ sinh ρ(γa2 ∓ κ sin ζ sinh2 ρ γa3 )

+ sin ζ(1 + κ
2 sinh4 ρ)na

23 + cos ζ cosh ρ (na
12 ∓ κ sin ζ sinh2 ρna

13)

± iκ cos ζ sinh ρ cosh ρ(na
25 ∓ κ sin ζ sinh2 ρna

35)

]

+ ∂±ψ2

[
i sin ζ sinh ρ

(
λ±1

2

√
1 + κ2γa0 ± iκ cosh ρna

05

)

− i sin ζ cosh ρna
01 − i cos ζ(na

03 ∓ κ sin ζ sinh2 ρna
02)

]
, (B.22)

Ls
± = −fs(r)∂±r

[
i
λ±1

2

√
1 + κ2(γs1 ∓ κ sin r γs5)∓ κ cos r ns

15

]

− gs(r, ξ)∂±ξ

[
i
λ±1

2

√
1 + κ2 sin r

(
γs3 ∓ κ sin ξ sin2 r γs2

)

± κ cos ξ sin2 r ns
23 ∓ κ sin r cos r

(
ns
35 ∓ κ sin ξ sin2 r ns

25

)

+ cos r
(
ns
13 ∓ κ sin ξ sin2 r ns

12

) ]

− gs(r, ξ)∂±φ1

[
i
λ±1

2

√
1 + κ2 sin r cos ξ

(
γs2 ± κ sin ξ sin2 r γs3

)

+ sin ξ
(
1 + κ

2 sin4 r
)
ns
23 ∓ κ sin r cos r cos ξ

(
ns
25 ± κ sin ξ sin2 r ns

35

)

+ cos r cos ξ
(
ns
12 ± κ sin2 r sin ξ ns

13

)]

− ∂±φ2

[
sin r sin ξ

(
i
λ±1

2

√
1 + κ2 γs4 ∓ κ cos r ns

45

)

+ sin ξ sin r cos r ns
14 + cos ξ(ns

34 ± κ sin ξ sin2 r ns
24)

]

+ fs(r)∂±φ3

[
i
λ±1

2

√
1 + κ2 cos r (γs5 ± κ sin r γs1)− (1 + κ

2) sin r ns
15

]
. (B.23)

The expression (B.22) is utilized in section 3 in order to reproduce the desired Lax pair as

a scaling limit.
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